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Abstract  

Selective encryption masks all of the content without completely hiding it, as full encryption would do at a cost 

in encryption delay and increased bandwidth. Many commercial applications of video encryption do not even 

require selective encryption, because greater utility can be gained from transparent encryption, i.e. allowing 

prospective viewers to glimpse a reduced quality version of the content as a taster. Our lightweight selective 

encryption scheme when applied to scalable video coding is well suited to transparent encryption. The paper 

illustrates the gains in reducing delay and increased distortion arising from a transparent encryption that leaves 

reduced quality base layer in the clear. Reduced encryption of B-frames is a further step beyond transparent 

encryption in which the computational overhead reduction is traded against content security and limited 

distortion. This spectrum of video encryption possibilities is analyzed in this paper, though all of the schemes 

maintain decoder compatibility and add no bitrate overhead as a result of jointly encoding and encrypting the 

input video by virtue of carefully selecting the entropy coding parameters that are encrypted. The schemes are 

suitable both for H.264 and HEVC codecs, though demonstrated in the paper for H.264. Selected Content 

Adaptive Binary Arithmetic Coding (CABAC) parameters are encrypted by a lightweight Exclusive OR 

technique, which is chosen for practicality.   

Keywords B-frames; scalable video streaming; reduced encryption; selective encryption; transparent encryption 

1 Introduction 

Scalable video communication [1] is a way of simplifying adaptation both to network 

conditions and capacity as well as to display device resolution and processing speed. As this 

paper discusses, by virtue of its layered structure it naturally supports transparent encryption, 

a form of encryption that hides access to high-quality enhancement layers (ELs) but allows a 

lower quality version of an original video stream to be visible. The Joint Video Team of the 

ITU-T VCEG and the ISO/IEC MPEG has standardized Scalable Video Coding (SVC), 

which is an extension of the H.264/Advanced Video Coding (AVC) standard [2]. H.264/SVC 

[3] permits the transmission and decoding of partial bit-streams to provide video services at 

various temporal, spatial and/or quality resolutions, which itself requires encryption 
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transparency to allow access to those devices that decompose a bitstream. At the same time 

H.264/SVC preserves a reconstruction quality that is high enough relative to the rate of the 

partial bit-streams. Because the bitrate overhead for spatial scalability compared to single-

layer H.264/AVC is at most 10% [3], commercial developers can be more confident that 

adopting this technology will not seriously handicap their application.  

The trend towards scalable video has been maintained in the High Efficiency Video 

Coding (HEVC) standard codec [4] with two scalable extensions [5] [6] available by July 

2014. However, because of their limited deployment at the time of this research, this paper is 

confined to H.264/SVC. Nonetheless, because the encryption method analyzed in the paper 

operates on the Context Adaptive Binary Arithmetic Coding (CABAC) form of entropy 

coding (refer to Section 2.3) it can be converted [7] to work on HEVC. Despite positive SVC 

developments, including a software-based multi-endpoint video conferencing system [8], 

commercial developers must also be confident that the confidentiality of their content is 

protected on the public Internet, due to the risk [9] of illegal copying and redistribution. 

Hence, the topic of this paper is transparent encryption [10], which, as mentioned, is a 

commercially-aware form of encryption that heightens a viewer’s interest with a debased 

quality version of the original but dampens any appetite for pirated copies because of the 

difficulty of extracting a high-quality version of the original video. Notice that transparent 

encryption is also known as perceptual encryption, with an analysis of such single-layer 

schemes and their desirable features in [11]. As remarked in [12], commercial applications of 

video communication often rely on encryption of a video stream that is only viewable by the 

end user upon payment for a decryption key.  A variety of business models are opened up by 

the possibility of transparent encryption. For example, it offers a means to promote a service 

to viewers currently not subscribed to a service. Thus, if a viewer is interested in viewing a 

sports TV channel but is unsure if its contents meets their needs then a lower-quality version 

can be seen for free. If that viewer decides that they do wish to subscribe then they can 

purchase the key(s) to ELs. In fact, a differentiated service could be offered which allows 

grades of service according to which access keys are purchased.  The business model exploits 

the perceived desire to view higher quality (Signal-to-Noise Ratio (SNR)) video, which is not 

distorted in any way. Different spatial (or temporal) resolution videos could be sent as tasters 

but these are intended to be at a lower SNR to satisfy the business model. It is anticipated that 

a viewer would soon become tired of watching video with frames marred by any distortion, 

given the right subscription levels. Thus, even if a viewer set the decoder to extract only the 
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base layer, it would remain distorted at whatever spatial or temporal scalability the viewer 

had the rights to. 

The scalable structure of an H.264/SVC video stream is contained within the Network 

Abstraction Layer (NAL) unit headers that are output by an encoder to encapsulate the 

compressed content. Subsequently Media Aware Network Elements (MANEs), which are 

usually untrusted devices because of the expense and/or inconvenience of making them 

tamper proof, are able to discard those partial bitstreams that are unsuitable for a target 

device, without the need to decrypt the compressed content.  Consequently, full encryption 

including NAL unit headers within scalable video streams is actually harmful to scalability 

[12]. In our solution to this requirement, we also provide adaptation-transparency, allowing 

scalable layers to be discarded by a MANE if they are not needed by a target display device.  

This further type of transparency is achieved by ensuring that the encryption is decoder 

format compliant, because a MANE must partially decode the stream in order to discard parts 

of it. By confining our encryption to the entropy coding stage of a codec, the bitstream 

statistical characteristics are able to be maintained. By also choosing to encrypt only those 

elements that during entropy coding will not impact the statistics, the bitstream remains the 

same size. There is a further form of transparency that allows a transcoder to alter the 

quantization parameter (QP) and subsequently re-scale the transform coefficients to reduce 

quality. This form of transparency may even be provided for scalable video that already can 

have quality scalability built into its ELs. The reason for this variant of transparent encryption 

is that the quality of the layers can be retrospectively adjusted by a transcoder. As the syntax 

elements selected in our encryption schemes do not include the QP, transcoder transparency 

follows.  

For some legal and military applications, full encryption without regard to the internal 

structure of the compressed video contents is desirable but for other commercial applications, 

in order to meet real-time constraints, selective (partial)  or transparent encryption of the 

video [13] may well be more appropriate, depending on the application.  Notice that the set of 

selective encryption (SE) methods contains transparent encryption as a subset. Provided the 

compressed video statistics are maintained then there will be no bandwidth overhead arising 

from SE, unlike its full encryption counterpart. Likely commercial applications of transparent 

encryption are pay-per-view videos, pay-TV, and video-on demand. In terms of content 

protection, transparent encryption is preferable to hardware scrambling, many types of which 

have been broken.   It should be borne in mind that encryption is the first line of content 

defense but it is not the only means: compliancy rules within device licenses [9] are one form 
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of legal protection; and fingerprinting of video (embedding of identifiers into the compressed 

bitstream) [14] is a means of tracing and revoking illicit copies [15]. In fact, in [9], pushing 

the argument further, encryption is identified as another means by which content access can 

be licensed. Without encryption there might be nothing to license. 

Due also to a requirement to display video at rates of 60 frames per second (fps) or more 

for higher-definition video, processing of live and interactive video streams needs to be 

expedited. By reducing the amount of data to encrypt, SE reduces the computation involved 

at the video server. All the same, not all types of SE can be recommended, which is why the 

form of encryption should be carefully considered both in respect to confidentiality but also 

in respect to various side effects that may arise.  For example, in [16] the method of [17] for 

scalable video ELs, which scrambles the scan pattern of transform coefficients prior to 

encryption, is said to introduce about 17% bitrate overhead because the statistical properties 

of the scan order are disrupted. 

In commercial applications, transparent encryption offers a means to promote a service to 

viewers currently not subscribed to that service. Transparent encryption enables soft video 

degradation but should not permit access to a better quality version of the video through a 

replacement or reconstruction attack [18] or another such attack depending on the form of 

SE. If a viewer is interested in viewing a sports channel but is unsure if its contents meet their 

needs then a lower-quality, preview version can be viewed. If that viewer decides that they do 

wish to subscribe then they can purchase the full-resolution service, whereupon, after 

authentication, keys for individual layers or a single key [19] for all scalable layers can be 

supplied, provided, of course, that suitable mechanisms are in place to prevent access to 

unauthorized layers. (Further discussion of key management is outside the scope of this paper 

but is surveyed in [20].) If an end user is to judge the suitability of video for their use without 

accessing the full-quality version, one way to do this is to permit access to a distorted view. 

That objective is only achievable if the encrypted video bitstream is decoder format 

compliant, because otherwise the debased version of the video cannot be de-compressed.  

