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Abstract. We revisit the landmark paper [D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann,
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pencils to derive new linearizations with potential applications in the theory of structured matrix
polynomials. Moreover, we analyze the conditioning of double ansatz space linearizations in the
important practical case of a Chebyshev basis.

Key words. matrix polynomials; bivariate polynomials; Bézoutian; double ansatz space; degree-
graded polynomial basis; orthogonal polynomials; conditioning

AMS subject classifications. 65F15, 15A18, 15A22

1. Introduction. The paper by Mackey, Mackey, Mehl, and Mehrmann [21]
introduced three important vector spaces of pencils for matrix polynomials: L1(P ),
L2(P ), and DL(P ). In [21] the spaces L1(P ) and L2(P ) generalize the companion
forms of the first and second kind, respectively, and the double ansatz space is the
intersection, DL(P ) = L1(P ) ∩ L2(P ). These vector spaces provide a family of can-
didate generalized eigenvalue problems for computing the eigenvalues of a matrix
polynomial, P (λ), giving a rich source of linearizations for P (λ): a classical approach
for polynomial eigenvalue problems.

In this article we introduce new viewpoints for these vector spaces. We regard
a block matrix as coefficients for a bivariate matrix polynomial (see Section 3), and
point out that every pencil in DL(P ) is a (generalized) Bézout matrix due to Lerer
and Tismenetsky [18] (see Section 4). These novel viewpoints allow us to obtain
remarkably elegant proofs for many properties of DL(P ) and the eigenvalue exclu-
sion theorem, which previously required rather tedious derivations. Furthermore, our
exposition includes matrix polynomials expressed in any polynomial basis, such as
the Chebyshev polynomial basis [8, 17]. We develop a generalization of the double
ansatz space (see Section 5) and also discuss extensions to generic algebraic fields,
and conditioning analysis (see Section 6).

Let us recall some basic definitions in the theory of matrix polynomials. Let
P (λ) =

∑k
i=0 Piφi(λ) be a matrix polynomial expressed in a certain polynomial basis

{φ0, . . . , φk}, where Pk 6= 0, Pi ∈ Fn×n, and F is a field. Of particular interest is
the case of a degree-graded basis, i.e., {φi} is a polynomial basis where φj is of exact
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degree j. We assume throughout that P (λ) is regular, i.e., detP (λ) 6≡ 0, which ensures
the finite eigenvalues of P (λ) are the roots of the scalar polynomial det(P (λ)). We
note that if the elements of Pi are in the field F then generally the finite eigenvalues
exist in the algebraic closure of F.

Given X,Y ∈ Fnk×nk a matrix pencil L(λ) = λX + Y is a linearization for P (λ)
if there exist unimodular matrix polynomials U(λ) and V (λ), i.e., detU(λ),detV (λ)
are nonzero elements of F, such that L(λ) = U(λ) diag(P (λ), In(k−1))V (λ) and hence,
L(λ) shares its finite eigenvalues and their partial multiplicities with P (λ). If P (λ)
has a singular leading coefficient, when expressed in a degree-graded basis, then it has
an infinite eigenvalue and to preserve the partial multiplicities at infinity the matrix
pencil L(λ) needs to be a strong linearization, i.e., L(λ) is a linearization for P (λ)
and λY +X a linearization for λkP (1/λ).

In the next section we recall the definitions of L1(P ), L2(P ), and DL(P ) allowing
for matrix polynomials expressed in any polynomial basis, extending the results in [21]
given for the monomial basis (such extension was also considered in [7]). In Section 3
we consider the same space from a new viewpoint, based on bivariate matrix polyno-
mials, and provide concise proofs for properties of DL(P ). Section 4 shows that every
pencil in DL(P ) is a (generalized) Bézout matrix and gives an alternative proof of
the eigenvalue exclusion theorem. In Section 5 we generalize the double ansatz space
to obtain a new family of linearizations, including new structured linearizations for
structured matrix polynomials. Although these new linearizations are mainly of the-
oretical interest they show how the new viewpoint can be used to derive novel results.
In Section 6 we analyze the conditioning of the eigenvalues of DL(P ) pencils, and in
Section 7 we describe a procedure to construct block symmetric pencils in DL(P ) and
Bézout matrices.

Notation. The expansion P (λ) =
∑k
i=0 Piφi(λ) denotes a regular n× n matrix

polynomial of degree k expressed in a polynomial basis {φi}. The vector [φk−1(λ), φk−2(λ), . . . , φ0(λ)]
T

is denoted by Λ(λ). The n× n identity matrix is denoted by In, which we also write
as I when the dimension is immediate from the context. The superscript B represents
blockwise transpose: if X = (Xij)1≤i,j≤k, Xij ∈ Fn×n, then XB = (Xji)1≤i,j≤k.

2. Vector spaces and polynomial bases. Given a matrix polynomial P (λ)
we can define a vector space, denoted by L1(P ), as [21, Def. 3.1]

L1(P ) =
{
L(λ) = λX + Y : X,Y ∈ Fnk×nk, L(λ) · (Λ(λ)⊗ In) = v ⊗ P (λ), v ∈ Fk

}
,

where Λ(λ) = [φk−1(λ), φk−2(λ), . . . , φ0(λ)]
T

and ⊗ is the matrix Kronecker product.
An ansatz vector v ∈ Fk generates a family of pencils in L1(P ), which are generically
linearizations for P (λ) [21, Thm. 4.7]. If {φ0, . . . , φk} is an orthogonal basis, then the

comrade form [4, 27] belongs to L1(P ) with v = [1, 0, . . . , 0]
T

.

The action of L(λ) = λX + Y ∈ L1(P ) on (Λ(λ) ⊗ In) can be characterized by
the column shift sum operator, denoted by �→ [21, Lemma 3.4],

L(λ) · (Λ(λ)⊗ In) = v ⊗ P (λ)⇐⇒ X �→Y = v ⊗ [Pk, Pk−1, . . . , P0] .

In the monomial basis X �→Y can be paraphrased as “insert a zero column on the
right of X and a zero column on the left of Y then add them together”, i.e.,

X �→Y =
[
X 0

]
+
[
0 Y

]
,
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where 0 ∈ Fnk×n. More generally, given a polynomial basis we define the column shift
sum operator as

X �→Y = XM +
[
0 Y

]
, (2.1)

where 0 ∈ Fnk×n, and M ∈ Fnk×n(k+1) has block elements Mpq = mp,qIn for 1 ≤ p ≤
k and 1 ≤ q ≤ k + 1, and mp,q is defined via the representation

xφi−1 =

k∑
j=0

mk+1−i,k+1−jφj , 1 ≤ i ≤ k. (2.2)

The matrix M has a particularly nice form if the basis is degree-graded, since the
terms with j > i in the above sum are zero. Then, the matrix M in (2.1) is given by

M =


M11 M12 . . . M1k M1,k+1

0 M22
. . .

. . . M2,k+1

...
. . .

. . .
. . .

...
0 . . . 0 Mkk Mk,k+1

 , (2.3)

where Mpq = mp,qIn, 1 ≤ p ≤ q ≤ k + 1, p 6= k + 1. Furthermore, for an orthogonal
basis, a three-term recurrence is satisfied and in this case the matrix M has only
three nonzero block diagonals. For example, if P (λ) ∈ R[λ]n×n is expressed in the
Chebyshev basis1 {T0(x), . . . , Tk(x)}, where Tj(x) = cos

(
j cos−1 x

)
for x ∈ [−1, 1],

we have

M =


1
2In 0 1

2In
. . .

. . .
. . .

1
2In 0 1

2In
In 0

 ∈ Rnk×n(k+1). (2.4)

The properties of the vector space L2(P ) are analogous to L1(P ) [16]. If L(λ) =
λX+Y is in L2(P ) then L(λ) = λXB+Y B belongs to L1(P ). This connection means
that the action of L(λ) ∈ L2(P ) is characterized by a row shift sum operator, denoted
by �↓ , and defined as

X �↓ Y =
(
XB �→Y B

)B
= MBX +

[
0T

Y

]
.

Here, we used the fact that (XBM)B = MBX, which follows from the structure
Mpq = mp,qIn.

2.1. Extending the results to general polynomial bases. Many of the
derivations in [21] are specifically for P (λ) expressed in a monomial basis, though the
lemmas and theorems can be generalized to any polynomial basis. One approach to
generalize [21] is to use a change-of-basis matrix S such that Λ(λ) = S[λk−1, . . . , λ, 1]T

and to define the mapping (see also [7])

C
(
L̂(λ)

)
= L̂(λ)(S−1 ⊗ In) = L(λ), (2.5)

1Non-monomial bases can be of significant interest when working with numerical algorithms over
some subfield of C. For the sake of completeness, we note that in order to define the Chebyshev basis
the field characteristics must be different than 2.
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where L̂(λ) is a pencil in L1(P ) for the matrix polynomial P (λ) expressed in the mono-
mial basis with the same ansatz vector as L(λ). In particular, the strong linearization
theorem holds for any polynomial basis.

Theorem 2.1 (Strong Linearization Theorem). Let P (λ) be a regular matrix
polynomial (expressed in any polynomial basis), and let L(λ) ∈ L1(P ). Then the
following statements are equivalent:

1. L(λ) is a linearization for P (λ),
2. L(λ) is a regular pencil, and
3. L(λ) is a strong linearization for P (λ).

Proof. It is a corollary of [21, Theorem 4.3]. In fact, the mapping C in (2.5)
is a strict equivalence between L1(P ) expressed in the monomial basis and L1(P )
expressed in another polynomial basis. Therefore, L(λ) has one of the three properties
if and only if L̂(λ) also does, and the properties are equivalent for L̂(λ) because they
are equivalent for L(λ).

This strict equivalence can be used to generalize many properties of L1(P ), L2(P ),
and DL(P ), including [21, Thm. 4.7], which shows that a pencil from L1(P ) is generi-
cally a linearization; however, our approach based on bivariate polynomials allows for
more concise derivations.

3. Recasting to bivariate matrix polynomials. A block matrix X ∈ Fnk×nh
with n× n blocks can provide the coefficients in the basis {φi} for a bivariate matrix
polynomial of degree h− 1 in x and k − 1 in y. Let φ : Fnk×nh → Fn×nh−1 [x]× Fn×nk−1 [y]
be the mapping defined by

φ : X =

X11 . . . X1h

...
. . .

...
Xk1 . . . Xkh

 , Xij ∈ Fn×n 7→ F (x, y) =

k−1∑
i=0

h−1∑
j=0

Xk−i,h−jφi(y)φj(x).

(3.1)
Equivalently, we may define the map as follows:

φ : X =

X11 . . . X1h

...
. . .

...
Xk1 . . . Xkh

 7→ F (x, y) =
[
φk−1(y)I · · · φ0(y)I

]
X

φh−1(x)I
...

φ0(x)I

 .
Usually, and unless otherwise specified, we will apply the map φ to square block

matrices so that h = k.
We recall that a regular (matrix) polynomial P (λ) expressed in a degree-graded

basis has an infinite eigenvalue if its leading matrix coefficient is singular. In order to
correctly take care of infinite eigenvalues we write P (λ) =

∑g
i=0 Piφi(λ), where the

integer g ≥ k is called the grade [22]. If the grade of P (λ) is larger than the degree
then P (λ) has at least n infinite eigenvalues. Usually, and unless stated otherwise,
the grade is equal to the degree.

It is easy to show that the mapping φ is a bijection between h× k block matrices
with n×n blocks and n×n bivariate matrix polynomials of grade h−1 in x and grade
k − 1 in y. Even more, φ is an isomorphism preserving the group additive structure.
We omit the trivial proof.

