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Programme for International Researchers, undertaken at Koç University) for financial support. The authors
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Abstract

Existing empirical evidence of distributional scaling in financial returns has helped

motivate the use of multifractal processes for modelling return processes. However, this

evidence has relied on informal tests that may be unable to reliably distinguish multifrac-

tal processes from other related classes. The current paper develops a formal statistical

testing procedure for determining which class of fractal process is most consistent with

the distributional scaling properties in a given sample of data. Our testing methodology

consists of a set of test statistics, together with a model-based bootstrap resampling

scheme to obtain sample p-values. We demonstrate in Monte Carlo exercises that the

proposed testing methodology performs well in a wide range of testing environments rel-

evant for financial applications. Finally, the methodology is applied to study the scaling

properties of a dataset of intraday equity index and exchange rate returns. The empirical

results suggest that the scaling properties of these return series may be inconsistent with

purely multifractal processes.

Keywords: Multifractal, Unifractal, Bootstrap inference, Hypothesis testing, Financial

returns
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1 Introduction

The class of multifractal processes have been applied to the problem of modelling complex

systems in numerous fields, such as signal processing and the physical sciences, however

in recent years these processes have attracted particular attention in the finance literature,

where they have been proposed as an alternative class of time series process for modelling

financial asset return series.

Several theoretical multifractal processes have been developed that are intended specifi-

cally for modelling asset returns, with key examples including the multifractal model of asset

returns of Mandelbrot et al. (1997) and Calvet and Fisher (2002), the Markov-switching

multifractal (MSM) model of Calvet and Fisher (2004), Calvet et al. (2006) and Lux and

Morales-Arias (2010) and the multifractal random walk (MRW) of Bacry et al. (2001) and

Muzy et al. (2001). These multifractal processes have been shown to provide flexible and

parsimonious models for asset returns that are able to reproduce the central empirically

observed properties of return series, such as volatility clustering. Furthermore, Chen et al.

(2013) have also recently proposed a modified MSM model for inter-trade duration, sug-

gesting that multifractal processes may have financial applications beyond the modelling of

returns.

Multifractal processes may be defined in terms of distributional scaling properties, which

implies that the statistical properties of the process at different sampling intervals or timescales

are formally linked according to some theoretical scaling laws. In finance this distributional

scaling behaviour appears to be particularly relevant for return series, with numerous empir-

ical studies finding evidence that returns for a wide range of financial assets exhibit scaling

properties consistent with these processes, including Schmitt et al. (1999), Calvet and Fisher

(2002), Fillol (2003), Xu and Gençay (2003), Di Matteo et al. (2005), Di Matteo (2007)

and Onali and Goddard (2009) and many others. This apparent empirical support for the

presence of multifractal distributional scaling in return series has often been viewed as a

confirmation of the appropriateness of multifractal processes for modelling return series and

has helped motivate work on the theoretical side of the multifractal finance literature.

Unfortunately, the lack of a formal statistical test for assessing the presence or type of

distributional scaling in a given sample of data means that the existing empirical evidence

of multifractal distributional scaling in asset returns has been based instead on an informal

graphical approach. It has been demonstrated that this graphical testing approach may not

be able to reliably distinguish between the distributional scaling of a multifractal process

and that of other closely related processes (see, for example, Bouchaud et al., 2000, Lux,

2004 and Grech and Pamu la, 2012). Most notably, simulated data from the simpler class

of unifractal processes (which includes the standard and fractional Brownian motions, plus

certain types of Levy process) may exhibit apparent multifractal distributional scaling when

3



tested using this approach, despite possessing a much more restrictive form of distributional

scaling behaviour in reality.

Given the known limitations of the standard graphical test for distributional scaling, there

is a clear need to develop more formal and reliable testing procedures for distinguishing

between multifractal distributional scaling behaviour and that possessed by unifractal or

other related classes of process. Little effort has however been made in this area, with

the most notable exception in the context of finance being the work of Lux (2004) who

proposes a formal statistical test for testing the null hypothesis of ‘no multifractality’ versus

the alternative of multifractality. However, restrictions are implicitly imposed that limit the

generality of the proposed testing approach; firstly, a specific multifractal process must be

chosen under the alternative hypothesis and therefore the method cannot be viewed as a test

for multifractality of a general or unspecified form, but is instead a test for distributional

scaling consistent with a specific multifractal process. Secondly, the resampling method

employed to obtain the distribution of the test statistics does not permit serial dependence of

any form under the null hypothesis of no multifractality. Given that the majority of unifractal

processes, or indeed any other process suitable for modelling return series, may exhibit some

form of serial dependence, the null hypothesis seems inappropriate in applications to financial

returns.

The only existing formal testing procedure that provides an explicit test for multifrac-

tality versus unifractality appears to be the wavelet-based approach of Wendt and Abry

(2007), which was published in the signal-processing literature and has not been applied in

the context of finance1. However, in its proposed form the test imposes some additional

constraints on the form of distributional scaling under the alternative of multifractality, thus

somewhat limiting the generality of the test. More critically, it is clear both from the Monte

Carlo exercises of Wendt and Abry (2007) and those performed in the current work that the

wavelet-based tests require very large sample sizes to perform well. Whilst this may not be

problematic in some applications, such as those in the physical sciences, in financial applica-

tions the use of smaller samples may be unavoidable, due either to limited data availability

or the desire to study the local distributional scaling properties of a process over shorter

sample periods.

In response to this gap in the literature, the current work develops a formal statistical

testing framework for determining whether a given sample of data is most consistent with

a unifractal or multifractal data generating process, which does not suffer from the same

limitations as previous approaches. In particular, the proposed testing methodology is ap-

plicable generally, without making any assumptions concerning the form of multifractality

1On the more financial and econometric side of the literature, wavelet-based methods have been widely
applied to develop statistical tests in many other contexts, such for serial correlation (Gençay and Signori,
2015) and unit roots (Fan and Gençay, 2010), in addition to more empirical applications, such as hedging
(Conlon et al., 2016).
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under the alternative hypothesis. Furthermore, we focus on developing a testing procedure

that exhibits good performance in sample sizes that although large by conventional econo-

metric standards, are small by the standards of the literature on fractal processes. This

permits the use of our tests for situations in which maximum sample size is limited or for

tests of local distributional scaling properties as mentioned above.

We propose a set of possible test statistics for testing the null hypothesis of unifractality

against the alternative of multifractality, all of which provide a measure of the degree or

strength of multifractality exhibited by the sample of data. Crucially however, the strength

of multifractality is measured non-parametrically, thus avoiding the need to make any as-

sumptions concerning the form of multifractality under the alternative hypothesis. Due to

the specific characteristics of the testing environment and the complex theoretical properties

of unifractal and multifractal processes, the distributions of the proposed test statistics are

non-standard with critical values that cannot be universally tabulated. It is demonstrated

however that appropriate model-based bootstrap resampling schemes can be easily imple-

mented to approximate the distributions of the test statistics under the null hypothesis of

unifractality.

The proposed testing methodology is applied to simulated unifractal and multifractal

data in a series of Monte Carlo exercises, where it is found to have good empirical size and

power properties in wide range of situations and to significantly outperform the existing

wavelet-based tests of Wendt and Abry (2007). The power of the tests is shown to be robust

against various forms of multifractality under the alternative. Furthermore, the tests perform

well for sample sizes that would be considered small in the multifractality literature, thus

confirming the suitability of the methodology for the study of either local or global scaling

properties. The ability to test the local scaling properties of a process around a particular

point in time is particularly beneficial in financial applications, given the recent interest in

the class of multifractional processes in work such as Bianchi et al. (2013) and Corlay et al.

(2014) as an alternative to multifractal processes for modelling return series.

Finally, the testing methodology is applied in an empirical exercise to study the local

scaling properties of a dataset containing 5-minute intraday returns for major exchange rate

and equity index series. Although we firmly reject the null hypothesis of globally unifractal

distributional scaling for the entire return series available for all assets, when applying our

tests to short subsamples of returns we find some evidence of locally unifractal behaviour.

Whilst more detailed analysis is required, we argue that this may tentatively be interpreted

as evidence in support of multifractional rather than multifractal behaviour in asset returns,

suggesting that the use of such processes for financial applications should be further investi-

gated.

The structure of the paper is as follows: Section 2 briefly reviews the relevant theoretical

properties of unifractal and multifractal processes and discusses the informal graphical testing

5



approach previously employed in financial applications. Section 3 presents the set of statistics

proposed for testing the null of unifractality versus multifractality and the asymptotic theory

of the tests under the null hypothesis of unifractality. Section 4 presents a model-based

bootstrap resampling scheme proposed for obtaining the distributions of these statistics.

Sections 5 contains a Monte Carlo exercise to assess the finite-sample properties of the

tests with respect to size and power. Section 6 presents an empirical application of the

methodology to exchange rate data. Section 7 concludes. Technical content discussing

estimation of the multifractal detrended fluctuation analysis estimator and simulation of

multifractal random walk processes in discrete time are found in Appendices A and B,

respectively.

2 A Review of Unifractal and Multifractal Processes

The proposed methodology for testing whether a given sample of data is most consistent with

a unifractal or multifractal data generating process is based on the distributional scaling

properties that are specific to these classes of process. Therefore, in order to provide a

clear basis for the proposed testing procedure, Section 2.1 begins with a brief review of the

relevant theoretical properties of these processes2, followed in Section 2.2 by a discussion of

the informal graphical testing methodology previously used in the literature to distinguish

between unifractal and multifractal scaling and the potential problems with this approach.

2.1 Theoretical Scaling Properties

One way in which multifractal processes and the simpler class of unifractal processes can be

defined is in terms of their distributional scaling or scale invariance. Intuitively, this implies

that the behaviour of the process observed at one timescale or sampling interval is, after

an appropriate transformation, identical in a statistical sense to that observed at another

timescale.

For both multifractal and unifractal processes, it can be shown more formally (see for

example Mandelbrot et al., 1997) that a stochastic process Xt with increments Xt+∆t −Xt

is unifractal or multifractalif these increments are stationary3 and satisfy:

E[| Xt+∆t −Xt |q] ∝ ∆tτ(q)+1 or equivalently E[| Xt+∆t −Xt |q] ∝ ∆tqH(q) (2.1)

2More detailed treatments of these topics can be found in Mandelbrot et al. (1997), Calvet and Fisher
(2002) or Kantelhardt (2009).

3The stationarity requirement for the increments does not have to hold for the original time series and
unifractal or multifractal time series may be non-stationary. However, in this case an appropriate trans-
formation must first be applied that results in stationary increments, before equation (2.1) will hold. The
majority of estimators for H(q) and τ(q) employed in the literature, including those used in the current work,
automatically perform local detrending to remove non-stationarities, which is typically sufficient for the case
of financial returns.
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for all sampling intervals or timescales, ∆t, and all q ∈ R. The functions τ(q) and H(q) are

known as the scaling function and generalised Hurst exponent respectively. Both representa-

tions in equation (2.1) are employed in the literature, but are completely equivalent, with the

generalised Hurst exponent and scaling function related via the identity τ(q) ≡ qH(q)− 1.

In either case, the function H(q) or τ(q) characterises the distributional scaling structure

of the underlying process Xt, by formally describing how the moments of the absolute in-

crements of Xt scale with the sampling interval ∆t. In financial applications the process Xt

is typically taken to be the logarithmic price process for a particular financial asset, which

implies that equation (2.1) describes how the moments of the absolute returns scale with

changes in the return timescale ∆t. Numerous empirical studies, such as those cited in the

Introduction, have confirmed the presence of distributional scaling consistent with equation

(2.1) in the return series for a wide range of financial assets.

