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Abstract

The last few years have seen an increase in brain-computer interface

(BCI) research for the able-bodied population. One of these new

branches involves collaborative BCIs (cBCIs), in which information

from several users is combined to improve the performance of a BCI

system.

This thesis is focused on cBCIs with the aim of increasing understand-

ing of how they can be used to improve performance of single-user

BCIs based on event-related potentials (ERPs). The objectives are:

(1) to study and compare different methods of creating groups us-

ing exclusively electroencephalography (EEG) signals, (2) to develop

a theoretical model to establish where the highest gains may be ex-

pected from creating groups, and (3) to analyse the information that

can be extracted by merging signals from multiple users. For this,

two scenarios involving real-world stimuli (images presented at high

rates and movies) were studied.

The first scenario consisted of a visual search task in which images

were presented at high frequencies. Three modes of combining EEG

recordings from different users were tested to improve the detection

of different ERPs, namely the P300 (associated with the presence of



events of interest) and the N2pc (associated with shifts of attention).

We showed that the detection and localisation of targets can improve

significantly when information from multiple viewers is combined.

In the second scenario, feature movies were introduced to study vari-

ations in ERPs in response to cuts through cBCI techniques. A dis-

tinct, previously unreported, ERP appears in relation to such cuts,

the amplitude of which is not modulated by visual effects such as the

low-level properties of the frames surrounding the discontinuity. How-

ever, significant variations that depended on the movie were found.

We hypothesise that these techniques can be used to build on the at-

tentional theory of cinematic continuity by providing an extra source

of information: the brain.
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Chapter 1

Introduction

This chapter introduces the motivation, research objectives and organisation of

this thesis.

1.1 Motivation

Brain-Computer Interfaces (BCIs) are devices that convert electroencephalogra-

phy (EEG) signals from the brain into commands that allow a user to control

another device without the help of the usual peripheral pathways. BCI technol-

ogy was originally conceived as an augmentative device for people with severe

physical and mobility impairments [Vidal, 1973]. Hence, research on this field

initially focused on applications such as the matrix speller [Farwell & Donchin,

1988] that allowed completely locked-in users to communicate with their envi-

ronment. However, BCI systems have been progressively refined throughout the

years, giving rise to new applications for a more generic audience [Krepki et al.,

2007].

1



One of the most common BCI paradigms uses epochs (i.e., fragments of EEG

recordings) that are referred to the onset of a stimulus [Luck, 2014]. In this

paradigm, modulations in the EEG signals that are evoked by the stimulus —

called Event-Related Potentials (ERPs) — can be detected and used to control

an external device, e.g., a computer, wheelchair or robotic prosthesis.

EEG recordings are heavily contaminated by ongoing brain activity not re-

lated to the presentation of the stimuli, electromagnetic noise and muscular ar-

tifacts (mainly from the eyes and eyelids). Thus, in order to make the BCI

system more robust, it is common to present the same stimulus (intercalated

with other stimuli) several times and use averages of the neural response to each

one. Of course, this implies sacrificing some of the speed of the system due to

the increased number of stimuli presentations. However, the improvements in

BCI performance that are obtained by this averaging technique can have a huge

impact in user abandonment rates by disabled people [Huggins & Zeitlin, 2012;

Huggins et al., 2015; Riccio et al., 2016].

Although BCIs have been around for a few decades, it has not been until

recently that researchers and people in the industry have considered applications

of this technology for non-disabled people. One of the new research paths that has

emerged in the last decade concerns collaborative BCIs (cBCIs), whose operation

is based on the aggregation of EEG signals from a group of users [Cecotti & Rivet,

2014; Wang & Jung, 2011; Yuan et al., 2012].

The different ways in which the information from the users of a cBCI can

be fused provide an alternative to the traditional averaging technique without

sacrificing speed. Since each member of the group is presented with each stimulus

once, the speed of the final system is the same that would be obtained in single-
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trial, single-user BCIs (i.e., BCIs in which stimuli are only presented once, and no

averaging is performed), while being as robust to noise as average-based BCIs. For

instance, the EEG signals (or, when applicable, ERPs) from the group that forms

the cBCI can be directly averaged, or the outputs of their individual BCIs can

be weighed in order to obtain a final system decision. In this way, collaborative

BCIs can dramatically increase BCI performance with respect to single-user BCI.

For this, cBCIs are suitable candidates to be moved out of the ideal research

laboratory conditions and into the outside world, not only for active control of a

device (i.e., active BCI), but also to measure people’s reactions to different events

through a passive cBCI (e.g., in the movie industry).

Jobs such as those of intelligence analysts, who are required to monitor in-

coming streams of images looking for threats, can be performed by means of

single-user BCIs [Gerson et al., 2006; Healy et al., 2010; Kruse & Makeig, 2007;

Mathan et al., 2006, 2008] We believe that this field could still benefit from using

collaborative BCIs by improving target detection, specially if the decision fusion

level includes a measure of the level of alertness of a BCI user, so the output of

the system can be adjusted accordingly (and breaks can be suggested) [Myrden

& Chau, 2016].

Decision making is another promising field where cBCIs can be applied. Stud-

ies have shown that decisions can be more accurate by measuring the confidence

of individual users in their respective decisions [Valeriani et al., 2015a]. This can

be of paramount importance in defence and security, but also in other fields such

as stock markets.

Collaborative BCIs, through the averaging of single trials across users, rather

than across repetitions, can be a useful technique for looking at the neural re-
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sponses that are evoked in single trials, when it is not possible or practical to

repeat the same stimulus. For example, the reaction to the first presentation of

an event/stimulus is often different from those produced in further repetitions.

An example of this is found in movie watching, where the second or third rep-

etition of the film, when the full story is known to the viewer, will change the

impact of the film (and might be viewed as a waste of time by both researchers

and volunteers) [Bridwell et al., 2015]. However, it has been shown that there is

a high inter-subject correlation (measured through fMRI imaging) in the brain’s

response to watching movies [Hasson et al., 2004, 2008]. Since EEG signals have

a higher temporal resolution than the fMRI technique, they allow for better study

of the brain’s reaction to specific events. It is possible to envision the cinemas

of the future having BCI equipments to measure the reaction of their customers,

or screening sessions in which the impact of different trailers for a same movie is

measured through the neural responses of the viewers.

Last, but not least, advances in BCI research due to the interest of BCIs (and

cBCIs) for able-bodied users can trigger advances in single user BCIs, therefore

also helping those for whom these systems were initially developed. Examples

of this include making experiments more engaging, reducing setup and train-

ing times, and advances in signal processing, both for improving classification

performance and cross-session and/or cross-user transfer [Congedo et al., 2013;

Krauledat et al., 2008; Liyanage et al., 2013; Llera et al., 2012; Vidaurre et al.,

2007].

However, for this transition from labs to real world applications to happen,

more research is needed in order to understand the origin of the aforementioned

performance improvements.
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1.2 Research Objectives

This PhD thesis aims at investigating cBCIs in order to increase understanding of

how they can be used to improve performance of current single-user ERP-based

BCIs.

The main research questions that are addressed in this thesis are the following:

I To study and compare different methods of creating collaborative BCIs using

exclusively EEG signals.

II To develop a theoretical model to establish where the highest gains may be

expected from creating groups.

III To analyse the information that can be extracted by merging signals from

multiple users in single trials.

In order to answer the questions stated above, two scenarios were considered.

The first one involved an active BCI applied to the automatic classification (by

means of neural responses) of rapidly-presented aerial images. In this scenario, we

want to improve the performance of single-user BCIs while keeping the groups as

small as possible (assuming that the costs increase by employing a higher number

of people to perform the task). Thus, it is an ideal situation to study Questions I–

II: how to fuse information from multiple users and under which circumstances

are the gains in performance from cBCIs maximal.

As it was mentioned before, passive cBCIs can also be used to measure the

collective reaction of a group of users to events that, for practical reasons, cannot

be presented multiple times. Movies are sequences of related images in which

discontinuities are included to convey a story in the limits of time imposed by
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the medium of film. Thus, they can be reinterpreted in terms of the RSVP

technique (plus sound) and, in this sense, it is interesting to measure the reaction

of the viewers to those discontinuities (i.e., cuts). This is addressed in the second

scenario considered, where feature movies were used to study Question III. In

this case, the aim is not to improve single-user BCI systems, but to find a way

to reduce the noise that is recorded with the ERP component of interest. Hence,

Questions I–II, which are related to improving the performance of a system, will

not be studied per se (i.e., the goal of this thesis is not to be able to build a

system that detects when a cut has been presented), but some comments with

respect to them will be done.

As a result of studying these questions, other aspects related to cBCIs, and

to the specific paradigms used to perform study these systems are also explored.

1.3 Thesis Organisation

This thesis starts with a literature review that aims at giving the reader an

overview of the main topics that are covered by the remaining of this work.

This is presented in Chapter 2, where the reader is introduced to the concept of

brain-computer interfaces and an overview of the basic aspects of these systems,

together with a review of the main ERPs that will be explored throughout the rest

of this work. This chapter also includes a review of the main aspects related to

the presentation technique that is used throughout the following chapters, and of

the main aspects related to the study of the neural activations that are produced

while movie-watching.

The experimental part of the thesis starts in Chapter 3, which describes the
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first experiment, and in which collaborative BCIs were used to detect the presence

of objects of interest (i.e., targets) in rapidly-presented real-life aerial images.

This work continues in Chapter 4, which attempts the more difficult task of

locating a target in an image that is known to contain one.

The systems developed in these two chapters are combined to form one whole

system in Chapter 5. Finally, before moving to the second scenario considered,

Chapter 6 presents a method for selecting participants to form groups in cBCIs

based on their individual performance. Thanks to this method, it was also pos-

sible to study the causes for the performance improvements achieved by cBCIs

with respect to their single-user counterparts.

Chapter 7 presents the second scenario considered in this thesis, and studies

the effects of cuts in motion pictures, both from an individual and a collaborative

point of view.

The overall contributions and findings are detailed in Chapter 8, together with

proposed avenues for future work.
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Chapter 2

Literature Review

An introduction to brain-computer interfaces, event-related potentials and the

main findings related to the scenarios considered in this thesis: the rapid serial

visual presentation protocol and movie watching.

2.1 Introduction

The main aim of this PhD thesis is to investigate collaborative BCIs in order to

increase understanding of how they can be used to improve performance of current

single-user ERP-based BCIs. In order to fulfil this aim, we have selected three

main research questions that will be addressed in the remainder of the thesis:

(1) comparing different methods of creating cBCIs using only EEG signals, (2)

developing a model that can explain when the highest gains in performance may

be expected, and (3) analyse the information that can be extracted in single trials

by merging EEG data from multiple individuals.

This will be done by studying two scenarios. The first one involves the au-
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tomatic classification of satellite images presented at high speeds depending on

whether or not an object of interest (i.e., target) is present in each of them; and

the second one is a passive BCI (i.e., one in which the user is not trying to reach

any specific objective, but rather the EEG system is used to monitor the user’s

reactions) that users wore while watching fragments of feature movies.

We hope that these will help us gain insights into the questions presented

above and in Section 1.2, as well as other aspects related to cBCIs and the

specific paradigms used in this PhD thesis. For this, in this chapter we review

the current state of the art in BCIs (single and collaborative), in order to assess

where work is needed and what can be expected from the scenarios and work

carried out.

This chapter is organised as follows: first, we will begin by giving an overview

into EEG and ERPs (Section 2.2), which are the basis of the work developed

in this thesis. Specific ERPs that were expected to be found in the scenarios

considered, such as the P300 and the N2pc are also described in detail in this

section. We will then move to the field of EEG-based BCIs (Section 2.3, focusing

mostly on those based on ERPs, both in the single-user and the collaborative

cases. The next two sections will be devoted to the main aspects of the RSVP

technique (Section 2.4) and the literature that has been devoted to study viewer’s

responses to watching movies (Section 2.5). From here, the chapter will conclude

(Section 2.6) with some remarks about the information gained through this liter-

ature review and the gaps in the literature, that will be addressed in the following

chapters.
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2.2 Electroencephalography and Event-Related

Potentials

Electroencephalography is based on the recording of electrical fields in the brain

that are associated with the activity of large populations of neurons. The sum

of each neuron’s electrical fields creates a dipolar field that can be recorded on

the scalp under two main conditions: (1) the neurons have to be synchronously

active (i.e., they have to fire at the same time), and (2) they are placed in a

geometrically favourable position (usually, with their axons running parallel to

each other) [Luck, 2014].

Electricity generated in this way flows through areas that present lower resis-

tance in the brain, which acts as a volume conductor. Moreover, if the electrodes

are placed on the scalp, the skull and skin between the electrode and the brain of

the subject introduce further distortion to the signals. For these reasons, the volt-

ages recorded by an electrode do not necessarily represent all the neural activity

that takes place within the brain (e.g., some dipoles may cancel each other), and

they do not necessarily reflect the neural activity that occurs directly underneath

that electrode. This is the basis of the low spatial resolution of electroencephalo-

grapy [Luck, 2014; Rugg & Coles, 1995].

However, electricity flows at a speed near that of light, which allows for the

recorded signals to reflect activity that is going on in that precise moment in the

brain. This gives the EEG a very high temporal resolution. Taking advantage of

this feature, after the first human EEG recordings by Berger [1929], this technique

has been widely used in the field of neuroscience as a tool for the study of cognitive

processes and behaviours that underlie the identification of a stimulus, attentional
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processes, etc. [Rugg & Coles, 1995], e.g., through the study of event-related

potentials.

Event-related potentials, or ERPs, are specific neural responses that appear in

the EEG recordings and are associated with particular events (e.g., the presenta-

tion of a stimulus) [Luck, 2014; Pfurtscheller & Lopes da Silva, 1999]. Typically,

recorded ERPs are a sum of signals of interest (called ERP components) and

noise. Noise comes from different sources, e.g., ongoing brain activity, mains

noise and muscular artefacts (mainly from the eyes and eyelids).

There are several ways of isolating an ERP component and reducing the noise.

The most common technique to achieve this through averages. It is assumed that

the ongoing brain activity recorded is a sum of the (constant) response to the

stimulus plus (random) fluctuations and artefacts and noise which are not time-

locked to the occurrence of the stimulus and which vary randomly across epochs.

Thus, averaging epochs that belong to repetitions of the same stimulus will reduce

the noise, enhancing the response to the stimulus, and the resulting waveform will

largely represent the activity that is temporally fixed to the stimulus [Luck, 2014;

Pfurtscheller & Lopes da Silva, 1999].

Once an ERP component has been isolated, it can be defined by a combination

of their amplitude, polarity, latency (or range of latencies at which they can

be expected) and scalp distribution (usually in relation to the international 10-

20 system) [Kappenman & Luck, 2011; Rugg & Coles, 1995].

The following chapters will focus mainly on two specific ERP components:

the P300 and the N2pc, which are reviewed below.
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2.2.1 The P300 Component

2.2.1.1 Features of the P300 Component

The P300 component is one of the most studied ERP components, and amongst

the most used paradigms for BCI [Reza et al., 2012]. It is a positive peak (hence

the “P”) that was first detected 300 ms after stimulus onset, although later exper-

iments showed that it can appear with a latency of up to 900 ms. Its amplitude

can reach 40 µV , which makes it relatively large (compared to other ERP com-

ponents) and, as we will see below, possible to detect in single-trial BCIs with

relatively high accuracies. The P300 has its maximum over the parietal/central

area [Polich, 2011; Polich & Conroy, 2003; Rugg & Coles, 1995].

One of the reasons why this component is so widely used is the ease with which

it can be elicited. The P300 is observed in any task that requires discrimination

between different stimuli [Polich, 2007]. Thus, this form of ERP can be elicited

by means of the oddball paradigm, in which a sequence of different objects (called

“standard stimuli” and “targets”) is presented to the user. In the classic oddball

paradigm, a primary task (distinction between targets and standard stimuli) is

performed in parallel with a secondary task (e.g., counting the number of targets

that appear) with the aim to keep the subject engaged, which in turn will enhance

the amplitude of the P300, making it more easily distinguishable from the ongoing

EEG activity [Polich, 2004a].

The 3-stimulus oddball, a variation of the standard oddball paradigm, in-

cludes a third type of stimuli: the distractors. These are non-target stimuli that

differ from the standard non-targets in some form. The appareance of distractors

(which do not necessarily have to be novel to the user) elicits a novelty P300, or
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P3a component [Polich & Conroy, 2003], which differs from the classic P300 com-

ponent (called P3b in this context) both in location and latency: it is recorded

by electrodes placed on the frontal area of the scalp and has a shorter latency

than the P3b.

2.2.1.2 Neurophysiology of the P300 Component

One of the theories that attempts to explain the neurophysiology and character-

istics of the P300 and its two subcomponents, and the most widely adopted, is

the context-updating theory. In it, Donchin [1981] states that the P3a subcom-

ponent is linked to processes involved in the involuntary capture of attention by

salient events, whereas the P3b reflects memory storage and serves as a link be-

tween stimulus characteristics and attention [Polich, 2004a,b, 2007, 2011; Polich

& Conroy, 2003; Rugg & Coles, 1995].

2.2.1.3 Variations of the P300

The P300 is one of the most variable ERP components in terms of latency [Kap-

penman & Luck, 2011]. It has been reported to appear 300–900 ms after stimulus

onset depending on several factors, such as the age and level of engagement from

the individual, the difficulty of the task (i.e., the ease with which the target

can be discriminated from the distractors and standard stimuli), and the type of

task [Polich, 2007; Rugg & Coles, 1995].

Since much of the variability is due to the individual, it is not common to

obtain grand averages across participants and these are usually performed across

trials for a single individual to allow for inter-participant comparisons when study-

ing the neurophysiology of the P300. Grand averages for an ERP show the earliest
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onset and latest offset of the component [Luck, 2014], which can be quite different

across participants: the times when the voltage is positive for some subjects could

be negative for others and vice versa, resulting in a smaller average brainwave.

Moreover, the level of engagement of the subject in the experiment will also re-

sult in variations of P300 latencies, causing a high intra-subject variability [Luck,

2014].

The amplitude of the P300 component depends on target probability and the

target-to-target interval. P300s have a refractory period during which consecutive

P300s, if at all elicited, will be of smaller amplitude. Hence, if targets appear very

frequently, P300s elicited by consecutive targets will suffer from this [Polich, 2007].

However, the amplitude of the P300 will not depend on the target itself [Polich,

2007].

The amplitude of the P300 has also been linked to the attentional resources

dedicated to the task that elicits it, so that it can be used as a physiological

measure for testing resource allocation: when performing two tasks, the P300

elicited for each of them will have an amplitude that is a function of the relative

attention that is given to that task [Näätänen, 1992; Polich, 2004a]. This result

strenghtens the resource allocation theory of attention: we all have a finite pool

of resources that can be assigned to a task. The more resources are given to the

primary assignment, the less will be left for others. Moreover, reductions in P300

amplitude for one task are correlated with a linear decrease of performance on

the task [Donchin et al., 1978; Isreal et al., 1980]. For this reason, the P300 has

also been proposed as a tool to measure user engagement [Donchin et al., 1986].
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2.2.2 The N2pc Component

2.2.2.1 Features of the N2pc Component

The N2pc component has been extensively studied in literature related to theories

of selective attention. It is a negative component (hence the “N” prefix) that

generally appears within 170–300 ms of stimulus onset, in the time range of

the N2 component. The “pc” suffix denotes its location: posterior contralateral

electrode sites (e.g., P7/8 and PO7/8 electrode sites from the 10-20 international

system), meaning that it is elicited in electrode sites on the opposite side to the

visual field where the target is found. The maximum amplitudes of the N2pc

oscillate around 2–3 µV .

The N2pc is an asymmetric component which is best observed by computing

the difference waves between the two brain hemispheres, so it is typically described

in terms of the difference between the contralateral and the ipsilateral waves. For

this, trial averages are performed separately for trials on which the target is

ipsilateral or contralateral to a given electrode site [Hopfinger et al., 2004]:

• The ipsilateral waveform includes the average of the left visual field (LVF)

targets for the left hemisphere electrodes and the right visual field (RVF)

targets for the right hemisphere electrodes.

• The contralateral waveform is calculated as the average of the RVF tar-

gets for the left hemisphere electrodes and the LVF targets for the right

hemisphere electrodes.
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2.2.2.2 Neurophysiology of the N2pc Component

Visual information about the environment enters the brain through the eyes and,

more specifically, the fovea, which is the central area of the retina and provides

about 2◦ of visual angle [Luck, 2012]. Before “foveating” to an object (i.e., moving

the gaze so that the object falls in the middle of the fovea; overt attention), it

is often necessary to perform a selective processing of the relevant features. This

is usually done by means of covert attention (i.e., attending to a non-foveated

object) [Luck, 2012].

The most extended theory of selective attention, called the feature-integration

theory, was first proposed by Treisman [1969], who hypothesises the existence of

specialized modules that automatically detect and code different sensory features

(e.g., colours or shapes) in different feature maps. This is one of the first steps in

covert attention. During visual search, the sensitivity will be increased for factors

specified in the search template and the objects that comply with the pattern will

have priority for further processing, producing a shift of covert spatial attention

towards their location. Then, if the object still seems to match the search pattern,

it may result in the item being “foveated” [Luck, 2012], which would be the first

of several steps in overt attention.

The stages described above have been associated to different ERP components

of visual perception. In particular, the N2pc component is related to the shift of

covert spatial attention and reflects the focusing of attention on a potential target

in visual search arrays, before foveating to it (for a review, see [Luck, 2012]).

The N2pc is often followed by the so-called Sustained Posterior Contralateral

Negativity (SPCN), from which it is usually separated by a positive-going de-
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flection (the origin and cause for which is not known). This component starts

around 300–400 ms after stimulus onset and is found in visual search experi-

ments in which the participants are asked to remember a given aspect of the

target [Dell’Acqua et al., 2006; Jolicœur et al., 2006a, 2008; Thiery et al., 2016],

but also in tasks that are not defined as memory tasks, but which are supposed

to engage visual short term memory as a processing buffer (e.g., if participants

are asked to make a choice afterwards) [Jolicœur et al., 2008].

In contrast to the N2pc, the amplitude of the SPCN is sensitive to the memory

load, with bigger amplitudes associated with higher loads. Moreover, the SPCN

persists for the duration of the retention interval [Jolicœur et al., 2008]. Hence,

whereas the N2pc seems to indicate the orienting of attention towards a given

hemifield (left or right), the SPCN is believed to indicate storage of the target

in the visual short term memory [Dell’Acqua et al., 2006; Jolicœur et al., 2006a,

2008].

Both the N2pc and the SPCN have been reported to be affected (by means of a

decrease in amplitude and an increased latency) by the attentional blink [Dell’Acqua

et al., 2006; Jolicœur et al., 2006b; Zhang et al., 2009] (see Section 2.4.3.1). How-

ever, even when the final responses given by participants are wrong, due to this

effect, the N2pc has been observed in the EEG epochs [Dell’Acqua et al., 2006;

Woodman & Luck, 2003].

The SPCN is sometimes referred to as a Contralateral Delay Activity (CDA) [Mc-

Collough et al., 2007; Töllner et al., 2013] or Contralateral Negative Slow Wave

(CNSW) [Klaver et al., 1999]. However, it is still unclear whether these three

components are actually the same or not [Jolicœur et al., 2008].
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2.2.2.3 Variations of the N2pc

The list below summarises the main findings related to the N2pc and the factors

that affect its amplitude:

• It is found when the search array contains at least one distracting item (any

non-target stimulus) apart from the target. The closer the distractor, the

bigger the N2pc amplitude will be [Luck & Hillyard, 1994b].

• It does not appear if the items surrounding the target provide information

about it (e.g., when the experimental design requires two or more items to

be compared) [Luck & Hillyard, 1994b].

• It is not elicited if there is only one item (regardless of whether it is a target

or a distractor) in the search array [Luck & Hillyard, 1994b].

• It is elicited both in the presence of “pop out” targets and when dis-

crimination is based on several conjuctive features, requiring sequential

search [Eimer, 1996].

• It can be elicited not only by physical properties of stimuli, but also by

semantic properties [Eimer, 1996].

• In upper vs lower visual field discrimination, the N2pc component is larger

in the latter [Luck et al., 1997].

• Distractors that closely resemble the target have been shown to elicit a

smaller N2pc (which is not followed by a P300).

• The amplitude of the N2pc is relatively unaffected by target probabil-

ity [Luck & Hillyard, 1994a].
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• The amplitude of the N2pc is larger and it has a shorter latency when

participants are given a target template rather than a target category [Nako

et al., 2014, 2015].

• N2pc amplitude is smaller and has a longer latency when multiple targets

are found in the search array [Nako et al., 2014].

• Searching repeatedly for a target in different search arrays enhances N2pc

amplitude in the later trials [Nako et al., 2015].

Even though the N2pc was first thought of as just a reflection of the attentional

selection of target stimuli, the first three bullet points in the list above reflect

its filtering function: when several items near the target compete for attention,

a bigger effort to suppress the information from the distractors is required, so

the N2pc has a larger amplitude (first bullet point). Moreover, this filtering

is not necessary when the surrounding items give information that helps in the

discrimination of the target (second bullet point) or when there are no competing

items (third bullet point). Hence, the amplitude of the N2pc component would

reflect the level of suppression of task-irrelevant or conflicting information.

If the feature that distinguishes the target from the distractors on the search

array makes it “pop out” (e.g., if the distinctive feature is colour), it will be found

faster (as evidenced by reaction times) than when finding the target requires

sequential search. However, no statistical differences have been reported in the

latency of the N2pc components elicited in these cases [Eimer & Kiss, 2007, 2008;

Hickey et al., 2006].
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2.3 Brain-Computer Interfaces

A Brain-Computer Interface (BCI) converts signals generated by the brain into

commands that serve as input to another device, e.g., a computer or prosthesis.

In the most widely used type of BCIs, the electrical activity is recorded from

the scalp of the subject via EEG and, after some type of signal processing and

classification, a command is interpreted and sent to the external device. Since all

the equipment is external to the user and no surgery is required for the functioning

of the system, such BCIs are called non-invasive.

There are different paradigms that can be used to control a BCI by means of

EEG recordings. As mentioned previously, one of them is through ERPs (e.g.,

P300-based BCIs). ERP-based BCIs have the advantage that they do not require

the user to learn how to evoke the patterns in his/her brain in order to operate

the system. However, phenomena such as habituation of the brain to the stimuli

might, over time, reduce the performance of the BCI. Moreover, ERP-based BCIs

require the user to be presented with stimuli, e.g., by means of a screen or through

audio. In this review, we will focus on this type of BCIs (and, particularly, in

those based on the P300 and the N2pc) as they are important for the remaining

of the Thesis. For completeness, we have also included a review of other types of

BCIs below (see Section 2.3.3).

The first BCIs were developed with the aim of helping people with severe dis-

abilities to communicate [Vidal, 1973]. These systems were progressively refined

and current ERP-based systems are able to obtain relatively good performance

in single trials (especially those based on the P300 component).

Due to these improvements, some forms of BCIs have recently started to be
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explored with the able-bodied population in mind [Van Erp et al., 2012; Wolpaw

et al., 2000], for instance focusing on the augmentation of human abilities, such as

speed [Coffey et al., 2010; Teplan, 2002] or the provision of a new means of control,

for example, through passive BCIs that monitor the emotional state of the player

in a game. Another focus of these new lines of investigation is on the use of brain

activity recorded from multiple users simultaneously to increase the performance

over single-user BCIs and non-BCI systems. These devices were first introduced

as hyperscanning systems and used for passive applications, such as monitoring

the brain activity [Babiloni & Astolfi, 2014], and as multi-mind (also called multi-

brain or multi-user) BCIs for active control, e.g., to improve human performance

in target detection [Wang & Jung, 2011], or play video games [Nijholt, 2015;

Nijholt & Gürkök, 2013]. Despite the fact that this area of research has just

recently appeared, as we will show below, the high number of papers published

in this field and the broad range of suggested applications of collaborative BCIs

have already shown its maturity and high potential.

2.3.1 P300-Based BCIs

One of the most common ways of controlling a non-invasive BCI is based on the

use of the oddball paradigm. As we saw in Section 2.2.1, the occurrence of a

target in a sequence of distractors triggers a P300 component. The ease with

which this occurs has made P300-based BCIs very popular in research.

The first P300-based BCI was proposed and demonstrated by Farwell &

Donchin [1988]. Their speller consisted on a 6x6 matrix that contained the al-

phabet and whose rows and columns were randomly intensified. The target in
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each case was the letter that the user wanted to spell, eliciting a P300 when the

row or column that contained that letter was intensified.

Matrix spellers and other BCIs based on the P300 usually rely on (involuntary)

eye movements from the user [Acqualagna & Blankertz, 2011, 2013; Acqualagna

et al., 2010; Brunner et al., 2010; Riccio et al., 2012; Shishkin et al., 2016; Treder

et al., 2011]. It has been argued that when a disabled person can still move

his/her eyes, a speller or mouse based on eye-gaze is much faster and more accu-

rate than current BCIs. Indeed, the performance of BCIs that rely on the P300,

Steady-State Visual Evoked Potentials (SSVEPs; see Section 2.3.3) and/or any

of its variations is drastically reduced when the user is a disabled person with

impaired control of their gaze [Shishkin et al., 2016]. Hence, Acqualagna et al.

[2010] developed a new paradigm for the matrix speller based on the Rapid Se-

rial Visual Protocol (RSVP) [Acqualagna & Blankertz, 2011, 2013; Riccio et al.,

2012; Treder et al., 2011], where the different letters and symbols of the alphabet

are presented at a rate at which eye saccades are almost completely suppressed

(more on this on Section 2.4.2) [Potter & Levy, 1969]. The speller paradigm

has further been explored in other types of BCIs, such as motor imagery BCIs

(e.g., [Scherer & Muller, 2004]) and, more recently, steady-state visual evoked

potentials (see [Cecotti, 2011] for a review).

Once the issue of communication was openly addressed for severely handi-

capped people and the usefulness of the matrix speller had been proved, the door

was open for new applications that aimed at increasing the mobility of the users,

e.g., by controlling a wheelchair with a BCI [Galán et al., 2008], and in the form

of assistive technology tools for interaction with the environment [Cincotti et al.,

2009].
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One of the drawbacks of P300-based BCIs is the high variability of this com-

ponent, which requires the system to be re-calibrated frequently if there is a

change on the paradigm used to elicit the P300. In fact, some research has been

done trying to adapt this component from one experimental setup to another with

good results [Iturrate et al., 2014]. This could help decrease training times, which

would bring a significant improvement for all users and an increase in usability

and acceptance [Huggins & Zeitlin, 2012; Huggins et al., 2015; Riccio et al., 2016].

Another main problem is the level of noise present in the EEG coming from

both the brain of the user and his/her surroundings [Wolpaw & Wolpaw, 2012].

Because of this, the detection of a P300 by the classification system is typically

based on the average of many signal repetitions of the same target events (i.e.,

the averages mentioned in Section 2.2). Averages need to be computed for every

different stimulus and compared, so that the event with the highest averaged

peak will be classified as the one selected by the user. The necessary repetition

of the stimuli decreases the Information Transfer Rates (ITRs) and can make the

system slow when high accuracy is required, as is the case in BCIs for disabled

people, where high error rates would create frustration in the user. Hence, to

avoid low information transfer rates, oddball sequences are usually presented at

a fast pace, at the cost of eliciting deformed ERPs and, hence, lower accuracies

on single-trial classification.