As remarked earlier, the means of transparent encryption developed in this paper is 

transferable to HEVC by the method proposed in [7], which concerns how to convert single-

layer H.264/AVC with CABAC-based SE into the HEVC version of CABAC. A further 

problem, that encryption must maintain the CABAC context in order to preserve decoder 

format compliance, is also resolved in [7]. Other H.264 SE methods may not be convertible 

either for theoretical or practical reasons. For example, it appears that the method of [16], 

which does not encrypt CABAC parameters but instead pseudo-randomly permutes the sub-
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blocks of H.264/AVC macroblocks (MBs), may encounter an implementation problem if 

transferred to HEVC. This is because of the great variety of sub-block configurations [21] 

that are employed in HEVC, raising the practical difficulty of devising a permutation scheme 

for all of the configurations that can be selected from in rate-distortion analysis. 

Prior work by the authors of this paper includes the original analysis of a SE scheme in 

[22], elaborated in [23], and extended to include key management in [24], none of which 

work included the further adaptation to transparent encryption or the second scheme of this 

paper. In this paper we propose two schemes: the first is transparent encryption in which we 

only encrypt the syntax elements of the ELs but the base layer (BL) remains unencrypted as a 

low quality ‘taster’ of the high-quality video. Essentially, the first scheme employed is 

similar to that of [18] by the authors but extended to include transparency. In the second 

reduced encryption scheme, by way of comparison, we transparently encrypt only bi-

predictive B-frames to evaluate the impact on transparency. That is we evaluate whether 

transparent encryption of only B-frames is able to provide a ‘taster’ of a video stream 

contents. This procedure leaves anchor and reference I- and P-frames, which can either by 

fully encrypted or encrypted by some other SE method. In other words, this paper is neutral 

on the treatment of frame types other than B-frames, though there is a discussion of various 

possibilities in Section 3.3. In both these methods, the decoder bitstream remains format 

compliant. Other work by us has confirmed the resistance to perceptual attacks [25] and 

examined to what extent the core SE technique can tolerate errors in a wireless channel [26]. 

The main part of this paper is the evaluation of the practical effectiveness of the two schemes. 

For that reason, a simplified block coding method of encryption was used in the interests of 

low complexity and speed of encryption. This eXclusive OR (XOR) scheme replaced the 

more normal encryption by a stream cipher or a block cipher acting in a stream mode. This 

met the intention of the research in this paper of reducing encryption delay and increasing the 

utility of the encryption by means of transparent encryption, at a cost of “reduced encryption” 

as it were. Overall in order of computation time, timings demonstrate that full SE is the most 

costly, the transparent encryption scheme decreases the computational overhead further, 

while the reduced encryption scheme based on encrypting only B-frames takes up the least 

time. It should be mentioned that the computational overhead of encryption compared to 

encoding the video without encryption remains small for all encryption schemes.  

The rest of this paper is organized as follows. An overview of scalable encoding with 

H.264/SVC, as well as aspects of CABAC and related research on transparent encryption is 

presented in Section 2. The following Section 3 gives a concise description of the proposed 
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transparent encryption scheme, before evaluating its impact in terms of video quality and 

computational overhead in Section 4. Finally, the conclusion in Section 5 discusses the 

findings from this research and the directions of future research. 

2 Context 

2.1 H.264/SVC essentials 

H.264/SVC is composed, Figure 1, of a BL, which is compatible with single-layer 

H.264/AVC, and one or more ELs, which provide video scalability in up to three dimensions 

(i.e., time, quality and resolution). For example, in Figure 1 for a device to receive Common 

Intermediate Format (CIF) (352 × 288 pixels/frame) resolution it would need to receive the 

BS and EL 1, which would also result in an increase in frame rate.  This is because, in SVC, 

all upper layers of SVC video are predicted from lower layers, Figure 2, as well as through 

inter and intra coding within a layer, as appropriate. An important feature of Figure 1 is that a 

receiving terminal can control what which layers it receives through feedback to the MANE. 

Therefore, in a transparent encryption scheme a user at a terminal can request just the base 

layer as a taster before purchasing a key and requesting one or more ELs. 

Figure 1 illustrates the situation where the temporal and spatial resolutions change but the 

quality or video distortion remains fixed, as determined by the Quantization Parameter (QP). 

In Figure 2, the BL consists of key pictures at a lower frame rate, at a lower picture 

resolution, and with reduced quality, while ELs 1 and ELs in Figure 2 have predictively 

coded frames with the same picture resolution but at different frame rates and SNR. EL 1 

utilizes predictively-coded P-frames, whereas EL 2 also includes bi-predictively-coded B-

frames. 
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Fig. 1. Overview of H.264/SVC with example layers  

 

Fig. 2. Combined scalability (temporal, spatial, SNR) 

 

Any encryption of SVC that accomplishes adaption transparency must act in such a way 

that an untrusted MANE or other MPEG-21 adaptation engine [27] can access a partial 

bitstream may be accomplished by not encrypting essential syntax elements of the 

H.264/SVC VCL contained in NAL units. These include the NAL unit headers and slice 

headers, elements of which in [28] are also available as an initialization vector (IV) for a 
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stream cipher (or a block cipher in a chained mode such as Advanced Encryption Standard 

(AES) Cipher Feedback Mode (CFB) acting as a self-synchronizing stream cipher). (IVs are 

normally sent as plaintext because they do not contain information available to an attacker.) 

The SVC standard also forbids four specific markers appearing in byte-aligned positions. As 

it is possible [28] that these could arise as a result of encryption, alternative codewords, again 

available from the SVC specification to avoid emulating the markers, can be inserted. 

Additionally encryption should not result in the last byte of a VCL NAL unit being 0x00, 

which is accomplished by slight modification of the last byte of a VCL NAL [29]. Notice that 

conversely to our approach, it is also possible [30] to force an H.264/SVC decoder to reject 

NAL units that are encrypted by employing an unrecognized SVC NAL unit type.  

 

2.2. Overview of SVC with CABAC 

There are two entropy coding implements in H.264/SVC one is based on variable length 

coding (VLC) and the other is based on binary arithmetic coding (BAC) both of which are 

applied in a context adaptive way, known as Context Adaptive Variable Length Coding 

(CAVLC) [31] and the other as CABAC [13] (refer to Section 1). The main difference 

between the two forms of entropy coding is that additional syntax elements are coded with 

CABAC such as: the intra prediction modes; the MB type; reference picture indexes; and 

motion vectors. Run-length coding of transform coefficient residuals is exchanged for map 

coding, which defines Non-Zero (NZ) coefficient positions in 4×4 block of coefficients. 

CABAC [13], which obtains up to a 15% higher compression ratio than CAVLC, is also 

computed easily on standard to high-complexity decoder devices. Conversely, CAVLC 

adaptively codes only the residual transform coefficients [32] and will not be considered 

further herein. 

CABAC coding consists of three steps (refer to Figure 3). The first step is called the 

binarization and it is the primary step for the CABAC coder.  It converts all non-binary 

syntax elements into bin strings. Each bin string has a bit position (a bin) which is transferred 

to either the regular coding mode decision or to the by-pass coding mode. The bins of regular 

coding mode are forwarded to the second processing step, context modeling (CM), and 

subsequent to that in the third step the regular BAC engine further codes the stream. The bins 

of the bypass coding mode do not enter into the CM stage and are straight away transferred to 

the bypass BAC engine for the purpose of coding. These bins are associated with the sign 

data of motion vector differences (MVDs) and the sign data of transform coefficient (TCs) 

levels or for the less important bins which are assumed to be distributed uniformly. In the 
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proposed scheme, this module is chosen to encrypt the syntax elements of the video because 

by doing so any impact on CM is avoided. It is important to avoid that impact, as otherwise 

the coding statistics would be altered, which could increase the bitrate overhead. 

 

 

Fig. 3. Top-level view of CABAC coding, CMD = Coding Mode Decision 

 

2.3 Converting H.264 CABAC to HEVC CABAC methods 

The encryption method employed by us, described in detail in prior publications such as 

[24] by us, in this paper relies on CABAC [33] rather than the alternative Context Adaptive 

Variable–Length Coding (CAVLC) entropy coding mode, which has reduced time 

complexity but also has  around 12% greater bitrate overhead.  CABAC can be relatively 

easily computed on medium- to high-performance decoder devices and is used for encoding a 

broader range of syntax elements than CAVLC. CABAC is designed to better exploit the 

features of Non Zero (NZ) coefficients in zigzag scanning and replaces run-length coding by 

significant maps coding which specifies the position of Non-Zero (NZ) TCs within a 4×4 

block. 