The distributional scaling law in equation (2.1) holds for both multifractal and unifractal

processes, however the functional forms for H(q) and τ(q) differ between the two classes of

process, with those of multifractal processes being more general and thus allowing for more

flexible scaling properties. Although other formal definitions of unifractal and multifractal

processes are employed elsewhere in the mathematics and physics literature, in the current

work we rely on the following definition, which is commonly employed in the finance litera-

ture (see for example Calvet and Fisher, 2002):

Definition 1: We define a multifractal process as a process for which the scaling func-

tion τ(q) of the increment process is a strictly concave function of q and a unifractal process

as one for which τ(q) is a linear function of q. Equivalently, for a multifractal process the

generalised Hurst exponent H(q) is a strictly decreasing function of q and for a unifractal

process H(q) is constant and independent of q, with this constant value denoted by H.

Although the conditions in Definition 1 clearly do not define unique functional forms for

H(q) or τ(q) for the class of multifractal processes as a whole, for specific theoretical multi-

fractal processes it is often possible to derive closed-form expressions for τ(q) and H(q) as

functions of the model parameters. For example, the scaling function for the multifractal

random walk (MRW) process of Bacry et al. (2001) and Muzy et al. (2001) is completely

characterised by the parameter λ > 0, via τ(q) = −(λ2/2)q2 + (1/2 + λ2)q − 1; the limiting

value of λ = 0 results in a linear unifractal scaling function and thus λ controls the strength

of multifractality for the process. Figure 1 plots the theoretical τ(q) and H(q) functions for

a MRW process with several valuesof λ2 in the range typically obtained for financial data in

previous empirical studies (see for example Muzy et al., 2001).

From Definition 1, for any unifractal process the generalised Hurst exponent is of the form

H(q) = H for all q, and from the identity above relating H(q) and τ(q) it follows that the
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Figure 1: Theoretical values of the scaling function (left) and generalised Hurst exponent (right) for a
multifractal random walk process for various values of the parameter λ2

unifractal scaling function is linear and of the form τ(q) = Hq−1. Therefore, the single scalar

parameter H completely defines the distributional scaling properties of a unifractal process,

implying that all unifractal process with a common value of H will share the same theoretical

scaling properties, with identical functional forms for H(q) and τ(q). The constant scalar H

is referred to as the Hurst exponent or the simple Hurst exponent4, in order to distinguish

it from the generalised Hurst exponent H(q) in the multifractal case. Figure 2 plots the

theoretical values of the generalised Hurst exponent and the scaling function against q for a

generic unifractal process for various values of the Hurst exponent, H.

0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2

q

τ
(q

)

 

 

H = 0.4

H = 0.5

H = 0.6

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.35

0.4

0.45

0.5

0.55

0.6

q

H
(q

)

 

 

H = 0.4

H = 0.5

H = 0.6

Figure 2: Theoretical values of the scaling function (left) and generalised Hurst exponent (right) for a
generic unifractal process for various values of the simple Hurst exponent, H

Whilst simpler than multifractal processes from both a theoretical and practical perspec-

tive, pure unifractal processes are unsatisfactory for modelling financial return series, perhaps

most notably because they are unable to reproduce the volatility clustering observed empir-

ically in returns. However, a more appropriate class of processes for modelling return series

can be obtained simply by allowing the scalar Hurst exponent, H, to be time-varying, with

dynamics described by some general continuous or discontinuous function of time, H(t). The

resulting class of processes are known as multifractional processes, with the function H(t)

4The term self-affinity index is also widely employed in the literature on unifractal processes, however the
Hurst exponent terminology will be employed here to remain consistent with the multifractal case.
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referred to as the Hurst function. These processes behave locally as unifractal processes, but

when viewed globally the time variation in H(t) allows the process to exhibit much more

flexible dynamic properties.

Despite the fact that multifractal processes have attracted interest in the finance litera-

ture for some time, it is only more recently that the financial applications of multifractional

processes have been studied; work such as Frezza (2012), Bianchi et al. (2013), Corlay et al.

(2014) and Hallam and Olmo (2014) has demonstrated that with appropriate specifications

of the function H(t) (which may be a continuous or discontinuous function of time), theo-

retical multifractional processes such as the multifractional Brownian motion are capable of

reproducing the key properties of return series observed empirically including volatility clus-

tering5 and more complex forms of distributional scaling. Therefore, despite the assumption

of a globally unifractal return series being somewhat implausible, the assumption of local

unifractality implied by a multifractional return process may provide a reasonable alternative

to the class of multifractal processes.

Whilst multifractal and multifractional processes both represent generalisations of the

class of unifractal processes6 that are potentially appropriate for modelling return series,

it is important to note that these two generalisations are distinct, in the sense that neither

nests the other as a special case; for the former the scaling exponent is constant over time but

varies with the moment order, q, and for the latter the situation is reversed. Therefore, the

appropriate theoretical models and associated methods for parameter estimation, simulation

and other problems differ for these two classes of process, making it important to be able to

distinguish between multifractal and multifractional data generating processes.

2.2 Previous Graphical Tests for Distributional Scaling & the Problem of

Spurious Multifractality

From Definition 1, strict concavity of the scaling function τ(q) or a strictly decreasing gen-

eralised Hurst exponent H(q) implies a multifractal process and conversely linearity of τ(q)

or a constant H(q) for all q implies a unifractal process. Previous empirical studies have

employed informal graphical methods based on this principle to test for the presence and

type of distributional scaling in financial return data (see for example Calvet and Fisher,

2002 or Di Matteo, 2007).

This existing graphical testing approach is implemented by estimating the scaling func-

tion7 τ(q) for a given sample of data and then visually inspecting it for concavity or linearity.

5This is possible because for the majority of theoretical unifractal processes, the parameter H controls not
only the distributional scaling properties, but also the smoothness and volatility of the process.

6In the sense that both multifractional and multifractal processes nest the simplest unifractal class as a
special case, when H(t) = H in all time periods or H(q) = H for all moment orders q ∈ R respectively.

7In principle estimates of the generalised Hurst exponent H(q) could also be used, but in practice previous
work exclusively employs the scaling function representation.
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Previous empirical studies applying this graphical testing approach to financial data have

interpreted any visible concavity of τ(q), regardless of magnitude, as a confirmation of multi-

fractal distributional scaling in the series of interest. On this basis, the majority of previous

empirical studies have found evidence supporting the presence of multifractal distributional

scaling for a range of assets, which has been a key justification for the development and use

of multifractal processes for financial returns. However, this graphical testing approach has

limitations that have not been adequately acknowledged or addressed.

Although even a slight degree of concavity in τ(q) (or dependence of H(q) on q) im-

plies that the process in question is technically multifractal rather than unifractal, the true

population values of these functions are not observable in practice and analysis must be

based on sample estimates. The formal statistical properties of most common estimators for

multifractal scaling properties are complex and have not been derived8, however it is straight-

forward to demonstrate informally that finite-sample estimation error may produce estimates

of τ(q) and H(q) consistent with a multifractal process even when applied to simulated data

from a purely unifractal data generating process. This issue of ‘spurious multifractality’ was

first noted some time ago in the context of multifractal scaling in finance (see in particular

Bouchaud et al., 2000 and Lux, 2004) and subsequently studied in more detail by work such

as Grech and Pamu la (2012).
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(a) T = 10, 000
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(b) T = 2, 500

Figure 3: Sample estimates of the scaling function τ(q) for three realisations from a unifractal fractional
Gaussian noise process of length T observations. Dashed lines show the true theoretical values.

As an illustration of this problem, Figure 3 contains the estimated scaling functions for

three realisations from a purely unifractal fractional Gaussian noise process of length of

T = 10, 000 and T = 2, 500, using the MF-DFA estimator of Section 3.1. From Figure 3(a),

with T = 10, 000 the deviation from unifractal scaling is difficult to detect graphically from

8See Lashermes et al. (2005) and Schumann and Kantelhardt (2011) for some informal exploration of this
topic using simulated data.
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the sample estimates of τ(q), however from Figure 3(b) the estimates of the scaling function

for the shorter series length of 2,500 show visible concavity consistent with a multifractal

process.

Given that the fundamental cause of this problem is the estimation error for the scaling

function or generalised Hurst exponent for finite samples of data, this problem typically

becomes less severe as the sample size increases. In principle therefore it can be minimised

by using a larger sample of data, however as demonstrated by Figure 3 the problem may

persist in samples of several thousand observations and thus there are situations encountered

in financial applications where obtaining a sufficiently large sample may not be possible. For

example if high-frequency data are unavailable, as in the majority of existing empirical

studies, then a sufficiently large sample of data can only be obtained by considering a very

long sample period, in which case the observations from the beginning of the sample period

may not be informative about the current properties of the process.

Crucially for financial applications, this problem becomes even more pronounced if the

true data generating process is multifractional rather than unifractal, which as discussed

above is a more realistic alternative class of process for return series than a globally unifractal

process. In this case, the time variation in the Hurst function, H(t), typically makes the

process appear to be multifractal when viewed over longer time periods, but is revealed to be

locally unifractal over shorter sub-periods (see in particular Bianchi and Pianese, 2007 and

Schumann and Kantelhardt, 2011). Unlike the case of spurious multifractality associated

with a true globally unifractal process, spurious multifractality caused by a multifractional

data generating process may not disappear even as the sample size is increased. Spurious

multifractality caused by multifractional scaling could in principle be distinguished from true

multifractal scaling by testing the local scaling properties of the process using short sub-

periods of data; a true multifractal process should be found to be both locally and globally

multifractal, whereas a multifractional process will falsely appear globally multifractal, but

will be revealed to be locally unifractal when studied over sufficiently short time periods.

However, the need for large sample sizes when using the existing graphical testing approach

renders it unsuitable for this task. Clearly therefore a more formal testing approach is

required that incorporates the effects of estimation error and can be employed in small

samples to distinguish between multifractal and unifractal distributional scaling, both at a

global and a local level.

A related problem not widely known or discussed in the financial side of the literature

on fractal processes is the so-called linearisation effect first formally studied by Molchan

(1996) (see also Abry et al., 2007). This effect, arising through the dependence structure

of some multifractal processes and their heavy tailed distributions, can lead the estimated

sample scaling functions to display linearity for values of the moment order q larger than

some threshold value. As such, the effect can result in sample scaling functions that indicate
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unifractal behaviour for multifractal processes, with the threshold for q beyond which this

value begins to occur potentially being as low as 2-3 for some multifractal processes.

3 Testing Methodology

The current section proposes several possible test statistics that can be used to assess whether

the data are most consistent with a unifractal or multifractal process. Section 3.1 presents the

various test statistics proposed in this paper for distinguishing between unifractal and multi-

fractal scaling behaviour, and Section 3.2 derives some key results concerning the asymptotic

theory of the proposed test statistics. For completeness, Appendix A introduces the mul-

tifractal detrended fluctuation analysis estimator employed to estimate the distributional

scaling properties of the sample of interest.

3.1 Hypothesis Tests of Unifractality Versus Multifractality

Whilst the graphical tests for unifractality versus multifractality discussed in Section 2 are

clearly flawed, the problems arise from the informal nature of the testing approach and

their failure to account for the effects of estimation uncertainty, rather than the underlying

theoretical basis of the testing method. Indeed, the differences in functional form of H(q)

or τ(q) that exist between unifractal and multifractal processes provide the most natural

method for distinguishing between the two classes of process and so will also be used as

a basis for the testing procedure proposed here. The problem therefore is to formally test

whether the deviation from unifractal behaviour exhibited by the sample estimates of H(q)

or τ(q) is sufficiently large that it cannot be attributed solely to the estimation error.

If viewing the testing problem from a traditional econometric modelling perspective, a

suitable test statistic could be constructed by fitting a parametric functional form to the

set of estimated points on H(q) or τ(q) that allows for multifractal scaling behaviour whilst

nesting unifractal scaling as a special case. A test could then be based on the statistical

significance of the coefficient(s) that allow for multifractal behaviour. In practice however

this approach is problematic, due to the need to choose a functional form for H(q) or τ(q)

under the alternative of multifractality; in the multifractal case, the functional forms dif-

fer from one process to another and so choosing a specific functional form makes the test

one of unifractality versus a specific multifractal specification, rather than a general test of

unifractality versus multifractality9.