Many matrix operations can be interpreted as functional operations via the above
described duality between block matrices and their continuous analogues (see, for ex-
ample, [29]). Bivariate matrix polynomials allow us to interpret many matrix oper-
ations in terms of functional operations. In many instances, existing proofs in the
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theory of linearizations of matrix polynomials can be simplified, and throughout the
paper we will often exploit this parallelism. We summarize some computation rules
in Table 3.1. We hope the table will be useful not only in this paper, but also for
future work. All the rules are valid for any basis and for any field F, except the last
row that assumes F = C.

Table 3.1
Correspondence between operations in the matrix X and the bivariate polynomial viewpoints

regarding F (x, y). The matrix M is from (2.2), and v, w ∈ Fk are vectors.

Block matrix operation Bivariate polynomial operation
Block matrix X Bivariate polynomial F (x, y)
X 7→ XM F (x, y) 7→ F (x, y)x
X 7→MBX F (x, y) 7→ yF (x, y)
X(Λ(λ)⊗ I) Evaluation at x = λ: F (λ, y)
X(Λ(λ)⊗ v) F (λ, y)v

(ΛT (µ)⊗ wT )X wTF (x, µ)
(ΛT (µ)⊗ wT )X(Λ(λ)⊗ v) wTF (λ, µ)v

X 7→ XB F (x, y) 7→ F (y, x)
X 7→ XT F (x, y) 7→ FT (y, x)
X 7→ X∗ F (x, y) 7→ F ∗(y, x)

Other computational rules exist when the basis has additional properties. We
give some examples in Table 3.2, in which

Σ =


. . .

I
−I

I

 , R =

 I

. .
.

I

 , (3.2)

and we say that a polynomial basis is alternating if φi(x) is even (odd) when i is even
(odd).

Table 3.2
Correspondence when the polynomial basis is alternating or the monomial basis.

Type of basis Block matrix operation Bivariate polynomial operation
Alternating X 7→ ΣX F (x, y) 7→ F (x,−y)
Alternating X 7→ XΣ F (x, y) 7→ F (−x, y)
Monomials X 7→ RX F (x, y) 7→ yk−1F (x, y−1)
Monomials X 7→ XR F (x, y) 7→ xh−1F (x−1, y)

As seen in Table 3.1, the matrix M in (2.1) is such that the bivariate matrix
polynomial corresponding to the coefficients XM is F (x, y)x, i.e., M applied on the
right of X represents multiplication of F (x, y) by x. This gives an equivalent definition
for the column shift sum operator: if the block matrices X and Y are the coefficients
for F (x, y) and G(x, y) then the coefficients of H(x, y) are Z, where

Z = X �→Y, H(x, y) = F (x, y)x+G(x, y).

This gives a characterization of the L1(P ) space from the bivariate polynomial view-
point as pencils L(λ) = λX + Y such that with the mapping φ, we have F (x, y)x +
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G(x, y) = v(y)P (x). The ansatz vector is v = [vk−1, . . . , v1, v0]T , where v(y) =∑k−1
i=0 viφi(y).

Regarding the space L2(P ), the coefficient matrix MBX corresponds to the bi-
variate matrix polynomial yF (x, y), i.e., MB applied on the left of X represents
multiplication of F (x, y) by y. We have thus derived the following result (here and
below, with a slight abuse of notation, we use v to denote both the ansatz polynomial
and the ansatz vector).

Lemma 3.1. For an n× n matrix polynomial P (λ) of degree k, the space L1(P )
can be written as

L1(P ) = {L(λ) = λX + Y : F (x, y)x+G(x, y) = v(y)P (x), v ∈ Πk−1(F)} ,

where Πk−1(F) is the space of polynomials in F[y] of degree at most k − 1, and
F (x, y), G(x, y) are defined using X,Y by the mapping (3.1), and, writing v(y) =∑k−1
i viφi(y), v = [vk−1, . . . , v1, v0]T is the ansatz vector. Similarly,

L2(P ) = {L(λ) = λX + Y : yF (x, y) +G(x, y) = P (y)w(x), w ∈ Πk−1(F)} .

The space DL(P ) is the intersection of L1(P ) and L2(P ). It is an important
vector space because it contains block symmetric linearizations. By Lemma 3.1, a
pencil L(λ) = λX + Y belongs to DL(P ) with ansatze v(y) and w(x) if the following
L1(P ) and L2(P ) conditions are satisfied:

F (x, y)x+G(x, y) = v(y)P (x), yF (x, y) +G(x, y) = P (y)w(x). (3.3)

It appears that v(y) and w(x) could be chosen independently; however, if we substitute
y = x into (3.3) we obtain the compatibility condition

v(x)P (x) = F (x, x)x+G(x, x) = xF (x, x) +G(x, x) = P (x)w(x)

and hence, v = w as elements of Πk−1(F) since P (x)(v(x)−w(x)) is the zero matrix.
This shows the double ansatz space is actually a single ansatz space; a fact that
required two quite technical proofs in [21, Prop. 5.2, Thm. 5.3].

The bivariate matrix polynomials F (x, y) and G(x, y) are uniquely defined by the
ansatz v(x) since they satisfy the explicit formulas

yF (x, y)− F (x, y)x = P (y)v(x)− v(y)P (x), (3.4)

yG(x, y)−G(x, y)x = yv(y)P (x)− P (y)v(x)x. (3.5)

In other words, there is an isomorphism between Πk−1(F) and DL(P ). It also follows
from (3.4) and (3.5) that F (x, y) = F (y, x) and G(x, y) = G(y, x). This shows
that all the pencils in DL(P ) are block symmetric. Furthermore, if F (x, y) and
G(x, y) are symmetric and satisfy F (x, y)x + G(x, y) = P (x)v(y) then we also have
F (y, x)x+G(y, x) = P (x)v(y), and by swapping x and y we obtain the L2(P ) condi-
tion, yF (x, y) +G(x, y) = P (y)v(x). This shows all block symmetric pencils in L1(P )
belong to L2(P ) and hence, also belong to DL(P ). Thus, DL(P ) is the space of block
symmetric pencils in L1(P ) [16, Thm. 3.4].

Remark 3.2. Although in this paper we do not consider singular matrix polyno-
mials, we note that the analysis of this section still holds even if we drop the assump-
tion that P (x) is regular. We only need to assume P (x) 6≡ 0 in our proof that DL(P)
is in fact a single ansatz space, which is no loss of generality because DL(0) = {0}.
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4. Eigenvalue exclusion theorem and Bézoutians. The eigenvalue exclu-
sion theorem [21, Thm. 6.7] shows that if L(λ) ∈ DL(P ) with ansatz v ∈ Πk−1(F),
then L(λ) is a linearization for the matrix polynomial P (λ) if and only if v(λ)In and
P (λ) do not share an eigenvalue. This theorem is important because, generically,
v(λ)In and P (λ) do not share eigenvalues and almost all choices for v ∈ Πk−1(F)
correspond to linearizations in DL(P ) for P (λ).

Theorem 4.1 (Eigenvalue Exclusion Theorem). Suppose that P (λ) is a regular
matrix polynomial of degree k and L(λ) is in DL(P ) with a nonzero ansatz polynomial
v(λ). Then, L(λ) is a linearization for P (λ) if and only if v(λ)In (with grade k − 1)
and P (λ) do not share an eigenvalue.

We note that the last statement also includes infinite eigenvalues. In the following
we will observe that any DL(P ) pencil is a (generalized) Bézout matrix and expand on
this theme. This observation tremendously simplifies the proof of Theorem 4.1 and the
connection with the classical theory of Bézoutian (for the scalar case) and the Lerer–
Tismenetsky Bézoutian (for the matrix case) allows us to further our understanding
of the DL(P ) vector space, and leads to a new vector space of linearizations. We first
recall the definition of a Bézout matrix and Bézoutian function for scalar polynomials
(see [5, p. 277] and [6, sec. 2.9]).

Definition 4.2 (Bézout matrix and Bézoutian function). Let p1(x) and p2(x)
be scalar polynomials

p1(x) =

k∑
i=0

aiφi(x), p2(x) =

k∑
i=0

ciφi(x),

(ak and ck can be zero as we regard p1(x) and p2(x) as polynomials of grade k), then
the Bézoutian function associated with p1(x) and p2(x) is the bivariate function

B(p1, p2) =

k∑
i,j=1

bijφk−i(y)φk−j(x) :=
p1(y)p2(x)− p2(y)p1(x)

x− y
.

The k × k Bézout matrix associated to p1(x) and p2(x) is defined via the coefficients
of the Bézoutian function

B(p1, p2) = (bij)1≤i,j≤k . (4.1)

Here are some standard properties of a Bézoutian function and Bézout matrix:
1. The Bézoutian function is skew-symmetric with respect to its polynomial

arguments: B(p1, p2) = −B(p2, p1).
2. B(p1, p2) is bilinear with respect to its polynomial arguments.
3. B(p1, p2) is nonsingular if and only if p1 and p2 have no common roots.
4. B(p1, p2) is a symmetric matrix.

Property 3 holds for polynomials whose coefficients lie in any field F, provided that
the common roots are sought after in the algebraic closure of F and roots at infinity
are included. Note in fact that the dimension of the Bézout matrix depends on the
formal choice of the grade of p1 and p2. Unusual choices of the grade are not completely
artificial: for example, they may arise when evaluating a bivariate polynomial along
x = x0 forming a univariate polynomial [25]. Moreover, it is important to be aware
that common roots at infinity make the Bézout matrix singular.
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Example 4.3. Consider the finite field F2 = {0, 1} and let p1 = x2 and p2 = x+1,
whose finite roots are counting multiplicity {0, 0} and {1}, respectively. The Bézout
function is x + y + xy. If p1 and p2 are seen as grade 2, the Bézout matrix (in the

monomial basis) is

[
1 1
1 0

]
, which is nonsingular and has a determinant of 1. This is

expected as p1 and p2 have no shared root. If p1 and p2 are seen as grade 3 the Bézout

matrix becomes

0 0 0
0 1 1
0 1 0

, whose kernel is spanned by
[
1 0 0

]T
. Note indeed that

if the grade is 3 then the roots are, respectively, {∞, 0, 0} and {∞,∞, 1}, so p1 and
p2 share a root at ∞.

To highlight the connection with the classic Bézout matrix we first consider scalar
polynomials and show that the eigenvalue exclusion theorem immediately follows from
the connection with Bézoutians.

Proof. [Proof of Theorem 4.1 for n = 1] Let p(λ) be a scalar polynomial of degree
(and grade) k and v(λ) a scalar polynomial of degree at most k − 1. We first solve
the relations in (3.4) and (3.5) to obtain

F (x, y) =
p(y)v(x)− v(y)p(x)

y − x
, G(x, y) =

yv(y)p(x)− p(y)v(x)x

y − x
(4.2)

and thus, by Definition 4.2, F (x, y) = B(v, p) and G(x, y) = B(p, vx). Moreover, B is
skew-symmetric and bilinear with respect to its polynomial arguments so

L(λ) = λX+Y = λB(v, p)+B(p, xv) = −λB(p, v)+B(p, xv) = B(p, (x−λ)v). (4.3)

Since B is a Bézout matrix, det(L(λ)) = det(B(p, (x − λ)v)) 6= 0 for some λ if and
only if p and v do not share a root, which, by Theorem 2.1, is equivalent to L(λ)
being a linearization.

An alternative (more algebraic) argument is to note that p and (x − λ)v are
polynomials in x whose coefficients lie in the field of fractions F(λ). Since p has
coefficients in the subfield F ⊂ F(λ), its roots lie in the algebraic closure of F, denoted
by F. The factorization (x − λ)v similarly reveals that this polynomial has one root
at λ, while all the others lie in F∪{∞}. Therefore, p and (x−λ)v share a root in the
closure of F(λ) if and only if p and v share a root in F. Our proof of the eigenvalue
exclusion theorem is purely algebraic and holds without any assumption on the field
F. However, as noted by Mehl [23], if F is finite it could happen that no pencil in
DL is a linearization, because there are only finitely many choices available for the
ansatz polynomial v. Although this approach is extendable to any field, for simplicity
of exposition we assume for the rest of this section that the underlying field is C.

