
NETWORK-AWARE RESOURCE

MANAGEMENT FOR MOBILE CLOUD

Chathura Madhusanka Sarathchandra Magurawalage

A thesis submitted for the degree of PhD
School of Computer Science and Electronic Engineering

University of Essex
February, 2017

Abstract

The author proposes a novel system architecture for mobile cloud computing
(MCC) that includes a controller for managing computing and communication
resources in Cloud Radio Access Network (C-RAN) environment. The gathered
monitoring information in the controller is used when making resource alloca-
tion/management decisions. A unified protocol has been proposed, which utilises
the same packet format for mobile task offloading and resource management.
Moreover, the packet format and the message types of the protocol have been
presented.

An MCC scenario (i.e., cloudlet+clone) that consists of a cloudlet layer has
been studied, in which the cloudlets are deployed next to Wi-Fi access points and
serve as a localised service point in proximity to mobile devices to improve the
performance of mobile cloud services. On top of this, an offloading algorithm is
proposed with the main aim of deciding whether to offload to a clone or a cloudlet.

The architecture described above has been implemented as a prototype by fo-
cussing on resource management in the mobile cloud. A partial implementation
of a resource monitoring module that monitors both computing and communica-
tion resources have also been presented. Auto-scaling enables efficient computing
resource management in the mobile cloud. An empirical performance analysis of
cloud vertical scaling for mobile cloud resource management has been conducted.

The working procedures of the proposed unified protocol have been illustrated
to show the mobile task offloading and resource allocation functions. Simulation
results of cloudlet+clone mobile task offloading algorithm demonstrate the effec-
tiveness and efficiency of the presented task offloading architecture, and offload-
ing algorithm on response time and energy consumption. The empirical vertical
auto-scaling performance analysis for mobile cloud resource allocation shows that
time delays when scaling resources (CPU, RAM, disk) in mobile cloud varies.
Moreover, the scaling delay depends on the scaling amount at the given iteration.

i

Acknowledgements
I would like to express my gratitude to everyone who directly or indirectly sup-
ported me throughout my PhD. Especially, I am grateful to my mother for her nu-
merous amounts of support and patience throughout my undergraduate and post-
graduate studies. I would also like to express my sincere thanks to Prof. Kun
Yang for his supervision and support. I am grateful for all co-authors of my publi-
cations for their hard work. Finally, I would like to thank UK EPSRC NIRVANA
and EU Horizon 2020 iCIRRUS projects for funding my research, and its mem-
bers for past and ongoing collaborations, valuable discussions and for providing
constructive feedback on my research.

ii

Contents

Abstract i

Acknowledgements ii

List of Figures vi

List of Tables x

1 Introduction 1
1.1 Contributions . 5

2 Literature Review 8
2.1 Introduction . 8
2.2 Architecture . 9

2.2.1 Mobile Cloud . 9
2.2.2 Wireless Resource Management 12

2.3 Energy Models . 13
2.4 Mobile Task Offloading . 16
2.5 Cloud Resource Management . 18

3 Architecture and Protocol 29
3.1 Introduction . 29
3.2 System Architecture . 30

3.2.1 Benefits . 31
3.3 Mobile Cloud Controller . 33

3.3.1 Mobile Device . 35
3.3.2 BBU Pool . 36
3.3.3 Mobile Cloud . 36

iii

3.4 The clone and communication offloading 36
3.5 Mobile Task Offloading Architecture 39

3.5.1 Features of the proposed task offloading architecture . . . 40
3.5.2 Components . 41
3.5.3 Scenarios . 44

3.6 Unified Protocol . 45
3.6.1 Protocol Data Unit format 46
3.6.2 Working Procedure . 49

3.7 Summary . 49

4 Network-Aware Offloading Algorithm 52
4.1 Introduction . 52
4.2 Algorithm . 55

4.2.1 Estimating the response time and energy for local execution 56
4.2.2 Estimating the response time and energy for offloading . . 56
4.2.3 Decision-making . 57

4.3 Performance evaluation and analysis 59
4.3.1 Simulation set-up . 59
4.3.2 Response time . 60
4.3.3 Energy consumption . 63

4.4 Summary . 64

5 A Performance Analysis of Cloud Vertical Scaling for Delay Con-
strained Applications 66
5.1 Introduction . 66
5.2 Cloud Performance Analysis . 69
5.3 Summary . 81

6 Prototype 83
6.1 User Equipment Side . 84
6.2 Infrastructure Side . 85

6.2.1 C-RAN . 85
6.2.2 Mobile Cloud . 88

6.3 Summary . 96

7 Conclusion 100

Appendices 122

iv

A Cloudifying Android OS: Android on OpenStack 123

B List of Publications 126

v

List of Figures

1.1 The traditional (distributed) vs the proposed (centralised) multi-
resource management architectures. 3

3.1 Overview of the architecture, showing the interaction between,
Mobile device and mobile cloud and C-RAN. 31

3.2 Management and service planes 33
3.3 Mobile Cloud Controller . 35
3.4 One sender - One receiver . 37
3.5 One sender - many receives same content to their own clone at the

same time. 38
3.6 One sender - many receives same content from the sender’s clone

directly. 39
3.7 Proposed architecture for MCC offloading. 42
3.8 Unified Offloading Protocol PDU. (The ticks represent number of

bits) . 46
3.9 Unified Offloading Protocol: Procedure when successfully allo-

cates resources . 50
3.10 Unified Offloading Protocol: Procedure when resource allocation

failed . 51

4.1 Illustration of task offloading with clones and cloudlets. 54
4.2 Response time for a conventional architecture and Cloudlet+Clone

when the bandwidth is reduced by a fixed amount. 61
4.3 Task response time as a function of input data size. 62
4.4 Task response time as a function of the number of instructions. . . 62
4.5 Response time as a function of input data size with data caching

(proposed architecture without Cloudlet) and without data caching
in a clone (conventional architecture). 62

vi

4.6 Response time as a function of input data size without data caching
on a clone (conventional architecture) and with data caching in
Cloudlet+Clone (proposed architecture). 62

4.7 Energy consumption of a mobile device with a clone only and
Cloudlet+Clone when increasing the input data size without data
caching. 64

4.8 Energy consumption of a mobile device when offloading without
data caching in a clone (conventional architecture) and with data
caching enabled in a clone (proposed architecture without Cloudlet). 64

4.9 Energy consumption of a mobile device when offloading without
data caching in a clone (conventional architecture) and with data
caching enabled in Cloudlet+Clone. 65

5.1 The VM start time as the number of instances increases in the
cloud globally . 70

5.2 Mean CPU upscale delay as the size of the base VM increases.
The standard error shows variations in results 71

5.3 Second order polynomial function of mean CPU upscale time in
continuous scenario . 71

5.4 Second order polynomial function of mean CPU upscale time in
non-continuous scenario . 72

5.5 Mean CPU downscale delay as the size of the base VM increases.
The standard error shows variations in results 74

5.6 Second order polynomial function of mean CPU downscale time
in continuous scenario . 75

5.7 Second order polynomial function of mean CPU downscale time
in non-continuous scenario . 75

5.8 Mean disk upscale delay as the size of the base VM increases. The
standard error shows variations (error) in data 76

5.9 Second order polynomial function of mean disk upscale time in
continuous scenario . 77

5.10 Second order polynomial function of mean disk upscale time in
non-continuous scenario . 77

5.11 Mean RAM upscale delay as the size of the base VM increases.
The standard error shows variations (error) in data 78

5.12 Second order polynomial function of mean RAM upscale time in
continuous scenario . 79

vii

5.13 Second order polynomial function of mean RAM upscale time in
non-continuous scenario . 79

5.14 Mean RAM downscale delay as the size of the base VM increases.
The standard error shows variations (error) in data 80

5.15 Second order polynomial function of mean RAM downscale time
in continuous scenario . 80

5.16 Second order polynomial function of mean RAM downscale time
in non-continuous scenario . 81

6.1 C-RAN with Mobile Cloud testbed 84
6.2 Thinkair offloading framework deployed on Android UEs (right

side) and on the Clone (left side) 85
6.3 A screenshot of Amarisoft wireless resource monitor dashboard

running on a web browser, showing CPU utilisation and the num-
ber of connected UEs . 86

6.4 A screenshot of Amarisoft wireless resource monitor dashboard
running on a web browser, showing the download bitrate, upload
bitrate and the number of transmitted packets in downlink 86

6.5 A comparison of probabilities of both User 1 and User 2 getting a
specific number of PRBs allocated by the MAC schedular, when
both users are transferring at the same time. 88

6.6 A comparison of the cumulative probabilities of User 1 and User 0
getting a specific number of PRBs allocated by the MAC schedu-
lar, when are transferring at the same time. 89

6.7 A comparison of the gaussian Kernel Density Estimations (KDE)
showing the trends of User 1 and User 0 getting a specific number
of PRBs allocated by the MAC schedular, when both are transfer-
ring at the same time. 90

6.8 A comparison of probabilities of both User 1 and User 2 requiring
a specific number of PRBs in the MAC schedular, when both users
are transferring at the same time. 90

6.9 A comparison of the cumulative probabilities of User 1 and User 0
requiring a specific number of PRBs in the MAC schedular, when
are transferring at the same time. 91

6.10 A comparison of the gaussian Kernel Density Estimations (KDE)
showing the trends of User 1 and User 0 requiring a specific num-
ber of PRBs allocated in the MAC schedular, when both are trans-
ferring at the same time. 92

viii

6.11 A comparison of the probabilities of User 0 requiring a specific
number of PRBs vs the probability of getting a specific number of
PRBs allocated by the MAC schedular, when User 1 and User 0
are transferring at the same time. 93

6.12 A comparison of the cumulative probabilities of User 0 requiring
a specific number of PRBs vs the probability of getting a specific
number of PRBs allocated by the MAC schedular, when User 1
and User 0 are transferring at the same time. 94

6.13 A comparison of the gaussian Kernel Density Estimations (KDE)
showing the trends of User 0 requiring a specific number of PRBs
vs getting a specific number of PRBs allocated by the MAC schedu-
lar, when User 1 and User 0 are transferring at the same time. . . . 95

6.14 A comparison of the probabilities of User 1 requesting a specific
number of PRBs vs the probability of getting a specific number of
PRBs allocated by the MAC schedular, when User 1 and User 0
are transferring at the same time. 96

6.15 A comparison of the cumulative probabilities of User 1 requiring
a specific number of PRBs vs the probability of getting a specific
number of PRBs allocated by the MAC schedular, when User 1
and User 0 are transferring at the same time. 97

6.16 A comparison of the gaussian Kernel Density Estimations (KDE)
showing the trends of User 1 requiring a specific number of PRBs
vs getting a specific number of PRBs allocated by the MAC schedu-
lar, when User 1 and User 0 are transferring at the same time. . . . 98

6.17 C-RAN testbed architecture for video streaming with RTMP . . . 98
6.18 Video retransmission traffic comparison in C-RAN backhaul. With

and without Clone . 99

ix

List of Tables

3.1 UOP attribute definition . 47
3.2 PDU Types (some examples) . 47
3.3 Definitions of Object Binding name-value pair 48

4.1 Notation conventions . 55
4.2 Wireless energy model for downloading x bytes of data over 3G

and WiFi networks . 63

5.1 Polynomial coefficients of second order polynomial function for
the scaling scenarios . 73

x

Chapter 1

Introduction

User equipments (UEs) (e.g., smartphone, tablet, wearable device, and digital
camera) are playing an important role in new application scenarios (e.g., virtual
reality, augmented reality and surveillance system). While resource-constrained
UEs (CPU, GPU, memory, storage, and battery lifetime) have driven a dramatic
surge in developing new paradigms to handle computation intensive tasks [1].
For example, computationally intensive applications requiring a large amount of
computing capacity are not suitable to run on mobile or portable devices.

Various parties (e.g., hardware manufacturers, operating system developers,
application developers) that are involved in developing new generations of mobile
devices, in industry and academia, have investigated on ways to boost computing
resources on mobile devices while also increasing energy efficiency. There have
been a numerous amount of solutions proposed over the past few years. Some such
proposed technologies predominantly focused on optimising existing hardware
resources for efficient processing (e.g. energy efficient CPU scheduling), and
others’ focus were to increase the number of local resources in hardware while at
the same time increasing the portability. However, in today’s mobile devices the
above issues (resource scarcity) continue to persist. Therefore, is there any other
way that mobile applications may help increase mobile computing efficiency?

Mobile cloud computing (MCC) [2] [3] provides a solution where UEs of-
fload computationally intensive tasks to a remote resourceful cloud (e.g., EC2)
[4], thereby saving processing power and energy. Furthermore, Kumar et al. [1]
discovers a computing-communication trade-off, and concludes that mobile task
offloading is beneficial when the computing intensity of the task in question is
higher, and when the required network resources that are required to transfer the
offloading task to the remote mobile cloud is relatively lower. Kumar et al. also

1

emphasises the need for high bandwidth wireless networks for task offloading to
be efficient.

Before offloading, all mobile applications go through a procedure called code
partitioning [5]. In this step, the offloading framework selects the tasks that should
be executed locally and tasks that may be offloaded to a remote cloud. Some tasks
(such as code that perform Input and Output operations) might not inherently be
able to execute remotely. Subsequently, the offloading algorithm in the offload-
ing framework that resides on the mobile device may make decisions on what
(which tasks), when (when it is beneficial to offload) and where to offload. Var-
ious researchers have proposed different architectures for offloading frameworks
and have provided their implementations. Some of which are MAUI [6], Thinkair
[7], CloneCloud [5], Cuckoo [8]. The architectures of which predominantly de-
pendent on the offloading type/level (thread level, method level, code level), and
the implementation platform (programming language, used application libraries).
However, the partitioning methods of task offloading are out of the scope of this
thesis.

On the other hand, task offloading generates data intensive workloads, which
may become one of the leading influential factors of the unprecedented mobile
traffic growth [9]. It has been predicted that mobile traffic will increase expo-
nentially to 100 times by the year 2020 [10]. The dynamics of substantially
increased data rates requires that cellular infrastructure must be flexible and re-
configurable, supporting simplified deployment and management of radio access
networks. While conventional radio access network may incur high cost, high
latency and data exchange inefficiencies [11]. It lacks the efficiency to support
centralised interference management and the flexibility to migrate services to net-
work edge for computation intensive applications.

To ensure highly efficient network operation and flexible service delivery when
handling mobile internet traffic surging, Cloud Radio Access Network (C-RAN)
[11] [12] brings cloud computing technologies into mobile networks by central-
ising baseband processing units (BBU) of the radio access network. It moves the
BBU from traditional base station to the cloud and leaves the remote radio heads
(RRH) distributed geographically. The RRHs are connected to the BBU pool via
high bandwidth and low-latency fronthaul. The BBU pool may be realised by
the virtual machines (VM) in data centres, and the centralised baseband process-
ing enables BBU to be dynamically configured and shared on demand [13]. In
this case, with the transition from conventional hardware-based environment to a
software-based infrastructure, C-RAN may achieve flexible management of BBU
resources.

2

It is worth mentioning that C-RAN uses centralised BBU to do baseband pro-
cessing, while MCC carries out distributed task offloading by shifting computing
tasks from the mobile device to mobile cloud. However, the cloud in MCC sce-
nario is usually in a wide area network (WAN), and it is tough to control delay and
jitter at WAN scale, thus offloading tasks to the public cloud may suffer from high
latency via the Internet [14]. For example, augmented reality requires low latency
in order to provide correct information according to user location and orienta-
tion, while offloading task to the remote cloud may incur information distortion
due to delayed data transmission. As offloading tasks are delay constrained, it is
always beneficial to bring computing resources as close to the user as possible
[14]. Therefore, it is evident that it may significantly reduce offloading latency
when UEs offload computationally intensive tasks to a computing resource-rich
location within the radio access network and in proximity to UEs. Moreover,
integrating MCC task offloading with the C-RAN environment stands as a valid
research problem.

EPC Internet

Cloud

Cloud

Cloud

RAN

Internet

Cloud

Cloud-RAN

• BaseBand Processing
• Wireless Resource Monitoring

 and Management

Cloud and BaseBand
Resource Monitoring/Management • Cloud Processing

• Cloud Resource Monitoring
 and Management

EPC

Mobile
Cloud

Cloud
Processing

Base Band
Processing

Distributed Centralised

Figure 1.1: The traditional (distributed) vs the proposed (centralised) multi-
resource management architectures.

Figure 1.1 shows the hybrid deployment of C-RAN with MCC for computa-
tion offloading (on the right side), as opposed to the traditional mobile cloud on
the internet depicted on the left side. Connected with geographically distributed
RRHs and centralised BBUs, UEs get access to the VMs (called mobile clones) in
a mobile cloud for computation offloading. For computation offloading requests,
data is first transmitted by the base station (RRH and BBU) via the uplink. Once
processed by an MC in the mobile cloud, the results will be returned to UEs via

3

the downlink. However, the focus of most of the work in this thesis is on the
mobile cloud side.

As shown in figure 1.1, a new category of resource has been introduced to
the traditional mobile operator’s network. This is not only beneficial to the mo-
bile users (UEs) for offloading computationally intensive tasks to the cloud, but
there are a number of aspects that operators may benefit from. Operators are now
not only a network pipe provider, but they may also offer computing services to
the subscribers. Moreover, the operators may let the subscribers pay more on
top of the current price plan for extra computing services that they receive, by
introducing new price plans for mobile task offloading. One may introduce new
components into existing systems, but such components still have to be managed
for utilising the resources efficiently.

Software Defined Networking (SDN) [15] is a centralised architecture that
augments a data plane and a control plane from traditional networks. Centralised
controller nodes have been introduced into the network for managing resources. In
literature, such SDN-based architectures and management controllers have been
introduced to wireless networks in multiple accounts [16] [17]. Their main focus
has been on defining SDN modules and interfaces (northbound and southbound)
for wireless networks [16] for efficient service deployments. Moreover, SDN has
been proposed for Long Term Evolution (LTE) wireless network control [16] (e.g.
Interference mitigation, network access selection).

Both mobile cloud and C-RAN resources that are co-located in the operators’
network have to be managed efficiently for gaining optimum performance. There-
fore a central controller has been introduced for managing C-RAN and Mobile
cloud resources. Such a controller may still be able to control wireless network
resources as in [16], while also managing computing resources when mobile tasks
are offloaded to the cloud. Figure 1.1 depicts a controller that manages mobile
cloud and baseband resources in C-RAN. The dotted lines illustrate the connec-
tivity to both the BBU pool and the mobile cloud for sending control signals. In
this architecture, a signalling protocol needs to be designed for task offloading
and managing wireless resources in operator’s network and computing resources
in the mobile cloud. However, the work on this thesis mainly focuses on mobile
task offloading, mobile cloud resource management and on developing a proto-
type of such a system architecture to demonstrate that the described architecture
may be implemented.

The cloud resources in the mobile cloud have to be managed efficiently while
also taking delay constraints of compute (task) offloading into consideration. Auto-
scaling [18] enables cloud administrators to dynamically scale computing re-

4

sources in the cloud for their applications to adapt to workload fluctuations. There
are two types of auto-scaling. 1) Horizontal scaling adds and removes virtual ma-
chines (VM) from an existing VM pool that serves an application, 2) Vertical scal-
ing adds and removes virtual resources from an existing VM. However, horizontal
scaling has been used more often, in comparison to vertical scaling in literature.
Moreover, horizontal scaling allows the application to achieve higher throughput
levels per each addition, but the deployment cost is greater than vertical scaling
[19].

When scaling vertically, the resource provisioning introduces delay, which
makes the desired effect arrive late. But not many previous auto-scaling tech-
niques has taken these delays into consideration. Therefore, recent literature [20]
stresses the need for future work on auto scaling, taking auto scaling delay times
into consideration. Auto-scaling may scale either virtual disk, memory or CPU re-
sources (e.g. vCPU scaling is the most used auto-scaling resource) or a combina-
tion of types of resources. Also, one may scale up and scale down VMs depending
on the current amount of workload. Moreover, when scaling resources, one may
scale ”continuously” by adding/removing just one resource from the existing VM
or may add or remove more than one resource from the VM (non-continuously).
All of the aforementioned scenarios should be taken into consideration when de-
signing efficient offloading techniques. Therefore, it is important to understand
the trends of such resize delays before designing auto-scaling algorithms, espe-
cially when auto-scaling for delay sensitive applications.

1.1 Contributions
This section introduces the reader to the list of novel contributions that have been
made in the following chapters while providing a brief description of each contri-
bution.

• In Chapter 3, I propose a novel architecture and a new protocol design for
task offloading and resource management in the mobile cloud. Mobile cloud
computing resources are brought closer to the user and put alongside the C-
RAN BBU pool. The centralised local controller receives instantaneous
monitoring information from both wireless and mobile cloud sides for mak-
ing resource management decisions. The controller accepts task offloading
requests only if there are sufficient resources available to serve the request.
If the incoming requests are accepted, adequate resources are allocated to

5

serve the incoming workload using the proposed protocol. Secondly, I in-
troduce a new mobile task offloading software architecture to complement
the scenario and the offloading algorithm that I have presented in Chapter
4. I have carried out the former work, as a part of the Horizon 2020 project
iCIRRUS and may be found in publicly available project deliverable D4.3
[21].

• In Chapter 4, I propose a network-aware and energy-efficient mobile com-
pute task offloading algorithm, that considers an offloading scenario where
computing resources are placed both on the internet (i.e. clones) as well
as next to high bandwidth Wi-Fi access points (i.e data caching enabled
cloudlets). The approach is influenced by the observations and analysis
made by Kumar, K et al. [1], that larger bandwidth networks should be used
for compute task offloading. The algorithm takes both available computing
and network resources into consideration and decides where to offload by
selecting either the Wi-Fi network or the cellular network to offload. The
offloading decision depends on the time efficiency (how fast the offload-
ing execution may be finished) and the energy efficiency. For calculating
energy consumption when offloading using Wi-Fi and cellular networks, I
have employed existing energy models that are formulated based on empir-
ical results.

• I address the question “why vertical scaling is important for delay-constrained
applications such as mobile task offloading?”, in the Chapter 5. First I con-
duct an extensive performance analysis on cloud vertical scaling. Then I
present the known issues of cloud vertical scaling and explain the impor-
tance of such an analysis of cloud vertical scaling delays. Empirical per-
formance data of vertical cloud auto-scaling have been gathered from the
prototype presented in Chapter 6, then an analysis of gathered data have
been carried out to show trends in virtual CPU, RAM and storage resource
scaling delay times, for giving an insight into cloud vertical scaling for de-
signing future auto-scaling algorithms.

• Finally, I prototype the system architecture presented in Chapter 3, in Chap-
ter 6. The implementation includes both the C-RAN side with the software
BBU and the mobile cloud side with the Android VMs (clones) for mo-
bile task offloading. A wireless monitoring module and an intuitive dash-
board have been implemented as a part of the Resource Monitor in the con-
troller. Authorised UEs may connect to the cellular network and get access

6

to the services that are made available by the mobile cloud. I have adopted
the Thinkair [7] framework into the prototype, to showcase task offloading
functionalities in the C-RAN mobile cloud environment. An Android clone
that runs on OpenStack-based clouds has been developed, which is publicly
available to be downloaded and tested by other researchers [22].

7

Chapter 2

Literature Review

2.1 Introduction
Mobile Cloud Computing is a much welcomed new paradigm among the research
community that brings Mobile Computing and Cloud Computing closer together
for increasing computing and energy efficiency of UEs. These advancements have
been proven to be achievable through mobile task offloading and by bringing com-
puting resources closer to the UEs. This chapter provides an insight into this
exciting new area starting with detailed descriptions of MCC architectures, then
moving into a technical review and a comparison of energy models that are used
in MCC for calculating power consumption of UEs when making task offloading
decisions. Then the state-of-the-art frameworks of task offloading, the key en-
abling technique of MCC, are introduced highlighting their key technical features
as well as their drawbacks.

Once the offloading decisions are made, the tasks are offloaded and executed
in the cloud. During this procedure, the resources in the cloud should be efficiently
managed and allocated to accommodate incoming requests. Cloud auto scaling is
a technique that employs the elasticity, one of the key features of cloud comput-
ing, that may be used to dynamically up and down scale CPU, I/O and network
resources that are placed at the edge of the network while meeting SLA/SLO re-
quirements. Most influential work in academia and industry has been presented by
carefully reviewing the fundamental parameters of the scaling techniques and al-
gorithms. Cloud Radio Access Networks (C-RAN), another promising new area
that introduces cloud computing technologies into Radio Access Networks, of
which the technical benefits and recent related work have been reviewed for illus-

8

trating the importance of integrating Mobile Clouds into C-RAN environments.

2.2 Architecture

2.2.1 Mobile Cloud
The use of cloud computing resources by an application in the mobile device, by
commissioning processing fragments of it to the cloud is named offloading. What
to offload to the cloud is determined by partitioning algorithms. Where and when
to offload would be determined by the scheduling algorithm of the mobile ap-
plication so that only the computation intensive part of the application would be
offloaded to the cloud. Subsequently, the output/result of the computation would
be returned to the mobile application. An alternative approach is a virtual ma-
chine based process/runtime migration. Yang et al. [23] have disclosed one of
the earliest work that has been done to solve the partitioning problem for mobile
data stream applications. The framework enables mobile devices to work collab-
oratively since cloud resource providers, argue the execution of the mobile ap-
plication on mobile devices using cloud resources and extend the access to cloud
services from mobile applications. The proposed framework considered to be an
acyclic data flow graph enclosing components(vertexes) and channels(edges). The
component has input ports and output ports. The so-called component is primar-
ily a thread of a process or a process. By using a genetic algorithm, Yang et al.
disclosed the optimal algorithm that offloads the task elements to the cloud.

CloneCloud [5] is an elastic cloud execution framework for mobile devices. It
incorporates automatic static and dynamic analysis of code at runtime before mi-
gration/offloading and dynamic profiling to partition applications, without having
to make any changes to the code. Code partitioning is at the thread level with fine
granularity. This approach is less scalable because bootstrapping is required for
every new application and only limited execution environments and input condi-
tions are considered during off- line code preprocessing.

The Thinkair [7] and Cuckoo [8] frameworks provide scalable, online, and
method-level code offloading mechanisms with on-demand resource allocation.
Cuckoo computational offloading is possible to any resource running a Java VM.
Thinkair provides scalability by connecting to a virtual machine with a real smart-
phone operating system in the cloud for offloading purposes. Thus, it eliminates
the environmental, input, and output restrictions placed on offloaded code by other
offloading frameworks such as CloneCloud [5]. Thinkair execution controller, de-

9

cides whether a method should be offloaded or not. This decision is based on the
information that is collected by hardware, software and network profilers. Java
reflection is used if it decides to offload a method to the cloud. After executing
the method in the cloud, the result and any modified local state would be sent
back to the mobile device. Thinkair exploits parallel- ism on the cloud side by
allowing the creation, resumption, and destruction of multiple VMs in the cloud
for parallelisation. If a task that is offloaded to the cloud needs to be executed par-
allelly, Thinkair will divide the tasks into subtask and execute them on secondary
VMs with elastic cloud resources. When the parallel execution is done, it sends
the results back to the mobile devices. The spawned VMs will be destroyed, or
paused temporarily for future use. Thinkair API, allows software developers to
annotate easily the remotable methods to be offloaded when it is running with
low resources on mobile devices. Also, thinkair does not choose where the cloud
clone is hosted. The clone host location may affect the network latency and round
trip time, which may have an adverse effect on the energy efficiency. Another
drawback is that the clone needs to be created first, and the IP of it needs to be
provided to the thinkair client that runs on the mobile devices beforehand, to be
able to connect to the clone.