Instead, this difficulty can be avoided by constructing test statistics based on the deriva-

tives of the generalised Hurst exponent or scaling function and directly testing whether the

gradient of H(q) is zero, via the first derivative, or whether τ(q) is linear, via the second

9Despite this theoretical limitation, such a testing approach was nonetheless briefly explored, but was also
found to perform poorly in practice and so was not pursued further.
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derivative. Without imposing specific functional forms on H(q) or τ(q) it is not possible

to obtain closed form expressions for their derivatives, however they can be approximated

nonparametrically using numerical differentiation methods. This approach permits a general

test of unifractality versus multifractality, without the need to assume a specific multifractal

process under the alternative.

Beginning with tests based on the generalised Hurst exponent, for a unifractal process

H(q) is constant and so the first derivative, denoted H ′(q), should satisfy H ′(q) = 0 for all

q ∈ R. Assume that H(q) is estimated for all values of q in the vector q = {q1, . . . , qk}, which

consists of k equally spaced and strictly increasing values such that qi = q1 +(i−1)∆q, where

∆q ≡ q2−q1. The corresponding estimates of the generalised Hurst exponent for each qi ∈ q

are denoted by Ĥ(qi) and are obtained from the estimated generalised Hurst exponent values

using the central difference numerical differentiation approach via:

Ĥ ′(qi,∆q) =
Ĥ(qi+1)− Ĥ(qi−1)

2∆q
for i = 2, . . . , k − 1

where Ĥ ′(qi,∆q) denotes the approximate derivative of H(q) at qi, with an interval of length

∆q between each of the points.

Given the condition H ′(q) = 0 for all q ∈ R for any unifractal process, there are many

possible functions of Ĥ ′(qi,∆q) that could be used as statistics for testing the null hypothesis

of unifractality, depending on the definition of the alternative hypothesis. One possibility is

given by the infimum of Ĥ ′(q,∆q) taken over all q ∈ Ω, with Ω ⊂ R a compact set. The

corresponding test statistic is:

dĤinf =
√
Ns inf

i=2,...,k−1

[
Ĥ ′(qi,∆q)

]
, (3.1)

with Ns as defined in Section 3.1 above. For a true unifractal process, the population value

of the dĤinf statistic in equation (3.1), given by dHinf = inf
q∈Ω

[H ′(q)], equals zero, whereas for

a multifractal process it is strictly negative, since H(q) is a decreasing function of q. A test

of the null hypothesis of unifractal scaling behaviour against the alternative of multifractal

scaling can then be performed by testing H0 : dHinf = 0 vs H1 : dHinf < 0.

In principle a closely related alternative test statistic could be obtained by replacing the

infimum of Ĥ ′(qi,∆q) in equation (3.1) with the supremum to give:

dĤsup =
√
Ns sup

i=2,...,k−1

[
Ĥ ′(qi,∆q)

]
where the null hypothesis of unifractality again corresponds to H0 : dHsup = 0, which

is tested against the alternative H1 : dHsup < 0 with dHsup = sup
q∈Ω

[H ′(q,∆q)]. Whilst

both null hypotheses H0 : dHinf = 0 and H0 : dHsup = 0 correspond to unifractality, the
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alternative hypotheses of these two tests are subtly different; in both cases, rejection occurs

for negative sample values, so that only deviations consistent with a multifractal process

(i.e. H ′(q,∆q) < 0) are considered, however H1 : dHinf < 0 implies multifractal scaling for

some q ∈ Ω, whereas H1 : dHsup < 0 implies multifractal scaling for all q ∈ Ω. Because of

this distinction, the alternative H1 : dHsup < 0 corresponds specifically to multifractality,

whereas H1 : dHinf < 0 corresponds to no unifractality, which includes multifractality as a

possibility but does not guarantee it.

This distinction may prove advantageous for the dHsup statistic if true data generating

process may be neither unifractal nor multifractal, but if it is known (or can be assumed)

that the true process is either unifractal or multifractal, then the dHinf statistic is likely to

perform better in practice. This is because the value of the dHsup statistic is determined by

the smallest deviation from unifractal scaling for q ∈ Ω, whereas that of the dHinf statistic is

determined by the largest deviation10. The latter is likely to be more informative about the

true scaling properties of the data than the former, since even estimates of H(q) for purely

unifractal processes will typically exhibit small deviations consistent with multifractal scaling

for some values of q due to estimation error. This was confirmed in practice by initially

including both the dĤinf and dĤsup statistics in the Monte Carlo exercises and comparing

their performance; in larger samples the differences were minor, but in smaller samples

where the estimation error for H(q) becomes larger, the infimum-based statistic was found

to produce tests with superior empirical size and power properties. Therefore, the alternative

dHsup statistic was omitted from the final Monte Carlo exercise of Section 5 in favour of the

dHinf statistic.

The final test statistic based on H(q) considered here is based on the average deviation

from unifractal distributional scaling and is constructed as:

dĤavg =
√
Ns

(
1

k − 2

k−1∑
i=2

∣∣∣Ĥ ′(qi,∆q)∣∣∣) (3.2)

This dĤavg statistic measures the average deviation in absolute value from unifractal scaling

of Ĥ(q) over the chosen domain of q. Again, for a unifractal process the value of the true

population analogue of equation (3.2), dHavg = Eq[|H ′(q,∆q)|] equals zero, where Eq[·] is

the expected value defined over q ∈ Ω. Note that for the dĤavg statistic it is necessary

to take the absolute value of each Ĥ ′(qi,∆q) before calculating the average, to ensure that

positive and negative values from a non-unifractal process do not offset each other and

produce a value of the test statistic close to zero. This implies that for a multifractal

process, dHavg will be strictly positive and so a test of the null hypothesis of unifractal

10Note again that in both cases rejection only occurs for negative sample values, so that only deviations
consistent with a multifractal process for a given q are considered.
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scaling behaviour against the alternative of multifractal scaling can then be performed by

testing H0 : dHavg = 0 vs H1 : dHavg > 0. As with the dĤinf statistic above, the alternative

of H1 : dHavg > 0 technically corresponds to no unifractality, rather than multifractality,

but a test for unifractality versus multifractality can be implemented as discussed above.

Test statistics based on the generalised Hurst exponent and the scaling function should

in principle be equivalent given the identity τ(q) ≡ qH(q)− 1 that relates the two functions.

However, statistics based on both functions have been included to demonstrate how test

statistics can be formed in each case and to explore in the Monte Carlo exercise of Section 5

whether there are any advantages in practice of basing tests on either representation of

scaling behaviour.

For tests based on the scaling function a measure of concavity is required, which can

be provided by the second derivative, τ ′′(q). The linear scaling function of a unifractal

process implies that τ ′′(q) = 0 for all q ∈ R. When combined with the property that τ(q)

is non-decreasing for both unifractal and multifractal processes, the strictly concave scaling

function for a multifractal process must satisfy τ ′′(q) < 0 for all q ∈ Ω ⊂ R. It is assumed

that τ(q) is estimated at the same vector of k equally spaced values q = {q1, . . . , qk}, with

the resulting estimates denoted by τ̂(qi) for i = 1, . . . , k. An estimate of τ ′′(q) at q = qi can

then be obtained by applying numerical differentiation methods to the estimates τ̂(qi), via:

τ̂ ′′(qi,∆q) =
τ̂(qi+1)− 2τ̂(qi) + τ̂(qi−1)

(∆q)2
for i = 2, . . . , k − 2

As with the previous test statistics based on H ′(q), various functions of τ̂ ′′(q,∆q) could be

employed as test statistics in the current context, however attention is restricted to direct

analogues of the earlier statistics based on Ĥ ′(q,∆q) in equations (3.1) and (3.2):

dτ̂inf =
√
Ns inf

i=2,...,k−2

[
τ̂ ′′(qi,∆q)

]
or dτ̂avg =

√
Ns

(
1

k − 2

k−2∑
i=1

∣∣τ̂ ′′(qi,∆q)∣∣) (3.3)

The interpretation of the dτ̂inf and dτ̂avg test statistics above is identical to that of the

earlier test statistics; the dτ̂inf statistic measures the largest deviation from unifractal scaling

behaviour over the chosen domain of q, whereas the dτ̂avg statistic measures the average

absolute deviation from unifractal scaling over the same domain. The linear scaling function

of a unifractal process implies that the true population values dτinf and dτavg given by:

dτinf = inf
q∈Ω

[
τ ′′(q,∆q)

]
and dτavg = Eq[

∣∣τ ′′(q,∆q)∣∣]
should be equal to zero, whereas the strict concavity of the scaling function for a multifractal
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process implies dτinf < 0 and dτavg > 0. A test of the null hypothesis of unifractality against

the alternative of multifractality11 can then be performed by testing H0 : dτinf = 0 vs H1 :

dτinf < 0 or H0 : dτavg = 0 vs H1 : dτavg > 0.

Our test statistics based on the scaling function, τ(q), can also be connected with an

alternative measure for the strength of multifractality sometimes used in the literature. The

so-called intermittency coefficient, typically denoted by λ2 and defined as τ ′′(0), provides a

single scalar measure of the strength of multifractality, with larger values of λ2 indicating

stronger multifractality and λ2 = 0 corresponding to unifractality. Our test statistics based

on τ(q) can thus be viewed as a generalisation of the intermittency coefficient that consider

the curvature of the scaling function for a range of values, rather than at a single point.

Alternatively, but more ambitiously, a testing approach could also be based not on the

moment scaling properties of the process, but instead on characteristics of the serial depen-

dence structure of multifractal processes. If we denote by r(t, τ) the continuous return at

time t for a return interval of τ , then it can be shown (see e.g. Muzy et al., 2001 or Bacry

et al., 2008 ) that the covariance of the logarithmic absolute returns, ω(t, τ) ≡ ln |r(t, τ)| for

a multifractal process satisfy the following relationship:

Cov [ω(t+ ∆t, τ), ω(t, τ)] ' λ2 ln

(
T

∆t

)
where λ2 is the previously discussed intermittency coefficient. The return interval τ can

be fixed at the finest scale of 1 and a test for the null of unifractality corresponds to the

ω(t, 1) series being short-range correlated (since for a unifractal process λ2 = 0). Such a

testing approach follows from the arguments of Muzy et al. (2001) and others, however an

implementable test based on this concept has not to our knowledge been developed. Such

a test could potentially be implemented as a form of Portmanteau test, however in the

current work we focus on our approach based on moment scaling analysis. This is largely

to maintain consistency with the existing literature on graphical testing methods, although

this alternative testing approach based on the serial correlation structure could be pursued

as an avenue of future research.

3.2 Asymptotic Theory

This section develops the asymptotic theory for the family of test statistics proposed above

under the null hypothesis of unifractality. The theoretical results derived here build on earlier

work of Bardet and Kammoun (2008), who previously developed the asymptotic properties

for the DFA estimator for the simple Hurst exponent H of a unifractal process. We now

11As with the statistics based on H(q) above, the alternative hypotheses of dτinf < 0 and dτavg > 0
technically correspond to no unifractality rather than multifractality and should be combined with the same
type of additional check described above.
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extend these results to the MF-DFA estimator of H(q) for different values of q, when this

estimator is applied to a unifractal process under the null. More specifically, under the null

hypothesis of unifractality, it follows that:

E[| Xt+s −Xt |q] ∝ sqH . (3.4)

The empirical counterpart of the expectation term is equal to F qs,q, which under the null

hypothesis of unifractality satisfies F qs,q ∝ sqH , for s > 1.

Bardet and Kammoun (2008) develop theoretical results for the DFA estimator under

the assumption of a specific unifractal process, namely the fractional Gaussian noise (see

Appendix A for additional details of this process). Then, relying on previous theoretical

results, they argue that because a wide range of unifractal processes converge in law to a

fractional Gaussian noise, the theoretical results obtained for this specific process also apply

asymptotically for a broad class of unifractal processes (see the original work for further

details). We follow an equivalent approach here, with the Hurst exponent and standard

deviation of the underlying fractional Gaussian noise denoted by H and σ2 respectively.