2.3.2 BCIs and the N2pc Component

Despite the well-known characteristics of the N2pc component and its appealing

low variability, it has rarely been exploited to control a BCI.
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Only a few studies have considered the N2pc (on its own or together with

other ERPs) for controlling a BCI [Awni et al., 2013; Blasco et al., 2012]. Awni

et al. [2013] displayed a circular array of white numbers around a fixation cross,

following the experimental setup from Eimer & Kiss [2008]. Targets differed from

the rest of the stimuli in their colour (red for targets, blue or green for distrac-

tors and white for non-targets). They found that N2pc components could help

identify “pop out” targets accurately when averaging signals acquired over 3 rep-

etitions of stimulus presentation. However, they also reported large variations in

classification accuracy across individuals.

In a more practical experiment, Blasco et al. [2012] developed a P300 and

N2pc-based BCI and applied it to three scenarios: web browsing (by controlling

a keyboard and a mouse), a robotic arm and matrix-like communication tool.

The last one was successfully used (with a classification accuracy of 80%) by a

disabled participant after 6 repetitions of the stimuli.

With regards to the scope of this thesis, given the contralateral character of

the N2pc component, we hypothesise that it could be benefitial in visual search

scenarios for the delimitation of areas where the target is located within the

whole image — something that has not been attempted before, to the best of

my knowledge. Furthermore, given the small amplitude of this ERP component

and its relatively low variability across individuals, it might be possible to obtain

high performance improvements in cBCIs by averaging across subjects.
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2.3.3 Other Types of Single-User BCIs

We have already mentioned that a big proportion of BCI systems rely on ERPs

such as the P300 in order to work. These BCIs are called synchronous, since the

user is given a cue and he/she is told when a command can be issued. Other

form of synchronous BCIs include those based on Steady State Visual Evoked

Potentials (SSVEPs). These are periodic evoked potentials that are generated in

response to visual stimuli, such as a flickering or flashing light. If the frequency

of the stimulus is higher than 6 Hz, it elicits an electrical response in the occipital

area that can be used to control a BCI system. Typically, in an SSVEP-based

BCI, multiple stimuli would flash at different frequencies, and the user selects

one by focusing his/her gaze on it, so that the elicited response resonates at the

same frequency as that of the stimulus [Sutter, 1992; Vialatte et al., 2010], which

makes the detection of the SSVEP relatively easy [Wang et al., 2006].

One of the main advantages of evoked potentials, such as SSVEPs or ERPs

is that users do not need to be trained to elicit them, as they are naturally

evoked in the EEG in response to the stimuli. In this type of systems, only

the classifier needs to be trained. An appealing aspect of SSVEP-based BCIs is

that, in contrast to ERP-based BCIs, for which there may be much variability

of latency and/or amplitude and are very sensitive to noise, SSVEP-based BCIs

typically extract features in the frequency domain, and given the synchronisation

of the signals in the occipital area (over the visual cortex), very specific and

narrow ranges of frequencies are considered, which makes them more robust to

noise [Wang et al., 2006]. Moreover, they can be reliably detected using a low

number of electrodes, which makes them a desirable candidate for daily use. The
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limiting factor, then, is two-fold: (1) whether users can move their eyes to fixate

on the intended stimuli [Morgan et al., 1996], and (2) how long it takes for the

EEG signal to synchronise with the external stimulus.

With regards to the first aspect, Allison et al. [2008] showed that, although

gaze control might improve performance, it may not be necessary [Kelly et al.,

2005a,b; Lalor et al., 2005], depending on the display and the task at hand.

Regarding the second issue, research has been conducted that relies on small

modifications of the original SSVEP paradigm, such as code-modulated visual

evoked potentials [Wei et al., 2016], in which the stimuli no longer flash at a given

constant frequency, and what changes is the phase of the stimulation between

them. Recently, a non-invasive SSVEP-based BCI was developed that obtained

the highest information transfer rate (including invasive BCIs) [Chen et al., 2015],

of 5.32 bits/second.

In contrast, there are other paradigms that require a conscious mental effort

from the user. For example, this is the case of BCIs that operate based on cogni-

tive tasks [Curran & Stokes, 2003], in which the BCI system learns the patterns

of activation that emerge in the EEG as the user performs different mental tasks,

such as imagining the movement of a limb (motor imagery BCIs) [Babiloni et al.,

2000; Penny et al., 2000], performing mental calculations, or imagining a phone

ringing [Dyson et al., 2010]. In addition to not needing any form of external stim-

uli to be presented, these BCIs have the advantage of being fully independent of

the user’s motor control capabilities, which makes them an ideal candidate for

use by people with severe disabilities.

Finally, passive BCIs monitor the cognitive or affective state of the user and

adapt the stimuli according to it [Myrden & Chau, 2016; Zander & Kothe, 2011;
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Zander et al., 2010]. For example, they can be used to detect the load of the

user and suggest an appropriate time for the user to take a break, but also to

give a measure of how reliable current EEG signals are (i.e., how similar to those

that were used during training) [Myrden & Chau, 2016], an important aspect

of BCI given the non-stationarity of the EEG, which can fluctuate significantly

throughout a single session due to ongoing brain activity and other factors such

as attention or fatigue [Cecotti & Ries, 2015; Marathe et al., 2016].

2.3.4 Collaborative BCIs

As it was previously mentioned, BCIs have been traditionally developed as a form

of assistive technology for people with severe disabilities. However, the advances

in EEG technology and the development of relatively inexpensive headsets made

possible the rise of BCI systems that can be used by able-bodied users as an

extension of their capabilities [Cecotti & Rivet, 2014; Wang & Jung, 2011; Yuan

et al., 2012], i.e., as a new input channel.

A field that has arisen from these advances is that of collaborative BCIs, in

which several users aim at jointly controlling one device simultaneously. In order

to achieve this, the EEG signals from a group of users are merged or decoded

together, so the final command that is sent to the device is derived from their

collective intentions, rather than from a single user. It is worth noting that

improvements derived from this field can in turn open the door to new clinical

applications for single-user BCIs [Finke et al., 2009]. For example, the current

need for BCI systems to train a classifier at the beginning of each session in order

to adapt to the user reduces the remaining time of practical use of the BCI [Fazli
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et al., 2009a,b; Krauledat et al., 2008; Mora et al., 2015].

Model calibration (including feature selection and classifier optimisation and

training) can be very time-consuming depending on factors such as the number

of electrodes being recorded, so it is desirable for possible day-to-day use of this

technology to reduce training times and increase transference, i.e., reduce the

amount of data collected on the day to update a previously trained model (or

classifier) while keeping a reasonable performance [Krauledat et al., 2008; Manor

& Geva, 2015; Marathe et al., 2016]. Collaborative BCIs are likely to work toward

decreasing training times and develop new methods for cross-session and cross-

user transfer [Huang et al., 2011; Sajda et al., 2010] for example through the

creation of user databases, so that the EEG signature of a new user can be

compared to those from the database for a “plug and play” experience.

The aggregation of signals in collaborative BCIs can be done in different

ways [Cecotti & Rivet, 2014; Li & Nam, 2016; Nijholt, 2015; Poli et al., 2013a;

Wang & Jung, 2011], as shown in Figure 2.1.

The simplest method consists of performing averages of the raw EEG signals

across several users prior to their classification (signal fusion level). In this way,

a unique classifier is used for all subjects and there is a reduction in the inherent

levels of noise in the signals [Cecotti & Rivet, 2014; Cecotti et al., 2014b; Jiang

et al., 2015; Kapeller et al., 2014; Korczowski et al., 2015; Poli et al., 2013a].

However, this method may not be the most accurate, since the latency of time-

locked ERPs (and, in particular, P300 components) varies both inter- and intra-

subject depending on factors such as the level of attention, as was discussed in

Section 2.2.1.

The second level of fusion illustrated in Figure 2.1 is the feature level. In
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Figure 2.1: Different strategies to merge the brain activity from multiple users in
collaborative BCIs.

this scenario, features are extracted from each user’s EEG. The fusion of features

can be done by simple concatenation of them to form a unique feature vector for

classifier training or any other combination [Eckstein et al., 2012; Wang & Jung,

2011], so only one classifier is used (as in the signal level approach).

Finally, the information fusion can be done at the decision level, in which

the EEG data from each participant is used to tailor one classifier specifically

for him/her. In this case, a decision merging step needs to be implemented. At

this level, we should emphasise the work from Cecotti & Rivet [2014]; Cecotti

et al. [2014b], who studied different modes of combining the BCI decisions on

a P300-based collaborative BCI and a SSVEP multi-brain BCI. Their strategies

for merging the classifiers outputs included majority voting, averaging classifiers’

outputs, and maximum and minimum values. They found that averaging the

classifiers’ outputs provided the best performance.
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A considerable amount of work has been conducted to establish which level of

fusion is optimal, obtaining consisting results across laboratories and applications.

In particular, the two approaches that are often compared are the single-trial

averages across participants (i.e., signal level) and fusion at the decision level

(usually averaging classifiers’ outputs to send a command). Since most of this

work has been done based on different ERPs, given the inter-subject differences

in latencies and amplitudes, it is not surprising that the best performance is

obtained when information is merged at the decision level [Cecotti & Rivet, 2014;

Cecotti et al., 2014b; Wang & Jung, 2011].

Even though it is, in theory, possible to repeat trials for every participant also

in the collaborative paradigm, it is expected that the classification will be done

in single trials. Given the relatively big amplitude of the P300, this should not

be a major problem for performance (especially if averaging across a sufficient

number of users), but it could be a limiting factor for the detection of other ERP

components, such as the N2pc.

Applications of collaborative BCIs include the simultaneous joint control of a

single device. Wang & Jung [2011] showed that multiple users are able to generate

and send a movement command to a prosthetic limb faster than single users.

They also studied several methods of combining EEG recordings and reported an

increase in the classification accuracy when the number of subjects was increased

(they tested up to 20 individuals). Cecotti & Rivet [2014] obtained similar results

on a P300-based matrix speller BCI in which up to 10 individuals were combined.

Poli et al. [2013a] simulated an offline cBCI by combining signals from pairs of

users to control a pointer on a screen by means of their BCI mouse [Citi et al.,

2008], and reported straighter trajectories than those achieved individually by
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their participants.

Collaborative BCIs can also be found in the field of group decision making.

In a scenario where it is not possible to average epochs over several trials (e.g., a

person cannot be asked to make the same decision multiple times), aggregating

the signals from a group of users in order to achieve a better outcome while re-

ducing the level of noise has proven to be a useful technique [Poli et al., 2013b].

Studies in this area of research tackle two problems: (1) whether group perfor-

mance for decision making beats that of a single person, and (2) whether there is

an optimal group size. Poli et al. [2013b] used a collaborative BCI to integrate the

brain activity from up to seven subjects in a decision making task based on visual

perception. By increasing the group size, errors were reduced. In further work,

they extended their research (improving their results) by including non-EEG (i.e.,

behavioural) features, e.g., response times [Poli et al., 2014].

Lastly, collaborative BCIs have been applied to visual search, using both

search arrays [Valeriani et al., 2015b] and naturalistic images [Valeriani et al.,

2015a]. The authors of this research found improvements in group performance

on a target detection task when using a confidence estimator based on EEG

signals and response times (hence using a hybrid BCI) to weigh each participant’s

response on a trial-by-trial basis.

Collaborative BCIs can also be used as passive systems. In fact, the origin of

cBCIs can be tracked down to 1965 if this type of systems is taken into account.

Back then, they were known as hyperscanning systems [Babiloni & Astolfi, 2014].

Hyperscanning allowed researchers to discover that collaborative and competi-

tive tasks have different effects on the connections in the brains of participants

performing behavioural experiments (e.g., Astolfi et al. [2010]).
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The concept of hyperscanning recently surfaced as passive multi-mind BCIs,

examples of which can be found in the work of Hasson et al. [2004] and Hasson

et al. [2008], in which the authors assessed the effect of feature films on brain

activity during free movie watching. The main result of their work was to show

that aspects such as movie content, editing and directing style have a direct im-

pact on the level of control over the viewer’s brain activity. Later studies used

passive multi-mind BCIs to show the high level of inter-subject correlation during

natural vision [Bridwell et al., 2015]. This discovery makes it possible to study

the brain’s naive responses to stimuli by averaging signals across multiple users,

hence increasing the low signal-to-noise ratio that is typical in EEG-based BCIs.

Moreover, the high time resolution provided by EEG systems allows researchers

to use this technique in multi-brain BCIs, for example, in those based on ERPs,

which traditionally rely on multiple repetitions of a stimulus in single-user inter-

faces [Jiang et al., 2015; Kapeller et al., 2014; Korczowski et al., 2015].

2.4 Rapid Serial Visual Presentation

In the rapid serial visual presentation (RSVP) technique, items are sequentially

shown at a very fast rate on the same spatial location. Originally, this technique

was designed for the study of reading and language processing by means of serial

presentation of words or groups of words forming sentences [Forster, 1970].

The items displayed in RSVP are usually letters or images. Typically, the

participants are given a particular search template before the stream starts. This

description can be as specific or as generic as the researcher wants to make it (e.g.,

“animals” vs “male lions on a tree”). Participants are requested to either press a
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button as soon as they see the target (typically enforcing either accuracy or speed,

depending on the purpose of the particular study) during the presentation of the

stream, or to observe a particular feature of the target and reply to a question

after the block is finished (e.g., in which direction was the picture containing the

target rotated) [Lawrence, 1971; Petrick, 1981; Potter, 1984].

2.4.1 RSVP in Visual Search

Typical tasks within RSVP experiments consist of matching a target named in

advance (e.g., deciding whether a given letter or word had been shown in a stream

of letters or words) [Petrick, 1981].

Potter & Levy [1969] studied recognition memory for pictures at presentation

rates ranging between 0.125–2 seconds/picture. After a short stream showing the

target pictures to look for, a new sequence in which distractors had been inserted

was shown, and subjects had to verbally state at the end whether a given pic-

ture had been present in the film or not. They also studied eye movements and

saccades during the presentation of the images: for sequences lasting between 2

and 4 seconds, eye movements were almost completely suppressed at rates greater

than 4 pictures/second, whereas saccades were more common for lower presenta-

tion rates. This is relevant in the field of BCIs, because EEG systems are very

sensitive to noise produced by eye movements and they should be avoided [Luck,

2014].

To date, there is no computer vision system capable of outperforming humans

in visual search and recognition tasks. Such programs fail in the generalization

of the description of the target, in a step that is straightforward for humans. The
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same applies to situations in which we are not given a specific description of what

type of object has to be found on images [Huber et al., 2013]. For example, when

performing broad-area search, intelligence analysts look for targets that fall in the

category “threats”. One given object can mean very different things depending on

its context, and a computer is not able to process these in the same way humans

can. The search task can thus only be automatised to a very limited extent. Yet,

manually analysing thousands of images is extremely tiring and time-consuming,

so there is a need for software to help humans perform this task.

2.4.2 RSVP and BCIs

As described above, the RSVP technique consists of streams of stimuli (distrac-

tors) that appear sequentially on the same spatial location and, within each

stream, participants are told to find a particular stimulus of interest (target).

With this description in mind, it is not difficult to see similarities with the odd-

ball paradigm.

By inserting a few target images amongst a large amount of distractors, or

non-targets, BCI systems can detect a P300 component when an image that

contains a target is presented within a stream of pictures [Gerson et al., 2006;

Healy et al., 2010; Kruse & Makeig, 2007].

Moreover, since P300s are time-locked to the onset of the image that contained

the target, the estimation of the temporal location of the image within the stream

that can be obtained through the BCI has a lower variance than the one derived

from user’s key presses [Huang et al., 2011; Luck, 2014], and it can provide a

continuous measure of confidence [Huang et al., 2011].
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Big organisations such as NASA and ESA have expressed their interest in us-

ing BCIs for the automatic classification of images by intelligence analysts [Healy

et al., 2010; Kruse & Makeig, 2007]. If successful, this could speed up the process

of revising large amounts of pictures that are acquired by means of satellites and

other sensors throughout the Earth.

Mathan et al. [2006] showed grayscale satellite images of a port in an RSVP

task while recording EEG from volunteers in two experiments [Mathan et al.,

2006, 2008], at presentation rates of 10 and 20 pictures/second. Mathan et al.

[2006] used a classifier trained with data from one participant to classify EEG

epochs from the other, achieving high AUC values (0.84–0.85). In a second

study, Mathan et al. [2008] presented images at a rate of 10 Hz to professional

intelligence analysts. They showed that the BCI was able to speed up the target

detection task without compromising detection accuracy (with respect to manual

detection). This result was confirmed in their latest experiment [Huang et al.,

2011], in which they reported on an RSVP–BCI system (without any manual

input) which was able to speed up the traditional broad area search paradigm

by 5 times (measured in seconds/km2), a claim that has since been made re-

peatedly [Birisan & Beling, 2014; Marathe et al., 2016; Touryan et al., 2013].

Moreover, this work implemented an incremental learning (i.e., pre-trained clas-

sifiers are given additional samples to adapt their parameters, rather than starting

the training from scratch each time) approach [Poggio & Cauwenberghs, 2001] in

addition to cross-session generalisation, in which classifiers learnt using data from

previous days (which was also successfully attempted by Manor & Geva [2015]).

Cecotti et al. have studied different aspects of the RSVP paradigm and the

evoked P300 response to targets, such as target probability in the streams of
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images [Cecotti et al., 2011b], modality (i.e., audio vs visual RSVP, with and

without key presses) [Cecotti et al., 2011a], and the impact on attention of adding

a second visual task in parallel to the RSVP stream [Cecotti et al., 2012]. For

instance, by varying target probability in a faces vs cars task (where participants

had to press a key when they detected a face) they found that the behavioural

performance and the amplitude and spatial distribution of the evoked potentials

were significantly modulated by this parameter. They obtained the best classifier

performance for target (face) detection at a target probability of 10% [Cecotti

et al., 2011b]. Moreover, they showed that it is possible to use a BCI for detection

of targets through RSVP while multitasking by adding a secondary task (e.g.,

in addition to the RSVP target detection, they asked participants to press a

button when they detected a green dot on a map that was shown next to the

RSVP stream) [Cecotti et al., 2011a, 2012; Marathe et al., 2016]. Even though

performance dropped for the easier task, it did not change significantly in the

difficult one (in this case, the RSVP target detection task).

In addition to studying the effects of modifying aspects of the RSVP task,

they studied ways of improving the performance of BCIs that used this paradigm

to detect targets. One way in which they did this was by generating artificial

trials by adding a small jitter and Gaussian noise to the stimulus onset reference

in the EEG epochs, which serves a three-fold objective: (1) increase the size of

the target class, hence combating the class imbalance and (2) training times, and

(3) adding variability to the data, so that the classifier is invariant to small time

shifts [Cecotti et al., 2015]. In another experiment, they added a measure of the

confidence from the user through the output of the classifier [Marathe et al., 2015].

The effects of non-stationarity of the EEG data were also considered. Cecotti &
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Ries [2015] showed that the way in which epochs are selected to train a classifier

has an impact on its performance, due to factors such as tiredness or habituation

effects [Marathe et al., 2016]. Finally, another way to combat the changes in the

EEG is by using active learning [Joshi et al., 2012; Tong & Chang, 2001], an

iterative semi-supervised technique which has been applied to situations in which

there is abundance of data but obtaining the labels is expensive [Marathe et al.,

2016]. In each iteration of active learning, an active learner (i.e., a classifier)

selects what are the data samples that are most informative, and it queries an

oracle or expert for their labels, so that they can be added to the training set

of the next iteration. In this way, the labelling effort is greatly reduced [Joshi

et al., 2012; Marathe et al., 2016]. According to Marathe et al. [2016], the query

to the expert can be done by providing feedback to the user and looking for

error-related potentials (an ERP that occurs when the output of the BCI is not

the one intended or expected by the user) [Marathe et al., 2016], or through a

behavioural response to that feedback. Perhaps, another interesting aspect of

this work was the fact that, in some blocks, participants were presented with

500 ms long videos instead of static images as is traditional in image triage. The

neural responses elicited by the short movies were more robust than those from

the images [Marathe et al., 2016].

Other research groups attempted the classification of images by combining

EEG signals and computer vision [Kapoor & Shenoy, 2008; Manor et al., 2016;

Pohlmeyer et al., 2010, 2011; Sajda et al., 2010; Ušćumlić et al., 2013]. One

of the most important findings from the iterative design developed by Ušćumlić

et al. [2013] was the fact that their EEG classifiers were able to detect types of

targets that were different from the training and the test sets, even though the
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behavioural responses showed that some types of targets were more difficult to

discriminate than others (a fact that could also be observed from the ERP aver-

ages, where some of the targets elicited larger P300 waveforms). In contrast,the

approach taken by Manor et al. [2016] attempted joint detection of targets (build-

ings in satellite images, presented at 5 Hz and 10 Hz) by a multimodal neural

network that fused information from the EEG and the image at the feature level.

They tried two different approaches: a fully supervised system, in which the type

of targets is known a priori, and a semi-supervised network, in which the type of

target is unknown, so the computer vision component first trained an autoencoder

on known non-target images and its output on target and non-target images was

used as input features to the neural network together with the EEG response.

With respect to collaborative BCI approaches in the RSVP task, Yuan et al.

[2012] performed a collaborative target detection task with groups of 3 people

using visual evoked potentials in offline and online experiments1. The BCI trained

with data from the three participants was able to detect targets faster than the

subjects’ reaction times. Moreover, they reported an average increase of 11% in

the accuracy of the group vs individuals (6% higher than the best individual).

Due to the speed at which the images are shown in RSVP experiments, par-

ticipants do not usually have time to foveate to a target — that is, the target

disappears before overt attention — the moving of the eyes in the direction of a

salient item — can reach it. The reduction or absence of eye movements reported

by Potter & Levy [1969] (at rates greater than 4 pictures/second) and Neider

1When talking about offline/online BCIs we follow the traditional definition: online BCIs
are those in which the brain signals of the participant are used at the time of collection to
control the BCI. On the contrary, in an offline BCI data are recorded for posterior analysis,
and the state of the interface is either static or manipulated by the experimenters.
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et al. [2013] (for images shown for 150 ms or less) is particularly welcome in

BCI systems based on RSVP stimulation, because EEG signals are severely dis-

torted [Luck, 2014] by the artefacts produced by eye movements2.

For this reason, RSVP-based BCIs pose a very attractive alternative for de-

veloping gaze-independent systems that are also suitable for severely locked-in

people with no gaze control. Acqualagna et al. [2010] studied different presen-

tation rates (83, 116 and 133 ms per item) in black and white vs colour (3 or

5 different colours) conditions [Acqualagna & Blankertz, 2011, 2013], and com-

pared them to the traditional gaze-dependent speller from Farwell & Donchin

[1988]. They found that the RSVP-speller paradigm was a suitable option for

people with severely impaired oculomotor control. Their results were replicated

by Treder et al. [2011], who performed a variation of the RSVP paradigm at a

presentation rate of 5 Hz.

Before finalising this section and moving on to the limitations of the RSVP

technique, it is important to note that research using the combined RSVP–BCI

paradigm has been done not only on näıve participants, but also on experts in

different fields, as shown on Table 2.1.

Moreover, a large amount of literature has compared behavioural responses

with BCI performance and speed, and demonstrated that the combined RSVP-

BCI paradigm is faster than traditional manual search and while being capable of

maintaining the same levels of performance [Bigdely-Shamlo et al., 2008; Birisan

& Beling, 2014; Kapoor & Shenoy, 2008; Kapoor et al., 2008; Parra et al., 2008;

Pohlmeyer et al., 2011; Poolman et al., 2008; Sajda et al., 2010; Touryan et al.,

2However, while eye movements during a trial produce performance-reducing artefacts in
most BCIs, having one’s eye gaze fixated on a target as opposed to, for instance, a fixation
cross, significantly improves performance [Brunner et al., 2010].
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Table 2.1: Summary of BCI literature in which experts were used for RSVP tasks.

Profession Type of image Relevant literature

Intelligence analysts Satellite imagery

Birisan & Beling [2014];
Healy et al. [2010]; Huang
et al. [2011]; Kruse &
Makeig [2007]; Mathan
et al. [2007, 2008]

Transportation secu-
rity officers

X-ray images of lug-
gage

Trumbo et al. [2015]

Military
Urban landscape pa-
trol simulation

Touryan et al. [2013]

Medical Mammograms Hope et al. [2013]

2013].

2.4.3 Phenomena Associated with the RSVP Technique

This section focuses on three well-known phenomena related to the RSVP tech-

nique: the Attentional Blink (AB), attentional awakening and the intertrial prim-

ing effect. Even though this review will not go very deep into these concepts, due

to their relevance in the RSVP literature, it is important for the next sections to

give the readers a clear idea of this phenomena in order to highlight the limitations

of this technique.

2.4.3.1 The Attentional Blink

The attentional blink is a phenomenon that refers to a target being missed by

participants when it is presented within a short time interval after the previous

target in the same stream of stimuli [Chun & Potter, 1995; Cinel et al., 2004;

Einhäuser et al., 2007; Kranczioch et al., 2003].

The latency and duration of the attentional blink (i.e., the masking of the
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second target) vary depending on the type of stimuli being presented [Einhäuser

et al., 2007; Most et al., 2007].

A possible explanation of the AB is that after the detection of the first tar-

get, some resources will be allocated to the processing of that stimulus, temporaly

decreasing the capacity of the (limited) visual system [Di Lollo et al., 2005; Kawa-

hara et al., 2006].

In order to avoid the attentional blink, Kruse & Makeig [2007] allowed a

maximum of one target in every 51-picture stream. Furthermore, targets were

placed within the central part of the image array to avoid crossover effects, since

they reported that targets could not be detected in the last two images due

to the “shock” produced by the end of sequence [Kruse & Makeig, 2007] (see

Section 2.4.3.2).

Many of the studies described in the previous section have the same limitation

with regard to the proportion of target vs non-target items, or on the way in

which these are placed within a stream, e.g., allowing only one target within a

stream of images [Mathan et al., 2006, 2008]. On the other hand, Healy et al.

[2010] constructed a more generic environment in which the proportion of targets

vs non-targets was fixed at 10% — the typical target occurrence in the oddball

paradigm, and an ideal ratio for eliciting large P300s [Johnson, 1986] —, and

their results were not affected by this change. The same ratio was used by Cecotti

et al. [2012, 2014a, 2015]; Marathe et al. [2015], although occasionally imposing

restrictions on the inter-target interval to avoid attentional blinks [Marathe et al.,

2015].

When considering the effects of the AB in experiments and real life applica-

tions, the real expected number of targets should be taken into account. In broad-
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area search, for example, the occurrence of targets may be very low (1% according

to Mathan et al. [2008]), but targets could appear in images that show regions

that are near each other. If neighbouring images are presented in close temporal

proximity, as one would normally assume, this could produce attentional blinks

and subsequent target misses. In this case, shuffling the images could solve the

problem of the AB. On the other hand, the occurrence of images considered to

be targets will be higher on medical data sets, a fact that should be taken into

account in the labs, specially when deciding an appropriate presentation rate,

since higher rates will make targets come closer in time.

Although it was recently shown that the AB can be decreased through train-

ing Choi et al. [2012], further developments in this area showed that the processing

limits that are signalled by the occurrence of the AB cannot be eliminated [Tang

et al., 2014], and that the improvements achieved by Choi et al. [2012] may ac-

tually be related to the attentional awakening and intertrial priming effects (see

below).

Lastly, even if a participant was able to detect the two targets, the refractory

period of the P300 should be taken into account. In the case of two targets

occurring very closely in time, the evoked P300 component (if at all present) will

be of smaller magnitude, and might thus be misclassified by the system.

2.4.3.2 Attentional Awakening

As opposed to studies considered in Section 2.2.2, which looked into the spatial

attentional filtering signalled by the N2pc, the RSVP technique is used to study

the temporal modality of attentional filtering [Riccio et al., 2013; Shapiro et al.,

1994], allowing the study of the temporal characteristics of neural information

42



processing [Chun & Potter, 1995].

The attentional awakening consists of a gradual increase in detection accu-

racy over time during an RSVP burst [Ariga & Yokosawa, 2008; Kranczioch &

Dhinakaran, 2013]. This means that targets that are presented at the beginning

of a burst are more likely to be missed than targets that occur at later time

positions. According to Ariga & Yokosawa [2008], the attentional awakening

represents the observer’s modulation of attention to adjust to the presentation

rate in preparation for detecting the target in the sequence, since no significant

variations of performance in target detection are found after the preparation is

complete [Ariga & Yokosawa, 2008]. Kranczioch & Bryant [2011], however, ar-

gues that this phenomenon is not related to a variance in the focus of temporal

attention, but rather to resource allocation to the task.

2.4.3.3 Intertrial Priming

The phenomenon by which repeating a target template improves the performance

and speed of visual search is known as intertrial priming.

Intertrial priming was first proposed by Maljkovic & Nakayama [1994], and

this effect has been observed in visual search scenarios regardless of whether

the feature that remains constant for the target template is of the “pop out”

type (e.g., colour) [Maljkovic & Nakayama, 1994; Yashar & Lamy, 2010a], re-

quires a conjuctive search [Kristjánsson & Driver, 2008], or remains in the same

spatial [Maljkovic & Nakayama, 1996] or temporal location [Kristjánsson & Cam-

pana, 2010; Kristjánsson et al., 2010; Yashar & Lamy, 2010b].

Thus, this phenomenon is not only present in the RSVP paradigm, but might

be related to the increased salience of primed features, thus facilitating the allo-
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cation of attention to the processing of those features. Neurophysiology and neu-

ropsychology studies have shown that this effect might be originated in the neural

mechanisms that underlie visual search, including the attentional systems and

regions in visual areas [Kristjánsson & Campana, 2010; Kristjánsson & Driver,

2008].

2.4.4 Interim Discussion

The RSVP technique, in conjunction with BCIs, has been studied for a number

of years, which shows an interest in this technique to solve the real problem of

rapidly classifying images. For this reason, we decided to use this joint RSVP–

BCI approach as the first scenario for the study of collaborative BCIs presented

in this PhD thesis.

Current computer vision systems are still not capable of identifying generic

targets (e.g., those defined as “threats”) with the same ease as human beings

do. We have shown in the literature review that the combination of a computer

vision system together with physiological data from the human brain increases

the detection of targets. However, this gain was only substantial when the com-

puter vision was given the labels of the targets, and a drop of performance was

observed when the same system did not know the type of target that it should

look for [Manor et al., 2016].

Only Yuan et al. [2012] attempted to create a collaborative BCI to detect

targets, and reported a high gain in performance by using 3 participants. How-

ever, their experimental protocol (participants were asked to press a button as

soon as they detected a target, which was presented at a random time after a
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fixation cross) was much simpler than those typically attempted in a real RSVP

paradigm. Regardless of this, their results, although possibly not fully applicable

to the target detection aim of this thesis, seem promising.

This same observation can be made about Cecotti and collaborators’ work,

who investigated the effects of a wide number of parameters on a low-speed RSVP

paradigm, predominantly at 2 Hz [Cecotti et al., 2011a,b, 2012; Marathe et al.,

2016]. It has been shown [Yazdani et al., 2010] that the ERPs evoked by different

presentation rates vary greatly, and that they are attenuated for presentation

rates above 10 Hz, so it is unclear how much of this work will be valid for higher

presentation rates. However, as a starting point, we will take for valid his results

on target probability [Cecotti et al., 2011b] and keep the ratio of targets at 10%,

as they suggested and has been done in many other works presented here.