A natural question at this point is whether this approach generalizes to the matrix
case (n > 1). An appropriate generalization of the scalar Bézout matrix should:

• Depend on two matrix polynomials P (1) and P (2);
• Have nontrivial kernel if and only if P (1) and P (2) share an eigenvalue and the

corresponding eigenvector (note that for scalar polynomials the only possible
eigenvector is 1, up to multiplicative scaling).

The following examples show that the most straightforward ideas fail to satisfy
the second property above.

Example 4.4. Note first that the most näıve idea, i.e., P
(1)(y)P (2)(x)−P (2)(y)P (1)(x)

x−y ,

is generally not even a matrix polynomial (its elements are rational functions).
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Almost as straightforward is the generalization P (1)(y)P (2)(x)−P (1)(x)P (2)(y)
x−y , which

is indeed a bivariate matrix polynomial. However, consider the associated Bézout block
matrix. Let us check that it does not satisfy the property of being singular if and only if
P (1) and P (2) have a shared eigenpair by providing two examples over the field Q and

in the monomial basis. Consider first P (1) =

[
x 0
0 x− 1

]
and P (2) =

[
x− 6 −1

12 x+ 1

]
.

P (1) and P (2) have disjoint spectra. The corresponding Bézout matrix is

[
6 1
−12 −2

]
,

which is singular. Conversely, let P (1) =

[
x 1
0 x

]
and P (2) =

[
0 x
x 1

]
. Here, P (1)

and P (2) share the eigenpair {0,
[
1 0

]T }, but the corresponding Bézout matrix is[
1 0
0 −1

]
, which is nonsingular.

Fortunately, an extension of the Bézoutian to the matrix case was studied in
the 1980s by Lerer, Tismenetsky, and others, see, e.g., [3, 18, 19] and the references
therein. It turns out that it provides exactly the generalization that we need.

Definition 4.5. For n × n regular matrix polynomials P (1)(x) and P (2)(x) of
grade k, let M (1)(x) and M (2)(x) be regular matrix polynomials such that M (1)(x)P (1)(x) =
M (2)(x)P (2)(x). Then, denoting the maximal degree of M (1)(x) and M (2)(x) by `, the
associated Lerer–Tismenetsky Bézoutian function BM(2),M(1) is defined by [3, 18]

BM(2),M(1)(P (1), P (2)) =

`,k∑
i,j=1

Bijφ`−i(y)φk−j(x) :=
M (2)(y)P (2)(x)−M (1)(y)P (1)(x)

x− y
.

(4.4)
The n`×nk Bézout block matrix is defined by BM(2),M(1)(P (1), P (2)) = (Bij)1≤i≤`,1≤j≤k.

Note that the Lerer–Tismenetsky Bézoutian function and the corresponding Bézout
block matrix are not unique as there are many possible choices of M (1) and M (2).
Indeed, the matrix B does not even need to be square. In the examples below we use
monomials φi(x) = xi.

Example 4.6. As in the first example in Example 4.4, Let P (1) =

[
x 0
0 x− 1

]
and P (2) =

[
x− 6 −1

12 x+ 1

]
and select2 M (1) =

[
x2 − 3x+ 6 x

14x− 12 x2 + 2x

]
and M (2) =[

x2 + 3x 2x
2x x2

]
. It can be verified that M (1)P (1) = M (2)P (2). The associated Bézout

matrix is 
6 1
−12 −2
−6 0
−12 0


and has a trivial kernel.

Now consider again the second example in Example 4.4, P (1) =

[
x 1
0 x

]
, P (2) =[

0 x
x 1

]
, and select M (1) = P (1) and M (2) = P (1)F , where F =

[
0 1
1 0

]
. The

2M(1) and M(2) are of minimal degree as there are no M(1) and M(2) of degree 0 or 1 such that
M(1)P (1) = M(2)P (2) exists.
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Bézout matrix is

[
0 0
0 0

]
. Coherently with (4.5) below, its kernel has dimension 2

because P (1) and P (2) only share the zero eigenvalue and the associated Jordan chain[
1 0

]T
,
[
0 −1

]T
.

When P (1)(x) and P (2)(x) commute, i.e., P (2)(x)P (1)(x) = P (1)(x)P (2)(x), the
natural choice of M (1) and M (2) is M (1) = P (2) and M (2) = P (1), and we write
B(P (1), P (2)) := BP (1),P (2)(P (1), P (2)). In this case the Bézout matrix B(P (1), P (2))
(also dropping subscripts) is square and of size nk × nk. Here are some important
properties of the Lerer–Tismenetsky Bézoutian function and the Bézout matrix:

1. The Lerer–Tismenetsky Bézoutian function is skew-symmetric with respect
to its arguments: BM(2),M(1)(P (1), P (2)) = −BM(1),M(2)(P (2), P (1)),

2. B(P (1), P (2)) is bilinear with respect to its polynomial arguments, i.e., B(aP (1)+
bP (2), P (3)) = aB(P (1), P (3))+bB(P (2), P (3)) if P (1), P (2) both commute with
P (3),

3. The kernel of the Bézout block matrix is

kerBM(2),M(1)(P (1), P (2)) = Im

XFφk−1(TF )
...

XFφ0(TF )

 ⊕ Im

 X∞φ0(T∞)
...

X∞φk−1(T∞)

 .
(4.5)

Here (XF , TF ), (X∞, T∞) are the greatest common restrictions [9, Ch. 9] of
the finite and infinite Jordan pairs [9, Ch. 1, Ch. 7] of P (1)(x) and P (2)(x).
The infinite Jordan pairs are defined regarding both polynomials as grade k.
Importantly, kerBM(2),M(1)(P (1), P (2)) in (4.5) does not depend on the choice

of M (1) and M (2). This was proved (in the monomial basis) in [18, Thm. 1.1].
Equation (4.5) holds for any polynomial basis: it can be obtained from that
theorem via a congruence transformation involving the mapping S−1 ⊗ In
in (2.5).

4. If for any x and y we have P (1)(y)P (2)(x) = P (2)(x)P (1)(y), thenB(P (1), P (2))
is a block symmetric matrix. Note that the hypothesis is stronger than
P (1)(x)P (2)(x) = P (2)(x)P (1)(x), but it is always satisfied when P (2)(x) =
v(x)I.

The following lemma shows that, as in the scalar case, property 3 is the eigenvalue
exclusion theorem in disguise.

Lemma 4.7. The greatest common restriction of the (finite and infinite) Jordan
pairs of the regular matrix polynomials P (1) and P (2) is nonempty if and only if P (1)

and P (2) share both an eigenvalue and the corresponding eigenvector.
Proof. Suppose that the two matrix polynomials have only finite eigenvalues.

We denote by (X1, J1) (resp., (X2, J2)) a Jordan pair of P (1) (resp., P (2)). Observe
that a greatest common restriction is nonempty if and only if there exists at least
one nonempty common restriction. First, assume there exist v and x0 such that
P (1)(x0)v = P (2)(x0)v = 0. Up to a similarity on the two Jordan pairs (which is
without loss of generality, see [9, p. 204]) we have X1S1e1 = X2S2e1 = v, J1S1e1 =
S1e1x0, and J2S2e1 = S2e1x0, where S1 and S2 are two similarity matrices. This
shows that (v, x0) is a common restriction [9, p. 204, p. 235] of the Jordan pairs of
P (1) and P (2). Conversely, let (X, J) be a common restriction with J in Jordan form.
We have the four equations X1S1 = X, X = X2S2, J1S1 = S1J , and J2S2 = S2J
for some full column rank matrices S1 and S2. Letting v := Xe1, x0 := eT1 Je1, it
is easy to check that (v, x0) is also a common restriction, and that X1S1e1 = v =
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X2S2e1, J1S1e1 = S1e1x0, and J2S2e1 = S2e1x0. From [9, eq. 1.64]3, it follows that
P (1)(x0)v = P (2)(x0)v = 0.

The assumption that all the eigenvalues are finite can be easily removed (although
complicating the notation appears unavoidable). In the argument above replace every
Jordan pair (X, J) with a decomposable pair [9, pp. 188–191] of the form [XF , X∞]
and JF ⊕ J∞, where (XF , JF ) is a finite Jordan pair and (X∞, J∞) is an infinite
Jordan pair [9, Ch. 7]. As the argument is essentially the same we omit the details.

The importance of the connection with Bézout theory is now clear. The proof of
the eigenvalue exclusion theorem in the matrix polynomial case becomes immediate.
Before giving the proof for Theorem 4.1 for n > 1, we state the analogue of (4.3)
for matrix polynomials. Here and below, we use the notation DL(P, v) to denote the
unique pencil in DL(P ) with ansatz v.

Lemma 4.8. DL(P, v) for a matrix polynomial P (λ) with ansatz v is a matrix
pencil that can be written as

DL(P, v) = B(P, (x− λ)vI) = λB(vI, P ) +B(P, xvI), (4.6)

where B is the Bézout matrix as in (4.1).

Proof. As in (4.2) for the scalar case, we solve (3.4)) and (3.5) for F (x, y) and
G(x, y) to obtain

F (x, y) =
v(y)P (x)− P (y)v(x)

x− y
, G(x, y) =

P (y)v(x)x− yv(y)P (x)

x− y
.

Let P (1) = P (x) and P (2) = (x − λ)v(x)In in (4.4). Then, P (1) and P (2) commute
for all x, so we take M (1) = P (2) and M (2) = P (1) and obtain

B(P (x), (x− λ)v(x)In) =
P (y)(x− λ)v(x)− (y − λ)v(y)P (x)

x− y
=λF (x, y) +G(x, y)

=

k∑
i,j=1

Bijφk−i(y)φk−j(x).

This gives the nk × nk Bézout block matrix B(P, (x− λ)vI) = (Bij)1≤i,j≤k.

We are now ready to prove Theorem 4.1. Recall that the claim is that L(λ) ∈
DL(P ) with ansatz v(λ) is a linearization for P (λ) if and only if v(λ)In and P (λ)
have no shared eigenvalue.

Proof. [Proof of Theorem 4.1 for n > 1] If vIn and P share a finite eigenvalue
λ0 and P (λ0)w = 0 for a nonzero w, then (λ0 − λ)v(λ0)w = 0 for all λ. Hence,
by (4.5) and Lemmas 4.7 and 4.8, L(λ) = B(P, (x − λ)vI) is singular for all λ.
An analogous argument holds for a shared infinite eigenvalue. Conversely, suppose
v(λ)In and P (λ) have no common eigenvalues. If λ0 is an eigenvalue of P then
(λ0−λ)v(λ0)I is nonsingular unless λ = λ0. Thus, again using (4.5) and Lemma 4.7,
if λ is not an eigenvalue for P then the common restriction is empty, which means L(λ)
is nonsingular. In other words, L(λ) is regular and a linearization by Theorem 2.1.

3Although strictly speaking [9, eq. 1.64] is for a monic matrix polynomial, it is extendable in a
straightforward way to a regular matrix polynomial (see also [9, Ch. 7]).
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5. Barnett’s theorem and “beyond DL” linearization space. Thus far,
we have introduced a new viewpoint for the DL linearization space and demonstrated
that the viewpoint provides deeper understanding of the DL space, and often helps
simplify proofs of known results. We now turn to new aspects and results that can
be obtained from this viewpoint, namely, we define and study a new vector space of
potential linearizations for matrix polynomials that includes DL as a subspace and
extends many of its properties.