To understand the way the H.264 CABAC to HEVC conversion process works requires an 

explanation or digression, which might be passed over in a first reading. In both H.264 and 

HEVC the m-ary arithmetic coder of an H.263 encoder is replaced by a binary arithmetic 

coder with the intention of improving the computational performance of context adaptive 

coding. To achieve this, the quantized transform residuals as well as other non-binary syntax 

elements are binarized to form binstrings. H.264 CABAC offers four basic binarization 

codes, which can be combined to form binstrings. For example, the absolute level of non-zero 

quantized coefficients (NZs) is coded by a concatenation of truncated unary code and 0th 

order Exp-Golomb code (EG0). However, only the output of some of the basic codes is 
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suitable for encryption, namely those codes that do not vary the length of a binstring, as after 

arithmetic coding these codes will not lead to an increase in bitrate. The codewords output 

after entropy coding of the binstrings must also be valid if format compliance at the decoder 

is to be maintained. Which of the codes is employed in binarization is dependent on the 

underlying probability distribution of the elements it is applied to. For example, the fixed 

length code (one of the four basic coders) is suitable for input with a near Uniform 

probability distribution. While restricting the selection of binstrings of those elements that 

preserve the bitrate and maintain format compliance, it is also advisable to maintain the 

average percentage of bits that can be selectively encrypted. However, HEVC CABAC adds 

another binarization code to the four supplied with H.264, namely the truncated Rice code 

which is more suitable for the distribution of HEVC residuals.  Even then, one of the 

binstring’s output as a truncated Rice code with static context-p is not suitable for encryption 

with the result that the number of different  binstring types that can be encrypted (the 

encryption space) is no longer a power of two, i.e. is non-dyadic. The conversion method of 

[17] allows the encryption space to be converted back to being dyadic. Once the encryption 

space for the truncated Rice codes with context-p is converted into dyadic form the data can 

then be encrypted by AES in CFB mode. (CFB mode is normally employed to use the block 

encryption method of AES.)  

 

2.4 Other approaches to transparent encryption 

In [34] the BL at a lowered quality acts as the preview layer along with some of the ELs. 

However, simply encrypting the remaining ELs through the AES means that the stream is not 

decoder format compliant. As [34] also concedes, the implication is a new file format for the 

encrypted ELs.  For single-layer HEVC, the authors of [35] flip the sign bits of luminance 

transform coefficients (TCs) up to a given percentage of such bits. One issue that is reported 

is that the number of non-zero TCs varies between intra-coded frames and inter-coded 

frames, implying that for high QP (low quality) as few as three bits per frame are altered in 

the preview version. This appears to make the method vulnerable to a replacement attack of 

the encrypted bits to recover a higher quality version. A further disadvantage of [35] is 

mentioned by the authors: at very low QPs, i.e. very high quality, the transform step is more 

often skipped resulting in a reduction in distortion because there are fewer TC signs to 

encrypt. Conversely, in our method, encryption of ELs increases the distortion at lower QPs 

because more detail is encrypted.  Also for single-layer HEVC [36] “bundles in”, i.e. adds to 

the method of [35], with the intention of improving the security and increasing distortion. The 
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main difference with earlier methods is encryption of the transform skip bit, which is carried 

in Picture Parameter Set (PPS) NAL unit packets. However, there is a risk of increasing the 

bitrate by sending more PPS packets than are needed, especially as in some implementations 

an additional redundant PPS packet may be transmitted to increase roubustness. 

Adaptation transparency is a form of transparency that does not offer perceptual 

encryption but does allow MANEs to process the bitstream. In [28], parts of the compressed 

bitstream not required for adaptation transparency are encrypted. However, this entails 

including an IV within the bitstream whenever encryption takes, place resulting in an 

overhead of around 8.5 bytes for every NAL so encrypted. In [37], a NAL encryption method 

for adaptation transparency was also presented. As in [33], an encrypted NAL is signaled by 

means of an unspecified NAL type, causing a decoder not in decryption mode to simply drop 

that NAL. The method selects which NALs can be encrypted in this way and also checks that 

reserved header bytes do not inadvertently appear in the stream after encryption. 

Unfortunately, an IV is still required, which for the selection of NALs used resulted in a 

bitrate overhead of up to 3.4%. 

3 Proposed schemes 

3.1 Encryption method 

The CABAC encoder has a good number of parameters or bin strings that can be 

encrypted, for example (in no particular order): MB types; Coded Block Flag; TCs; MVDs; 

delta quantization parameters (dQPs); and the numerical signs of TCs and MVDs. The 

distinction of this research from others is the choice of parameters selected for encryption 

according to the requirements of maintaining decoder format compliance and the need to not 

to disturb the statistical characteristics of the final compressed video bitstream so that the bit 

rate remains unchanged. The former requirement implies that the encryption does not violate 

H.264/SVC standardization, as it is the bitstream that is standardized. The latter requirement 

results in no change to the streaming rate, which means that there is no increase in latency, 

which would impact upon real-time applications of video, especially interactive applications. 

Thus, we encounter three bin-strings that satisfy the purpose of SE, these are as follows:  

• Signs of the MVDs; 

• Signs of the NZ-TC levels; and 

• Signs of the texture values; 
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The sign bits of MVDs have two interpretations depending on whether   0 < |MVD| < 9 or 

|MVD| ≥ 9. The sign of the NZ-TC levels and/or ‘texture’, i.e. quantized TCs, is present when 

the absolute value of the syntax element is greater than 14.   

Because the data in the selected bins, namely the signs of various syntax elements, are 

uniformly distributed, encryption of the selected bins does not affect the compression ratio. 

The selection of signs is also decoder format compliant as the bits encrypted may flip their 

values but do not assume disallowed values and are not encrypted if they are not present. 

Their encryption also does not alter the arithmetic coder’s context models in any way because 

the data selected for encryption bypasses context modeling. Moreover, the chosen bins 

impact upon the three scalabilities of SVC video, because in SVC every layer potentially 

requires changes to the NZ-TC level signs and MVD signs.  

 

3.2 Scheme 1 

In Scheme 1, as mentioned in Section 1, XOR encryption technique is exploited for 

encrypting the H.264/SVC stream rather than employ AES, possibly using CFB mode. The 

motivation is to improve the speed of computation and to reduce the implementation 

complexity.  The technique simply XORs the sign bit of MVDs, TCs and texture binstrings 

with a changing secret value. Because we chose to encrypt the CABAC parameters, so 

encryption is applied to the binstrings and not to the output bitstream. To preserve 

transparency, the encryption technique is only applied to the SVC ELs. In order to generate a 

sequence of random values, a pseudo-random number generator [38] is initiated with a seed 

value. The seed value, in effect is input to the generation of the initial key for the selective 

encryption of the stream and it is this key which must be securely distributed to the receiver. 

The next paragraph contains details of the seed, key and random number length, as well as 

the method of random number generation. Figure 4 summarizes the XOR technique to 

produce the encrypted binstrings which form part of the output SVC bitstream when 

appropriately combined with the other parts of the output from the CABAC coder. Table 1 

contains a summary of Scheme 1 and Scheme 2 to aid the following discussions. 
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Fig. 4. Encryption of selected syntax elements using XOR method. 

Table 1. Summary of schemes 1 and 2. As Scheme 2 only differs in one way from scheme 1, its difference is 

only recorded. 

 

Scheme 1 Value 

Codec H.264/SVC 

Encryption stage CABAC entropy coding 

Encrypted parameters MVD signs, NZ-TC level signs, signs of TCs 

Frame types applied to I, P, B 

Part of SVC applied to ELs 

Encryption method XOR 

Pseudo-Random Number Generator (PRNG) Yarrow  [38] 

Seed size of PRNG 128 bits 

Block size of PRNG 160 bits 

PRNG sequence length 2128 bits 

Scheme 2 Value 

Frame types applied to B 

 

 

In the evaluation of Section 4, a seed of n =128 bits was used in the pseudo-random 

number generator. This results in a sequence of length 2128 bits before the sequence repeats 

itself, which should be enough for most selective encryption purposes. The resulting key size, 

arising after input of the seed, by default in the Yarrow algorithm [38] is 160 bits. The initial 

seed is not applied directly but is combined with a pool of ‘entropy’ via the SHA-1 

cryptographic hash function. (Entropy is formed from prior unpredictable inputs such as 

computer mouse movements.) It is the key size that defines the block size used in each XOR 

operation. Moreover, a threshold or generator gate, set at 10 by default, causes the Yarrow 
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key to be reset. Because no new source of entropy is introduced into the key [38], there is no 

need to send the new key to the receiver. Yarrow uses each key as input to the Triple Data 

Encryption algorithm, which applies the Data Encryption Standard cipher algorithm to each 

block of input bits. The block of bits taken from the random number stream in Fig. 4 are 

XORed with an 160-bit block taken from the concatenation of successive groups of three sign 

bits, i.e. approximately 53 groups at a time.  Recall from Section 3.1 that the input sign bits 

are Uniformly distributed and, hence, the concatenation of these bits is itself Uniformly 

distributed. In other words, the input before encryption is already randomized, though not 

encrypted. The XOR encryption cannot be broken by trivial mathematical means if the seed 

is not reused, which is the case in the Yarrow random number generator, but it is obviously 

not as secure as (say) AES encryption. As the intention in this paper is to optimize 

computational speed rather than security, the XOR method matches our needs. It should be 

noted that other choices of random number generator can also be substituted for the one used 

in the tests, such as the later Fortuna algorithm from the same researchers as in [38], the main 

difference from the Yarrow algorithm being the method of initial entropy generation. 