Let s̄ ∈ {1, . . . , T}, Ns = [T/s̄] and ri ∈ {1, . . . , Ns} for each i = 1, . . . ,m, with r1 <

· · · < rm. The m window sizes s1, . . . , sm are then given by si = ris̄. A necessary condition

on s̄ to derive appropriate asymptotic theory is that T/s̄→∞ and T/s̄3 → 0 when T →∞.

Define Ŝν,q =
F qν,s(s)

sqHσ2f(H)
and Ŝs,q =

F qs,q
sqHσ2f(H)

with f(H) = 1−H
(2H+1)(H+1)(H+2) as derived

in Bardet and Kammoun (2008). Note that Ŝs,q can be written in terms of a sum of the

random variables (Ŝν,q)1≤ν≤[Ns]. Further, Ŝν,q = Ŝ
q/2
ν with Ŝν =

F 2
ν,s

s2Hσ2f(H)
defined in Bardet

and Kammoun (2008). These authors derive the first statistical moments of this sequence of

random variables and prove a central limit theorem satisfied by the logarithm of the empirical

mean of such sequence. In what follows, we use a similar strategy to derive the asymptotic

distribution of Ŝs,q. More specifically:

Ŝs,q =
1

sqH+1σ2f(H)

Nss∑
ν=1

(F 2
ν,s)

q/2 =
1

sqH+1σ2f(H)

Nss∑
ν=1

Zqν

where the zero-mean Gaussian vector Z = (Z1, . . . , ZT ) has the covariance matrix PΣP ,

where P is a diagonal block matrix with each block consisting of an (s, s) matrix PE′1 defined

as the matrix of orthogonal projections on a vector space E1 defined by e1 = (1, . . . , 1) and

e2 = (1, 2, . . . , s); Σ is the covariance matrix of the fractional Brownian motion time series.

Using a Lindeberg condition, Ŝs,q satisfies the following central limit theorem:√
Ns

(
Ŝs,q − E[Ŝν,q]

)
→ N(0, γ̃2(H)), (3.5)

with γ̃2(H) the asymptotic variance of Ŝν,q, if λ = ||PΣP ||, the supremum of the eigenvalues
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of the symmetrical matrix PΣP , is such that λ = o
(

1√
Ns

)
. This property can be proved

applying Lemma 4.1 and Step 2 in the proof of Proposition 3.2 in Bardet and Kammoun

(2008). Applying the delta method:√
Ns log Ŝs,q → N(0, γ̃2(H)). (3.6)

This result can be obtained for different lengths of windows satisfying the conditions Ns →∞
and T/s̄3 → 0. Let (s1, . . . , sm) be such different window lengths. Then, one can write for

T and si large enough:

log Ŝs,q ≈
1√
[Ns]

εi ⇒ log Fsi,q ≈ H log(si) +
1

2
log (σ2f(H)) +

1√
[Ns]

εi,

with εi ∼ N(0, γ̃2(H)). Note that for each q, the MF-DFA estimator is obtained through

the OLS estimation of H. Thus:

Ĥ(q) =

∑m
i=1(log F (si)− log F (si))(log si − log si)∑m

i=1(log si − log si)2

that under some algebra is shown to satisfy Ĥ(q) = H + 1√
Ns
εi. Then, it is immediate that

√
Ns(Ĥ(q)−H) converges in distribution to a Normal distribution. Similarly, under the null

hypothesis, we can prove that for each q,
√
Ns Ĥ

′(q,∆q) converges to a Normal distribution

and the vector (Ĥ ′(q1,∆q1), . . . , Ĥ ′(qk,∆qk)) to a multivariate Normal (MN) distribution.

More formally: √
Ns (Ĥ ′(q1,∆q1), . . . , Ĥ ′(qk,∆qk))→MN(0, Σ̃(H)), (3.7)

with Σ̃(H) the corresponding asymptotic covariance matrix.

The tightness of the process Ĥ ′(q,∆q) on q ∈ Ω implies that the above result can be

extended to the functional space l1(∞). Then, under the null hypothesis of unifractality, the

process Ĥ ′(q,∆q) satisfies: √
NsĤ

′(q,∆q)→ G∞(q;H), (3.8)

with G∞(q;H) a zero-mean Gaussian process with covariance function given by the func-

tional counterpart of the covariance matrix Σ̃(H). Finally, the convergence of the different

functionals of Ĥ ′(q) used as test statistics in the preceding subsection follows from the con-

tinuous mapping theorem applied to the functional space.
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4 Model-based Bootstrap Resampling

The distributions of the test statistics under the null hypothesis of unifractality are non-

standard, due to the presence of nuisance parameters in the asymptotic null distribution.

These nuisance parameters are given by functions of the parameter H, which is unknown and

must be estimated. Consequently, critical values of the different tests cannot be universally

tabulated, however the finite-sample distribution of the test can be approximated using

alternative methods explored in the literature, namely, bootstrap and simulation techniques.

Both unifractal and multifractal processes will generally exhibit serial dependence that

may persist at long horizons and so the method employed must account for the dependence

structure present in the original data. This issue is particularly critical, because the serial

dependence in unifractal and multifractal processes is intimately linked with their scaling

properties, which provide the theoretical basis of the proposed test statistics. As a result,

any method that cannot preserve the serial dependence structure of the data will also be

unable to preserve their scaling properties and so is likely to lead to invalid inference.

Given the above constraints, the most obvious choice of methods would appear to be non-

parametric resampling approaches for dependent data, such as block bootstrap or subsam-

pling techniques. However, as argued below, the use of nonparametric resampling methods is

not strictly necessary in the current testing environment and a semi-parametric model-based

bootstrap approach may be employed instead. This type of bootstrap takes into account

the serial dependence in the data by modelling parametrically the dynamics of the process.

For completeness, the performance of both block bootstrap and subsampling methods was

also tested in Monte Carlo exercises to investigate whether they could provide superior per-

formance to the model-based bootstrap approach. Unfortunately, for the sample sizes of

interest in the current application, these nonparametric approaches were found to perform

substantially worse than the model-based bootstrap approach and so were deemed unsuitable

for the current context.

In response to the requirements discussed above, a resampling approach was developed

for obtaining the null distributions of the test statistics that can be viewed as a model-

based bootstrap approach, combining aspects of both Monte Carlo simulation and bootstrap

methods. Despite being developed independently for the current work, the resampling scheme

proposed here is closely related to the previous model-based bootstrap approach of Hall et al.

(2000) proposed for performing statistical inference for the scalar simple Hurst exponent of

a unifractal process. The testing problem considered in the current work is however more

complex, because we perform inference based on test statistics that are functionals of the

functions H(q) and τ(q) for the more general multifractal case, instead of simply performing

inference for the scalar parameter H in the unifractal case. As a result, the resampling

algorithm developed for the current context necessarily differs from that proposed by Hall
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et al. (2000), although the two approaches share the same underlying theoretical motivation.

Although the resampling approach proposed here is potentially applicable in other testing

situations, some important characteristics specific to the current testing environment must

be emphasised in order to motivate the use of this method in the current context. Firstly,

all of the proposed test statistics are based solely on the scaling properties of the process

characterised by the generalised Hurst exponent, H(q), or equivalently the scaling function,

τ(q). As such, none of the test statistics depend directly on any other characteristics of

the underlying process. Secondly, the null hypotheses for all of the proposed test statistics

correspond to that of a unifractal process and from Definition 1, the functional forms of the

generalised Hurst exponent or scaling function are identical for all unifractal processes and

crucially are parameterised entirely by the simple Hurst exponent, H.

Whilst the true scaling properties are identical for any unifractal process with the same

simple Hurst exponent, sample estimates of the functions H(q) and τ(q) must be used in

practice, with the resulting estimation error potentially leading to the problem of spurious

multifractality. We therefore wish to model this estimation uncertainty by obtaining the

distribution of the relevant test statistics under the null of unifractality using an appropriate

resampling method. This will allow us to determine whether the observed deviation from

unifractal scaling is sufficiently large to be interpreted as evidence of multifractal scaling, or

whether it can be explained simply by estimation error for a process that is unifractal. The

discussion above suggests that in order to implement the bootstrap test we need to estimate

first the simple Hurst exponent from the original sample of data, under the assumption that

the data are consistent with the null hypothesis of unifractality12.

4.1 Bootstrap Resampling Algorithm

In what follows, we outline the procedure to generate the bootstrap p-values that consistently

estimate the asymptotic p-values of the test. First, we simulate a large number of independent

sample paths from a specific theoretical unifractal process, with a simple Hurst exponent

equal to the estimated value of H. For each of these simulated sample paths, the value

of the relevant test statistic can be calculated and the empirical distribution of these test

statistic values over the set of simulated series can be obtained. This empirical distribution

can then be used as an estimate of the distribution of the test statistic of interest under the

null of unifractality. Formally, the steps of the resampling method are as follows:

1. The simple Hurst exponent, H, is estimated from the original sample of data, with the

resulting estimate denoted by Ĥ.

12At this stage it is not necessary to assume a specific process a priori, since the various estimators available
for the simple Hurst exponent are valid for any unifractal process.
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2. The estimated parameter value13 Ĥ is used to generate R independent realisations from

the chosen fractional Gaussian noise data generating process, with each simulated series

having the same length as the original time series, denoted by T .

3. For each of the R simulated series the generalised Hurst exponent, H(q), or the scaling

function, τ(q), are estimated, with the resulting estimates denoted by H̃(q)1, . . . , H̃(q)R

and τ̃(q)1, . . . , τ̃(q)R. The sample value of the chosen test statistic from Section 3 is

then calculated for each of these R estimates, with the sample values for the chosen

test statistic denoted generically by T̃1, . . . , T̃R for notational simplicity, rather than

for example dH̃inf,1, . . . , dH̃inf,R.

4. Sample estimates ofH(q) and τ(q) are obtained from the original data using an identical

estimation method to that employed in the previous step to obtain the estimates for

the simulated realisations. The sample estimates are denoted Ĥ(q) and τ̂(q) and are

used to calculate the sample value of the chosen test statistic, denoted by T̂ .

5. The empirical cumulative distribution function of the R bootstrap test statistic values

T̃1, . . . , T̃R denoted by F̃ (T ) is calculated as:

F̃ (T ) =
1

R

R∑
i=1

I
(
T̃i ≤ T

)
where I(T̃i ≤ T ) is the indicator function taking the value of 1 if T̃i ≤ T and 0 otherwise.

The empirical distribution F̃ (T ) is then used as an estimate of the distribution of the

test statistic under the null of unifractal scaling behaviour.

6. The two infimum-based statistics are one-sided tests with rejection regions on the left

side of the distribution and so the p-value of the sample value T̂ can be calculated as

F̃ (T̂ ), with the null of unifractality rejected if the sample p-value is less than the chosen

nominal significance level. The average-based statistics are one-sided with rejection

regions on the right side of the distribution and thus sample p-values can be calculated

as 1− F̃ (T̂ ). Alternatively, in both cases the empirical inverse cumulative distribution

function can be calculated and used to obtain critical values.

Estimation of the generalised Hurst exponent and scaling function in Steps 3 and 4 is

performed using the MF-DFA estimator discussed in Appendix A and estimation of the

simple Hurst exponent, H, in Step 1 is performed using the (unifractal) DFA estimator,

which is obtained as a special case of the MF-DFA estimator for a value of q = 2.

13Note that the fractional Gaussian noise process is generally characterised by two parameters; H and the
increment standard deviation σ. The latter however is not relevant in the current testing environment, since
changes to σ leave the scaling properties unchanged, and can thus be set to any arbitrary value such as σ = 1.
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It should be noted at this point that both the procedure used to estimate the process

parameters in step 1 and the fGn DGP used for simulation in step 2 to approximate the null

distribution of the test statistic implicitly assume a lack of time variation in the parameters

of the process. As a result, our testing procedure does not allow for the presence of structural

breaks in the series, though this limitation is of course common to many econometric and

statistical tests across the literature.