In this section we work for simplicity in the monomial basis, and we assume that
the matrix polynomial P (x) =

∑k
i=0 Pix

i has an invertible leading coefficient Pk.
Given a ring R, a left ideal L is a subset of R such that (L,+) is a subgroup of (R,+)
and r` ∈ L for any ` ∈ L and r ∈ R [12, Ch. 1]. A right ideal is defined analogously.

Given a matrix polynomial P (x) over some field F the set LP = {Q(x) ∈
Fn×n[x] | Q(x) = A(x)P (x), A(x) ∈ Fn×n[x]} is a left ideal of the ring Fn×n[x].
Similarly, RP = {Q(x) ∈ Fn×n[x] | Q(x) = P (x)A(x), A(x) ∈ Fn×n[x]} is a right
ideal of Fn×n[x].

A matrix polynomial of grade k − 1 can be represented as G(x) = ΓΦ(x), where
Γ = [Γk−1,Γk−2, . . . ,Γ0] ∈ Fn×nk are its coefficient matrices when expressed in the

monomial basis and Φ(x) =
[
xk−1I, . . . , xI, I

]B
. Let C

(1)
P be the first companion

matrix4 of P (x):

C
(1)
P =


−P−1

k Pk−1 −P−1
k Pk−2 · · · −P−1

k P1 −P−1
k P0

I
I

. . .

I 0

 . (5.1)

A key observation is that the action of C
(1)
P on Φ is that of the multiplication-by-xI

operator in the quotient module Fn×n[x]/LP :
xk−1I
xk−2I
...
xI
I

xI ≡ C(1)
P


xk−1I
xk−2I
...
xI
I

 =


xk−1I
xk−2I
...
xI
I

xI+


−P−1

k P (x)
0
...
0
0

 ,

−P−1

k P (x)
0
...
0
0

 ∈ LkP .

Multiplying by the coefficients Γ, we can identify the map Γ 7→ ΓC
(1)
P with the map

G(x) 7→ G(x)x in Fn×n[x]/LP . That is, we can write ΓC
(1)
P Φ = xG(x)+Q(x) for some

Q(x) ∈ LP . More precisely, we have Q(x) = −Γk−1P
−1
k P (x). Applying the previous

observation to each block row of a block matrix, we see that, if we map a block matrix
X ∈ Fkn×kn to the corresponding bivariate matrix polynomial φ(X) ∈ Fn×n[x, y]

(recall the definition of φ in (3.1)), we can identify the map X 7→ XC
(1)
P with the

map φ(X) 7→ φ(X)x in the quotient space F[y]n×n[x]/LP (x) = Fn×n[x, y]/LP (x).

The next theorem shows that, when working with the quotient space modulo LP
or RP , one can find a unique matrix polynomial of low grade in each equivalence class.

4Some authors define the first companion matrix with minor differences in the choice of signs.
Here, we make our choice for simplicity of what follows. For other polynomial bases the matrix
should be replaced accordingly [4].
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Theorem 5.1. Let P (x) =
∑k
i=0 Pix

i ∈ Fn×n[x] be a matrix polynomial of degree
k such that Pk is invertible, and let V (x) ∈ Fn×n[x] be any matrix polynomial. Then,
there exists a unique Q(x) of grade k − 1 such that Q(x) ≡ V (x) in the quotient
module Fn×n[x]/LP , i.e., there exists a unique A(x) ∈ Fn×n[x] such that V (x) =
A(x)P (x) +Q(x) with Q(x) of grade k − 1.

Moreover, there exists a unique S(x) of grade k − 1 such that S(x) ≡ V (x) in
the quotient module Fn×n[x]/RP , i.e., there exists a unique B(x) ∈ Fn×n[x] such that
V (x) = P (x)B(x) + S(x) with S(x) of grade k − 1.

Proof. If deg V (x) < k, then take Q(x) = V (x) and A(x) = 0. If deg V ≥ k,

then our task is to find A(x) =
∑deg V−k
i=0 with Adeg V−k 6= 0 such that, for M(x) =

A(x)P (x) =
∑deg V
i=0 Mix

i, we have Mi =
∑
j+`=i(AjP`) = Vi for k ≤ i ≤ deg V . This

is equivalent to solving the following block matrix equation:

[
AdegA · · · A0

]

Pk Pk−1 Pk−2 · · ·

Pk Pk−1 Pk−2 · · ·
. . .

. . .

Pk Pk−1

Pk

 =
[
Vdeg V · · · Vk

]
, (5.2)

which shows explicitly that A(x) exists and is unique. This also implies that Q(x) =
V (x) − A(x)P (x) exists and is unique. An analogous argument proves the existence
and uniqueness of B(x) and S(x) such that V (x) = P (x)B(x) + S(x).

Thanks to the connection between DL and the Bézoutian, we find that [16, The-
orem 4.1] is a generalization of Barnett’s theorem to the matrix case. The proof that
we give below is a generalization of that found in [13] for the scalar case. It is an-
other example where the algebraic interpretation and the connection with Bézoutians
simplify proofs (compare with the argument in [16]).

Theorem 5.2 (Barnett’s theorem for matrix polynomials). Let P (x) be a matrix
polynomial of degree k with nonsingular leading coefficient and v(x) a scalar polyno-

mial of grade k − 1. We have DL(P, v) = DL(P, 1)v(C
(1)
P ), where C

(1)
P is the first

companion matrix of P (x).

Proof. It is easy to verify that the following recurrence formula holds:

P (y)xj(x− λ)− yj(y − λ)P (x)

x− y
=
P (y)xj−1(x− λ)− yj−1(y − λ)P (x)

x− y
x+yj−1(y−λ)P (x).

Hence, we have B(P, (x − λ)xjI) ≡ B(P, (x − λ)xj−1I)x where the equivalence is in
the quotient space F[y, λ]n×n[x]/LP (x). On the other hand, as we argued above, the
operator of multiplication-by-x in the quotient space is represented, in the monomial

basis, by right-multiplication times the matrix C
(1)
P , while, again in the monomial

basis, the Bézoutian B(P, (x−λ)xjI) (resp. B(P, (x−λ)xj−1I)) is represented by the
pencil DL(P, xj) (resp. DL(P, xj−1)). This observation suffices to prove by induction

the theorem when v(C
(1)
P ) is a monomial of the form (C

(1)
P )j for 0 ≤ j ≤ k − 1. The

case of a generic v(C
(1)
P ) follows by linearity of the Bézoutian.

An analogous interpretation as a multiplication operator holds for the second
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companion matrix:

C
(2)
P =


−Pk−1P

−1
k I

−Pk−2P
−1
k I

...
. . .

−P1P
−1
k I

−P0P
−1
k

 . (5.3)

Indeed, C
(2)
P represents multiplication by y modulo RP , the right ideal generated by

P (y), i.e., if X ∈ Fkn×kn is a block matrix we can identify the map X 7→ C
(2)
P X

with the map φ(X) 7→ yφ(X) in F[x]n×n[y]/RP (y) = Fn×n[x, y]/RP (y). A dual ver-
sion of Barnett’s theorem holds for the second companion matrix. Indeed, one has

DL(P, v(x)) = v(C
(2)
P )DL(P, 1). The proof is analogous to the one for Theorem 5.2

and is omitted.
As soon as we interpret the two companion matrices in this way, we are implicitly

defining a map ψ from block matrices to bivariate polynomials modulo LP (x) and
RP (y). More formally, let S(x, y) ∈ Fn×n[x, y], and consider the equivalence class

[S(x, y)] := {T (x, y) ∈ Fn×n[x, y] : T (x, y) = S(x, y) + L(x, y)P (x)

+ P (y)R(x, y) for some L(x, y), R(x, y) ∈ Fn×n[x, y]}. (5.4)

Moreover, if [S1(x, y)] = [S2(x, y)], we write S1(x, y) ≡ S2(x, y). Then, for any block
matrix X ∈ Fnk×nk we define ψ(X) = [φ(X)], where φ is again the map defined
in (3.1). In this setting, ψ(X) is seen as an equivalence class, and we may summarize
our analysis on the two companion matrices with the following equations:

ψ(XC
(1)
P ) = [φ(X)x], ψ(C

(2)
P X) = [yφ(X)], for all X ∈ Fkn×kn. (5.5)

Note that, by linearity, (5.5) imply in turn that for any polynomials v(y) and w(x)
we have:

ψ(Xw(C
(1)
P )) = [φ(X)w(x)], ψ(v(C

(2)
P )X) = [v(y)φ(X)], for all X ∈ Fkn×kn.

(5.6)
However, in the equivalence class ψ(X) there exists a unique bivariate polynomial
having grade equal to degP − 1 separately in both x and y, as we now prove in
Theorem 5.3. (Clearly, this unique bivariate polynomial must be precisely φ(X), as
the latter has indeed grade degP − 1 separately in both x and y.) Theorem 5.3 gives
the appropriate matrix polynomial analogue to Euclidean polynomial division applied
both in x and y.

Theorem 5.3. Let P (z) =
∑k
i=0 Piz

i ∈ Fn×n[z] be a matrix polynomial with Pk
invertible, and let F (x, y) =

∑k1
i=0

∑k2
j=0 Fijx

iyj ∈ Fn×n[x, y] be a bivariate matrix
polynomial. Then there is a unique decomposition F (x, y) = Q(x, y) +A(x, y)P (x) +
P (y)B(x, y) + P (y)C(x, y)P (x) such that

(i) Q(x, y), A(x, y), B(x, y) and C(x, y) are all bivariate matrix polynomials,
(ii) Q(x, y) has degree at most k − 1 separately in x and y,

(iii) A(x, y) has degree at most k − 1 in y, and
(iv) B(x, y) has degree at most k − 1 in x.

Moreover, Q(x, y) is determined uniquely by P (z) and F (x, y).
Proof. Let us first apply Theorem 5.1 taking F(y) as the base field. Then there

exist unique A(x, y) and Q1(x, y) such that F (x, y) = A1(x, y)P (x) +Q1(x, y), where
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A1(x, y) and Q1(x, y) are polynomials in x. Furthermore, degxQ1(x, y) ≤ k − 1. A
priori, the entries of A1(x, y) and Q1(x, y) could be rational functions in y. However,
a careful analysis of (5.2) shows that the coefficients of A1(x, y) =

∑
iA1,i(y)xi can be

obtained by solving a block linear system Mw = v, say, where v depends polynomially
in y whereas M is constant in y. Hence, A1(x, y), and a fortiori Q1(x, y) = F (x, y)−
A1(x, y)P (x), are also polynomials in y. At this point we can apply Theorem 5.1
again to write (uniquely) Q1(x, y) = Q(x, y) + P (y)B(x, y) and A1(x, y) = A(x, y) +
P (y)C(x, y), where degy Q(x, y) and degy A(x, y) are both at most k − 1. Moreover,
comparing again with (5.2), it is easy to check that it must also hold degxQ(x, y) ≤
k−1 and degxB(x, y) ≤ k−1. Hence, F (x, y) = Q(x, y)+A(x, y)P (x)+P (y)B(x, y)+
P (y)C(x, y)P (x) is the sought decomposition.

The next example illustrates the concepts just introduced.