 

3.3 Scheme 2 

As mentioned in Section 1, selective encryption of only I- and P-frames is possible [24] in 

order bring performance benefits such as reduced bitrate overhead and rapid computation. In 

[39] there is an analysis of a system for H.264/AVC  I-frame only SE which also brings low 

computation, low bitrate overhead and decoder format compliance after encryption, though 

no analysis of the video distortion or image structural distortion arising from partial 

encryption was made in [39]. As another example employing CABAC-based encryption in 

[40] only I- and P-frames are selectively encrypted.  The underlying motivation behind such 

schemes is that even if the bitstream is captured by packet ‘sniffer’ software or stored by 

some means at the receiver device successful decoding of the P- or B-frame compression data 

depends on being able to decode the corresponding I-frame within a Group of Pictures (GOP) 

[41]. Therefore, in [39] P- and B-frame data are sent in the clear. However, if it is possible to 

only encrypt B-frames, as in our experimental scheme, then the computational and bitrate 

overhead is much reduced. This is because, as these frames are computationally efficient by 

reason of bi-prediction, their data are much reduced in comparison to I- and P-frames, in fact 

approximately only one the size of I-frames in earlier single-layer codecs [41].  

In scheme 2, we present the effect of employing the same SE method as in scheme 1, but 

only encrypting B-frames.  As mentioned in Section 1, the encryption treatment of I- and P-
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frames is left open, though clearly if their compressed data is sent in the clear the possibility 

of recreating the selectively encrypted B-frames exists, as B-frames are predicted from I- and 

P-frames. As an example of that treatment, full encryption could be applied to I- and P-

frames while still making savings from not fully encrypting the whole of the stream. Or, if the 

possibility of de-streaming by means of a stream recorder or stream ‘ripper’ software could 

be discounted then the I- and P-frame parts of the compressed bitstream could be sent in the 

clear. Unfortunately, there are many de-streaming software programs available such as 

‘Download Studio’ or ‘Orbit Downloader’. If the receiver streaming platform is not 

controlled by the user for example if it is a set-top box then it may be possible to relax 

encryption of I- and P-frames. The possibility of stream-casting by capture from a display 

screen (the so-called analog hole) and re-compressing the stream is unattractive if there is 

partial encryption of the B-frames. 

4 Evaluation 

4.1 Scheme 1 
 

In this Section, Scheme 1 is evaluated in which the BL is not encrypted and ELs are 

selectively encrypted, thus resulting in transparent selective encryption (TSE). The video 

configuration is summarized in Table 2. We used the reference implementation of 

H.264/SVC, which is Joint Scalable Video Model (JSVM) 9.18 in SVC mode. Common 

Intermediate Format (CIF) (352 × 288 pixels/frame) was employed in the interests of 

speeding up testing. Three hundred frames of the well-known Foreman sequence were chosen 

for encryption. The sequence was configured as CIF @ 30 Hz, with standard 4:2:0 sampling 

and a variable bit-rate (VBR). The frame format was IBBP… that is a periodic intra-coded 

frame every 15 frames, with intermediate bi-predicted B-frames and one –way predicted P-

frames.   

Table 2. Summary of video configuration used in both scheme 1 and 2.  

 

Setting Parameter 

Codec implementation JSVM 9.18 

Format CIF 

Frame rate 30 

Group-of-Pictures IBBP…. 

Refresh period 15 

Chroma sampling 4:2:0 
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Number of SNR layers 4 

Encoding method VBR 

QPs tested 8, 24, 48 

 

 

A BL (layer 0) and the three ELs (layers 1-3) were employed. Figure 5(a), (c) and (e) 

show a sample frame from the sequence without encryption for the VBR video, while Figure 

5(b), (d) and (f) demonstrate the visual impact of SE upon the same frame when 

reconstructing all four layers including a transparent BL (labeled as Scheme-1 TSE in Figure 

5).  Objective video distortion is reported in decibels (dB) for Peak Signal to Noise Ratio 

(PSNR) [42] for the YUV signals (compared to the uncompressed video) and structural 

distortion through the Structural SIMilarity (SSIM) index [43], which is intended to better 

capture Quality of Experience (QoE) than PSNR, with a real-valued score ranging from 0 to 

1. Notice that the effect of combining the transparent base-layer with encrypted ELs, in Fig. 5 

and later illustrations, is a tendency to leave some planar areas of a frame relatively 

untouched. This is because SNR ELs concentrate on higher spatial frequency detail. It is this 

detail in the ELs that is separately selectively encrypted. Despite the presence of base layer 

material in the reconstructed frames, it seems unlikely that a viewer would pay to view the 

distorted four-layer versions of the frames. For example, the expression of the Foreman 

cannot be seen in Fig. 5 (b), even though this is the main part of the semantic content in the 

frame shown. Equally, a home viewer is unlikely to want to use up access network 

bandwidth, for which there may be a fee, to basically watch the background in Fig. 5 (b). 

 

 
(a) Frame 93: Encoded Foreman video (Original) 

[Y=36.2, U=41.9, V=43.1] dB 
SSIM = 0.9325 

 
(b) Frame 93: Encoded video with Scheme 1- 

TSE [Y=20.2, U=32.8, V=32.8] dB 
SSIM = 0.5973 
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(c)  Frame 27:Encoded Football video (Original) 

 [Y=35.2, U=41.1, V=41.9] dB 
SSIM = 0.9389 

    
(d)  Frame 27:Encoded video with Scheme 1- 

TSE [Y=17.7, U=24.3, V=29.9] dB 
SSIM = 0.3777 

 
(e) Frame 157: Encoded Crew video (Original) 

              [Y=36.2, U=41.2, V=39.7] dB 
SSIM = 0.9034 

 
(f) Frame 157: Encoded video with Scheme 1- 

TSE  [Y=19.3, U=29.3, V=26.3] dB 
                SSIM = 0.3274 

 

 

The encoding timings for seven reference video sequences with and without Scheme 1 

TSE, were assessed. From Figure 6, across seven reference video sequences VBR encoded, 

the additional encoding delay from applying SE was found to be on average 21.6 ms over 

each sequence, which is a small though noticeable delay. (The delay was evaluated by simply 

subtracting the encoding times without and with SE.) The selection of seven sequences is 

intended to show any content dependency as reflected in the encoding complexity. 

  
Fig. 6. Impact on encoding delay (ms) of Scheme 1-TSE at QP=24 

Fig. 5. Impact on video distortion and structural distortion of Scheme 1 SE at QP = 28 
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As a point of comparison, the PSNR and SSIM of the seven sequences were evaluated by 

luminance (Y) and the two color components (U and V). Though luminance is generally 

thought to be most important in visual recognition, the color components can enable 

recognition. In Tables 3 and 4, ‘plain’ refers to the unencrypted version of the video 

sequence, while ‘SE’ refers to the Scheme 1 of Figure 6. From Table 3, PSNR luminance is 

seriously degraded after TSE in all videos except perhaps ‘City’ and ‘Crew’, which have 

‘poor’ quality close to unwatchable. The impact of TSE is less severe upon the chrominance 

components but as most information results from the luminance signal, this is not such a 

weakness if the luminance signal is distorted.  In fact, SSIM is helpful in showing the overall 

poor visual appearance that results from applying TSE, for example when comparing ‘Crew’ 

and ‘City’ with ‘Foreman’. 

Table 3. Objective video distortion (PSNR) (dB) comparing ‘plain’ (unencrypted) and Scheme 1-TSE. Four 

layers, one transparent BL and three encrypted ELs, were encoded and then decoded to form the resulting 

comparison sequence with the raw YUV input sequence. 

 

Video: 

Plain 

PSNR(Y) 

SE  

PSNR(Y) 

Plain 

PSNR(U) 

SE  

PSNR(U)  

Plain 

PSNR(V) 

SE  

PSNR(V) 

Bus 33.8127 7.5672 41.4443 27.1731 42.6340 28.8414 

City 35.6983 21.7449 43.6323 37.4172 44.6468 39.0928 

Crew 36.0810 19.2596 41.2232 29.2787 39.7137 26.3325 

Football 35.0203 10.9995 40.9714 16.0459 41.8172 22.9100 

Foreman 36.0996 9.8684 41.9013 25.2492 42.9718 24.4196 

Mobile  33.1513 8.5743 37.4355 15.0468 36.3129 13.0113 

News 38.7243 8.5743 42.6260 15.0468 42.6783 13.0113 

 

Table 4. Structural distortion (SSIM) comparing ‘plain’ (unencrypted) and Scheme 1-TSE. Four layers, one 

transparent BL and three encrypted ELs were encoded and then decoded in order to form the comparison 

sequence with the raw YUV input sequence. 