Clone2Clone [24] allows users to create their clone in the cloud or to request
CloneDS, the Clone2Clone directory service, to create a clone on their behalf.
User based resource cloning in the cloud, a new paradigm in which there is ded-
icated VM in the cloud for each mobile device. Clones may form secure peer-
to-peer networks for content sharing, searching, and distributed code execution.
Such systems eliminate the dilemma of having unpredictable and energy ineffi-
cient wireless networks, considering that clones in the cloud have stable always-
on, high-bandwidth networks. Other mechanisms may be used to offload compu-
tationally heavy tasks to the cloud [7] [6] [25] [5], for which the architecture is
also limited to networks with low bandwidth and high latency. The paper investi-
gates into deploying the clone in a private network as well as in a public network
(Amazon EC2). Before forming the P2P connection, one may need to know the
IP of the other party that it would like to connect to. CloneDS is a directory ser-
vice that maps users to clones and clones to IPs. Such that when needed, clones
may get other clones IPs by sending lookup requests to the CloneDS. Clonebox
a content sharing platform that is built on top of Clone2Clone, CloneDoc [26] a
collaborative document editing tool that is put together with Clone2Clone, Cloud-
Shield [27] a worm containment mechanism for mobile devices and cloud, which
built on top of Clone2Clone.

CDroid [28] uses another MCC approach in which a secure tunnel is estab-

10

lished between a mobile device and its cloud clone for all Internet traffic. The
cloud clone appears as a local resource for the mobile device. This technique
improves web navigation, compression and caching of web pages, and blocking
unwanted advertising and virus scanning applications before the installation. A
major drawback of this is that it requires an always-on connection to the cloud
clone, and all traffic must go through the clone, which is not energy-efficient.

VM based Cloudlet [14] [29] [30] are decentralised and widely distributed in-
ternet infrastructure components whose computation and nearby mobile devices
may leverage storage resources. These Cloudlets are ideal, clusters of multi-core
computers with gigabit internal Ethernet connectivity and a high-bandwidth wire-
less LAN. Satyanarayanan et al. emphasised the necessity of physical proximity
of the cloudlet to the wireless AP so that mobile devices benefit from only having
to traverse one hop using high-bandwidth, low-latency wireless networks [14].
Moreover, if it is to offload it to the cloud, it has to send data through a WAN
using a low-bandwidth, low-latency wireless network. If there are no any nearby
Cloudlets, then the mobile application will fall back to the distance cloud, or in
worse case scenario, it will solely depend on its local resources.

Kimberley is the current reference for cloudlet implementation. It uses two
approaches to introducing the VM state to the infrastructure. 1) The VM is sus-
pended, and its processor, memory, and disk states are transferred to the cloudlet,
then the VM resumes at the exact point at which it was suspended. 2) In dynamic
VM synthesis, the mobile device delivers a small VM overlay to the cloudlet in-
frastructure, which already possesses the base VM from which this overlay was
derived. Parallelized VMs may be spawned on demand on the cloudlet side to
achieve faster execution.

Kimberley does not consider energy utilisation on the mobile side, but resource-
heavy operations may drain the battery of a mobile device. Device mobility is one
of the major cloudlet issues for mobile users on the move while connected to
cloudlets. Kimberley does not consider this factor. Our proposed architecture
addresses the aforementioned limitations of Kimberley.

Placement of cloudlets belonging to various service providers next to each
other may occupy much space. Collaboration among cloud service providers to
form a coalition for transparent customer service could lead to broader cloudlet
coverage. Niyato et al. [31] used game theory to model coalitions among cloud
service providers. The game is modelled so that it is more desirable for the service
providers to make alliances rather than to serve customers independently. The
payoff for the service providers is always greater if they have formed a coalition.
Cloud service providers may deploy strategies so that they may optimise their

11

capacity expansion tactically, to gain a better payoff, contemplating on what other
providers’ strategies might be.

The MCC architectures described above only consider the implications of us-
ing highly resource-rich computers on the cloud side when delegating tasks. Re-
cent studies have investigated the use of other nearby mobile devices with com-
mon interests when offloading computationally heavy tasks. Nguyen et al. proved
that mobility increases MCC processing capacity [32]. Mobility also affects the
performance and resilience of mobile clouds. The inherited mobilisation means
that addition of even a small number of highly mobile nodes to a highly localised
network may significantly improve the processing capacity and resilience. The
main drawback of this approach is that the battery life of current mobile devices
is not sufficiently energy-efficient. Cloud clones inhabit one place at one time,
with little regard for mobility, in contrast to the highly mobile devices they serve.
Hence, a comprehensive investigation of clone placement and clone migration
methodologies is required.

2.2.2 Wireless Resource Management
Decoupling of baseband processing components (BBUs) from the base stations
and placing them in a centralised location allows sophisticated centralised re-
source allocation and interference management techniques where the BBUs in
a pool may cooperate to improve the cellular network capacity. This particular
deployment technique is named C-RAN [11]. C-RAN architecture has been used
by several operators and service providers as a cost-efficient way of deploying cel-
lular coverage. It is cost effective, as when its architecture and its components are
designed, minimising capital and operational expenditures of the cellular system
deployment has been two major objectives.

Cai et al.[33] have studied the topology configuration with the rate allocation
problem in C-RAN. The aim of the study is to optimise the end-to-end perfor-
mance of MCC users in next generation wireless networks. The paper also focuses
on improving the inaccurate Channel State Information (CSI) problem in C-RAN.
To hide the issues in wireless networks from the wireline hosts, a split -TCP proxy
has been placed at the edge of the wireless network. The proxy receives wireless
segments, stores them locally and forwards them to next second TCP connection.

While by C-RAN [11] proposes an excellent cellular deployment architecture,
the wireless resources that are deployed in operator’s network has to be managed
efficiently for better utilising scarce wireless and baseband computing resources
that are situated in operator’s network. Software Define Networking (SDN) based

12

approaches have been proven to provide solutions to control and management re-
lated issues in future wireless networks [15]. Bernardos et al. [16] propose an
SDN-based architecture for efficient wireless service deployments while enabling
virtualization. It provides a detailed description of the modules, interfaces (north-
bound, southbound) and signalling between the elements of the architecture.

Ali-Ahmad et al. have proposed an OpenFlow-based SDN architecture [17],
which also proposes local controllers for managing resources with a short-term
optimisation goals scheduled in, and a regional controller, a logically centralised
entity in the network that carries out long-term optimisations of the network.
Moreover, the local controllers require detailed and instantaneous data from the
network, while the regional controllers only require aggregate data from the net-
work for carrying out dynamic deployment and lifecycle management of local
controllers. Ali-Ahmad et al. further clarify that LTE interference mitigation,
wireless local area network (WLAN) optimisation, LTE access selection and power
cycling are some of the control applications that the architecture may be used for.

2.3 Energy Models
Perrucci et al.[34] have conducted a survey on energy consumption on compo-
nents of mobile platforms. Perrucci et al. present aspects of energy consumption
of various technologies such as Bluetooth, Wifi and cellular networks in great de-
tail. The empirical results of the power consumption when the interfaces are in
different states has been presented. A simple energy model for sending an SMS
via 2G and 3G networks have been presented. However, the main contribution of
the paper is to allow the researchers and application developers, to use the findings
for future mobile protocols and applications.

Zhangt et al.[35] conducted an experimental study to create an automated
power model construction technique that uses built-in battery voltage sensors and
knowledge of battery discharge behaviour. First, he investigates into which com-
ponents of a mobile device contributes more overall power consumption, then ex-
clude the component with less significant impact on the system power consump-
tion. Zhangt et al. state that the error of assuming that individual components are
independent entities when calculating the power consumption is 6.27%. Hence
he assumes that it is less significant to count the power consumption when it is
at different cross-products power states. CPU, LCD display, GPS, WiFi, Cellular
and audio components have been modelled. The energy model for CPU is based
on the utilisation and frequency-voltage settings. LCD display energy model uses

13

a training program that turns the LCD on and off and changes its brightness be-
tween 10 brightness levels. For GPS, the power consumption influences on its
state/mode detected satellites detected and their signal strength. The packets trans-
mitted, packets received, uplink data rate and the uplink channel rate have been
used to model the WiFi model. This paper does not consider the signal strength of
the cellular networks. The model considers the channel state of the cellular net-
work, transmitted and received data rate, and varied two queue sizes. For audio
interfaces, the power consumption when activating digital signal processor and/or
speaker amplifier have been used.

Balasubramanian et al.[36], in the experimental study, the energy model al-
lows the user to empirically predict the future energy consumption of applications
by, modelling the energy consumption as a function of both the size of transfer and
the time of between successive transfers, of 3G, GSM and WiFi networks. The
empirical results have shown that when scan cost is included, WiFi is efficient
when doing large sized transfers than 3G and GSM. Granting that WiFi associ-
ation overhead is comparable to the tail energy of 3G, although the data transfer
itself is much more efficient than 3G. When developing the energy model for 3G,
the model takes Tail, Ramp and transmission energy into consideration.

ARO [37] [38] is a Radio Resource Control state-based power model. ARO
may accurately expose the cross-layer interaction among radio resource channel
(RRC) state, transport layer, application layer and the user interaction layer. The
typical three RRC states are IDLE, CELL DCH and CELL FACH. However,
some UMTS networks support a hibernating state called CELL PCH which is
similar to IDLE but the state promotion delay from CELL PCH is shorter, which
is explained by the Qian et al.. However, Qian et al. does not consider the wireless
signal strength that affects the energy efficiency of the device.

Experimental studies have shown that communication energy per bit may be
as high as 6x when the signal is weak, than when it is strong. Schulman has shown
that above statement is empirically correct in their studies. Bartendr et al.[39] is
a system for energy-aware cellular data scheduling. It predicts the future signal
strength and uses developed energy-aware scheduling algorithm for syncing and
streaming workloads.

WattsOn [40] an energy estimation tool for mobile app developers to esti-
mate power consumption of their mobile application in development environ-
ments. It is built on the power model that measures the power consumption of
data transmission and the ”tail” states, at varied signal power strengths for 3G
networks. PSM state model [41] has been used for the WiFi power model, which
has four states - Deep Sleep (10mW), Light Sleep (120mW), Idle (400mW) and

14

High (600mW). Other power models that have been used in their experiments are
CPU and Display. WattsOn follows an experimental approach when creating their
power model. WattsOn may identify energy hungry segments during the app run,
and determine which component (display, network or CPU) consumes the most
energy.

Rahmati et al.[42] designs a context-based network estimation algorithm that
uses their developed energy model for wireless data transfers on the mobile phones.
Rahmati et al. measure the power consumption by reading the voltage drop by in-
tercepting on the interface between the battery and the device. Also, cellular and
WiFi connections, the energy model is the addition of connection establishment
cost and energy per bit data transfer cost taking the signal strength into consid-
eration. Also, the wifi interface maintenance cost has been taken into account.
Rahmati et al. have also adopt the concept of transferring data on multiple inter-
faces to increase the efficiency. This experimental investigation has ignored the
TCP, HTTP connection establishment, RTT and TCP slow start.

Sesame[43] is a self-modelling system for energy consumption of mobile sys-
tems that is self-constructive and provides a high rate of estimation. The linear
regression based energy modelling system is automatically generated by the intel-
ligent battery interface. The CPU frequency has been used as the predictor vector.
The mobile operating system, through Advanced Configuration and Power Inter-
face (ACPI), provides a battery driver that may read registers of the battery state.
For Linux the may access battery information through a standard file system API.
Fuel gauge IC being the main hardware of the smart battery interface, it measures
the battery voltage, temperature and current. It may also estimate the remaining
battery capacity and total charge that is drawn from the battery. By using the Prin-
cipal Component Analysis (PCA), it utilises only the top two components with the
greatest impact on the consumption as predictors instead of dealing with too many
components. The above does reduce not only workload but also guarantees equal
or high accuracy and higher sampling rate to other systems.It is observed that the
energy model of a low rate based readings on the battery interface is inherently
more accurate when there are systematic errors in the readings exists. Sesame has
two staged methods to construct the high accurate energy model of a lower rate.
At the Stretching stage the battery readings have been acquired at a very low-rate
model, then at the Compress stage it compresses the low-rate model to fit into a
high-rate one.

The energy model[44] that has been used by Namboodiri et al. take an ana-
lytical approach. The power model comprises as the sum of three components.
The idle power of the device, the power consumed by the CPU at maximum load

15

with a CPU specific coefficient and the power consumed by the network interface.
The power consumption when the network interface in active, idle, sleep have
been modelled. However, this model’s granularity is somewhat low, due to lack
of varied wireless interface specific RRC state modelling.

A context-aware communication energy model[45] has been proposed, which
is a function of the transmission power and congestion level. Due to lack of API
support for acquiring transmission power and congestion level, Namboodiri et al.
have introduced two contexts into the energy model. The received Signal Strength
indication (RSSI) as transmission power is a function of it because better signal
strength gives less bit-error-rate. The network throughput as congestion level is a
function of it.

However, studies on the power consumption of LTE interfaces [46] has shown
that it consumes much more energy for the same amount of content, comparing
to its predecessors. 3G consumes more energy when it is in dedicated RRC state
(CELL DCH) as it draws a constant power rate for all throughput rates. LTE
varies the power drain when in Continuous Reception state, depending on the
throughput saving a tremendous amount of energy. Although LTE has got two tail
states, Short DRX and Long DRX, which stay at a higher base power rate until it
changes to Idle state. The study concludes, because of Long DRX tail, the over
energy consumption of LTE is much greater.

2.4 Mobile Task Offloading
The poor battery, storage capacity and the computational power are the main con-
stituents of mobile devices that insinuate the need of cloud technology for portable
devices, due to the ”portability” of hardware, which is the essence of mobile de-
vices.

Currently, the main complication with mobile devices is the high energy con-
sumption. So one of the advantages of outsourcing the processing power is that
it may save energy of the mobile device, depending on other attributes such as
wireless bandwidth, the degree of communication intensiveness of the applica-
tion, processing power of the mobile device and the leased processing power in
the cloud. Kumar et al. [1] show what affects the power consumption of mobile
devices, and if offloading may save battery life of the mobile devices. Offloading
should happen only when it is beneficial to the mobile application. Such that,
the tasks should be offloaded to the cloud, only if the data transmission cost and
the energy that cost on the mobile device while it stays idle when cloud executes

16

offloaded tasks are less than the cost when the tasks are executed locally.
In two previous studies on offloading algorithms, bandwidth was the only net-

work parameters considered [1] [47], and does not estimate the latency of the
wireless network as it affects the QoS of the mobile applications directly when
offloading data to the cloud. Furthermore, the Kumar et al. [1] assume that the
power consumption while sending and receiving data is same but [48] shows that
wireless network interfaces have a complex range of behaviours. Hence when
designing energy-aware compute offloading techniques or protocols, more factors
has to be taken into consideration, such as packet size and the number of broad-
casts and point-to-point traffic.

Yonggang Wen et al.[49] propose an Energy-Optimal mobile application exe-
cution method while in cooperating a cloud clone, a VM that resides in the Cloud.
With numerical results, Yonggang Wen et al. investigate how the energy of the
mobile device may be reduced by optimising the energy use of the application
when executing on the mobile device and also when the tasks are offloaded to the
clone when it is less efficient to execute it on the mobile device. The results show
that the execution policy depends on the application model, which is the input
data size of the application with the completion deadline, and the wireless trans-
mission model. The energy of the mobile device is optimised by scheduling the
clock frequency via ”Dynamic Voltage Scaling”[50] as it has been observed that
the clock frequency of the CPU approximately linearly proportional to the voltage
supply. Then when the tasks are offloaded to the cloud, the data transmission en-
ergy is optimised by optimally changing the data transmission rate via a stochastic
wireless channel. Moreover above optimisation methods are formulated as a con-
strained optimisation problem by introducing an application completion deadline.
Although the wireless channel models that are used for the formulation, with only
two channel states ”good” and ”bad”, lacks granular knowledge of the wireless
channel state.

Lin et al. proposed a context-aware algorithm that uses historical log records
to determine whether to offload tasks or not [45]. The offloading algorithm consid-
ers the user location at a certain time of day when tasks are offloaded for remote
execution. A task is offloaded if the energy consumption of the mobile device
when the task was previously offloaded is lower than when it was executed lo-
cally for the same time of day and the same geographic location. This approach
relies on historical records that might not be valid for present conditions and could
lead to inaccurate offloading decisions.

Kovachev et al. addressed adaptive computation offloading as an optimisation
problem using integer liner programming [51]. This approach considers available

17

memory and CPU and energy usage as the criteria for offloading. The algorithm
dynamically chooses what services to offload by solving a new optimisation prob-
lem each time parameters such as the available bandwidth and memory change in
the model. The offloading decision model of Wu et al. takes network unavailabil-
ity into consideration [52]. The model uses an application partitioning algorithm,
and an offloading decision module intelligently decides on whether to offload by
considering the network availability for remote execution. The CRoSS algorithm
also selects the best host for offloading according to the link cost [53]. The link
cost includes both the link failure rate and the bidirectional transmission rate.

At times the user may have connectivity to more than one wireless network, it
is possible that the mobile device is in reach of cloudlet at each network. On these
occasions, the mobile device may decide whether to use both cloudlets to offload
or to offload only to just one cloudlet. For example, there may be some cases
where the connected cloudlet is not resourceful enough to finish the offloaded
jobs/code while meeting the deadlines. So the mobile device may decide to of-
fload code simultaneously to two different cloudlets but by using two different
wireless networks. i.e., using WiFi-based cloudlet and cellular base station based
cloudlet synchronously to offload different sets of code. There are some previous
work[54] on multi-site offloading, but they only consider finding a solution to the
partitioning problem as a graph partitioning problem.

2.5 Cloud Resource Management
In the proposed architecture, the computationally intensive tasks are offloaded
from the UE to be executed by the computing cloud that is placed alongside the
BBU pool. Once, the mobile cloud controller accepts the offloading requests, fol-
lowing a predefined scheduling algorithm/scheme, the task scheduler that resides
in the mobile cloud controller may distribute the received tasks to correspond-
ing clones in the cloud. Once a clone receives the scheduled offloaded tasks, it
needs to execute the tasks while meeting Service Layer Agreement (SLA)/ Ser-
vice level Objective requirements. Due to over time changing workload demands
(e.g. Slashdot effect [55]), the cloud services should be able to adjust seamlessly
to the exigencies exploiting elasticity, one of the key characteristics of cloud com-
puting. Auto-scaling includes automated resource scaling techniques for spike
workloads, since many web applications face unplanned large fluctuating loads,
as elasticity in the cloud allows users to acquire and release resources dynamically
in real time. How self-aware auto-scaling may benifit service providers has been

18

discussed in [56].
In the remaining part of this section, the author categorises existing auto-

scaling approaches based on auto-scaling methodologies that have been used in
existing literature. Such auto-scaling methodologies may utilise, thresholds, re-
inforcement learning techniques (e.g. control theory, neural networks) or time
series analysis based approaches. Furthermore, the above may also be used by
combining more than one method (e.g. thresholds for immediate changes and
reinforcement learning for long term changes), as well as on their own, for both
reactive and proactive approaches.

The threshold-based approach is classified as a reactive scaling approach; wich
is one of widely used auto scaling category among cloud service providers such
as Amazon EC2 [57] [58]. Threshold-based auto scaling is a very scalable and
straightforward scaling techniquethat may easily manage the amount of resources
assigned to an application, while performing auto scaling, by comparing the input
demand with predefined scaling rules [59] [60] [61] [62]. When a threshold based
scaling approach is used, the targetted VMs will be scaled according to a set of
predefined rules. These rules may use one or more performance metric, e.g. CPU
load, average number of requests and average response time. Moreover, the es-
sential elements of threshold-based approach are the performance parameters that
the rules use. Such performance parameters should be carefully set by the user, or
multiple parameters, in cases where logical combinations of parameters are used.

In literature, the most commonly used parameters are, the upper and lower
thresholds. The upper defines the highest limit, where when reached an action is
a trigger for scaling the VM up. Similarly, the lower defines the lowest limit, when
reached the VM will be downscaled. Furthermore, each threshold may also have
a set time duration to define how long the condition must be met before an action
on the targetted VM is triggered (e.g., scale up or scale down). Dutreilh et al. also
propose that aforementioned thresholds should be correctly selected and carefully
fine tuned to avoid such oscillations in cloud systems. Therefore, one may also
have a cooldown period, inertia or calm down period; that is defined per each
threshold, a time during which no scaling actions should be carried out, to avoid
VM scaling oscillations in the system. The cooldown time prevents continuously
allocating resources while the new VMs are created (horizontal scaling) or new
resources are added to existing VMs (vertical scaling), or continuously reacting to
fluctuating trends of the performance metrics depriving extra cloud resources and
energy.

The most widely used performance metrics are CPU load of the VMs, the input
request rate and the application response time. The threshold rules are typically

19

based on one performance metric (e.g. application response time), or at most two.
Both Han et al. [61] and Dutreilh et al. [59] have used the average response time
of the application when making auto-scaling decisions. Despite the convention,
Hasan et al. have used three types of performance metrics from three different
domains. Moreover, while other auto scaling techniques use each performance
metric in isolation, Hasan et al. have considered a correlation of performance
metrics in multiple domains. For example, instead of VMs are scaled based on
CPU utilisation independently, the VMs are scaled, when the CPU load and the
response time have increased above their thresholds.

Mao et al. [63] consider both user performance requirements and budget con-
siders of the user when setting autoscaling rules. The auto scaling strategy dy-
namically allocates and deallocates VMs and scheduling tasks on the most cost-
efficient instance. The solution chooses a scheduling plan which determines the
instance type for each running task at a given time. Then a scaling scheme, in
which it determines the number of instances of each instance type to be allocated
for the task.

Although current work in literature may select one or more performance met-
ric, often they choose two thresholds per performance metric at most. Contrasting
from others work, Hasan et al. [62] have employed four thresholds per one perfor-
mance metric for making scaling decisions, namely they are ThrU, ThrbU, ThroL,
ThrL. ThrU is the highest upper bound, and ThrbU is the second upper bound that
is below the ThrU. Likewise, ThrL is the lowest lower bound and ThroL is the
second lower bound which is slightly above the ThrL. Independent and dissimilar
time durations have been used for both ThrU/ThrL and ThrbU/ThroL threshold
sets. The Hasan et al. have shown that the proposed four parameter approach is
better when it comes to tracking trends of the selected performance metric. It has
then proven to help make finer auto-scaling decisions, than when used only the
common upper and lower thresholds.

As an extend to the conventional reactive rule-based approach to threshold
based auto scaling policies, the auto-scaling algorithm of RightScale [64] intro-
duces a democratic voting system, such that scale up and down actions are ex-
ecuted, only if the majority of the VMs vote to do so. Each VM make their
decisions to scale up or down based on a set of predefined rules. Similarly to the
conventional approach, once a scaling action has been carried out, a cool down pe-
riod (recommended 15-minute time slot) will be spent, where no scaling actions
are allowed.

Threshold-based auto scaling combined with democratic voting also adopted
by [65] [66] [67] [61]. Moreover, Chieu et al. [67] use some active application

20

sessions as the performance metric, and threshold-based rules are created accord-
ingly. In their later work, the former work has been extended by proposing a
voting based auto scaling method. If the number of active sessions of all the in-
stances is above the upper threshold, then a new instance is instantiated. If the
number of active session of all the instances are below the lower threshold, then
at least one instance that has no active sessions will be terminated.

Kupferman et al. [66] compare RightScales voting based auto scaling ap-
proach with other algorithms. It concludes that the RightScale’s algorithm is
sensitive to the variations/characteristics of the workload because the threshold
values are set up manually by the users. This dependability also means, at a given
time the values are set to conform only to one type of workload pattern and may
underperform for workloads that have different characteristics other than for the
one that they are set. This issue has been further studied in [65], and it proposes
an approach for overcoming the issue. Simmons et al. use a strategy tree for
switching between alternative strategies hierarchically over time, by evaluating
the deployed policy set. Simmons et al. create ”elasticity policies” to accustom
to input workloads that have different characteristics. I.e., the strategy tree would
switch between three custom policies based on the observed workload trends. All
above-scaling approaches kill instances once the lower thresholds are reached, but
note that most common cloud pricing models charge hourly, hence may experi-
ence cost inefficiencies, as when a VM is terminated early, the client will still be
charged the full hour price. Smart kill [66] saves costs by halting instance termi-
nating (killing) actions until it completes the charged hour, even though the VM
load is low.

Another threshold based auto scaling scheme [68] has been designed for scal-
ing resources of PaaS cloud services while meeting application performance needs
and SLAs. The algorithm takes, CPU, memory and heap usage of applications
when making scaling decisions. The implementation is designed for the IBM
Bluemix PaaS cloud service.

All mentioned above threshold parameters are statically set, and the user inter-
ventions are required for tuning the parameter values to match the rapidly chang-
ing workload patterns. Lim et al. [69] dynamically allocates threshold parameters
with the help of an integral controller. Beloglazov et al. [70] propose an adaptive
threshold-based approach, where the threshold values are dynamically adjusted
based on the CPU utilisation of each VM. The CPU utilisations of all VMs which
are allocated to a host are collected. Then Beloglazov et al. determine the proba-
bility distribution of the host CPU utilisation (sum of CPU utilisations of all hosted
VM), from which they calculate an interval of the CPU utilisation that is reached

21

with a low probability. Thereafter, the thresholds are set dynamically based on the
calculated CPU utilisation interval.

Similarly, Liao et al. [71] focuse on changing the thresholds dynamically
while increasing application response time and reducing VM running time and
error rate. The thresholds are dynamically adjusted depending on loads of all
other virtual machines serving the same application. If the workloads of over
50% of all VMs are raising, then the upper threshold is lowered proportionally
by 0.5%. For fast resource dissemination to the application. Similarly, if the
workloads of more than 50% of the VMs is high, while the overall workload still
alleviated, the upper threshold is raised moderately to avoid large oscillations in
the upper limit, resulting in lower cost. This strategy reduces the oscillations of
the auto scaling system, albeit it allocates more resources to the application when
the overall workload of the application is high, while it allocates less when the
overall workload of the application is little.

Contrary to threshold based approach, Reinforcement Learning (RL) is an-
other category of techniques that have been employed to solve the auto scaling
problem in the cloud. It may also be used to make auto-scaling decisions in real-
time by performing actions (e.g. scale up and scale down), depending on the
current state of the environment (e.g. input workload and other performance met-
rics) while trying to maximise a reward (e.g. reduced energy, application response
time etc.).