Example 5.4. Let P (x) = Ix2 + P1x + P0 and consider the block matrix X =[
A B
C D

]
. We have φ(X) = Axy + By + Cx + D. Let Y = C

(2)
P XC

(1)
P . Then,

using (5.5), we know that ψ(Y ) = [yφ(X)x] = [Ax2y2 + Bxy2 + Cx2y + Dxy]. In
particular, observing that Ix2 ≡ −P1x − P0 and that Iy2 ≡ −P1y − P0, we have
Ax2y2 +Bxy2 +Cx2y+Dxy ≡ (−P1y−P0)(Ax2 +Bx) +Cx2y+Dxy ≡ (−P1Ay−
P0A + Cy)(−P1x − P0) + (D − P1B)xy − P0Bx = (P1AP1 + D − P1B − CP1)xy +
(P1AP0 − CP0)y + (P0AP1 − P0B)x + P0AP0 = φ(Y ), as by Theorem 5.3 in the
equivalence class ψ(Y ) there exists a unique element of grade degP − 1 separately in
x and y, and by the definition of the mapping φ this unique element must be equal to
φ(Y ).

Equivalently, we could have taken quotients directly on the bases. The argument

is that
[
y2I yI

]
X

[
x2I
xI

]
≡
[
−P1y − P0 yI

]
X

[
−P1x− P0

xI

]
= ψ(Y ), and leads to

the same result.

A third way of computing Y = C
(2)
P XC

(1)
P is to formally apply the linear alge-

braic definition of matrix multiplication, and then apply the mapping φ as in (3.1)
(forgetting about quotient spaces).

One remarkable consequence of Theorem 5.3 is that these three approaches are all
equivalent. Note that the same remarks, using (5.6), apply to any block matrix of the

form ψ(v(C
(2)
P )Xw(C

(1)
P )), for any pair of polynomials v(y) and w(x).

For this example, we have taken a monic P (x) for simplicity. If its leading coeffi-
cient Pk is not the identity matrix, but still is nonsingular, then the explicit formulas
become more complicated and involve P−1

k .

5.1. Beyond DL space. The key message in Theorem 5.2 is that one can start
with the pencil in DL associated with ansatz polynomial v = 1 and repeatedly multiply

the first companion matrix C
(1)
P on the right, to obtain all the pencils in the “canonical

basis” of DL [21]. In the scalar case (n = 1) there is a bijection between pencils in

DL and polynomials in C
(1)
P . However, the situation is quite different when n > 1, as

the vector space of polynomials in C
(1)
P can have dimension up to kn, depending on

the Jordan structure of P (x).

Remark 5.5. For some matrix polynomials P (x), the dimension of the vector

space of polynomials in C
(1)
P can be much lower than nk, although generically this

upper bound is achieved. An extreme example is P (x) = p(x)I for some scalar p(x),
as in this case the dimension achieves the lowest possible bound, which is k.
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5.1.1. Definition of BDL(P, v). In light of the above discussion, it makes sense

to investigate the pencils of the form v(C
(2)
P )DL(P, 1) = DL(P, 1)v(C

(1)
P ) for deg v >

k − 1, because for a generic P they do not belong to DL. We refer to the space of
such pencils as the “beyond DL” space of potential linearizations and write

DL(P, 1)v(C
(1)
P ) =: BDL(P, v). (5.7)

Note that DL is now seen as a subspace of BDL: if deg v ≤ k − 1, then BDL(P, v) =
DL(P, v).

An important fact is that, even if the degree of the polynomial v(x) is larger

than k− 1, it still holds that BDL(P, v) = v(C
(2)
P )DL(P, 1) = DL(P, 1)v(C

(1)
P ). When

deg v ≤ k − 1, i.e., for pencils in DL, this is a consequence of the two equivalent
versions of Barnett’s theorem. We now prove this more generally.

Theorem 5.6. Let P (x) be a matrix polynomial of degree k with nonsingular
leading coefficient. For any polynomial v(x) we have

v(C
(2)
P )DL(P, 1) = DL(P, 1)v(C

(1)
P ),

where C
(1)
P , C

(2)
P are the companion matrices as in (5.1), (5.3) and DL(P, 1) is the

pencil as in (4.6).

Proof. Since both C
(2)
P −λI and C

(1)
P −λI are strong linearizations of P (λ), they

have the same minimal polynomial m(λ). Let γ = degm(λ). By linearity, it suffices
to check the statement for v(x) = xj , j = 0, . . . , γ − 1.

We give an argument by induction. Note first that the base case, i.e., v(x) =
x0 = 1, is a trivial identity. From the recurrence relation displayed in the proof

of Barnett’s theorem, we have that ψ(DL(P, 1)(C
(1)
P )j−1) ≡ B(P, xj−1I). By the

inductive hypothesis we also have ψ(DL(P, 1)(C
(1)
P )j−1) ≡ ψ((C

(2)
P )j−1DL(P, 1)) ≡

B(P, yj−1I).

Now, let ∆(x, y) = φ(DL(P, 1)(C
(1)
P )j − (C

(2)
P )jDL(P, 1)). By the definitions of

ψ and φ, for any block matrix X we have [φ(X)] = ψ(X), where the notation [·]
denotes an equivalence class modRP (y) and modLP (x) as in (5.4). More explic-
itly, for any bivariate matrix polynomial S(x, y) in the equivalence class ψ(X) there
exist matrix polynomials L(x, y), R(x, y) and C(x, y) such that φ(X) = S(x, y) +
L(x, y)P (x) + P (y)R(x, y) + P (y)C(x, y)P (x). Therefore, it must be ∆(x, y) =
(x− y)B(P, xj−1I) + L(x, y)P (x) + P (y)R(x, y) + P (y)C(x, y)P (x) for some L(x, y),
R(x, y), and C(x, y). But (x − y)B(P, xj−1I) = P (y)xj−1 − yj−1P (x), and hence,
∆(x, y) ≡ 0 + L1(x, y)P (x) + P (y)R1(x, y) + P (y)C(x, y)P (x).

Finally, observe that Theorem 5.3 guarantees the existence and uniqueness of a
matrix polynomial of grade degP − 1 separately in x and y in the equivalence class
ψ(φ−1(∆(x, y))), and note that the latter must be equal to φ(φ−1(∆(x, y)) = ∆(x, y).
On the other hand, 0 has grade degP−1 separately in x and y, and hence, 0 = ∆(x, y).

5.1.2. Properties of BDL(P, v). We now investigate some properties of the
BDL(P, v) pencils defined in (5.7). Clearly, an eigenvalue exclusion theorem continues
to hold. Indeed, by assumption DL(P, 1) is a linearization, because we suppose P (x)
has no eigenvalues at infinity. Thus, BDL(P, v) will be a linearization as long as

v(C
(1)
P ) is nonsingular, which happens precisely when P (x) and v(x)I do not share

an eigenvalue. Nonetheless, it is less clear what properties, if any, pencils in BDL will
inherit from pencils in DL. Besides the theoretical interest of deriving its properties,
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BDL finds an application in the theory of the sign characteristics of structured matrix
polynomials [1]. To investigate this matter, we will apply Theorem 5.1 taking V (x) =
v(x)I.

To analyze the implications of Theorem 5.1 and Theorem 5.3, it is worth sum-
marizing the theory that we have built so far with a commuting diagram. Let
BDL(P, v) = λX +Y and DL(P, 1) = λX̃ + Ỹ . Below, F (x, y) (resp. F̃ (x, y)) denotes
the continuous analogue of X (resp. X̃).

X̃ F̃ (x, y)

F̃ (x, y)v(x)

X F (x, y)

v(y)F̃ (x, y)A 7→ Av(C
(1)
P )A 7→ v(C

(2)
P )A

quotient modulo LP

φ

φ

H(x, y) 7→ v(x)H(x, y) H(x, y) 7→ H(x, y)v(y)

quotient modulo RP

An analogous diagram can be drawn for Y , Ỹ , G(x, y), and G̃(x, y). The diagram
above illustrates that we may work in the bivariate polynomial framework (right side
of the diagram), which is often more convenient for algebraic manipulations than the
matrix framework (left side). In particular, using Theorem 5.1, Theorem 5.3 and (3.3),
we obtain the following relations:

v(y)P (x) ≡ S(y)P (x) = F (x, y)x+G(x, y), yF (x, y)+G(x, y) = P (y)Q(x) ≡ P (y)v(x)
(5.8)

In (5.8), Q(x) and S(y) are, respectively, the unique univariate matrix polynomials
of grade degP − 1 in x (resp. y) satisfying v(x)I = Q(x) + A(x)P (x) (resp. v(y)I =
S(y) +P (y)B(y) ) for some matrix polynomial A(x) (resp. B(y)). The existence and
the uniqueness of Q(x) and S(y) follow from Theorem 5.1. To see how (5.8) can be
derived, take for example the second equation, as the argument is similar for the first
one. By Lemma 3.1, we have that yF̃ (x, y)v(x) + G̃(x, y)v(x) = P (y)v(x). Applying
Theorem 5.1, there is a unique matrix polynomial Q(x) having grade degP − 1 and
such that v(x)I = A(x)P (x)+Q(x). Hence, yF̃ (x, y)v(x)+G̃(x, y)v(x) = P (y)Q(x)+
P (y)A(x)P (x). On the other hand, as illustrated by the diagram above F (x, y) =
F̃ (x, y)v(x)+A(x, y)P (x) and similarly G(x, y) = G̃(x, y)v(x)+B(x, y)P (x) for some
bivariate matrix polynomials A(x, y) and B(x, y). Since yF (x, y) +G(x, y) has grade
degP − 1 in x, by the uniqueness of the decomposition in Theorem 5.3 we may
conclude that yF (x, y) +G(x, y) = P (y)Q(x).

From (5.8) it appears clear that a pencil in BDL generally has distinct left and
right ansatz vectors, and that these ansatz vectors are now block vectors, associated
with left and right ansatz matrix polynomials. For convenience of those readers who
happen to be more familiar with the matrix viewpoint, we also display what we obtain
by translating back (5.8):
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X �→Y =

Sk−1

...
S0

 [Pk, Pk−1, . . . , P0] , X �↓ Y =


Pk
Pk−1

...
P0

 [Qk−1, . . . , Q0] . (5.9)

Note that if deg v ≤ k− 1 then S(x) = Q(x) = v(x)I and we recover the familiar
shifted sum equations for DL.

The eigenvalue exclusion theorem continues to hold for BDL with a natural ex-
tension that replaces the ansatz vector v with the matrix polynomial Q (or S).

Theorem 5.7 (Eigenvalue exclusion theorem for BDL). Let P (x) be a matrix
polynomial of degree k with nonsingular leading coefficient, and let v(x) be a scalar
polynomial of arbitrary degree. Then, the pencil BDL(P, v) defined as in (5.7) is a
strong linearization of P (x) if and only if P (x) and Q(x) (or S(x)) do not share an
eigenpair, where Q(x) and S(x) are the unique matrix polynomials satisfying (5.8).

Proof. We prove the eigenvalue exclusion theorem for P and Q, as the proof for P
and S is analogous. We know that BDL(P, v) is a strong linearization if and only if we
cannot find an eigenvalue x0 and a nonzero vector w such that P (x0)w = v(x0)Iw = 0.
(Here, we are implicitly using the fact that if x0 is an eigenvalue of v(x)I, then any
nonzero vector is a corresponding eigenvector.) But in the notation of Theorem 5.1,
we can write uniquely Q(x) = v(x)I − A(x)P (x), and hence, Q(x0)w = v(x0)w −
A(x0)P (x0)w. Hence, P (x) and v(x)I share an eigenpair if and only if P (x) and
Q(x) do.

We now show that pencils in BDL still are Lerer–Tismenetsky Bézoutians. It is
convenient to first state a lemma and a corollary.

Lemma 5.8. Let U ∈ Fnk×nk be an invertible block-Toeplitz upper-triangular
matrix. Then (UB)−1 = (U−1)B.

Proof. We claim that, more generally, if U is an invertible Toeplitz upper-
triangular matrix with elements in any ring with unity, and L = UT , then U−1 =
(L−1)T . Taking Fn×n as the base ring yields the statement. To prove the claim, recall
that if L−1 exists then L−1 = L#, where the latter notation denotes the group inverse
of L. Explicit formulae for L# appeared in [11, eq. 3.4]5. Hence, it can be checked
by direct computation that (L−1)TU = U(L−1)T = I.