Finally, as stated by Marathe et al. [2016], neural responses that are elicited

by videos are more robust than those elicited by simple static images. Videos

can be thought of as an RSVP presentation of highly correlated images shown at

presentation rates of between 25–30 Hz (possibly with the addition of sound). We

are interested in observing what occurs in the brain in response to a discontinuity

in this “extreme form” of RSVP.

2.5 Extreme RSVP: Motion Pictures

We have suggested previously that a motion picture (or movie) can be thought

of as an RSVP protocol in which images (i.e., frames) are shown at presentation

rates above 25 Hz and which may contain sound. In addition to this, another

feature of movies is that, most of the time, the images from consecutive frames

45



are very correlated with each other, giving the viewer a sensation of movement

and continuity.

Movies tell a story, and in order to do so, different fragments (i.e., shots)

are joined together, creating discontinuities in the stream, which represent an

instantaneous displacement of one field of vision with another, and that may also

be accompanied with a jump in time and/or space [Murch, 2001].

These discontinuities, called cuts, are introduced in movies to give viewers

the impression of continuity by joining scenes or actions that are not continu-

ous [Smith, 2012; Smith & Henderson, 2008b]. Even though cuts are not the

only way to join different shots, they represent almost 99% of all transitions in

contemporary movies [Cutting et al., 2011], which is why they (and their effects

on the viewer) have been studied in detail.

In his Attentional Theory of Cinematic Continuity (AToCC), Smith [2012]

posits that what makes a cut continuous and acceptable for the viewer is proper

cuing of the viewer across the cut. While watching a movie (but also in real

life), the limitations of our working memory (which only allows us to maintain a

maximum of four objects representations at a given time) [Kahneman et al., 1992]

imply that not everything we see is being attended to. Rather, our attention will

be focused on a small and localized subset of the audiovisual features on the

movie, and we will have some expectations of the next state of those features.

The decision of where we attend is a mixture of bottom-up (i.e., low level

visual information, such as luminance and motion, which capture our attention

involuntarily) and top-down factors (i.e., higher order cognitive factors, which

present a voluntary decision to keep attention, for example, on the face of a

character). In order to make a cut invisible, the filmmaker will have to direct the
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gaze of the viewer by aligning his/her interest with compositional and low-level

features on a scene to create attentional synchrony [Mital et al., 2011; Smith &

Henderson, 2008a; Smith & Mital, 2013] (more on this in the following sections).

At this point, an additional stimulus, such as an onset of motion, or the voice from

another character inside or outside the screen, will make the viewer turn his/her

attention towards the source of change, producing a shift of covert attention if

the source is off the screen, or a shift of overt attention, i.e., a saccade, if it is

presented on the screen. If the cut is introduced at the point where attention

is preparing to shift to another location, chances of viewers perceiving it are

minimized, as long as continuity is preserved for their expectation of the features

that were being attended to [Smith, 2012].

As we will show below, cuts and other forms of structural features (i.e., char-

acteristics of movies that can be defined independently from the type of content,

such as motion) influence attention and cognitive processes.

2.5.1 Psychological Effects of Structural Features in Movies

Before we look at the psychophysiological effects that movie-watching has on the

viewer, we will give an overview of some of the main psychological aspects of

movies. In particular, we will focus on three aspects of movies that are well

known to affect the attention and emotion of their audience, and therefore, their

engagement: motion, brightness and intensity [Cutting, 2016a,b].

As we have just shown, cuts in movies induce saccades and large eye move-

ments on the viewer, and these eye movements are highly synchronised in time

and space across viewers [Smith & Mital, 2013], a phenomenon known as atten-
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tional synchrony [Mital et al., 2011]. Since each saccade represents a perceptual

enquiry (e.g., “What is she pointing at?”), it also elicits an expectation on the

viewer about what the answer to that enquiry might be, and a shift of covert at-

tention [Smith, 2012]. Hence, saccades drive attention [Mital et al., 2011; Smith,

2012, 2013] and, for this reason, shot duration can be taken as a measure of the

relative intensity of a movie [Cutting, 2016b; Wang & Cheong, 2006]. Short shots

(and, correspondingly, a high number of cuts) reflect conflict and action, and can

create anxiety on the viewer. Conversely, long shots are used in calm sections of

the movie [Cutting, 2016a,b; Wang & Cheong, 2006].

In addition to the pace imposed by the frequency of cuts in a sequence, motion

is also known to increase attention [Cutting, 2016a]. So much that comparing the

amount of motion along old and contemporary movies shows significant differ-

ences, with the latter type having more motion contrast than the former [Cutting,

2014], perhaps in order to keep viewers engaged, a task which is more difficult

given the lower thresholds of boredom in our current society [Cutting, 2005].

Across film genres, motion is highest in animated movies, and specially located

on the center of the screen rather than the periphery [Cutting, 2014], possibly to

keep children’s attention, but also in order to reduce production costs [Cutting,

2014].

Finally, luminance also drives attention [Cutting, 2014; Mital et al., 2011],

in addition to affecting mood and modulating emotion [Tarvainen et al., 2015],

with bright scenes being evocative of positive emotions and dark shots creating

negative emotions [Cutting, 2016a,b; Troscianko et al., 2012]. Recently, it was

discovered that the “3/4-point” that is encouraged by screenplay manuals to be

an extreme point on the emotional curve of a movie [Keating, 2011] actually
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corresponds with the point of lowest brightness of the movie [Cutting, 2016a,b],

possibly representing the moment at which the development of the story ends

and the climax begins (i.e., the point on the story where events are most stacked

against the protagonist) [Cutting, 2016a,b].

These three factors (and some others, such as sound and location of shots

throughout a movie) were studied by Cutting [2016b], who quantified the num-

ber of cuts and the amount of motion and brightness (among other aspects of

movie structure) throughout a number of movies distributed between 1935 and

2010. He performed a principal component analysis using these data and found

that the first three principal components accounted for 75.7% of the variance in

the data of movie structure. He named these components “editing” (43.4% of

variance; largely represented by shot duration, scale and character introduction),

“action” (20.7% of variance; represented by motion and location of action shots1

during a movie) and “lightning” (11.6% of variance; represented by luminance),

respectively. This result shows that these three aspects of a movie are indeed

important and filmmakers are using them routinely to capture and manipulate

viewers’ attention [Cutting, 2016b; Smith et al., 2012].

Most of the work presented above refers to formal studies of movie fea-

tures [Cutting, 2014, 2016a,b; Cutting & Candan, 2015], occasionally with eye

trackers placed on viewers [Mital et al., 2011; Smith, 2012; Smith & Mital, 2013].

The way in which different aspects of low level features (motion, brightness, etc.)

affect viewers from an emotional point of view have also been tested using electro-

physiological data, such as heart rate monitoring, galvanic skin responses, EEG

1Action shots are defined as those “with beyond-normal physical activity”, not being re-
stricted to fights, but also explosions, sports, and other extreme events [Cutting & Candan,
2015].
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and functional Magnetic Resonance Imaging (fMRI), to measure the psychophys-

iological effects that movies have on viewers. This aspect of the literature is

covered in the following section.

2.5.2 Psychophysiology of Structural Features

The two structural features that have been explored most exhaustively in the

context of the psychophysiology of videos are motion and the reaction to discon-

tinuities.

Both cuts and the onset of motion are known to elicit an orienting response

(OR) [Lang et al., 1993; Reeves & Thorson, 1986], which is an automatic re-

sponse elicited by changes in the environment (either new, unknown elements,

or learnt signals), whose purpose is to alert the person of changes that may re-

quire a response. This involves an increased attention towards the change that

elicited it. The OR manifests physically in a person’s heart rate, skin conduc-

tance, and breathing patterns, amongst others. Thus, many of these aspects

have been correlated with the onset or increase of motion in movies. Soleymani

et al. [2008] reported changes in skin conductance and blood pressure associated

with this. Similarly, variatins in the pupillary responses [Ando et al., 2002] and

heart rate [Ando et al., 2002; Cutting, 2016b] have been linked to motion onset.

However, these changes may also be manifestations of the emotional response of

the viewer to the content of the film, and thus, to their sense of presence (or

immersion in the film) [Troscianko et al., 2012].

Another effect of the orienting response is a decrease of power in the alpha

band of the EEG, also termed alpha blocking, which is associated with an increase
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of attention. Thus, the effects of cuts on viewers have also been studied through

electroencephalography, specially associated with memory of content after viewers

watched a number of television commercials [Appel et al., 1979; Lang et al., 1993;

Reeves & Thorson, 1986; Reeves et al., 1985; Rothschild et al., 1986; Smith &

Gevins, 2004], showing that indeed alpha blocking occurred after a cut.

This effect was first reported by Reeves et al. [1985], who also showed a co-

variation between movement occurrences and alpha blocking. In their work and

others, these drops occur within the first 500 ms after the cut, and alpha power

increases again around 2 s after the cut. These drops of power in the alpha band

have repeatedly been related to an increase of attention (e.g. [Lang et al., 1999,

2000; Rothschild et al., 1986; Smith & Gevins, 2004]). However, the magnitude of

the drop and the rate of recovery may be related to interest in the content and its

novelty (presumably because less resources are needed with successive repetitions

of a stimulus) [Rothschild et al., 1986].

The time to recovery of alpha may be taken as a measure of how well attention

is held by the content. For example, not all scene changes are strong enough

to elicit alpha blocking (i.e., they are not capable of gaining viewer attention),

whereas other scenes, despite gaining attention (as evidenced by the sharp drop

of power in alpha) may not hold it (evidenced by rapid recovery to previous

levels). This may be connected with the concept of edit blindness, a phenomenon

by which some cuts go completely unnoticed by viewers [Smith & Henderson,

2008b]. The probability of detecting a cut seems to vary depending on factors

such as the type of cut and the amount and direction of motion and audio before

and after it [Smith, 2012; Smith & Yvonne Martin-Portugues Santacreu, 2016].

For instance, Smith & Henderson [2008b] showed that match-action cuts (those
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in which there is an onset of movement before the cut that continues after it, from

a different point of view) are much more likely to be missed in a cut detection

task using Hollywood films.

We have previously shown that cuts are also capable of affecting and directing

attention, but not all cuts do so in the same way. One possibly taxonomy of cuts

divides them into two categories according to the content of the two shots that

they join: context changes or unrelated cuts are those in which the scene after

the cut is not directly related to that preceding it, an effect that is equivalent

to changing the channel on the television. In contrast, related cuts are those in

which the shots before and after the cut are related.

Lang et al. [1999] related responses to questionnaires about content retention

of television commercials with power in the alpha band, and showed that these

two types of cuts affect attention in different ways. Related cuts provide less new

information and thus impose a lower cognitive load than unrelated cuts. More-

over, related cuts facilitate retention of new information, a skill that follows an

inverted U-shape profile when plotted against shot length, showing that intro-

ducing more related edits can help retain clip content provided that they are not

overused [Lang et al., 1999, 2000].

However, these studies focused on the alpha band as the whole 8–12 Hz fre-

quency range on occipital scalp regions. Contemporary works may prefer to study

two sub-bands of the alpha range: the low alpha band (8–10 Hz, most predomi-

nant over prefrontal and parietal areas) concerns working memory processes and

episodic memory encoding; in contrast, the upper alpha band (10–12 Hz, found

in occipital and occipito-parietal areas) is most responsive to visual stimulation.

Smith & Gevins [2004] found a high correlation between the number of cuts
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in commercials and the ratings of interest, adding to the corpus of knowledge

that indicates that cuts help keep the viewer engaged. In the same study, they

decomposed the alpha rhythm into the upper and low alpha bands and different

scalp regions through a principal component analysis, and correlated the first

three components (which explained 94% of the variance in the data) with the

frequency of scene changes (i.e., shot length), subjective measurements of inter-

est, and recall probability of the advertisement’s content. The first component

(43% of variance) included power in the low and upper alpha bands in posterior

electrodes, and was significantly correlated with scene change frequency. Thus,

it was likely to reflect an automatic orienting of attention in response to a cut.

The second component (26% of variance) was composed by power in the upper

alpha in frontal electrodes, and significantly correlated with subjective interest

in the commercials. Finally, the third component (25%) comprised lower alpha

activation in frontal electrodes, and was significantly correlated with recall prob-

ability. Although this work involved 30-second long television commercials and

not movies, the approach followed was the same as in Cutting [2016b]. It would

be interesting to see how these components relate to the “editing” (which also

explained 43% of the variance in the movie data, as did the first component of

this work), “action” and “lightning” factors found in his work.

Anderson et al. [2006] performed, perhaps with the exception of Zacks et al.

[2010] (see below), the only comparison between related and unrelated cuts using

fMRI. In addition to the high similarity of neural activation found in the works of

Hasson and collaborators (see below), they found a difference between coherent

and incoherent shots in the activation with Brodmann area 31, which was only

activated in the former, perhaps indicating the processing of information to create
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meaning.

Cuts are very sharp in the time domain, whereas changes in the alpha band

require some time, and fMRI techniques do not have the high time resolution

that the EEG provides. For this reason, ERPs, which are time-locked to the

stimuli and occur much faster than changes in frequency, have also been used to

study the brain response to cuts [Francuz & Zabielska-Mendyk, 2013]. In this

area of research, the occurrence of cuts has been associated with Slow Cortical

Potentials (SCPs), which are also used as an index of the orienting response,

and other ERPs [Francuz & Zabielska-Mendyk, 2013], such as the Slow Negative

Wave (SNW) 1 (a frontal ERP with a peak around 448–648 ms), the Slow Positive

Wave (SPW, a parietal component in the same range of latency as the SNW1),

and the SNW2 (a parietal ERP found around 648–1800 ms after stimulus onset).

Francuz & Zabielska-Mendyk [2013] studied the brain’s response to related vs

unrelated cuts, and found that unrelated cuts produce more negative SNW1 and

more positive SPW responses than those produced by related cuts [Francuz &

Zabielska-Mendyk, 2013]. Although the authors also expected to find a P300-like

ERP to signal attention shifts in response to cuts, they did not find it.

Another ERP that has been detected while presenting video stimuli is the

N400 [Reid & Striano, 2008; Sitnikova et al., 2003, 2008], a negative peak with a

latency of around 400 ms after the presentation of the stimulus which is linked to

meaning processing and has a bigger amplitude when a new element is incongruent

with the context built by previous stimuli [Kutas & Federmeier, 2011] (for a

review, see Lau et al. [2008]). In movie stimuli in which congruent or incongruent

information appeared following a cut, an N400 can be detected over frontal,

central and parietal regions [Reid & Striano, 2008]. The N400 was followed by
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a late large positive potential in posterior regions of the brain in the sequences

with an incongruity [Sitnikova et al., 2003, 2008], perhaps an indication that this

unexpected turn of events triggers other cognitive processes in addition to the

ones that mediate pure semantic integration.

While these results indicate that cuts produce characteristic ERPs, these have

always been studied in either averages or grand averages (i.e., after averaging

hundreds of individual responses across several participants). Moreover, to the

best of my knowledge, no ERP analysis of the neural response has been performed

using feature movies: the work surveyed until now involved either commercial

messages, audiovisual content created specifically for the experiment, or short

fragments from television shows.

2.5.3 Movies and the Brain

Although a considerable amount of work has been devoted to understanding

the psychological effects of different aspects of movies, and this work has been

performed using real Hollywood films, it is remarkable how few studies using

brain imaging techniques has been done in this area.

In one of the first fMRI studies concerning feature movies, Bartels & Zeki

[2004] found that selected regions of the brain were activated in response to

sequences containing color, faces, language, and people, corroborating previous

fMRI studies that resorted to simpler, highly fabricated stimuli with the same

features.

Another work published in the same year assessed the effect of feature films on

brain activity during free movie watching [Hasson et al., 2004]. This experiment,
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in which participants were shown a 30-minute long fragment of a Hollywood

movie, explored the degree to which filmmaker and editor’s manipulations im-

pact the level of control over the viewer’s brain activity. They reported that

a remarkable 45% of activation of the neocortex (including regions involved in

vision, language processing, emotion and multi-sensory integration) were very

similar throughout the duration of the movie across viewers and, and that this

similarity increased with the degree of attentional synchrony [Anderson et al.,

2006; Hasson et al., 2008].

More recently, this high level of inter-subject correlation during natural vision

has also been shown to occur through EEG [Bridwell et al., 2015]. This discovery

makes it possible to study the brain’s näıve responses to stimuli by averaging

signals across multiple users, hence increasing the low signal-to-noise ratio that

is typical in EEG-based BCIs. Moreover, the high time resolution provided by

EEG systems allows researchers to use this technique to look for viewer’s cognitive

responses to specific events in the movies.

Zacks et al. [2010] had participants watch a short film while being inside an

fMRI scan, and then asked them, by watching the movie two more times, to

segment it into coarse and fine event segmentation. The events highlighted by

the participants corresponded with transient changes in the fMRI signal, again

highly synchronised across participants. Although no explicit mention of cuts is

done in this work, it is probably a safe assumption that the segments pointed out

by the participants were aligned with cuts. The changes in fMRI recordings were

larger for fine than coarse changes, which, if the former were related cuts and

the latter were unrelated cuts, would contradict all the evidence presented until

now. However, two caviats should be pointed out here: first, we do not know

56



whether the segmentation actually coincided with cuts and, if so, what types of

cuts, and second, as the authors point out, these results could be a result of the

time scale. Moreover, the small time resolution of the fMRI technique might limit

these results when compared with those from EEG analyses presented in previous

sections.

As mentioned in previous sections, due to the noise affecting EEG recordings,

in BCI it is common to perform averages across a small set of repetitions of the

same stimuli. This has the benefit of increasing the signal-to-noise ratio of the

signals, leading to better BCI performance. However, this technique cannot be

used in the movie watching scenario, because the reaction to the first presen-

tation of an event is different from those produced in further repetitions of the

event [Dorr et al., 2010; Nittono, 2008]. For example, the magnitude and duration

of alpha blocking after a cut changes with repetitions of the same content [Roth-

schild et al., 1986], and this habituation effect is also observed in the beta range

(14–36 Hz) [Krugman, 1971]. For example, Bridwell et al. [2015] showed that it

is possible to know whether a person had previously watched a movie by means

of EEG recordings thanks to the high inter-subject correlations.

2.5.4 Interim Discussion

Movies can be seen as sequences of rapidly presented images that are very cor-

related to each other and which are usually accompanied by an audio track.

However, they are known to elicit more robust neural responses than the RSVP

protocol alone. For this reason, we decided to use the neural response to cuts in

movies by means of collaborative BCIs.
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Thanks to the effect of attentional synchrony, i.e., the high synchronisation

of attention across viewers while watching dynamic images (e.g., movies) both in

time and space, which has been measured through eye gaze and brain imaging

techniques, we can average EEG signals across users to obtain a higher signal-to-

noise ratio that might help develop an understanding of the neural response to

cuts in a cut-by-cut basis.

We chose to focus on cuts because they represent almost 99% of all transitions

found in contemporary movies, and they have been known to affect attention and

the emotional state of the viewer (e.g., short shot lengths can create anxiety, and

long shots create a calm sensation) for a few decades.

Motion and brightness can be used by film editors to try to control the atten-

tion of the viewer in order to create attentional synchrony so that cuts are not

perceived as a disruption by the audience. For this, we will also study the specific

influence of these two factors on the amplitude of ERPs.

Finally, as we have just shown, cuts in movies induce saccades and large eye

movements on the viewer. Since each saccade represents a perceptual enquiry, it

also elicits an expectation on the viewer about what the answer to that enquiry

might be, and shifts of covert attention may arise as a result when the answer

is not shown on the screen. Hence, we will try to determine whether the N2pc

appears as a result of such perceptual enquiries after the occurrence of cuts.

2.6 Conclusions

The main goal of this PhD thesis is to increase understanding of cBCIs and to

show how some of the collaborative BCI techniques can help advance research
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when only single trials from each individual are available.

For this, we have envisioned two scenarios of real practical value. The first

one, which uses the RSVP technique for triage, has been validated in single-user

cases, but improvements can still be done. Even though a current trend is to

merge physiological data (EEG) and computer vision algorithms, it is a com-

mon belief that the human vision is still ahead from computer vision, so we will

use a collaborative BCI approach to show how, and under which circumstances,

improvements can be made in this area of research.

The second scenario will look at Hollywood movies (which we consider to be a

special case of the RSVP presentation in which images are highly correlated and

presented together with sound) and study the neural response to cuts in a cut-by-

cut analysis never attempted before, to the best of our knowledge. The reasons

behind this gap in the literature might be due to EEG signals being noisy, plus

the fact that showing the same videos multiple times changes the neural response

to them.

However, recent developments in research on the phenomenon known as at-

tentional synchrony, which has now been demonstrated using brain imaging tech-

niques, may indicate that it is possible to average the brain response to a given

trial across individuals rather than averaging multiple repetitions of the same

stimulus for a given participant, a technique that has been used in collaborative

BCIs over the last few years.
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Chapter 3

Single and Collaborative BCI in

Visual Search

This chapter presents a BCI based on the RSVP–oddball paradigm with the aim

of classifying images with no other input from the users than their EEG signals.

Different presentation rates were used and the results were analysed for single

and collaborative BCIs using different methods to merge the evidence from the

individuals in a group.

3.1 Introduction

As we showed in the literature review (see Section 2.4), BCIs can be used for

target detection in triage systems through the elicitation and detection of specific

event-related potentials (i.e., the P300) that are evoked in the presence of targets

in streams of pictures.

Different aspects from this paradigm, such as the optimal ratio of target vs
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non-target images have been previously studied [Cecotti et al., 2011b]. However,

to the best of our knowledge, no real RSVP study has considered the differences

in presentation rate on the detection of the P300 ERP. Perhaps, the most relevant

work on this topic is that of Yazdani et al. [2010], who investigated the amplitude

of the P300 by varying the presentation rate while keeping the proportion of tar-

gets fixed at 10% (the ideal ratio according to Cecotti et al. [2011b]). However, in

their work images did not follow each other as in the traditional RSVP technique,

but a neutral background screen was presented after each image for the same du-

ration as the target image. Images were presented in 40-second long bursts at

increasing rates from 500 ms/image (therefore followed by 500 ms of background)

to 50 ms/image (followed by 50 ms of background), with the smallest presenta-

tion rate obtaining the highest P300 peak amplitude. Even with the effect of

presentation rate on P300 amplitude, their classifiers were able to successfully

discern between target and non-target images until a rate of 100 ms/image.

This chapter begins by establishing a baseline on single-user performance keep-

ing the recommended target vs non-target ratio at 10% and using different pre-

sentation rates. Then, we will use the signals collected from multiple participants

to assess the improvements that can be achieved by different ways of merging

EEG evidence from several viewers (or users).

We should note that our approach is different from that used in many other

RSVP-based BCI systems for target detection. In most cases, participants are

required to press a key when they see a target (sometimes called the behavioural

task) [Cecotti et al., 2015; Gerson et al., 2005, 2006; Marathe et al., 2014, 2015;

Parra et al., 2008; Touryan et al., 2014]. Then, only the trials in which the target

was correctly identified by the participant (e.g., by including only those trials that
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were followed by a key press within a pre-defined time period) are used for plotting

grand averages and training a classifier with clean data. However, this method

has several drawbacks [Sajda et al., 2010], including artefact contamination in

the EEG resulting from the key press.

This chapter is organised as follows: we start by describing the experimental

setup, data collection and processing that are common for both the single-user and

the collaborative BCIs (Section 3.2), and then present the results in Section 3.3.

Finally, these results are discussed in Section 3.4 and the basis for the work

presented in the following chapters is set in Section 3.5.

3.2 Methods

This section describes the data acquisition process, the experimental protocol

followed and the preprocessing and classification algorithms that were used on

the data in order to create the single-user and collaborative BCIs.

3.2.1 Data Acquisition

Data were gathered from 11 participants (mean age ± standard deviation = 24.3

± 3.9 years old, 4 females, 5 left-handed). All had normal or corrected-to-normal

vision and reported no family or personal history of epilepsy. They all signed the

consent form approved by the Ethics Committee of the University of Essex.

Participants were seated at approximately 80 cm from an LCD screen where

the stimuli were presented.

EEG data were acquired by means of a BioSemi ActiveTwo system with 64

electrodes mounted in a standard electrode cap following the international 10-
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20 system, including electrodes on the earlobes of the volunteers. EEG was

referenced to the mean of the electrodes placed on the earlobes. The initial

sampling rate was 2048 Hz. Data were band-pass filtered with cutoff frequencies

of 0.15 and 28 Hz before downsampling to 64 Hz. Correction for eye blinks and

ocular movements was performed by applying the standard subtraction algorithm

based on correlations [Quilter et al., 1977] to the average of the differences between

channels Fp1–F1, and Fp2–F2.

3.2.1.1 Ocular artefact correction

The method introduced by Quilter et al. [1977] to remove artefacts from the EEG

caused by eye movements is based on a least squares regression function that

calculates the proportion of one variable (in this case, EEG) that is explained by

another (ocular movements and eye blinks).

Formally, if E and Xi represent the EOG and the voltage in channel i, re-

spectively, then Bi, the proportion of EOG in channel i can be estimated as the

correlation between both channels, ρ, scaled by their standard deviations:

Bi = ρ · SD(Xi)

SD(E)
.

Correction of the EEG channels takes places as per

estEEGi(t) = Xi(t)−Bi · E(t)− Ci,

with Ci being used to remove the baseline effect from the EOG:

Ci = E(t)−Xi(t) ·Bi.
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Since in this experiment we did not use EOG sensors, we estimated the EOG

channel as the average of the differences between frontal channels Fp1–F1 and

Fp2–F2.

3.2.2 Experimental Design

The images for the experiment consisted of 2,400 aerial pictures of London. All

images were converted to grayscale and their histograms were equalised. Picture

size was 640×640 px2 (subtending 11.5 × 11.8 degrees of visual angle). Target

(T) pictures were aerial pictures in which a randomly rotated and positioned

airplane had been (photo-realistically) superimposed. Non-target (NT) images

did not contain airplanes. Figure 3.1 shows examples of target and non-target

images. The centroid of the targets was positioned at a maximum visual angle

of 3.7 degrees in the horizontal axis, and 3.8 degrees in the vertical (with respect

to the centre of the screen).

Pictures were shown to participants in sequences (or bursts) of 100 images

which were presented at rates varying between 5–15 Hz, with no gaps between

two consecutive stimuli as illustrated in Figure 3.2. Given the presentation rates,

this is considered to be an RSVP protocol. Ten target pictures were randomly

inserted within each sequence (the remaining 90 being non-targets) with the only

restriction that there had to be at least one non-target image between two targets.

Thus, the ratio of target vs non-target images was 10%.

Two sets of stimuli were generated: one that always contained the same air-

plane in target pictures and another in which the airplane for each target picture

was randomly chosen (with replacement) from a set of three with different shapes
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(a) (b)

Figure 3.1: Examples of target (a) and non-target (b) images used in the experi-
ments.

Figure 3.2: Illustration of the protocol used in the experiment, for a presentation
rate of 5 Hz. For clarity, target images are highlighted in this figure.

and sizes. Figure 3.3 shows the three templates that were used on this experiment,

extracted from some of the real images used in the experiment.
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(a) (b) (c)

Figure 3.3: Target templates used in the RSVP paradigm. The template in (a)
was used in all difficulty levels. Templates (b) and (c) only appeared in levels
3 and 5. Note that these are not the full images shown in the experiment, but
fragments of them.

Table 3.1: Parameters of the different levels of the experiment.

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7
Presentation rate (Hz) 5 6 6 10 10 12 15

# different targets 1 1 3 1 3 1 1
Burst duration (sec) 20 16.67 16.67 10 10 8.33 6.67

Participants were presented with bursts, at 7 levels of difficulty. The param-

eters for the levels of difficulty are given in Table 3.1. Each level consisted of 24

bursts of images, each composed by 100 images. In order to enhance the ampli-

tude of the P300 [Polich, 2004a], participants were assigned the task of mentally

counting the planes they saw within each burst and report the total at the end

of a burst (to encourage them to stay focused on the task) [Yazdani et al., 2010].

Participants could rest after bursts and were free to decide when to start the next

burst (by clicking on a mouse button).

Despite the fact that we expected saccades to be greatly reduced at the presen-

tation rates considered [Neider et al., 2013; Potter & Levy, 1969], we instructed

participants to try to reduce eye movements and blinks in order to obtain EEG
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signals with as few artefacts as possible. All participants completed the experi-

ment within 90 minutes.

3.2.3 Signal Processing and Feature Selection

Based on previous research (e.g., [Gerson et al., 2006; Parra et al., 2008]), the

classification of target and non-target images was expected to rely mostly on the

P300 ERP. For this reason, following the onset of each picture on the screen,

epochs containing the 300–600 ms interval after stimulus onset were extracted.

This resulted in a total of 20 samples (i.e., features) per electrode at the sam-

pling rate of 64 Hz. Epochs were referenced to the mean voltage of the 200 ms

interval before stimulus onset. The samples extracted from each electrode were

concatenated to form feature vectors.

In an effort to reduce the total number of features used for the task and min-

imise the risk of overfitting, only centro-posterior-occipital electrode sites were

used, as these are typically where P300s are most prominent. We used 28 elec-

trodes (Oz, POz, Pz, CPz, CP1–CP6, TP7–TP8, P1–P10, PO7–PO8, PO3–PO4

and O1–O2 — see Figure 3.4), thus resulting in feature vectors of 560 elements

for each trial.

3.2.4 Single-User Detection of Targets

For each level of difficulty, we used 10-fold stratified cross-validation to train an

ensemble of two hard-margin linear Support Vector Machines (SVMs) for every

participant. The stratified cross-validation method ensured that the proportion of

targets and non-targets remained constant (at 10%) between training and testing
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Figure 3.4: Electrodes used for P300 detection (i.e., for classification of target vs
non-target).

folds, which is important given the imbalance of the classes in our dataset.

Even though there are techniques such as subsampling the dominant class

or oversampling the minority class, we decided to use the available data for four

main reasons: (1) SVMs perform relatively well with moderately imbalanced data,

such as those in the ratio of our experiment [Akbani et al., 2004]; (2) undersam-

pling leads to information loss, which may negatively affect SVM performance

if the borderline instances (i.e., the support vectors) are removed, but has no

effect if the instances removed are far from the boundary; (3) we do not have a

ground truth for which airplanes were seen by the participants in each burst, so

replicating ill-labeled data might add extra noise to the minority class; and (4)

both subsampling and oversampling affect the estimate of the underlying prob-

ability distribution of the target population that is learnt by the SVM. For all

these reasons, instead, we decided to use a misclassification cost to address this

problem [Akbani et al., 2004; Kubat & Matwin, 1997].

68



Trials were labelled as +1 for the epochs corresponding to a target image and

−1 for non-target ones. The analogue outputs of the SVMs were used as scores:

the higher the output, the more likely a picture contained a target. We used the

Area Under the Receiver Operating Characteristic Curve (AUC) as a measure of

the performance of the classifier (and, thus, of the BCI) [Bradley, 1997; Hanley

& McNeil, 1982]. The value of the AUC of a perfect classifier is 1, whereas its

value for a random classifier is 0.51.

In order to obtain the performance of the single-user BCI, for each participant

and difficulty level the average AUC values across the 10 folds are reported. This

method is labelled as sBCI (Single-user BCI) in the following figures and tables.

Due to technical difficulties with the recording equipment, the data for some

participants and levels could not be recovered and used in the analysis, so whereas

levels 1 and 3 contain data from all (N=11) participants, only data from 10

individuals are available for the remaining levels.

3.2.5 Collaborative Classification

Due to the fact that all the subjects had been exposed to the same pictures

in the same sequence throughout the experiment, after the experiments it was

possible to simulate the conditions of groups of participants performing the task

simultaneously together with a collaborative BCI. Since 11 participants were

available (see note at the end of the previous section), simulated groups were

composed of up to 11 members.