Dutreilh et al. [72] scale cloud resources horizontally based on the average
application response time, while a realistic upper bound value has been chosen
based on traces gathered by experimental results. Whereas, Jia et al. [73] con-
sider the CPU and memory usage per each VM as the state of the environment
when performing vertical scaling. One may define adding, removing or main-
taining a set number of VMs, for horizontal scaling, or adding, eliminating the
amount of allocated CPU and memory resources of a VM, when vertical scaling,
as other possible actions that may be used for RL. The reward function may take,
the resource cost, the cost of renting the VMs for the given period and the used
network bandwidth, and/or the SLA/SLO violation costs into account [74] [72]
[73].

Although, there have been many works on the use of RL in cloud auto-scaling,
many issues of the approach have been reported. Even though learning seems a
promising technique, it comes with a price. The price being a long time that it
takes for the learning period, also known as the training period. To solve this
issue with the initial bad performance, [72] updates the value for all states at each
iteration, using an initial approximation for the Q-function. This technique has

22

shown to shorten some steps to convergence to an optimal solution. While [73]
uses a policy that visits many states at each step, Barrett et al. [74] employ parallel
learning agents, for reducing the initial training period. The parallel agents learn
the values of non-visited states from neighbouring agents, without needing to visit
each and every state and action. Moreover, alternate methods could deploy, where
the RL models are trained offline on pre-collected data, for improving the poor
inherited performances of online training procedures.

Neural networks, support vector machines, regression splines and trees, are
some of many solutions to the curse of dimensionality problem, the large state-
space problem, which is a known issue in RL. The existing work on neural net-
works [75] [73], takes state and action pairs as input, then outputs the approxi-
mated outcome, while also predicting the values for the states which are not vis-
ited. Rather than using lookup tables that are used in above solutions, nonlinear
function approximators may be used, replacing lookup tables.

Queuing theory has been used to solve auto scaling problems in many in-
stances in literature. A model [76] has been used for estimating the necessary
resource required for a given input load and for the mean response time of re-
quests, for a variable number of servers. Afterwards, similar types of information
have been used to solve optimisation problems [77] or as a predictive controller
[76]. Multiple queues have been used in number of occasions in literature, when
formulating multi-server and single application (single application tier) scenarios
[77] [75], due to limitations that other works have shown, which use single queu-
ing models. However, some work have adopted queuing networks to formulate
multi-tier applications [78] [79]. Furthermore, Tesauro et al. [75] considered both
open and closed-loop models, by using Mean Value Analysis (MVA) [80] formu-
lation when modeling mean response time of an application. By using a real trace
of an e-commerce system, Villela et al. [77] model the arrival processes to a cloud
application. The analysis of the trace has shown that it follows a Poisson process.

Queuing networks have also been used for multi-tier applications by consid-
ering queue per server, and queue per tier, in [78] and [79] respectively. In [78]
Urgaonkar et al. predict the peak workload and the number of servers needed
on each tier to satisfy the demand. Histograms have been used for determining
prediction, and they further improve the solution by using reactive methods. Due
to provisioning is done for peak loads, it results in under utilisation of resources.
In [79] employs a closed system with a network of queues for a finite number of
users, and the model is solved by using the MVA [80].

The previous work requires various information as input to the queuing model,
such as the number of requests, transactions, service time etc. Such information

23

may be obtained by online monitoring [78] or by using estimating techniques such
as regression based approximation [79].

Harold et al. [69] [81] does horizontal scaling by adjusting the number of ac-
tive VMs, by taking the average CPU as the performance metric using an integral
controller. Similarly, [82] uses a Proportional-Integral (PI) controller for control-
ling the resources based on the execution progress of batch jobs. In the formula
of the PI controller, the parameter for the ratio of output response to the error in
the previous cycle, and the throttling parameter that determines the accumulated
errors in previous cycles may manually set based on trial and error [69] or using a
theoretical model [82]. There have been many works on adaptive controllers [76]
[83] [84] [85].

The Multiple Input Multiple Output (MIMO) adaptive controller technique
[83] uses second-order combined moving average and autoregression techniques
to model the non-linear and time-varying relationship of normalised resource al-
location performance. Whereas, [76] combines proactive and adaptive controller
approaches when carrying out scaling down actions with dynamic gain parameters
based on input workload while using a reactive controller for scaling up. Kaly-
vianaki et al. [86] determine the CPU allocation of VMs by using a Single Input
Single Output (SISO) and a MIMO controller that uses Kalman filters [87]. Bodik
et al. [85] also use a smoothing technique when conducting auto scaling.

Authors have used Fuzzy models by providing workload values and required
scaling values, then mapped into fuzzy sets, for mapping the right resource amount
for a given workload (fuzzification). Although often such fuzzy sets are fixed and
non-adaptive, [88] and [89] propose fuzzy controllers that repeatedly update their
fuzzy model based on the online monitored information. The former has applied
this method to estimate the required CPU load for the input load. The latter fol-
lows with the focus on the database tier of applications while they apply the same
adaptive fuzzy controller technique. However, they ignore the possibilities of sud-
den fluctuations of the workload levels that could occur in future/next time slots.
Wang et al. [90] propose a fuzzy predictive controller, combining fuzzy logic and
control theory. Similarly, Lama et al. [91] combine neural networks and fuzzy
controllers that may adapt its parameters through online learning.

There have been many works on auto scaling through time series analysis.
Although some used a simple moving average on the workload to capture the
trend when performing auto scaling [92], this technique has proven to be poor.
Conversely, some works have used a moving average for removing noise from
time series workload traces [82] [69]. Similarly, Huang et al. [93] employ double
exponential smoothing in their resource prediction model, and compares it with

24

simple mean and Weighted Moving Average (WMA), showing the superiority
of exponential smoothing in comparison to others, as it takes both the history
and current data into account when making predictions. However, this is further
proven by [94], by using quadratic exponential smoothing against ClarkNet [95]
and World Cup 98, with a small amount of error.

Khan et al. [96] propose a model that is based on features and core entities
of existing auto scaling techniques. A concise review of existing auto scaling
systems has been carried out for identifying common components and operations,
the parameters of which later used for designing the model. The gathered real time
series data is used to calibrate the variables of the developed model for enabling
proactive estimations of the responsiveness of the auto-scaling operations. The
model has been evaluated by using the Google cluster trace [97].

Checn et al. [98] propose a hybrid auto-scaling algorithm which uses statis-
tical methodologies such as AutoregressiveMoving-Average model (ARMA), the
Autoregressive model (AR), the Exponential Smoothing (ES) model, the Trend-
Adjusted Exponential Smoothing (TAES) model, the Moving Average (MA) model,
and the Nave model. Checn et al. have used Mean Absolute Error (MAE), Mean
Square Error (MSE) and Mean Absolute Percent Error (MAPE) when evaluating
the prediction method. They also have shown that Autoregressivemoving-average
model, the Autoregressive model and the Exponential Smoothing model have per-
formed better than the others. Reactive rules are used to correct incorrect predic-
tions that are made by the proactive model based on historical data.

An auto-scaling prediction system [99] for cloud resource provisioning that
follows a hypothesis of, prediction accuracy may be increased by time-series pre-
diction algorithms based on performance patterns. A comparison of accuracy lev-
els of time-series prediction algorithms have been carried out for different perfor-
mance patterns, to prove the hypothesis. An evaluation is conducted on Amazon
EC2 and the results show that the accuracy of Support Vector Machine (SVM)
and Neural Networks (NN) time-series prediction techniques depends on the in-
coming workload pattern. Nikravesh et al. propose a self-adaptive prediction
system, which chooses the most suitable prediction method dynamically based on
the workload profile.

A prediction-based proactive approach [100] that uses the data that is being
produced by itself to make auto-scaling decisions. The autoscaling operations are
triggered according to the changes in the public sentiments about soccer players
that have identified to affect the cloud workload, which happens just before work-
load bursts. The proposed algorithm is able to predict peaks and prevent SLA
violations.

25

Roy et al. [101] use second order Auto-Regressive Moving Average (ARMA)
for predicting the workload levels. They first predict the value based on the last
three observations; it is then used to estimate the response time. However, there
have been number of work that have used autoregression for auto-scaling in liter-
ature [66] [102] [92] [103] [104]. When Kupferman et al. [66] applied first order
auto regression to predict the request rate. Then they found that the performance
of which was largely influenced by the user defined parameters. The history win-
dow (the monitoring window) resolved the degree of sensitivity of the algorithm
to local trends. Conversely, the size of the adaptation window of the algorithm
determined how far into the future the prediction extends. The aforementioned
history window values have been then fed into a neural network by Sadeka et al.
[105]. Similarly, in [66] [85] [105] history window values have been used incon-
junction with multiple linear regression equations. Kupferman et al. [66] further
explain the necessity of balancing the size of each sample in the window to avoid
over-reactions, while maintaining a good level of sensitivity to workload fluctu-
ations. However, using a mean of all predictions after regressing over windows
of different sizes has proven to improve the performance. Also [105] was able to
obtain better results when more than one past value for prediction has been used.

Although, most of above are proactive solutions, time series data may also be
used with reactive approaches. A combined regression and reactive rules-based
approach have been introduced for scaling up by Iqbal et al. [106]. For scaling
down, they use a regression-based approach. Regression of degree two has been
used to calculate the number of application-tier and database-tier instances, after
a fixed number of intervals in which the response time is satisfactory. While time
series forecasting has been the focus of a vast number of papers in literature, the
interest of some work diverted towards identifying patterns in the input workloads
[107] [108] [92] [109]. A simple approach is based on histograms; that consider
the mean of the distribution [103], or the mean of the bin with highest frequency
[92]. Gong et al. [92] have provided a comparison of such pattern recognition
techniques, while showing that Fast Fourier Transform (FFT) based approach per-
form well when identifying patterns in workload traces of for CPU, I/O, memory
and network resources. The approach proposed by Caron et al. [108] [107] has
proven that the number of parameters in the algorithm, affect the performance of
the algorithm and the time needed to iterate through the past traces.

Amazon EC2 provides an auction-like service to buy VMs while occupying
idle capacity, i.e., spot instances. It is shown to be cost-effective to employ spot
instances for fault-tolerant applications, they are not recommended to be used for
time critical and fault-intolerant applications, as the VMs may be terminated by

26

the provider when the market price increase than the bid price. The proposed
method by [110] uses a spot mode which utilises spot instances and on-demand
mode which employ traditional on-demand VMs interchangeably.

A broker based approach has been proposed [111], for multi-cloud resource
orchestration and allocation. Based on various parameters such as QoS, poli-
cies, regulations and cost, it allows workload provisioning and resource allocation
over heterogeneous clouds service providers. It is also able to carry out auto
scaling of the allocated resources based on the workload patterns. Biran et al.
have developed a prototype to demonstrate the benefits of the proposed system.
The implemented auto-scaling algorithm employs a threshold rule based scaling
methodology.

Coninck et al. [112] investigate how to automate the dynamic provisioning
of resources on private and public clouds to increase the number of successful
requests that meet their deadlines. The jobs and the resources needed for the
job to complete are scheduled over time on both private and public clouds. A
knowledge model is created to accurately predict the behaviour of future jobs of
the same type, by using past execution times of the jobs.

HAVEN system [113] approach the scaling problem by combining load bal-
ancing and cloud auto-scaling. Load balancing is carried out in the network Open
Systems Interconnection model (OSI) layer 4, directing incoming TCP connec-
tions to a pool of cloud servers while balancing the load. HAVEN follows a
threshold based auto scaling approach that uses a calculated score based on the
bandwidth, CPU and memory utilisations of the virtual servers, as the perfor-
mance metric. Poddar et al. highlight the importance of designing auto scaling
system in conjunction with the load balancer, as when horizontal scaling, the load
balancer needs to be notified, to add the new VM to the load balancer when scaling
up, and to remove a VM from the load balancer when scaling down.

A proactive auto scaling scheme has been proposed [114], and that predicts
the number of web requests, for which an optimal cloud resource demand is cal-
culated with cost-latency trade-off in mind. Depending on the estimated resource
demand, the scheme makes a resource scaling decision. The algorithm includes
an operation, called No Operation (NOP) when decided no operations are carried
out. The algorithm has been evaluated on Amazon cloud platform using real web
log traces. The proposed scheme proven to achieve resource scaling with optimal
cost-latency trade-off, with low SLA violations.

Campos et al. [115] present a Markov chain model for parametric sensitivity
analysis. The analysis is to help system administrators set auto scaling configura-
tions efficiently in private clouds while prioritising certain parameters.

27

The security issues of auto-scaling techniques have been studied by Mor et
al. [116], in which they demonstrate the attacks and their effects by emulating an
Economic Denial of Sustainability (EDOS) [117] attack, on Amazon EC2 virtual
machines. Mor et al. have further stressed that such attacks impact the cost of
service and the response time of standard users.

Ahn et al. [118] carry out the first study that approaches auto scaling problem
for real-time healthcare applications, that process and compress gathered signals
in the cloud, once received from sensors of a health care system. However, the
focuses on existing work on auto scaling algorithms have been only for delay
tolerant, and best effort applications. Moreover, existing work does not take the
VM creation time delay into consideration in their auto-scaling algorithms. Ahn
et al. incorporate a prediction mechanisms to predict future workloads and create
a hierarchy of child VMs, prior to workload fluctuations. Once new child VMs
are created, then extra workloads are shifted to new VMs. The system predicts
if the workloads may be served while meeting the task deadlines since in real-
time systems meeting the task deadlines is more important than saving computing
resources. The proposed mechanism has been evaluated using Amazon EC2 and
proven to be effective.

All previous work on auto scaling techniques is designed keeping only the
best effort cloud applications in mind. In contrary, with the recent advancements
Ahn et al. [118] utilises cloud computing for mobile Real-Time Applications
(RTA). To handle time sensitive and mission critical nature of mobile medical
systems, Ahn et al. propose a hierarchical horizontal auto-scaling architecture
with a proactive algorithm based on future medical sensor workloads, for achiev-
ing seamless auto scaling while meeting critical hard deadlines. This work is the
first to address the auto scaling problem for sensor-based RTAs that also processes
deadline-critical real-time data generated by medical devices. Likewise, later on
other works have adressed auto scaling issues in RTAs [119] [120] [121] [122]
[123] providing solutions for horizontal auto-scaling using various reactive and
proactive techniques.

28

Chapter 3

Architecture and Protocol

3.1 Introduction
The past few years have witnessed a rapid shift in computing from the desktop
to the cloud. To keep pace with advances in both wireless network technologies
and mobile smartphones, there is an increasing need for the provision of cloud
services to mobile users via mobile wireless networks. This new research field is
called mobile cloud computing (MCC) [124] [23] [5] [7] [125] [126]. As mobile
devices, even modern smartphones, are constrained in size and weight, their re-
sources for computation and communication are limited compared to their desktop
counterparts [127]. Therefore, it is beneficial to offload heavy mobile applications
to more powerful machines in the cloud. Computing and service delivery are pos-
sible because of the advanced sensors built into most mobile phones currently on
the market; these sensors include accelerometers, magnetometers, GPS chips, gy-
roscopes, and pressure sensors. The more sensors a device has, the more data need
to be analysed in various domains at the same time, which accentuates the need
for more computational power. One critical issue in MCC is how battery power
for mobile devices may be spared [128]. One effective approach is to offload
some tasks from the mobile device to a remote cloud server for execution. This
may also potentially reduce the task execution time because of the power of cloud
servers. Kumar and Lu investigated the power consumption of mobile devices, in-
cluding whether offloading may increase battery life [1]. Offloading should only
occur when it is beneficial to the mobile application. Thus, tasks should only be
offloaded to the cloud if the sum of the data transmission cost and the energy cost
is smaller than when the tasks are executed locally on the mobile device.

29

Providing a reliable infrastructure for delivering network services to the end
users has been the primary purpose of the Mobile Network Operators (MNOs)
today. Can the operators help to improve the user experience and the services that
are delivered to the users, except making the content delivery faster and reliable
without making many changes to the existing infrastructure? Furthermore, opera-
tors are interested providing customers with additional services and performance
enhancements other than a faster mobile network connection for attracting more
customers. Mobile cloud computing enables the network operator to go beyond
just a pipe provider. They may have a platform that could allow other service
providers to build up services on top of it.

In this chapter, the author designs a novel system architecture for mobile
clouds with a local controller that manages newly introduced computing resources
in mobile operators network, as shown in Figure 3.3. The controller takes a simi-
lar role to previously proposed SDN like controllers [16] [17], although the south-
bound interfaces interact with the mobile cloud and the C-RAN wireless infras-
tructures that are co-located. This enables the resource management algorithms
to manage both computing and communication resources cooperatively/jointly.
Moreover, this chapter presents a novel design of an intra-cloud protocol for com-
puting offloading and for allocating/managing resources in mobile clouds.

3.2 System Architecture
The author introduces a mobile cloud in to future radio access networks as de-
picted in Figure 3.1, specifically for the C-RAN deployment approach. The mo-
bile cloud is placed next to the pool of Base Band Units (BBU). One of the de-
sign goals of such approach is that to enable joint and cooperative resource man-
agement between the BBU pool and the mobile cloud. Therefore, a centralised
controller for making resource management decisions based on both computing
and communication resources has been introduced. The Section 3.3 describes the
components of the mobile cloud controller in detail. The author also proposes that
all inbound and outbound traffic would be routed through the mobile cloud so that
the users may better benefit from resources that the mobile cloud has. The dotted
lines in Figure 3.1 show the connectivity from the mobile cloud controller to the
BBU pool and the mobile cloud.

In the conventional cloud service scenarios, one VM may serve many users
i.e., different VMs may host various services. However, the notion of Clone that
is introduced in [5] [24] [26], where one VM is dedicated only for one user, has

30

Internet

Remote
Cloud

Cloud-RAN

Controller

EPC

Mobile
Cloud

Mobile
Cloud

Software
BBU Pool

Figure 3.1: Overview of the architecture, showing the interaction between, Mo-
bile device and mobile cloud and C-RAN.

been extended in this work. Therefore, the user data and application data may be
stored locally on each user’s clone. Moreover, in Section 3.4 multi-user clone to
clone communication scenarios have been introduced. In the rest of the thesis, the
author refers to user’s dedicated VM in the mobile cloud as ”Clone”.

3.2.1 Benefits
Benefits for the User

There are multiple aspects of the proposed architecture that benefit the end-user.
Due to centralised resource management and newly introduced computing re-
sources in the operator’s network, the users do not have to request or subscribe
to multiple services at the same time. For example, a mobile network operator
may provide computational resources with its mobile network service for the sub-
scribers.

The users may observe that their mobile devices may perform computational
tasks much faster when it is connected, than when it was not (when computa-
tionally intensive tasks are offloaded as described in Section 3.5). Moreover, the
mobile applications and the operating systems may become faster and efficient

31

while also increasing the Quality of Experience (QoE). The application develop-
ers will take network parameters into account when developing applications for
devices in mobile cloud computing environments. For executing applications in
a mobile computing environment, network information will be important due to
the unavoidable code transferring and receiving time. Henceforth, the applica-
tions will be aware of the network parameters such as bandwidth, delay, signal
strength, the location in the network that computational resources are placed in,
and the size of the computing resource.

As a case in point, one may imagine that there are two mobile network opera-
tors, which have the same network bandwidth and latency when accessing the in-
ternet, called A and B. The only difference between the two is, A is a conventional
MNO and does not have proposed architecture deployed, but B has deployed the
proposed architecture. If there is a mobile user that may connect to both networks,
when the user connects to A, he may get access to the internet just like any other
network that exists in present day. Although, when the user connects to B, he
is not only able to surf the internet faster, but in the background the computing
capacity of his mobile device has also elevated, consequently improving the user
experience. Such increase of computing capacity of the connected devices will not
only help perform networking operations even faster but most importantly it will
also improve the performance of the mobile operating systems and other installed
applications, as a result of task offloading and centralised resource management.

Benefits for the Service Provider

Network and computational resources will be jointly and cooperatively managed
to optimise the performance of networks and computing services. As an instance,
one approach is to jointly allocate computation and network resources, while ex-
ploiting computing and network transmission trade-off shown in Equation 3.1,
when computational tasks are offloaded to the network [1] . Where, T is the time
takes to execute a task, while D − S amount of data is transferred with a r bitrate
to the cloud, for executing F number of instructions in f speed. The set of data D
is required to execute the given task, while some parts of that data S might already
exist in the network (on the clone). The objective of the resource allocation algo-
rithm may vary; more computational resources f may be allocated for the benefit
of the network or more network resources r for the benefit of the computational
resources in the network.

32

C1 C2

C3

S1 S2
S1 S2S1 S2

Resource Group

Resource Group

Resource Group

Management
Plane

Services
Plane

Figure 3.2: Management and service planes

T =
D − S
r

+
F

f
(3.1)

Accordingly, the subscribers’ QoE will be increased, as a result of utilised
computing resources made available by the network. Subscribers will notice a
significant improvement, in application performance of their devices locally, while
they are connected to the operator’s network. Online gaming is one application
that could benefit from the proposed architecture.

The newly introduced computing resources may introduce new types of ser-
vices. Such improved services and new types of services may lead to new price
plans for the users. There, also will be a change in the current business model of
the network service providers. Instead of the subscribers having to subscribe for
computing services from different service providers, the computational resources
that are built into the network will allow the network service providers to offer
computing services to the end-users. Those above will lead to better price plans
that increase revenue for the service providers while also increasing the user ex-
perience for the end users that may attract more customers.

3.3 Mobile Cloud Controller
Mobile cloud service providers may offer one or more services for the end users,
which will primarily be computing and communication services. The services

33

and resources will be managed and tailored to match subscription plans of the
users, while also managing resources efficiently among all the system-wide users.
As shown in Figure 3.1, for scenarios where computing resources are distributed
across multiple regions in future networks, the controllers will manage services
and resources that are meant to be served for a particular group of users, whether
if its users within a specific geographical are or a specific organisation.

As shown in the Figure 3.2, each controllers C1 through C3, manages resource
groups (S1, S2) that each controller governs. For example, controller C1 manages
two resource types S1 and S2. In the mobile cloud computing scenario, they could
be computing and communication resources. The management plane consists of
connected neighbouring controllers for supporting mobility, and the connectivity
between other controllers via the backhaul networks, providing scalability (ac-
cess to larger computing resources in core cloud). The service plane consists of
networks, of various types of resources that interconnect, for cooperatively or/and
jointly managing and sharing resources. Furthermore, the author envisions that the
mobile cloud, base station and the controller will be integrated into one entity in
future. For vertical interactions between the local controller C1 and its resources
and services (i.e. S1, S2) intra-cloud protocols has to be designed. Likewise,
horizontal communication scenarios are two-fold. In the services plane, for in-
tercommunications of the neighbour mobile clouds, and for intercommunications
between the computing resources at the edge of the network and computing clouds
in core networks or in the Internet (the scenario in Chapter 4), needs Inter-cloud
protocols. In the management plane, for intercommunications of the neighbouring
local controllers, and for intercommunications of the local controllers and central
controllers, inter-controller protocols have to be designed.

The BBU pool is connected to the mobile cloud with a high bandwidth, low la-
tency transport network. The mobile cloud consists of multiple Physical Machines
(PMs) that host clones. The PMs are also interconnected with a high bandwidth,
low latency networks. The newly introduced computing resources at the edge of
the wireless access networks require global knowledge of both communication
and computing resources for efficient utilisation of the network and communica-
tion resources. A mobile cloud controller is introduced for continuous resource
monitoring and management of resources within one base station. The controllers
of neighbouring cells/base stations will be interconnected for efficient inter-cell
and inter-cloud resource management. In specific scenarios, the mobile cloud
controller may also be connected to a central cloud where resources will be leased
when the mobile cloud computing resources are not sufficient (i.e. the scenario in
Chapter 4), although designing such iter-cloud protocols is not within the scope

34

PM
RRH

Mobile Cloud

Clone

Communication
Manager

Resource
Monitor

Compute
Manager

Resource Allocation Algorithm

Mobile Cloud Controller

UE

BBU Pool

RRH

Figure 3.3: Mobile Cloud Controller

of this chapter.
The mobile cloud controller is used for combined communication and com-

puting service provisioning, SLA management, service lifecycle management and
monitoring in both communication and computing sides. In Figure 3.3 the dashed
lines represent monitoring data flows, and the resource allocation control streams
are shown in colour red. The resource monitoring and analytical modules in the
controller receive the monitoring information of both radio and clone resources.
The communication manager performs radio resource management tasks on the
mobile network, while the compute manager manages the mobile cloud. How-
ever, the work on this thesis primarily focus on the Compute Manager as seen
in Chapter 5 and the Resource Monitor as may be seen in Chapter 6. Therefore,
the proposed protocol also has been designed predominantly around the compute
manager, and additional functional designs and implementations will be carried
out in future work.

3.3.1 Mobile Device
The UE is the initiator of the offloading sessions and acts upon control messages
that it gets from the controller and the mobile cloud during offloading sessions.
One offloading session may include more than one offloading tasks. An offloading
session is identified by the offload start request that is sent by the Offload Initia-
tor, and once the UE finishes offloading it sends another control message to the

35

controller indicating that it has finished offloading. Such messages will be sent
by the offloading framework that resides in the UE after it has decided to offload
to the mobile cloud. Once, the controller has created a clone for the UE, the UE
connects to the offloading framework in the clone for offloading the code. The
clone receives code from the server side of the offloading framework, executes
them in the clone and sends the results back. If the code is not offloaded to the
mobile cloud, it will be executed locally on the mobile device by the the local
mobile code executer.

3.3.2 BBU Pool
It is assumed that the controller is able to acquire and send real-time monitor-
ing information from the base station via a dedicated high bandwidth network.
The BBUs and the mobile cloud accept control messages that it receives from
its controller for allocating resources, then subsequent error or acknowledgement
messages will be sent back.

3.3.3 Mobile Cloud
The mobile cloud is composed of powerful computing servers that are managed
by a cloud computing framework. It is able to manage and dynamically deploy
virtual and physical resources within the cloud. Virtual machines will be created
as they are demanded by the controller, virtual networks for interconnecting vir-
tual machines and for making them available to their assigned UEs and to the EPC
(Evolved Packet Core) via the E-UTRAN. All aforementioned resource allocation
tasks are carried out by the resource managers in the controller, by utilising Ap-
plication Programming Interfaces (API). The Resource Monitor is able to acquire
real-time utilisation information of the cloud.

3.4 The clone and communication offloading
Device to device communication enables direct communication between two de-
vices in the same vicinity, using existing cellular spectrum. However, with a clone
in place all communications does not have to happen directly from one device to
the other. Since, all users have their own clones, when one has to send data to an-
other, the senders clone may transfer the data to the receivers clone assuming that

36

sender has already got the sending data in the clone. This is turning D2D com-
munication to D2C (Device to Clone). An example of this could be mobile social
networks where users (i.e., UE) store their user-generated content (UGC) on their
clones rather than on a centralised server (like Facebook). Current social networks
are centralised which has data privacy concerns. Mobile social networks enabled
by clones store content on content owners clone. When it comes to sharing the
stored data between users using D2D communication, the clones may come into
play and convert D2D into a D2C communication. The author considers three
scenarios below.