In addition, the fractional Gaussian noise process employed for our resampling procedure

also implies smooth sample paths for the corresponding fractional Gaussian motion price or

cumulative sum series and thus technically rules out the possibility of jumps. Nonetheless,

additional simulation exercises were performed in order to empirically investigate the mag-

nitude of the impact that jumps would have on test performance by including an additive

jump component in the simulation DGPs employed in Section 5 in the manner of Xue et al.

(2014) or Laurent et al. (2016). These simulation exercises confirmed that, as expected a

priori, test performance is severely affected by the presence of jumps even with relatively

small jump magnitudes and low jump frequency.

Therefore, if jumps are suspected to be present in the series of interest we suggest the

use of a jump detection approach such as those proposed by Lee and Mykland (2008) or

Xue et al. (2014) to identify jumps, before appropriately filtering them out of the raw data.

Our testing procedure can then be applied to the continuous or non-jump component of the

series. Alternatively, a more substantial modification of the testing procedure may allow it to

perform satisfactorily with jumps still present within the estimation sample. Potentially this

could be achieved by replacing the DFA estimator with an alternative that is more robust

to jumps, together with generalising the fGn DGP used in step 2 of the algorithm to an

alternative form of unifractal process does permit jumps. However, both of these changes

are likely to substantially reduce the small sample performance of the test relative to our

current approach, which was viewed as a priority in the current work.

The next result states the asymptotic validity of the bootstrap approximation. More

specifically, under the null hypothesis of unifractality, the process H̃
′
(q,∆q) obtained from

the model-based bootstrap samples introduced in the algorithm above satisfies:√
NsH̃

′
(q,∆q)→ G̃∞(q;H), (4.1)

with G̃∞(q;H) an independent copy of the zero-mean Gaussian process G∞(q;H) introduced

in (3.8). The proof of the convergence result (4.1) immediately follows applying the same

arguments as for the original series simulated from the the fractional Brownian motion time

series discussed above. The weak convergence of the corresponding bootstrap test statistics

is derived from applying the continuous mapping theorem to the above process.
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4.2 Justification for the Resampling Method

One apparent limitation of the proposed model-based bootstrap resampling algorithm is the

need to specify a particular DGP consistent with the null hypothesis to simulate from in

Step 3 to estimate the null distribution of the test statistic. Although other theoretical

unifractal processes could in principle be employed, we assume that the fractional Gaussian

noise (fGn) is used. The fGn is the increment series of the fractional Brownian motion (fBm),

which can be viewed as a generalisation of the standard Brownian motion that allows for

long-range linear dependence in the fGn increment series. More formally, an fGn process

{Xt : t = 1, ..., T} is a series of Normal random variables with mean 0 and autocovariance

function:

E[Xt+kXt] = γ(k) =
σ2

2

{
|k − 1|2H − 2|k|2H + |k + 1|2H

}
where H is the simple Hurst exponent of the process14. For the special case for H = 0.5

the fGn is serially uncorrelated and simplifies to the standard Gaussian noise, whereas for

H > 0.5 andH < 0.5 the process displays positive and negative serial correlation respectively.

As a Gaussian process, numerous algorithms are available15 for the simulation of fGn sample

paths in Step 2 above, with the well-known circulant embedding method used here.

The first justification for this choice of process is simply that the fGn and the correspond-

ing fBm cumulative sum series are by far the most commonly used unifractal processes in

the finance literature and elsewhere, with the relatively small number of suitable alternatives

receiving much less attention. The choice of the fGn is still justifiable from this perspective

if interest lies in testing the local scaling properties of the process, in which case the null

corresponds to a globally multifractional process; the most widely studied theoretical mul-

tifractional process is the multifractional Gaussian noise and corresponding multifractional

Brownian motion level series, which are obtained as direct generalisations of the fGn or fBm

by allowing the simple Hurst exponent to be time-varying. The process thus behaves locally

as an fGn and as such, assuming an fGn data generating process under the null of (local)

unifractality is still justifiable.

Secondly, existing theoretical results can be employed to argue that the null distribution

obtained by simulating from an fGn data generating process is asymptotically identical to

the distribution that would be obtained from a wide range of alternative unifractal processes

consistent with the null hypothesis. In particular, it has been shown by Taqqu (1975), Giraitis

14For the fGn the same parameter controls both the scaling and dependence properties of the process.
This is a characteristic of the subclass of ‘self-affine’ processes, of which the fBm and fGn are members,
however unifractal processes more generally may possess independent scaling and dependence properties.
The construction of such generalised unifractal processes is more complex and so few examples exist in the
literature, with a notable example being that of Gneiting and Schlather (2004).

15Indeed a secondary benefit of using the fGn is that the methods available for simulating sample paths
include a number of very efficient algorithms, thus reducing computational requirements compared to alter-
native unifractal processes.
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and Surgailis (1985) and others that, under certain regularity conditions, the cumulative sum

series for a range of unifractal processes converge in law to a fractional Brownian motion. The

chosen MF-DFA estimator (discussed in detail in Appendix A), like most common estimators

for the generalised Hurst exponent, operates on the cumulative sum or profile series, implying

that the null distribution of the test statistics derived from the estimates of H(q) or τ(q)

for an fGn should be asymptotically identical to that for a much larger class of unifractal

processes under the null.

Alternatively, Hall et al. (2000) consider asymptotic equivalence of the fGn and other

unifractal processes at the level of the estimator, rather than at the level of the underlying

process. In their testing environment, they need only to estimate the simple Hurst expo-

nent, H, for which they employ the rescaled adjusted range (R-S) analysis estimator. The

R-S estimator has no multifractal analogue for the generalised Hurst exponent, H(q), and

so is inapplicable in the current context. Nonetheless, they demonstrate that under some

assumptions and regularity conditions the asymptotic distribution of the R-S estimator of H

for an fGn process and that for a wider class of processes obtained via linear and nonlinear

transformations of that fGn process, depend only on the value of H and some known nui-

sance parameters unaffected by the transformation. As a result, the distribution of the R-S

estimator of H obtained from a fGn process for given values of H and the other nuisance

parameters will be identical to the distribution for a much wider class of processes. Intu-

itively, this occurs because the R-S estimation algorithm performs standardisation using the

local variances that corrects for nonstationarities of various forms, eliminating the effects of

the transformation performed for the Gaussian fGn process. As such, the theoretical result

derived by Hall et al. (2000) applies specifically to their chosen R-S estimator and cannot

be directly applied to the DFA/MF-DFA estimators used in the current context. However,

given that the DFA-type estimators also perform a form of local detrending with the specific

aim of removing nonstationarities from the data, we hypothesise that a similar property will

also hold for the current estimation environment, although we do not prove this formally.

5 Monte Carlo Exercises

The current section uses simulated unifractal and multifractal processes with known proper-

ties to examine the performance of the proposed testing methodology in a variety of situa-

tions. Section 5.1 begins with a summary of the Monte Carlo testing methodology employed

throughout the current section to estimate the empirical size and power of the tests. Sec-

tion 5.2 presents a competing test based on wavelet analysis. Section 5.3 reports and discusses

the core size and power results, with the robustness of these results to various changes in the

testing environment checked in Subsections 5.4 and 5.5.
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5.1 Monte Carlo Methodology

A standard Monte Carlo approach is employed for calculating the empirical size and power

of the various test statistics under different conditions. In order to calculate the empirical

size of the tests under the null of unifractality, we apply the testing methodology to samples

of data generated by a unifractal process consistent with the null hypothesis, for which we

use the fGn process discussed in the previous section.

As argued in the previous section, a range of other processes consistent with the null of

unifractality will be asymptotically equivalent in the current context to the fGn employed

for simulation during our model-based bootstrap resampling method, giving our approach

greater generality than it first seems. However, the null distribution of the test statistic for

such processes in finite samples may differ from that of an fGn process. In this sense, the

empirical size figures reported here should therefore be viewed as an upper bound to the per-

formance of the test in terms of its size properties. It would also be beneficial to investigate

the finite-sample size properties of the testing procedure under alternative unifractal DGPs,

however the widespread use of the fGn and its Gaussian nature have produced simulation al-

gorithms that are significantly more efficient than those for other unifractal processes. Given

the significant computational demands of embedding our model-based bootstrap approach

within a Monte Carlo exercise, we leave this as an avenue for future investigation.

The outcome of the test at nominal significance levels of 10%, 5% and 1% is recorded

for each of the test statistics and this process is repeated for M Monte Carlo repetitions in

total, thus producing M test outcomes for each nominal significance level. The empirical

size of the test is then calculated as the percentage of rejections at each significance level

over these M realisations.

When calculating empirical power under the alternative of multifractality the same pro-

cedure is employed, but applying the testing methodology to simulated data from the multi-

fractal random walk (MRW) process previously mentioned in Section 2. Sample paths of the

MRW process are simulated using the discrete time formulation of Bacry et al. (2001) de-

tailed in Appendix B. The MRW was selected due to its suitability for financial applications

(see Muzy et al., 2001) and the fact that the strength of multifractality is controlled directly

by the single parameter λ2 (the intermittency coefficient), permitting the relationship be-

tween power and the strength of multifractality to be easily studied. The Markov-switching

multifractal (MSM) also mentioned in Section 2 is employed in Section 5.5 to confirm that

the testing procedure has power against an alternative multifractal process appropriate for

financial applications.

In all cases both the number of simulated sample paths in stages 2 and 3 of the model-

based bootstrap resampling algorithm, R, and the number of Monte Carlo repetitions, M ,

are set to a value of 1,000. The chosen values of R = 1, 000 and M = 1, 000 were found
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to be sufficient to produce empirical size and power values that are identical to the nearest

percentage point on repeated runs of the Monte Carlo exercise.

The default parameter values for all processes were chosen based on parameter estimates

obtained from daily return series for a range of financial assets, with the robustness of the

results to different choices for these parameter values explored in Section 5.5. For the fGn

process the default values used were H = 0.5 for the simple Hurst exponent and σ = 0.1

for the standard deviation. The value of H = 0.5 implies linear independence and was

chosen based on the finding that estimates of H for financial returns are typically close to

0.5, reflecting the weak linear dependence normally found in the level of returns. For the

MRW process the default parameter values were again σ = 0.1 for the standard deviation

and λ2 = 0.025 for the strength of multifractality parameter16. Again, the MRW realisations

were constructed to possess linear independence, though by construction the process will

display non-linear serial dependence, most notably in the variance.

Finally, given our interest in the local distributional scaling properties of processes, it

would be informative to study the properties of the testing procedure when the true DGP

is multifractional, such as the multifractional Gaussian noise. In principle such an exercise

is implementable, with its current omission being due to practical reasons that would make

it substantially more complex and time-consuming than the existing simulation exercises.

There has been some work developing methods for estimating the time-varying Hurst func-

tion, H(t), under the assumption of a multifractional process for a given sample of data,

typically based on a dynamic application of the estimators for the time-invariant Hurst ex-

ponent in the unifractal case. However, we are not aware of any approach for generating

simulated sample paths of the Hurst function, which would be required in order to simulate

sample paths for the corresponding multifractional process itself in the current Monte Carlo

context. An appropriate methodology for this task would need to be developed in order

to extend the Monte Carlo exercises in this way and so we leave it as an avenue for future

research.

Given that the vector of values of q over which the functions are estimated (previously

denoted by q in Appendix A) must be equally spaced for the current test statistics, q

is completely characterised by the minimum and maximum values and the grid or step

size between each value, denoted by qmin, qmax and qgrid respectively. Estimates of H(q)

obtained for values of q that are large in absolute terms typically become unreliable in smaller

samples, but at the same time it is necessary to consider the behaviour of H(q) or τ(q) over

a sufficient range of q to provide an accurate measure of the properties of these functions.

As a compromise, the default choices were qmin = 0, qmax = 2.5 and qgrid = 0.1, which

16The additional parameters for the integral timescale, T , and sampling interval ∆ were set to T = 5, 000
and ∆ = 1, though these are of less direct interest and are only defined relative to the sampling frequency of
the data, which is arbitrary when dealing with simulated series.
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were found to produce consistently strong performance for the sample sizes considered here.