1Note that the accuracy is not an appropriate measure of classifier performance for imbal-
anced datasets: an accuracy of 90% in a dataset that contains a class ratio of 10:1 could mean
that the classifier is always outputting the majority class [Kononenko & Bratko, 1991; Kubat
& Matwin, 1997; Swets et al., 1988]. The AUC, on the other hand, does not take into account
the class probabilities and is independent of their frequencies [Swets et al., 1988].
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Several methods to merge the features of groups of users were studied:

• Single-Classifier Collaborative BCI (SC-cBCI): this consisted of creating

group epochs by averaging the feature vectors across the group members

and training a single classifier using the average vectors as inputs.

In BCIs that operate based on the oddball paradigm, such as Donchin’s

matrix speller [Farwell & Donchin, 1988], every stimulus is typically flashed

several times before making a decision on what the user’s intention is. By

averaging the epochs corresponding to these repetitions, a reduction of the

noise level is achieved and the ERP appears clearer, thus achieving higher

system accuracy. By adopting a single-classifier approach to collaborative

BCI, a similar reduction of noise is obtained by averaging the signals (i.e.,

features) across multiple users instead of across multiple trials from the same

user. However, given the inter-subject variability in the ERP waveforms,

in principle, this method could also reduce the amplitude of the P300s and

make the classification task more difficult.

• Multiple Classifier Collaborative BCI (MC-cBCI): in this method, we aver-

aged the outputs (i.e., scores) of individually-tailored classifiers (trained as

described in Sec. 3.2.4).

Since the raw outputs of the classifiers are not binary, but proportional to

the certainty that the system has of the presence of a target, the resulting

MC-cBCI system can be seen as a voting algorithm that gives the same

weight to all users.

• Linear Discriminant Analysis-based MC-cBCI (LDA-cBCI): here, a Linear

Discriminant Analysis (LDA) classifier was trained with the outputs of the
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individually-tailored classifiers of the training set (see below). In this ap-

proach, the scores can be seen as votes from the group members, but the

linear classifier may now assign different weights to different members if this

improves group performance. LDA classifiers have the advantage that they

do not have any parameters that need to be tuned, and given the very low

number of features used in this case (which is equal to the number of group

members), it seemed a sufficiently powerful candidate.

In all approaches, the 2-SVM ensemble received the same data as for the

single-user case.

Additionally, in the case of the LDA-cBCI method, for each fold, the system

was trained as follows: first, the training set was used to train the SVM classifiers

individually for each user in a group. The concatenation of the outputs from the

SVM ensembles for the training set across all users were used as the feature vector

to train the LDA classifier. If this method (as opposed to using a separate set for

training the LDA classifier) has any consequence on the final results, it would be

overfitting on the training set of each fold, which would result in lower results on

the test set, hence imposing a lower boundary on our results. However, due to the

small amount of data available (specially of the target class) and after discarding

oversampling as an option, we felt this was a sensible approach.

3.3 Results

This section presents the results of the aerial picture RSVP experiment. We

begin by analysing the plane counts reported by the users at the end of each

burst and then continue the study by presenting an ERP analysis based on the

71



Table 3.2: Average total plane counts reported by participants as a function of
difficulty level. The total real count was 240 airplanes for all difficulty levels. For
a quick reference, the presentation rate and number of different targets are also
reported.

Level 1 2 3 4 5 6 7
Plane count 197.2 186.7 151.4 157.2 118.6 143.0 100.7
Sensitivity 82.2% 78.8% 63.1% 65.5% 49.4% 59.6% 41.2%

Presentation rate (Hz) 5 6 6 10 10 12 15
# different targets 1 1 3 1 3 1 1

epochs extracted from the EEG recordings. This section finishes with the results

of the single and collaborative BCIs.

3.3.1 Behavioural Results

As was described in Section 3.2.2, participants were asked to provide the number

of targets they had seen at the end of each burst. Even though these numbers

were not taken into account for the machine learning part of the experiment, it

is instructive to look at them to ascertain the objective difficulty of each level.

Evidence indicating that the difficulty of the task increases with the rate of

presentation and the number of target templates used in a level is provided by

these records of reported plane counts. Indeed, as shown in Table 3.2, average

plane counts decrease as the presentation rate increases. At 12 Hz, more than

40% of targets were missed by participants.

Moreover, levels with three types of targets (i.e., levels 3 and 5) are also more

difficult for the users than their respective single-target counterparts (levels 2

and 4, respectively), which present sensitivities about 15% higher for the same

presentation rate.
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3.3.2 ERP Analysis

Before we look at the ERPs obtained in the experiments, it should be noted

that, as is common in other BCIs such as the matrix speller [Cinel et al., 2004;

Farwell & Donchin, 1988], when using very short SOAs, ERPs are significantly

deformed with respect to their “textbook” form found in electrophysiology and

neuropsychology studies [Luck, 2005; Woldorff, 1993]. For instance, in this RSVP

experiment, EEG signals contain a large SSVEP component at the frequency of

stimulation due to the involuntary response of the visual system. However, as we

will see below, this waveform is modulated by the ERPs selectively generated by

different stimuli.

Let us start by looking at the grand averages of the ERPs for the T and NT

conditions, for a presentation rate of 5 Hz. These, together with their difference,

are shown in Figure 3.5 (a) for electrode site Pz, while Figure 3.5 (b) shows

two snapshots of the corresponding scalp distributions, taken at approximately

300 ms and 515 ms after stimulus onset.

There appear to be two peaks on the difference waveform of Figure 3.5 (a),

one at about 300 ms and a second one around 600 ms, both referred to stimulus

onset. However, the P3b, which we expected to see in response to the stimuli,

should not be double-peaked [McCarthy & Donchin, 1981; Polich, 2004a, 2007].

The valley between the two peaks could be due to this SSVEP modulation, the

effects of which are also manifested in the scalp maps reported on Figure 3.5 (b).

To see if the observed differences between target and non-target evoked re-

sponses were statistically significant, the peak amplitude of the “first” peak was

defined as the mean voltage amplitude in the time intervals 300–400 ms after stim-
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Figure 3.5: (a) Stimulus-locked grand averages for T and NT trials at channel Pz
and their differences and (b) scalp maps of the grand averages for T and NT at
297 ms and 515 ms after stimulus onset, for a presentation rate of 5 Hz.

74



ulus onset, and the peak amplitude of the second peak (P3b) as the mean voltage

amplitude 500–600 ms after stimulus onset for T and NT trials. A Kruskal-Wallis

test (a one-way, non-parametric, analysis-of-variance type of test) was applied to

test for differences between the T and NT conditions for electrode sites Cz, CPz

and Pz for both peaks. All such differences were found to be highly significant at

the tested electrodes (p values <3× 10−4 after Bonferroni correction) except for

the P3b peak-amplitudes in Cz, which are not statistically different.

3.3.3 Single-User BCI

Let us begin with the performance of the system when the signals from a single

user are used for the classification of images into targets and non-targets. As

was mentioned previously, the AUC was used to measure the performance of the

machine learning component.

In order to check what would the performance (measured by the AUC) for a

random classifier be, we ran a test in which we shuffled the labels of the data and

then performed the cross-validation step as described above. Averaging across

all participants and levels of difficulty, we obtained a mean AUC ± SD = 0.5 ±

0.02. This was expected, given that, unlike the accuracy, the AUC is insensitive

to class imbalance.

Moving now to the actual results, Figure 3.6 reports the boxplots of the AUCs

for every level of difficulty, across all volunteers. These are consistent with previ-

ous published results: user performance decreases with presentation rate and the

best performance is associated with the first (easiest) difficulty levels [Yazdani

et al., 2010]. Another expected result is the big drop in AUC when moving from
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Figure 3.6: Distributions of mean AUCs across the cross-validation folds for
single-user BCI across all levels of the experiment.

only one type of plane in target images to three types of planes, possibly due

to some of the new airplane templates being more difficult to discern, or due to

habituation effects to the main plane template presented in most levels. These

results are in agreement with the corresponding decrease in reported plane counts

when going from level 2 to level 3 (both at 6 Hz) and from level 4 to level 5 (both

at 10 Hz).

Less expected was the fact that even at the very high rates of presentation used

in the last two levels of difficulty (12 and 15 Hz, respectively), the median AUC

value across all subjects (represented by red horizontal lines in the boxplots) is

nowhere near 0.5 (the performance of a random classifier measured by the AUC),

indicating that the participants’ visual system was still able to discriminate, at

least to some degree, targets from non-targets, despite the very low plane counts

from Table 3.2, which indicate that the labels for the data used to train the

classifiers may have been heavily contaminated with missed targets.
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Figure 3.7: Scatterplot of the reported plane counts for each participant and
difficulty level vs the corresponding AUC obtained in cross-validation for that
participant and level of difficulty.

In order to get a measure of how well the classifiers perform with respect to

the reported plane counts, we calculated the correlation coefficient between the

mean cross-correlation AUC from each participant and for each level with the

reported plane count from that participant and level. This resulted in ρ=0.8 (p

value = 3.9× 10−17), showing that as expected, performance increases when the

person reported seeing a number of planes closer to the real one. Figure 3.7 shows

a scatterplot of these two variables, together with the regression line (R2=0.64).

Shaded areas represent the 95% confidence interval for the regression line, ob-

tained by bootstrapping the data 1000 times.

The boxplots from Figure 3.6 show a wide range of AUCs within each level.

Also, the distribution of AUCs across the population of volunteers is clearly

skewed for most levels, as evidenced by the non-symmetrical boxes around the

median value. A few participants performed much worse than the average of the

77



group. In particular, participant 4 was over-zealous: at the end of the experi-

ment he reported that he had blinked to signal each target (even though he had

explicitly been told to try to avoid blinks!). Participant 5, instead, was drowsy:

he regularly reported a number of targets seen in each burst much smaller than

the real value. Also, when we plotted the averages of the signals for targets and

non-targets for this participant, we found that there were almost no differences

between them.

In normal conditions, BCI researchers would exclude such participants as they

did not behave as was required by the experiment. However, this will not be done

here, as it actually serves the purpose of illustrating the benefits of a collaborative

BCI.

3.3.4 Collaborative BCI

As mentioned before, several methods of aggregation were tested in order to cre-

ate a collaborative BCI system: the single-classifier cBCI (SC-cBCI), multiple-

classifier cBCI (MC-cBCI) and LDA-based MC-cBCI (LDA-cBCI) approaches.

Figures 3.8–3.10 show the average AUCs across all possible combinations of

groups and group sizes for each level and method.

The first feature that can be observed from these figures, and which is common

to all of them, is that bigger groups lead to higher AUCs. However, the gains

obtained from adding extra members to a group progressively reduce. This effect

is also observed, for example, in matrix spellers, where increasing the number of

repetitions after a certain number does not improve accuracy — on the contrary,

it might slow down the BCI unnecessarily and make users get tired sooner.
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Figure 3.8: Median AUC values across participants (for size 1) and all possible
combinations of participants plotted for every level when using the SC-cBCI
method.
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Figure 3.9: Median AUC values across participants (for size 1) and all possible
combinations of participants plotted for every level when using the MC-cBCI
method.
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Figure 3.10: Median AUC values across participants (for size 1) and all possible
combinations of participants plotted for every level when using the LDA-cBCI
method.

In the case of cBCIs, this seems to happen for groups bigger than 6–7 members

for the easier levels, although for more difficult ones (i.e., levels 6 and 7) the

performance of the cBCI can still be improved, on average, by increasing the

size of the groups. However, for reasonable presentation rates (e.g., level 4, at

10 Hz), the cBCI can still get very close to a perfect classifier, especially for the

LDA-cBCI method.

In order to compare the different methods, for each level and group size one-

sided pairwise comparisons were performed between SC-cBCI, MC-cBCI and

LDA-cBCI methods by means of a paired Wilcoxon test. The full results and

p values from this test can be found on Appendix B. Table 3.3 summarises these

results (after applying Bonferroni correction for multiple comparisons). Out of

the 195 comparisons that could be performed, 139 were statistically significant

(after applying the correction).

For a group size of 2 at level 5, the LDA-cBCI method was significantly better
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Table 3.3: Summary of comparisons between the 3 modes for combining evidence
to create collaborative BCIs: LDA-cBCI (“L”), MC-cBCI (“M”) and SC-cBCI
(“S”). The symbol > is used to indicate that the method on the left is statistically
significantly better than that of the right. The symbol = indicates that the
methods on both sides are not significantly different. N/A values represent those
cases in which there were not enough samples to perform the test.

Group
size

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7

2 L>M=S L>M=S L>M=S L>M=S L>M L>M=S L=M=S
3 L>M>S L>M>S L>M>S L>M>S L>S>M L>M>S L=M>S
4 L>M>S L>M>S L>M>S L>M>S L>S>M L>M>S L>M>S
5 L>M>S L>M>S L>M>S L>M>S L>S>M L>M>S L>M>S
6 L>M>S L>M>S L>M>S L>M>S L>M=S L>M>S L>M>S
7 L>M>S L>M>S L>M>S L>M>S L>M=S L>M>S L>M>S
8 L>M>S L>M>S L>M>S L>M>S L>M=S L>M>S L>M>S
9 L>M>S N/A L>M>S N/A N/A N/A N/A

than the SC-cBCI method. However, MC-cBCI was not found to be significantly

different from any of them.

It is obvious from Table 3.3 that the LDA-cBCI method is statistically signif-

icantly better than the other two, which was to be expected since it is trained to

assign optimal weights to the vote of each group member. From the results shown

in this table, it is also very easy to rank the three methods: LDA-cBCI is overall

significantly better than MC-cBCI, which is, in turn, significantly better than

SC-cBCI. The fact that MC-cBCI performs better than SC-cBCI is not surpris-

ing either, since different participants may have different P300 latencies and their

ERPs could have different shapes, so averaging the preprocessed EEG signals (as

is done in the SC-cBCI method) does not always contribute to decreasing the

signal-to-noise ratio (SNR) in a way that is beneficial for the BCI.
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3.4 Discussion

This chapter presented the experiment that will be used through much of this PhD

thesis and studied the possibility of using a BCI for the automatic classification

of images that contain objects or features of interest presented at a very high

rate. It also examined different ways of combining the observations across several

users in order to improve the performance of the single-user BCI.

It was mentioned at the beginning of this chapter that the only objective

measure of how good participants were at detecting the targets was the plane

counts that they reported at the end of each burst. There were very few occasions

where these counts were in agreement with the actual number of planes that had

been inserted in the burst. Thus, one of the difficulties faced when training the

classifiers was not having a “clean” set of data as is common in BCI research.

Indeed, those levels for which the participants reported lower plane counts also

showed poor BCI performance (although still above chance levels), and we found

that the reported counts were highly correlated with the performance of our

classifiers for single user BCIs.

We showed that levels 3 and 5, for which three different target templates were

given to the participants, had much lower plane counts than levels 2 and 4, re-

spectively. This could be due to either participant habituation to the main target

template, or to the new templates being harder to discern from the aerial image

background. Visual search is known to be affected by target eccentricity [Gruber

et al., 2014] and this, in turn, affects neural classification [Dias & Parra, 2011;

Marathe et al., 2016]. However, the distribution of target positions around the x

and y axes was not different between the 1-plane and the 3-plane levels.
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Another difficulty present in this work is the environment in which the signals

were collected. Whereas BCI research is usually conducted on data recorded

in rooms that are shielded from electromagnetic noise, these experiments were

carried out in a normal room (with no shielding) where the volunteer could be

subject to disruptions and general noise at any point. Still, considering these and

the previously highlighted factors, the system achieved an acceptable classification

rate (for a presentation rate of 10 images/second, a median AUC around 0.8 was

obtained in level 4) for single-user BCIs.

In the collaborative case, we merged signals from groups of users using several

different methods. In all cases, the performance of the classifiers was better than

in the individual case, and increasing group size improved the average group

performance. Studies on decision making have shown that bigger groups lead

to better decisions. In this case, we simulated groups of up to 11 members,

and showed that cumulative improvements decrease with increasing group sizes.

This might be due to the fact that bigger groups are less affected by “noisy”

members. In a way, the information added by the extra members acts as the

trial-averaging technique in normal BCIs for disabled users. Thus, as was the

case for the matrix spellers, the SNR is no longer improved by extra averaging

(i.e., adding new members to the group).

One possible limitation of the work presented here is that the results were

obtained through a cross-validation loop, and no proper test set was used in

this chapter (a practice that is becoming increasingly popular in BCI research).

Hence, although it is unlikely that our results are due to overfitting to the dataset,

the real performance of the system needs to be assessed in the future using unseen

data.
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With respect to the results obtained with the LDA-cBCI approach, given the

fact that the LDA was trained using the SVM response to trials from the training

set from each fold, we believe that there is a chance that the LDA classifier that

was used to assign different weights to the different users may have overfitted

during training. If this was the case, then the actual performance when trained

with different data, perhaps from an additional set of trials that are not part of

the training set for the SVMs, would likely be higher than the one reported here.

We did not attempt this due to the limited amount of data of the target class

available. However, it is another matter that should be explored in the future.

In the collaborative BCIs, we observed the same influence of number of target

templates on performance as in the single-user BCIs (i.e., levels with more than

one type of target showed marked decreases in performance with respect to the

equivalent levels that only contained one airplane). This effect is heavily corre-

lated with the reduced plane counts reported by the participants, so the machine

learning component of the BCI has very few target cases in which the participant

did indeed see the target in the picture, which adds noise to the already heavily

imbalanced training data. However, for the presentation rate of 6 Hz (level 3),

it is still possible to reach good performance by means of a collaborative BCI.

Since the RSVP protocol has been previously used to identify targets that were

not fixed, we believe that the reason behind this decreased performance has to do

with participants getting used to the 1-plane paradigm, and not to the multiple

target scenario. However, this will have to be further studied in the future.

It should be reiterated here that there were two participants that dragged

the performance of the single-user BCI down. Many of the groups that were

formed contained data from these participants and so also cBCI performance was
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affected, albeit to a lesser degree.

3.5 Conclusions

There is certainly an interest in the use of the RSVP technique to classify images

without the user having to manually select the interesting ones. Here, an RSVP–

BCI paradigm was applied to the field of target detection in broad area search,

both in single-user and collaborative BCIs. However, there are other fields where

this method could be useful. For instance, there is a vast amount of medical

images that have to be seen by skilled clinicians on a daily basis for clinical pur-

poses. Hope et al. [2013] applied the concept to the screening of mammographies

by experts. In medical imaging, a collaborative BCI would be of great help, since

a diagnosis can be subjective to a professional. By averaging across multiple

experts, part of this bias could potentially be eliminated.

Last, but not least, finding the pictures that contain events of interest is only

the first step to having a complete system for target detection. The following

chapters will build upon the system and the techniques presented here by using

the N2pc ERP to locate the targets within pictures (Chapter 4), concatenating

the target detection and the target location systems (Chapter 5) and studying

methods for participant selection when forming groups for collaborative BCIs

(Chapter 6).
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Chapter 4

Single and Collaborative BCI for

Target Localisation

The N2pc event-related potential appears on the opposite side of the scalp with

respect to the visual hemisphere where an object of interest is located. This chapter

explores the feasibility of using it to extract information on the spatial location of

targets in aerial images, both in single and collaborative BCIs. As a byproduct,

the chapter also reveals an interesting relationship between handedness and the

shape of the N2pc ERPs that are evoked by lateralised targets.

4.1 Introduction

The previous chapter studied the feasibility of detecting targets in rapid streams

of images. Detecting targets accurately and at high speeds, however, is often

only a prerequisite to more sophisticated processing. For instance, triage systems

would benefit from techniques, such as the one that will be presented in this
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chapter, that could automatically establish the position of targets within the

images. While the P300 ERP is one of the most widely used ERPs for controlling

BCIs (both in the traditional and the newer paradigms) and recognising targets,

it does not allow this more sophisticated task.

The N2pc ERP is usually reported in literature to be related to selective

attention processes. This chapter explores the feasibility of using this component

to extract information on the spatial location of targets. Moreover, we will do this

using stimuli representing complex real-life scenes for a task of practical utility

(aerial image sifting) presented using the RSVP protocol described in the previous

chapter through BCIs based on single-trial classification. This is a very difficult

task for a BCI as: (1) the N2pc is a much smaller ERP than the P300 in terms

of voltage amplitudes, duration and locations where it can be detected, (2) we

use a single-trial approach, and (3) images are presented at a rapid presentation

rate.

The most similar work to the one we explore here is that of Putze et al.

[2013], where the authors used EEG data to detect the targets and eye tracking

for locating them by asking participants to fixate their eyes on them. However,

this was not done on an RSVP task, but rather on a series of simple stimuli

(a number of circles arranged in a circle) that were sequentially and randomly

flashed. Moreover, it is not clear whether participants would be able to fixate

on the target at the high speeds used in RSVP (Putze et al. [2013] flashed each

stimulus for 2 s), as there are previous reports of saccades being suppresed at

such rates [Neider et al., 2013; Potter & Levy, 1969].

Thus, if the N2pc can be detected in a scenario such as the one presented in

the previous chapter, it could be exploited, for example, to help circumscribe the
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area of the image where the target is located, thereby speeding up the job of the

person reviewing the potential targets detected by a BCI without the need for the

extra equipment and calibration of the eye tracker. Also, it could help improve

target detection if, for instance, targets too lateral with respect to an observer’s

gaze to elicit a fully blown P300 [Dias & Parra, 2011; Marathe et al., 2016]

still cause a detectable shift of attention resulting in an N2pc. To verify these

hypotheses, we also investigated the relative dependency of target classification

on the P300 and the N2pc. Moreover, in Chapter 5 we will combine the target

detection system presented in the previous chapter and the target localisation

system presented here to see whether the P300 and N2pc can help each other in

detecting and locating targets.

This chapter is organised as follows. Section 4.2 describes the experimental

setup, the signal acquisition and manipulation and the methods used for feature

selection and classification. Section 4.3 reports on (and discusses) the results of

the experiments, both in terms of ERPs and of the localisation accuracy of the

BCI. This section also reports the handedness results obtained as a byproduct of

these experiments. We discuss the implications of these findings in Section 4.4

and provide some conclusions and indications for future work in Section 4.5.

4.2 Methods

4.2.1 Participants and Setup

The work presented in this chapter uses the signals acquired from the pool of

participants described in Chapter 3 (see Section 3.2.2). The signals were also
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Table 4.1: Distribution of lateral targets across levels. The reported percentage
of lateral targets is referred to the total number of targets within the level —
there are a total of 240 targets per level.

Level Lateral Targets LVF RVF
1, 2, 4, 6, 7 60% 59 85

3, 5 70% 90 79

preprocessed in the form described in that chapter (i.e., band-pass filtered be-

tween 0.15–28 Hz and downsampled to 64 Hz). However, this chapter focuses on

different electrodes and time windows, as will be described below.

4.2.2 Experimental Design

A full description of the experiment and participants can be found in Section 3.2.2.

In this chapter we will focus on a specific subset of the data: those trials that

correspond to target pictures and, more specifically, those that contain a lateral

target. Concatenating the target detection and target localisation systems and

studying the influence of non-targets on the localisation system will be done in

the next chapter.

The horizontal position of a target was defined as the x-coordinate of the

centroid of the plane contained in the image. Lateral targets were those the

centroid of which was positioned at least at a visual angle of ±1.2 degrees on the

horizontal axis (with respect to the centre of the screen).

The numbers of lateral targets and their distribution between Left Visual

Field (LVF) and Right Visual Field (RVF) targets for each level are given in

Table 4.11.

1The imbalance in the cardinality of the LVF and RVF target sets is due to a slight unde-
tected bias in the algorithm that was used to position the planes. This was, however, inconse-
quential other than it slightly reduced the statistical significance of some of our findings.
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4.2.3 Feature Selection and Classification

The following subsections will describe different uses of the experimental data,

each characterised by a different choice of training and test sets and methods.

In particular, as highlighted in previous sections, we will start by verifying the

presence of the N2pc component in the conditions of the RSVP experiment (Sec-

tion 4.2.3.1), and using this ERP to determine whether a lateral target appeared

on the left or the right side of the screen. We will then study differences in the

N2pc due to the preferred hand of the participants (Section 4.2.3.2), and use

these to improve the target localisation task by being able to predict the actual

coordinate of the airplane (Section 4.2.3.3). Following the structure from the

previous chapter, we will then study the three approaches of combining evidence

from multiple users to create cBCIs (SC-, MC- and LDA-cBCI) in the form de-

scribed in Section 4.2.3.4. Finally, the influence of the N2pc component on the

target detection task is studied(Section 4.2.3.5).

4.2.3.1 Detection of the N2pc Component

To verify whether the N2pc component could be detected in single trials in the

conditions of this experiment, epochs of EEG signal were extracted from approx-

imately 200 ms to 400 ms after stimulus onset (the temporal window where the

N2pc most often occurs according to the literature). This resulted in 14 samples

per channel at the 64 Hz sampling rate used. The data were referenced to the

mean value of the 200 ms interval before stimulus onset.

Since the N2pc is a lateralised ERP, it is more easily revealed when looking at

differences between pairs of electrodes corresponding to symmetric positions with
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Figure 4.1: Electrodes used for target localisation (based on the N2pc).

respect to the brain’s median plane than when processing left and right electrodes

independently. Furthermore, the N2pc is most prominent in the posterior and

occipital electrodes. Based on this, when detecting N2pc components in this ex-

periment we used the set of four differences between electrode pairs: (PO7−PO8),

(P7−P8), (PO3−PO4) and (O1−O2) (highlighted in Figure 4.1, where each pair

is represented by a different colour). Concatenating these electrode differences

yields a feature-vector representation of epochs including 14× 4 = 56 elements.

With this input representation, linear SVM classifiers were trained to distin-

guish between LVF and RVF targets following the same stratified 10-fold cross-

validation approach described in Chapter 3.

For each level of difficulty, the analogue output scores of the SVMs were

recorded, and used to compute the ROC curve for each participant. As before,

the information contained in each ROC curve was condensed into the AUC score.
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4.2.3.2 Handedness Detection

The pool of volunteers for this experiment had an approximate balance between

left-handed (LH) and right-handed (RH) participants (5 out of the 11 participants

were left-handed)1. Linear SVM classifiers were trained to perform discrimination

of participants based on handedness through an 11-fold leave-one-participant-out

cross-validation loop. Each fold was trained with all the RVF target epochs from

difficulty level 1 for all LH and RH participants except for the excluded one. After

training, these trials were fed again to the classifiers, and the median of the raw

output score was computed and used as a threshold for classifying the left-out

participant as LH or RH.

The test set for each fold was composed by all the RVF target epochs from

the excluded participant. After obtaining a score for each trial, the median score

value from the test set was compared with the classification threshold obtained

from the training set.

As we will see in Section 4.3.3, there are also differences in the N2pc com-

ponent evoked by LVF targets which are associated with the handedness of the

participant. However, only the RVF epochs were used because these differences

are greater for right visual field targets than they are for targets located on the

left.

1By “handedness” we refer to the self-reported handedness of the participants in the study.
More specifically, volunteers were asked for their preferred hand for writing. Since it was not
expected that there would be implications of the study on handedness research, the standard
tests routinely used to more objectively verify the handedness of participants were not used.
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4.2.3.3 Target Localisation

After having determined that the N2pc can help separate left from right visual

field targets, we explored the possibility of using it to tell to what degree a target

is lateral with respect to the centre of the image. For this, a linear predictor which

was optimised by a Particle Swarm Optimiser (PSO) [Poli et al., 2007] was used.

The representation used in the PSO included 17 parameters: eight of these were

interpreted as indices in the 56-dimensional feature vectors extracted from each

epoch (see Section 4.2.3.1), other eight were the coefficients for the corresponding

features, and the remaining one was a constant term for the linear predictor.

The fitness function optimised by the PSO was multi-objective as it aimed at:

(1) obtaining a correlation, ρpredictor, between actual outputs and desired outputs

(the x coordinate of the target, in pixels, in the picture corresponding to each

epoch) as close as possible to the correlation, ρreference, obtained by a standard

linear regressor using all the features, and (2) ensuring the regression line between

the desired outputs and the outputs of the linear predictor has as a slope close

as possible to 11. Formally, the fitness function (to be minimised) was:

f = |1− slope|2 + |ρreference − ρpredictor|+ 0.0005× MAE

where slope and MAE are the slope and the mean absolute error of the linear

regression between the desired outputs and the outputs of the linear predictor,

respectively.

The training set for this task was composed by a random sample that con-

1This approach was used to compensate for the tendency of standard multivariate regression
to compress its output range in the presence of strong noise on its inputs.
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tained 65% of all targets (and not only the lateral ones) from each participant.

The test set was composed by the remaining target epochs. This task was per-

formed separately for the groups of left-handed and right-handed participants.

4.2.3.4 Collaborative Classification

The three approaches for creating cBCIs described in Section 3.2.5 (SC-cBCI,

MC-cBCI and LDA-cBCI) were used again in this chapter to merge signals from

multiple participants. Given the fact that the N2pc is not as variable across

participants as the P300, we expected that the SC-cBCI approach would be

worthy of exploration in this context, despite the fact that it was always the

worst of the three methods of collaborative BCI for target detection.

4.2.3.5 Influence of the N2pc on Target Detection

Based on the results reported in the previous chapter and the literature review,

we expected the classification of target and non-target images to rely mostly on

the P300 ERP, but we wanted to explore the degree to which the N2pc could

influence it. Epochs containing the 300–600 ms interval (which is where typically

P300s appear) after stimulus onset were extracted. At the final sampling rate of

64 Hz, this resulted in a total of 20 features per electrode.

As before, in an effort to reduce the total number of features used for the

task and minimise the risk of overfitting, only centro-posterior-occipital electrode

sites were used, as these are typically where P300s are most prominent. One

combination (E28) used the 28 electrodes that were used in Chapter 3 (i.e., all the

electrodes highlighted in Figure 4.2 — Oz, POz, Pz, CPz, CP1–CP6, TP7–TP8,
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Figure 4.2: Electrodes used for evaluating the influence of the N2pc on target
detection.

P1–P10, P7–P8, PO3–PO4, O1–O2). The second combination (of 20 electrodes,

E20) was identical to the first except that it omitted the electrode sites that were

used for N2pc detection (i.e., only the electrodes shown in blue in Figure 4.2 were

used). A third combination (E24) included the electrodes in E20 plus the four

electrode differences used for target localisation (i.e., the electrodes pictured in

blue in Figure 4.2, plus the four differences highlighted in Figure 4.1). So, for

the purpose of classification, epochs were represented with between 400 and 560

features.

The training and test sets used in the stratified 10-fold cross-validation loop

included all the trials for each level (since the task here was target detection).

As before, epochs were referenced to the average voltage in the 200 ms interval

before stimulus onset.
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4.3 Results

This section starts with an ERP study of the N2pc in order to show that this

component is elicited in the conditions of this experiment. Then, we will report

on the performance of single-user BCIs for single-trial LVF vs RVF classification.

The section will continue by looking at the differences in the perception of lateral

targets associated with the handedness of participants. Based on these differ-

ences, we study the degree to which a linear predictor can be used to quantify

the eccentricity of a target with respect to the centre of the image. Finally, col-

laborative classification is performed by combining data from groups of users by

means of the MC-cBCI, SC-cBCI and LDA-cBCI methods that were presented

in Chapter 3.

4.3.1 ERP Analysis

The presence of the N2pc ERP in this experiment is illustrated in Figure 4.3,

which shows grand averages for lateral targets for a presentation rate of 5 Hz.