1. One sender - One receiver.

Sender’s clone

Sender
Receiver’s clones

Receiver

Figure 3.4: One sender - One receiver

In this scenario, user A (sender) may upload its some data (content) that
is intended to be shared with others in the future to it’s dedicated clone.
User B (receiver) is interested in what user A has got, so he goes ahead and
requests user A’s content. Once a connection has been established between
the user A and B for sharing requested data, user A sends the requested
content to user B’s clone. Finally, the user B receives the requested content
from its clone. When considering this scenario, there are not many benefits
for the network operators nor the users. The reason being is that similarly to
the D2D communication scenario wireless spectrum has been used ones to
upload the data and also again to download the data at the receiving end. It
is only when the sender needs to send the same content more than one time
the cellular spectrum may be saved. Because the receiver’s clone may get

37

the content from the sender’s clone without the sender having to re-upload
content to his clone, assuming that the sending clone has still got all content
still stored by the time the second receiving user requests for content as
shown in Figure 3.4.

2. One sender - many receives same content to their own clone at the same
time.

Sender’s clone

Sender
Receiver’s clones

Receivers

Figure 3.5: One sender - many receives same content to their own clone at the
same time.

The user A (sender) A has got something that many other users are inter-
ested in. All interested users request for the same content from the user
A. Once the receivers have established connections with user A to receive
data. The sender uploads the content to his clone. Then the sending clone
sends content to all the receiving user’s clones. In this scenario, the wireless
spectrum may be saved since the sender only uploads the content ones when
sharing the same content with many users at the same time. Whereas, in a
conventional D2D system, the sender may upload n times to send data to n
receivers. Aforementioned scenario is depicted in Figure 3.5.

3. One sender - many receives same content from the sender’s clone directly.

This scenario that is shown in Figure 3.6 is very similar to the previous
scenario in Figure 3.5, but the only difference is that the sender does not
have to send the content to receivers clones. The sender’s clone allows all
other receivers to get content directly from his clone. This scenario elements

38

Sender’s clone

Sender
Receiver’s clones

Receivers

Figure 3.6: One sender - many receives same content from the sender’s clone
directly.

the second Clone to Clone data transfer step. The benefit of this elimination
is that by reducing clone to clone communication, network traffic may be
reduced in the backhaul network in C-RAN.

3.5 Mobile Task Offloading Architecture
As described above mobile cloud computing resources could be hosted at the edge
of the network as well as on the internet in some deployment scenarios. In Chap-
ter 4, an offloading algorithm for a scenario where the offloading resources made
available from both next to wifi access points (cloudlets) as well as in the pub-
lic cloud (clones), has been proposed. Therefore, the existing offloading frame-
works have to be altered to support multiple offloading locations. For this purpose,
new updates that need to be made to the existing Thinkair [7] offloading software
framework architecture to complement the algorithm that is proposed in Chapter
4 have been proposed. The proposed task offloading architecture is built on the
Thinkair framework [7] and is shown in Figure 3.7. However, the author’s aim is
only to propose a conceptual model of the architecture. Its implementation is still
ongoing and will be finalised in future work.

A mobile clone is a VM hosted by a public cloud service provider with an
application offloading server (AOS). Every mobile device is assigned a clone in
the cloud for offloading and caching purposes. Clones may communicate with

39

other clones and with cloudlets. A cloudlet is a VM hosted by a resource-rich
machine placed next to an AP or a cellular base station. Cloudlets also hold a type
of AOS. They are interconnected using a separate network for transferring user
data.

3.5.1 Features of the proposed task offloading architecture
1. Dynamic adaptation to a changing environment In the proposed architec-

ture, the offloading framework [7] implements code migration such that the
code is offloaded to be executed remotely at the most suitable time. Two of-
floading destinations are available to the offloading framework, clones and
cloudlets, so the framework may decide Where to offload, depending on
the user’s environment. Users offloaded data are always backed up to their
dedicated clones at all times to prevent data loss.

2. Performance improvement via cloudlets and clones Offloading of code to
more resource-rich servers in cloud clones may improve the performance
of mobile devices. With the increasing bandwidth available, users expect a
faster mobile experience. The bottleneck for this is the mobile network sta-
tus, specifically the response time and available bandwidth when perform-
ing online operations. In the proposed architecture, VM-based cloudlets
[14] are deployed closer to the mobile device (at a one-hop distance) as
temporary points for code execution because the distance and the number
of hops directly affect the response time and energy consumption [129].
Users may access cloudlets via high-bandwidth WiFi networks. This may
be perceived as bringing the cloud closer to mobile devices. However, it
is considered that the clones as permanent execution points. Because it is
assumed that every mobile device has a dedicated clone for offloading.

3. Faster code execution via caching and data localisation Long-term caches
of remote code may be stored in the user-specific clone so that the mobile
device will not have to send the code to the clone when offloading and
cloudlets may download cached code from the clone to reduce mobile data
traffic.

4. Communication and Energy improvement through communication offload-
ing One of the main factors for high energy consumption is sending data
through low bandwidth networks. So that users will be able to offload com-
munication to the cloud, such that mobile user will only send control mes-

40

sages to the cloud, but data will be shared among each user’s cloud clones
by establishing secured Peer to Peer network connection. Also if there is
the desired set of data for executing a process on, that may be downloaded
from the from the internet, the clone may download it to the clone/cloudlet
without the user having to send the data all the way from the mobile device.

5. Fail-safe synchronised cloudclones/cloudlets and intelligent session hand-
overs

In the cases where the user has gone out of the range of the connected
cloudlet while in the process of offloading code, the user will not loose
the offloaded code or the data that it executed the code on, it will be able
to transfer all of the data to the mobile user’s clone without mobile user’s
involvement, or it will send data directly to the next cloudlet that the user
has connected to, if it’s more efficient to do so through the cloudlet WAN.
Also, the architecture supports multiple cloudlets per mobile device to of-
fload code at the same time so that depending on the cost and available
resources the mobile device may offload code to minimise energy and also
the service cost. Assuming there will more than one cloudlet in reach for
mobile users in the future. This allows cloudlet service providers to com-
pete with each other with competitive service costs much similar to cloud
service providers.

3.5.2 Components
This section describes component functions and their interconnections, which are
denoted by arrows in Figure 3.7. The device–clone link is shown by the dotted red
line and the device–cloudlet link by green arrows. A discussion of the modules
inherited from the Thinkair architecture is beyond the scope of this chapter. Thus,
only the new components are explained.

Cloudlet handler

When a user is in within range of a cloudlet, the cloudlet handler connects the
users mobile device to the nearest cloudlet. Cloudlets may be placed next to WiFi
APs and to cellular base stations, so the mobile device may save energy by only
turning on the WiFi interface when it is within reach of a cloudlet under the control
of the cloudlet handler. The handler queries the nearest mobile base station for

41

Figure 3.7: Proposed architecture for MCC offloading.

the nearest cloudlets. If a cloudlet is available for connection, the cloudlet handler
turns on the WiFi interface and connects to the cloudlet using a well-known public
IP.

Remote execution decision engine

The remote execution decision engine is the intelligent component of the mo-
bile offloading framework. It decides on Whether and Where to offload data. In
other words, it decides if an offloadable block of code (method) annotated by the
programmer should be offloaded (Whether) to a clone or cloudlet (Where). The
embedded algorithm used to make this decision is presented in Chapter 4.

Dynamic content downloader

Dynamic offloader downloads are placed in the clone and the cloudlet. The down-
loader downloads input data for tasks when a mobile device offloads computing
tasks through the internet so that the mobile device does not have to transmit in-
put data with the code, which saves energy. The input data are downloaded using
the fixed network to which the clone or cloudlet is connected, as shown by black

42

arrows in Figure 3.7. This module is equipped with a utility that may be used to
download content by providing a URL, such as GNU Wget [130].

Data migration handler

The data migration handler manages data transmitted between a mobile device
and its clone. Similar to Thinkair [7], the offloading framework on the mobile
device connects to the client handler on the cloudlet, and the dynamic migration
handler connects to the dynamic object input/output stream on the clone and the
mobile device. The clone handler in the cloudlet may initiate a session to connect
to the client handler in the clone. The client handler in the cloudlet waits and ac-
cepts new connections from mobile devices. Only one mobile device that may be
connected to one cloudlet at any instant. If WiFi coverage fluctuates, the connec-
tion to a cloudlet may drop when the user is moving. The remote data migration
decision engine decides on whether to migrate unfinished jobs with their data to
the clone or not.

When a mobile device connects to a cloudlet, the URL, clone authentication
details, and details for the previous cloudlet to which it was connected (if appli-
cable) are transferred to the cloudlet. Then the remote migration decision engine
connects to the clone and automatically downloads the cached data and code to
the cloudlet to speed up the offloading process. When the mobile device connects
to the next nearest cloudlet, the handler of the new cloudlet connects to the han-
dler of the previous cloudlet to retrieve the code/data. If the user is not too late,
the new cloudlet may receive the requested data. If the old cloudlet does not re-
ceive any requests for user data after a short period, it transfers the data back to
the user’s dedicated clone to prevent data loss. This is ideal if many cloudlets are
available in user’s vicinity when the user is mobile. Since cloudlets may provide
a seamless service to the moving users.

Code cache and application data

Our approach utilises any available clone storage by allowing the offloading frame-
work to cache frequently offloaded codes with application input data in the clone.
A record of the cached code and data is also kept so that mobile devices may dis-
cover whether the code and/or input data already exist on clone so that they do
not have to be offloaded. Also, when a user loses connection to a cloudlet, the
cloudlet storage system may transmit unfinished/finished jobs back to the user’s
dedicated cloudlet so that the clone may execute the code and/or the user may

43

access the data later.

Virtual cloudlet manager

The offloading framework in the cloudlet is placed in a VM (cloudlet VM) hosted
by a virtualization platform such as KVM [131] and managed using APIs such as
Libvirt [132].

3.5.3 Scenarios
Static

• A mobile device user may offload code or data to a dedicated cloud clone
directly. The mobile device communicates with the clone using a cellular
network via the Internet. Because it uses networks with low bandwidth and
high latency, this conventional offloading approach may be improved.

• Two different Communication offloading methods are possible. Communi-
cation offloading to cloudlet or to cloudclone.

• Communication offloading to cloudlet is desired when two entities that
communicate are within the same cloudlet cloud.

• In communication offloading scenario, if the communicating mobile de-
vices are connected to different cloudlets, the most efficient way to com-
municate has to be calculated. The most efficient method will be chosen
from following two methods. Through the interconnected cloudlet WAN
networks or by communicating with the help of cloud clones.

Dynamic

• Because of mobility, device users may lose connectivity to a cloudlet, but
might reconnect to the same cloudlet later or might connect to a different
cloudlet. A user may also lose connectivity to a cloudlet but might not
reconnect to it for a long time. In all these cases, the offloaded code and
data should not be lost during provision of a seamless service.

• Although the user is moving, he/she may still be within the same cloudlet
cloud. To provide a seamless cloud service, the unfinished offloaded code/-

44

data has to be migrated to the next cloudlet that the mobile device connects
to.

• The data has to be migrated the most efficient way as possible. If the user
moves within the same cloudlet cloud, the data may be migrated via the
same cloudlet WAN.

• If the user has moved from its cloudlet cloud to a different cloudlet cloud,
one of the following two ways will be chosen to migrate code/data. It may
be migrated using the interconnected cloudlet WANs if it’s more efficient
to move data to the new cloudlet directly from the previous cloudlet. If not
data may be transferred to the user’s dedicated cloud clone, and then it will
be transferred back to the new cloudlet.

3.6 Unified Protocol
Cloud Radio Access Networks allows the cellular networks to process baseband
tasks of multiple cells/RRHs jointly as well as to allocate cellular resource to sub-
scribers jointly. In conventional mobile task offloading systems, the offloading
framework and the offloading network are not aware of the offloading process.
The network treats the offloading data as any other data, and the offloading des-
tination resides outside the network operator’s network. The offloading process
could have been more efficient if the offloading network resources and cloud re-
sources may be dynamically allocated to fit offloading requirements.

First, the author designs a protocol for communicating between the controller,
BBU and the Mobile Cloud for resource allocation. The author assumes that the
UE has already discovered its BBU and its Clone. The author uses a uniform PDU
(Protocol Data Unit) format for both resource allocation and for task offloading as
the name suggests. The proposed Uniform Offloading Protocol (UOP) operates
in the Application Layer of the Internet Protocol Suite (Layer 7). Mobile Cloud
Controller holds the management and the main point of contact roles for both
User (service consumer), and for services in the service providers side, for the
offloading protocol. We assume that the mobile cloud controllers are discoverable
throughout the network for offloading using web service discovery protocols (e.g.
Universal Description, Discovery and Integration). Once a mobile device discov-
ers the most suitable mobile cloud to offload, it will then directly connect to the
corresponding controller using the offloading protocol.

45

PDU Type

0 4 8 12 16 20 24 28 32

Request ID

ACK

PDU object binding #1
name

PDU variable binding #1
value

PDU object binding #N
name

PDU object binding #N
value

PDU
data

UOP
Packet header

.

.

.

Figure 3.8: Unified Offloading Protocol PDU. (The ticks represent number of bits)

3.6.1 Protocol Data Unit format
The PDUs (Protocol Data Unit) format of both offloading and resource allocation
protocol is shown in Figure 3.8. The offloading PDU is then passed down to the
TCP layer and may be encapsulated with the TCP packet header. The offloading
packet contains application control fields and a payload. The payload may contain
offloading code, user data and application errors if any. Moreover, the definitions
of the fields are shown in Table 3.1, the PDU types in Table 3.2 and the definitions
of object binding name-value pair in Table 3.3

The author has avoided basing the offloading protocol on top of other web
application protocols such as HTTP and SOAP due to their complexity and large
overhead [133]. Henceforth, it operates on raw Transport Layer Sockets. There-

46

Table 3.1: UOP attribute definition

Field Name Value Type Size (Bytes) Description

PDU type Unsigned Integer 4
An integer value that indicates the type of PDU.
Refer to Table 3.2 for the list of PDU types.

Request ID Unsigned Integer 4

An identifier to match requests with replies. The
mobile device sets the Request ID in the request
PDU and then is copied by the controller and
the clone in the response PDU when offloading.
The controller sets this attribute when sending
resource management messages.

ACK Unsigned Integer 4
0 if response packet, 1 if Acknowledgement packet
and, request rejection packet if the value >1

Object
Binding Object Variable

A set of name-value pairs identifying application
objects to execute, user data and error messages
with their corresponding object references. Refer to
Table 3.3 for object definition.

Table 3.2: PDU Types (some examples)

PDU Type value PDU type
0000 Offload Req
0001 Offload Accept
0002 Offload Denied
0003 Offload Start
0004 App Register
0005 App Request
0006 App Data
0007 App Response
0008 Offload FIN
0009 Manage Compute
0010 Manage BBU

47

Table 3.3: Definitions of Object Binding name-value pair

Subfield Name Value Type Size (Bytes) Description

Object Name Sequence of Integer Variable
Object identifier (code, user,
data, application error)

Object Value Object Variable
Contains the values of the
specified object type.

fore, depending on the Transport Layer protocol that the offloading protocol (TCP/UDP)
implements, the Client Handler in the controller and the offloading framework in
the clone will listen on a known port for messages that are sent from the offloading
mobile device. In our case, the offloading protocol is designed on top of TCP.

• Time-outs takes an important role in the protocol for assuring the timeliness
of individual transactions. Such timeouts are conventionally implemented
within applications. Instead, the offloading protocol handles timeouts and
indicates the applications if the protocol has timed out waiting for service
responses.

• Each transaction (offloading or resource management procedure) must suc-
ceed, but in a case of a failure, the system should roll back to its previous
state. The acknowledgement messages assure the completeness of transac-
tions. If a task or a set of tasks fail, then an error message will be sent back
instead of acknowledgement. The protocol assumes an offloading task as
one transaction. Within this main transaction, there are multiple individ-
ual sub-transactions. Namely, they are communication resource allocation
task, compute resource allocation task, remote code execution tasks. If any
of aforementioned sub-transactions fail, the main transaction is also consid-
ered failed. The communication and computing resources that were allo-
cated will be unallocated and put back into the pool of globally available
resources. Finally, the code will have to be executed locally by the mo-
bile device, if the delay restrictions do not allow it to resend an offloading
request. From start to the end of an offloading transaction, mobile cloud
controller keeps track of all protocol and application states.

• Implementing the protocol on top of TCP, automatically inherits TCP reli-
able delivery, error correction and ability to add optional Transport Layer
Security (TLS/SSL) layers.

48

• Keeping the protocol and the packet format as simple as possible for reduc-
ing overhead and processing complexity.

• Separate management functions from services for increasing scalability and
centralising management of services.

• Integrated application error reporting to the offloading protocol.

• The offloading protocol is independent of the mobile operating system and
the offloading framework.

• Integrated resource allocation to the offloading protocol.

• The payload of the offloading protocol packet may carry more than one
offloading task.

3.6.2 Working Procedure
The Figure 3.9 shows an instance where the protocol successfully instructs the UE
to offload computationally intensive tasks to the mobile cloud. Once the UE re-
ceives the ”Offload Start” message with corresponding information about the
offloading location (the clone), it successfully carries out offloading tasks. The
Figure 3.10 illustrates an instance where the controller fails to allocate BBU re-
sources for the user. Therefore the offloading request gets rejected by the con-
troller, by finally sending a ”Offload Denied” message back to the UE. In both
above figures, the acknowledgement messages are shown by appending ” ACK”
at the end of corresponding originating message name, to indicate the ACK bits
have set to 1 in the packet header. Resource monitoring is out of the scope of
this protocol, and it is assumed that the controller uses existing monitoring pro-
tocols for monitoring C-RAN and mobile cloud resources. Moreover, resource
allocation, estimation and prediction algorithms are out of scope of this chapter.

3.7 Summary
In this chapter, the author proposed a novel system that includes, a controller
which cooperatively/jointly manage computing and communication resources, a
unified protocol that is used for offloading and managing mobile cloud resources
and C-RAN wireless resources, and a task offloading architecture for offloading
computationally intensive tasks.

49

UE Controller Mobile Cloud C-RAN

Make offloading
decision

OFFLOAD_REQ Estimate resource
availability OFFLOAD_ACCEPT

OFFLOAD_ACK
MANAGE_COMPUTE

MANAGE_BBU

MANAGE_COMPUTE_ACK

MANAGE_BBU_ACK

Allocate Clone
resources

Allocate
bandwidth

OFFLOAD_START

APP_REGISTER

APP_REQ

APP_DATA

APP_DATA_ACK

APP_RESPONSE

APP_RESPONSE_ACK

Decision
Making

Resource
Allocation

Compute
Offloading

OFFLOAD_FIN

(1)

(2)
(3)

(4)

(5)
(6)

(8) (7)

(7)

(6)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

Figure 3.9: Unified Offloading Protocol: Procedure when successfully allocates
resources

50

UE Controller Mobile Cloud C-RAN

Make offloading
decision

OFFLOAD_REQ Estimate resource
availability OFFLOAD_ACCEPT

OFFLOAD_ACK
MANAGE_COMPUTE

MANAGE_BBU

MANAGE_COMPUTE_ACK

MANAGE_BBU

Allocate Clone
resources

Allocate
bandwidth

OFFLOAD_DENIED

Decision
Making

Resource
Allocation

(2)

(4)

(5)
(6)

(7)(8)

(6)

(7)
(8)

(9)

(3)

(1)

Failed to allocate
BBU resources.

Figure 3.10: Unified Offloading Protocol: Procedure when resource allocation
failed

51

Chapter 4

Network-Aware Offloading
Algorithm

4.1 Introduction
The author contributes to the exciting MCC research field by investigating a key
problem for mobile application offloading. There is much work being carried out
in this area, which largely falls into two categories: (1) task partitioning, which
involves dividing an application into offloadable partition(s) and a local partition
[23]; and (2) virtual machine (VM) selection [134], which involves choosing an
appropriate VM to which to offload a partition. VMs are the key component of
a cloud, and they provide virtual resources such as CPU, memory, storage, and
network interfaces in the same way as physical resources do. One common ele-
ment of this research is the assumption that there are a perfect network connection
and sufficient bandwidth between a mobile application on a mobile device and the
remote cloud VM. This may not be an unrealistic assumption for wired networks,
for which network bandwidth is usually abundant or at least not scarce. However,
this is not the case for wireless networks[135], for which network bandwidth is
not as abundant and a network connection may sometimes not even be available;
this is more of a problem for mobile cellular networks such as 3G. To address this
issue, the author uses a new network-awareness perspective: in addition to consid-
ering network status parameters such as bandwidth and delays, the network types
have also taken into account. In this study, two types of wireless network have
been considered: IEEE 802.11 (i.e., WiFi) and mobile cellular networks such as
3G. These are the two mainstream wireless technologies that people interact with

52

on a daily basis. Considering one without the other is not realistic and leads to a
situation in which a mobile cloud system is not as efficient as it should be.

The author introduces two types of cloud resources. Persistent and transient
cloud resources. Persistent cloud resources continue to exist and serve their ded-
icated mobile devices. They do not only contain computing cloud resources but
also provides storage services to the mobile users where they may store data such
as user-generated content, cached data and other data that belongs to their dedi-
cated mobile users. Hence, it is of type persistent. On the contrary, as the name
suggests transient cloud resources are temporary compute only cloud resources
that are placed at the edge of the networks. At the point in time, this chapter is
written, virtual machines have been used as the primary technology for building
cloud service infrastructures. However, recently there is other new virtual ma-
chine like technologies have been emerging to the market for, such as Docker
[136]. Accordingly, throughout the chapters the author calls the persistent virtual
machines ”Clones” and transient virtual machines ”Cloudlets”. It is assumed that
all subscribers of the mobile operator do have their dedicated clone that comes
with their mobile subscription. Although a cloudlet is a temporary code execu-
tion location, it may maintain a peer-to-peer connection with the user’s dedicated
Clone for receiving user specific data and cached code.

The Cloudlets should be used and placed at the locations where there is no
enough infrastructure to host Clones. It is required that the clones may respond
to user’s requests at all times. Hence, unlike cloudlets, the clones have to exist
in the cloud at all times. Whereas, a Cloudlet virtual machine is created tem-
porarily when a user initiates a connection to the cloudlet network for offloading
compute tasks. Once the offloading procedure is over, the created cloudlet will
be destroyed or cleaned and reused by another user. Furthermore, a cloud where
the clones reside (clone cloud), may also maintain user subscription information,
such that the clone cloud may associate the clones with their corresponding users
and also able to tailor the cloning service according to the subscription price plan.
Moreover, the clone size and the hosted services in clone may vary depending on
the type of mobile subscription. Hence, one obvious location to host the mobile
clone cloud could be a data centre that is owned by the mobile operator. In this
case, the mobile operator also becomes the mobile cloud service provider. On the
other hand, cloudlets are easier to be deployed due to its fewer demand on the
infrastructure.

Aforementioned considerations are reflected in the proposed MCC system de-
sign, in which a middle layer is introduced between mobile devices and their
corresponding cloud clones. This middle layer, called the cloudlet layer, is de-

53

Figure 4.1: Illustration of task offloading with clones and cloudlets.

ployed next to WiFi access points (APs) in the proximity of mobile devices. The
aim is to run clone equivalents named cloudlets in this layer, as illustrated in Fig-
ure 4.1. The benefits of this approach are twofold. First, it may take advantage
of the higher bandwidth of WiFi and switch the network connection from cellu-
lar to WiFi. Second, temporary data caching may be carried out on cloudlets to
some extent for applications that download data from the Internet. One deploy-
ment method would be MCC service providers to install their offloading software
on the home wireless gateways or servers of end users. If the home WIFi access
point also belongs to the mobile operator, then providing an offloading platform
with it for the WFi users becomes much easier.

Furthermore, our proposed offloading algorithm in Chapter 4.2 is aware of the
offloading location (clone or cloudlet) when offloading a mobile application. In
contrast, most of the current literature on offloading algorithms decides whether to
offload a mobile application or not. Cloudlets may also be placed next to cellular
base stations, as illustrated (connecting a mobile device, cloudlet, and clone) in
Figure 4.1. Also, clones may be placed next to the cellular base stations and WiFi
access points as shown in Figure 4.1.

54

Table 4.1: Notation conventions

Symbol Unit Description
ij MIPS Number of instructions for completion of task j
T seconds Task hard deadline
tjmob seconds Execution time for task j on a mobile device
tjcloud seconds Execution time for task j in a cloud (cloudlet or clone)
Elocal J Energy consumption by a mobile device for task execution
Ecloud J Energy consumption by a mobile device when a task is offloaded to a cloud
Enic J Energy consumed by a network interface (Ewifi

nic , E3g
nic, E

lte
nic)

µcpu MIPS Mobile CPU speed
µcloud MIPS Cloud speed
B Kbps Transmission bandwidth
dj KB Data that need to be transmitted for task j
Ptrans Watt Power consumption of the network interface
Pbasic Watt Baseline power consumption when the mobile device is idle
Pcomp Watt Power consumption of mobile CPU
κν % Proportional reduction in execution time compares to mobile execution
γν % Proportional reduction in energy compared to mobile execution

4.2 Algorithm
The offloading algorithm embedded in the remote execution decision engine de-
cides on Whether and Where to offload data. The novelty of this algorithm is that it
considers more than one offloading location as a parameter when deciding Where
to offload. By contrast, conventional offloading algorithms support just one of-
floading location [2]. In the remainder of the section, it is assumed that cloudlets
are only located next to WiFi APs and mobile devices access clones using their
cellular network via the Internet, as shown by dashed and filled bars respectively
in Figure 4.1.

Before application execution, the decision-making process seeks to reduce the
total energy consumed by the mobile device before execution [49]. A novel energy
and network aware offloading algorithm that takes two offloading locations into
account, has been proposed in Figure 4.1. The energy model considers ramp, tail,
and maintenance measures when estimating energy, unlike energy models used by
existing offloading frameworks.

First, the task execution time and the device energy consumption is estimated.

55

Then describes the algorithm that uses these estimates to make offloading deci-
sions. The notations used are listed in Table 4.1.