Additional choices for q were also considered17, including narrower ranges of 0 ≤ q ≤ 1.5

and wider ranges of up to 0 ≤ q ≤ 5. Given the previous discussion of the linearisation

effect that may occur for larger values of q, it is of particular interest to see if our testing

procedure can produce reliable inference using this extended range of 0 ≤ q ≤ 5. Therefore,

we report results for this wider range of q in Section 5.4, to check the robustness of the

testing methodology to the choice of q.

Finally, the minimum and maximum scale or window sizes, previously denoted s1 and

sm, were set approximately according to the rules of thumb discussed in Appendix A, with

s1 = 5 in all cases and sm ≈ T/15, where T is the sample size. Given that inappropriately

chosen values for the range of scales can lead to unreliable estimates of scaling properties,

we carefully investigated the effects of scale choice on test performance. We found however

that for reasonable changes in scales used, test performance displayed little variation. We

hypothesise that this is due to the effects of scale choice being automatically taken into

account by our model-based bootstrap testing procedure, in which identical scales are used

for both the sample and bootstrap data series. Indeed, the same argument can be extended

to the previously discussed invariance of test performance to reasonable changes in the range

of q employed. In light of this finding, we continued to employ scales roughly consistent with

the typical rules of thumb outlined above.

5.2 Wavelet-Based Tests of Distributional Scaling Properties

As previously mentioned in the Introduction, the only comparable statistical test of unifrac-

tal versus multifractal distributional scaling is the wavelet-based testing approach of Wendt

and Abry (2007) previously proposed in the signal processing literature. In the current work

it is thus logical to compare the relative performance of this existing testing approach with

that of the new approach proposed in the current work. Unfortunately, direct comparisons

are not possible using the original Monte Carlo exercises of Wendt and Abry (2007), be-

cause whilst they do select the same theoretical unifractal and multifractal data generating

processes for calculating empirical size and power, they use different parameter values and

sample sizes that are much less relevant or appropriate for the current financial context than

those proposed above. In particular, Wendt and Abry (2007) focus on larger sample sizes,

which are less likely to be obtainable for financial data and do not allow the study of local

scaling properties. In addition, they consider much stronger levels of multifractality than are

plausible for financial return data when calculating empirical power. Both differences serve

to improve the reported performance of their test.

Therefore, new Monte Carlo exercises using these wavelet-based tests have been per-

17Values of q in the range −5 ≤ q ≤ 5 are typical in empirical studies of multifractality in financial data,
such as Muzy et al. (2001), Di Matteo (2007) or Bacry et al. (2008).
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formed specifically for the current work, to permit a direct comparison with the model-based

bootstrap approach proposed here. The wavelet-based testing approach will not be discussed

in any detail (the reader is referred to the original work for further information), but it should

be noted that Wendt and Abry (2007) propose equivalent testing approaches based on both

wavelet leaders and also wavelet coefficients. The former generally produce tests with higher

empirical power, but the latter often result in better empirical size properties and so both ap-

proaches will be included in the current Monte Carlo exercises. In both cases, the percentile

formulation of the relevant test statistic is selected from the various alternatives proposed by

Wendt and Abry (2007), given their conclusion that this formulation provided the strongest

relative performance. All other aspects of the implementation of the wavelet-based tests

follow the approach used for the Monte Carlo exercises in their original paper and the tests

are performed using the Matlab code available online that accompanies their paper.

5.3 Core Results & the Effects of Sample Size

Table 1 presents the empirical size and power of the proposed test statistics obtained using

the default choices detailed above with sample sizes of 5,000, 2,500 and 1,000. Whilst these

appear to be large sample sizes by normal econometric standards, accurate estimation of the

generalised Hurst exponent requires a substantial number of observations, with minimum

sample sizes in the low thousands normally suggested in the literature and thus making the

sample sizes employed here relatively small in reality. As such, the need to use sample sizes

of this magnitude should not be viewed as a limitation of the proposed testing methodology,

but an inherent limitation in the study of this type of process.

From Table 1 it can be seen that for the larger sample sizes of T = 5, 000 and T = 2, 500

the empirical size of the tests deviates very little from the specified nominal significance

levels, regardless of the nominal level chosen. Furthermore, there seems to be little difference

between the size properties of the tests at these two larger sample sizes, except arguably at

the 1% level where the differences are more pronounced. At the smallest sample size of

1,000 the empirical sizes do move further from their nominal levels, but it should again be

remembered that a sample size of 1,000 is extremely small compared to those generally used

in the literature on unifractal and multifractal processes.

Turning next to the empirical power of the tests, as expected power declines as the sample

size decreases, ranging between 0.86 and 0.95 for T = 5, 000 and dropping to between 0.53

and 0.73 for the smallest sample size of 1,000. For larger sample sizes the power of the tests

also appears to be much more consistent across the different nominal significance levels than

for T = 1, 000, however this will also be affected by the differences in empirical size, since

the reported empirical power values are not size adjusted. It can be seen that particularly at

the 10% and 5% levels the empirical size values for T = 1, 000 are typically lower than the

nominal levels, which will in turn reduce the power of the tests relative to a test performed
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Table 1: Empirical size and power for default testing methodology

Empirical size Empirical power
Nominal sig. level 0.10 0.05 0.01 0.10 0.05 0.01

T = 5,000
dHinf 0.097 0.044 0.009 0.937 0.925 0.887
dHavg 0.098 0.044 0.008 0.913 0.900 0.860
dτinf 0.095 0.046 0.008 0.946 0.931 0.901
dτavg 0.100 0.044 0.005 0.908 0.891 0.858

Wavelet coefficients 0.204 0.131 0.038 0.219 0.148 0.057
Wavelet leaders 0.202 0.127 0.041 0.699 0.588 0.392

T = 2,500
dHinf 0.106 0.051 0.007 0.876 0.829 0.744
dHavg 0.099 0.047 0.007 0.833 0.807 0.737
dτinf 0.103 0.050 0.008 0.884 0.843 0.767
dτavg 0.096 0.053 0.008 0.838 0.811 0.740

Wavelet coefficients 0.206 0.138 0.047 0.237 0.158 0.058
Wavelet leaders 0.213 0.137 0.051 0.602 0.516 0.313

T = 1,000
dHinf 0.098 0.046 0.010 0.722 0.672 0.534
dHavg 0.092 0.045 0.012 0.712 0.668 0.563
dτinf 0.098 0.043 0.011 0.739 0.688 0.572
dτavg 0.093 0.042 0.009 0.720 0.679 0.575

Wavelet coefficients 0.219 0.144 0.054 0.209 0.136 0.058
Wavelet leaders 0.254 0.173 0.061 0.481 0.386 0.176

at the true nominal significance level.

For any of the given sample sizes the relative performance of the four proposed test

statistics is largely consistent, suggesting that the approaches based on the generalised Hurst

exponent, H(q), and the scaling function, τ(q), are not only equivalent in theory but also

in practice. For the additional Monte Carlo exercises presented in the current section the

observed performance differences between the statistics based on H(q) and τ(q) remained

small and so results for the τ(q)-based test statistics have not been reported for the rest of

the section to conserve space, but are available upon request. Tests based on the average

and infimum are also found to be approximately equal in terms of empirical size and power.

The same was not true however for the supremum-based statistics excluded from the Monte

Carlo exercises for the reasons given in Section 3.1, which often produced empirical size

values below the nominal significance level, particularly for T = 1, 000.

Finally, it is clear from the results for the wavelet-based tests of Wendt and Abry (2007)

that the new testing approach proposed here provides a substantial improvement in perfor-

mance over this existing approach. The empirical size of both the wavelet coefficient and

wavelet leader tests are consistently higher than the specified nominal significance levels,
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with the observed empirical size typically at least 2 or 3 times larger than the specified nom-

inal value. Consistent with the results of the original Monte Carlo exercises performed by

Wendt and Abry (2007), the wavelet leader approach is found to attain substantially higher

power than the approach based on wavelet coefficients, however the former is still found to

achieve significantly lower power than the new test statistics proposed in the current work.

Furthermore, it should again be noted that the values for empirical power reported in Ta-

ble 1 are not adjusted for differences in the size of the tests. Given that the empirical size

of the wavelet-based tests is consistently and substantially higher than the specified nomi-

nal level, the actual power of the wavelet-based tests for a given significance level is in fact

substantially lower than the values listed in Table 1.

5.4 Robustness to Changes in the Estimation Method

Given the importance of the estimation method for H(q) in determining the estimation error

and the degree of spurious multifractality, it is crucial to check that the proposed testing

procedure maintains good size and power properties for a range of reasonable estimation

methods. The issue of sample size has already been covered to some extent in the previous

subsection. We now extend this robustness analysis by examining changes in the vector

of values q over which the generalised Hurst exponent is estimated18. Checking the power

of the testing procedure for different ranges of q is also important from the perspective of

the linearisation effect discussed previously in Section 2, given that it may lead to spurious

findings of unifractality for larger values of q.

Table 2 contains empirical size and power values for various choices of the vector q.

Results are only presented for the sample size of 5,000 in order to conserve space, but similar

results were also obtained for the previous sample sizes of 2,500 and 1,000. Table 2(a) reports

results using the default values of qmin = 0 and qmax = 2.5, but varying qgrid from the default

value of 0.1 to include the two additional values of 0.05 and 0.25. Table 2(b) employs the

same choices for qgrid as Table 2(a), but increases the maximum value of q to qmax = 5,

motivated by the choice of 4 ≤ qmax ≤ 5 being common in previous empirical studies. It

should be noted that the previously discussed linearisation effect may manifest itself for

threshold values as low as q = 2 or q = 3. Such a value may therefore potentially fall within

the default range used previously for q, but the extended range spanning up to q = 5 should

provide a more reliable indication of whether this effect influences test performance.

From the reported values in Table 2 it is clear the performance of the tests remains

largely consistent for the various combinations of qgrid and qmax considered here. Whilst

18To check robustness to alternative choices of estimator for H(q), the MF-DFA estimator was also sub-
stituted for the multifractal centred moving average (MF-CMA) estimator of Schumann and Kantelhardt
(2011). The empirical size and power obtained for the testing methodology employing the MF-CMA was very
similar to that employing the MF-DFA estimator, with results available upon request.
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Table 2: Empirical size and power for different choices of q

Empirical size Empirical power
Nominal sig. level 0.10 0.05 0.01 0.10 0.05 0.01

(a) For qmin = 0 and qmax = 2.5

qgrid = 0.05
dHinf 0.098 0.044 0.008 0.940 0.926 0.889
dHavg 0.097 0.047 0.005 0.914 0.902 0.862

qgrid = 0.10
dHinf 0.097 0.044 0.009 0.937 0.925 0.887
dHavg 0.098 0.044 0.008 0.913 0.900 0.860

qgrid = 0.25
dHinf 0.091 0.044 0.006 0.933 0.919 0.883
dHavg 0.096 0.045 0.005 0.908 0.894 0.855

(b) For qmin = 0 and qmax = 5

qgrid = 0.05
dHinf 0.095 0.044 0.008 0.954 0.939 0.905
dHavg 0.102 0.047 0.007 0.925 0.907 0.873

qgrid = 0.10
dHinf 0.097 0.044 0.009 0.952 0.940 0.908
dHavg 0.104 0.046 0.005 0.923 0.905 0.872

qgrid = 0.25
dHinf 0.093 0.045 0.008 0.949 0.936 0.909
dHavg 0.097 0.048 0.005 0.918 0.902 0.872

more extreme choices for the vector q (particularly including values of q that are large

in absolute terms) are likely to have an adverse effect on the performance of the testing

methodology, the good size and power properties of the tests seem to be preserved across a

variety of reasonable choices for q. This suggests that the effects of the choice of q on the

properties of the estimator for H(q) are being correctly accounted for by the proposed testing

methodology and, at least for the DGPs considered here, it is able to correctly account for

the effects of spurious multifractality and the linearisation effect discussed previously.