The “contralateral” line in the figure represents the grand average of participant

averages that were computed with the epochs recorded from channel PO7 (on

the left hemisphere of the scalp) for RVF targets with the epochs recorded from

channel PO8 (on the right region of the scalp) for LVF targets. Similarly, the

“ipsilateral” line represents grand averages computed from the epochs recorded

at channel PO7 for LVF targets and the epochs recorded at channel PO8 for RVF

targets. The adoption of these ipsilateral and contralateral grand averages follows

the conventions of the N2pc literature (see Section 2.2.2), as these emphasise left-

right asymmetries that would otherwise be lost with standard averages. Following
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Figure 4.3: Contralateral and ipsilateral stimulus-locked grand averages at chan-
nels PO7 and PO8 and their difference (continuous line, “N2pc”) across lateral
targets from the training set from one of the cross-validation folds.

the same conventions, the data were plotted using an inverted ordinate axis (so

higher means more negative). To further illustrate the differences between the

two conditions, the figure also reports the difference between the contralateral

and ipsilateral grand averages (line labelled as “N2pc”). It should be noted that

the SSVEP effect that could be observed in the P300 ERP plots presented in

Figure 3.5 as well as in the contralateral and ipsilateral lines in Figure 4.3 is

removed by performing this substraction.

As we can see from the figure, the ipsilateral and contralateral ERPs start

to deviate markedly from each other at 250 ms after stimulus onset, with their
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difference peaking at approximately 340 ms. The shape and sign of the deflection

is consistent with those of the N2pc reported in the literature [Eimer, 1996; Luck,

2012; Luck & Hillyard, 1994b], even though in this experiment its latency was

slightly longer than in other studies, presumably because attention (both covert

and overt) is also attracted (and, thus, divided) by features of the constant stream

of distractors (non-targets) used in these experiments.

Moreover, the SPCN waveform (see page 16) that follows the N2pc in visual

search that requires keeping the target in memory is not present in our experi-

ment [Dell’Acqua et al., 2006; Jolicœur et al., 2006a, 2008; Thiery et al., 2016].

This could be because the task we gave to the participants was just to count the

number of targets, but we did not require them to memorise any aspect of them.

Figure 4.4 shows snapshots of the temporal evolution of the grand averages

across the scalp between approximately 310 ms and 375 ms after the presentation

of images containing a lateral target for the same low presentation rate of 5 Hz.

Looking at the grand averages for LVF targets (top), the voltages at several con-

tralateral posterior and occipital electrodes (e.g., PO4, PO8, P8) start becoming

more negative than those in corresponding ipsilateral channels (e.g., PO3, PO7,

P7) from around 300 ms after stimulus onset. This difference increases over time.

The same effect can be observed in the grand averages for RVF targets (bottom),

where the voltages at left posterior electrodes (i.e., the contralateral channels)

are more negative than the corresponding voltages of the right (i.e., ipsilateral)

channels in the same time interval.1

The N2pc peak amplitudes for LVF and RVF targets were measured as the

1Of course, there are asymmetries of brain function in the left and right hemispheres and,
so, we cannot expect perfectly symmetric scalp maps.
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Figure 4.4: Grand-averaged scalp distributions between 312 ms and 375 ms after
the onset of LVF (top row) and RVF targets (bottom row) at a presentation rate
of 5 Hz.

Table 4.2: Medians and Kruskal-Wallis p values for the peak amplitudes of the
voltage differences between contralateral and ipsilateral channels for LVF and
RVF targets at a presentation rate of 5 Hz.

Electrode difference LVF RVF p value
PO7− PO8 1.646 µV -1.950 µV 2.2× 10−16

P7− P8 1.897 µV -1.301 µV 8.5× 10−10

PO3− PO4 1.559 µV -1.813 µV 3.3× 10−16

O1−O2 0.868 µV -0.902 µV 1.2× 10−4

mean value of the voltage difference between pairs of contralateral and ipsilateral

electrodes in the time interval 280–380 ms after stimulus onset. Since the peak

amplitudes did not follow a Gaussian distribution, as assessed by a Lilliefors test

for normality, we report the medians of these amplitudes across all participants

and trials in Table 4.2 for electrode differences PO7−PO8, P7−P8, PO3−PO4

and O1 − O2. The table also reports the p values obtained from the (non-

parametric) Kruskal-Wallis test applied to these data. As one can see, the voltage

asymmetries documented in these channels (where the N2pc is typically found)

are highly statistically significant.
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4.3.1.1 Influence of the Presentation Rate on the N2pc Component

Having established the presence of the N2pc for the lowest presentation rate, we

can now study this ERP at higher presentation rates. Figure 4.5 shows the grand-

averages of the differences between corresponding contralateral and ipsilateral

ERPs (i.e., equivalent to the line labelled as N2pc in Figure 4.3) across all lateral-

target epochs from the training set of one of the folds used in cross-validation, for

the different levels of difficulty used in the experiment, measured at electrode sites

PO7 and PO8. Again, the shape and timing of the N2pc ERPs are consistent

with those reported in the literature [Eimer, 1996; Luck, 2012; Luck & Hillyard,

1994b]. However, in this figure we see three interesting effects: (1) the latency

of the N2pc (measured as the time when the difference waveform reaches its

peak) tends to become shorter as the presentation rate increases, (2) the peak

amplitude for the presentation rate of 6 Hz (i.e., level 2) is larger than that of

the presentation rate of 5 Hz, and (3) the peak amplitude at a presentation rate

of 15 Hz is the smallest of the four tested.

Generally, one would not expect to see any differences between voltages in the

two brain hemispheres during the baseline period preceding a trial (and this is

why the plots in Figure 4.5 are virtually zero in the 200 ms preceding the stimu-

lus). However, when stimuli are presented at a high rate, previous lateral targets

might “contaminate” the baseline for subsequent trials producing asymmetries

in such a period. To check if this could have affected the results, we calculated

the percentage of trials where baselines are contaminated by checking, for each

presentation rate, how many lateral targets in the dataset are preceded by an-

other target within the previous 400 ms. At the lowest presentation rate (5 Hz),
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Figure 4.5: Difference plot of the contralateral minus the ipsilateral grand-
averages at channels PO7 and PO8 across all lateral targets from the training
set for levels with only one type of target.

no trials are contaminated and less than 6% of trials are contaminated at the

highest presentation rate of 15 Hz. Other presentation rates fall in between. This

indicates that baseline contamination has been minimal in the experiment.

Peak amplitudes were measured for all conditions and tested for statistical

differences using a Mann-Whitney U test1. Results are reported in Table 4.3.

This table shows that peak amplitudes for the presentation rates above 10 Hz

are significantly smaller than for lower rates. There were no statistical differences

1The Mann-Whitney U test was used as plotting the data in preliminary tests revealed
that peak amplitudes do not follow a Gaussian distribution. This was further corroborated by
means of a Lilliefors test for normality that confirmed these results.
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Table 4.3: Results of a one-sided Mann-Whitney U test with Bonferroni correction
comparing peak amplitudes of the N2pc for different presentation rates (in levels
with only one type of target). P values below 0.05 are statistically significant.

5 Hz 6 Hz 10 Hz 12 Hz 15 Hz
N2pc peak -2.51 µV -2.45 µV -1.12 µV -0.76 µV -0.63 µV

5 Hz – 1 1.9× 10−11 1.2× 10−14 8.9× 10−20

6 Hz – – 6.7× 10−8 1.8× 10−10 1.0× 10−14

10 Hz – – – 1 0.09
12 Hz – – – – 0.86

in peak amplitudes between the presentation rates of 5 and 6 Hz, but the N2pc

ERPs that are elicited at these two rates are significantly larger than that at any

other presentation rate.

There are at least three possible reasons for these rate-related changes, and

they are not mutually exclusive: (1) the target detection task is harder for partic-

ipants at high presentation rates due to the shorter duration of the target stimuli;

(2) the average temporal distance between consecutive targets decreases as the

stimulation rate increases, causing some targets to fall within a possible “refrac-

tory period” for the N2pc, such as those associated with repetition blindness and

the attentional blink [Einhäuser et al., 2007; Jolicœur et al., 2006a; Kanwisher,

1987; Shapiro et al., 1994]; and (3) the choice of experimental design, due to

which participants might have been too tired at the end of the experiment, con-

sequently missing more targets than in previous difficulty levels. We elaborate

on these factors below.

Task Difficulty We saw in Chapter 3 that there is evidence of the increase in

task difficulty as a result of higher presentation rates, resulting in targets being

missed. Since participants did not have time to foveate to targets (especially
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for the last levels of difficulty), it is possible that those positioned laterally were

missed more frequently than those presented in the centre of the screen. Because

grand averages do not take into account which lateral targets were seen and which

were not, the amplitude of the N2pc component for the high difficulty levels might

have been artificially reduced due to the high percentage of missed targets.

Refractory Period of the N2pc Repetition blindness and the attentional

blink have been shown to play a role in other ERP-based BCIs [Cinel et al.,

2004]. These phenomena manifest themselves as a participant missing a target

when the separation from a previous target is less than 500 ms. To test whether

some form of refractory period was influencing the ERP amplitudes, the epochs

were divided and analysed on the basis of the number of non-targets separating

two targets. Figure 4.6 shows grand averages of the N2pc (again, plotted as

the contralateral minus the ipsilateral waveforms and using an inverted ordinate

axis), for targets that are 2–3, 4–5, 6–7, 8–9, 10–11 and 12–13 stimuli away from

the previous target, for the presentation rate of 12 Hz. There are 63, 126, 135,

198, 315 and 180 epochs of each kind, respectively.

At a presentation rate of 12 Hz, the N2pc ERPs associated with well-separated

targets (e.g., the line labelled as 10–11) are significantly bigger than the N2pc’s

for poorly separated targets, i.e., line 2–3 in the figure. Indeed, the p<0.05 for

a one-sided Mann-Whitney U test comparing peak amplitudes of lateral targets

that are separated by less than 300 ms — i.e. those labelled as “2–3” in Figure 4.6

— vs the rest, for all samples in the interval 264–307 ms1. This suggests that

refractory phenomena like repetition blindness and the attentional blink may be

1Note that the Mann-Whitney U test allows comparisons between samples of different sizes.
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Figure 4.6: Difference plot of the contralateral minus the ipsilateral grand-
averages at channels PO7 and PO8 for targets that are within 2–3, 4–5, 6–7,
8–9, 10–11 and 12–13 stimuli away from the previous target, and the grand aver-
age (labelled as “all”) across all lateral trials, for a presentation rate of 12 Hz.

partially responsible for the presentation-rate modulations of the N2pc observed.

Experimental Paradigm Finally, the differences in N2pc amplitudes and la-

tencies could partly be attributed to tiredness and learning effects. This is a

possibility as the order of the conditions across subjects was not randomised.

Randomisation was excluded after receiving early feedback that suggested that

participants with no previous experience of high-speed RSVP protocols (such as

the cohort of these experiments) found it exceptionally taxing to start with the

10 Hz or 12 Hz conditions. After the standard practice sessions, participants
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were able to do reasonably well at the lowest presentation rate of 5 Hz, although

in the early blocks many still lamented that the presentation rate was too fast.

However, they progressively adjusted and later could cope with increases in the

presentation rate. Since the main purpose of the study was to prove the con-

cept that collaborative BCIs can significantly improve the results obtained with

single-user BCIs, not to establish whether they are best used at 5, 6 or 10 Hz, we

felt that this was a reasonable compromise. However, this design decision implies

that the possibility that some of the observed N2pc differences are associated

with presentation order effects cannot be excluded.

4.3.1.2 Influence of the Number of Targets on the N2pc Component

We have seen that there are modulations in the EEG that appear as a response

to lateral targets in pictures presented in streams at high presentation rates.

However, the analysis until now has focused on those levels that contained only

one type of target. The experiment included two extra levels (levels 3 and 5, at 6

and 10 Hz respectively) which contained three types of targets. These two levels

were added as counterparts to levels 2 and 4, which, at the same presentation

rates, respectively, included only one type of airplane. Thus, they may help us

understand the differences in the evoked ERPs when participants are asked to

look for airplanes vs when they look for a specific type of airplane.

Figure 4.7 reports the contralateral minus ipsilateral grand averages compar-

ing conditions with one vs multiple targets while keeping the presentation rate

constant. Shaded areas represent intervals where the two conditions are signifi-

cantly different (i.e., p value of a one-sided Kruskal-Wallis test was <0.05). The

figure shows that the reduced peak amplitudes for levels with several types of
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Figure 4.7: Grand averaged contralateral minus ipsilateral differences at channels
PO7 and PO8 for levels with one (i.e., levels 2 and 4) vs several (i.e., levels 3
and 5) types of targets at presentation speeds of (a) 6 Hz and (b) 10 Hz. Shaded
areas represent time intervals where the two conditions are significantly different.

targets are statistically significant. However, for the higher presentation rate,

depicted in Figure 4.7(b), significant differences can also be seen on the tail of

the ERP, and not only on the amplitude of the peak.

If again we measure peak amplitudes as the mean amplitude of the ERP

in the time interval 280–380 ms after the onset of a lateral target, a Mann-

Whitney U test comparing peak amplitudes across levels 2–3 resulted in p =

1.3 × 10−4. However, when comparing peak amplitudes between levels 4–5, the

peak amplitude was not significantly different (p = 0.5). Thus, the differences

highlighted in Figure 4.7 are most likely due to the difference in peak timing,

rather than to the amplitude of the peak itself.

Finally, we should note that the peak amplitudes for levels 3 and 5 are not

statistically significantly different from each other (p = 0.08), while the differences

in N2pc peak amplitudes between levels 2 and 4 were significant (p = 6.7×10−8).

Thus, even though there is a decrease in peak amplitude when moving from a
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specific airplane template to a more generic class (i.e., one to three targets),

higher speeds within the latter condition do not seem to affect the amplitude of

this ERP.

4.3.2 Single-User BCI

The ERP analysis above highlighted the existence of marked asymmetries in the

posterior-occipital lateral regions of the scalp in the interval 200–400 ms after

stimulus presentation when comparing the ERPs generated by lateral targets

at different presentation rates. Therefore, the four electrode differences listed

in Section 4.2.3.1 when computed in this interval should allow a classifier to

distinguish between LVF and RVF lateral targets.

The results for the single-user BCI approach (described in Section 4.2.3.1)

when distinguishing between left and right targets are summarised in Figure 4.8.

As shown in the figure, there are clear large performance variations across par-

ticipants, evidenced by the range of AUCs covered by the whiskers of the boxplots

for each level. Moreover, it can be seen from the figure that the distributions of

AUCs tend to be skewed for most presentation rates, although at a lower degree

than those of the target detection system (see Figure 3.6)1.

Despite these large variations within the levels, the median AUCs are reason-

ably high, which is very encouraging considering the small scalp regions where

the N2pc can be detected and its small amplitude. So, overall, classification re-

sults indicate that the N2pc can reliably be detected in the conditions of the

1Since means tend to be affected by outliers and asymmetries in distributions, Medians were
used throughout this and the following sections, which give a more robust measure of central
tendency in skewed distributions. For this reason, non-parametric statistical tests were also
used throughout the chapter.
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Figure 4.8: Distributions of mean AUCs across the cross-validation folds for
single-user BCI across all levels of the experiment.

experiment. Consistently with the ERP analysis, performance drops significantly

when moving from level 2 to level 3 (p = 0.01). This was expected, as the peak of

the difference between contralateral and ipsilateral electrode sites is significantly

lower in that condition (as was reported in Figure 4.7). Also consistent with the

previous ERP analysis, the decrease in performance that can be observed between

levels 4 and 5 is not statistically significant (p = 0.2).

It is worth noting, however, that performance for most participants is well

above that of a random classifier (i.e., AUC = 0.5) and that the top quartile have

AUCs ≥ 0.7 even at a presentation rate of 12 Hz (i.e., level 6). This suggests that

with a suitable participant selection process, the BCI could also be successfully
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operated even at that rate.

4.3.3 Handedness, Target Localisation and the N2pc

After initially trying to predict target localisation and obtaining promising results,

we noticed some differences in the ERPs produced by left- and right-handed

participants. This section contains the results of some additional analyses that

we performed after noticing this effect.

4.3.3.1 Handedness Classification

Figure 4.9 shows the contralateral minus ipsilateral grand averages across lateral

targets in the training set from one of the cross-validation folds as described in

Section 4.2.3.3 for LH and RH participants. This figure also reports the p values

from a one-sided Mann-Whitney U test comparing ERP amplitudes over time.

As shown, there are highly significant differences between the N2pc in LH and

RH participants (i.e., all those where the values of p are above the 5% horizontal

line), especially in the tail of the ERP in the time window 280–400 ms after the

onset of the stimuli.

Lateral targets were then separated according to their position on the screen.

Figure 4.10 shows the N2pc grand averages obtained for left- and right-handed

participants, separated for LVF (Figure 4.10(a)) and RVF targets (Figure 4.10(b)).

Even though there are significant differences in both LVF and RVF targets as a

result of the handedness of the participant, the most pronounced differences are

found in the N2pc component for targets located on the right side of the screen.

For this reason, it was decided to use only epochs from such targets for the

classification of participants based on handedness.
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Figure 4.9: Contralateral minus ipsilateral stimulus-locked grand averages for LH
and RH participants across lateral targets from the training set of one fold at the
presentation rate of 5 Hz, and p values from a one-sided Mann-Whitney U test
comparing both conditions.
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Figure 4.10: Contralateral minus ipsilateral stimulus-locked grand averages for
LH and RH participants across (a) LVF and (b) RVF targets from the training
set of one fold at the presentation rate of 5 Hz, and p values from a one-sided
Mann-Whitney U test comparing both conditions.
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Using the methods described in Section 4.2.3.2, and a leave-one-subject-out

loop, a classification accuracy of 100% was obtained for the discrimination of

participants based on handedness (i.e., LH vs RH) in cross-validation.

As we will discuss later, the differences in the N2pc due to handedness should

be taken into account when working with collaborative BCIs, especially if EEG

signals from the individuals that compose a group are averaged directly, e.g., as

in the SC-cBCI approach.

4.3.3.2 Prediction of the Analogue Horizontal Position of Targets

As hypothesised, for both LH and RH participants the amplitude of the N2pc can

also be used to roughly determine the distance of the target from the centre of the

picture. As an example, Figure 4.11 shows the coordinates of the target output

by the PSO-optimised linear predictor (trained as explained in Section 4.2.3.3) vs

the actual coordinates of the target for the group of 5 left-handed participants.

The correlation between the predictor’s output and the actual x-coordinate of the

target on the test set for the LH group is ρ=0.42 (and ρ=0.39 for the RH group).

In all cases, the 8 features selected by the PSO represent the amplitude of the

N2pc in electrode differences between PO7-PO8, P7-P8 and PO3-PO4, but not

on O1-O2.
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Figure 4.11: Predicted x-coordinate for the target vs actual target position (in
pixels) for all targets in the test set, using only LH participants. The regression
line is also shown.

4.3.3.3 Influence of the N2pc on Target Detection

As described in Section 4.2.3.5, several different combinations of electrodes were

tested for the classification of T vs NT trials in order to explore the influence of

lateralised information when discriminating between targets and non-targets.

The first combination (E28) was formed of centro-parietal electrodes where the

P300 ERP is most prominent; the second one did not include those electrodes

that were used for the detection of the N2pc (E20); and finally a third combination

(E24) used the features from the electrodes in combination E20 plus the 4 pairs

of electrode differences used for N2pc detection.

Table 4.4 reports the median AUC values obtained across all participants

for each level and electrode combination. A one-sided paired Wilcoxon rank test

comparing the participant-by-participant results revealed that the small difference

in medians for combinations E28 and E20 is statistically significant (p value=4.4×

10−4 after Bonferroni correction). This confirms that there is a consistent, albeit
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Table 4.4: Median AUC values across all participants for each difficulty level and
combination of electrodes, for T vs NT classification.

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7
E20 0.86 0.84 0.70 0.76 0.58 0.65 0.58
E24 0.86 0.86 0.68 0.77 0.58 0.67 0.58
E28 0.87 0.87 0.69 0.79 0.57 0.70 0.61

small, advantage in integrating channels where the N2pc is typically present with

those where P300s are most prominent for the purpose of detecting targets. The

difference in medians between E24 and E28 is also significant (p value=7× 10−4,

after Bonferroni correction). However, comparisons between E20 and E24 revealed

no statistically significant differences (p value=0.29). This indicates that the

hemispheric asymmetries of the N2pc do not particularly help target detection.

In addition to the AUC comparisons, we estimated the probability density

functions (pdfs) for the SVM output scores obtained for T vs NT classification

using the E28 and E20 electrode combinations. Since we wanted to distinguish

between the cases where an N2pc is expected from those where it is unlikely to be

elicited, we computed separate (conditional) pdfs for lateral and central targets

as well as the (total) pdf for all non-targets. Figure 4.12 shows the results. To

provide a common reference and make it possible to appreciate relative differences

between classes, the pdfs were normalised by subtracting the mean of the non-

target scores and were then scaled by the standard deviation of the same class

(so the non-target pdf has zero mean and unitary standard deviation).

As shown in the figure, the pdfs for targets and non-targets are reasonably

well separated (as also highlighted by our earlier AUC analysis). However, both

for E28 and E20 we see that the pdfs for central and lateral targets differ to

some degree, with the central targets achieving higher scores than the lateral
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Figure 4.12: Probability density functions of the SVM normalised scores in the
T vs NT classification for non-targets, lateral targets and central targets using
combinations E28 (left) and E20 (right) electrodes, computed via R’s Gaussian-
kernel-based density estimator. Vertical lines represent the mean of each distri-
bution.

targets (approximately 1.67 vs 1.33 for E28 and 1.50 vs 1.27 for E20, respectively).

To verify if these differences are statistically significant, we performed a one-

sided Mann-Whitney test to compare the medians of these distributions across

participants. The results show that the score shifts of lateral targets with respect

to central ones are highly statistically significant for combinations E28 (p value =

3.9×10−5), E20 (p value = 0.001) and E24 (p value = 0.002). This observed shift in

the distributions for lateral targets is likely to be a manifestation of P300s being

different for lateral targets than for central ones [Dias & Parra, 2011; Marathe

et al., 2016].

114



1 2 3 4 5 6 7 8 9 10 11
Group size

0.5

0.6

0.7

0.8

0.9

1.0
A
U

C

L1
L2
L3
L4
L5
L6
L7

Figure 4.13: Performance of the SC-cBCI in terms of the median AUC for each
group size and level.

4.3.4 Collaborative Classification

We saw in Chapter 3 that combining evidence from several users can help improve

the performance of a BCI for target detection. This section reports an equivalent

analysis applied to target localisation by means of the N2pc.

Figures 4.13–4.15 show the average AUC values across all possible groups for

each group size and level, for the SC-cBCI, MC-cBCI and LDA-cBCI methods,

respectively. Again, it can be observed that bigger groups lead to better perfor-

mance for all methods. Moreover, the approaches based on a group classifier (i.e.,

MC-cBCI and LDA-cBCI) outperform the simple average of groups’ signals.

One striking feature that did not appear on Chapter 3 for the SC-cBCI case is

the somehow surprising decrease of performance for groups of size two. This effect
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Figure 4.14: Performance of the MC-cBCI in terms of the median AUC for each
group size and level.

will be studied in Chapter 6, where it will be proposed that it might be due to

the distributions of AUCs for the single-user target localisation BCIs. Moreover,

it will also be studied whether this drop can be reduced by selecting participants

when forming the groups for the cBCI.

Table 4.5 summarises the results of pairwise comparisons between the three

methods. Out of the 192 possible one-sided comparisons, 130 were statistically

significant (after Bonferroni correction). The full table of results and p values can

be found in Appendix B.
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Figure 4.15: Performance of the LDA-cBCI in terms of the median AUC for each
group size and level.

Table 4.5: Summary of comparisons between the 3 modes of creating cBCIs:
LDA-cBCI (“L”), MC-cBCI (“M”) and SC-cBCI (“S”). The symbol > indicates
that the method on the left is significantly better than the one of the right. The
methods on both sides of symbol = are not significantly different. N/A values
represent those cases in which there were not enough samples to perform the test.

Group
size

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7

2 L=M>S L=M>S L=M>S L>M>S L=M>S L=M>S L=M>S
3 L>M>S L>M>S L=M>S L>M>S L>M>S L>M>S L=M>S
4 L>M>S L>M>S L>M>S L>M>S L>S>M L>M>S L=M>S
5 L>M>S L>M>S L>M>S L>M>S L>S>M L>M>S L>M>S
6 L>M>S L>M>S L=M>S L>M>S L>M>S L>M>S L>M>S
7 L=M>S L>M>S L>M>S L>M>S L>M>S L=M>S L=M>S
8 L=M>S L>S M>L>S L=M>S N/A L=M>S L>M>S
9 L=M>S N/A L=M>S N/A N/A N/A N/A
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4.4 Discussion

One of the objectives of this chapter was to study whether the N2pc ERP was

present during the rapid presentation of real-world images. The ERP analysis

revealed the presence of the N2pc, and that it had a greater latency than had

previously been reported in the literature. In part, this may be due to the greater

complexity of the stimuli used in this study in comparison to the simple stimuli

traditionally used in the literature. However, we suspect that the stimulus pre-

sentation technique used here (i.e., RSVP) is the prominent reason for the greater

latency. In typical N2pc-evoking experiments, participants are shown an array of

objects or symbols either for a short amount of time (usually <300 ms) with a

generous inter-stimulus interval (>1.5 s), or until they find the target. However,

in the paradigm used here, images follow each other very quickly, and, thus, a

target image is immediately followed by one or more non-targets. We hypothe-

sise that these effectively act as masks for the target picture, thus resulting in

a significant increase in the cognitive load of the task and diverting attentional

resources away from it.

Moreover, the N2pc components evoked using this paradigm change in both

amplitude and latency as the presentation rate is varied. Some potential sources

for such variations were also analysed, and we were able to confirm that these are

(at least in part) due to a “refractory period” behaviour of the visual system.

These effects are not only present for the N2pc component: numerous studies

have researched variations of the P300 ERPs using different types of stimuli in

BCIs, more specifically using Donchin’s speller. For example, P300s are known to

be significantly deformed at high presentation rates, due to several contribution
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factors, such as the brain not getting back to a rest state after the ERP (because

there is one or more other P300s overlapping with it), the refractory period of the

P300 ERP, the SSVEPs generated by the stimulation (regardless of whether or

not participants are carrying out any mental tasks) and the masking effect of new

incoming stimuli [Citi et al., 2009, 2010; Hill et al., 2008; Martens et al., 2009;

Salvaris et al., 2012]. All these factors (and many others) might be involved in

the variations in the N2pc ERPs elicited.

If we now look at the BCI’s performance, we see that not only is the N2pc

evoked in the conditions of this experiment, but results also indicate that it

can reliably be detected even at high presentation rates. For instance, single-user

BCIs were able to obtain a median AUC value of 0.76 for single-trial LVF vs RVF

classification based on the detection of this ERP using only 4 electrode differences

and a very short time window of approximately 200 ms for the presentation rate

of 5 Hz. At high presentation frequencies, results for the single-trial single-user

BCI indicate that the N2pc can still be detected for presentation rates of up

to 12 Hz. Of course, performance drops with increasing speeds, although it is

well above chance levels for most participants and the drop from the easiest to

the most difficult level is not as pronounced as in the target detection system of

Chapter 3. Moreover, the drop in performance when moving from levels with one

target template to levels with three (i.e., levels 2–3 and 4–5) was not as marked

as in the P300 detection task.

By using different methods of combining classifiers’ outputs, we also saw that

cBCIs significantly outperform single-user BCIs in the left vs right classification

task. The best method for combining evidence from participants to form groups

was based on an LDA classifier. This approach was, in every case, either on a
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par or significantly superior to the other methods used in this chapter.

In relation to handedness, it was shown that the shape of the N2pc component

that is elicited in response to targets that appear on the left and right side of the

screen differs for RH and LH participants. Such differences, which occur both

in the timing of the peak and in the tail of the ERP, had not been previously

reported in the literature, and are large enough to allow a classifier to discriminate

between left- and right-handed participants. However, since the volunteers did

not perform a handedness test, these results should be taken as a preliminary

result and should be further studied in the future. Although there is previous

evidence of the dependence between handedness and memory [Lyle et al., 2008],

handedness and brain morphology [Habib et al., 1991; Witelson, 1985] and EEG

signals being different depending on handedness [Nielsen et al., 1990], to the

best of our knowledge, these differences have not been exploited to assess the

handedness (or preferred hand) of a person1.

Within each handedness group, it was revealed that the N2pc can not only be

used to distinguish between LVF and RVF targets, but it can also tell to what

degree a target is lateral. Taking into account the differences in the N2pc due to

handedness, participants were separated into a left- and a right-handed groups,

and a linear regressor was trained to predict the x-coordinate of the target. The

correlations obtained between the real and the predicted coordinates, although

promising, are barely enough to get a sense of the approximate location of the

target.

1The only article that we are aware of that touches upon this subject is [Ng & Leong,
2014]. However, there are a number of flaws in the methodologies and inconsistencies in the
results, including setting the threshold for classification based on the test data, contradictions in
whether or not the participants from the second experiment (whose results are never reported)
were left-handed, and forgetting to include the results claimed in (their) Section 4.5.
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4.5 Conclusions

This work attempted to locate the position of targets on the x-coordinate of

images presented through RSVP. To the best of our knowledge, this is a novel

application that had not been attempted before. We also found that it is possible,

to a degree, to determine how lateral the target is, although further improvements

of the work presented here are needed. This avenue for future work will be

explored in Chapter 5.

As a byproduct of our research, we discovered a relationship between the N2pc

and handedness, which is evident enough to discriminate participants using the

ERPs evoked in response to lateralised targets.

The findings of this chapter suggest that there could be ways of exploiting

handedness and lateralisation (as emphasised by the N2pc) to build even better

performing integrated T vs NT and LVF vs RVF classification systems. Even

though we will not further pursue the former topic (i.e., taking into account

the handedness of the participant when creating groups, we believe that a more

detailed study of the implications of handedness on target detection should be

done in the future. The latter topic (i.e, concatenating the target detection and

target localisation systems) will be the focus of study for Chapter 5.

Moreover, further radical improvements in both the target detection and the

target localisation systems can also be obtained by selecting the observers from

which the neural evidence is integrated, e.g., by means of member selection when

forming the groups. This research avenue will be explored in Chapter 6.
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Chapter 5

Concatenating Detection and

Localisation Systems

We have seen that both the P300 and the N2pc contain information useful for

the detection and localisation of targets. We will now study different ways of

concatenating both systems in order to explore whether they can help each other

and to increase the information transfer rate of the BCIs presented so far.

5.1 Introduction

Previous chapters showed that both the P300 and the N2pc ERPs contain valu-

able information that can allow a system to detect (Chapter 3) and locate (Chap-

ter 4) targets or events of interest in rapid streams of pictures. This chapter goes

one step further and combines these two systems in order to obtain a full BCI

that can be used in a real-world setup to detect targets while at the same time

providing their approximate location, thereby reducing the complexity and time
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required by further analysis (e.g., by a second observer tasked with confirming

the detections of the first).

This chapter is organised as follows: Section 5.2 gives a quick reference to

the data collection and preprocessing methods used in previous chapters and

which are also used in this work. It also presents three approaches to combine

the P300-based and the N2pc-based systems: the sequential N–P system, the

sequential P–N system and the sequential regression system. The results are

presented individually for each of the approaches in Section 5.3, and discussed in

Section 5.4. Finally, Section 5.5 concludes the chapter and presents some avenues

for future work.