 

 
Video: 

Plain 
SSIM  

SE 
SSIM 

Bus 0.9505 0.2121 

City 0.9399 0.3569 

Crew 0.9034 0.3274 

Football 0.9389 0.3777 

Foreman 0.9325 0.5973 

Mobile 0.9573 0.3698 
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News 0.9630 0.4800 

 

The video distortion and structural distortion resulting from the transparent scheme were 

also assessed at various other configurations of the QP. Recall that the QP setting controls the 

coarseness of quantization [41], with the range of H.264’s QP being 0 to 51 [44], with higher 

values representing lower video distortion. Again four layers were encoded by H.264/SVC 

but the base layer was left unencrypted. By way of visual comparison, Figure 7 shows the 

visual quality after reconstructing all four layers of the reference ‘Foreman’, ‘Football’ and 

‘Crew’ sequences after employing transparent SE (TSE). An interesting feature of this 

comparison is that the very high quality version of QP = 8 appears to suffer more visual 

distortion as a result of applying SE to the ELs, which would otherwise contribute more to 

the quality of the visual appearance. Though this form of SE has comparatively little impact 

upon the chrominance, the degradation of the luminance is significant and is reflected in the 

SSIM score. Because there is greater detail in higher quality video, it is expected that the 

encrypted ELs will introduce more distortion into a recombined video frame. In fact, the 

lower quality, higher QP, example frames are largely included to show in a comprehensive 

manner the distortion across the quality range. Thus, as QP = 48 is near the bottom of the 

available quality range for H.264/SVC, it is highly unlikely that anyone would pay to view 

QP = 48 video, as it is of too low a quality. 

 

 

(a)Frame 46: Encoded 
video (Original) 
[Y=36.3, U=41.9, 
V=43.1] dB 
SSIM = 0.9325 

(b)Frame 46: Encoded 
TSE video at QP=8 
 [Y=15.5, U=30.7, 
V=30.7] dB 
SSIM = 0.4478 

(c)Frame 46: Encoded 
TSE video at QP=24 
 [Y=19.7, U=32.2, 
V=32.1] dB 
SSIM = 0.546 

(d)Frame 46: Encoded 
TSE video at QP=48 
 [Y=19.4, U=34.0, 
V=33.8] dB 
SSIM = 0.6490 

 
(e)Frame 54: Encoded 
video (Original) 
 [Y=35.2, U=41.1, 
V=41.9] dB 

(f)Frame 54: Encoded 
TSE video at QP=8 
 [Y=16.2362, U=21.2499, 
V=27.8507] dB 

(g)Frame 54: Encoded 
TSE video at QP=24 
[Y=17.5851, U=24.1631, 
V=30.1460] dB 

(h)Frame 54: Encoded 
TSE video at QP=48 
 [Y=17.8748, U=26.3620, 
V=33.2655] dB 
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SSIM = 0.9389 SSIM = 0.3621 SSIM = 0.3745 SSIM = 0.486 

 
(i)Frame 55: Encoded 
video (Original) 
 [Y=36.2, U=41.2, 
V=39.7] dB 
SSIM = 0.9034 

 

 
(j)Frame 55: Encoded 
TSE video at QP=8 
 [Y=15.5, U=26.2, 
V=22.8] dB 
SSIM = 0.3904 

 
(k)Frame 55: Encoded 
TSE video at QP=24 
 [Y=18.0, U=28.2, 
V=25.1] dB 
SSIM = 0.4692 

 
(l)Frame 55: Encoded 
TSE video at QP=48 
 [Y=19.5, U=30.1, 
V=26.4] dB 
SSIM = 0.5603 

 

Figure 8 compares the encoding times (i.e. video encoding with encryption) from applying 

Scheme 1 to the trial sequences. When the QP value is reduced and, thus, the video quality is 

improved, the amount of data to encode and encrypt increases. Poor-quality video at QP = 48 

takes less time to encode and encrypt compared to encoding at QP = 24 or very high quality 

at QP=8. Taking QP=24 at near broadcast quality the extra latency introduced by including 

Scheme 1 encryption is no more than 40 ms.  

 
Fig. 8. Impact on encoding delay (ms) of Scheme 1 by QP compared to encoding without SE at QP =24 

 

Tables 5 and 6 make PSNR and SSIM comparisons for the set of QP configurations, after 

applying Scheme 1 to the four-layer SVC video sequences. At interesting feature of these 

results is that both for PSNR and SSIM the video or structural distortion respectively is not 

consistent with the QP. This is especially the case for QP=8 when comparing the luminance 

(Y) PSNR values with those at the other two QPs or the overall SSIM values. The reason for 

Fig. 7. Impact on video distortion and structural distortion of Scheme 1 i.e. SE with transparency 
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this is the same as mentioned for Fig. 7 and elsewhere, namely that as more detail is held in 

the ELs of lower QP (higher quality) video, encrypting of the ELs results in greater 

distortion, thus improving the relative quality of encrypted higher QP (lower quality) video.  

Thus if improved video or structural distortion is set by configured by changing the QP this 

does not result in a better SE experience for the viewer. This is a beneficial feature, as 

otherwise Scheme 1 would be quality dependent and reducing distortion would increase the 

risk of content extraction in some way. As in Table 3, in Table 5 the chrominance distortion 

is small but again, as Table 6 confirms, the overall impact of Scheme 1 is large, implying that 

the chrominance impact is relatively small.  

Table 5. Objective video distortion (PSNR) (dB) for Scheme 1, SE with transparency at various QP. Four layers, 

one BL and three ELs, were encoded and then decoded to form the comparison sequence with the raw YUV 

input sequence. 

Video: PSNR at QP=8 PSNR at QP=24 PSNR at QP=48 

Bus Y=14.7065, U=32.1326, 

V=33.5629 

Y=15.4475, U=32.8441, 

V=34.3368 

Y=14.1103, U=34.1708, 

V=36.3819 

City Y=21.0067, U=36.0487, 

V=37.6778 

Y=21.6377, U=37.0483, 

V=38.7481 

Y=21.9428, U=41.0066, 

V=42.2481 

Crew Y=15.4863, U=26.2483, 

V=22.8910 

Y=18.0550, U=28.1828, 

V=25.0462 

Y=19.5161, U=30.0286, 

V=26.3879 

Football Y=16.2362, U=21.2499, 

V=27.8507 

Y=17.5851, U=24.1631, 

V=30.1460 

Y=17.8748, U=26.3620, 

V=33.2655 

Foreman Y=15.4781, U=30.6830, 

V=30.6885 

Y=19.7152, U=32.1339, 

V=32.1232 

Y=19.3802, U=34.0413, 

V=33.8755 

Mobile Y=16.0873, U=24.0464, 

V=22.4842 

Y=16.4235, U=24.6036, 

V=23.2733 

Y=13.9330, U=23.2713, 

V=21.7817 

News Y=14.5198, U=22.5164, 

V=26.2998 

Y=15.4924, U=22.7608, 

V=26.5983 

Y=10.6712, U=21.3146, 

V=24.8221 

 

Table 6. Structural distortion (SSIM) comparing ‘plain’ (unencrypted) and SE Scheme 1 at various QP. Four 

layers, one transparent BL and three encrypted ELs were encoded and then decoded in order to form the 

comparison sequence with the raw YUV input sequence. 

  

Video: 
Plain 
SSIM  

SSIM at 
QP=8 

SSIM at 
QP=24 

SSIM at 
QP=48 

Bus 0.9505 0.1796 0.2039 0.4635 

City 0.9399 0.3293 0.3490 0.4109 

Crew 0.9034 0.3904 0.4692 0.5603 

Football 0.9389 0.3621 0.3745 0.4860 
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Foreman 0.9325 0.4478 0.5460 0.6490 

Mobile 0.9573 0.3206 0.3547 0.4017 

News 0.9630 0.4303 0.4782 0.5456 

 
4.2 Scheme 2 
 

In Scheme 2 reduced selective encryption (RSE) is applied in which computation time is 

reduced as much as possible, by transparently encrypting B-frames only according to the 

GOP configuration of Scheme 1. In other respects, the video configuration is the same as 

described for Scheme 1. Figure 9 shows Scheme 2 comparisons. 

 

 
(a) Frame 141: Encoded Foreman (Original) 

  [Y=36.2, U=41.9, V=43.0] dB 
                SSIM = 0.9325 

 
(b) Frame 141: Encoded video with RSE  

 [Y=34.7, U=40.1, V=41.4] dB 
                  SSIM = 0.7508 

 
(c)  Frame 36: Encoded Football video (Original) 

[Y=35.2, U=41.1, V=41.9531] dB 
                   SSIM = 0.9389 

    
(d) Frame 36: Encoded video with RSE      

[Y=28.7, U=35.2, V=40.1] dB 
                SSIM = 0.4046 

 
(e) Frame 107: Encoded Crew video (Original) 

[Y=36.2, U=41.2, V=39.7] dB 
SSIM = 0.9034 

 
(f) Frame 107: Encoded video with RSE 

         [Y=32.5, U=38.3, V=38.1] dB 
          SSIM = 0.5738 

 

 
Fig. 9. Impact on video distortion and structural distortion of Scheme 2-RSE at QP = 24 
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Figure 10 shows that as a result computation time is reduced compared to Scheme 1, being 

on average reduced to 17.6 ms compared to 21.6 ms for Scheme 1. Tables 7 and 8 make the 

equivalent comparison of video and structural distortion for Scheme 2, as for Scheme 1. 