4.2.1 Estimating the response time and energy for local execu-
tion

The execution time for task j is estimated as

tjmob =
ij

µcpu
. (4.1)

The energy consumption for local execution is given by

Elocal = (Pcomp × tjmob). (4.2)

4.2.2 Estimating the response time and energy for offloading
The response time for offloading of tasks to a remote cloud server is calculated as

tjcloud =
dj
B

+
ij

µcloud
. (4.3)

It is assumed that a mobile device accesses its cloud clone or cloudlet using
a WiFi and/or cellular network, so the calculation of the energy consumption for
operations performed on these interfaces is crucial. Zhang et al. [35] carried out
a detailed study of the power consumption of mobile device components using
PowerTutor, an energy estimation tool that considers CPU, LCD, GPS, WiFi, au-
dio, and cellular interfaces. A similar model for WiFi and cellular networks has
been used in this work, although in their work the power consumed when a task
is executed on a cloud and when data are transferred are the only parameters that
are considered. The energy consumption is estimated according to;

Ecloud = Pbasic × tjcloud + Enic, (4.4)

where Pbasic is the baseline power consumption of the mobile device when it
is idle, tjcloud is the time for task execution in the cloud, and Enic is the energy
consumed by the network interface when offloading to the cloud. If Enic = Ewifi

nic ,
then the equation yields the energy consumption for offloading to a cloudlet.

As empirically observed by Zhang et al. [35], the packet rate, not the bit rate,
determines the power state of the WiFi interface. In other words, the packet size

56

does not influence power consumption given a fixed channel state and packet rate.
However, Zhang did not take the energy for connection establishment into account
[42]. In author’s work in this chapter, a similar model has been used, but it also
takes the connection establishment energy Ee into account. The author expresses
the system energy cost for establishing and transferring n bytes as

Ewifi
nic = Ee + n · Etrans. (4.5)

It is assumed that there is no significant difference in power consumption be-
tween receiving and transmitting packets, so the same values have been used to
represent transmitted and received energy.

Models of energy consumption for cellular networks consist of three compo-
nents [36]: (1) ramp energy eramp, (2) transmission energy etrans, and (3) tail
energy ttail. Unlike Zhang et al.. [35], the author considers radio resource control
states. The power amplifier of a mobile cellular interface switches to a higher
power mode to counter the drop in signal strength [137] when transferring and
receiving data. Cellular base stations use feedback received from mobile devices
some 800–1600 times per second and choose an appropriate modulation scheme
and data rate. Hence, a strong signal allows for high data rates and shorter data
transfer times. It may be concluded that when the signal is weak, data transfer
take longer to complete, and the radio interface draws higher power. Considering
these factors, the energy model for cellular data transmission is given by

E3g
nic = eramp + etrans + etail × ttail. (4.6)

The author uses a simple mobility model similar to that of Huang et al. [138].
The author assumes that the availability of wireless networks and their data trans-
mission rates vary according to the current location of the mobile device. In con-
trast to Huang et al. [138], It is assumed that the availability of networks for the
mobile user may change during the remote execution time for one application.

4.2.3 Decision-making
At runtime, the offloading framework dynamically requests the cloud server speed
of the cloudlet µctcloud from the connected cloudlet; it is assumed that the speed of
the dedicated clone, µclcloud, is already known by the mobile device. The framework
then calculates the proportional reduction in execution time for offloading the task
to a clone or cloudlet as

57

κν =
tmob − tνcloud

tmob
, (4.7)

where the subscript ν may be either ct or cl, denoting cloudlet and clone,
respectively. If Eq. (4.7) yields a negative value, offloading will not be time-
efficient. A hard deadline Tj is defined for task j. This deadline must be met and it
is preferable to choose the offloading location that executes the task in the shortest
time, even though energy consumption has a higher priority than execution time
in the offloading decision engine.

The proportional reduction in energy consumption for offloading a task to a
clone or a cloudlet is given by

γν =
Elocal − Eν

cloud

Elocal
. (4.8)

If Eq. (4.8) yields a negative value, offloading will not be energy-efficient.
It is obvious that if γmob = 0 and κmob = 0, then tasks are executed locally. If
γcl > 0 and κcl > 0, then it is energy and time-efficient to offload the task to a
dedicated clone. If γct > 0 and κct > 0, then it is energy and time-efficient to
offload the task to a connected cloudlet or clone.

The proposed offloading approach is presented in Algorithm 1, which favours
the execution time over energy consumption as the criterion for task offload-
ing. Moreover, this is because the application will fail to reach quality of service
(QoS)/quality of experience (QoE) requirements if the task deadline is not met. By
contrast, the execution time has a direct affect on energy consumption as defined
in Section 4.2.2. If offloading of a selected task to either a clone or a connected
cloudlet may not improve the execution time, the task will not be offloaded (line
1). If the cloudlet may execute the task faster than the clone may, and the energy
cost is less for offloading to the cloudlet or the clone while meeting the deadline,
the task will be offloaded to the cloudlet, and vice versa (lines 5–9). Next, if the
mobile device may save more energy by offloading to the cloudlet than to clone
while meeting the deadline, the task will be offloaded to the cloudlet. Otherwise,
the clone will be selected as the offloading destination (lines 10–15). If none of
the above conditions is met, the task is executed locally (line 16).

58

Algorithm 1 Energy-efficient and network-aware decision algorithm
1: ∀ν calculate γν & κν
2: if κcl ≤ 0 & κct ≤ 0 then
3: return Do not offload
4: else
5: if κct > κcl & γct > γcl & tjct ≥ T then
6: return Offload to Cloudlet
7: else if κcl > κct & γcl > γct & tjcl ≥ T then
8: return Offload to Clone
9: end if

10: if γct > γcl & tjct ≥ T then
11: return Offload to Cloudlet
12: else if γcl > γct & tjcl ≥ T then
13: return Offload to Clone
14: end if
15: end if
16: Do not offload

4.3 Performance evaluation and analysis
The name Cloudlet+Clone is used hereafter to refer to our proposed architecture.
The terms CloudletClone and CloneOnly in figures refer to Cloudlet+Clone and a
conventional architecture, respectively.

4.3.1 Simulation set-up
The author has conducted several simulations to study the performance of the
proposed MCC system architecture and the offloading algorithm. The algorithm
is implemented using CloudSim 2.0, which is an extensible toolkit for modelling
and simulating cloud computing environments that support VM nodes in data cen-
tres. [139, 140]. The effectiveness and efficiency of our approach were evaluated
mainly concerning the average service response time and the average energy con-
sumption by a mobile device. Comparisons were made among the following three
scenarios: mobile only, clone only, and Cloudlet+Clone.

The simulation environment was configured as follows. It is assumed that the
network state was constant for every offloading instance, for example, that the
bandwidth and link latency for the uplink and downlink were constant throughout

59

the execution process for one task. The CPU intensity of a task is represented in
million instructions per second (MIPS). The proposed architecture has two types
of network available for offloading. When offloading, the time taken to execute a
task in a particular environment may be taken into consideration because of task
deadline values to achieve the promised QoE level. Hence, the author measured
differences in response time between Cloudlet+Clone and other popular architec-
tures for task execution.

For the evaluation, it is assumed that the CPU power (MIPS) of the remote
server is double that of the mobile device and that the size is fixed throughout
because the resources are much greater for VMs in the cloud than for mobile
devices and may be resized on demand. Hence, the computational power of a
cloud clone or cloudlet may exceed double the power of a mobile device. The
author chooses 500 MIPS for the clone and 1000 MIPS for the cloudlet.

The author assumed that the maximum bandwidth of the wireless network for
Cloudlet+Clone is 300 Mbit/s since the cloudlets are located next to WiFi APs,
although the bandwidth may be even higher for wireless 802.11n devices. For
offloading frameworks that only support clones, the bandwidth is 15 Mbit/s and
the latency is 0.020s when accessing a clone hosted by a cloud service provider.
The average latency was measured experimentally using a real mobile device with
a 3G or WiFi network enabled in various geographic locations.

4.3.2 Response time
The aim of these simulations was to demonstrate the Cloudlet+Clone efficiency
in executing offloaded code. The number of instructions W required to execute a
task for a given data size of L is W = XL, where X may vary depending on the
type of application [141, 142]. Figure 4.3 depicts a scenario in which the input size
increases by 300 bytes as the instructions increase by 50 000 MIPS. The above is a
typical scenario in which the instructions to be executed increase exponentially in
all cases when the input data size is increased for one task. For evaluating the pro-
posed architecture, it is assumed that the number of instructions increases by 166
MIPS per byte. Cloudlet+Clone performs best in this case because it is equipped
with a network with a larger bandwidth compared to clone-only conventional ar-
chitectures. The response time increases exponentially with the input data size in
all cases. Depending on the task deadline, this response time might not be good
enough because it directly affects the QoE of mobile applications.

The author also considered a case in which the number of instructions for ex-
ecution may vary depending on the task, regardless of the size of the input data.

60

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4
0

1

2

3

4

5

6

7

8

x 10
5

Bandwidth Reduced(Mbit/s)

R
es

po
ns

e
T

im
e(

s)

Cloudlet Clone
Clone Only

Figure 4.2: Response time for a conven-
tional architecture and Cloudlet+Clone
when the bandwidth is reduced by a fixed
amount.

Figure 4.4 shows how the response time increases with the number of instructions.
It is apparent that it is much quicker to offload the code to a remote server (clone
or Cloudlet+Clone) because of the lack of computational resources in mobile de-
vices. In particular, Cloudlet+Clone is even quicker when offloading because data
transmission is much quicker than via traditional offloading frameworks owing to
the smaller network latency and larger bandwidth. It is clear that the bottleneck
for offloading computation is the transmission time. Two feature of the proposed
architecture overcome: (1) the high bandwidth of the offloading framework and
(2) the use of data caching.

The proposed architecture supports local data caching on a clone and a cloudlet.
This means that when offloading, a mobile device does not have to transfer input
data with the code if the data may be downloaded via the Internet. The input data
do not have to be sent with the code if they are already stored in the clone. In such
cases, if the code is offloaded to a cloudlet, the cloudlet will retrieve these data
from the user’s dedicated clone using the fixed network. Current popular offload-
ing frameworks do not support this functionality. As shown in Figure 4.5, appli-
cations benefit from having an offloading framework with data caching enabled in
comparison to traditional offloading frameworks (clone without data caching) and
clones with data caching enabled. Figure 4.6 compares the response time when
offloading for traditional clones and Cloudlet+Clone with data caching enabled.

Every offloading framework considers the state of its available network to de-

61

6000 7000 8000 9000 10000 11000
0

500

1000

1500

2000

2500

Data Size(Bytes)

R
es

po
ns

e
T

im
e(

s)

Mobile
Clone Only
Cloudlet Clone

Figure 4.3: Task response time as a
function of input data size.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
6

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Instructions(MIPS)

R
es

po
ns

e
T

im
e(

s)

Mobile
Clone Only
Cloudlet Clone

Figure 4.4: Task response time as a
function of the number of instructions.

6500 7000 7500 8000 8500 9000

480

500

520

540

560

580

600

620

640

Data Size(Bytes)

R
es

po
ns

e
T

im
e(

s)

Clone without Data Caching
Clone with Data Caching

Figure 4.5: Response time as a function
of input data size with data caching (pro-
posed architecture without Cloudlet) and
without data caching in a clone (conven-
tional architecture).

0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

200

400

600

800

1000

1200

1400

1600

1800

Data Size(Bytes)

R
es

po
ns

e
T

im
e(

s)

Clone without Data Caching
Cloudlet Clone with Data Caching

Figure 4.6: Response time as a function
of input data size without data caching
on a clone (conventional architecture)
and with data caching in Cloudlet+Clone
(proposed architecture).

62

3G WiFi
Transfer energy 0.025(x)+3.5 0.007(x)+5.9
Maintenance 0.02 J/s 0.05 J/s
Tail energy 0.62 J/s NA
Tail-time 12.5 s NA

Table 4.2: Wireless energy model for downloading x bytes of data over 3G and
WiFi networks

cide whether it is worth offloading. The bandwidth of the network is a function
of the network state. Hence, it is not appropriate to assume that the network
state remains constant until a user finishes using an offloadable mobile applica-
tion. Bandwidth reduction may negatively affect the performance of the offload-
ing framework. Because of the previous statement, it is important to analyse the
effect when the available network bandwidth decreases. The results are shown in
Figure 4.2 for a fixed reduction in bandwidth when offloading the same task with
the same number of input data. It is evident that the decrease in response time
when offloading is far greater owing to the small bandwidth of traditional offload-
ing frameworks, whereas the proposed architecture supplies more bandwidth to
the offloading framework by adding WiFi-based cloudlet support.

4.3.3 Energy consumption
The author simulated the energy consumption of the CPU and the network inter-
face of a mobile device. The aim was to give an indication of the energy con-
sumption of the mobile device rather than to report precise measurements. When
calculating the energy consumption of a mobile device, the author considers the
CPU energy consumption for local execution of a task, and the energy consump-
tion of the network interface when offloading. For a CPU with approximately 500
MIPS, the energy consumption is 0.9 W [1]. The parameters listed in Table 4.2
were used to estimate the energy per byte [36].

Figure 4.7 compares the energy consumption for a task executed on a mobile
device only, a clone only, and Cloudlet+Clone as the input data size for the same
task increases, which also increases the number of instructions to complete. The
results show that the Cloudlet+Clone architecture saves a significant amount of
energy owing to its high bandwidth and low-latency networks. Figures 4.8 and
4.9 compare energy consumption with data caching enabled in a clone only and

63

5000 5500 6000 6500 7000 7500 8000 8500 9000
0

200

400

600

800

1000

1200

Data Size(Bytes)

E
ne

rg
y(

J)

Mobile
Clone Only without Data Caching
Cloudlet Clone without Data Caching

Figure 4.7: Energy consumption of a
mobile device with a clone only and
Cloudlet+Clone when increasing the in-
put data size without data caching.

5000 5500 6000 6500 7000 7500 8000 8500 9000
0

200

400

600

800

1000

1200

Data Size(Bytes)

E
ne

rg
y(

J)

Mobile
Clone without Data Caching
Clone with Data Caching

Figure 4.8: Energy consumption of a
mobile device when offloading without
data caching in a clone (conventional
architecture) and with data caching en-
abled in a clone (proposed architecture
without Cloudlet).

Cloudlet+Clone, respectively, with energy consumed when the task is executed on
a mobile device and a clone without data caching. In all cases, Cloudlet+Clone
performs better than the comparative architecture because of the reduction in
transmitted data.

4.4 Summary
In this chapter, the author proposed a network-aware and energy-efficient offload-
ing algorithm that recides on task offloading mobile devices. It decides whether
to use the cellular network to offload to a clone in the internet, or to use the Wi-Fi
network to offload to a cloudlet at one hop distance. The results illustrated the
benefits of offloading to cloudlets. It has evidently shown, that it is beneficial to
use high-bandwidth low-latency networks for mobile task offloading, confirming
Kumar et al. [1]’s observations.

64

5000 5500 6000 6500 7000 7500 8000 8500 9000
0

200

400

600

800

1000

1200

Data Size(Bytes)

E
ne

rg
y(

J)

Mobile
Clone without Data Caching
Cloudlet Clone with Data Caching

Figure 4.9: Energy consumption of a
mobile device when offloading without
data caching in a clone (conventional
architecture) and with data caching en-
abled in Cloudlet+Clone.

65

Chapter 5

A Performance Analysis of Cloud
Vertical Scaling for Delay
Constrained Applications

5.1 Introduction
Auto-scaling in IaaS clouds has been studied extensively in literature covering
various aspects, for allocating the right amount of resources to the users, while
meeting Service Level Agreement(SLA) requirements and keeping the overall
cost to a minimum. Although there have been many techniques proposed in lit-
erature, in the past few years, for automating cloud resource scaling procedures
using predictive and reactive methodologies, there is still room for improvements.
Especially in fundamental aspects of underlying technologies and algorithms that
affect the performance of auto scaling. Some known aspects of cloud computing
that require improvements are [20] [18] [143] [118] [119], real-time hypervisors,
real-time operating systems (OS), OS support for Cloudification (e.g. native cloud
orchestration support in OSs), improved host resource sharing among guests (e.g.
reduced latency), user friendly cost models and auto scaling techniques for real-
time applications. Specifically, when adopting cloud technologies into mobile
systems, issues mentioned above are imperative due to high QoS/QoE require-
ments and dynamic nature of wireless networks and mobile applications [118]
[119]. However, above matters are out of scope for this chapter. The author’s
focus has been drawn to providing an extensive performance analysis for improv-
ing auto scaling algorithms for real-time task offloading on today’s existing cloud

66

environments by addressing issues that are generic to current cloud platforms and
cloud service providers, by providing solutions which do not directly operate on
underlying virtualisation technologies.

Current literature have proposed various reactive and proactive techniques to
achieve horizontal auto scaling (e.g. [85] [74] [76] [65] [59] [74] [75] etc.) by
adding or removing VMs to/from a cloud application, or to achieve vertical scal-
ing (e.g. [61] [73] [82] [109]) by adding or removing resources to/from existing
VMs. All of which are reviewed extensively in Chapter 2 by highlighting the
techniques (proactive and reactive) they have employed. Although throughout lit-
erature threshold rules based techniques are the most highly valued techniques, it
is evident that reinforcement learning, queuing theory, control theory, time series
analysis have also been widely used. However, horizontal scaling has been used
more often, in comparison to vertical scaling in literature and by cloud service
providers due to some reasons. For both horizontal and vertical scaling, the re-
source provisioning introduces a delay. Therefore the desired effect may arrive
when it is too late. Therefore, current literature stress the need for future work
on auto scaling focusing on reducing the time required to provision new VMs (or
resize VMs when vertically scaling) [20].

Vertical scaling is known to have a lower range when it comes to scaling up
and down [19], and for the changed resources to take effect often the VMs have
to be restarted [20]. Even if the underlying virtualization technology (e.g. Xen
CPU hot-plug) allows you to scale VMs without restarting, it may take up to
5-10 minutes for the changes to take effect and be stabilised [73] [144]. More-
over, this is mostly because most conventional operating systems do not allow
real-time dynamic configurations on the VMs without rebooting [20], and [73]
reports this may also be partially due to the backlog of requests in prior intervals.
However, many works have proposed a number of vertical scaling algorithms, and
they assume that vertical scaling actions may be performed timely, or implement
the auto-scaling algorithm using resource hot-plugging [86] [89] [88] [83] [82]
[144] [73] [61]. However, the latter is not possible for most of other popular hy-
pervisors (e.g. Kernel Virtual Machine), cloud platforms (e.g. OpenStack) and
cloud service providers (e.g. Amazon EC2 [71]) [20]. For reasons as mentioned
above, horizontal scaling has been more attractive to the community and has been
adopted by existing cloud service providers instead of vertical scaling [61] [71].
Elastic Application Container (EAP) proposes an alternative provisioning mech-
anism to heavy VM provisioning [145], but requires you to alter the underlying
infrastructure. Furthermore some papers have proposed horizontal-vertical hybrid
scaling systems where both approaches are used simultaneously for achieving a

67

better performance by utilising benefits of both methodologies [58] [61] [62] [104]
[19].

It is considered wasteful to use a VM as the smallest resource unit when al-
locating computing resources to a cloud application, as the new VMs that are
assigned to the applications not used immediately after, and each VM consumes
resources that are not directly utilised by the applications [61]. Which also meant
that as the number of VMs increase, the total number of resources that are con-
sumed for just hosting and for keeping the VMs alive also increase. Furthermore,
current literature have emphasised that adding or removing whole VMs to applica-
tions is not always required for many real world scenarios [61], but subtle changes
such as adding or removing available resources are sufficient. Dutta et al. [19] fur-
ther clarifies and claims while horizontal scaling allows the application to achieve
higher throughput levels per each addition, the deployment cost is greater than
vertical scaling. Therefore, this lead us to investigate further into using vertical
scaling for clones in the mobile cloud to handle task offloading workloads.

When the reactive autoscaling approach is used, the system reacts to changes
in ingress requests when the monitoring system detects such changes. Often
threshold-based rules are predefined by the user, and the actions that are assigned
to these rules are triggered once changes in workload are detected from the last
read monitoring values of the system. Proactive algorithms anticipate and pre-
dicts future workload demands and allocates resources accordingly to applications
ahead of time. The drawbacks of reactive approach are, it is unable to cope with
high sudden bursts of workloads and difficulty to compensate to VM resize and
VM bootup delays. In contrary, proactive approaches are not able to react to sud-
den, unpredictable changes in workloads, and forecasted future workloads may
sometimes be inaccurate [61] [20]. Due to all above reasons, some researchers
have proposed a reactive-proactive hybrid approach where both techniques have
been used; proactive techniques for predicting future workloads and reactive tech-
niques for correcting prediction errors and react when predictions are incorrect
[64] [78] [146] [76]. Despite the drawbacks, due to its simplicity, existing com-
mercial cloud service providers offer mostly reactive threshold based auto-scaling
services [20].

The above reasoning lead the author to investigate into how vertical scaling
may be used to handle task offloading workloads. It is evident that the long re-
size time when vertical scaling is not suitable for real-time applications such as
task offloading, where tasks need to be completed before a given deadline. The
author investigates into vertical auto scaling delay times. Moreover, from the
lessons learned from this analysis, future researchers may design auto scaling al-

68

gorithms which may minimise the downtime (allowing the VMs to reboot) and re-
duce the amount of SLA violations, in existing popular cloud frameworks without
resource hot-plugging, and without needing to change the underlying cloud in-
frastructures. Furthermore, such algorithms may consider the penalty cost (SLA
violations) when scaling, and service downtime when adding and removing re-
sources. Moreover, the author acknowledges that VM creation and resize delays
are significant parameters when designing auto scaling systems and needs further
investigations and analysis. Therefore, he conducts an empirical analysis on an
IaaS cloud platform in Section 5.2 to understand how VM start and resize time
delays vary depending on various aspects of cloud platforms.

5.2 Cloud Performance Analysis
Many previous work propose various auto-scaling algorithms and systems for ver-
tical scaling. However, most of such work has been carried out assuming that
the underlying cloud infrastructure may change configurations of VMs (rescale).
However, the author has discovered that this is not a valid assumption, as if the
resources of a VM are added or removed in real-time they are not affected until
the VM is restarted [71] [20]. For above reasons, existing cloud service providers
do not provide vertical scaling functions. The Chapter 6 describes the Mobile
Cloud RAN (Radio Access Network) testbed that the author has developed. The
prototype has been left with out of the box configurations of most software com-
ponents (e.g. OpenStack) for making the evaluation results as generic as possible
to all other existing platforms and cloud service providers. The following analysis
on VM creation and resizing times has been carried out by repeating the experi-
ments 60 times for reducing noise due to other unavoidable influences within the
environment.

There are two basic functions that one may perform on VMs when scaling
either horizontally or vertically. One may instantiate and terminate new VMs
behind a load balancer, or one would use a resizing function that is provided by
the underlying cloud platform (hypervisor). Moreover, In the author’s case, the
Kernel Virtual Machine (KVM) environment allows the user to instantiate and
terminate VMs. In Figure 5.1 the author depicts how the VM instantiation time
has been influenced by all other VM created within the same cloud environment.
Author has applied a moving average function on the data for smoothing out the
gathered results to highlight the increasing trend in data. The above graph clarifies
the observations made by [147], where auto-scaling actions (horizontal) typically

69

Figure 5.1: The VM start time as the number of instances increases in the cloud
globally

get delays in orders of minutes on public cloud service providers (Amazon EC2,
Azure and Rackspace). The above is mainly due to the increased request backlog
and due to the time that it takes to assign a physical server to deploy a VM, then
to move the VM image to it and get it fully operational. This further shows that
instance start-time changes depending on the number of active VMs in the cloud
at a given time. Moreover, when predicting the VM start times, knowledge on
historical start delay times may help. The author further stresses that although
the trend in data may be similar, the exact numbers at given points may change
depending on the cloud environment. Therefore, one may expect future cloud
service providers to provide such data to be used by users when auto-scaling.

The author categorises auto-scaling into two scenarios. 1) Resizing contin-
uously; the resources are added or removed by one at each iteration, 2) the re-
sources are added or removed by amounts other than 1 (e.g. +1. +2, +3, +4). For
the sake of the discussion, the author calls the latter ”non-continuous”. The former
method may be suitable for algorithms that decide when to scale (and later scales
by adding/removing only one resource), and the latter method may be appropriate
for algorithms that decide the amount of resources to be added or removed at a
given time.

70

0 10 20 30 40 50 60
Number of vCPUs

45

50

55

60

65

70

75

S
ca

lin
g
 D

e
la

y
 (

s)

Continuous
Non-continuous

Figure 5.2: Mean CPU upscale delay as the size of the base VM increases. The
standard error shows variations in results

0 10 20 30 40 50 60
Number of vCPUs

45

50

55

60

65

70

75

S
ca

lin
g
 D

e
la

y
 (

s)

Continuous

Figure 5.3: Second order polynomial function of mean CPU upscale time in
continuous scenario

71

0 10 20 30 40 50 60
Number of vCPUs

49.0

49.5

50.0

50.5

51.0

51.5

52.0

S
ca

lin
g
 D

e
la

y
 (

s)

Non-Continuous

Figure 5.4: Second order polynomial function of mean CPU upscale time in non-
continuous scenario

The author applies polynomial curve fitting [148] on the empirical data to
further demonstrate how up and down scaling delay times vary across different
types of resource and when different types of scaling are employed (continuously
vs. non-continuously). Specifically, the author uses a function of the form in
equation 5.1 for fitting the data, where M denotes the order of the polynomial
function, given a training data set comprising N observations of x, where x ≡
(x1, . . . , xN) and corresponding observations t ≡ (t1, . . . , tN). The vector W
contains the polynomial coefficients w0, . . . , wM .

y(x,W) = w0 + w1x+ w2x
2 + · · ·+ wMx

M =
M∑
j=0

wjx
j (5.1)

The coefficients are calculated by fitting the polynomial to the provided scal-
ing delay data by minimising the squared error E(W), as shown in equation 5.2.

E(W) =
N∑
n=0

|y(xn,W)− tn|2 (5.2)

where tn denotes the corresponding target values for xn. It measures the misfit

72

Table 5.1: Polynomial coefficients of second order polynomial function for the
scaling scenarios

Coefficients
Scaling Scenario w2 w1 w0

Figure 5.3 0.0109 0.2013 50.2
Figure 5.4 -0.0002161 0.05584 49.32
Figure 5.6 0.01358 0.3637 51.61
Figure 5.7 0.0003889 0.04552 66.85
Figure 5.9 -1.159e-05 0.1038 46.92
Figure 5.10 2.837e-05 0.008834 47.05
Figure 5.12 -0.002184 0.04266 49.07
Figure 5.13 0.007889 0.1701 50.31
Figure 5.15 0.1402 2.375 56.91
Figure 5.16 0.03394 0.6107 53.26

between the function y(x,W), for any given value of W and scaling delay data
points. The author has calculated the second order polynomial function using the
least square polynomial fit [148] for the data, only for illustrating trends in data
and to show differences in values, as shown in second order polynomial equa-
tion 5.3. Such a model may be adapted to the architecture proposed in Chapter 3
where the polynomial function is used for predicting resize delays in the mobile
cloud controller (when making auto-scaling decisions), the order of the polyno-
mial function should be chosen to fit the data best. For providing further insight
into the analysis, the author provides the polynomial coefficients in Table 5.1 that
may be used with the equation 5.3 for evaluating vertical scaling algorithms in fu-
ture. In equation 5.3 the w2, w1, w0 coefficients may be looked up from the Table
5.1, while x denotes the amount of resources to evaluate on.

y(x) = w2x
2 + w1x+ w0 (5.3)

CPU resizing has been more often used than resizing other resources. The
Figure 5.2 shows that the time varies when adding resources, depending on the
vCPU amount it increases from (i.e. the number of vCPUs that the VM has before
resizing), in continuous auto scaling scenario. Another observation that we may
gather from the graph is that the VM resizing time increases as the size of the
VM increases. One may observe that the change in results in the non-continuous
scenario is much smaller as the scale of the VM increases, albeit there is still an

73

0102030405060
Number of vCPUs

40

50

60

70

80

90

100

S
ca

lin
g
 D

e
la

y
 (

s)

Continuous
Non-continuous

Figure 5.5: Mean CPU downscale delay as the size of the base VM increases.
The standard error shows variations in results

increasing trend. The aforementioned statements are further clarified in Figure
5.3 and Figure 5.4 respectively. The both 5.3 and 5.4 figures show second or-
der regression functions of results for continuous and non-continuous scenarios
respectively, depicting that time delay increases as the VM size increases. The
graph also shows the standard error of each point to show how results varied in
the results.