5.2 Methods

Most of the basic methods and techniques used in this chapter are either the same

or very similar to those described in the target detection and target localisation

chapters. This section will give the reader a brief summary of the main aspects

of those systems (with pointers to the corresponding sections where they were

described in detail) and proceed to the description of how the detection and

localisation systems were combined, in both the individual and, where applicable,

the collaborative BCI cases.

5.2.1 Participants and Setup

The participants and experimental protocol were the same as in Chapters 3 and 4.

Data were filtered between 0.15–28 Hz and downsampled to 64 Hz. Epochs were

extracted for each trial (i.e., each image) and baseline-referenced to the mean of
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the 200 ms interval preceding the onset of a trial.

5.2.2 Feature Extraction

N2pc and P300 features were extracted from every trial (regardless of whether

it contained a target or not). The N2pc features were extracted as described in

Section 4.2.3.1, and the P300 features were extracted using the E20 combination

of electrodes (shown in blue in Figure 4.2) and the interval 300–600 ms after the

onset of the stimulus, as described in Sections 3.2.3 and 4.2.3.5.

Three ways of joining the target detector and the target locator systems were

tested:

• A system that used the score of the target locator as an extra input fea-

ture to the P300 detector (called the sequential N–P system hereafter and

described in Section 5.2.3).

• A system that used the score from the P300 system as an extra feature for

the N2pc classifier (sequential P–N system, described in Section 5.2.4).

• A system that changed the N2pc SVM-based classifier of the sequential P–

N system with a neural network trained to perform regression based on the

input features (the sequential regression system, described in Section 5.2.5).

In order to measure the performance of each single-user system, the dataset

from each participant was divided into 10 stratified folds using four classes: (1)

non-targets (NT), (2) central targets (CT, i.e., those that contain a target, but

did not fit the criteria to be considered lateral targets), (3) LVF targets, and
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Figure 5.1: Pipeline of the sequential N–P system.

(4) RVF targets. Thanks to the stratification, every training and test fold had

approximately the same proportion of trials each class as the full dataset.

5.2.3 Sequential N–P System

Figure 5.1 shows the processing pipeline for the classification of a new trial in the

sequential N–P approach to combining the systems.

As shown in the figure, for each fold, N2pc and P300 features are extracted

from each trial. The N2pc features are fed to the N2pc classifier, that has been

trained using only the LVF and RVF trials from the training set of the current

fold. This score is fed into the P300 classifier together with the P300 features

previously extracted. The final output of the system is then given by the P300

classifier.

5.2.3.1 Rationale

We saw in the literature review (Section 2.2.2) that the N2pc ERP is believed to

signal a shift of covert attention towards a potentially relevant element that is

lateral [Luck, 2012]. Hence, the N2pc classifier used in this approach would act
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as an attention shift filter before the target detection task. The decision of using

only lateral targets to train the classifier (instead of, for instance, dividing the

screen in two and labelling a target as left or right depending on which half of the

picture they fall on) is based on the results from Chapter 4, where we saw that

the amplitude of the N2pc can give an idea of the degree of laterality of a target.

Hence, central targets will have a near-zero score (like non-targets would), which

will introduce noise in the training set.

The rationale behind the sequential N–P approach is that if there was a lateral

element in an image that captured the viewer’s attention (thus resulting in a large

N2pc score), it is more likely to have been a target. If the hypothesis is correct,

large values of the N2pc score might be helpful to train the P300 classifier to

better distinguish targets, since we also saw in Section 4.3.3.3 that the scores

from the target detection system are different for lateral than for central targets.

For all the reasons above, it was hypothesised that the detection of the tar-

gets could be improved by adding the score from the N2pc (or attention filter)

classifier, hence increasing the ITR of the target detection system.

5.2.3.2 System Training

As indicated above, for each fold, the attention shift classifier was trained using

the N2pc features from the LVF and RVF targets from the training set. As

in Chapter 4, the classifier (an ensemble of two linear SVMs) was trained to

distinguish between the two types of lateral targets.

After training the N2pc classifier, all the training epochs (belonging to the four

possible classes) were fed to this classifier in order to obtain a score for each one.

This score was fed to the P300 classifier together with the P300 feature vector of
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the trial, and the P300 classifier was trained to perform T vs NT discrimination

using the P300 features and the output score from the N2pc classifier.

In this case, the target (T) class was composed by all instances from the

training set of each fold that belonged to the CT, LVF and RVF classes.

5.2.3.3 System Testing

This system was an attempt at trying to improve target detection by taking into

account an indicator of whether there was something in an image that caused a

shift in the participant’s attention.

For this reason, the metrics used to evaluate this system are the AUC and

the ITR, both calculated for each participant as the mean value obtained for the

test set of each fold, across the 10 stratified cross-validation folds.

5.2.4 Sequential P–N System

Figure 5.2 shows the processing pipeline for the classification of a new trial in

the sequential P–N approach to combining the target detection and localisation

systems.

In this approach, the order of the target detector and the target locator is

reversed with respect to the N–P system presented above. Again, both P300

and N2pc features are extracted from each trial. In this case, however, the P300

classifier is fed the P300 features only (note that the P300 classifier from the

sequential N–P system was trained on the features from the P300 and the output

score from the N2pc classifier), and its output score is then used to decide whether

the image contained a target or not. If the system believes that there was a target,

the P300 score from the trial is fed, together with the N2pc feature vector, to the

127



Trial j

P300j features N2pcj features

P300
classifier

P300 score
(P300j)

T/NT? N2pc
classifier

N2pc score
(N2pcj)

LVF/RVF?

Outputj= NT Outputj= LVF Outputj= RVF

Target detected

Figure 5.2: Pipeline of the sequential P–N system.

N2pc classifier, which decides whether the target was located on the left or the

right hemifield of the picture.

5.2.4.1 Rationale

The sequential P–N system first uses the target detector to establish whether

the picture associated with an incoming trial contained a target. If it detects a

target, it then tries to delimit the area of the picture where it is located by means

of the target location system. This is another logical approach to concatenating

the target detection and the target location systems.

In contrast to the sequential N–P system, which aimed at improving the de-

tection of targets by adding the output of the attention shift classifier, the P–N
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approach is not expected to improve the performance of the N2pc classifier it-

self: the target localisation system will now have to work with central targets

for which it has not been trained with (see below), so performance might even

decrease due to the division of left and right side targets in the middle of the

screen, rather than leaving the centre of the image out of the analysis as was

done in the previous chapter. However, by increasing the number of classes that

the system is able to detect from the binary T/NT to three classes: LVF, RVF

and NT, there is a chance that the ITR of the combined system could improve.

As seen in previous chapters (see Section 4.3.3.3), the distributions of raw

scores of the P300 classifier differ significantly depending on the location of tar-

gets. For this reason, it was decided to feed the raw score of a target as an extra

feature to the N2pc classifier, hoping to decrease errors in central targets and

help improve the target localisation task1.

In order to measure the performance of this system, as it will be described

below, an extra metric was used in addition to those mentioned previously: the

confusion matrix.

5.2.4.2 System Training

The P300 classifier was trained in the usual way: all targets were grouped into

only one target class, regardless of location. For each fold, an ensemble of 2

linear SVMs was trained using the P300 features from all trials of the training

set divided into targets and non-targets.

1This extra feature would help if we were interested in the coordinate of the target, but, as
explained above, we did not hope to improve the AUC of the N2pc system. Instead, we decided
to keep this for compatibility with the sequential regressor system introduced in the following
sections
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The N2pc classifier was trained using the N2pc features together with the raw

P300 score using only the lateral (LVF and RVF) targets of the training set of

that fold.

5.2.4.3 System Testing

For each trial from the test set, the output of the P300 classifier was temporarily

transformed into a binary decision as to whether the picture contained or not a

target. If it did, the original raw score from the classifier was fed, together with

the N2pc features for that trial, to the N2pc classifier.

Since no central targets had been given to the N2pc classifier during training,

at the time of deciding the location of a central target, in order to measure the

performance of the system, a target was considered to be a left (resp. right) target

if the x-coordinate of its centroid was in the left (resp. right) half of the picture.

The performance of the system was measured in terms of the mean AUC

and ITR across the 10 cross-validation folds for each participant. The AUC was

calculated at the output of the N2pc classifier, using only the left and right target

classes for comparison with the single-user BCI system from Chapter 4.

However, the confusion matrices and ITRs of the system were calculated tak-

ing into account the three classes that can be output by the system: non-target,

left-side target and right-side target.

5.2.5 Sequential Regression System

The processing pipeline for the sequential regression system is depicted in Fig-

ure 5.3. Although the pipeline of this approach is similar to that of the sequential

P–N system, a few differences were introduced when creating this system.
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Figure 5.3: Pipeline of the sequential regression system.

5.2.5.1 Rationale

The previous two approaches did not take full advantage of all the knowledge

that has been acquired in the previous chapters. In particular, it was shown in

Chapter 4 that it is possible to correlate the outputs of a linear model trained by

means of a PSO with the position of the targets (Section 4.3.3.2).

This fact is taken into account in the sequential regression system, which

keeps the target detection algorithm of the P–N system, but substitutes the N2pc

classifier with a neural network that is trained as a regressor.

We decided to use a neural network instead of a standard linear regressor

because multivariate regression methods are known to compress their output

range in the presence of strong noise in the inputs. In preliminary tests, we
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attempted to perform standard linear regression and other regression methods.

However, the results were not satisfactory, so we chose to use neural networks as

they provide a more advanced approach for this experiment.

5.2.5.2 System Training

The P300 classifier was trained as in Section 5.2.4, using only the P300 features

to discriminate between targets (CT, LVF and RVF, grouped into one class) and

non-targets (NT). As in the P–N system, if the P300 classifier found a target, its

raw score was fed to the N2pc neural network as an extra feature.

Each neural network was trained using the N2pc features extracted from all

targets from the training set of each fold, plus their raw ouput scores from the

P300 classifier. The labels used during training were not the discrete classes used

until now, but the coordinate of the targets.

Since the PSO system used in the previous chapter (Section 4.3.3.2 was able

to obtain reasonable results using only 8 features from the original vector of 56

that is originally extracted for N2pc classification, we decided to use a simple

neural network architecture for the regression of target locations based on the

N2pc features from the EEG. This decision was also motivated by the fact that

we did not have a lot of data available to train the neural network, and we did

not want to risk overfitting the system by using too many layers and/or neurons

per layer.

Thus, the selected architecture contained a hidden layer whose parameters

(number of neurons, n, and type of activation function) were obtained via a cross-

validation grid search [Pedregosa et al., 2011] within each of the cross-validation

folds. In particular, the grids to be explored by the search were the number of
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neurons for the hidden layer, n ∈ {5, 10, 20}, and the type of activation function

for this layer, which could be tanh (hyperbolic tangent) or sigmoid. The output

of the system was given by a linear neuron. The neural network was trained

through gradient descent, and the learning rate of the neurons was adjusted using

the RMSprop algorithm [Tieleman & Hinton, 2012], which adjusts the learning

rate depending on the magnitude of the recent gradients.

5.2.5.3 System Testing

The main goal of this system was to predict whether a given image contains a

target and, if so, what its x-coordinate is. For this reason, and considering that

the performance of the T vs NT classifier has been studied in previous sections

and chapters, the performance analysis of the sequential regression system focused

only on the correlation between the actual and the predicted coordinates, which,

in turn, is a measure of the predictive power of the neural network.

In addition to this, the changes in the slope of a linear regressor fitted to the

outputs of the neural network (predicted coordinate vs real coordinate on the

test set) were studied. The correlation coefficient ρ and the regression slope β

are related through the following equation:

β = ρ× σoutput
σinput

where σoutput and σinput are, respectively, the standard deviations of the output

(i.e., the values obtained from the linear regressor) and the input (in this case,

the real x-coordinates of the targets) values. In the case of standardised variables,

β=ρ. However, in the rest of the cases, they give different information about the
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strength of the linear relationship between inputs and outputs: the correlation

coefficient is independent of the scale of the variables, and gives information

about how close they are to a perfect linear relationship; the regression slope is

the change in the expected value of the outputs that corresponds to a change of

one unit in the inputs.

In the proposed system, given that the inputs are always the same (and cor-

respond to the x-coordinates of the targets in the RSVP experiment), changes in

σoutput
σinput

will effectively be a reflection of changes in the variance of the outputs.

5.2.5.4 Collaborative Sequential Regression System

As we saw in Chapter 4 (Section 4.3.3.2), a PSO regressor trained with data from

multiple participants is able to predict the location of the target in terms of its

actual coordinate, rather than just the hemifield. Up to this point, collaborative

BCIs have been used to improve the classification task, both for target detection

and target localisation. However, on this occasion we studied the improvements

that can be obtained in the sequential regression system when combining infor-

mation from multiple users, thus creating a cBCI for a regression task.

We saw in previous chapters that the best way to combine evidence to form

cBCIs for both the N2pc and the P300 classifiers was the LDA-cBCI approach.

For this reason, it was decided to use only this form of cBCI to combine informa-

tion from participants after the P300 cBCI for target detection and localisation.

The outputs of the individually-tailored neural networks were combined via an

LDA regressor.

As before, we tested groups of all possible sizes for each level. However, given

the results obtained in the previous chapters, the cBCI was only computed for
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levels that used presentation rates of 10 Hz or lower (i.e., levels 1–5).

System training The collaborative P300 classifier was trained using the LDA-

cBCI approach presented in Section 3.2.5. That is, for each fold, the features for

the P300 detection using the E20 combination were extracted for each participant

and used to tailor an individual SVM classifier. The outputs of these classifiers

on the training set were used to train an LDA (collaborative P300-LDA) to assign

a different weight to each member of the group1.

A neural network regressor was individually trained for each group member

in the same way as the sequential regression system (see Section 5.2.5) using

the N2pc features extracted from all target trials from the training set, plus the

outputs of the collaborative P300-LDA classifier for the corresponding targets2.

An LDA regressor (collaborative N2pc-LDA) was used to combine the outputs

of the neural network regressors from group members. This regressor was trained

using the the output of the individually tailored neural networks for all the targets

from the training set and the x-coordinate of the target for each trial as the label.

System testing The main goal of this system was to determine whether the

collaborative approach would help improve the (individual) sequential regression

system. For this reason, the performance analysis of the collaborative sequential

regression system focused only on the correlation between the actual and the

predicted x-coordinates.

1As we noted previously, if training the collaborative P300-LDA classifier using the outputs
from the P300 SVM classifier for the training set has any effect on performance, it will be to
overfit to the training set, so it provides a lower boundary of performance for an unseen test
set.

2Note that the N2pc features are extracted individually for each user, and concatenated
with the collaborative score from the P300 detection classifier.
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5.2.6 Calculation of the Information Transfer Rate

The information transfer rate (ITR) was first proposed as a metric for determining

the usability of a BCI by Wolpaw et al. [1998], and has become one of the most

commonly used metrics for this purpose [Thompson et al., 2013, 2014]. In order

to calculate the ITR, one assumes that the machine learning component of the

BCI is a communication channel that converts the input features into an output

(the output class), which can be correct or incorrect. Different properties of this

channel (and, in turn, of the BCI) and its quality can then be assessed using

information theory formulae.

In the formula proposed by Wolpaw et al. [1998], the first one in which the

speed of the system is taken into account together with its accuracy to measure

the performance of the BCI, the numerator of the ITR (also termed the bit rate

or bits per symbol, B) is calculated according to the following formula:

B = log2N + P · log2P + (1− P ) · log2(
1− P
N − 1

), (5.1)

where N is the number of classes and P is the classifier accuracy.

The ITR of the system is then typically measured in bits/minute:

ITR = B · 60

T
,

where T (seconds/symbol) is the time needed to output a decision.

Equation 5.1 is only valid under a series of assumptions that are not necessarily

met in BCI systems [Yuan et al., 2013]. Amongst these, there are two main

assumptions that are not met by our systems:
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• All classes are equally probable. In our system, the probability of targets is

set at 10%, which means that non-target trials have a probability of 90%.

Moreover, if we further divide the target class into LVF, RVF and central

targets, the imbalance is even more obvious.

• Classification accuracy is the same for all classes. So far we have not stud-

ied this aspect in detail to see where most misclassifications occur in our

systems, but without first looking into this (as we will do using the confusion

matrix in the next sections), we cannot assume that this is the case.

An alternative use to compute the bit rate of the system is through its mu-

tual information. In general, for a system with N possible classes, the mutual

information between the user intention, X, and the system output, Y , is given

by

I(X;Y ) =
N∑
i=1

N∑
j=1

p(xi) · p(yj|xi) · log2(p(yj|xi))−
N∑
j=1

p(yj) · log2(p(yj)) (5.2)

where p(xi) is the a priory probability of class xi and p(yj|xi) is the probability

of classifying xi as yj [Schlögl et al., 2007]. These values can be easily computed

from the confusion matrix of the system.

In this work, we decided to use this alternative way of computing the bit

rate of the system to then obtain the ITR, since it does not make any of the

assumptions that are present in Equation 5.1.
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Table 5.1: Median AUC values across all participants for each difficulty level for
the sBCI (E20) and the sequential N–P system, for T vs NT classification, and
Bonferroni-corrected p values (last row).

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7
E20 sBCI 0.856 0.844 0.697 0.759 0.579 0.655 0.585

N–P system 0.860 0.843 0.683 0.768 0.584 0.646 0.579
p values 0.14 0.09 0.48 0.16 0.33 0.35 0.09

5.3 Results

5.3.1 Sequential N–P System

Table 5.1 reports the median AUC values across all participants for a each level

of difficulty for the sequential N–P system together with the values obtained at

each level for the equivalent E20 configuration in Chapter 4. It can be observed

that the sequential N–P approach beats the original sBCI at levels 1, 4 and 5.

A one-sided pairwise Wilcoxon signed rank test comparing mean performance

for each individual across all levels within a given difficulty level revealed that

none of the differences in performance across the two conditions is statistically

significant. The p value obtained by means of this test for each level can also be

seen in Table 5.1.

The mean and standard deviation of the ITR of this system are reported

for each difficulty level in Table 5.2. As the table shows, higher speeds do not

necessarily lead to higher ITRs. This is due to the fact that the number of errors

in the system that occur as a result of increasing the speed (seen in this and

previous chapters in the form of decreasing AUC values) increases much quicker

than the speed of the system to output a new symbol (e.g., from 200 ms in level

1 to 66.7 ms in level 7). Thus, at least in the single-user BCI approach, there
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Table 5.2: Mean and standard deviation of the ITR for the sequential N–P system,
across all participants and for each difficulty level.

Level Mean ITR SD
1 43.26 22.41
2 50.19 31.47
3 29.92 21.19
4 45.85 30.43
5 19.66 10.79
6 32.67 21.92
7 19.22 13.60

is no advantage in increasing the speed of the system from the communication

perspective.

Also consistently with previous results, there are marked differences between

levels 2 and 3, as well as between levels 4 and 5. Again, the number of errors

made in the classification of targets when changing from a unique airplane shape

to several templates while keeping the same presentation rate, is increased greatly,

giving rise to these differences in ITR.

5.3.2 Sequential P–N System

Table 5.3 summarises the results for the sequential P–N system. In particular,

it compares the performance of this system with the single-user BCI developed

in Chapter 4, in which the LVF vs RVF classifier (i.e., N2pc sBCI) was first

introduced.

In order to be able to compare the new system with the N2pc sBCI alone,

the median AUCs reported in Table 5.3 were calculated using only the lateral

targets from the test set of each fold, as was done for the single-user BCI case in

Chapter 4. The last row of the table shows the p value from one-sided pairwise
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Table 5.3: Median AUC values across all participants for each difficulty level for
the sBCI and the sequential P–N system, for left vs right target classification,
and Bonferroni-corrected p values (last row).

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7
N2pc sBCI 0.756 0.781 0.669 0.720 0.652 0.680 0.596
P–N system 0.757 0.787 0.651 0.730 0.677 0.681 0.575
p values 0.38 0.5 0.38 0.46 0.10 0.42 0.35

comparisons between the two systems. These show that the small differences

seen on the table are not statistically significant. As explained in the rationale of

Section 5.2.4, the performance of the N2pc classifier from the P–N system was

not expected to improve with respect to the N2pc sBCI system introduced in

previous chapters, so this result is not surprising.

One of the disadvantages of the sequential N–P system presented in the pre-

vious section is that information is lost throughout the system: in order to train

the first part (the N2pc classifier), information regarding the position of a target

in the training set is needed. However, the final output (target vs non-target)

offers no indication about this aspect. The ITR of the N–P system, thus, was

only computed on the final two classes — targets and non-targets.

In contrast to the N–P system, trials that go through the P–N system have a

different flow depending on the decision of the first stage: the P300 classifier. If

a trial is associated with a target label, it goes through the N2pc classifier, which

decides whether this target is located on the left or the right hemifield. If, on the

contrary, the P300 classifier decides that the trial is a non-target, that will be its

final label. This system, thus, has three possible different outcomes, which are all

included in the calculation of the confusion matrices and the ITR.

Figure 5.4 shows an example of confusion matrix, for participant 4 in level 2.

140



Non
-ta

rge
ts LV

F
RVF

Predicted label

Non-targets

LVF

RVF

Tr
ue

 la
be

l

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 5.4: Confusion matrix from participant 3 at level 2 on the sequential P–N
system.

Due to the imbalance between the classes, the values to compute the confusion

matrix were normalised, so that the values across each row add up to 1. In

this way, the color of the square in row i and column j shows the proportion of

trials of class i that are labelled by the system as class j. Table 5.4 details the

level-by-level mean and standard deviation of the ITR across all participants.

The ITRs obtained with the P–N system are, with the exception of level 2,

lower than those reported on Table 5.2 for the sequential N–P system. This

seems to indicate that in order to get a more sophisticated system, i.e., one that

is capable of predicting the approximate location of the target, it is necessary
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Table 5.4: Mean and standard deviation of the ITR for the sequential P–N system,
across all participants and for each difficulty level.

Level Mean ITR SD
1 42.31 22.15
2 51.75 34.67
3 26.32 21.16
4 42.57 32.71
5 10.78 10.21
6 30.44 33.62
7 12.23 11.87

to sacrifice some of the speed. However, a look at Figure 5.4 highlights the fact

that part of the problem is found in the first stage of the system1: the classifier

that decides whether a trial goes through the whole pipeline or not. Whilst

around 95% of the non-target trials are correctly identified, a large proportion of

targets are misclassified as non-targets in this step, thus markedly impacting the

performance of the full system. Thus, we can now see that the second condition

mentioned in Section 5.2.6 for using Equation 5.1 is not met either. Moreover,

the P300 classifier seems to make the same number of errors, regardless of the

side of the screen where a target is located.

It is interesting to notice, however, that the rate of misclassifications in the

second part of the system is much lower, with only between 10–15% of targets of

one type being misclassified as the other type.

5.3.3 Sequential Regression System

Table 5.5 shows, for each level of difficulty, the average Pearson’s correlation

coefficient between the real and the predicted x-coordinate of the targets on the

1Even though this confusion matrix was ploted for one participant, the results shown in it
are consistent across most participants and levels.
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Table 5.5: Mean and standard deviation of the correlation coefficient, ρ, and the
slope (β) of the regression line fitted to the test set across all difficulty levels.

Level ρ (µ ± SD) β (µ ± SD) β/ρ
1 0.19±0.12 0.10±0.07 0.53
2 0.26±0.13 0.15±0.09 0.58
3 0.08±0.12 0.04±0.05 0.50
4 0.19±0.12 0.11±0.07 0.58
5 0.13±0.12 0.06±0.06 0.46
6 0.16±0.12 0.08±0.06 0.50
7 0.09±0.08 0.04±0.04 0.44

test set, across all participants of each level, as well as the mean slope of a

regression line fitted across the predictions.

As explained in Section 5.2.5.3, since the scaling factor between the correlation

coefficient and the regression slope is the ratio between the standard deviations of

the outputs and the inputs, the low slopes recorded in Table 5.5 are an indication

of the smaller variance of the predictions than the variance of the x-coordinates

that are given as inputs. Indeed, the ratio β
ρ

is maintained around 0.5 across all

levels.

Despite the low average correlation coefficients reported in the table, individ-

ual users can achieve much higher correlations. The highest correlation coefficient,

ρ=0.43, was recorded by participant 3 for level 2, who also obtained a regression

slope of 0.28 (the highest slope across all participants and levels). Figure 5.5

shows the predicted vs real coordinate of all target images in the test set for this

participant and level (with β/ρ=0.65).

143



150 200 250 300 350 400 450 500
Real x-coordinate

150

200

250

300

350

400

450

500

550

Pr
ed

ic
te

d 
x-

co
or

di
na

te

Figure 5.5: Predicted vs real x-coordinate of targets, for the best performer at
this task (participant 3, in level 2).

5.3.4 Collaborative Sequential Regression System

This last section of results of the chapter reports the results obtained when using

the collaborative approach at the output of the neural network of the sequential

regression system.

Table 5.6 shows the mean and standard deviation of Pearson’s correlation

coefficient for levels 1–5 and all possible group sizes. Similarly, the regression

slope is reported in Table 5.7. In general, both the correlations and the regression

slopes increase with group sizes. Moreover, the highest mean values are recorded

for level 2, and then decrease with increasing levels of difficulty, in the same way

as the shape of the N2pc-based cBCI behaved.
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Table 5.6: Mean and standard deviation of the correlation coefficient between
actual and predicted x-coordinate of targets for different group sizes.

Size Level 1 Level 2 Level 3 Level 4 Level 5
2 0.40 ± 0.09 0.44 ± 0.13 0.25 ± 0.11 0.33 ± 0.14 0.22 ± 0.11
3 0.46 ± 0.08 0.51 ± 0.10 0.29 ± 0.10 0.40 ± 0.11 0.27 ± 0.09
4 0.51 ± 0.07 0.56 ± 0.08 0.32 ± 0.09 0.44 ± 0.09 0.30 ± 0.09
5 0.54 ± 0.06 0.59 ± 0.07 0.34 ± 0.08 0.47 ± 0.07 0.33 ± 0.08
6 0.57 ± 0.05 0.62 ± 0.05 0.36 ± 0.07 0.50 ± 0.06 0.35 ± 0.06
7 0.59 ± 0.04 0.64 ± 0.04 0.37 ± 0.07 0.51 ± 0.05 0.37 ± 0.05
8 0.60 ± 0.04 0.66 ± 0.04 0.39 ± 0.06 0.53 ± 0.04 0.39 ± 0.04
9 0.62 ± 0.03 0.68 ± 0.03 0.39 ± 0.04 0.54 ± 0.02 0.39 ± 0.00

Table 5.7: Mean and standard deviation of the slope of the regression line fitted
to the test set for different group sizes and difficulty levels.

Size Level 1 Level 2 Level 3 Level 4 Level 5
2 0.37 ± 0.09 0.42 ± 0.14 0.20 ± 0.09 0.31 ± 0.13 0.17 ± 0.09
3 0.39 ± 0.07 0.45 ± 0.10 0.20 ± 0.08 0.33 ± 0.10 0.18 ± 0.06
4 0.40 ± 0.06 0.46 ± 0.08 0.21 ± 0.06 0.34 ± 0.08 0.19 ± 0.05
5 0.40 ± 0.05 0.47 ± 0.07 0.21 ± 0.05 0.35 ± 0.07 0.19 ± 0.04
6 0.41 ± 0.04 0.48 ± 0.05 0.22 ± 0.04 0.35 ± 0.06 0.19 ± 0.03
7 0.41 ± 0.03 0.48 ± 0.05 0.22 ± 0.04 0.36 ± 0.05 0.19 ± 0.03
8 0.41 ± 0.03 0.49 ± 0.04 0.22 ± 0.04 0.36 ± 0.04 0.20 ± 0.02
9 0.41 ± 0.03 0.49 ± 0.03 0.21 ± 0.03 0.35 ± 0.02 0.18 ± 0.00

As we saw before, these two parameters are closely related through the vari-

ance of the system outputs. Table 5.8 reports the ratios between the mean re-

gression slopes and the mean correlation coefficients for each level and group size.

The highest ratios are obtained, once again, for level 2. Interestingly, the ratios

now decrease with increasing group sizes, revealing that the standard deviation

of the outputs decreases (with respect to the constant standard deviation of the

inputs).
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Table 5.8: Ratio between the mean regression slope and mean correlation coeffi-
cients between the predicted and the actual x-coordinates of targets.

Size Level 1 Level 2 Level 3 Level 4 Level 5
2 0.93 0.95 0.80 0.94 0.77
3 0.85 0.88 0.69 0.83 0.67
4 0.78 0.82 0.66 0.77 0.63
5 0.74 0.80 0.61 0.74 0.58
6 0.72 0.77 0.61 0.7 0.54
7 0.69 0.75 0.59 0.71 0.51
8 0.68 0.74 0.56 0.68 0.51
9 0.66 0.72 0.54 0.65 0.46

150 200 250 300 350 400 450 500
Real x-coordinate

50

100

150

200

250

300

350

400

450

500

Pr
ed

ic
te

d 
x-

co
or

di
na

te

Figure 5.6: Predicted vs real x-coordinate of targets, for a group of size 7 at
level 2.

Figure 5.6 shows the predicted vs the real coordinate of all target images in

the test set of level 2 for one group of size 7 with a correlation coefficient of 0.72

(the highest obtained all throughout the results) and a slope of 0.58.
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5.4 Discussion

This chapter looked at the possibility of exploiting the P300 and N2pc ERPs

together in a BCI which is capable of jointly detecting and locating targets in

rapid streams of pictures.

In relation to the N–P system, we have seen that adding a shift of attention

classifier (i.e., the N2pc) before trying to detect a target does not improve detec-

tion results. This might be due to the fact that the N2pc classifier will give an

ouput score that is correlated to the position of the target and, because of this, it

will vary proportionally with the x-coordinate of the airplane in the picture. That

is, the range of outputs of the N2pc classifier (near zero for both non-targets and

central targets, and ±1 for lateral targets, depending on which side of the image

they are located) does not allow the P300 classifier (an ensemble of linear SVMs)

to learn a rule regarding the presence or absence of a target. Thus, this extra

feature that the P300 classifier receives, with respect to the E20 configuration

used in previous chapters, seems to be disregarded by the system.

The sequential P–N system attempted the opposite: it first detected whether

there was a target in the image before trying to locate it within it. Again, results

showed that this did not improve the systems presented in the previous chapter

to locate the target in the image, a result that was, somehow, expected.

It was hoped that changing from a 2-class problem (i.e., T vs NT in both the

N–P system and the original target detector from Chapter 3) to a 3-class problem

(i.e., NT vs LVF vs RVF in the P–N system) would increase the information

transfer rate of the system. However, the addition of the target classifier before

deciding the location of the target did not achieve this effect due to the large
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number of misclassified targets of the P300 detector, even at low presentation

rates.

Thanks to the use of the confusion matrices, it was observed that errors in

the target detection system occur in targets regardless of their location (i.e., left

or right side of the image). In contrast, errors within the N2pc classifier are less

frequent. This suggests that the target detector is the system that can benefit the

most from improvements (e.g., by pooling information from multiple participants

to create a collaborative BCI).

In the sequential regression system, the N2pc classifier was substituted with a

neural network regressor that was capable of increasing the correlation coefficient

between the predicted and the actual coordinate of the target with respect to that

obtained with the PSO-based linear regressor that was introduced in Chapter 4.