Because in the test run there was no encryption of I- and P-frames, the distortions are 

numerically much less than for Scheme 1 in respect to PSNR luminance. The SSIM shows 

that structural distortion is dependent on content. For example, the structural distortion is 

numerically much less for ‘Bus’ and ‘News’ than it is for the other reference video 

sequences.  Therefore, any benefits of employing this reduced encryption scheme need to be 

carefully considered in view of the sometimes limited reduction in video quality.   

 

Fig. 10. Impact on delay of Scheme 2 ‘B-frame SE’ i.e. SE with transparency only operating on B-frames 

Table 7. Objective video distortion (PSNR) (dB) comparing ‘plain’ (unencrypted) and Scheme 2 SE. Four 

layers, one transparent BL and three encrypted ELs, were encoded and then decoded to form the resulting 

comparison sequence with the raw YUV input sequence. 
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Video: 

Plain  
PSNR(Y) 

 

SE  
PSNR(Y)  

Plain 
PSNR(U)  

SE  
PSNR(U) 

Plain  
PSNR(V) 

SE  
PSNR(V) 

Foreman 36.2649 34.7012 41.9294 40.3657 43.0567 41.4930 
City 35.6985 34.4405 43.6319 41.4848 44.6468 42.9246
Football 35.1999 28.7438 41.0895 35.2479 41.9531 40.0931
Mobile 33.3150 30.3358 37.4350 34.6155 36.3101 33.8428 
News 38.7365 35.0797 42.6317 40.3666 42.6866 41.0666 
Bus 34.0392 29.5499 41.5835 39.5326 42.8261 40.1849 
Crew 36.1534 32.4864 41.2410 38.3539 39.7444 38.0666 
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Table 8. Structural distortion (SSIM) comparing ‘plain’ (unencrypted) and RSE Scheme 2. Four layers, one 

transparent BL and three encrypted ELs were encoded and then decoded in order to form the comparison 

sequence with the raw YUV input sequence.  

Video: Plain 

SSIM 

SE 

SSIM 

Bus 0.9505 0.8712 

City 0.9399 0.3748 

Crew 0.9034 0.5738 

Football 0.9389 0.4046 

Foreman 0.9325 0.7508 

Mobile 0.9573 0.3830 

News 0.963 0.8921 

 

Figure 11 shows the visual quality after reconstructing all four layers of the reference 

‘Foreman’, ‘Football’ and ‘Crew’ video sequences after employing Scheme 2. Comparing 

Fig. 9 with Fig. 11, for QP = 24 but different frames, it can be seen that introducing encrypted 

ELs, leads to differing distortion for differing frames. As far as a viewer is concerned it is the 

combined impact on their QoE that will be affected, not whether some more details are 

visible in one particular frame rather than another. 

 

 
(a) Frame 49: Encoded 
video without SE 
 [Y=36.2, U=41.9, 
V=43.1] dB 
SSIM = 0.9325 

(b) Frame 49: Encoded  
video with RSE at 
QP=8 [Y=21.4, U=38.9, 
V=39.1] dB 
SSIM = 0.6436 

(c) Frame 49: Encoded  
video with RSE at QP=24 
[Y=26.7, U=40.1, 
V=41.4] dB 
SSIM = 0.7451

(d) Frame 49: Encoded  
video with RSE at QP=48 
[Y=23.4, U=37.7, 
V=37.3] dB 
SSIM = 0.6874 

 
(e)Frame 20: Encoded 
video without SE 
 [Y=35.2, U=41.1, 
V=41.9] dB 
SSIM = 0.9389 

(f)Frame 20: Encoded  
video with RSE at 
QP=8 [Y=20.2, U=26.3, 
V=31.4] dB 
SSIM = 0.3785 

(g)Frame 20: Encoded  
video with RSE at 
QP=24  [Y=20.8, 
U=28.6, V=33.6] dB 
SSIM = 0.408 

(h)Frame 20: Encoded  
video with RSE at 
QP=48 [Y=18.8, U=26.2, 
V=32.2] dB 
SSIM = 0.4948 
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(i)Frame 60: Encoded 
video without SE 
 [Y=36.1, U=41.2, 
V=39.7] dB 
SSIM = 0.9034 

 
(j)Frame 60: Encoded  
video with RSE at 
QP=8 [Y=21.1, U=31.7, 
V=28.4] dB 
SSIM = 0.4663 

 
(k)Frame 60: Encoded  
video with RSE at 
QP=24  [Y=25.3, 
U=35.2, V=31.9] dB 
SSIM = 0.5644 

 
(l)Frame 60: Encoded  
video with RSE at 
QP=48 [Y=22.7, U=31.8, 
V=28.4] dB 
SSIM = 0.5694 

 

Fig. 11. Impact on video distortion and structural distortion of Scheme 2 i.e. RSE with transparency 
 

For consistency with Scheme 1, Figure 12 illustrates delays from encrypting at various QP 

configurations. Again, encoding time with Scheme 2 SE at QP=8 results in the most delay, 

whereas at the low quality setting of QP = 48, the impact of SE is small.  

 
Fig. 12. Impact on encoding delay (ms) of Scheme 2 by QP compared to encoding without RSE at QP =24 
 

4.3 Comparison of both schemes 
 

From the evaluation of both schemes it is concluded that the scheme 2-RSE is more 

efficient compared to scheme 1-TSE in terms of encoding times. Figure 13 compares the 

results of both schemes and shows that the impact of RSE on the distortion of a video 

sequence is ‘sufficient’ to make it useful when streaming videos in real-time. That is to say, 

when comparing the same frames, encrypted either by Scheme 1-TSE or Scheme 2-RSE, the 

distortion appears similar to the viewer.  
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Figure 14 shows that for Scheme2 encoding time is reduced to a minimum. This makes 

Scheme 2 especially appropriate to real-time video streaming. For example, it could be 

applied to video conferencing, when encoding delay has a critical impact. 

 

 
(a) Frame 139: Encoded Foreman 

video (Original) 
 [Y=36.3, U=41.9, V=43.1] dB 

       SSIM = 0.9325 

 
(b) Frame 139:Encoded video with 

Scheme 1-TSE 
[Y=20.3, U=32.8, V=32.8] dB 
SSIM = 0.5973 

 
(c) Frame 139:Encoded video 

with Scheme 2-RSE 
 [Y=34.7, U=40.4, V=41.5] dB 

SSIM = 0.7508 

 
(d) Frame 35: Encoded Football 

video (Original) 
 [Y=35.2, U=41.1, V=41.9] dB 

SSIM = 0.9389 

 
(e) Frame 35: Encoded video with 

Scheme 1-TSE  
     [Y=17.7, U=24.3, V=29.9] dB 

SSIM = 0.3777 

 
(f) Frame 35: Encoded video with 

Scheme 2-RSE 
[Y=28.7, U=35.2, V=40.1] dB 

SSIM = 0.4046 

 
(g) Frame 105: Encoded Crew 

video (Original) 
 [Y=36.1, U=41.2, V=39.7] dB 

SSIM = 0.9034 

 
(h) Frame 105: Encoded video 

with Scheme 1-TSE 
 [Y=19.2, U=29.2, V=26.3] dB 

SSIM = 0.3274 

 
(i) Frame 105: Encoded video 

with Scheme 2-RSE 
     [Y=32.5, U=38.3, V=38.0] dB 

SSIM = 0.5738 
 

Fig. 13. Comparison of video frames encrypted with Scheme 1-TSE  and  alternatively with Scheme 2-RSE 
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Fig. 14. Impact on encoding delay (ms) comparing Scheme 1 with Scheme 2 in relation to total encoding time 
(ms) without SE at QP =24 
 

4.4 Security analysis 

In the two schemes presented, no existing standard method of encryption has been 

employed. Therefore, it might be claimed that the security is low, and, in particular, sign 

manipulation may be vulnerable to a guessing attack.  This is because an attacker has only 

two values available for the signs of non-zero TCs and MVDs. That is to say, the sign can be 

positive or negative and no other value. Hence, it might be claimed that it is easy to guess the 

values of the changed signs and, thus, make the video watchable. In addressing this issue, 

consider Table 2 of [25]. In [25] it is demonstrated that there are literally millions of MVDs 

and TCs in some of the video sequences listed in Table 9 of the current paper, which video 

sequences also appear in Table 2 of [25]. The probability of guessing the signs [25] can be 

found from the standard formula for a combination: 

 
aCb = ���� =           

������…����	��

�!�����!
 

 
where, for example, a denotes the number of non-zero MVDs and b denotes the number of 

guesses. Because the number of signs that would need to be guessed successfully is so large, 

the probability of guessing all the signs is very low. In [25] it is demonstrated that if the Bus 

sequence is taken as an example, the number of ways of guessing MVDs signs with complete 

accuracy is 2^119904. In [25] it is also shown that even if 80% of the MVD signs were 

guessed successfully the Bus video would still not be in a watchable condition. Therefore, the 
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proposed sign changing method is sufficiently secure without applying a standard encryption 

method such as AES. 

 

Table 9. Number of signs of MVDs and of TCs in test sequences. 