Similarly to VM CPU upscaling, Figure 5.5, Figure 5.6 and Figure 5.7 shows
continuous and non-continuous cloud performances of CPU downscaling. Specif-
ically, the Figure 5.5 depicts a comparison of delay times when virtual CPUs are
scaled down continuously and non-continuously. The error bars denote the stan-
dard error at each point to show the variations of gathered results. One may ob-
serve that this has an opposite trend (decreasing trend) to VM CPU upscaling
delay as shown in Figure 5.2, where the delay time decreases as more CPUs are
removed from the VM. One may conclude from the analysis that the resize time
is greatly influenced by the size of the VM when scaling computing resources
(i.e. the number of CPUs the VM has before resizing). Moreover, the Figure 5.6
and the Figure 5.7 shows second order polynomial function of both continuous
and non-continuous mean CPU downscaling delay in cloud respectively. Further-

74

0102030405060
Number of vCPUs

40

50

60

70

80

90

100

S
ca

lin
g
 D

e
la

y
 (

s)

Continuous

Figure 5.6: Second order polynomial function of mean CPU downscale time in
continuous scenario

0102030405060
Number of vCPUs

50

55

60

65

70

75

80

85

90

S
ca

lin
g
 D

e
la

y
 (

s)

Non-Continuous

Figure 5.7: Second order polynomial function of mean CPU downscale time in
non-continuous scenario

75

0 10 20 30 40 50
Amount of Disk (GB)

46

47

48

49

50

51

52

53

S
ca

lin
g
 D

e
la

y
 (

s)

Continuous
Non-continuous

Figure 5.8: Mean disk upscale delay as the size of the base VM increases. The
standard error shows variations (error) in data

more, the observations suggest that when designing auto-scaling algorithms that
scale CPU resources, one must consider the time differences when scaling contin-
uously and scaling non-continuously.

According to the author’s experiments, the second most influential resource
on the resize time delay is the VM disk size. However, in the used test envi-
ronment, disk downscaling is not supported by the cloud framework (OpenStack
with KVM as shown in Chapter 6), therefore only the upscaling results have pre-
sented. The Figure 5.8 shows an opposite trend to the CPU resize time delays in
Figure 5.2. In this experiment, the non-continuous resizing time delays appear to
higher than when resizing continuously. Moreover, the resize time does not show
any significant increases or decreases as the amount of disk space increase in the
non-continuous scenario. A second order polynomial regression analysis has been
carried out in Figure 5.10 further clarifying the above observation.

It is clear that the resize delay time increases as the VM’s disk size increases in
the continuous VM scaling scenario as shown in Figure 5.9. Such an observation
is expected, as when resizing some hypervisors (e.g. KVM) takes a snapshot
of the running VM, then a new resized VM is created from the snapshot with
changed configurations (often on a different compute node), finally deleting the

76

0 10 20 30 40 50
Amount of Disk (GB)

46

47

48

49

50

51

52

53

S
ca

lin
g
 D

e
la

y
 (

s)

Continuous

Figure 5.9: Second order polynomial function of mean disk upscale time in con-
tinuous scenario

0 10 20 30 40 50
Amount of Disk (GB)

46.0

46.5

47.0

47.5

48.0

48.5

S
ca

lin
g
 D

e
la

y
 (

s)

Non-Continuous

Figure 5.10: Second order polynomial function of mean disk upscale time in
non-continuous scenario

77

2 4 6 8 10 12 14 16 18
Amount of RAM (GB)

47

48

49

50

51

52

S
ca

lin
g
 D

e
la

y
 (

s)

Continuous
Non-continuous

Figure 5.11: Mean RAM upscale delay as the size of the base VM increases. The
standard error shows variations (error) in data

old VM. Whereas, when the author conducted the non-continuous experiment, he
chose 1GB as the base VM disk size, and one may expect somewhat a similar time
delay at each step when resizing as the disk size stays constant, although the VM
is resized to a different disk size.

Despite all above clear trends in results, when analysing resizing time delays
when resizing RAM resource on VMs, no distinctive trends were found in both
continuous and non-continuous scenarios, as shown in Figure 5.11 for upscaling
and 5.14 for RAM downscaling. However, this could be due to the fact that the
test-bed’s maximum memory resource limit is 18GB, and the sample amount is
not large enough to see clear trends. The second order polynomial regression anal-
yses show decreasing trends on both continuous and non-continuous scenarios, in
Figure 5.12 and in 5.13, in continuous and non-continuous upscaling scenarios
respectively. Moreover Figure 5.15 and Figure 5.16 shows a second order polyno-
mial regression analysis of both continuous and non-continuous downscaling of
RAM resources.

From the lessons learned from above empirical VM resize performance anal-
ysis, the author proved that careful attention should be paid to the time delays
when resizing CPU and disk resources of VMs for real-time applications. The

78

2 4 6 8 10 12 14 16 18
Amount of RAM (GB)

48.0

48.5

49.0

49.5

50.0

50.5

51.0

51.5

S
ca

lin
g
 D

e
la

y
 (

s)

Continuous

Figure 5.12: Second order polynomial function of mean RAM upscale time in
continuous scenario

2 4 6 8 10 12 14 16 18
Amount of RAM (GB)

49.2

49.4

49.6

49.8

50.0

S
ca

lin
g
 D

e
la

y
 (

s)

Non-Continuous

Figure 5.13: Second order polynomial function of mean RAM upscale time in
non-continuous scenario

79

0246810121416
Amount of RAM (GB)

42

44

46

48

50

52

54

56

S
ca

lin
g
 D

e
la

y
 (

s)

Continuous
Non-continuous

Figure 5.14: Mean RAM downscale delay as the size of the base VM increases.
The standard error shows variations (error) in data

0246810121416
Amount of RAM (GB)

46

48

50

52

54

S
ca

lin
g
 D

e
la

y
 (

s)

Continuous

Figure 5.15: Second order polynomial function of mean RAM downscale time in
continuous scenario

80

0246810121416
Amount of RAM (GB)

50.0

50.5

51.0

51.5

52.0

52.5

53.0

53.5

S
ca

lin
g
 D

e
la

y
 (

s)

Non-Continuous

Figure 5.16: Second order polynomial function of mean RAM downscale time in
non-continuous scenario

auto-scale delay trends may vary depending on the underlying technologies (e.g.
virtualization and physical resource management) that are deployed. The analysis
brings awareness to the community that auto-scaling delays depend on the auto-
scaling types (upscaling, downscaling, continuous and non-continuous). The au-
thor stresses that especially when designing auto-scaling algorithms, the changes
in time delays when resizing CPU and disk resources in various conditions of the
VMs itself (VM size) and of the environment (total VM count in the cloud) that
they are hosted in, should be considered. The author has discovered that it is im-
portant to use both the knowledge of the VM itself and of the cloud environment
together at the same time in future vertical scaling algorithms.

5.3 Summary
This chapter presented an extensive performance analysis of cloud vertical auto-
scaling. The analysis has been performed on performance data that have been
gathered from the cloud prototype implementation presented in Chapter 6. The
study has demonstrated that VM start time increases as the size (global number of
VMs) of the cloud itself increase. The author conducted the auto-scaling perfor-

81

mance analysis for CPU, memory and disk resources. Significant changes in CPU
and disk scaling time trends have been observed. Finally, the author discussed that
vertically scaling CPU and disk resources may not be suitable to be performed in
real-time due to the large delay, for delay-constrained applications.

82

Chapter 6

Prototype

Cloud Radio Access Networks (C-RAN) [149][150] is a novel deployment con-
cept for future radio access networks (RAN) which takes the powerful cloud
technologies to use. C-RAN is a centralised RAN architecture which processes
the signals of all base stations on a shared pool of compute resources. The
base stations of the existing architecture have been replaced by Remote Radio
Heads (RRHs) and digital processing components called Base Band Unit (BBU),
which have been moved into a central location. Whereas, the conventional RAN’s
baseband processing units are located locally in each cell. The centralisation of
the computational resources have significant benefits; improved load balancing
increased energy consumption by exploiting the load variations, resource shar-
ing, joint and cooperative resource scheduling, saving the operating expenses
due to centralised maintenance. Researchers have done extensive work on RAN
and MCC independently in the literature. However, there has been very limited
amount of work done on the joint study of C-RAN and Mobile Cloud Computing
(MCC) for next generation cellular networks.

MCC brings rich and powerful properties of cloud computing to mobile de-
vices. Compute offloading is one of the techniques that was created to achieve
the energy efficiency of mobile devices, by offloading compute-intensive tasks to
a remote cloud to be executed. Excising compute offloading systems take coarse
network information and assume the remote computing resource is a public cloud
or a cloudlet that is in close vicinity to the mobile user.

The author has set up a test environment for evaluating the proposed architec-
ture, use cases and its applications. Figure 6.1 depicts the design of the testbed.
There are two USRP N210 and one X300 have been set up as RRHs of Amarisoft
LTE 100 [151] and OpenAirInterface (OAI) [152] software base stations respec-

83

BBU
Pool

Mobile Cloud

USRP
(RRH)

Controller

Mobile
Clone

Connection to internet
Ethernet Connection
Ethernet Port

BBU

MME

Connection to Clone

Mobile
device

Internet

Figure 6.1: C-RAN with Mobile Cloud testbed

tively. All nodes in the network are connected via a Gigabit Ethernet switch. The
soft base stations are deployed on a Dell PowerEdge R210 rack server. OpenStack
with Kernel Virtual Machine (KVM) has been deployed as the cloud framework
that hosts the mobile clones running Android-x86 operating system. In the current
setting, the wireless bandwidth of the base stations has been set to 5 MHz. The
BBUs are connected to its Mobility Management Entity (MME) via its S1-MME
links using S1 Application Protocol (S1AP) that provides signalling between E-
UTRAN and the evolved packet core (EPC). Host sFlow and sFlow-RT [153],
monitoring and analytical tools, has been deployed on the controller as a part of
the Resource Monitor for monitoring resources in the mobile cloud. The author
has developed a monitoring module and a dashboard for monitoring wireless re-
sources in C-RAN as described in Section 6.2.1.

6.1 User Equipment Side
The author uses Thinkair [7] offloading framework for offloading computation-
ally intensive tasks from the connected UEs to the Clones in the Mobile Cloud.

84

Figure 6.2: Thinkair offloading framework deployed on Android UEs (right side)
and on the Clone (left side)

The Thinkair server side is installed on the cloudified Android x86 clone (as fur-
ther discussed in Section 6.2.2), while the client side is installed on all Android
offloading UEs. The subfigure in the right side of the figure 6.2 depicts a mobile
device with Thinkair client installed, and the sub figure on the left side shows a
screenshot of the Thinkair installed clone on the OpenStack-based mobile cloud.

6.2 Infrastructure Side
The operator’s network infrastructure side consists of two parts as described in
Chapter 3, the wireless infrastructure (i.e. C-RAN) and the mobile cloud. The
Section 6.2.1 highlights the author’s contributions to the wireless infrastructure
and Section 6.2.2 includes the contribution that relate to the mobile cloud.

6.2.1 C-RAN
The wireless environment of the infrastructure has been deployed using Amarisoft
LTE 100 and OAI software solutions that also comes with wireless core network
components (i.e. EPC) included. Therefore, these two platforms may be used to
emulate a fully fledged mobile operators network. Amarisoft LTE 100 is a com-
mercial solution, and OAI is a fully open-source project. Although both solutions
offer basic required functionalities of the operator’s network, they follow inde-
pendent development roadmaps and have implemented their extra functionalities
(e.g. Amarisoft LTE 100 API).

85

Figure 6.3: A screenshot of Amarisoft
wireless resource monitor dashboard
running on a web browser, showing CPU
utilisation and the number of connected
UEs

Figure 6.4: A screenshot of Amarisoft
wireless resource monitor dashboard
running on a web browser, showing the
download bitrate, upload bitrate and the
number of transmitted packets in down-
link

Although OAI provides a very basic monitoring interface, it is not useful for
logging or observing trends in monitoring information. Amarisoft does not pro-
vide any monitoring functionality out of the box. Therefore both solutions lack
inbuilt fully functioning monitoring functionalities. Specifically, they both lack
detailed and user-friendly monitoring dashboards for observing monitoring infor-
mation of the changing parameters when carrying out experiments. Therefore, the
author has developed his own monitoring module that includes a useful dashboard
that displays changes in various parameters at real-time as a part of the Resource
Monitor (as described in Chapter 3) in the proposed controller. Currently, the
dashboard only designed to work with Amarisoft LTE 100 software as shown in
figure 6.3 and figure 6.4. The web page is developed using HTML, and the graphs
are drawn using JavaScript based Rickshaw [154] interactive time-series graph,
which is based on D3 [155] document manipulating library. The dashboard is
hosted on the Apache web server on the controller. The Resource Monitor on
controller gets monitoring information from the connected BBU(s) every second
and passes through to the dashboard.

Although OAI may not have all required functionalities, one may develop ex-
tra functionalities or alter existing code to adapt it to their requirements. The
author has implemented a light monitoring functionality into OAI that sends mon-
itoring information periodically (every second) to the Resource Monitor on the
controller for further analysis and decision making, using the protocol described

86

in Chapter 3. Moreover, the Resource Monitor receives monitoring information
from the MAC scheduler of the OAI [156] [157]. For demonstrating the func-
tions of the implemented MAC scheduler, the author has gathered observational
results from OAI, received from the MAC scheduler. The implemented MAC
layer of OAI calculates the required amount of resource blocks for the user before
resource allocation based on MAC layer parameters such as the buffer size [156].
However, the MAC layer may or may not be able to allocate the required amount
of resources based on the available resources [156] [157].

The conducted experiment contains two UEs connected to the Mobile Cloud
over the OAI wireless network. The User0 streams a video from the mobile cloud
while User1 accesses Facebook servers on the internet using it’s Android appli-
cation. To make the analysis fair, the author has considered only the allocation
iterations that allocate resources to both UEs at the same time on the downlink.
This analysis shows probabilities of getting a specific number of resource blocks
at a given allocation round, comparing the required and the allocated number of
resource blocks. The figure 6.5 shows the probability mass function of allocated
resource block amounts. The figure indicates that User0 gets larger amounts of
resource blocks more often than User1 and that User1 often get a smaller amount
of resources allocated more often than the User0. This is because User0 trans-
fers a larger amount of data continuously when streaming video, but User1 only
transfers small web requests and responds from Facebook servers. This claim
may be further clarified by the Gaussian Kernel Density Estimation (KDE) that
is conducted in figure 6.7 to further demonstrate the trend. The figure 6.6 shows
that User0 gets a larger amount of resources allocated overall when both UEs are
transferring data at the same time.

Figure 6.8 and figure 6.10 shows that User0 requires larger amounts of re-
source blocks at a given time for the same above reason, in comparison to the
required resource blocks of User1. It is evident in figure 6.9 that User0 requires
much more resources than User1 due to the larger number of data that is trans-
ferred over the network.

Although one may require a certain number of resource blocks as mentioned
above, the MAC scheduler may or may not be able to allocate the required amount
at all times. Figure 6.11 and figure 6.14 shows that for both User0 and User1,
the required and allocated resource amount probabilities vary. Moreover, this
claim may be further clarified by the Gaussian Kernel Density Estimation (KDE)
that is conducted in figure 6.13 and figure 6.16 to further demonstrate the trends.
However, figure 6.12 and figure 6.15 depict that the MAC scheduler has a higher
probability that it may not be able to allocate the required amount of resources

87

Figure 6.5: A comparison of probabilities of both User 1 and User 2 getting a
specific number of PRBs allocated by the MAC schedular, when both users are
transferring at the same time.

sometimes, as the resources are shared with the other user.

6.2.2 Mobile Cloud
Openstack has been deployed as the cloud framework for orchestrating virtual re-
sources in the cloud. A modified version of the Android OS that runs on X86 pro-
cessor architecture has been installed in the Clone that the server side of Thinkair
runs on. Android-x86 is an open source project that has an active community that
releases x86 versions of new Android versions. However, the original version of
above OS could not be directly installed on OpenStack virtual machines due to
lack of modules and applications that are required for cloudification. Cloudifica-
tion involves adding kernel modules to the OS for utilising virtual resources that
are presented by the VM, to automate and for dynamically tailoring the VM at
runtime. With the help of the Android-x86 project community, Android-x86 OS
was modified to work with OpenStack virtual machines.

A hypervisor is a software and at times is a firmware that is used to create
virtual machines. The computer on which the hypervisor runs on is defined as
the host device. Hypervisors virtualize physical hardware resources and present

88

0 5 10 15 20 25 30
Number of Physical Resource Blocks (PRB)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

User1 Allocated ECDF
User0 Allocated ECDF

Figure 6.6: A comparison of the cumulative probabilities of User 1 and User
0 getting a specific number of PRBs allocated by the MAC schedular, when are
transferring at the same time.

them to the guest operating system that is running in the virtual machine. Such
guest operating systems running on a virtualised system need to communicate and
cooperate with the underlying hypervisors for using virtualized resources. Kernel-
based Virtual Machine (KVM) [131] is the hypervisor that the author uses that in
the prototype. KVM turns the Linux Kernel into a hypervisor. To be able to
run KVM, it requires a processor with hardware virtualization extension, which
enables full efficient virtualisation for the guest OS. KVM also falls into the Type
2 hypervisors, which is the category of hypervisors that run on a conventional
operating system rather than on bare-metal.

To be able to create Clones on OpenStack to offload tasks, a virtual machine
that runs android-x86 has to be created. At the time that the experiments were
done by the author, he was not able to create OpenStack virtual machines with
android-x86 images that came out of the box, due to its lack of modules which
enable paravirtualization, in the Linux kernel of the android-x86 OS. Virtio [158]
is a set of standards for disk and network virtualisation that are required to be
installed on OpenStack VM instance that runs on OpenStack, which enables par-
avirtualization for the VMs. Also, except for the kernel modules, the source code

89

0 5 10 15 20 25
Number of Physical Resource Blocks (PRB)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

K
e
rn

e
l
D

e
n
si

ty

User0 Allocated KDE
User1 Allocated KDE

Figure 6.7: A comparison of the gaussian Kernel Density Estimations (KDE)
showing the trends of User 1 and User 0 getting a specific number of PRBs allo-
cated by the MAC schedular, when both are transferring at the same time.

Figure 6.8: A comparison of probabilities of both User 1 and User 2 requiring a
specific number of PRBs in the MAC schedular, when both users are transferring
at the same time.

90

0 5 10 15 20 25 30
Number of Physical Resource Blocks (PRB)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

User1 Required ECDF
User0 Required ECDF

Figure 6.9: A comparison of the cumulative probabilities of User 1 and User 0
requiring a specific number of PRBs in the MAC schedular, when are transferring
at the same time.

of the Androidx86 OS has been modified to get the Clone fully functioning in
Cloud. The modifications that have been made to the Android x86 OS, during the
process of cloudification, are presented in Appendix A. However, the modifica-
tions are suggested only for Android version 4.4 and have not been tested with
other versions of the operating system.

A ready-made OpenStack VM image with all above changes has been made
available to the general public by the author 1. Nonetheless, it has been brought
to authors attention that modification mentioned above has now been adapted and
included into the main branch of the Android-x86 project, hence now one may
run the Android-x86 OS on OpenStack VMs without performing most of above
modifications.

Video Streaming with Clone

Video streaming over RTMP has been widely used today for delivering live video
streams as well as video on demand (VOD) services. In a conventional system,

1An Androidx86 VM for OpenStack was developed during the study;
https://sourceforge.net/projects/androidx86-openstack (over 4600 downloads, by 14.02.2017)

91

0 5 10 15 20 25
Number of Physical Resource Blocks (PRB)

0.00

0.05

0.10

0.15

0.20

K
e
rn

e
l
D

e
n
si

ty

User0 Required KDE
User1 Required KDE

Figure 6.10: A comparison of the gaussian Kernel Density Estimations (KDE)
showing the trends of User 1 and User 0 requiring a specific number of PRBs
allocated in the MAC schedular, when both are transferring at the same time.

a video stream is streamed from a remote server to the client/mobile device di-
rectly. Wireless networks in comparison to wired networks are unpredictable and
unstable. The stability of wireless networks depends on parameters such as the in-
terference, the distance from the mobile device to the connected base station and
congestion. Due to instabilities in the wireless network packet loss and packet re-
transmissions occur; in turn, it leads to increase in traffic in the backhaul network.

In the proposed architecture, a mobile cloud has been placed next to the BBU
pool in C-RAN, as a part of the wireless network infrastructure. Similarly to the
scenarios discussed above, one clone per each mobile subscriber will be assigned.
The mobile clone acts as a local buffer point such that, the mobile device gets
the video stream through its clone. When issues in the wireless network such as
packet loss occur, the mobile clone handles retransmissions instead of the remote
video source. In occasions where there is packet loss, RTMP packet retransmis-
sion is done by the clone instead of the remote video service provider. The above
therefore reduces the retransmission packet delay and reduces traffic in the back-
haul network. We may conclude that it separates wireless related issues from the
backhaul networks. As shown in Figure 6.17, the user uses RTMP streaming for

92

Figure 6.11: A comparison of the probabilities of User 0 requiring a specific
number of PRBs vs the probability of getting a specific number of PRBs allocated
by the MAC schedular, when User 1 and User 0 are transferring at the same time.

getting video content.
It is assumed that the mobile device requests a video from the video service

provider through its clone. The video source responds by initiating an RTMP
stream to the RTMP server running in the clone. Once the clone receives the
stream from the remote video service provider, it buffers and forwards the stream
back to the mobile device (possibly after some transcoding if needed).

When a video has been requested the remote video server start a video encoder,
which might encode the video to the requested video quality or copy the frames
as it is to the RTMP application that is setup on Nginx server. Then, it forwards
the stream to the user’s clone. Ones the clone gets the stream, the mobile RTMP
client on the mobile device may connect to it and start streaming the video.

For performing experiments, the author has used a PC with a Quad-core In-
tel(R) Core(TM) i5-2400 CPU @ 3.10GHz processing power and 4G RAM as the
remote video source and the encoder. The encoder and the video server are hosted
on the same machine. The clone is of OpenStack type flavour tiny 1, which con-
sists of 1 CPU and 512MB of RAM. The video that was being used for streaming
is a 480p video with 1508 kb/s bitrate. To emulate packet loss that may occur

93

0 5 10 15 20 25 30
Number of Physical Resource Blocks (PRB)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

User0 Required ECDF
User0 Allocated ECDF

Figure 6.12: A comparison of the cumulative probabilities of User 0 requiring a
specific number of PRBs vs the probability of getting a specific number of PRBs
allocated by the MAC schedular, when User 1 and User 0 are transferring at the
same time.

94

0 5 10 15 20 25
Number of Physical Resource Blocks (PRB)

0.00

0.05

0.10

0.15

0.20

K
e
rn

e
l
D

e
n
si

ty

User0 Allocated KDE
User0 Required KDE

Figure 6.13: A comparison of the gaussian Kernel Density Estimations (KDE)
showing the trends of User 0 requiring a specific number of PRBs vs getting a
specific number of PRBs allocated by the MAC schedular, when User 1 and User
0 are transferring at the same time.

95

Figure 6.14: A comparison of the probabilities of User 1 requesting a specific
number of PRBs vs the probability of getting a specific number of PRBs allocated
by the MAC schedular, when User 1 and User 0 are transferring at the same time.

due to wireless related issues such as congestion or interference in the wireless
network, netem [159] a network emulation tool has been used to introduce packet
loss into the wireless network in the BBU.

The figure 6.18 shows how the clone has reduced TCP retransmission traffic
in the C-RAN backhaul network. In the conventional video-streaming scenario
without a clone in place, one may observe that as the packet loss rate has been
increased the retransmission traffic has also been increased as a result of TCP re-
liable stream delivery service. However with the proposed architecture, the clone
that sits next to the BBU instead of the remote video server does retransmission of
TCP packets, so there is almost no retransmission traffic in the backhaul network.
Thence, the bandwidth of the backhaul network has been saved, as extra data other
than the original video stream has not been transferred.

6.3 Summary
This chapter introduced the prototype implementation of the system that has been
proposed in Chapter 3. The prototype integrates the mobile cloud and the C-RAN

96

0 5 10 15 20 25 30
Number of Physical Resource Blocks (PRB)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

User1 Required ECDF
User1 Allocated ECDF

Figure 6.15: A comparison of the cumulative probabilities of User 1 requiring a
specific number of PRBs vs the probability of getting a specific number of PRBs
allocated by the MAC schedular, when User 1 and User 0 are transferring at the
same time.

97

0 5 10 15 20 25
Number of Physical Resource Blocks (PRB)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
K

e
rn

e
l
D

e
n
si

ty
User1 Allocated KDE
User1 Required KDE

Figure 6.16: A comparison of the gaussian Kernel Density Estimations (KDE)
showing the trends of User 1 requiring a specific number of PRBs vs getting a
specific number of PRBs allocated by the MAC schedular, when User 1 and User
0 are transferring at the same time.

Figure 6.17: C-RAN testbed architecture for video streaming with RTMP

98

With Clone
Without Clone

5 10 15 20 25 30 35
Packet loss (%)

Retransm
ission traffi

c
(Bits/tick)

Figure 6.18: Video retransmission traffic comparison in C-RAN backhaul. With
and without Clone

through a centralised controller. The controller manages both computing, i.e.,
mobile cloud, and communication, i.e., C-RAN, resources cooperatively and/or
jointly. Thinkair framework has been adopted as the task offloading framework,
while Amarisoft and OpenAirInterface have been used to emulate the wireless
edge and core networks. OpenStack cloud platform hosts the modified Android
VMs.