The sequential regression system was further improved by creating a collabo-

rative regressor. Bigger groups exhibited higher correlations and regression slopes

between the predicted and the real coordinate of the object of interest (an air-

plane) within an image. By creating groups of users, the variance in the output

of the system (i.e., the predicted coordinate) was reduced, which is possibly the

reason for the higher correlation coefficients and regression slopes. Due to this,

it is now possible to predict the actual position of targets in images through the

collaborative version of the sequential regression system.

5.5 Conclusions

This chapter attempted the task of combining the target detection and localisa-

tion systems developed in previous chapters.
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The sequential P–N and N–P systems did not improve the performance of the

single-user BCI systems presented in the previous chapters. However, we obtained

better localisation of the targets by using a sequential regressor system based on

a neural network than we did using a PSO. These improvements were further

increased in the collaborative approach of the sequential regression system. Even

though the localisation system (based on a PSO) presented in the previous chapter

was capable of highlighting the area where the target was located in the picture, it

is thanks to the collaborative sequential regressor system that we can now predict

the x-coordinate of the target.

Considering that target detection seems to be the bottle neck for the sequential

P–N systems, and that the collaborative systems presented in Chapter 3 were

significantly better at target detection than the single-user BCIs, we would expect

that the amount of misclassifications from the P300 detection system would be

much lower in the collaborative sequential regression system, thus improving the

ITR of the system overall. However, we did not explore here to what extent this

is true, and it remains a task for future work.

Moreover, we must note that the systems presented here use data that has

been re-used in cross-validation loops multiple times at this point, so it could

be that our systems are evolving solutions that overfit our dataset. Thus, the

viability of these systems should be further tested on new datasets.

One of the main aims of this PhD thesis is to see where the improvements

of performance that are obtained by merging information from multiple users is

coming from. In the next chapter, we will study the effects of selecting group

members based on their individual performance, and develop a theoretical model

that partly explains the improvements that are obtained in collaborative BCIs.
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Chapter 6

Improving cBCI Performance

with Participant Selection

This chapter introduces a method for creating groups based on performance sim-

ilarity between the group members. It also explores some possible reasons for the

improvements obtained by the cBCIs over the sBCI approach reported in previous

chapters and presents a theoretical model that can partly explain some of these

improvements.

6.1 Introduction

We have seen that there are advantages in forming groups in collaborative BCIs

for detecting and locating targets in images. This chapter explores the effects of

selecting the participants which form the groups. This will be done on the basis

of performance similarity between group members. The reason for testing this

idea instead of the more obvious notion that groups with higher-AUC members
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perform better than groups with lower-AUC members is the research reported

by Bahrami et al. [2010], where the authors showed that pairs of participants

perform better than individual observers, provided that they had similar visual

sensitivities and were able to communicate. This chapter postulates that the bet-

ter AUCs obtained by some members are largely attributed to the fact that their

perceptual system had a higher sensitivity (whether this is at the preattentive,

attentive or cognitive level remains as a task for future work).

We saw in previous chapters that performance varies widely across partici-

pants for a given level of difficulty, and that performance improves, on average,

when using the collaborative BCI approach. However, the reasons behind these

improvements have not been studied in depth.

This chapter will present a group member selection mechanism that takes

into account the AUC of each individual and its similarity with that of the other

candidates to be group members in order to decide whether he/she should be

included in the group. It will also compare the effects of applying this selection

method with two systems: one, that behaves as the average participant of the

group; and another that behaves as the best performer of the group.

Finally, a theoretical model is introduced that can largely explain the im-

provements obtained when using cBCIs with respect to the sBCI systems when

combining evidence from multiple viewers, both when the groups are formed freely

(as was done in the previous chapters) and when selecting them based on AUC

similarity as we do in this chapter.
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6.2 Methods

6.2.1 Group Member Selection

In relation to the selection of group members, the method presented here forms

group according to the similarity in performance (i.e., AUC) of individual par-

ticipants, using different levels (or thresholds) of similarity. More specifically,

participants are allowed to form a group if the range of AUCs across the par-

ticipants for a given classification task, a value that we term dissimilarity index,

was below a threshold δ. That is, if participants i and j were the ones with the

highest and lowest AUC values, the group could be formed if

|AUCf
i − AUC

f
j | × 100% ≤ δ,

where AUCf
x represents the AUC value for participant x (with x = 1, ..., 11)

at level of difficulty f (with f = 1, ..., 7). Groups were created by setting the

threshold δ at 5, 10, 15, 20 and 25% and considered only the cBCIs obtained

from groups of subjects for which the dissimilarity index was below the threshold.

For comparison, the situation where no group selection was performed (i.e., δ =

100%) and all possible groups of a given size are included is also considered.

Of course, this selection process reduces the number of groups that can be in-

cluded in the analysis. However, given that collaborative BCIs are conceived with

the aim of augmenting human capabilities, it is reasonable to select participants

based on their individual performance when forming groups.
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6.2.2 Data

The group member selection method described above was applied to two scenar-

ios: the target detection system introduced in Chapter 3 (Section 6.3.1) and the

target localisation system studied in Chapter 4 (Section 6.3.2).

Thus, this chapter reports the results for each level of difficulty and group

size for each of these methods (computed as the median AUC obtained across

all the groups included for each value of the dissimilarity index). Even though

this chapter describes the main results, with examples for each system, due to

the large number of tables needed to report such results, most of these have been

placed in Appendix C.

In order to avoid forming groups using data that is later used to measure the

amount of the improvement with respect to the single-user case, in this chapter

the data were divided into a training and a test set as follows:

• The training set contained 75% of the data. This set was used to perform

stratified 10-fold cross-validation in order to measure the cross-validation

AUC and to select the parameters of the classifiers. The average AUC

on cross-validation from each participant and level was used to determine

his/her similarity with other candidates to form a group.

• The test set contained the remaining 25% of the data, and was only used to

compare the effects of forming groups on unseen data, as explained below.

For this, the classifiers were trained using all the data from the training set.

The train-test split was performed so that the ratio of trials of each class was

approximately the same in the train and the test sets. Training and test datasets
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were created individually for the target detection and the target localisation sys-

tems.

In addition to the actual improvements of performance achieved by the group

member selection procedure, this chapter also shows the effects of this method

by considering the fraction of groups (out of the total number of groups of each

size that can be formed) that are included for each group size and value of the

dissimilarity index.

6.2.3 Comparisons with Other Systems

For a deeper analysis of the degree to which a cBCI provides improvements over

individual sBCI performance, the results of applying group selection in the tar-

get detection and target localisation systems were compared to two reference

systems for making joint decisions: (1) one unintelligent system that chooses,

at random, to follow the classification decisions provided by the sBCI associated

with one member of a group, and (2) one, more intelligent, system that always

chooses the decisions of the better performing individual in a group. Obviously,

the AUCs obtained in these two systems would be, for a group of size r, the

avg(AUC1, AUC2, ..., AUCr) for the former, and max(AUC1, AUC2, ..., AUCr) for

the latter, where AUCi represents the AUC of the sBCI adapted to participant

i ∈ [1, 11].

The reference systems use the test AUC from the participants that formed

the groups and compare them to the AUC obtained by the group in the test set.
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Figure 6.1: Distributions of mean AUCs for the cross-validation and test folds
for the single-user target detection BCI across all levels of the experiment.

6.3 Results

6.3.1 Participant Selection in the Target Detection Sys-

tem

Before looking at the effects of forming groups, it is worth noting that, as shown

in Figure 6.1, the AUCs obtained for each level are not significantly different

between the cross-validation and test sets. This was assessed via a level-by-level

one-sided paired Wilcoxon signed rank test, in which all p values were higher than

5% before applying Bonferroni correction.

Table 6.1 reports the median AUC values for the SC-cBCI, MC-cBCI and
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Table 6.1: Median AUC values for the three types of cBCIs for target vs non-
target classification for difficulty level 2, as a function of group size and the
dissimilarity-index threshold δ.

Group size
Method δ 2 3 4 5 6 7 8 9 10

SC-cBCI

5% 0.93 0.93 0.93 0.93 – – – – –
10% 0.93 0.95 0.95 0.96 0.96 – – – –
15% 0.92 0.94 0.95 0.95 0.95 – – – –
20% 0.92 0.94 0.95 0.96 0.96 0.97 – – –
25% 0.89 0.92 0.93 0.93 0.94 0.94 0.95 – –

100% 0.88 0.91 0.92 0.93 0.94 0.95 0.95 0.95 0.96

MC-cBCI

5% 0.94 0.95 0.97 0.97 – – – – –
10% 0.94 0.96 0.97 0.98 0.98 – – – –
15% 0.93 0.95 0.97 0.97 0.97 – – – –
20% 0.92 0.95 0.97 0.97 0.98 0.98 – – –
25% 0.91 0.94 0.96 0.96 0.97 0.97 0.98 – –

100% 0.90 0.93 0.94 0.96 0.96 0.97 0.97 0.97 0.97

LDA-cBCI

5% 0.93 0.95 0.96 0.97 – – – – –
10% 0.93 0.96 0.97 0.97 0.97 – – – –
15% 0.92 0.95 0.96 0.97 0.97 – – – –
20% 0.92 0.95 0.97 0.97 0.97 0.98 – – –
25% 0.91 0.94 0.96 0.96 0.97 0.97 0.97 – –

100% 0.91 0.94 0.95 0.96 0.97 0.97 0.97 0.98 0.98

LDA-cBCI methods of combining evidence to form collaborative BCIs, for dif-

ferent group sizes and as a function of δ, for level 2. Empty values of the table

represent cases where the value of the dissimilarity index did not allow any groups

to be made.

Comparing this table with the median single-user BCI AUC of 0.86 reported

on Figure 3.6 and Figure 6.1, it can be seen that AUCs are markedly higher (by up

to almost 13%) than for single-user BCIs, for all types of collaborative BCIs. As

shown numerically in this table, performance of cBCIs generally decreases with
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Table 6.2: Percentages of groups that are accepted by the selection mechanism for
the target vs non-target discrimination task for different group sizes and values
of the dissimilarity-index threshold δ at difficulty level 2.

Group size
δ 2 3 4 5 6 7 8 9 10
5% 26% 8% 2% 0% 0% 0% 0% 0% 0%

10% 44% 18% 7% 2% 0% 0% 0% 0% 0%
15% 55% 26% 11% 4% 0% 0% 0% 0% 0%
20% 62% 33% 17% 8% 3% 0% 0% 0% 0%
25% 82% 61% 43% 28% 16% 7% 2% 0% 0%

increasing dissimilarity indices, but, even when no pair selection is performed

(i.e., δ=100%), as we saw in Chapter 3, cBCIs are better than the corresponding

sBCI.

With N participants, we can form up to
(
N
r

)
distinct groups of size r. Table 6.2

reports the effects that different values of the dissimilarity-index threshold (see

Section 6.2.1) have on the fraction of groups that can be accepted for level 2.

Obviously, all groups are accepted for δ=100%, so this case is not reported on

the table.

Section C.1.1 contains the results (median AUC values for all group sizes and

cBCI methods, together with the fractions of groups accepted) for the remaining

levels of the target detection system.

6.3.1.1 Comparison with avg(AUC1, AUC2, ..., AUCr)

Table 6.3 reports the median gains in AUC over the average performance of the

individuals in each group for each group size r, separately for the three types

of collaborative BCIs — single-classifier cBCIs (SC-cBCI), multiple-classifier cB-
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Table 6.3: Median improvements over the average participant in the group when
using collaborative BCIs for target detection at difficulty level 2, as a function
of group size and the dissimilarity-index threshold δ. Values in bold face are
statistically significantly superior at the 1% confidence level according to a two-
sample one-sided Kolmogorov-Smirnov test (group AUC vs average AUC of the
group).

Group size
Method δ 2 3 4 5 6

SC-cBCI

5% +4.9% +6.4% +7.7% +8.7% –
10% +4.4% +6.3% +7.2% +7.8% +8.9%
15% +5.2% +7.1% +7.9% +8.7% +10.2%
20% +5.4% +7.6% +9.3% +10.2% +10.3%
25% +5.7% +9.4% +11.0% +12.9% +14.0%
100% +6.6% +11.0% +13.2% +14.7% +16.1%

MC-cBCI

5% +6.2% +9.2% +10.1% +10.5% –
10% +6.2% +8.7% +9.1% +9.5% +9.7%
15% +7.4% +9.5% +10.1% +10.5% +11.7%
20% +7.6% +10.1% +11.0% +12.0% +12.5%
25% +8.0% +11.6% +13.7% +15.2% +16.4%
100% +9.4% +13.4% +16.1% +17.5% +18.6%

LDA-cBCI

5% +6.3% +9.3% +10.5% +10.6% –
10% +6.5% +8.8% +9.0% +9.7% +9.8%
15% +7.6% +9.8% +10.5% +10.6% +11.8%
20% +8.2% +10.6% +11.2% +12.3% +12.8%
25% +9.3% +13.0% +14.7% +16.3% +17.4%
100% +10.7% +15.0% +17.7% +18.8% +20.1%

CIs (MC-cBCI) and LDA-cBCIs — for different values of the dissimilarity-index

threshold δ.

Unsurprisingly, all values in the table are positive, indicating that, irrespec-

tive of the value of δ, cBCIs outperform the unintelligent system that randomly

picks the responses of one individual in a group. These improvements are highly

statistically significant in almost every case. These results are generalised across

all levels for the target detection task. Tables reporting the results of comparing

the achieved improvements with the average AUC of the group members, across

the remaining levels and for all group sizes can be found in Section C.1.2.
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Table 6.4: Median improvements over the best participant in the group when
using collaborative BCIs for target detection at difficulty level 2, as a function
of group size and the dissimilarity-index threshold δ. Values in bold face are
statistically significantly superior at the 1% confidence level according to a two-
sample one-sided Kolmogorov-Smirnov test (group AUC vs maximum AUC of
the group). Values in italics are statistically superior at the 5% confidence level.

Group size
Method δ 2 3 4 5 6

SC-cBCI

5% +2.0% +2.1% +2.7% +3.0% –
10% +0.3% +0.9% +1.3% +1.4% +2.1%
15% +0.6% +0.9% +1.3% +1.5% +2.5%
20% +0.3% +0.8% +0.9% +1.0% +0.9%
25% -0.0% +0.3% +0.8% +1.2% +1.4%
100% -0.9% -1.2% -0.6% -0.4% -0.1%

MC-cBCI

5% +3.3% +4.1% +4.4% +4.8% –
10% +2.0% +2.8% +2.6% +2.8% +3.0%
15% +2.2% +3.0% +3.1% +4.1% +3.9%
20% +2.0% +2.5% +2.7% +2.6% +2.6%
25% +1.4% +2.3% +2.8% +2.9% +3.1%
100% +0.7% +1.0% +1.4% +1.7% +1.6%

LDA-cBCI

5% +3.4% +4.1% +4.7% +4.9% –
10% +2.1% +3.0% +2.7% +2.8% +3.0%
15% +2.2% +3.2% +3.5% +4.2% +4.0%
20% +2.2% +3.0% +2.8% +2.7% +2.7%
25% +2.0% +3.0% +3.5% +3.7% +4.0%
100% +1.6% +2.1% +2.4% +2.5% +2.5%

6.3.1.2 Comparison with max(AUC1, AUC2, ..., AUCr)

We will now study the much more challenging scenario represented by the second

reference system. In this case, the performance of a cBCI is compared with that

of the best participant of the group. Table 6.4 reports, for each method, the

median gains in performance over the best participant of each group, for each

group size r and different values of δ.

Again, we see a predominance of positive values (98% of the entries) in the

table, indicating that cBCIs tend to produce better AUCs than the “intelligent”

reference system too. In this case, however, we see a dependency of performance

on δ: for a fixed group size, the bigger gains are obtained for the smaller values
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of the dissimilarity index.

Due to space limitations, Table 6.4 shows only a subset of group sizes for

level 2. The full table with the results of comparing the improvements of per-

formance of the group selection method vs the best participant of the group,

for this level and the results for the remaining difficulty levels can be found in

Section C.1.3.

The results reported here are generalised across levels 1–4. However, for higher

difficulty levels (i.e., levels 5–7), at high values of δ, the drops of performance

(when compared with the best participant) are higher and more frequent. For

example, they are present in the LDA-cBCI method in difficulty levels 5 (for small

group sizes and δ ≥ 20%) and 7 (for groups of size 2 and δ ≥ 10%).

The dependency of performance on δ is further illustrated graphically in Fig-

ure 6.2, which shows an interpolation (via the “natural neighbour” algorithm) of

the improvements obtained by the MC-cBCI method over the AUC of the best

performer of each group (of size 3), including data from all difficulty levels. By

plotting the improvement versus the mean and the standard deviation of the

AUCs in each group, the low values of the dissimilarity index δ are found at the

bottom of the plot, while groups formed by very different members (i.e., high

values of δ) are located at the top of the figure.

This figure shows quite clearly that higher improvements are concentrated

towards the bottom of the plot, thus indicating that the biggest improvements

are associated with higher similarity between the participants’ AUCs, as was

shown numerically above.

The reduction in cBCI performance associated with higher values of the dis-

similarity index seems reasonable, considering that when participants with high
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Figure 6.2: Surface interpolation of the AUC improvements obtained when using
MC-cBCI for groups of size 3 over the AUC of the best member of the group.

AUCs are grouped with low scorers (thus leading to a high dissimilarity index),

the limited information provided by the good individuals or group of them with

respect to the bad ones is unlikely to translate into an improvement in the per-

formance of the best participant of the group.

6.3.2 Participant Selection for Target Localisation

We will now look at the results obtained when applying the dissimilarity-index

threshold δ to the collaborative BCIs for target localisation which were introduced

in Chapter 4.

Following the same order as in Section 6.3.1, let us first look at the distribu-

tions of cross-validation and test AUCs that are obtained across all users for each

level. These are reported in Figure 6.3. Again, it can be seen that there are no sta-

tistically significant differences between performance in the cross-validation and

the test sets, except for those obtained at level 5 (for a presentation rate of 10 Hz

and multiple target templates), where the performance is significantly higher (but
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Figure 6.3: Distributions of mean AUCs for the cross-validation and test folds
for the single-user target localisation BCI across all levels of the experiment.

not after Bonferroni correction) in the test set than during cross-validation.

We can now look at the results that are obtained for each cBCI method,

across all values of δ and group sizes, for level 2. These can be found in the

form of median AUCs on Table 6.5. The percentages of groups (out of all the

possible combinations) that are considered for each group size and δ are reported

in Table 6.6.

Table 6.5 shows median AUCs much higher (up to almost 26%) than the

one from the sBCI used for target localisation in Chapter 4, which was 0.78

for difficulty level 2. The only exception is found for pairs of users in the SC-

cBCI method. We elaborate on this effect and one possible cause for it in Sec-
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Table 6.5: Median AUC values for the three types of cBCIs for left vs right
classification of targets for difficulty level 2, as a function of group size and the
dissimilarity-index threshold δ.

Group size
Method δ 2 3 4 5 6 7 8 9 10

SC-cBCI

5% 0.82 0.79 – – – – – – –
10% 0.82 0.82 0.88 0.92 – – – – –
15% 0.79 0.78 0.82 0.83 0.83 – – – –
20% 0.78 0.79 0.83 0.85 0.90 0.92 – – –
25% 0.76 0.77 0.79 0.82 0.83 0.83 0.84 0.86 –

100% 0.76 0.77 0.78 0.79 0.81 0.82 0.85 0.86 0.84

MC-cBCI

5% 0.92 0.95 – – – – – – –
10% 0.91 0.96 0.99 0.99 – – – – –
15% 0.90 0.94 0.96 0.97 0.92 – – – –
20% 0.90 0.93 0.96 0.97 0.98 0.99 – – –
25% 0.90 0.93 0.96 0.97 0.97 0.98 0.98 0.98 –

100% 0.90 0.93 0.96 0.97 0.98 0.99 0.99 0.99 0.99

LDA-cBCI

5% 0.92 0.95 – – – – – – –
10% 0.92 0.96 0.99 0.99 – – – – –
15% 0.90 0.94 0.96 0.97 0.92 – – – –
20% 0.91 0.95 0.96 0.98 0.98 0.99 – – –
25% 0.90 0.93 0.96 0.97 0.98 0.99 0.99 0.99 –

100% 0.90 0.93 0.96 0.98 0.98 0.99 0.99 1.00 1.00

Table 6.6: Percentages of groups that are accepted by the selection mechanism for
the target vs non-target discrimination task for different group sizes and values
of the dissimilarity-index threshold δ at difficulty level 2.

Group size
δ 2 3 4 5 6 7 8 9 10
5% 17% 1% 0% 0% 0% 0% 0% 0% 0%

10% 48% 16% 3% 0% 0% 0% 0% 0% 0%
15% 71% 40% 17% 5% 0% 0% 0% 0% 0%
20% 84% 62% 40% 22% 9% 2% 0% 0% 0%
25% 95% 87% 76% 63% 50% 35% 22% 10% 0%
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tion 6.3.2.1. As we saw in previous chapters, bigger group sizes improve the

performance of the cBCI further.

Finally, and also consistent with results from the previous sections, perfor-

mance of cBCIs generally decreases with increasing dissimilarity indices, but,

even when no pair selection is performed, cBCIs are better than the correspond-

ing sBCI.

6.3.2.1 Effects of Individuals on Group Performance

We saw in Chapter 4 that, even though large groups formed with the SC-cBCI

method exhibited the same behaviour as the other types of cBCI, there was a

marked drop in performance in the SC-cBCI method for groups of size 2 (see

Figure 4.13).

In order to understand this drop, it is instructive to look at the low percentages

of accepted groups for each group size reported on Table 6.6. These are indicators

of the large differences in performance that are found in the cohort of participants

for the target localisation task.

Even though both the P300 and the N2pc systems show relatively large in-

terquartile ranges, the distributions of the target detection system are, in general,

skewed toward high AUC values (see Figure 3.6), whereas the target localisator

shows more symmetric distributions (see Figure 4.8). As an example, Figure 6.4

shows the probability density functions (pdfs) of AUCs for the target detection

and target localisation systems at level 2.

It is interesting to look at the distributions shown here. Under the assumption

that the AUC of a participant is, indeed, an indicator of their visual system

sensitivity, the differences between the two distributions of AUCs are signalling
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Figure 6.4: Probability density functions and histograms for the AUCs of the
target (a) detection and (b) localisation systems, at difficulty level 2.

a very interesting effect. Let us first look at the distribution of AUCs for the

N2pc-based BCI, shown in Figure 6.4(b), which shows a symmetrical distribution,

that appears to be approximately Gaussian (i.e., the pdf superimposed over the

histogram).

The N2pc ERP is an indicator of a shift of attention towards an event of

interest that occurs before a person foveates towards the event. Contrary to

the P300, the appearance of the N2pc does not require intentional control (i.e.,

the P300 is a more “active” task, enhanced by the task of counting targets in

our case). For this reason, a priori, the classifier trained to distinguish between

LVF and RVF targets based on this neural signature would have a homogeneous

response (i.e., the AUCs will mostly be symmetrically distributed around the

mean). This is what the plot indicates, with deviations from the mean being

representative of noise both in the EEG and the learning rule from the classifier.

On the other hand, when the neural response depends on the participant

being attentive and engaged in the task, as is the case of the P300, there are
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other factors that affect the classifiers’ behaviour. The pdf of the AUCs for the

target detection system, shown in Figure 6.4(a), is much more skewed, reflecting

actual differences in the participants’ attitudes toward the task (i.e., their level of

engagement, attentional blink, and his/her visual system’s acuity), and not only

in the classifier.

Figure 6.5 shows the pdfs of |AUCi − AUCj| for difficulty level 2 and for

groups of size 2, for both systems. There are two reasons why these plots are not

just the result of convolving the distributions in Figure 6.4: (1) when computing

δ the sampling is done without replacement, and (2) we are only keeping the

absolute value of the difference, and not the differences themselves.

For the target localisation system (shown in Figure 6.5(b)), the peak of the

distribution is narrow and centered around δ=0.1. In contrast, the target detec-

tion system (in Figure 6.5(a)) shows a more uniform distribution. Hence, if one

selects two participants at random to form a pair, they are more likely to have

a higher dissimilarity index in the target detection system. Hence, the percent-

ages of groups accepted are lower for this system than they are for the target

localisation system for small values of δ. For example, for difficulty level 2 (see

Table 6.6), 71% of all possible pairs are accepted for the target localisation system

for δ 6 15%, whereas just 55% (see Table 6.2) are included when forming pairs

in the target detection system.

If we now focus on low values of δ, it can be inferred from these pairs of plots

that, due to the symmetry of the distribution of AUCs, if one picks a random pair

of performers, it is as likely to be formed by good performers as it is to be formed

by bad ones in the N2pc-based system. However, this is not true in the case

of the target detection task, where the distribution of AUCs shows a clear skew
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Figure 6.5: Probability density functions and histograms for the differences in
pairs of AUCs (i.e., |AUCi−AUCj|) from the target (a) detection and (b) local-
isation systems, at difficulty level 2.

towards high values, hence favouring the occurrence of pairs of good performers.

Figure 6.6 shows the pdf’s and histograms of the average AUCs of pairs of users

for which δ < 0.05. The median values of these distributions are 0.90 for target

detection and 0.79 for the target localisation system.

These results suggest an explanation for the drop in group performance ob-

served in pairs in the SC-cBCI approach. Regardless of the task, even though

pairs of good performers will (on average) show an increase of the group AUC

with respect to the mean AUC of their individually tailored sBCIs, when the

EEG signals from two bad performers are averaged (which, as we just saw, is

more likely to happen in the N2pc classification system) to form a group in the

SC-cBCI approach, there is a higher chance of them detecting/missing different

targets. Hence, the SC-cBCI system will, on average, show a decrease in perfor-

mance for small group sizes, as was observed in Chapter 4, due to a decrease (or

a lack of increase) of the signal-to-noise ratio.
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Figure 6.6: Probability density functions and histograms for the average AUCs
of pairs of users (i.e., avg(AUCi, AUCj)) from the target (a) detection and (b)
localisation systems, at difficulty level 2, when only pairs of users with δ < 0.05
are considered.

6.3.2.2 Comparison with avg(AUC1, AUC2, ..., AUCr)

Following the structure from the previous section, Table 6.7 reports the median

gains in AUC over the average performance of the individuals in each group

for each group size r, separately for the three types of collaborative BCIs —

single-classifier cBCIs (SC-cBCI), multiple-classifier cBCIs (MC-cBCI) and LDA-

cBCIs — for different values of the dissimilarity-index threshold δ for the target

localisation system.

With the exception of small group sizes for the SC-cBCI method, all values

in the table are positive, indicating that, irrespective of the value of δ, cBCIs

outperform the unintelligent system that randomly picks the responses of an

individual in a group. These improvements are highly statistically significant

(highlighted in bold face) in almost every case, specially for the MC-cBCI and

LDA-cBCI approaches. These results are generalised across all levels, and can be
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Table 6.7: Median improvements over the average participant in the group when
using collaborative BCIs for target average at difficulty level 2, as a function
of group size and the dissimilarity-index threshold δ. Values in bold face are
statistically significantly superior at the 1% confidence level according to a two-
sample one-sided Kolmogorov-Smirnov test group AUC vs average

Group size
Method δ 2 3 4 5 6 7 8

SC-cBCI

5% -8.9% -8.5% – – – – –
10% -5.2% -3.3% -1.7% +4.1% – – –
15% -5.2% -2.7% -0.1% +0.1% -2.4% – –
20% -3.5% -1.4% +0.8% +3.5% +5.7% +7.6% –
25% -2.8% -0.3% +2.5% +5.9% +6.9% +9.2% +10.3%
100% -2.5% +0.0% +3.3% +6.4% +8.2% +10.1% +11.5%

MC-cBCI

5% +1.4% +6.1% – – – – –
10% +2.7% +5.5% +9.8% +12.8% – – –
15% +2.7% +7.3% +10.7% +13.3% +17.1% – –
20% +3.0% +7.6% +10.4% +12.4% +13.7% +15.2% –
25% +3.5% +8.0% +11.4% +14.7% +17.4% +20.5% +22.2%
100% +3.9% +8.9% +12.3% +15.6% +17.7% +20.1% +21.5%

LDA-cBCI

5% +0.2% +4.1% – – – – –
10% +3.3% +5.8% +9.2% +12.5% – – –
15% +4.0% +7.6% +10.2% +12.4% +18.3% – –
20% +4.0% +8.1% +10.5% +12.3% +13.9% +16.1% –
25% +4.4% +9.9% +13.8% +16.6% +19.5% +21.9% +23.7%
100% +4.7% +11.2% +14.8% +17.1% +19.1% +20.1% +21.5%

consulted in Section C.2.

Interestingly, the highest improvements for the MC-cBCI and LDA-cBCI ap-

proaches are not obtained for low values of δ. On the contrary, they occur when

the threshold of acceptance to form groups is increased.

6.3.2.3 Comparison with max(AUC1, AUC2, ..., AUCr)

We will now study the effects of placing ourselves in the second reference system,

and comparing the performance of the cBCI with that of the best performer within

the group. Table 6.8 reports, for each method, the median gains at difficulty level

2 for each group size r and different values of δ.

The results for the SC-cBCI method differ from those observed in the target
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Table 6.8: Median improvements over the best participant in the group when
using collaborative BCIs for target localisation at difficulty level 2, as a function
of group size and the dissimilarity-index threshold δ. Values in bold face are
statistically significantly superior at the 1% confidence level according to a two-
sample one-sided Kolmogorov-Smirnov test (group AUC vs maximum AUC of
the group). Values in italics are statistically superior at the 5% confidence level.

Group size
Method δ 2 3 4 5 6 7 8

SC-cBCI

5% -12.8% -11.4% – – – – –
10% -11.0% -10.0% -9.0% -4.1% – – –
15% -12.7% -10.9% -10.5% -10.0% -13.2% – –
20% -12.6% -10.5% -10.1% -7.7% -4.4% -4.0% –
25% -12.5% -11.3% -10.5% -9.1% -8.0% -6.8% -7.1%
100% -12.6% -11.5% -10.2% -8.2% -7.0% -5.9% -5.4%

MC-cBCI

5% -1.3% +2.7% – – – – –
10% -1.9% +0.5% +3.0% +3.9% – – –
15% -2.5% -1.4% +0.6% +2.3% +3.8% – –
20% -2.5% -1.6% -0.5% +1.6% +2.7% +2.8% –
25% -3.9% -2.1% -1.2% +0.0% +1.4% +1.7% +2.4%
100% -4.2% -2.5% -1.3% +0.1% +1.4% +2.1% +2.8%

LDA-cBCI

5% -1.5% +0.9% – – – – –
10% -1.1% +0.6% +1.8% +3.6% – – –
15% -2.4% -0.9% +1.1% +3.7% +4.8% – –
20% -2.8% -1.5% +0.5% +1.4% +2.4% +3.1% –
25% -2.8% -1.2% +0.5% +1.3% +2.1% +2.8% +2.9%
100% -2.7% -1.1% +0.4% +1.3% +2.0% +2.6% +3.0%

detection system: Table 6.8 shows that this approach is, in almost every case,

worse than the best performer of the group. However, the MC-cBCI and LDA-

cBCI methods behave similarly to each other and to the results obtained for the

target detection system. Moreover, these collaborative forms with participant

selection outperform the cBCI without it. The highest gains for the MC-cBCI

approach are obtained for intermediate values of the dissimilarity index (i.e.,

δ ∈ {10, 15}%), whereas in the case of LDA-cBCIs, they are obtained for the

smallest value, δ = 5%1.