 
Test Videos No. of frames No. of MVD 

signs 

No. of TC signs = (Suffixes + Signs of NZ-

TC) 

Bus 150 120526 2325724 = 24343 + 2301381 

City 300 110899 1938693 = 9740+1928953 

Crew 300 195575 3294709 = 5415+3289294 

Foreman 300 132151 2196765 = 8898+2187867 

Football 260 194587 4259181 = 24688+4234493 

Mobile 300 196352 6160677 = 102930+6057747 

News 300 54459 1102597 = 19675+1082922 

 
The encryption method discussed in Section 3.1 and used in this research is a simple but 

secure encryption method. The first likely form of attack is to guess is the signs of the MVDs 

and/or the TCs and from the above sample calculation it is demonstrated that the schemes are 

secure. The second likely form of attack is to guess the random number that is XORed with 

those signs. Each random number is one in a sequence of numbers calculated from the seed 

used to initiate the random sequence. However, the seed and its length are changed for each 

video sequence.  Without the seed, which is distributed over another secure back-channel, it 

becomes very difficult to guess the random numbers that result. Hence our encryption method 

will be sufficiently secure for the two proposed methods. Figure 15 shows a sample frame 

resulting from a test in which the seed was guessed and the resulting random number 

sequence was applied to decrypt the sequence. From Figure 15, it is apparent that after 

guessing the seed, which acts as a key to the random number sequence, the video quality 

might actually deteriorate rather than improve. Overall, the simplified encryption method is 

sufficiently secure against the most likely forms of attack. 
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Foreman video without 
encryption, frame (93) 

[Y=36.2649, U=41.9294, 
V=43.0567] dB 
SSIM = 0.9325 

 
Foreman with Scheme 1-TSE  

frame (93) [Y=20.2793, U=32.8021, 
V=32.8775] dB 
SSIM = 0.5973 

 
Decrypted Foreman video after 

guessing the seed for the random 
number sequence, frame (93) 

[Y=15.0246, U=25.5100, 
V=22.5412] dB 
SSIM = 0.4052 

 
Fig. 15. Example of the effect of guessing the seed for Scheme 1-TSE 
 
4.5 Comparative analysis 

As a comparison of the two proposed transparent SE schemes with prior work, a selection 

of CABAC-based SE methods have been used. The parameters chosen as a means of 

comparison are as follows:  

P1: Selected encryption items: This specifies the items upon which encryption is based. 
P2: Compression efficiency: This describes the compression overhead. 
P3: Format compliancy:  The encrypted bit streams are compatible to the SVC requirements 
and also consistent with the standard SVC decoder, if this parameter is fulfilled.                  
P4: Friendly bandwidth utilization:  Implies that there is no bitrate overhead if this 
parameter is fulfilled.. 
P5: Computational complexity:  This parameter specifies the computational time required 
to encrypt an SVC video. If the encoding time is low it means that the computational 
complexity is also low and vice versa if the encoding time is high.                
P6: Results with different QP values:  This parameter is used to check video statistics i.e. a 
higher QP gives lower quality.                    
P7: Encryption domain: Whether SE is applied. 
P8: Level of security: This parameter describes the proposed schemes from different authors 
and shows to what extent that they are secure. 
P9: Encryption applied to frames: SVC has three main types of frames I, P & B. This 
parameter specifies  whether encryption is applied to all frame types or specific frame types.                     
P10: Efficiency (in terms of time) This parameter specifies how quickly the video will be 
encoded and decoded. 
 

In Table 10, all the comparisons are based on encryption at the CABAC entropy coder 

stage of encoding. The encryption method proposed by Align and Tanali [45] relies on the 

alteration of the DC values, which effectively alters the video statistics before further 

compression is applied. Hence it causes some bit-rate overhead and consequently is less 

efficient. The proposal of [46] also incurs a bit-rate overhead. The computational cost of the 

schemes described in both [24] and [40] is high because they used AES-based encryption of 
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the selected parameters. Thus, the comparison of Table 10 shows that Scheme 1 is efficient 

with low computational cost and no bandwidth overhead. The proposed Scheme 2 in 

comparison with Scheme 1 and others’ work is highly efficient with minimal computational 

cost. 

 

Table 10. Comparison of proposed schemes with other CABAC-based SE methods (ROI = Region of Interest) 

 
 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 
Align & 
Tunali [45] 

Alteration of 
DC, TC and 
MVD signs 

NO YES YES Low NO NULL Low NULL Low 

Park & Shin 
[46] 

IPM, residual 
signs and MVD 
signs 

NO YES YES Low No ROI High NULL High 

Asghar & 
Ghanbari 
[24] 

UEG3 suffix, 
UEG0 suffix, 
and signs of TC 
levels 

Yes Yes No High Yes Binstrings High I, P & B frames High 

Shahid et al. 
[40] 

I & P frames 
encryption 

No Yes No High Yes Bitstream High I & P frames High 

Proposed 
Scheme 1 

Signs of: TC 
levels, MVDs, 
and TCs 

Yes Yes No Low Yes Binstrings High I, P & B frames High 

Proposed 
Scheme 2 

Signs of: TC 
levels, MVDs, 
and TCs, for B 
frames only 

Yes Yes No Very 
Low 

Yes Binstrings High B frames Very 
High 

 
 

Overall, the two proposed schemes incorporate a simple XOR encryption algorithm for 

applying SE on SVC bin-strings. Comparisons show that the selected parameters of 

H.264/SVC that were used in the two schemes are most effective in their computational 

performance. On the other hand, recent methods of encryption have some drawbacks in terms 

computational complexity, bitrate overhead, and efficiency and may be implemented by 

choosing weak encryption parameters.  

 

5 Conclusion 

This paper examines two transparent encryption schemes applied to scalable video. 

Scalable video delivery emphasizes flexibility over optimal compression and in that sense is 

similar to transparent encryption that emphasizes commercial utility over complete content 

confidentiality. Underlying the form of transparent encryption employed herein is selective 

encryption, which also introduces a compromise in terms of video distortion. Furthermore, 

the paper pushes this flexibility one step further and asks whether reduced encryption, as it is 
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called herein, can be used in a further compromise between protection and transparency by 

emphasizing reduction in encryption delay. In respect to the latter, it is also possible that I- 

and P-frames could be fully encrypted or completely selectively encrypted, while 

transparently encrypting B-frames in the manner illustrated. Therefore, the evaluations in this 

paper show the trade-offs and compromises possible and their resulting impacts. Reducing 

delay will be significant for real-time delivery of video streams, such as for sports video 

streaming, when a provider will not want their event to appear slightly later on a screen  than 

a rival’s in a neighboring building, especially when (say) a goal is celebrated. On the other 

hand, a provider will want their encryption-free video stream to appear superior to an 

encrypted version but may only require the one to appear distorted and not completely 

hidden, for example so that the position of a sport’s ball is unclear but the sport’s field is 

recognizable if still distorted. Further work will continue to investigate these encryption 

compromises in order to determine in a robust manner what reduction in delay and distortion 

is definitely achievable by what techniques and for what types of video content. As the 

HEVC codec is specialized to high-resolution video and as increasingly video is being 

watched on lightweight and/or mobile devices, encrypted commercial video should be 

adapted for this type of target device.  

 

References 

[1] Ohm, J.-R. (2005). Advances in scalable video coding. Proc. of the IEEE, 93(1), 42-56. 

[2] Wiegand, T., Sullivan, J.G., Bjøntegaard, G., Luthra, A.  (2003). Overview of the H. 264/AVC video coding    

standard. IEEE Trans. Circuits Syst. Video Technol., 13(7), 560-576. 

[3] Schwarz, H., Marpe, D., and Wiegand, T. (2007). Overview of the scalable video coding extension of the 

H.264/AVC standard. IEEE Trans. Circuits Syst. Video Technol., 17(9), 1103–1120.  

[4] Sullivan, G.J., Ohm, J.-R., Han, W.-J., and Wiegand, T. (2012).  Overview of the High Efficiency Video 

Coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol., 22(12), 1649-1668. 

[5] Helle, P., Lakshman, H., Siekmann, H., Stegemann, J. et al. (2013). A scalable video coding extension of 

HEVC. Data Compression Conf., 201-210. 

[6] Hong, D., Wonkap, J., Boyce, J., and Abbas, A. (2012). Scalability support in HEVC. IEEE Int’l Symp. On 

Circuits Syst., 890-893. 

[7] Shahid, Z., and Puech, W. (2014). Visual protection of HEVC video by selective encryption of CABAC 

binstrings. IEEE Trans. Multimedia, 16(1), 24-36. 

[8] Civanlar, R., Eleftheriadis, A., and Shapiro, O. (2009). System and method for a conference server 

architecture for low delay and distributed conferencing applications. U.S. patent 7,593,032. 



  

32 

[9] Lotspiech, J. (2004). Digital rights management for consumer devices. In B. Furht and D. Kirovski (eds.), 

Multimedia Security Handbook, CRC Press, Boca Raton, FL, 691-714. 