5.5 Choice of Data Generating Process Under the Null and Alternative

For the MRW process used to calculate empirical power under the alternative hypothesis, the

strength of multifractality is controlled directly by the intermittency coefficient λ2, which

appears directly a a parameter of the process. As previously discussed, larger values of

λ2 correspond to stronger multifractality and the limiting value of λ2 = 0 corresponds to

a unifractal process. Therefore, as λ2 → 0 the power of the tests should converge to the

nominal significance levels and as λ2 → ∞ power should converge to unity. Figure 4 plots
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the empirical power of the the dHinf and dHavg statistics as a function of the multifractality

strength19 λ2 for T = 5, 000 in order to establish whether this predicted convergence holds

in practice.
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(a) Empirical power for dHinf statistic
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(b) Empirical power for dHavg statistic

Figure 4: Empirical power versus multifractality strength (λ2) for dHinf and dHavg statistics. A logarithmic
scale has been used for the horizontal axis to improve legibility, but axis values correspond to true values of
λ2 and not logarithmic values.

Figure 4 clearly demonstrates that the expected convergence of test power to the limiting

values in both directions is indeed observed empirically. Empirical power of nearly 100% is

obtained for all nominal significance levels and test statistics after increasing the strength of

multifractality from the default value of λ2 = 0.025 to λ2 = 0.05 or higher. Moving in the op-

posite direction, convergence to the nominal significance levels as λ2 → 0 is almost complete

at the value of λ2 = 0.0001. It is worth noting from Figure 1(a) that the theoretical scaling

function for the MRW process with a value of λ2 = 0.01 is sufficiently close to linear that

such weak multifractality would be nearly impossible to detect using the previous graphical

approach. However, the proposed testing methodology still results in empirical power of

approximately 70% and 50% at nominal significance levels of 10% and 1% respectively.

To confirm that the tests have power against other multifractal process in addition to the

MRW, the Markov-switching multifractal (MSM) model of Calvet and Fisher (2004) was also

tested, which represents the most notable alternative to the MRW as a theoretical multifrac-

tal process developed specifically for financial applications20. We tested two parameterisa-

tions of the MSM process, both following from the parameter estimates obtained for financial

data in the original work by Calvet and Fisher (2004). For the first parametrisation the num-

ber of volatility components k̄ was set to 5 and the parameter values used for simulation of

the MSM process were σ = 0.5,m0 = 1.5, b = 8, γk̄ = 0.75, which correspond to the standard

19Note that for Figure 4 a logarithmic scale has been employed for the horizontal axis to improve legibility,
however the vales of λ2 marked on the axis correspond to the actual values of λ2 and not their logarithms.

20Additional theoretical multifractal processes have been developed in other fields of study, such as the
physics literature. However, given that our interest lies specifically in financial applications we focus on
processes developed for this context.
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deviation, binomial value, frequency growth rate and high-frequency switching probability

respectively (see Calvet and Fisher, 2004, for further details). For the second parametrisation

we use 10 volatility components (k̄ = 10) and values of σ = 0.5,m0 = 1.3, b = 8, γk̄ = 0.975

for the remaining parameters.

Table 3: Empirical power against Markov-switching multifractal alternative

5 volatility components 10 volatility components

Nominal sig. level 0.10 0.05 0.01 0.10 0.05 0.01

T = 5,000
dHinf 0.995 0.995 0.991 0.974 0.964 0.936
dHavg 0.980 0.977 0.971 0.960 0.947 0.917

T = 2,500
dHinf 0.985 0.977 0.964 0.936 0.920 0.871
dHavg 0.958 0.950 0.926 0.914 0.885 0.849

T = 1,000
dHinf 0.924 0.904 0.861 0.833 0.790 0.698
dHavg 0.899 0.879 0.832 0.818 0.776 0.690

Table 3 reports empirical power of the test statistics against these two parameterisations

of the MSM, with all other aspects of the testing methodology consistent with the default

methodology discussed in Section 4. It is clear from Table 3 that the proposed tests main-

tain good power against the relevant MSM alternative with appropriate parameter values for

financial data, actually resulting in higher empirical power values than against the default

MRW alternative with default parameter values. However, given the large variation in em-

pirical power observed previously for the default MRW process as multifractality strength is

varied, direct comparisons of empirical power between these two processes are not possible

without a universal measure to compare the strength of multifractality.

Finally, the size and power properties of the test are assessed for series with linear serial

dependence. All series simulated thus far have been constructed to exhibit linear inde-

pendence in the level of the series21, based on the empirical finding that financial returns

generally exhibit little to no serial correlation in their levels. The fGn process used to calcu-

late empirical size under the null exhibits linear dependence for any H 6= 0.5 and the MRW

used to measure power under the alternative can be generalised to allow for linear depen-

dence as described in the Appendix. Given that the estimated linear dependence for return

series if present is typically weak, attention is restricted to two additional values of H = 0.6

and H = 0.4, which correspond to weak linear persistence and weak linear anti-persistence

respectively.

21Although as previously discussed, the MRW process used for testing power under the alternative will
exhibit non-linear serial dependence, particularly in the variance, even when linearly independent.
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Table 4: Empirical size and power with linearly dependent series

Empirical size Empirical power
Nominal sig. level 0.10 0.05 0.01 0.10 0.05 0.01

H = 0.4
dHinf 0.089 0.048 0.007 0.962 0.953 0.927
dHavg 0.105 0.049 0.006 0.933 0.918 0.891

H = 0.5
dHinf 0.097 0.044 0.009 0.937 0.925 0.887
dHavg 0.098 0.044 0.008 0.913 0.900 0.860

H = 0.6
dHinf 0.098 0.045 0.007 0.925 0.898 0.843
dHavg 0.094 0.047 0.008 0.886 0.866 0.802

From Table 4 it is clear that there are no major changes in the empirical size and power

of the tests compared to the case of linear independence, with all of the test statistics still

performing well. In terms of empirical size, there appears to be a small drop in performance

for the infimum-based statistics for the case of H = 0.4 and a drop for the average-based

statistics for the case of H = 0.6. Empirical power appears to be mostly unaffected for the

case of H = 0.4, but seems to fall slightly when H = 0.6, particularly for the average-based

statistics. Nonetheless, given that the estimated strength of linear dependence observed in

asset return series is generally weaker than that implied by the values ofH = 0.6 andH = 0.4,

this is not likely to be problematic in practice when applying the testing methodology to

real financial data.

6 Empirical Exercise

The current section contains a short empirical exercise applying the proposed testing method-

ology to intraday returns for several major financial assets in order to demonstrate the appli-

cation of the tests to a real dataset. Given the potential advantages that the proposed testing

methodology may have over the existing graphical methods in smaller samples, particular

attention is paid to tests of the local, rather than global, scaling properties of the return

series.

6.1 Data

The data used were obtained from Olsen Associates and consist of intraday 5-minute obser-

vations from 3rd January 2007 until 31st December 2010 on the Euro (EUR) and Japanese

Yen (JPY) exchange rates against the US Dollar (USD) and the levels of the S&P500 and
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NASDAQ-100 equity indexes. The choice of 5-minute data was guided by the desire to ex-

ploit as much of the potentially valuable intraday information as possible, whilst avoiding

the distortions caused by market microstructure effects typically encountered at very short

sampling intervals22.

For the S&P500 and NASDAQ-100 equity data weekends and other non-trading days

were removed from the raw price data, with the list of non-weekend closures constructed

from the historical list of holidays available on the NYSE website. For the two exchange rate

series trading takes place 24 hours a day and 7 days a week, but slows substantially over

weekends and certain holidays. Following Andersen et al. (2001), the end of each trading

day was taken to be 21:00 GMT and the 48-hour weekend periods between 21:05GMT on

each Friday and 21:00 on each Sunday were removed from the raw 5-minute series. For most

of the NYSE holidays during the sample period both the EUR/USD and JPY/USD markets

were open for normal trading hours; only for Christmas Day and New Year’s Day was trading

noticeably slower than normal and so only these holidays were omitted from the exchange

rate series.

This process leaves a sample size of 1008 trading days for the equity index series, for a

total of over 75,000 observations, and 1037 trading days for the exchange rate series, for a

sample size of over 250,000. Continuous 5-minute returns were then constructed from the

first difference of the log-price series for each asset, with the first 5-minute return for each

day calculated between the closing price in the previous trading day and the opening price

in the current day (thus including any overnight or weekend effects).

6.2 Empirical Results

We begin by applying the proposed testing methodology to the complete sample of 5-minute

data for each asset to examine the global scaling properties of the return series; for all

four financial assets we firmly reject the null of a (globally) unifractal return process, with

p-values equal to zero to four decimal places for all of the proposed test statistics. As

previously discussed in Section 2.1, a globally unifractal process is overly restrictive and

arguably unsuitable as a model for financial returns and so this first empirical finding is

largely expected.

However, rejection of the null hypothesis of global unifractality for the complete sample

should not immediately be viewed as a confirmation of multifractal distributional scaling

in the current dataset, despite the very large samples sizes provided by the use of intraday

data. In particular, the class of multifractional processes discussed in Section 2.1 provide a

plausible alternative to multifractal processes for modelling return series that locally exhibit

22This problem is also encountered in the literature on realised volatility, where the 5-minute sampling
interval has generally been found to be a good compromise between these two factors (see for example
Andersen et al., 2001).
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unifractal distributional scaling, but may falsely appear multifractal even in large samples

due to the time variation in the Hurst exponent.

To test for this possibility, we split the complete return series for each asset into consecu-

tive non-overlapping windows of length T and then apply the proposed tests for unifractality

versus multifractality to each of these subsamples. Observing evidence of locally unifractal

properties within each of these sub-windows, combined with the previous finding of non-

unifractal scaling in the full sample, could be interpreted as support for a multifractional

process. Whilst this approach does not constitute a formal test for the null of multifractional

scaling, which would require a true multiple testing framework, we view it as an informal

first step towards such an approach which has value due to the lack of previous work on this

topic.

The Hurst function H(t) for a multifractional process may possess any functional form

that maps to the interval [0, 1], so the proposed testing approach assumes implicitly that

the true underlying function H(t) can be approximated by a step function with a change in

value permitted to occur every T observations. By reducing the value of T the quality of this

approximation will improve, but very short window lengths are not possible due to the need

for relatively large samples for reliable estimation of H(q) or τ(q). As a result this approach

may seem somewhat unsatisfactory, however from a practical perspective it is made more

reasonable in the current context due to use of intraday data, which allow large sample sizes

to be obtained from relatively short periods of calendar time; for example, windows of 1,000

5-minute observations23 permit the Hurst exponent to change approximately every 3 trading

days for the exchange rate series, thus allowing quite flexible scaling dynamics for the daily

return process.

For window lengths of 5,000 or longer, the sample p-values for the null of local unifrac-

tality within each sub-period remain equal to zero, again suggesting (locally) multifractal

scaling for all four return series. Figures 5 and 6 consider shorter window lengths and plot

the sample p-values obtained from applying the proposed test statistics to non-overlapping

windows of lengths 2,500 and 1,000 from the 5-minute return series. Note that due to shorter

trading hours in equity markets, a smaller number of observations and thus a smaller number

of windows are obtained for each window length compared to the exchange rate series.

From panels (a) and (c) of Figure 5, it can be seen that once the window size is reduced

to 2,500 the null of local unifractality can no longer be rejected for the EUR/USD and

JPY/USD exchange rate return series in some sub-periods. Decreasing the window size

further to 1,000 as in panels (b) and (d) further increases the number of windows in which

the null of local unifractality cannot be rejected. The results in Figure 6 show that shorter

window lengths are also associated with an increase in apparent local unifractality for the

23For assets that are very liquid, such as those considered here, even higher sampling frequencies, such as
1-minute data, could arguably be used without encountering serious issues with market microstructure effects.
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(b) EUR/USD, sub-period length 1,000
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(c) JPY/USD, sub-period length 2,500
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(d) JPY/USD, sub-period length 1,000

Figure 5: P-values for tests of unifractality versus multifractality applied to consecutive non-overlapping
sub-periods of 5-minute return data for the EUR/USD and JPY/USD exchange rates. Crosses and circles
indicate sample p-values for the dHinf and dHavg test statistics respectively.
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(a) S&P500, sub-period length 2,500
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(b) S&P500, sub-period length 1,000
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(c) NASDAQ100, sub-period length 2,500
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(d) NASDAQ100, sub-period length 1,000

Figure 6: P-values for tests of unifractality versus multifractality applied to consecutive non-overlapping
sub-periods of 5-minute return data for the S&P500 and NASDAQ100 equity indexes. Crosses and circles
indicate sample p-values for the dHinf and dHavg test statistics respectively.