99

Chapter 7

Conclusion

The resource-constrained UEs (CPU, GPU, memory, storage capacity, and bat-
tery lifetime) have become widely popular among users, mobile software and
hardware developers. The increased number of computing intensive mobile ap-
plications have driven a dramatic surge in developing new paradigms to handle
computation intensive tasks [1]. MCC [2] is an exciting new paradigm that of-
fers task offloading capabilities to mobile devices by allowing the devices to send
computationally intensive mobile tasks to a remote resourceful location to be exe-
cuted. Various MCC offloading frameworks have been developed to tackle above
issue, such as Thinkair [7]. The mobile offloading workloads generate data inten-
sive network traffic due to transferred user data and mobile code via the wireless
network. As predicted [10], the mobile traffic will increase exponentially by the
year 2020, and mobile offloading traffic may become one of the influential fac-
tors of such growth. Therefore, the future cellular infrastructures must be flexible
and reconfigurable to support simplified deployment and management of network
resources.

The BBU pool in C-RAN [11] may be realised by the VMs in data centres,
and the centralised baseband processing enables BBU to be dynamically config-
ured and shared on demand [13]. Therefore, C-RAN becomes an ideal wireless
network architecture for supporting mobile task offloading in future cellular net-
works. Due to the delay constrained nature of offloading tasks, it is beneficial to
bring computing resources as close to the user as possible [14]. Consequently,
the above reduces offloading latency when computationally intensive tasks are of-
floaded within the radio access network. Due to the reconfigurability, flexibility
and the ease of deploying services in C-RAN, the computing resource (mobile
cloud) may be introduced to the C-RAN network for reducing offloading delay,

100

and for introducing a new kind of service (mobile cloud on top of the cellular
network services) for future mobile network operators.

The newly introduced computing resources need to be managed accordingly
for utilising both network and computing resources efficiently in the operator’s
network. Therefore an architecture and a protocol for managing both computing
and communication resources for mobile task offloading need to be developed.
Although managing both computing and communication resources collectively is
an interesting area to investigate into, in this thesis the author focuses on managing
resources in the mobile cloud for delay constrained workloads such as mobile
compute task offloading.

Cloud auto-scaling [18] [20], a technique that allows dynamic reconfigurations
of cloud resources (CPU, RAM, disk), for efficient cloud resource management
per application demand. Cloud vertical scaling adds and removes resources from
existing VMs [19]. Cloud computing systems are renowned for being very com-
plex application systems consisting of various sub systems (hypervisors, host OS,
guest OS, virtual networks) [18]. Moreover, due to its complexity and other de-
pendent sub-modules, it is challenging to predict its performance for managing
mobile cloud resources efficiently. Especially when cloud resources are used for
delay-constrained applications, it is important to understand the trends in cloud
auto-scaling performances and its behaviours under various scaling scenarios for
managing resources timely.

The architecture that is proposed in Chapter 3, have introduced a new kind
of service into mobile network operator’s network. Computationally intensive
mobile tasks are offloaded to a resource-rich computing resource that is placed
alongside the BBU pool in C-RAN, for the benefit of both mobile subscribers/UEs
(e.g. energy efficiency) and the mobile network operator (e.g. new premium
price plans for new computing services). A new logical controller that receives
instantaneous monitoring information from both computing and communication
sides and makes efficient resource management decisions on both C-RAN and
mobile cloud for mobile task offloading. Such management controlling signals are
transferred using a high bandwidth and low latency wired networks. A protocol
that uses a simple unified packet header for both resource management and task
offloading has been proposed; that utilises resource monitoring and management
components in the controller. Two examples showing the working procedures has
been demonstrated to illustrate the functions of the protocol further. In Chapter 4
the author proposed an energy-efficient and network-aware offloading algorithm
that considers an offloading scenario where mobile cloud resources are placed
both at the edge (next to Wifi access points (cloudlets)) of the network as well

101

as in a public cloud (clones). The architectural changes that need to be done to
existing mobile task offloading frameworks to support above offloading scenario
have also been discussed in Chapter 3.

The author considered an MCC scenario called Cloudlet+Clone in Chapter 3,
containing a middle layer called a cloudlet layer. This cloudlet layer sits between
mobile devices and their traditional cloud infrastructure or clones. Cloudlets are
deployed next to WiFi APs and serve as a localised service point in close proxim-
ity to mobile devices to improve the performance of mobile cloud services regard-
ing response time. An offloading algorithm for deciding Whether and Where to
offload has been employed on top of the new architecture. The decision-making
takes into account the availability of two types of wireless networks, WiFi and
cellular, with the aim of saving battery life for mobile devices while satisfying
the response time constraints of applications. The author demonstrated the effi-
ciency of the proposed architecture by comparing it with conventional offloading
architectures in simulations.

When mobile computing tasks are offloaded to the mobile cloud, the mobile
cloud resources must be allocated efficiently while meeting delay constraints. Due
to the lack of studies on vertical scaling and scaling delay times in literature [20],
In Chapter 5 the author carried out an empirical analysis of cloud vertical auto-
scaling performance. The author conducted an analysis on scaling up and scaling
down performances. The analysis showed that auto-scaling performances of all
disk, CPU and RAM resources vary when scaling vertically. The results also re-
vealed that scaling time delay depends on the amount of resources that are added
or removed from the VM at each step. Furthermore, the author has approximated
a second order polynomial function for the performance results gathered, and its
coefficients have been provided for giving an insight into vertical scaling perfor-
mances. The above may help develop and evaluate future cloud vertical scal-
ing algorithms. One may conclude from the auto-scaling delay analysis that it
is necessary to analyse auto-scaling performances of each cloud platform due to
complex nature of today’s cloud systems. Moreover, knowing scaling delay time
trends help to make effective auto-scaling decisions.

The author proposed a new architecture for mobile cloud in Chapter 3, a pro-
totype of which has been developed in Chapter 6. The implementation of the
C-RAN has been carried out using both Amarisoft LTE 100 [151] commercial
software base station and the OpenAirInterface [152] open-source software base
station. The mobile cloud side consists of an OpenStack-based cloud running An-
droidx86 mobile VMs (clones) [22] developed by the author. The implementation
of the mobile cloud controller includes a resource monitor module that gets instan-

102

taneous monitoring information from both C-RAN and the mobile cloud. Due to
lack of a user-friendly monitoring dashboard to observe changes in parameters in
real-time, a monitoring dashboard has been developed. A compute manager has
also been implemented that may perform cloud auto-scaling operations on the mo-
bile cloud depending on the workload patterns detected by the resource monitor
modules.

The author’s aim for future work is to integrate the proposed coarse-grained
offloading algorithm with a VM auto-scaling algorithm from the lessons learned
from the vertical auto-scaling empirical analysis. The used energy model will be
refined, and the overhead for collecting energy consumption information will also
be evaluated. For allocating mobile cloud resources for offloading workloads,
an auto-scaling algorithm will be designed, which takes the scaling delays into
consideration. The designed algorithm will be implemented and evaluated on the
prototype in Chapter 6. Once the auto-scaling algorithm allocates resources for
computing resources, the offloading framework (the offloading algorithm) and the
resource allocation modules will be integrated together, through the implemented
mobile cloud controller. Then a system integration analysis and a task offloading
performance analysis will be carried out to demonstrate how the mobile cloud al-
locates computing resources to the incoming workloads while also meeting delay
constraints (e.g. SLA/SLO). The proposed design of the unified protocol will be
refined accordingly and comprehensively implemented, then will be used when
performing aforementioned mobile task offloading and resource allocation proce-
dures. The monitoring information that the resource monitor receives from the
software base stations will be improved, and missing monitoring functionalities
will be implemented (e.g. in OpenAirInterface). A further investigation into wire-
less resource management (e.g. BBU allocation, BBU life-cycle management)
will be carried out later for cooperative and dynamic resource management in
C-RAN with the mobile cloud.

103

Bibliography

[1] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can offload-
ing computation save energy?,” Computer, vol. 43, pp. 51 –56, april 2010.

[2] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation
offloading for mobile systems,” Mobile Networks and Applications, vol. 18,
no. 1, pp. 129–140, 2013.

[3] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud
computing: architecture, applications, and approaches,” Wireless Commu-
nications and Mobile Computing, vol. 13, no. 18, pp. 1587–1611, 2013.

[4] “Amazon elastic compute cloud (amazon ec2).” https://aws.
amazon.com/ec2. Online, accessed: 2016-05-09.

[5] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud: elas-
tic execution between mobile device and cloud,” in Proceedings of the sixth
conference on Computer systems, EuroSys ’11, (New York, NY, USA),
pp. 301–314, ACM, 2011.

[6] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in Proceedings of the 8th international conference on Mobile
systems, applications, and services, MobiSys ’10, (New York, NY, USA),
pp. 49–62, ACM, 2010.

[7] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair: Dy-
namic resource allocation and parallel execution in the cloud for mobile
code offloading,” in INFOCOM, 2012 Proceedings IEEE, pp. 945–953,
2012.

104

https://aws.amazon.com/ec2
https://aws.amazon.com/ec2

[8] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo: a computation of-
floading framework for smartphones,” in Mobile Computing, Applications,
and Services, pp. 59–79, Springer, 2012.

[9] E. Ahmed, A. Gani, M. K. Khan, R. Buyya, and S. U. Khan, “Seamless ap-
plication execution in mobile cloud computing: Motivation, taxonomy, and
open challenges,” Journal of Network and Computer Applications, vol. 52,
pp. 154 – 172, 2015.

[10] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong,
and J. C. Zhang, “What will 5g be?,” IEEE Journal on Selected Areas in
Communications, vol. 32, pp. 1065–1082, June 2014.

[11] C. Mobile, “C-ran: the road towards green ran,” White Paper, ver, vol. 2,
2011.

[12] J. Wu, “Green wireless communications: from concept to reality [industry
perspectives],” IEEE Wireless Communications, vol. 19, pp. 4–5, August
2012.

[13] J. Tang, W. P. Tay, and T. Q. S. Quek, “Cross-layer resource allocation with
elastic service scaling in cloud radio access network,” IEEE Transactions
on Wireless Communications, vol. 14, pp. 5068–5081, Sept 2015.

[14] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-
based cloudlets in mobile computing,” Pervasive Computing, IEEE, vol. 8,
no. 4, pp. 14–23, 2009.

[15] W. H. Chin, Z. Fan, and R. Haines, “Emerging technologies and research
challenges for 5g wireless networks,” IEEE Wireless Communications,
vol. 21, pp. 106–112, April 2014.

[16] C. J. Bernardos, A. de la Oliva, P. Serrano, A. Banchs, L. M. Contreras,
H. Jin, and J. C. Zuniga, “An architecture for software defined wireless net-
working,” IEEE Wireless Communications, vol. 21, pp. 52–61, June 2014.

[17] H. Ali-Ahmad, C. Cicconetti, A. de la Oliva, V. Mancuso, M. R. Sama,
P. Seite, and S. Shanmugalingam, “An sdn-based network architecture
for extremely dense wireless networks,” in Future Networks and Services
(SDN4FNS), 2013 IEEE SDN for, pp. 1–7, Nov 2013.

105

[18] Z.-H. Zhan, X.-F. Liu, Y.-J. Gong, J. Zhang, H. S.-H. Chung, and Y. Li,
“Cloud computing resource scheduling and a survey of its evolutionary ap-
proaches,” ACM Comput. Surv., vol. 47, pp. 63:1–63:33, July 2015.

[19] S. Dutta, S. Gera, A. Verma, and B. Viswanathan, “Smartscale: Automatic
application scaling in enterprise clouds,” in Proceedings of the 2012 IEEE
Fifth International Conference on Cloud Computing, CLOUD ’12, (Wash-
ington, DC, USA), pp. 221–228, IEEE Computer Society, 2012.

[20] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A review of auto-
scaling techniques for elastic applications in cloud environments,” J. Grid
Comput., vol. 12, pp. 559–592, Dec. 2014.

[21] “H2020 icirrus project - d4.3 mobile cloud networking and virtual mobile.”
http://www.icirrus-5gnet.eu. Online, accessed: 2016-09-01.

[22] “androidx86-openstack.” https://sourceforge.net/
projects/androidx86-openstack. Online, accessed: 2016-
09-01.

[23] L. Yang, J. Cao, S. Tang, T. Li, and A. T. S. Chan, “A framework for parti-
tioning and execution of data stream applications in mobile cloud comput-
ing.,” in IEEE CLOUD (R. Chang, ed.), pp. 794–802, IEEE, 2012.

[24] S. Kosta, C. Perta, J. Stefa, P. Hui, and A. Mei, “Clone2clone (c2c): Enable
peer-to-peer networking of smartphones on the cloud,” T-Labs, Deutsche
Telekom, Tech. Rep. TR-SK032012AM, 2012.

[25] K. K. Rachuri, C. Mascolo, M. Musolesi, and P. J. Rentfrow, “Sociable-
sense: exploring the trade-offs of adaptive sampling and computation of-
floading for social sensing,” in Proceedings of the 17th annual interna-
tional conference on Mobile computing and networking, MobiCom ’11,
(New York, NY, USA), pp. 73–84, ACM, 2011.

[26] S. Kosta, V. C. Perta, J. Stefa, P. Hui, and A. Mei, “Clonedoc: Exploiting
the cloud to leverage secure group collaboration mechanisms for smart-
phones,” in Proc. of IEEE INFOCOM, vol. 2013, 2013.

[27] M. Barbera, S. Kosta, J. Stefa, P. Hui, and A. Mei, “Cloudshield: Efficient
anti-malware smartphone patching with a p2p network on the cloud,” in

106

http://www.icirrus-5gnet.eu
https://sourceforge.net/projects/androidx86-openstack
https://sourceforge.net/projects/androidx86-openstack

Peer-to-Peer Computing (P2P), 2012 IEEE 12th International Conference
on, pp. 50–56, 2012.

[28] M. V. Barbera, S. Kosta, A. Mei, V. C. Perta, and J. Stefa, “Cdroid: Towards
a cloud-integrated mobile operating system,” in Proc. of IEEE INFOCOM,
vol. 2013, 2013.

[29] R. Yu, Y. Zhang, S. Gjessing, W. Xia, and K. Yang, “Toward cloud-based
vehicular networks with efficient resource management,” Network, IEEE,
vol. 27, pp. 48–55, September 2013.

[30] D. T. Hoang, D. Niyato, and P. Wang, “Optimal admission control policy
for mobile cloud computing hotspot with cloudlet,” in Wireless Communi-
cations and Networking Conference (WCNC), 2012 IEEE, pp. 3145–3149,
April 2012.

[31] D. Niyato, P. Wang, E. Hossain, W. Saad, and Z. Han, “Game theoretic
modeling of cooperation among service providers in mobile cloud comput-
ing environments,” in Wireless Communications and Networking Confer-
ence (WCNC), 2012 IEEE, pp. 3128 –3133, april 2012.

[32] A.-D. Nguyen, P. Senac, and V. Ramiro, “How mobility increases mobile
cloud computing processing capacity,” in Network Cloud Computing and
Applications (NCCA), 2011 First International Symposium on, pp. 50 –55,
nov. 2011.

[33] Y. Cai, F. Yu, and S. Bu, “Cloud radio access networks (c-ran) in mobile
cloud computing systems,” in Computer Communications Workshops (IN-
FOCOM WKSHPS), 2014 IEEE Conference on, pp. 369–374, April 2014.

[34] G. P. Perrucci, F. H. P. Fitzek, and J. Widmer, “Survey on energy con-
sumption entities on the smartphone platform,” in Vehicular Technology
Conference (VTC Spring), 2011 IEEE 73rd, pp. 1–6, 2011.

[35] L. Zhang, B. Tiwana, R. Dick, Z. Qian, Z. Mao, Z. Wang, and L. Yang,
“Accurate online power estimation and automatic battery behavior based
power model generation for smartphones,” in Hardware/Software Codesign
and System Synthesis (CODES+ISSS), 2010 IEEE/ACM/IFIP International
Conference on, pp. 105–114, 2010.

107

[36] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “Energy
consumption in mobile phones: A measurement study and implications for
network applications,” in Proceedings of the 9th ACM SIGCOMM Con-
ference on Internet Measurement Conference, IMC ’09, (New York, NY,
USA), pp. 280–293, ACM, 2009.

[37] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck, “Char-
acterizing radio resource allocation for 3g networks,” in Proceedings of
the 10th ACM SIGCOMM Conference on Internet Measurement, IMC ’10,
(New York, NY, USA), pp. 137–150, ACM, 2010.

[38] F. Qian, Z. Wang, A. Gerber, Z. Mao, S. Sen, and O. Spatscheck, “Pro-
filing resource usage for mobile applications: A cross-layer approach,” in
Proceedings of the 9th International Conference on Mobile Systems, Appli-
cations, and Services, MobiSys ’11, (New York, NY, USA), pp. 321–334,
ACM, 2011.

[39] A. Schulman, V. Navda, R. Ramjee, N. Spring, P. Deshpande,
C. Grunewald, K. Jain, and V. N. Padmanabhan, “Bartendr: A practical
approach to energy-aware cellular data scheduling,” in Proceedings of the
Sixteenth Annual International Conference on Mobile Computing and Net-
working, MobiCom ’10, (New York, NY, USA), pp. 85–96, ACM, 2010.

[40] R. Mittal, A. Kansal, and R. Chandra, “Empowering developers to estimate
app energy consumption,” in Proceedings of the 18th Annual International
Conference on Mobile Computing and Networking, Mobicom ’12, (New
York, NY, USA), pp. 317–328, ACM, 2012.

[41] J. Manweiler and R. Choudhury, “Avoiding the rush hours: Wifi energy
management via traffic isolation,” Mobile Computing, IEEE Transactions
on, vol. 11, no. 5, pp. 739–752, 2012.

[42] A. Rahmati and L. Zhong, “Context-based network estimation for energy-
efficient ubiquitous wireless connectivity,” Mobile Computing, IEEE
Transactions on, vol. 10, no. 1, pp. 54–66, 2011.

[43] M. Dong and L. Zhong, “Self-constructive high-rate system energy model-
ing for battery-powered mobile systems,” in Proceedings of the 9th Interna-
tional Conference on Mobile Systems, Applications, and Services, MobiSys
’11, (New York, NY, USA), pp. 335–348, ACM, 2011.

108

[44] V. Namboodiri and T. Ghose, “To cloud or not to cloud: A mobile device
perspective on energy consumption of applications,” in World of Wireless,
Mobile and Multimedia Networks (WoWMoM), 2012 IEEE International
Symposium on a, pp. 1–9, 2012.

[45] T.-Y. Lin, T.-A. Lin, C.-H. Hsu, and C.-T. King, “Context-aware deci-
sion engine for mobile cloud offloading,” in Wireless Communications and
Networking Conference Workshops (WCNCW), 2013 IEEE, pp. 111–116,
2013.

[46] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck, “A
close examination of performance and power characteristics of 4g lte net-
works,” in Proceedings of the 10th International Conference on Mobile
Systems, Applications, and Services, MobiSys ’12, (New York, NY, USA),
pp. 225–238, ACM, 2012.

[47] R. Wolski, S. Gurun, C. Krintz, and D. Nurmi, “Using bandwidth data to
make computation offloading decisions,” in Parallel and Distributed Pro-
cessing, 2008. IPDPS 2008. IEEE International Symposium on, pp. 1–8,
2008.

[48] L. Feeney and M. Nilsson, “Investigating the energy consumption of a
wireless network interface in an ad hoc networking environment,” in IN-
FOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings. IEEE, vol. 3, pp. 1548–1557
vol.3, 2001.

[49] Y. Wen, W. Zhang, and H. Luo, “Energy-optimal mobile application exe-
cution: Taming resource-poor mobile devices with cloud clones,” in INFO-
COM, 2012 Proceedings IEEE, pp. 2716–2720, 2012.

[50] M. Jan, M. Rabaey, and B. Nikolic, “Digital integrated circuits,” 1996.

[51] D. Kovachev, T. Yu, and R. Klamma, “Adaptive computation offloading
from mobile devices into the cloud,” in Parallel and Distributed Processing
with Applications (ISPA), 2012 IEEE 10th International Symposium on,
pp. 784–791, July 2012.

[52] H. Wu, D. Huang, and S. Bouzefrane, “Making offloading decisions resis-
tant to network unavailability for mobile cloud collaboration,” in Collab-

109

orative Computing: Networking, Applications and Worksharing (Collabo-
ratecom), 2013 9th International Conference Conference on, pp. 168–177,
Oct 2013.

[53] S. Ou, K. Yang, and L. Hu, “Cross: A combined routing and surrogate
selection algorithm for pervasive service offloading in mobile ad hoc envi-
ronments,” in Global Telecommunications Conference, 2007. GLOBECOM
’07. IEEE, pp. 720–725, Nov 2007.

[54] K. Sinha and M. Kulkarni, “Techniques for fine-grained, multi-site compu-
tation offloading,” in Cluster, Cloud and Grid Computing (CCGrid), 2011
11th IEEE/ACM International Symposium on, pp. 184–194, 2011.

[55] S. Adler, “The slashdot effect: an analysis of three internet publications,”
Linux Gazette, vol. 38, p. 2, 1999.

[56] T. Chen and R. Bahsoon, “Toward a smarter cloud: Self-aware autoscaling
of cloud configurations and resources,” 2015.

[57] “Amazon ec2 auto scaling.” https://aws.amazon.com/
autoscaling. Online, accessed: 2016-07-29.

[58] F. L. Ferraris, D. Franceschelli, M. P. Gioiosa, D. Lucia, D. Ardagna, E. D.
Nitto, and T. Sharif, “Evaluating the auto scaling performance of flexiscale
and amazon ec2 clouds,” in Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC), 2012 14th International Symposium on, pp. 423–
429, Sept 2012.

[59] X. Dutreilh, A. Moreau, J. Malenfant, N. Rivierre, and I. Truck, “From data
center resource allocation to control theory and back,” in 2010 IEEE 3rd
International Conference on Cloud Computing, pp. 410–417, July 2010.

[60] M. Maurer, I. Brandic, and R. Sakellariou, Enacting SLAs in Clouds Using
Rules, pp. 455–466. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.

[61] R. Han, L. Guo, M. M. Ghanem, and Y. Guo, “Lightweight resource scal-
ing for cloud applications,” in Cluster, Cloud and Grid Computing (CC-
Grid), 2012 12th IEEE/ACM International Symposium on, pp. 644–651,
May 2012.

110

https://aws.amazon.com/autoscaling
https://aws.amazon.com/autoscaling

[62] M. Z. Hasan, E. Magana, A. Clemm, L. Tucker, and S. L. D. Gudreddi,
“Integrated and autonomic cloud resource scaling,” in 2012 IEEE Network
Operations and Management Symposium, pp. 1327–1334, April 2012.

[63] M. Mao and M. Humphrey, “Auto-scaling to minimize cost and meet ap-
plication deadlines in cloud workflows,” in 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis (SC),
pp. 1–12, Nov 2011.

[64] “Rightscale. set up autoscaling using voting tags..” http://support.
rightscale.com/12-Guides/Dashboard_Users_Guide/
Manage/Arrays/Actions/Set_up_Autoscaling_using_
Voting_Tags/index.html. Online, accessed: 2016-07-29.

[65] B. Simmons, H. Ghanbari, M. Litoiu, and G. Iszlai, “Managing a saas ap-
plication in the cloud using paas policy sets and a strategy-tree,” in 2011
7th International Conference on Network and Service Management, pp. 1–
5, Oct 2011.

[66] J. Kupferman, J. Silverman, P. Jara, and J. Browne, “Scaling into the cloud,”
CS270-advanced operating systems, 2009.

[67] T. C. Chieu, A. Mohindra, A. A. Karve, and A. Segal, “Dynamic scaling
of web applications in a virtualized cloud computing environment,” in e-
Business Engineering, 2009. ICEBE ’09. IEEE International Conference
on, pp. 281–286, Oct 2009.

[68] S. R. Seelam, P. Dettori, P. Westerink, and B. B. Yang, “Polyglot applica-
tion auto scaling service for platform as a service cloud,” in Cloud Engi-
neering (IC2E), 2015 IEEE International Conference on, pp. 84–91, March
2015.

[69] H. C. Lim, S. Babu, J. S. Chase, and S. S. Parekh, “Automated control in
cloud computing: Challenges and opportunities,” in Proceedings of the 1st
Workshop on Automated Control for Datacenters and Clouds, ACDC ’09,
(New York, NY, USA), pp. 13–18, ACM, 2009.

[70] A. Beloglazov and R. Buyya, “Adaptive threshold-based approach for
energy-efficient consolidation of virtual machines in cloud data centers,” in
Proceedings of the 8th International Workshop on Middleware for Grids,

111

http://support.rightscale.com/12-Guides/Dashboard_Users_Guide/Manage/Arrays/Actions/Set_up_Autoscaling_using_Voting_Tags/index.html
http://support.rightscale.com/12-Guides/Dashboard_Users_Guide/Manage/Arrays/Actions/Set_up_Autoscaling_using_Voting_Tags/index.html
http://support.rightscale.com/12-Guides/Dashboard_Users_Guide/Manage/Arrays/Actions/Set_up_Autoscaling_using_Voting_Tags/index.html
http://support.rightscale.com/12-Guides/Dashboard_Users_Guide/Manage/Arrays/Actions/Set_up_Autoscaling_using_Voting_Tags/index.html

Clouds and e-Science, MGC ’10, (New York, NY, USA), pp. 4:1–4:6,
ACM, 2010.

[71] W. H. Liao, S. C. Kuai, and Y. R. Leau, “Auto-scaling strategy for amazon
web services in cloud computing,” in 2015 IEEE International Conference
on Smart City/SocialCom/SustainCom (SmartCity), pp. 1059–1064, Dec
2015.

[72] X. Dutreilh, S. Kirgizov, O. Melekhova, J. Malenfant, N. Rivierre, and
I. Truck, “Using Reinforcement Learning for Autonomic Resource Allo-
cation in Clouds: towards a fully automated workflow,” in Seventh Inter-
national Conference on Autonomic and Autonomous Systems, ICAS 2011,
pp. 67–74, IEEE, May 2011. MoVe INT LIP6.

[73] J. Rao, X. Bu, C.-Z. Xu, L. Wang, and G. Yin, “Vconf: A reinforcement
learning approach to virtual machines auto-configuration,” in Proceedings
of the 6th International Conference on Autonomic Computing, ICAC ’09,
(New York, NY, USA), pp. 137–146, ACM, 2009.

[74] E. Barrett, E. Howley, and J. Duggan, “Applying reinforcement learning
towards automating resource allocation and application scalability in the
cloud,” Concurrency and Computation: Practice and Experience, vol. 25,
no. 12, pp. 1656–1674, 2013.

[75] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani, “A hybrid reinforce-
ment learning approach to autonomic resource allocation,” in Proceed-
ings of the 2006 IEEE International Conference on Autonomic Computing,
ICAC ’06, (Washington, DC, USA), pp. 65–73, IEEE Computer Society,
2006.

[76] A. Ali-Eldin, J. Tordsson, and E. Elmroth, “An adaptive hybrid elasticity
controller for cloud infrastructures,” in 2012 IEEE Network Operations and
Management Symposium, pp. 204–212, April 2012.

[77] D. Villela, P. Pradhan, and D. Rubenstein, “Provisioning servers in the
application tier for e-commerce systems,” ACM Trans. Internet Technol.,
vol. 7, Feb. 2007.