Corollary 5.9. Let U ∈ Fnk×nk be invertible and block Toeplitz upper-triangular,

and Υ =

v1In
...

vkIn

, vi ∈ F. Then (U−1Υ)B = ΥB(UB)−1.

Proof. Since the block elements of Υ commute with any other matrix, it suffices
to apply Lemma 5.8.

Theorem 5.10. If Q(x), A(x), S(x), and B(x) are defined as in Theorem 5.1
with V (x) = v(x)I, then P (x)Q(x) = S(x)P (x) and A(x) = B(x).

Proof. Let v(x)I − Q(x) = A(x)P (x) and v(x)I − S(x) = P (x)B(x). We may
assume deg v ≥ k, as otherwise the statement is trivially verified since Q(x) =
S(x) = v(x)I and A(x) = B(x) = 0. Note first that degA = degB = deg v − k
because by assumption the leading coefficient of P (x) is not a zero divisor. The

5It should be noted that if L−1 exists then L11 must be invertible too, where L11 denotes the
top-left element of L: if the base ring is taken to be Fn×n, that is the n × n top-left block of L.
Moreover, [11, Theorem 2] implies that [11, eq. 3.2] is satisfied.
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coefficients of A(x) must satisfy (5.2), while block transposing (5.2) we obtain an
equation that must be satisfied by the coefficients of B(x). Equating term by term
and using Corollary 5.9 we obtain A(x) = B(x), and hence, P (x)Q(x)− S(x)P (x) =
P (x)B(x)P (x)− P (x)A(x)P (x) = 0.

Hence, it follows that BDL(P, v) is a Lerer–Tismenetsky Bézoutian (compare the
result with (4.6)). We now present the following immediate corollary:

Corollary 5.11. It holds

BDL(P, v) = λBS,P (Q,P ) +BP,xS(P, xQ),

where Q(x) and S(x) are as in Theorem 5.1 the unique matrix polynomials of grade
k − 1 satisfying v(x)I = P (x)A(x) + S(x) = A(x)P (x) + Q(x) for some matrix
polynomial A(x).

Proof. Observe first that by Definition 4.5 BS,P (Q,P ) and BP,xS(P, xQ) are well
defined since Theorem 5.10 implies that P (x)Q(x) = S(x)P (x) and xS(x)P (x) =
P (x)xQ(x). The proof of the corollary is then a straightforward application of (5.8).

For example, for the leading term we have from (5.8) that F (x, y) = S(y)P (x)−P (y)Q(x)
x−y =

BS,P (Q,P ). Translating back from bivariate polynomial to block matrices, φ−1(F (x, y)) =
BS,P (Q,P ). The proof for the trailing term of the pencil is analogous and we omit
the details.

Once again, if deg v ≤ k − 1 then we recover DL(P, v) because S(x) = Q(x) =
v(x)I. More generally, we have S(x)−Q(x) = [A(x), P (x)] := A(x)P (x)−P (x)A(x).

For the rest of this section, we assume that the underlying field F is a metric
space; for simplicity, we focus on the case F = C. As mentioned in Section 2.1, one
property of a pencil in DL is block symmetry. It turns out that this property does not
hold for pencils in BDL. Nonetheless, an even deeper algebraic property is preserved.
Since each matrix coefficient in a pencil in DL is a Bézout matrix, the inverses of those
matrices are block Hankel – note that unless n = 1, the inverse of a block Hankel
matrix needs not be block symmetric. The general result is: a matrix is the inverse
of a block Hankel if and only if it is a Bézout matrix [19, Corollary 3.4]. However, for
completeness, we give a simple proof for the special case of our interest.

Theorem 5.12. Let λX+Y be a pencil either in DL or in BDL associated with a
matrix polynomial P (x) ∈ C[x]n×n with an invertible leading coefficient. Then, X−1

and Y −1 are both block Hankel matrices if the inverses exist.
Proof. Note first that, by Lemma 4.8, it suffices to show that B(P, vI)−1 is block

Hankel for all polynomials v such that the inverse exists.

Assume first P (0) is invertible, implying that C
(1)
P is invertible as well. We

have that H0 = (B(P, I))−1 is block Hankel, as can be easily shown by induction

on k [9, Sec. 2.1]. By Barnett’s theorem, (C
(2)
P )jB(P, I) = B(P, I)(C

(1)
P )j . Then

Hj := (C
(1)
P )−jH0 = H0(C

(2)
P )−j . Taking into account the structure of (C

(1)
P )−1

and (C
(2)
P )−1, we see by induction that Hj is block Hankel. For a general v(x)

such that v(x)I does not share eigenvalues with P (x), we have that (B(P, vI))−1 =

v(C
(1)
P )−1H0. Since v(C

(1)
P )−1 is a polynomial in (C

(1)
P )−1, this is a linear combination

of the Hj , hence is block Hankel.
If P (0) is singular consider any sequence (Pn)n∈N = P (x)+En such that ‖En‖ → 0

as n → ∞ and Pn(0) = P (0) + En is invertible for all n (such a sequence exists
because singular matrices are nowhere dense). Since the Bézout matrix is linear in its
arguments, B(Pn, vI) → B(P, vI). In particular, B(Pn, vI) is eventually invertible
if and only if no root of v(x) is an eigenvalue of P (x). The inverse is continuous
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as a matrix function, and thus B(P, vI)−1 = limn→∞B(Pn, vI)−1. We conclude by
observing that the limit of a sequence of block Hankel matrices is block Hankel.

Note that the theorem above implies that if λ0 is not an eigenvalue of P then the
evaluation of a linearization in DL or BDL at λ = λ0 is the inverse of a block Hankel
matrix.

5.1.3. BDL(P, v) and structured matrix polynomials. We now turn to ex-
ploring the connections between BDL(P, v) and structured matrix polynomials. Recall
that a Hermitian matrix polynomial is a polynomial whose coefficients are all Hermi-
tian matrices. If P (x) is Hermitian we write P ∗(x) = P (x). It is often argued that
block-symmetry is important because, if P (x) was Hermitian in the first place and
v(x) has real coefficients, then DL(P, v) is also Hermitian. Although BDL(P, v) is not
block-symmetric, it still is Hermitian when P (x) is Hermitian.

Theorem 5.13. Let P (x) ∈ Cn×n[x] be a Hermitian matrix polynomial with
invertible leading coefficient and v(x) ∈ R[x] a scalar polynomial with real coefficients.
Then, BDL(P, v) is a Hermitian pencil.

Proof. Recalling the explicit form of BDL(P, v) = λX + Y from Corollary 5.11,
we have X = BS,P (Q,P ) and Y = BP,xS(P, xQ). Here, Q(x) (resp. S(x)) are as
in Theorem 5.1 the unique matrix polynomials of grade k − 1 such that v(x)I =
A(x)P (x) + S(x) = P (x)A(x)Q(x), where A(x) is also unique and we are using
Theorem 5.10 as well. Then −X is associated with the Lerer–Tismenetsky Bézoutian

function F (x, y) = P (y)Q(x)−S(y)P (x)
x−y . By definition, S(x) = v(x)I−P (x)A(x). Taking

the transpose conjugate of this equation, and noting that by assumption P (x) =
P ∗(x), v(x) = v∗(x), we obtain S∗(x) = v(x)I − A∗(x)P (x). But, by Theorem 5.1,
there is a unique matrix polynomial Q(x) of grade k − 1 such that v(x)I = Q(x) +
A(x)P (x) for some A(x). Thus, since degS∗(x) = degS(x) ≤ k−1, we conclude that
S∗(x) = Q(x). (Although not strictly needed in this proof, the uniqueness of A(x) also

implies A∗(x) = A(x).) Hence, F (x, y) = P (y)Q(x)−Q∗(y)P (x)
x−y = Q∗(y)P (x)−P (y)Q(x)

y−x =

F ∗(y, x), proving that X is Hermitian because the formula holds for any x, y.

Analogously G(x, y) = P (y)xQ(x)−yQ∗(y)P (x)
x−y = yQ∗(y)P (x)−P (y)xQ(x)

y−x = G∗(y, x),
allowing us to deduce that Y is also Hermitian.

The theory of functions of a matrix [14] allows one to extend the definition of BDL
to a general function f , rather than just a polynomial v, as long as f is defined on the

spectrum of C
(1)
P (for a more formal definition see [14]). One just puts BDL(P, f) :=

BDL(P, v) where v(x) is the interpolating polynomial such that v(C
(1)
P ) = f(C

(1)
P ).

Corollary 5.14. Let P (x) ∈ Cn×n[x] be a Hermitian matrix polynomial with

invertible leading coefficient and f : C→ C a function defined on the spectrum of C
(1)
P

and such that f(x∗) = (f(x))∗. Then BDL(P, f) is a Hermitian pencil.

Proof. It suffices to observe that the properties of f and P imply that f(C
(1)
P ) =

v(C
(1)
P ) with v ∈ R[x] [14, Def. 1.4].

In the monomial basis, other structures of interest have been defined, such as
∗-even, ∗-odd, T -even, T -odd (all these definitions can be extended to any alternat-
ing basis, such as Chebyshev) or ∗-palindromic, ∗-antipalindromic, T -palindromic,
T -antipalindromic. For DL, analogues of Theorem 5.13 can be stated in all these
cases [20]. These properties extend to BDL. We state and prove them for the ∗-even
and the ∗-palindromic case:

Theorem 5.15. Assume that P (x) = P ∗(−x) is ∗-even and with an invertible
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leading coefficient, and that f(x) = f∗(−x), and let Σ =


. . .

I
−I

I

. Then

ΣBDL(P, f) is a ∗-even pencil. Furthermore, if P (x) = xkP ∗(x−1) is ∗-palindromic

and f(x) = xk−1f(x−1), and if R =


I

I

. .
.

I

, then RBDL(P, f) is a ∗-

palindromic pencil.
Proof. The proof goes along the same lines as that of Theorem 5.13: we first

use the functional viewpoint and the Bézoutian interpretation of BDL(P, v) = λX +

Y (see in particular Corollary 5.11) to map φ(X) = F (x, y) = −P (y)Q(x)+S(y)P (x)
x−y

and φ(Y ) = G(x, y) = P (y)xQ(x)−yS(y)P (x)
x−y . Once again, here Q(x) and S(x) are as

in Theorem 5.1 the unique matrix polynomials of grade k − 1 such that v(x)I =
A(x)P (x) + S(x) = P (x)A(x)Q(x), where A(x) is also unique and we are using
Theorem 5.10 as well. Assume first that P ∗-even: we claim that λX∗Σ + Y ∗Σ =
−λΣX+ ΣY . Indeed, note that v(x), the interpolating polynomial of f(x), must also
satisfy v∗(x) = v(−x). Taking the transpose conjugate of the equation S(x) = v(x)I−
P (x)B(x), and using Theorem 5.1 as in the proof of Theorem 5.13, we obtain Q∗(x) =

S(−x). This, together with Table 3.2, implies that φ(−ΣX) = P (−y)Q(x)−Q∗(y)P (x)
x+y =

−Q
∗(y)P∗(−x)−P∗(y)Q(x)

x+y = φ(X∗Σ). Similarly, φ(ΣY ) = P (−y)xQ(x)+yQ∗(y)P (x)
x+y =

yQ∗(y)P∗(−x)+P∗(y)xQ(x)
y+x = φ(Y ∗Σ).

The case of a ∗-palindromic P is dealt with analogously and we omit the details.

Similar statements hold for other structures. We summarize them in the following
table, omitting the proofs as they are completely analogous to those of theorems 5.13
and 5.15.