S&P500 and NASDAQ100 data, however the evidence of local unifractality is much lower,

only beginning to appear once the window length is reduced to 1,000.
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The first possible explanation for the increasing evidence of local unifractality observed

as the window size decreases is that the return processes are in fact truly multifractal in

nature, both locally and globally, with the inability to reject the null of unifractality for

shorter windows simply due to the power of the tests decreasing as the sample size is reduced.

Whilst we cannot rule out this explanation, if it is true then power must depend very strongly

on other characteristics of the return processes beyond simply the sample size, since from

Figures 5 and 6 the exchange rate series exhibit much stronger evidence of local unifractality

than the equity index returns, despite using identical sample sizes.

Following from the earlier discussion of Sections 2 and 3, the second possible explanation

for the evidence of local unifractality, when combined with the earlier strong rejection of

global unifractality, is that the return series are multifractional rather than multifractal,

with this only becoming apparent with shorter window lengths that make the true locally

unifractal scaling properties of the return series more visible. One possible justification

in support of this explanation is that although windows containing the same number of

intraday observations are used for both the exchange rate and equity index series, the large

differences in trading hours between these two market types mean that they correspond

to very different lengths of trading time; for example, the windows of 1,000 observations

represent over twelve trading days of activity for the equity index series, but approximately

three trading days for the exchange rate series. If the return series are indeed multifractional

rather than multifractal, then the true locally unifractal properties of a given multifractional

process should become easier to detect when viewing the process over shorter and shorter

time periods. As a result, this possible relationship between the length of the sub-periods

in terms of trading time and the evidence of local unifractality could be consistent with the

explanation of a multifractional return process, with the variability of the dynamic Hurst

exponent for each return series related in some way to trading time.

Whilst intuitively plausible, this hypothesis could in principle be investigated more for-

mally by extending the Monte Carlo exercises of Section 5 to include simulated data from

multifractional data generating processes, such as the multifractional Brownian motion. If

similar patterns to those in Figures 5 and 6 were observed for simulated multifractional

data, then this would add substantial support to this theory. However, due to the practical

difficulties with such an exercise previously outlined in Section 5, this is currently left as an

avenue for future research

7 Conclusion

The current work has developed a formal statistical testing procedure for determining which

subclass of fractal process is most consistent with the distributional scaling properties of a

given sample of data. Unlike the only directly equivalent test of Wendt and Abry (2007)
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proposed previously in the signal processing literature, our test is developed specifically to

be appropriate for realistic financial applications, most notably for testing the distributional

scaling properties of financial return series.

When applied to the complete available time series of returns for an asset, our procedure

can be employed to distinguish between the type of globally multifractal scaling implied by

the multifractal models for asset returns proposed in the financial econometrics literature

and the simpler class of unifractal processes. We also discuss how our testing methods

can be applied to sub-samples of the complete sample, to test the local distributional scaling

properties of the return series and thus potentially distinguish between multifractal processes

and the multifractional processes that have begun to attract interest more recently as an

alternative approach for modelling return series.

Our proposed testing methodology consists of a set of possible statistics for testing the

null hypothesis of unifractality against the alternative of multifractality, together with a

model-based bootstrap resampling scheme that is used to obtain sample p-values or critical

values for the statistics. The proposed test statistics measure the size of the deviation from

unifractality nonparametrically through the use of numerical differentiation methods, thus

avoiding the need to specify a particular multifractal process under the alternative hypothesis.

In contrast to the earlier informal testing methods employed in the finance literature, the

model-based bootstrap resampling scheme takes into account the uncertainty in the sample

estimates of the scaling properties, producing p-values that account for the properties of the

chosen estimation method.

Monte Carlo exercises using simulated data demonstrate that the proposed testing method-

ology has good size and power properties in a wide range of relevant testing environments

for financial applications and outperforms the competing wavelet-based tests of Wendt and

Abry (2007) from the signal processing literature. The power of the tests remains high for

the two most plausible processes for financial returns under the alternative of multifractality,

even when the strength of multifractality is much weaker than that typically exhibited by

financial data. Furthermore, strong performance is maintained even in sample sizes that are

small for the literature on fractal processes, supporting the use of the method for tests of

local scaling properties and thus for distinguishing between multifractal and multifractional

distributional scaling.

Finally, the testing methodology is applied to a dataset of intraday exchange rate and

equity index data. Applying the test to the complete sample of intraday returns for each

asset the null of unifractality is strongly rejected in all cases, implying that the global scal-

ing properties of the data are consistent with a multifractal rather than unifractal process.

However, when the tests are applied to shorter sub-periods of the intraday return series we

find evidence of local unifractality for some sub-periods, with the strength of this apparent

local unifractality increasing as the length of these sub-periods is decreased.
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8 Appendix A: Estimation of Distributional Scaling Proper-

ties

There are numerous methods available in the literature for the purpose of estimating H(q)

or τ(q) from the sample of interest (see Kantelhardt, 2009, for a survey of many common

estimators). The multifractal detrended fluctuation analysis (MF-DFA) estimator of Kan-

telhardt et al. (2002) is employed here, primarily because it is arguably the most common

choice of estimator for financial applications.

Suppose that the series of interest is denoted xt and is of length T . In standard financial

applications, xt should be chosen as the return series of the asset of interest rather than the

(log) price series, or equivalently the log price series may be used directly if the cumulative

summation in Step 1 is omitted. The MF-DFA estimate of the generalised Hurst exponent

is then obtained as follows:

1. Calculate the cumulative sum or ‘profile’ series {y1, · · · , yT } from the observations of

the original series {x1, · · · , xT } as yt ≡
∑t

s=1 xs.

2. Divide the profile series yt into non-overlapping segments of equal length s. Given that

T will not generally be exactly divisible by s, the number of segments obtained is the

integer part of T/s, which we denote by [T/s], thus discarding some observations at

the end of the series24.

3. The local linear trend25 is calculated for yt over each of the [T/s] segments of length s,

with the value of the fitted trend for the i -th observation in segment ν = 1, . . . , [T/s]

denoted by ỹν,i. For each of the [T/s] segments the local linear trend is then used

to detrend the profile series and the variance of the detrended series over each of the

segments is then calculated as:

F 2
ν,s =

1

s

s∑
i=1

{
y[(ν−1)s+i] − ỹν,i

}2
for ν = 1, . . . , [T/s]

4. These [T/s] detrended variance terms are then used to obtain the value of the q-th

order fluctuation function, Fs,q, at the chosen value of s according to:

24If desired, to avoid discarding observations steps (1) and (2) can be repeated starting from the end of the
original series xt, producing 2[T/s] segments of length s. However, the effects on the resulting estimates of
H(q) will typically be small unless s is large relative to T , which should typically be avoided.

25It is also possible to use higher order polynomial detrending, allowing more complex forms of nonstation-
arity to be removed from the series. However, it is standard in the finance literature to employ simple linear
detrending due to the computational demands of higher order detrending.
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Fs,q =

 1

[T/s]

[T/s]∑
ν=1

[
F 2
ν,s

]q/2
1/q

for any q ∈ R : q 6= 0.

5. Steps 2 to 4 are repeated for each of the m segment sizes in the vector S = {s1, · · · , sm},
where s1 < · · · < sm and m ∈ N : m 6= 1, to obtain a set of points on the q-th order

fluctuation function, Fs1,q, · · · , Fsm,q.

6. For a unifractal or multifractal process the q-th order fluctuation functions satisfy the

relationship Fs,q ∝ sH(q), or equivalently log(Fs,q) = a+H(q)log(s), where H(q) is the

generalised Hurst exponent. An estimate of H(q) for a specific value of q can therefore

be obtained from the estimated slope coefficient of a linear regression of log(Fsi,q) on

log(si) using the observations i = 1, · · · ,m. Finally, an estimate of τ(q) can be obtained

via the previous identity τ(q) ≡ qH(q)− 1.

Whilst there is no formal method for choosing the set of window sizes, S, previous studies

(see for example Bashan et al., 2008) have found using simulated data that the inclusion of

either very short windows or windows that are large relative to the sample size generally lead

to higher average estimation error for H(q). Approximate limits for the optimal minimum

and maximum window sizes, s1 and sm, have been suggested that are in the ranges of

5 < s1 < 15 and T/10 < sm < T/526.

The above procedure produces an estimate for the generalised Hurst exponent, H(q),

at a single prespecified value of q; a special case occurs at the value of q = 2, for which

the multifractal DFA estimator simplifies to the (unifractal) DFA estimator for the scalar

simple Hurst exponent, H of a unifractal process27. Clearly an assessment of the concavity

of τ(q) or the dependence of H(q) on q cannot be made based on a single estimated point

on these functions, however a set of estimated points on the function H(q) can be obtained

by repeating Steps 4 to 6 for multiple values of q, with the set of values for q denoted by the

k -dimensional vector q = {q1, . . . , qk}. In general the only condition that must be satisfied

by q is that q ∈ Rk, although for the specific test statistics proposed here the values of

the k elements of q must also be equally spaced and inside a compact set. This process

produces sets of estimated points {Ĥ(q1), . . . , Ĥ(qk)} or {τ̂(q1), . . . , τ̂(qk)}, from which we

can construct test statistics to test whether the properties of the sample are most consistent

with a unifractal or multifractal data generating process.

26Values in this range were used as a starting point for the Monte Carlo studies of Section 5 and were found
to produce tests with good performance in the current context.

27Because for any unifractal process H(q) = H for any q ∈ R, an estimate of H can in principle be obtained
from the MF-DFA estimator using any q ∈ R, but the value of q = 2 simplifies the expression in Step 4 and
so is used in the unifractal case.
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Appendix B: Simulation of the Multifractal Random Walk Pro-

cess in Discrete Time

Following Bacry et al. (2001), a discrete time formulation of the MRW X∆t,t with time

discretisation step28 ∆t can be used to simulate sample paths from the MRW process. This

discrete time formulation can be constructed by summing the series of t/∆t random variables:

X∆t,t =

t/∆t∑
k=1

δX∆t,k

The δX∆t,k are the corresponding increment series and can be expressed as:

δX∆t,k = ε∆t,ke
ω∆t,k

where ε∆t,k is a Gaussian noise with variance σ2∆t that is independent of ω∆t,k. The ω∆t,k

term can be viewed as the logarithm of the stochastic volatility of the increment process

δX∆t,k and is a stationary Gaussian process with autocovariance function of the form:

Cov(ω∆t,i, ω∆t,j) = λ2lnρ∆t [|i− j|]

where

ρ∆t [|i− j|] =

 T
(|i−j|+1)∆t if |i− j| ≤ T/∆t− 1

1 otherwise

where T is the integral time, beyond which Cov(ω∆t,i, ω∆t,j) = 0. Finally, the mean of the

process ω∆t,k must be chosen to satisfy E [ω∆t,k] = −λ2ln(T/∆t).

As constructed above, the MRW process is linearly independent, but will exhibit non-

linear dependence except in the limiting unifractal case of λ2 = 0. The process can however

be generalised to allow for linear dependence by replacing the simple Gaussian noise ε∆t,k

with a fractional Gaussian noise with Hurst exponent H 6= 0.5, as described by Bacry et al.

(2001).

28The time discretisation step could be set to value of ∆t = 1 without loss of generality by simply normal-
ising the units of time used for measurement.
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