[78] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood, “Agile dy-
namic provisioning of multi-tier internet applications,” ACM Trans. Auton.
Adapt. Syst., vol. 3, pp. 1:1–1:39, Mar. 2008.

112

[79] Q. Zhang, L. Cherkasova, and E. Smirni, “A regression-based analytic
model for dynamic resource provisioning of multi-tier applications,” in
Proceedings of the Fourth International Conference on Autonomic Comput-
ing, ICAC ’07, (Washington, DC, USA), pp. 27–, IEEE Computer Society,
2007.

[80] D. A. Menasce, L. W. Dowdy, and V. A. F. Almeida, Performance by De-
sign: Computer Capacity Planning By Example. Upper Saddle River, NJ,
USA: Prentice Hall PTR, 2004.

[81] H. C. Lim, S. Babu, and J. S. Chase, “Automated control for elastic stor-
age,” in Proceedings of the 7th International Conference on Autonomic
Computing, ICAC ’10, (New York, NY, USA), pp. 1–10, ACM, 2010.

[82] S. M. Park and M. Humphrey, “Self-tuning virtual machines for predictable
escience,” in Cluster Computing and the Grid, 2009. CCGRID ’09. 9th
IEEE/ACM International Symposium on, pp. 356–363, May 2009.

[83] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
and A. Merchant, “Automated control of multiple virtualized resources,” in
Proceedings of the 4th ACM European Conference on Computer Systems,
EuroSys ’09, (New York, NY, USA), pp. 13–26, ACM, 2009.

[84] T. Patikirikorala, A. Colman, J. Han, and L. Wang, “A multi-model frame-
work to implement self-managing control systems for qos management,” in
Proceedings of the 6th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS ’11, (New York, NY,
USA), pp. 218–227, ACM, 2011.

[85] P. Bodı́k, R. Griffith, C. Sutton, A. Fox, M. Jordan, and D. Patterson,
“Statistical machine learning makes automatic control practical for inter-
net datacenters,” in Proceedings of the 2009 Conference on Hot Topics in
Cloud Computing, HotCloud’09, (Berkeley, CA, USA), USENIX Associa-
tion, 2009.

[86] E. Kalyvianaki, T. Charalambous, and S. Hand, “Self-adaptive and self-
configured cpu resource provisioning for virtualized servers using kalman
filters,” in Proceedings of the 6th International Conference on Autonomic
Computing, ICAC ’09, (New York, NY, USA), pp. 117–126, ACM, 2009.

113

[87] G. Evensen, Data assimilation: the ensemble Kalman filter. Springer Sci-
ence & Business Media, 2009.

[88] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif, “On the use of fuzzy
modeling in virtualized data center management,” in Fourth International
Conference on Autonomic Computing (ICAC’07), pp. 25–25, June 2007.

[89] L. Wang, J. Xu, M. Zhao, Y. Tu, and J. A. B. Fortes, “Fuzzy modeling based
resource management for virtualized database systems,” in 2011 IEEE 19th
Annual International Symposium on Modelling, Analysis, and Simulation
of Computer and Telecommunication Systems, pp. 32–42, July 2011.

[90] L. Wang, J. Xu, M. Zhao, and J. Fortes, “Adaptive virtual resource man-
agement with fuzzy model predictive control,” in Proceedings of the 8th
ACM International Conference on Autonomic Computing, ICAC ’11, (New
York, NY, USA), pp. 191–192, ACM, 2011.

[91] P. Lama and X. Zhou, “Autonomic provisioning with self-adaptive neu-
ral fuzzy control for end-to-end delay guarantee,” in 2010 IEEE Interna-
tional Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, pp. 151–160, Aug 2010.

[92] Z. Gong, X. Gu, and J. Wilkes, “Press: Predictive elastic resource scal-
ing for cloud systems,” in 2010 International Conference on Network and
Service Management, pp. 9–16, Oct 2010.

[93] J. Huang, C. Li, and J. Yu, “Resource prediction based on double expo-
nential smoothing in cloud computing,” in Consumer Electronics, Commu-
nications and Networks (CECNet), 2012 2nd International Conference on,
pp. 2056–2060, April 2012.

[94] H. Mi, H. Wang, G. Yin, Y. Zhou, D. Shi, and L. Yuan, “Online self-
reconfiguration with performance guarantee for energy-efficient large-scale
cloud computing data centers,” in Services Computing (SCC), 2010 IEEE
International Conference on, pp. 514–521, July 2010.

[95] K. H. Yeung and C. W. Szeto, “On the modeling of www request arrivals,”
in Parallel Processing, 1999. Proceedings. 1999 International Workshops
on, pp. 248–253, 1999.

114

[96] M. N. A. H. Khan, Y. Liu, H. Alipour, and S. Singh, “Modeling the au-
toscaling operations in cloud with time series data,” in Reliable Distributed
Systems Workshop (SRDSW), 2015 IEEE 34th Symposium on, pp. 7–12,
Sept 2015.

[97] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces:
format+ schema,” Google Inc., White Paper, pp. 1–14, 2011.

[98] C. C. Chen, S. J. Chen, F. Yin, and W. J. Wang, “Efficient hybriding auto-
scaling for openstack platforms,” in 2015 IEEE International Conference
on Smart City/SocialCom/SustainCom (SmartCity), pp. 1079–1085, Dec
2015.

[99] A. Y. Nikravesh, S. A. Ajila, and C. H. Lung, “Towards an autonomic
auto-scaling prediction system for cloud resource provisioning,” in 2015
IEEE/ACM 10th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, pp. 35–45, May 2015.

[100] A. A. D. P. Souza and M. A. S. Netto, “Using application data for sla-
aware auto-scaling in cloud environments,” in Modeling, Analysis and Sim-
ulation of Computer and Telecommunication Systems (MASCOTS), 2015
IEEE 23rd International Symposium on, pp. 252–255, Oct 2015.

[101] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the cloud
using predictive models for workload forecasting,” in Cloud Computing
(CLOUD), 2011 IEEE International Conference on, pp. 500–507, July
2011.

[102] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao, “Energy-
aware server provisioning and load dispatching for connection-intensive
internet services,” in Proceedings of the 5th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI’08, (Berkeley, CA,
USA), pp. 337–350, USENIX Association, 2008.

[103] A. Chandra, W. Gong, and P. Shenoy, “Dynamic resource allocation for
shared data centers using online measurements,” in Proceedings of the 2003
ACM SIGMETRICS International Conference on Measurement and Mod-
eling of Computer Systems, SIGMETRICS ’03, (New York, NY, USA),
pp. 300–301, ACM, 2003.

115

[104] S. Khatua, A. Ghosh, and N. Mukherjee, “Optimizing the utilization of
virtual resources in cloud environment,” in 2010 IEEE International Con-
ference on Virtual Environments, Human-Computer Interfaces and Mea-
surement Systems, pp. 82–87, Sept 2010.

[105] S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction models for
adaptive resource provisioning in the cloud,” Future Gener. Comput. Syst.,
vol. 28, pp. 155–162, Jan. 2012.

[106] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek, “Adaptive resource
provisioning for read intensive multi-tier applications in the cloud,” Future
Gener. Comput. Syst., vol. 27, pp. 871–879, June 2011.

[107] E. Caron, F. Desprez, and A. Muresan, “Pattern matching based forecast of
non-periodic repetitive behavior for cloud clients,” J. Grid Comput., vol. 9,
pp. 49–64, Mar. 2011.

[108] E. Caron, F. Desprez, and A. Muresan, Forecasting for Cloud computing
on-demand resources based on pattern matching. PhD thesis, INRIA, 2010.

[109] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: Elastic resource
scaling for multi-tenant cloud systems,” in Proceedings of the 2Nd ACM
Symposium on Cloud Computing, SOCC ’11, (New York, NY, USA),
pp. 5:1–5:14, ACM, 2011.

[110] C. Qu, R. N. Calheiros, and R. Buyya, “A reliable and cost-efficient auto-
scaling system for web applications using heterogeneous spot instances,” J.
Netw. Comput. Appl., vol. 65, pp. 167–180, Apr. 2016.

[111] O. Biran, D. H. Lorenz, E. Reichstein, and A. Weit, “Cloud services bro-
kering for elastic workloads,” in Proceedings of the 8th ACM International
Systems and Storage Conference, SYSTOR ’15, (New York, NY, USA),
pp. 24:1–24:1, ACM, 2015.

[112] E. D. Coninck, T. Verbelen, B. Vankeirsbilck, S. Bohez, P. Simoens,
and B. Dhoedt, “Dynamic auto-scaling and scheduling of deadline con-
strained service workloads on iaas clouds,” Journal of Systems and Soft-
ware, vol. 118, pp. 101 – 114, 2016.

116

[113] R. Poddar, A. Vishnoi, and V. Mann, “Haven: Holistic load balancing and
auto scaling in the cloud,” in 2015 7th International Conference on Com-
munication Systems and Networks (COMSNETS), pp. 1–8, Jan 2015.

[114] J. Jiang, J. Lu, G. Zhang, and G. Long, “Optimal cloud resource auto-
scaling for web applications,” in Cluster, Cloud and Grid Computing (CC-
Grid), 2013 13th IEEE/ACM International Symposium on, pp. 58–65, May
2013.

[115] E. Campos, R. Matos, P. Maciel, A. Pereira, and F. Souza, “Stochastic
modeling of auto scaling mechanism in private clouds for supporting per-
formance tuning,” in Systems, Man, and Cybernetics (SMC), 2015 IEEE
International Conference on, pp. 109–114, Oct 2015.

[116] M. Sides, A. Bremler-Barr, and E. Rosensweig, “Yo-yo attack: Vulnerabil-
ity in auto-scaling mechanism,” in Proceedings of the 2015 ACM Confer-
ence on Special Interest Group on Data Communication, SIGCOMM ’15,
(New York, NY, USA), pp. 103–104, ACM, 2015.

[117] Z. A. Baig, S. M. Sait, and F. Binbeshr, “Controlled access to cloud re-
sources for mitigating economic denial of sustainability (edos) attacks,”
Computer Networks, vol. 97, pp. 31 – 47, 2016.

[118] Y. W. Ahn, A. M. K. Cheng, J. Baek, M. Jo, and H. H. Chen, “An auto-
scaling mechanism for virtual resources to support mobile, pervasive, real-
time healthcare applications in cloud computing,” IEEE Network, vol. 27,
pp. 62–68, September 2013.

[119] N. Kumar, K. Kaur, A. Jindal, and J. J. Rodrigues, “Providing healthcare
services on-the-fly using multi-player cooperation game theory in inter-
net of vehicles (iov) environment,” Digital Communications and Networks,
vol. 1, no. 3, pp. 191 – 203, 2015.

[120] V. Vijayakumar, V. Neelanarayanan, M. Parekh, and B. Saleena, “Big data,
cloud and computing challenges designing a cloud based framework for
healthcare system and applying clustering techniques for region wise diag-
nosis,” Procedia Computer Science, vol. 50, pp. 537 – 542, 2015.

[121] B. Xu, L. Xu, H. Cai, and L. Jiang, “Architecture of m-health monitoring
system based on cloud computing for elderly homes application,” in Enter-
prise Systems Conference (ES), 2014, pp. 45–50, Aug 2014.

117

[122] S. Poorejbari and H. Vahdat-Nejad, “An introduction to cloud-based per-
vasive healthcare systems,” in Proceedings of the 3rd International Con-
ference on Context-Aware Systems and Applications, ICCASA ’14, (ICST,
Brussels, Belgium, Belgium), pp. 173–178, ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering), 2014.

[123] T. C. Lin, M. Y. Pai, C. L. Chen, and C. C. Chen, “Load-balanced cloud
service interface for the hiba mobile cloud environment,” in Consumer
Electronics - Taiwan (ICCE-TW), 2015 IEEE International Conference on,
pp. 360–361, June 2015.

[124] S. Qureshi, T. Ahmad, K. Rafique, and S. ul islam, “Mobile cloud com-
puting as future for mobile applications - implementation methods and
challenging issues,” in Cloud Computing and Intelligence Systems (CCIS),
2011 IEEE International Conference on, pp. 467 –471, sept. 2011.

[125] D. Chang, G. Xu, L. Hu, and K. Yang, “A network-aware virtual machine
placement algorithm in mobile cloud computing environment,” in Wireless
Communications and Networking Conference Workshops (WCNCW), 2013
IEEE, pp. 117–122, 2013.

[126] C. M. S. Magurawalage, K. Yang, L. Hu, and J. Zhang, “Energy-efficient
and network-aware offloading algorithm for mobile cloud computing,”
Computer Networks, vol. 74, Part B, pp. 22 – 33, 2014. Special Issue on
Mobile Computing for Content/Service-Oriented Networking Architecture.

[127] “Ieee standard for local and metropolitan area networks part 16: Air inter-
face for fixed and mobile broadband wireless access systems amendment 2:
Physical and medium access control layers for combined fixed and mobile
operation in licensed bands and corrigendum 1,” IEEE Std 802.16e-2005
and IEEE Std 802.16-2004/Cor 1-2005 (Amendment and Corrigendum to
IEEE Std 802.16-2004), pp. 01–822, 2006.

[128] J. Power and Associates, “2012 u.s. wireless smartphone and traditional
mobile phone satisfaction studies,” 2012.

[129] S. Abolfazli, Z. Sanaei, M. Alizadeh, A. Gani, and F. Xia, “An experimental
analysis on cloud-based mobile augmentation in mobile cloud computing,”
Consumer Electronics, IEEE Transactions on, vol. 60, pp. 146–154, Febru-
ary 2014.

118

[130] H. Niksic, “Gnu wget,” available from the master GNU archive site prep.
ai. mit. edu, and its mirrors, 1998.

[131] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the linux
virtual machine monitor,” in Proceedings of the Linux Symposium, vol. 1,
pp. 225–230, 2007.

[132] R. Hat, “libvirt: The virtualization api.” Online, accessed: 2016-05-09.

[133] N. Gray, “Performance of java middleware-java rmi, jaxrpc, and corba,”
2005.

[134] H. Wu, Q. Wang, and K. Wolter, “Methods of cloud-path selection for of-
floading in mobile cloud computing systems,” in Cloud Computing Tech-
nology and Science (CloudCom), 2012 IEEE 4th International Conference
on, pp. 443–448, 2012.

[135] Y. Wu, G. Min, and A. Al-Dubai, “A new analytical model for multi-hop
cognitive radio networks,” Wireless Communications, IEEE Transactions
on, vol. 11, pp. 1643–1648, May 2012.

[136] D. Merkel, “Docker: Lightweight linux containers for consistent develop-
ment and deployment,” Linux J., vol. 2014, Mar. 2014.

[137] S. C. Cripps, RF Power Amplifiers for Wireless Communications, Second
Edition (Artech House Microwave Library (Hardcover)). Norwood, MA,
USA: Artech House, Inc., 2006.

[138] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algorithm
for mobile computing,” Wireless Communications, IEEE Transactions on,
vol. 11, no. 6, pp. 1991–1995, 2012.

[139] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya,
“Cloudsim: a toolkit for modeling and simulation of cloud computing en-
vironments and evaluation of resource provisioning algorithms,” Software:
Practice and Experience, vol. 41, no. 1, pp. 23–50, 2011.

[140] R. Buyya, R. Ranjan, and R. Calheiros, “Modeling and simulation of scal-
able cloud computing environments and the cloudsim toolkit: Challenges
and opportunities,” in High Performance Computing Simulation, 2009.
HPCS ’09. International Conference on, pp. 1–11, 2009.

119

[141] W. Yuan and K. Nahrstedt, “Energy-efficient soft real-time cpu scheduling
for mobile multimedia systems,” SIGOPS Oper. Syst. Rev., vol. 37, pp. 149–
163, Oct. 2003.

[142] W. Yuan and K. Nahrstedt, “Energy-efficient cpu scheduling for multimedia
applications,” ACM Trans. on Computer Syst, vol. 24, pp. 292–331, 2005.

[143] D. Puthal, B. P. S. Sahoo, S. Mishra, and S. Swain, “Cloud computing fea-
tures, issues, and challenges: A big picture,” in Computational Intelligence
and Networks (CINE), 2015 International Conference on, pp. 116–123, Jan
2015.

[144] J. Rao, X. Bu, C. Z. Xu, and K. Wang, “A distributed self-learning approach
for elastic provisioning of virtualized cloud resources,” in 2011 IEEE 19th
Annual International Symposium on Modelling, Analysis, and Simulation
of Computer and Telecommunication Systems, pp. 45–54, July 2011.

[145] S. He, L. Guo, Y. Guo, C. Wu, M. Ghanem, and R. Han, “Elastic applica-
tion container: A lightweight approach for cloud resource provisioning,” in
2012 IEEE 26th International Conference on Advanced Information Net-
working and Applications, pp. 15–22, March 2012.

[146] A. Ali-Eldin, M. Kihl, J. Tordsson, and E. Elmroth, “Efficient provisioning
of bursty scientific workloads on the cloud using adaptive elasticity con-
trol,” in Proceedings of the 3rd Workshop on Scientific Cloud Computing
Date, ScienceCloud ’12, (New York, NY, USA), pp. 31–40, ACM, 2012.

[147] M. Mao and M. Humphrey, “A performance study on the vm startup time
in the cloud,” in Cloud Computing (CLOUD), 2012 IEEE 5th International
Conference on, pp. 423–430, June 2012.

[148] Y. Anzai, Pattern Recognition & Machine Learning. Elsevier, 2012.

[149] K. Chen and R. Duan, “C-ran: The road towards green ran, white paper
version 2.5, china mobile research institute, oct. 2011.”

[150] S. Bhaumik, S. P. Chandrabose, M. K. Jataprolu, G. Kumar, A. Muralidhar,
P. Polakos, V. Srinivasan, and T. Woo, “Cloudiq: A framework for pro-
cessing base stations in a data center,” in Proceedings of the 18th Annual
International Conference on Mobile Computing and Networking, Mobicom
’12, (New York, NY, USA), pp. 125–136, ACM, 2012.

120

[151] “Amarisoft lte 100.” http://www.amarisoft.com/index.php?
p=amarilte. Online, accessed: 2016-09-01.

[152] “Openairinterface - 5g software alliance for democratising wireless inno-
vation.” http://www.openairinterface.org. Online, accessed:
2016-09-01.

[153] “sflow real-time.” http://sflow-rt.com. Online, accessed: 2016-
07-29.

[154] “Rickshaw - a javascript toolkit for creating interactive time series graphs.”
http://code.shutterstock.com/rickshaw. Online, accessed:
2016-07-29.

[155] “D3 data driven documents.” https://d3js.org. Online, accessed:
2016-07-29.

[156] A. Bhamri, N. Nikaein, F. Kaltenberger, J. Hamalainen, and R. Knopp,
“Three-step iterative scheduler for qos provisioning to users running multi-
ple services in parallel,” in 2014 IEEE 79th Vehicular Technology Confer-
ence (VTC Spring), pp. 1–5, May 2014.

[157] A. Bhamri, N. Nikaein, F. Kaltenberger, J. Hmlinen, and R. Knopp, “Pre-
processor for mac-layer scheduler to efficiently manage buffer in modern
wireless networks,” in 2014 IEEE Wireless Communications and Network-
ing Conference (WCNC), pp. 1544–1549, April 2014.

[158] R. Russell, “virtio: towards a de-facto standard for virtual i/o devices,”
ACM SIGOPS Operating Systems Review, vol. 42, no. 5, pp. 95–103, 2008.

[159] S. Hemminger et al., “Network emulation with netem,” in Linux conf au,
pp. 18–23, Citeseer, 2005.

121

http://www.amarisoft.com/index.php?p=amarilte
http://www.amarisoft.com/index.php?p=amarilte
http://www.openairinterface.org
http://sflow-rt.com
http://code.shutterstock.com/rickshaw
https://d3js.org

Appendices

122

Appendix A

Cloudifying Android OS: Android
on OpenStack

The author performed following modifications sequentially to create a Mobile
Clone that runs on OpenStack clouds.

1. Clone/download the Android version 4.4 from the Android-x86 project repos-
itory (http://www.android-x86.org).

2. Insert VirtIO modules into the kernel by amending following lines at the
end of the ”kernel/arch/x86/configs/android-x86 defconfig” and
”kernel/arch/x86/configs/android-x86 64 defconfig” files.

/ / Enab le v i r t u a l i s a t i o n d r i v e r s
CONFIG VIRT DRIVERS=Y
/ / Enab le v i r t i o g e n e r i c d r i v e r s
CONFIG VIRTIO=y
/ / s u p p o r t f o r PCI p a s s t h r o u g h
CONFIG VIRTIO PCI=y
/ / s u p p o r t f o r memory mappted v i r t i o
CONFIG VIRTIO MMIO=m
/ / s u p p o r t f o r dynamic memory a l l o c a t i o n .
CONFIG VIRTIO BALLOON=m
/ / s u p p o r t f o r v i r t u a l b l o c k d e v i c e s f o r Qemu−KVM
CONFIG VIRTIO BLK=y
/ / s u p p o r t f o r v i r t i o v i r t u a l n e tw o r k s
CONFIG VIRTIO NET=m

123

/ / s u p p o r t f o r r i n g b u f f e r s
CONFIG VIRTIO RING=m
/ / s u p p o r t f o r c o n s o l e
CONFIG VIRTIO CONSOLE=m
/ / s u p p o r t f o r v i r t u a l random number g e n e r a t o r ha rdware
CONFIG HW RANDOM VIRTIO=m

3. Android-x86 does not detect virtual block devices that are presented to the
virtual machine by Virtio. To fix the issue, the author changed the follow-
ing code snippet in the Android source code in the file ”bootable/newin-
staller/initrd/init”.

Change line from;

for device in $ROOT:-/dev/sr* /dev/[hs]d[a-z]* /dev/mmcblk*; do

to;

for device in $ROOT:-/dev/sr* /dev/[hsv]d[a-z]* /dev/mmcblk*; do

4. Include SSH software libraries to the OS. Add following packages to PROD-
UCT PACKAGES in device/generic/x86/packages.mk.

ssh−keygen
s s h d c o n f i g
s t a r t −s s h

5. Force gets the DHCP lease from the DHCP server and starts SSH daemon
at the startup by altering following lines at the end of the file ”device/gener-
ic/x86/init.sh”.

/ / Fo rce dhcp on e t h 0 i n t e r f a c e .
n e t c f g e t h 0 dhcp
/ / S t a r t SSH daemon a t s t a r t u p .
s t a r t −s s h

6. Recompile Android with all above changes.

7. Install androidx86 OS onto a disk storage (DVI, vmdk, qcow2).

8. To fetch the nova keypair, create fetchsshkeys script with following lines in
/data/local/.

124

#−−−
! / sys t em / b i n / sh # use bourne s h e l l

F e t c h p u b l i c key u s i n g HTTP
cd / d a t a
wget h t t p : / / 1 6 9 . 2 5 4 . 1 6 9 . 2 5 4 / l a t e s t / meta−d a t a / p u b l i c−keys /
0 / openssh−key
Add new r e c i e v e d key t o l o c a l a u t h o r i z e d key l i s t
c a t / d a t a / openssh−key > / d a t a / s s h / a u t h o r i z e d k e y s

S e t p e r m i s i o n o f f i l e so t h a t owner may r e a d and w r i t e
chmod 0600 / d a t a / s s h / a u t h o r i z e d k e y s
R e s e t s e c u r i t y c o n t e x t
r e s t o r e c o n / d a t a / s s h / a u t h o r i z e d k e y s

Remove t e m p o r a r y key f i l e
rm / d a t a / openssh−key
#−−−

Then make the script executable by,

chmod 755 /data/local/fetchsshkeys

9. Execute the script at the startup of the VM. Add the following lines to the
/etc/init.sh file.

F e t c h s s h keys from o p e n s t a c k m e t a d a t a s e r v i c e .
/ d a t a / l o c a l / f e t c h s s h k e y s

10. Enable Android GUI

Amend keyword ”nomodeset” into the main GRUB record.

11. The image is ready to be used to create OpenStack VMs.

125

Appendix B

List of Publications

• C. S. Magurawalage, Kun Yang, Ritosa Patrik, Michael Georgiades, and
Kezhi Wang. A Resource Management Protocol for Mobile Cloud Using
Auto-Scaling. available in https://arxiv.org/abs/1701.00384.

• T. Li, C. S. Magurawalage, K. Wang, K. Xu, K. Yang, H. Wang. On ef-
ficient offloading control in cloud radio access network with mobile edge
computing, submitted to IEEE ICDCS 2017

• K. Wang; K. Yang; C. S. Magurawalage, ”Joint Energy Minimization and
Resource Allocation in C-RAN with Mobile Cloud,” in IEEE Transactions
on Cloud Computing , vol.PP, no.99, pp.1-1 doi: 10.1109/TCC.2016.2522439

• K. Wang, K. Yang, X. Wang and C. S. Magurawalage, ”Cost-effective re-
source allocation in C-RAN with mobile cloud,” 2016 IEEE International
Conference on Communications (ICC), Kuala Lumpur, 2016, pp. 1-6.

• C. S. Magurawalage, K. Yang, L. Hu, J. Zhang, Energy-efficient and network-
aware offloading algorithm for mobile cloud computing, Computer Net-
works, Volume 74, Part B, 9 December 2014, Pages 22-33, ISSN 1389-1286

126

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Contributions

	2 Literature Review
	2.1 Introduction
	2.2 Architecture
	2.2.1 Mobile Cloud
	2.2.2 Wireless Resource Management

	2.3 Energy Models
	2.4 Mobile Task Offloading
	2.5 Cloud Resource Management

	3 Architecture and Protocol
	3.1 Introduction
	3.2 System Architecture
	3.2.1 Benefits

	3.3 Mobile Cloud Controller
	3.3.1 Mobile Device
	3.3.2 BBU Pool
	3.3.3 Mobile Cloud

	3.4 The clone and communication offloading
	3.5 Mobile Task Offloading Architecture
	3.5.1 Features of the proposed task offloading architecture
	3.5.2 Components
	3.5.3 Scenarios

	3.6 Unified Protocol
	3.6.1 Protocol Data Unit format
	3.6.2 Working Procedure

	3.7 Summary

	4 Network-Aware Offloading Algorithm
	4.1 Introduction
	4.2 Algorithm
	4.2.1 Estimating the response time and energy for local execution
	4.2.2 Estimating the response time and energy for offloading
	4.2.3 Decision-making

	4.3 Performance evaluation and analysis
	4.3.1 Simulation set-up
	4.3.2 Response time
	4.3.3 Energy consumption

	4.4 Summary

	5 A Performance Analysis of Cloud Vertical Scaling for Delay Constrained Applications
	5.1 Introduction
	5.2 Cloud Performance Analysis
	5.3 Summary

	6 Prototype
	6.1 User Equipment Side
	6.2 Infrastructure Side
	6.2.1 C-RAN
	6.2.2 Mobile Cloud

	6.3 Summary

	7 Conclusion
	Appendices
	A Cloudifying Android OS: Android on OpenStack
	B List of Publications