[10] Massoudi, A., Lefebvre, F., De Vleeschouwer, C., Macq, B. and Quisquater, J.J. (2008). Overview on 

selective encryption of image and video: Challenges and perspective. EURASIP J. on Inf. Security, vol. 2008, 

article no. 5, 1-18.   

[11] Li, S., Chen, G., Cheung, A., Bhargava, B. and Lo, K.-T. (2007). On the design of perceptual 

MPEG-video encryption algorithms. IEEE Trans. Circuits Syst. Video Technol., 17(2), 1-10. 

[12] Thomas, N., Bull, D., and Redmill, D. (2009).  A novel H.264 SVC encryption scheme for secure bit-rate 

transcoding. Picture Coding Symposium, 1-4. 

[13] Furht, B., Socek, D., and Eskicioglu, A.M. (2002). Fundamentals of multimedia encryption techniques. In 

B. Furht and D. Kirovski (eds.), Multimedia Security Handbook, CRC Press, Boca Raton, FL, 95-132.  

[14] Kundur, D., and Karthik, K. (2004). Video fingerprinting and encryption principles for digital rights 

management. Proc. of the IEEE, 92(6), 918-932. 

[15] Naor, D., Naor, M., and Lotspiech, J. (2001). Revocation and tracing routines for stateless receivers. 

Advances in Cryptology, 41-75. 

[16] Deng, R.H., Ding, X., Wu, Y., and Wei, Z. (2014). Efficient block-based transparent encryption of 

H.264/SVC bitstreams. Multimedia Systems, 20(2), 165-178. 

[17] Shahid, Z., Chaumont M., and Puech, W. (2009). Selective and scalable encryption of enhancement layers 

for dyadic scalable H.264/AVC by scrambling of scan patterns. IEEE Int’l Conf. on Image Proc., 1273-1276. 

[18] Podesser, M., Schmidt, H.-P., and Uhl, A. (2002). Selective bitplane encryption of secure transmission of 

image data in mobile environments. 6th Nordic Signal Processing Symposium. 

[19] Asghar, M.N., and Ghanbari, M. (2011). Cryptographic keys management for H.264 scalable coded video 

security. 8th Int’l ISC Conf. on Info. Security and Cryptology, 83-86. 

[20] Asghar, M.N., Fleury, M., and Ghanbari, M. (2012). Key management protocols for secure wireless 

multimedia services: A review. Recent Patents on Telecommunications, 1(1), 41-53. 

[21] Kim, I.-L., Min, J., Lee, T., Han, W.-J., and Park, J. (2012). Block partitioning structure in the HEVC 

standard. IEEE Trans. Circuits Syst. Video Technol., 22(12), 1697-1706. 

[22] Asghar, M.N., Ghanbari, M., and Reed, M.J. (2012). Sufficient encryption with codewords and bin-strings 

of H.264/SVC.  IEEE 11th Int’l Conf. on Trust, Security and Privacy in Computing and Communs, 443-450. 

[23] Asghar, M.N., Ghanbari, M., Fleury, M., and  Reed, M.J. (2012). Efficient selective encryption with 

H.264/SVC CABAC bin-strings. IEEE Int’l Conf. on Image Processing, 2645-2648. 

[24] Asghar, M.N., and Ghanbari, M. (2013).  An efficient security system for CABAC bin-strings of 

H.264/SVC.  IEEE Trans. Circuits Syst. Video Technol., 23(3), 425-437. 

[25] Asghar, M.N., Ghanbari, M., Fleury, M., and Reed, M.J. (2014). Confidentiality of a selectively encrypted 

H.264 coded video bit-stream. J. of Visual Commun. and Image Representation, 25(2), 487-498.  

[26] Asghar, M.N., Ghanbari, M., Fleury, M., and Reed, M.J. (2012). Analysis of channel error upon selectively 

encrypted H.264 video. 4th IEEE CEEC Int’l Conf., 139-144.  

[27] López, F., Martinez, J.M., and Valdes, V. (2006). Multimedia content adaptation within the CAIN 

framework via constraints satisfaction and optimization.4th Int’l Workshop on Adaptive Multimedia Retrieval, 

149-163. 



  

33 

[28] Kadikara Arachchi, H., Perramon, X., Dogan, X., and Kondoz, A.M. (2009). Adaptation aware encryption 

of scalable H.264/AVC video for content security. Signal Processing: Image Communication, 24(6), 468-483.  

[29] Wei, Z., Wu, Y., Ding, X., and Deng, R.H. (2012). A scalable and format-compliant encryption scheme for 

H.264/SVC bitstreams. Signal Processing: Image Communication, 27(9), 1011-1024. 

[30] Stütz, T., and Uhl, A. (2008). Format-compliant encryption of H.264/AVC and SVC. Tenth IEEE 

International Symp. on Multimedia, 446-451. 

[31] Chen, T.C., Huang, Y.W.,  Tsai, C.Y.,  Hsieh, B.Y.,  and Chen, L.G.  (2006). Architecture design of 

context-based adaptive variable-length coding for H. 264/AVC.  IEEE Trans. Circuits  Syst. II: Express Briefs, 

53(9), 832-836.  

[32] Sullivan, G., Topiwala, P., and Luthra, A. (2004). The H.264/AVC Advanced Video Coding standard: 

overview and introduction to the fidelity range extensions. SPIE Conf. on Applications of Digital Image 

Processing XXVII, 454-474. 

 [33] Marpe, D., Schwarz, H., and Wiegand, T. (2003). Context-based adaptive binary arithmetic coding in the 

H.264 video compression standard. IEEE Trans.Circuits Syst. Video Technol., 13(4), 620-636. 

[34] Magli, E., Grangetto M., and Oglio, G. (2011). Transparent encryption techniques for H.264/AVC and 

H.264/SVC compressed video, Signal Processing, 91(5), 1103-1114. 

[35] Hofbauer, H., Uhl, A., and Unterweger, A. (2014). Transparent encryption for HEVC using bit-stream 

selective coefficient sign extraction. IEEE Int’l Conf. on Acoustics, Speech and Signal Proc.  

[36] Tew, Y., Minemura, K., and Wong, K. (2015). HEVC selective encryption using transform skip signal and 

sign bin. Asia-Pacific Signal and Info. Process. Assoc. Ann. Summit and Conf., 963-970 

[37] Hellwagner, H., Stütz, T., Kuschnig, R., and Uhl, A. (2009). Efficient in network adaptation of encrypted 

H.264/SVC content,” Signal Processing: Image Communication, 24(9), 740-758. 

[38] Kelsey, J., Schneier, B., and Ferguson, N. (1999). Yarrow-160: Notes on the design and analysis of the 

yarrow cryptographic pseudorandom number generator. Sixth Ann. Workshop on Selected Areas in 

Cryptography, 13–33. 

[39] Abombara, M., Zakaria , O.,  Khalifa O. O., Zaiden, A.A., and Zaiden, B.B. (2010). Enhancing selective 

encryption for H.264/AVC using Advanced Encryption Standard.  Int’l  J .Comput. Theory and Eng, 2(2), 282-

289. 

[40] Shahid, Z., Chaumont, M., and Puech, W. (2010). Fast protection of H.264/AVC by selective encryption of 

CAVLC and CABAC for I & P frames. IEEE Trans. Circuits Syst. Video Technol., 21(5), 565–576. 

[41] Ghanbari, M. (2003). Standard codecs: Image compression to advanced video coding. Stevenage, UK: IEE. 

[42] Huynh-Thu, Q., and Ghanbari, M. (2012). The accuracy of PSNR in predicting video quality for different 

scenes and frame rates. Telecomm. Syst., 49(1), 35-48. 

[43] Wang, Z.,  Bovik, A.C., Sheikh, H.R., and Simoncelli, E.P. (2004). Image quality assessment: From error 

visibility to structural similarity. IEEE Trans. on Image Processing, 13(4), 600-612. 

[44] Richardson, I. (2010). The H.264 advanced video compression standard (2nd ed.). Chichester, UK: J. Wiley 

& Sons. 

[45] G. B. Algin and E. T. Tunali, “Scalable video encryption of H.264 SVC codec,” J. Visual Commun. Image 

Representation, vol. 22, no. 4, pp. 353–364, May 2011. 



  

34 

[46] S. W. Park and S. U. Shin, “An efficient encryption and key management scheme for layered access control 

of H.264/scalable video coding,” IEICE Trans. Inform. Syst., vol. 92, no. 5, pp. 851–858, 2009. 

 



  

Highlights 

 

 Applies transparent and reduced encryption to a selective encryption method for 

scalable video. 

 

 Introduces two ways to lower encryption latency in the context of scalable video, 

namely XOR encryption and B-frame-only encryption, illustrating the relative impact 

on distortion and delay. 

 

 Maintains decoder compatibility and adds no bitrate overhead as a result of the two 

forms of encryption. 

 

 Analyses the overall distortion as a result of combining enhancement layer encryption 

with a reduced-quality base layer in the clear. 

 

 The paper will be of interest to commercial video streaming, when there is a need to 

increase subscriptions, especially rapidly available streaming of short-lived material 

such as sports videos. 
 