Table 5.1
Structures of P , degP = k, and potential linearizations that are structure-preserving

Structure of P Requirement on f Pencil
Hermitian: P (x) = P ∗(x) f(x∗) = f∗(x) BDL(P, f)

skew-Hermitian: P (x) = −P ∗(x) f(x∗) = f∗(x) BDL(P, f)
symmetric: P (x) = PT (x) any f(x) BDL(P, f)

skew-symmetric: P (x) = −P (x)T any f(x) BDL(P, f)
*-even: P (x) = P ∗(−x) f(x) = f∗(−x) ΣBDL(P, f)
*-odd: P (x) = −P ∗(−x) f(x) = f∗(−x) ΣBDL(P, f)
T-even: P (x) = PT (−x) f(x) = f(−x) ΣBDL(P, f)
T-odd: P (x) = −PT (−x) f(x) = f(−x) ΣBDL(P, f)

*-palindromic: P (x) = xkP ∗(x−1) f(x) = xk−1f∗(x−1) RBDL(P, f)
*-antipalindromic: P (x) = −xkP ∗(x−1) f(x) = xk−1f∗(x−1) RBDL(P, f)

T-palindromic: P (x) = P ∗(x−1) f(x) = xk−1f(x−1) RBDL(P, f)
T-antipalindromic: P (x) = −PT (x−1) f(x) = xk−1f(x−1) RBDL(P, f)

With a similar technique, one may produce pencils with a structure that is related
to that of the linearized matrix polynomial, e.g., if P is ∗-odd and f(x) = −f∗(−x),
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then ΣBDL(P, f) will be ∗-even. For lack of space we will not include a complete list
of such variations on the theme in this paper. However, we note that generalizations
of this kind are immediate to prove with the Lerer–Tismenetsky Bézoutian functional
approach.

We conclude this section by giving the following result which has an application
in the theory of sign characteristics [1]:

Theorem 5.16. Let P (x) be ∗-palindromic of degree k, with nonsingular leading
coefficient, and f(x) = xk/2; if k is odd, suppose furthermore that the square root is
defined in such a way that P (x) has no eigenvalues on the branch cut. Moreover, let
BDL(P, f) = λX+Y and let R be defined as in (3.2). Then Z = iRX is a Hermitian
matrix.

Proof. We claim that the statement is true when P (x) has all distinct eigenvalues.
Then it must be true in general. This follows by continuity, if we consider a sequence
(Pn(x))n of ∗-palindromic polynomials converging to P (x) and such that Pn(x) has
all distinct eigenvalues, none of which lie on the branch cut. Such a sequence exists
because the set of palindromic matrix polynomials with distinct eigenvalues is dense,
as can be seen arguing on the characteristic polynomial seen as a polynomial function
of the n2(k + 1) independent real parameters.

It remains to prove the claim. Since X is the linear part of the pencil BDL(P, f),
we get, by Corollary 5.11 and using the mapping φ defined in Section 3, that φ(X) =
P (y)Q(x)−S(y)P (x)

x−y , where v(x)I = Q(x) +A(x)P (x) = S(x) +P (x)A(x) are defined as

in Theorem 5.1 and v(x) is the interpolating polynomial of f(x) on the eigenvalues
of P (x). By assumption P (x) has kn distinct eigenvalues. Denote by (λi, wi, ui),
i = 1, . . . , nk, an eigentriple, and consider the matrix in Vandermonde form V whose

ith column is Vi = Λ(λi)⊗wi (V is the matrix of eigenvectors of C
(1)
P ); recall moreover

that if (λi, wi, ui) is an eigentriple then (1/λ∗i , u
∗
i , w

∗
i ) is. Observe that by definition

Q(λi)wi = λ
k/2
i wi and uiS(λi) = uiλ

k/2
i .

Our task is to prove that RX = −X∗R; observe that this is equivalent to
V ∗RXV = −V ∗X∗RV . Using Table 3.1 and Table 3.2, we see that V ∗i RXVj is

equal to the evaluation of w∗i
ykP (1/y)Q(x)−ykS(1/y)P (x)

xy−1 wj at (x = λj , y = λ∗i ). Sup-

pose first that λiλ
∗
j 6= 1. Then, using P (λj)wj = 0 and w∗i P (1/λ∗i ) = 0, we get

V ∗i RXVj = 0. When λ−1
i = λ∗j , we can evaluate the fraction using De L’Hôpital rule,

and obtain w∗i
−(λ∗i )kS(1/λ∗i )P ′(λj)

λ∗i
wj = −w∗i (λ∗i )

k/2−1P ′(λj)wj . An argument similar

to the previous one shows that V ∗i X
∗RVj = 0 when λiλ

∗
j 6= 1, and V ∗i X

∗RVj =

w∗i (λ∗i )
k/2−1P ′(λj)wj when λiλ

∗
j = 1.

We have thus shown that V ∗i X
∗RVj = −V ∗i RXVj for all (i, j), establishing the

claim.

6. Conditioning of eigenvalues of DL(P ). In [15], a conditioning analysis is
carried out for the eigenvalues of the DL(P ) pencils, which identifies situations in
which the DL(P ) linearization itself does not worsen the eigenvalue conditioning of
the original matrix polynomial P (λ) expressed in the monomial basis.

Here, we use the bivariate polynomial viewpoint to analyze the conditioning, using
concise arguments and allowing for P (λ) expressed in any polynomial basis. As shown
in [28], the first-order expansion of a simple eigenvalue λi of P (λ) + ∆P (λ) is

λi = λi(P )− y∗i ∆P (λi)xi
y∗i P

′(λi)xi
+O(‖∆P (λi)‖2), (6.1)
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where yi and xi are the left and right eigenvectors corresponding to λi. This analysis
motivated the conditioning results for multidimensional rootfinding [25, 26].

When applied to a DL(P ) pencil L(λ) = λX + Y with ansatz v, defining x̂i =

Λ(λi)⊗xi, ŷi = ΛT (λi)⊗yi, where Λ(λ) = [φk−1(λ), . . . , φ0(λ)]
T

as before and noting
that L′(λ) = X, (6.1) becomes

λi = λi(L)− ŷ∗i ∆L(λi)x̂i
ŷ∗iXx̂i

+O(‖∆L(λi)‖2), i = 1, . . . , nk. (6.2)

Recall from (4.6) that X = −B(P, v) = B(v, P ), and note in Table 3.1 that ŷ∗iXx̂i
is the evaluation of the n× n Lerer–Tismenetsky Bézoutian function B(v, P )) setting
both variables equal to λi, followed by left and right multiplication by y∗i and xi.
Therefore, since the Lerer–Tismenetsky Bézoutian function is a polynomial, hence
continuous with respect to its arguments, we have

ŷ∗iXx̂i = y∗i

(
lim

s,t→λi

v(s)P (t)− P (s)v(t)

s− t

)
xi

= y∗i (v′(λi)P (λi)− P ′(λi)v(λi))xi

= −y∗i P ′(λi)v(λi)xi.

Here we used L’Hôpital’s rule for the second equality and P (λi)xi = 0 for the last.
Hence, the expansion (6.2) becomes

λi = λi(L) +
1

v(λi)

ŷ∗i ∆L(λi)x̂i
y∗i P

′(λi)xi
+O(‖∆L(λi)‖2). (6.3)

Thus, up to first order, a small change of L to L+∆L perturbs λi by
|ŷ∗i ∆L(λi)x̂i|

|v(λi)||y∗i P ′(λi)xi| ≤
‖ŷi‖2‖∆L(λi)‖2‖x̂i‖2
|v(λi)||y∗i P ′(λi)xi| , where the last inequality is sharp in that equality can hold by

taking ∆L(λ) = σŷix̂
∗
i for any scalar σ.

Similarly from (6.1), a small perturbation from P to P + ∆P results in the

eigenvalue perturbation ‖yi‖2‖∆P (λi)‖2‖xi‖2
|y∗i P ′(λi)xi| , which is also a sharp bound. Combining

these two bounds, we see that the ratio between the perturbation of λi in the original
P (λ) and the linearization L(λ) is

rλi
=

1

v(λi)

‖ŷi‖2‖∆L(λi)‖2‖x̂i‖2
‖yi‖2‖∆P (λi)‖2‖xi‖2

. (6.4)

Now recall that the absolute condition number of an eigenvalue of a matrix poly-
nomial may be defined as

κ(λ) = lim
ε→0

sup{|∆λ| : (P (λ+ ∆λ) + ∆P (λ+ ∆λ)) x̂ = 0, x̂ 6= 0, ‖∆P (·)‖ ≤ ε‖P (·)‖}.
(6.5)

Here, we are taking the norm for matrix polynomials to be ‖P (·)‖ = maxλ∈D ‖P (λ)‖2,
where D is the domain of interest that below we take to be the interval [−1, 1]. In (6.5),
λ+ ∆λ is the eigenvalue of P + ∆P closest to λ such that limε→0 ∆λ = 0. Note that
definition (6.5) is the absolute condition number, in contrast to the relative condition
number treated in [28], in which the supremum is taken of |∆λ|/(ε|λ|), and over

∆P (·) =
∑k
i=0 ∆Piφi(·) such that ‖∆Pi‖2 ≤ ε‖Ei‖ where Ei are prescribed tolerances

for the term with φi. Combining this definition with the analysis above, we can see
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that the ratio of the condition numbers of the eigenvalue λ for the linearization L and
the original matrix polynomial P is

r̂λi =
1

v(λi)

‖ŷi‖2‖L(·)‖‖x̂i‖2
‖yi‖2‖P (·)‖‖xi‖2

. (6.6)

The eigenvalue λi can be computed stably from the linearization L(λ) if r̂λi is not
significantly larger than 1. Identifying conditions to guarantee r̂λi

= O(1) is nontrivial
and depends not only on P (λ) and the choice of the ansatz v, but also on the value
of λi and the choice of polynomial basis. For example, [15] considers the monomial
case and shows that the coefficientwise conditioning of λi does not worsen much by

forming L(λ) if maxi ‖Pi‖2
max{‖P0‖2,‖Pk‖2} is not too large, where P (λ) =

∑k
i=0 Piλ

i, and the

ansatz choice is v = λk−1 if |λi| ≥ 1 and v = 1 if |λi| ≤ 1.
Although it is difficult to make a general statement on when rλi

is moderate, here
we show that in the practically important case where the Chebyshev basis is used and
λi ∈ D := [−1, 1], the conditioning ratio can be bounded by a modest polynomial
in n and k, with an appropriate choice of v, namely, v = 1. This means that the
conditioning of these eigenvalues does not worsen much by forming the linearization,
and the eigenvalues can be computed in a stable manner from L(λ).

Theorem 6.1. Let L(λ) be the DL(P ) linearization with ansatz v(x) = 1 of a
matrix polynomial P (λ) expressed in the Chebyshev basis φj(x) = Tj(x). Let λi be
an eigenvalue of P (λ) with right and left eigenvectors xi, yi such that P (λi)xi = 0,

yTi P (λi) = 0, and define x̂i = xi⊗Λ(λi), ŷi = yi⊗Λ(λi) where Λ(λ) = [Tk−1(λ), . . . , T0(λ)]
T

.
Then for any eigenvalue λi ∈ [−1, 1], the conditioning ratio r̂λi in (6.6) is bounded by

r̂λi
≤ 16n(e− 1)k4. (6.7)

Proof. Since the Chebyshev polynomials Tj(x) are all bounded by 1 on [−1, 1],

we have ‖x̂i‖2 = ci‖xi‖2, ‖ŷi‖2 = di‖yi‖2 for some ci, di ∈ [1,
√
k]. Therefore, we have

r̂λi ≤
k

v(λi)

‖L(·)‖
‖P (·)‖

. (6.8)

We next claim that ‖L(·)‖ can be estimated as ‖L(·)‖ = O(‖P (·)‖‖v(·)‖). To
verify this it suffices to show that writing L(λ) = λX + Y we have

‖X‖2 ≤ qX(n, k)‖P (·)‖‖v(·)‖, ‖Y ‖2 ≤ qY (n, k)‖P (·)‖‖v(·)‖ (6.9)

where qX , qY are low-degree polynomials with modest coefficients. Let us first prove
the bound for ‖X‖2 in (6.9) (to gain a qualitative understanding one can consult the
construction of X,Y in Section 7).

Recalling (4.6), X is the Bézout block matrix B(vI, P ), so its (k− i, k− j) block
is the coefficients for Ti(y)Tj(x) of the function

B(P,−vI) =
−P (y)v(x) + v(y)P (x)

x− y
:= H(x, y).

Recall that H(x, y) is an n × n bivariate matrix polynomial, and denote its (s, t)
element by Hst(x, y). For every fixed value of y ∈ [−1, 1], by [24, Lem. B.1] we have

|Hst(x, y)| ≤ (e−1)k2 max
x∈[−1,1]

|Hst(x, y)(x−y)| ≤ 2(e−1)k2‖P (·)‖‖v(·)‖ for |x−y| ≤ k−2,
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and clearly

|Hst(x, y)| ≤ 2k2‖P (·)‖‖v(·)‖ for |x− y| ≥ k−2.

Together we obtain maxx∈[−1,1] |Hst(x, y)| ≤ 2(e− 1)k2‖P (·)‖‖v(·)‖. Since this holds
for every (i, j) and every fixed value of y ∈ [−1, 1] we obtain

max
x∈[−1,1],y∈[−1,1]

|Hst(x, y)| ≤ 2(e− 1)k2‖P (·)‖‖v(·)‖. (6.10)

To obtain (6.9) it remains to bound the coefficients in the representation of a degree-k

bivariate polynomial Hst(x, y) =
∑k
i=0

∑k
j=0 h

(st)
k−i,k−jTi(y)Tj(x). It holds

h
(st)
k−i,k−j =

(
2

π

)2 ∫ 1

−1

∫ 1

−1

Hst(x, y)Ti(y)Tj(x)√
(1− x2)(1− y2)

dxdy,

(for i = k and j = k the constant is 1
π ) and hence using |Ti(x)| ≤ 1 on [−1, 1] we

obtain

|h(st)
k−i,k−j | ≤

(
2

π

)2

max
x∈[−1,1],y∈[−1,1]

|Hst(x, y)|
∫ 1

−1

∫ 1

−1

1√
(1− x2)(1− y2)

dxdy

= 4 max
x∈[−1,1],y∈[−1,1]

|Hst(x, y)|

≤ 8(e− 1)k2‖P (·)‖‖v(·)‖,

where we used (6.10) for the last inequality. Since this holds for every (s, t) and (i, j)
we conclude that

‖X‖2 ≤ 8n(e− 1)k3‖P (·)‖‖v(·)‖

as required.
To bound ‖Y ‖2 we use the fact that Y is the Bézout block matrix B(P,−vxI),

and by an analogous argument we obtain the bound

‖Y ‖2 ≤ 8n(e− 1)k3‖P (·)‖‖v(·)‖.

This establishes (6.9) with qX(n, k) = qY (n, k) = 8n(e− 1)k3 , and we obtain

‖L(·)‖ ≤ 16n(e− 1)k3‖P (·)‖‖v(·)‖. (6.11)

Substituting this into (6.8) we obtain

rλi
≤ k

v(λi)

‖L(·)‖
‖P (·)‖

≤ k

v(λi)

16n(e− 1)k3‖P (·)‖‖v(·)‖
‖P (·)‖

.

With the choice v = 1 we have v(λi) = ‖v(·)‖ = 1, which yields (6.7).
Note that our discussion deals with the normwise condition number, as opposed

to the coefficientwise condition number as treated in [15]. In practice, we observe that
the eigenvalues of L(λ) computed via the QZ algorithm are sometimes less accurate
than those of P (λ), obtained via QZ for the colleague linearization [10], which is
normwise stable [24]. The reason appears to be that the backward error resulting
from the colleague matrix has a special structure, but a precise explanation is an
open problem.
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7. Construction. We now describe an algorithm for computing DL pencils.
The shift sum operation provides a means to obtain the DL pencil given the ansatz
v. For general polynomial bases, however, the construction is not as trivial as for the
monomial basis. We focus on the case where {φi} is an orthogonal polynomial basis, so
that the multiplication matrix (2.3) has tridiagonal structure. Recall that F (x, y) and
G(x, y) satisfy the formulas (3.3), (3.4) and (3.5). Hence for L(λ) = λX+Y ∈ DL(P )
with ansatz v, writing the bivariate equations in terms of their coefficient matrix
expansions, we see that X and Y need to satisfy the following equations: defining
v = [vk−1, . . . , v0]T to be the vector of coefficients of the ansatz, and setting

S = v ⊗ [Pk, Pk−1, . . . , P0] and T = vT ⊗ [Pk, Pk−1, . . . , P0]
B
,

Note that S and T are the matrix representation of the functions P (y)v(x) and
v(y)P (x) respectively. Hence by (3.5) we have[

0
Y

]
M −MT

[
0 Y

]
= TM −MTS, (7.1)

where M is as in (2.3), the matrix representing the shift operation; recall that MB =
MT . Similarly, by (3.4) we have

XM = S −
[
0 Y

]
. (7.2)

Note that we have used the first equation of (3.3) instead of (3.4) to obtain an equation
for X because the former is simpler to solve. Now we turn to the computation of X,Y ,
which also explicitly shows that the pair (X,Y ) satisfying (7.1), (7.2) is unique6. We
first solve (7.1) for Y . Recall that M in (2.4) is block tridiagonal, the (i, j) block being
mi,jIn. Defining R = TM −MTS and denoting by Yi, Ri the ith block rows of Y and
R respectively, the first block row of (7.1) yields m1,1Y1 = −R1, hence Y1 = − 1

m1,1
R1

(note that mi,i 6= 0 because the polynomial basis is degree-graded). The second block
row of (7.1) gives Y1M−(m1,2Y1+m2,2Y2) = R2, hence Y2 = 1

m2,2
(Y1M−m1,2Y1−R2).

Similarly, from the i(≥ 3)th block row of (7.1) we get

Yi =
1

mi,i
(Yi−1M −mi−2,iYi−2 −mi−1,iYi−1 −Ri),

so we can compute Yi for i = 1, 2, . . . , n inductively. Once Y is obtained, X can
be computed easily by (7.2). The complexity is O((nk)2), noting that Yi−1M can be
computed with O(n2k) cost. In Section 7.1 we provide a Matlab code that computes
DL(P ) for any orthogonal polynomial basis.

If P (λ) is expressed in the monomial basis we have (see [6, eq. 2.9.3] for scalar
polynomials)

L(λ) =

Pk−1 . . . P0

... . .
.

P0


v̂kIn . . . v̂1In

. . .
...

v̂kIn

−
v̂k−1In . . . v̂0In

... . .
.

v̂0In


Pk . . . P1

. . .
...
Pk

 ,
where v̂i = (vi−1 − λvi). This relation can be used to obtain expressions for the block
matrices X and Y . For other orthogonal bases the relation is more complicated.

6We note that (7.1) is a singular Sylvester equation, but if we force the zero structure in the first
block column in [0 Y ] then the solution becomes unique.
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Matrix polynomials expressed in the Legendre or Chebyshev basis are of practical
importance, for example, for a nonlinear eigenvalue solver based on Chebyshev inter-
polation [8]. Following [21, Table 5.2], in Table 7.1 we depict three DL(P ) pencils for
the cubic matrix polynomial P (λ) = P3T3(λ) + P2T2(λ) + P1T1(λ) + P0T0(λ), where
Tj(λ) is the jth Chebyshev polynomial.

Table 7.1
Three instances of pencils in DL(P ) and their linearization condition for the cubic matrix

polynomial P (λ) = P3T3(λ) +P2T2(λ) +P1T1(λ) +P0T0(λ), expressed in the Chebyshev basis of the
first kind. These three pencils form a basis for the vector space DL(P ).

v L(λ) ∈ DL(P ) for given v Linearization condition

1
0
0

 λ

2P3 0 0
0 2P3 − 2P1 −2P0

0 −2P0 P3 − P1

 +

 P2 P1 − P3 P0

P1 − P3 2P0 P1 − P3

P0 P1 − P3 P0

 det(P0 + −P3+P1√
2

) 6= 0

det(P0 − −P3+P1√
2

) 6= 0

0
1
0

 λ

 0 2P3 0
2P3 2P2 2P3

0 2P3 P2 − P0

 +

−P3 0 −P3

0 P1 − 3P3 P0 − P2

−P3 P0 − P2 −P3

 det(−P2 + P0) 6= 0

det(P3) 6= 0

0
0
1

 λ

 0 0 2P3

0 4P3 2P2

2P3 2P2 P1 + P3

 +

 0 −2P3 0
−2P3 −2P2 −2P3

0 −2P3 P0 − P2

 det(P3) 6= 0

7.1. Matlab code for DL(P ). The formulae (3.4) and (3.5) can be used to
construct any pencil in DL(P ) without basis conversion, which can be numerically
important [2, 25]. We provide a Matlab code that constructs pencils in DL(P )
when the matrix polynomial is expressed in any orthogonal basis. If P (λ) is ex-
pressed in the monomials then a = [ones(k, 1)]; b = zeros(k, 1); c = zeros(k, 1); and
if expressed in the Chebyshev basis then a = [ones(k− 1, 1); 2]/2; b = zeros(k, 1);
c = ones(k, 1)/2;.

function [X Y] = DLP(P,v,a,b,c)

%DLP constructs the DL pencil with ansatz vector v.

% [X,Y] = DLP(P,v,a,b,c) returns the DL pencil lambda*X + Y

% corresponding to the matrix polynomial with coefficients P in an

% orthogonal basis defined by the recurrence relations a, b, c.

[n m] = size(P); k=m/n-1; s=n*k; % matrix size & degree

M = spdiags([a b c],[0 1 2],k,k+1);

M = kron(M,eye(n)); % multiplication matrix

S = kron(v,P);

for j=0:k-1, jj=n*j+1:n*j+n; P(:,jj)=P(:,jj)’;end % block transpose

T = kron(v.’,P’); R=M’*S-T*M; % construct RHS

% The Bartels-Stewart algorithm on M’Y+YM=R

X = zeros(s); Y=X; ii=n+1:s+n; nn=1:n; % useful indices

Y(nn,:)=R(nn,ii)/M(1); X(nn,:)=T(nn,:)/M(1); % 1st column of X and Y
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Y(nn+n,:)=(R(nn+n,ii)-M(1,n+1)*Y(nn,:)+Y(nn,:)*M(:,n+1:s+n))/M(n+1,n+1);

X(nn+n,:)=(T(nn+n,:)-Y(nn,:)-M(1,n+1)*X(nn,:))/M(n+1,n+1); % 2nd cols

for i = 3:k % backwards subs

ni=n*i; jj=ni-n+1:ni; j0=jj-2*n; j1=jj-n; % useful indices

M0=M(ni-2*n,ni); M1=M(ni-n,ni); m=M(ni,ni); % consts of 3-term

Y0=Y(j0,:); Y1=Y(j1,:); X0=X(j0,:); X1=X(j1,:); % vars in 3-term

Y(jj,:)=(R(jj,ii)-M1*Y1-M0*Y0+Y1*M(:,n+1:s+n))/m;

X(jj,:)=(T(jj,:)-Y1-M1*X1-M0*X0)/m; % use Y to solve for X

end
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