Hence, in the case of multiple classifier systems (MC-cBCI and LDA-cBCI),

1Although Table 6.8 only contains data for group sizes of 2 at the most restrictive value of
δ, this comment is based on the behaviour of the system for other levels (see Appendix C).
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cBCIs tend to produce better AUCs than the “intelligent” reference system too.

Moreover, as opposed to the target detection system, the collaborative BCI still

outperforms the best participant even when no participant selection is applied

and all groups are allowed (i.e., δ=100%).

The results observed here are generalised across all difficulty levels for the

target localisation cBCIs, as can be seen in Section C.2.3.

The improvements achieved using the MC-cBCI approach over the best per-

former of the group, across all levels and for different group sizes are summarised

in Figure 6.7. We can see that the biggest improvements are concentrated at

the bottom of each plot, indicating again a tendency of cBCIs to outperform the

best participant when the members of the group are have similar AUCs (i.e., low

standard deviations of the AUC across the group).

The figure also highlights the fact mentioned above that bigger groups lead

to higher improvements. As we saw from the results in the tables, even though

for small groups it is possible to perform worse than the best participant of the

group, this scenario is less common for bigger group sizes.

6.3.3 Theoretical Model of the Participant Selection Method

This section introduces a simple model to explain the possible reasons for the

further improvements in performance that are obtained when groups are formed

taking into account the similarity of the individuals.

The AUC for each participant can be interpreted as a measure of how spread

and separated the distributions of scores for each class are. The bigger the overlap

in these distributions, the lower the AUC value and vice versa.
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Figure 6.7: Surface interpolation of the percentage of AUC improvements over
the AUC of the best member of the group using MC-cBCI for groups of size 2–9.

The MC-cBCI method consists of averaging classifiers’ outputs to obtain the

AUC of the cBCI for each group of participants. If we first focus on groups of

size 2, the distribution of the average of two uncorrelated stochastic variables

is the convolution of their pdfs (save for a scaling factor). Formally, let Si,c be
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a stochastic variable representing the scores produced by a classifier for class

c ∈ {C1, C2} 1 and participant i = 1, . . . , 11, and let pdfi,c(x) be its probability

density function. Then, the pdf of the average of the scores for participants i and

j when presented with a stimulus of class c, Si,j,c = (Si,c + Sj,c)/2, is given by

pdfi,j,c(x) =
(
pdfi,c ∗ pdfj,c

) (
x
2

)
, where ∗ is the convolution operator.

For simplicity, let us assume that the variables Si,c are normally distributed,

i.e., Si,c ∼ N(µi,c, σ
2
i,c). Because the convolution of two Gaussians is a Gaussian,

we have that also Si,j,c ∼ N(µi,j,c, σ
2
i,j,c) with

µi,j,c =
µi,c + µj,c

2
and σ2

i,j,c =
σ2
i,c + σ2

j,c

4
.

Let us further assume that all participants have the same means for the two

classes, i.e., µi,C1 = µC1 and µi,C2 = µC2 , for i = 1, . . . , 11, and that the standard

deviations for the classes are identical, i.e., σi,C1 = σi,C2 = σi (but not the same

for each participant). In this case, we have that

µi,j,c = µc and σ2
i,j,c = σ2

i,j =
σ2
i + σ2

j

4
.

That is, the mean becomes independent from the pair (i, j) that forms the

group, and the standard deviation is independent from the class, but depends on

the (i, j) pair.

The separation between the distributions of scores jointly produced by a pair

of participants can then be compared with the separation between the distri-

butions of scores of the better performer from the pair. To do this, given the

1Here, C1 and C2 could be classes L and R in LVF vs RVF classification, or T and NT in
the case of target detection.
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aforementioned assumptions, only the group’s variance, σ2
i,j, needs to be com-

pared against the variance of the better participant of the group, which can be

obtained as σ2
min = min(σ2

i , σ
2
j ). Since the means of the distributions for classes

C1 and C2 remain constant, the AUC (calculated from the pdfs of the distri-

butions) of the group will be better than that of the better participant when

σ2
i,j < σ2

min. If we estimate the parameters of the distributions (i.e., means and

standard deviations) from real data, the theory presented here allows computing

the AUCs for all cases, so it is possible to compute the expected gains/losses.

Figure 6.8 shows the expected gains of pairs over the better participant of the

pair predicted by this model under the assumptions above. The parameters for

the Gaussian variables used in the simulations (i.e., |µC1−µC2| = 1 and standard

deviations σi ∈ [0.3, 4]) were estimated from the data collected from the RSVP

experiment, for the left vs right classification task.

The general trend using the proposed model is that gains are higher (with re-

spect to the AUC of the better participant) when the participants are very similar

(i.e., similar AUCs, represented at the bottom of the figure). Even though one

can find differences when comparing the theoretical improvements in Figure 6.8

with the actual results in Figures 6.2 and 6.7(a), the general similarity between

the figures is striking, suggesting that a significant proportion of the effect is

captured by the model.

Under the assumptions listed above, the model can easily be generalised to

groups of size r. In this case, the distributions of scores for a group, for each

class, i.e., SR,c ∼ N(µR,c, σ
2
R,c), are determined by parameters

µR,c = µc and σ2
R,c = σ2

R =

∑
i∈R σ

2
i

r2
,

174



0.5 0.6 0.7 0.8 0.9 1.0
Mean AUC of the group

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

S
td

 A
U

C
 o

f 
th

e
 g

ro
u
p

16 12 8 4   0   4    8
Improvement over the best member (%)

Figure 6.8: Expected gain of the joint AUC over the better participant of a pair
when the distributions of scores for both classes are given by normally distributed
random variables, Si,c ∼ N(µc, σ

2
i ), with |µC1=L − µC2=R| = 1 and standard

deviations σi ∈ [0.3, 4].

where R is the set of r participants included in the group. As before, in this case,

the AUC resulting from the groups’ scores for each class will be higher than that

of the best participant if σ2
R < σ2

min, with σ2
min = mini∈R(σ2

i ).

Figure 6.9 shows the expected gains for groups of different sizes over the

best participant of each group predicted by this model under the assumptions

above. The figure illustrates the same trend as before, and also adheres to the

experimental results from previous sections.

6.4 Discussion

This chapter introduced one of the core contributions of this thesis. In particu-

lar, a method for selecting members to form a group based on how similar the

performance of the BCIs controlled by different individuals are was presented.

The similarity measure was the absolute difference between the maximum and

the minimum AUCs of the candidate group members. This method was applied
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Figure 6.9: Surface interpolation of the expected improvements in the AUC (in
percentage) over the AUC of the best member of the group, for different group
sizes, according to the theoretical model, with the same parameters used in Fig-
ure 6.8.

to the target detection and target localisation systems, and compared the re-

sults obtained with two artificial systems: one that represents the average group

performer and a second one that behaves like the best member of the team.

Even though performance of cBCIs is typically higher than corresponding

single-user BCIs, performance increases dramatically when only participants with

relatively close performance participate in a group. Under the assumption that

the AUCs from single-user BCIs are correlated to the sensitivity of the individual’s

visual system, this result is in agreement with those of Bahrami et al. [2010] in

their visual perception experiment: pairs of participants perform better than

individual observers, provided that they had similar visual sensitivities.

Moreover, this result was consistent across the three approaches of cBCI used
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in this thesis. When all participants are given equal weight in the cBCI (i.e., the

SC- and MC-cBCI approaches), for high values of the dissimilarity-index δ, good

performers are dragged down by those participants who did not perform so well.

However, the LDA-cBCI approach is a more intelligent method of combining each

participant’s contributions, as it assigns them different weights for voting. For

this reason, it is possible to still outperform the best member of the group even

for high values of δ.

A theoretical model was developed that explains some of the reasons for the

higher improvements in the performance of the cBCI systems when groups are

formed taking into account the similarity of the individuals in the group. Even

though the model used for the simulations did not reflect all the complexity of

the system and made several assumptions about the underlying distributions of

scores, the theoretical and empirical results are very similar.

Lastly, we looked at the distributions of individual AUCs from the N2pc and

P300-based systems to understand the reasons behind the drop of performance in

the N2pc system for pairs of participants observed in Section 4.3.4, and compared

the results of the selection mechanism for these systems.

6.5 Conclusions

This chapter introduced the last aspect that we wanted to explore with the RSVP

experiment. In it, we looked at the reasons behind the improvements of our

collaborative BCI systems and developed a theoretical model that can explain

part of those improvements.

Over the last few chapters, we have considered multiple aspects of the com-
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bined RSVP–BCI paradigm, and explored some novel aspects of this technique.

In the next chapter we will consider a new scenario. Movies can be considered

to be a special case of the RSVP paradigm, in which the images are very correlated

with each other and presented at rates of above 25 Hz (and they usually include

a sound track). However, in contrast to the bursts of images that are typically

presented in the RSVP paradigm, movies tell a story, and in order to do this,

editors and film makers influence the emotion of the viewer through features such

as motion and brightness [Detenber et al., 1998; Simons et al., 1999]. Perhaps for

all these reasons, the information presented through film is easier to remember

than that of static images [Candan et al., 2016]. Cuts have been related to

increases of attention, which in turn are correlated with in increase of memory

retention for the information provided after the occurrence of the cut [Lang et al.,

1993; Rothschild et al., 1986].

Movies produce more robust neural responses than static images [Marathe

et al., 2016]. For this reason, we decided to use feature movies in the next step of

this thesis, and to do a cut-by-cut analysis of the neural response that is elicited

by cuts.
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Chapter 7

A Preliminary Study of Cuts in

Movies Using Collaborative BCI

Techniques

Movies are sequencies of related images that are displayed at a high frequency.

They can, thus, be considered as a special case of the RSVP technique (plus

sound). This chapter focuses on the changes that arise in the brain activity as a

result of perceiving a cut in motion pictures (i.e., movies). This is done through

an ERP analysis that uses techniques borrowed from the SC-cBCI method and

a study of the event-related synchronisation/desynchronisation in different fre-

quency bands.
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7.1 Introduction

Movies consist of sequencies of related images that are typically presented at

frequencies between 25–30 Hz, which allow us to perceive them as continuous.

In this sense, they can be considered as a very fast RSVP paradigm (plus the

addition of sound).

In these sequencies, editors introduce cuts (i.e., discontinuities) in order to

create narrative effects. Since the main topic of this thesis until now has been a

study of the brain’s response to the appearance of a target in RSVP streams of

non-continuous images, we will now explore the effect of perceiving a discontinuity

in a rapid stream of continuous images (that is, a cut).

As shown in Section 2.5, electroencephalography and other brain imaging

techniques, such as fMRI, have been used to study the effects of movies on the

viewer’s brain to some extent (e.g., [Hasson et al., 2004, 2008]). In particular,

some work using EEG has been done to study the brain’s response to the appear-

ance of cuts.

Cuts induce alpha blocking on viewers, and the magnitude of this effect has

been correlated with retention of content of television commercials [Appel et al.,

1979; Lang et al., 1993; Reeves & Thorson, 1986; Reeves et al., 1985; Rothschild

et al., 1986; Smith & Gevins, 2004]. The time to recovery to normal values of

alpha may be taken as a measure of how well attention is held by the content.

Rothschild et al. [1986] showed that not all scene changes are strong enough to

elicit alpha blocking, and, if they do, the rate of recovery to previous levels of

power in the alpha band may depend on how well the scene holds attention of the

viewer. This may be connected with the concept of edit blindness, a phenomenon
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by which some cuts go completely unnoticed by viewers [Smith & Henderson,

2008b]. The probability of detecting a cut seems to vary depending on factors

such as the type of cut and the amount and direction of motion and audio before

and after it [Smith, 2012; Smith & Yvonne Martin-Portugues Santacreu, 2016].

Anderson et al. [2006] performed, perhaps with the exception of Zacks et al.

[2010] (see below), the only comparison between related and unrelated cuts using

fMRI. They found that most of the brain activations that occurred in response

to a cut were common despite of the type of cut, with the exception of an area

which has been associated with the processing of information to create meaning.

In addition to fMRI and studies of the EEG in the frequency domain, since

cuts are very sharp in the time domain, they have also studied, although to

a lesser degree, through ERPs which are time-locked to the occurrence of the

cut [Francuz & Zabielska-Mendyk, 2013]. In this area of research, cuts have been

associated with slow cortical potentials, which are also used as an index of the

orienting response, and other ERPs [Francuz & Zabielska-Mendyk, 2013], such

as the (frontal) SNW1, (parietal) SPW and (parietal) SNW1. When comparing

the ERPs that are produced in response to related vs unrelated cuts, Francuz &

Zabielska-Mendyk [2013] found that unrelated cuts produce more negative SNW1

and more positive SPW responses than those produced by related cuts. The lack

of elicitation of a P300 ERP was also noted by the authors [Francuz & Zabielska-

Mendyk, 2013].

Finally, in movie stimuli in which congruent or incongruent information ap-

peared following a cut, an N400 was detected over frontal, central and parietal

regions [Reid & Striano, 2008]. This component was followed by a late large

positive potential in posterior regions of the brain in the sequences with an in-
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congruity [Sitnikova et al., 2003, 2008], perhaps an indication that this unex-

pected turn of events triggers other cognitive processes in addition to the ones

that mediate pure semantic integration.

While these results indicate that cuts produce characteristic ERPs, these have

always been studied in either averages or grand averages (i.e., after averaging

hundreds of individual responses across several participants). Moreover, to the

best of our knowledge, no ERP analysis of the neural response has been performed

using feature movies: the work surveyed until now involved either commercial

messages, audiovisual content created specifically for the experiment, or short

fragments from television shows.

We wondered to what degree it would be possible to detect the ERPs induced

by cuts in movies on a cut-by-cut basis through some form of BCI. We also wanted

to perform an analysis of the ERPs induced by cuts in feature movies, something

that had not been done before, to the best of our knowledge. Of course, the

real-world nature of the stimuli (as well as the fact that people watching movies

move, laugh, blink, etc.) makes this a very hard task.

It was discussed previously in this thesis that, due to the noise affecting EEG

recordings, in BCIs it is common to perform ERP averages across a small set of

repetitions of the same stimuli (typically 3–6 repetitions) in order to increase the

signal-to-noise ratio, and correspondingly achieve better classification. However,

there are situations where this technique cannot be used. This is certainly the

case when studying the brain’s response to specific events in movies, because the

reaction to the first presentation of an event is often different from those produced

in further repetitions of the event [Dorr et al., 2010; Nittono, 2008]. For this

reason, in this study we borrowed the technique used in the SC-cBCI approach of
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the collaborative BCI of averaging EEG signals from multiple participants on a

trial-by-trial basis in order to increase the SNR. The reason behind choosing the

averaging technique as used in SC-cBCI, as opposed to alternatives such as the

LDA-cBCI, which was shown to give a superior performance in previous chapters,

is that the study presented this chapter there is not a BCI in the strict sense. We

aim at presenting a study of cut-by-cut ERPs, rather than trying to classify or

distinguish among them.

Moreover, previous EEG and fMRI studies have shown that there is a high

inter-subject correlation in participants’ signals while they watch movies [Bridwell

et al., 2015; Hasson et al., 2008], so averaging across multiple participants should

indeed help to increase the SNR.

We hoped that, thanks to the analyses performed and presented in this chap-

ter, it would be possible to make inferences about how and what type of pro-

cessing happens across a cut. This can be studied by measuring the coherence

before, after and across cuts between different brain regions [Tucker et al., 1986],

or through other measure of brain functional connectivity [Daly et al., 2012].

Regardless of the fact that no actual BCI is directly derived in this work,

the results presented in this chapter may be used to inform and build a cBCI

in the future. Such a cBCI could be used to study the effectiveness of a cut

(or some other aspect of the movie) in the viewer. Practical applications could

include selecting which movie trailer is expected to cause an intended effect and,

therefore, produce the highest revenue, or deciding where and/or how to place a

cut while editing the film.

This chapter begins by explaining the methods used for conducting this inves-

tigation (Section 7.2), including a description of the protocol for data collection
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and the signal processing techniques applied to the EEG recordings. Section 7.3

presents the results of the analysis, which are then discussed on Section 7.4, where

also some suggestions for future work are provided.

7.2 Methods

7.2.1 Data Acquisition

Data were collected from 10 volunteers (aged 21–40, mean age = 28.7 years

old, 2 females, 1 left handed) with normal or corrected-to-normal vision. One

participant was excluded from the study due to technical difficulties during data

recording. The remaining participants (N=9) had a mean age of 29.6 years (range:

25–40, 2 females, 1 left-handed). They all signed the consent form approved by

the Ethics Committee of the University of Essex.

Participants were seated at approximately 80 cm from the 20-inch LCD screen

where the stimuli were presented. EEG data were acquired by using a BioSemi

ActiveTwo system with 64 electrodes mounted in a standard electrode cap follow-

ing the international 10-20 system. The EEG was referenced to the mean of the

electrodes placed on the earlobes. The initial sampling rate was 2048 Hz. Data

were band-pass filtered between 0.15 and 40 Hz before downsampling to 128 Hz.

Correction for eye blinks and other ocular movements was performed by ap-

plying the same subtraction algorithm that was used in previous chapters, based

on correlations with the average of the differences between channels Fp1 and F1

and channels Fp2 and F2 [Quilter et al., 1977] (see Section 3.2.1.1).
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Table 7.1: Details of the movie clips used in the experiment.

Movie ID Beginning Duration (sec) # cuts used

Iron Man 1 (IM1)
IM1.1 0:02:16 83 34
IM1.2 0:38:34 137 49
IM1.3 1:17:16 124 43

Iron Man 3 (IM3)

IM3.1 0:22:45 61 13
IM3.2 0:25:29 51 13
IM3.3 0:34:09 330 133
IM3.4 1:41:59 846 330

Sherlock Holmes (SH) SH 1:23:30 152 17

The Expendables (Exp)
Exp1 0:43:08 89 42
Exp2 1:22:15 429 179

V for Vendetta (Ven)
Ven1 0:10:18 46 20
Ven2 2:01:55 155 57

7.2.2 Stimuli

Participants watched 12 movie clips extracted from 5 feature movies. Details for

each clip are given in Table 7.1.

The clips were displayed in full-screen mode at a 1680×1050 resolution, sub-

tending 30.29×19.23 degrees of visual angle. Audio was played by means of

a pair of high quality desktop speakers (Edirol Roland MA-15D). The average

sound level measured from the participant’s position (approximately 2 m from

the sound sources) with an Arco CR:262 device was 55.1 dBA, with a maximum

level of 64.6 dBA (the reference sound level in the quiet room was 30.7 dBA).

All participantes watched the clips in the same order. At the end of a clip,

participants could press a mouse button to start the next video.

Cuts were detected manually and the programme kept a list that contained

the last frame of each scene. In order to guarantee synchronisation between the

video and the EEG, the clips were played using the API for the VideoLAN player,

which can be used to print out the current frame. When the frame being played
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by the VideoLAN player was identified as a cut (by comparing the frame number

to that in the list), the script sent a trigger to the EEG system.

Since the aim of this work is to study ERPs that are spontaneously elicited

in response to cuts, participants were asked to simply watch the movies, without

performing any specific task.

At the end of the experiment participants were asked to rank the clips in order

of preference.

7.2.3 Signal Processing

7.2.3.1 Epoch Extraction

For ERP analysis, 1000 ms-long epochs were extracted from the EEG signals,

time-locked to the occurrence of a cut. All epochs were referenced to the mean

of the 200 ms interval preceding them.

In order to avoid contamination, for the “cut” condition, only epochs belong-

ing to a cut that was not followed by another cut within 1000 ms were considered

throughout the whole analysis. The first scene of each clip was also discarded.

This resulted in 930 “cut” epochs (from the original 1429 cuts) per participant.

Moreover, in order to establish a baseline for determining the brain’s reponse

to cuts, epochs for a “non-cut” condition were also considered. “Non-cut” epochs

consisted of the 1000 ms immediately preceeding a cut. Again, in the interest

of minimising the effect of ERPs from previous cuts, only epochs where there

had been no other cuts within 1500 ms were considered. This resulted in 566

“non-cut” epochs.

Epochs for which the amplitude was greater (in absolute value) than 200µV
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at any electrode were removed from the analysis (an average of 11 cuts per par-

ticipant). In total, 8271 cut epochs were analysed.

Given previous results found in the literature (see Section 2.5), we were not

expecting P300s to appear in response to cuts. However, we investigated whether

the N2pc appears in response to one, signalling a shift of attention towards either

side of the frame. To the best of our knowledge, this had not been attempted

before. For this, epochs were extracted from electrodes PO7 and PO8 in the time

interval comprising the 1000 ms immediately following cuts that were expected

to induce a shift of attention to the left or right side (as manually labelled by a

pool of volunteers — more on this below) were included.

In addition to the ERP analysis, we decided to complement the study with a

frequency analysis, as is common in this type of studies. For this, two different

methods were used: first, we looked at standard event-related synchronisation and

desynchronisation (ERS/ERD) [Kalcher & Pfurtscheller, 1995; Klimesch et al.,

1998; Pfurtscheller & Lopes da Silva, 1999] plots to validate and compare our

results to those from the literature (e.g., the study of alpha blocking in response

to a cut [Appel et al., 1979; Lang et al., 1993; Reeves & Thorson, 1986; Reeves

et al., 1985; Rothschild et al., 1986; Smith & Gevins, 2004]). Secondly, we went

one step further and studied the connectivity networks that are formed in the

brain in response to a cut, in an attempt to connect the changes observed in the

frequency domain with theories of context-updating and working memory. This

was done through the measure of the coherence between different brain regions.

The frequency analysis considered the following frequency bands: theta (4–

8 Hz), lower alpha (8–10 Hz), upper alpha (10–14 Hz), low beta (14–18 Hz) and

upper beta (18–26 Hz).
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7.2.3.2 Event-Related Synchronisation and Desynchronisation

ERP analyses are useful to detect and study time-locked changes in EEG activ-

ity, such as those who occur in response to sensory stimuli (e.g., the P300 or

the N2pc). However, these and other stimuli can also cause alterations in the

EEG which are not phase-locked, and, thus, cannot be extracted through av-

eraging [Pfurtscheller & Lopes da Silva, 1999]. Such frequency-specific changes

typically consist of power increases or decreases in the ongoing EEG, which in

turn are considered to be due to an increase or decrease in the synchrony of the

underlying neuronal populations.

In order to study the ERD/ERS, signals are first band-passed filtered in the

frequency band of interest. This was done in this study through a 4th order

Butterworth filter. All samples are then squared to obtain power samples, and the

average is calculated across all trials and a time window (in this study, the window

was of 50 ms), so a final value is obtained for each electrode site considered.

Furthermore, to discriminate between phase-locked and non-phase locked power

changes (i.e., to eliminate the possible influence of ERP components), the point-

to-point intertrial variance can be calculated instead of squaring the time sam-

ples [Kalcher & Pfurtscheller, 1995; Klimesch et al., 1998]:

IVt =
1

N − 1

N∑
i=1

(xi,t − x̄t)2,

where N is the number of trials, t represents the time sample, xi,t represents the

amplitude of the EEG signal for trial i at time t and x̄t is the mean of the data

(across all filtered trials) at time t.

Finally, the ERD is calculated as the percentage change of the power or in-
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tertrial variance (At) at each time point (or an average of time samples) with

respect to the power in a reference period (R, calculated over the time interval

[n0, n0 + k]). By using the formula

ERD(%) =
At −R
R

· 100,

with

R =
1

k

n0+k∑
t=n0

At,

positive (resp. negative) values represent synchronisation (resp. desynchronisa-

tion) and an increase (resp. decrease) of power in the band considered.

In this study, we used the non-phase locked calculation for the ERD/ERS

(i.e., the intertrial variance, rather than the instantaneous power). The reference

period was the interval [-300, 0] ms refered to the onset of a cut.

7.2.3.3 Spectral Coherence

Spectral coherence (or just coherence, from here onwards) is defined as the cross-

correlation of the power spectrum of two signals, normalised by their power spec-

tra (i.e., the normalised cross-spectral density):

Cxy =
|Pxy|2

Pxx · Pyy

Coherence provides evidence for the functional connectivity or coupling be-

tween different brain areas during cognitive processing [Sauseng et al., 2005;

Tucker et al., 1986; Weiss & Rappelsberger, 1996]. It can therefore be interpreted

189



as a measure of information transfer between the areas under consideration [Weiss

& Rappelsberger, 1996].

Coherence values range between 0–1, with 0 meaning (in our context) that

there is no functional connectivity between the areas/electrodes considered.

Again, the frequency bands considered in the coherence analysis were theta

(4–8 Hz), lower alpha (8–10 Hz), upper alpha (10–14 Hz), low beta (14–18 Hz)

and upper beta (18–26 Hz).

As in the ERP analysis, in an attempt to avoid contamination from previous

cuts, only those cut/non-cut epochs that were far from other cuts were used for

the analysis.

7.2.4 Left/Right Attention Shifts

The last frame before each cut and the first one after the cut were extracted and

sequentially shown (in order) to 7 participants that matched the mean age of

those who participated in the original EEG experiment.

For each image, volunteers were asked to manually select (by pressing a mouse

button) the location of the image where they felt there eyes were first directed

to, and to do so as quickly as they could.

The x- and y-coordinates selected by each participant (starting at the top left

of the image and with increasing x and y values towards the bottom and right side

of the screen, respectively) for each image were stored and analysed as follows:

first, we used two methods to assess the degree of concordance between differ-

ent participants. These were the Overall Concordance Correlation Coefficient

(OCCC) [Barnhart et al., 2002; Lin et al., 2002; Lin, 1989] and the Normalised
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Scanpath Salience (NSS) [Dorr et al., 2010], which are explained below.

Secondly, after seeing the large variance of the NSS results, only those cuts

for which there was a high synchrony both in the last frame before and the first

frame after the cut were considered. Since we wanted to keep the dataset as

clean as possible, we decided to set a high threshold for deciding whether there

was high attentional synchrony or not. In particular, we chose the third quartile

across all the NSS values obtained for all the images.

Then, the attentional spots selected by the participants were averaged for

each image to obtain the x-coordinate of the attentional spot.

Finally, since we were only interested in studying those cuts for which a shift

of attention was expected, only those cases were the difference between the x-

coordinates of the attentional spots before and after the cut were ≥ 111.11 pixels

(i.e. 2◦ of visual angle, which is approximately the area covered by the fovea [Luck,

2012]) were considered. This was decided based on the assumption that the eyes

of the viewers would be fixated on the attentional spot of the frame before the

cut and thus no attention shift would happen if the attentional spots before and

after the cut were too close to each other on the horizontal axis.

7.2.4.1 Overall Concordance Correlation Coefficient

The concordance correlation coefficient was first proposed by Lin [1989] as a

measure of agreement before two different methods or judges. For example, it

could be used to validate a new method by comparing it to a established golden

rule.

The general case used when several methods are compared to each other is

called the Overall Concordance Correlation Coefficient (OCCC) and expressed in
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terms of the means, variances and covariances of the different judges across all

measurements, is given by the following equation [Barnhart et al., 2002]:

ρc =

2
J−1∑
j=1

J∑
k=j+1

σjk

(J − 1)
J∑
j=1

σ2
j +

J−1∑
j=1

J∑
k=j+1

(µj − µk)2

,

where J is the number of judges, µj represents the mean for judge j, σ2
j is the

variance of judge j, and σ2
jk is the covariance between the pair of judges j and k.

The OCCC ranges between -1 and 1, where the minimum value represents

perfect discordance between the judges and 1 is complete agreement between

them.

7.2.4.2 Normalized Scanpath Salience

The NSS was first developed to compare how saliency models match human gaze

data. However, it can also be used to assess inter-subject variability [Dorr et al.,

2010].

In order to compute the NSS, a fixation map needs to be constructed for each

image. Instead of using features extracted from the images themselves to create

such maps, we used the coordinates chosen by the other participants to construct

a fixation map in a leave-one-subject-out loop. This allowed us to evaluate the

similarity of the left-out participant to all the other observers.

The method to construct the fixation maps is as follows [Dorr et al., 2010]. For

each image i and observer j from the training set S, the x coordinate of the at-

tentional spot xij was obtained. For each of them, a spatial Gaussian Gi
j centered

around this coordinate was placed in a spatial fixation map F . The Gaussians
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were added across the training set participants for each frame. Formally,

F (x) =
∑
j∈S

M∑
i=1

Gi
j(x)

where M is the total number of images and

Gi
j(x) = e

−
(x− xij)2

2σ2
x .

F was normalised to have zero mean and a standard deviation of 1. This is what

is called an NSS map.

N(x) =
F (x)− F̄ (x)

SD(F (x))

Finally, the NSS for the left-out participant is computed as the average of the

NSS maps evaluated at the coordinate chosen by the test participant xikk.

NSS =
1

M

M∑
i=1

N(xik)

The interpretation of this measure is as follows: positive values of the NSS

indicate that the test participant is choosing attentional spots in agreement with

those chosen by the participants used to generate the maps. If, however, the

chosen spots are uncorrelated with those from the rest of the group, the NSS will

be 0. Lastly, negative values indicate that the attentional regions chosen by the

test participant are very different from those of the training group.

After assessing the similarity between the participants, we used the data from

all the participants to generate a new NSS for each frame, and the maximum
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Table 7.2: Range of ratings and median ranking given by participants to each
movie clip. Low numbers indicate higher preference. Rows have been sorted by
the median of the rankings (last column).

Movie ID Range Median
Ven2 [1, 5] 2.0
Ven1 [1, 4] 3.0
IM1.1 [1, 6] 4.0
IM3.3 [1, 8] 4.5
IM3.4 [3, 7] 5.0
IM1.2 [3, 9] 6.5
IM3.1 [6, 11] 7.5
IM3.2 [7, 10] 8.0
IM1.3 [7, 12] 9.0

SH [2, 10] 10.0
Exp1 [4, 12] 11.0
Exp2 [10, 12] 11.5

value was used to determine whether there was high attentional synchrony or

not. In particular, we used the third quartile as a threshold to decide whether

the frame would be considered for further analysis or not.

7.3 Results

7.3.1 Behavioural Results

Table 7.2 summarises the rankings for each movie clip taking into account the

responses from all participants.

In general, the participants agreed on their assessments of the different clips.

For example, the least preferred clips belonged to the movie “The Expendables”

for all except one participant. Similarly, 9 out of 10 participants ranked Ven2

with a 1 or a 2, and the clip from Sherlock Holmes with a 10. Opinions were
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divided across all clips from Iron Man 1 and Iron Man 3, which could add noise to

the results for these two movies when using this information in the ERP analysis

below if clip preference is related in any way to the ERPs that are evoked in

response to cuts.

7.3.2 ERP Analysis

Figure 7.1 shows the time course of the grand average of the ERPs at several

central and centro-posterior channels, for the cut and non-cut conditions. A large

negative ERP starting 100 ms after the cut and extending until after 700 ms is

clearly present in the cut condition, but not in the non-cut condition. The peak

amplitude of this component decreases (in absolute value) as we move toward the

posterior electrodes.

This ERP has a similar time course to the frontal SCPs shown by Francuz &

Zabielska-Mendyk [2013]. However, the waveform that they reported was positive

toward the back of the head (e.g., Pz), whereas the one we found remains negative

throughout.

The other main ERP study using cuts that we are aware of is that of Sitnikova

et al. [2008]. The time course and scalp topography of our ERP is quite similar

to theirs, specially for frontal electrodes.

The scalp maps representing the scalp distribution of voltages at 200 ms and

400 ms after a cut shown in Figure 7.2 offer evidence that this component is

present in frontal and central electrodes, extending also to centro-posterior sites1

1This ERP is unlikely to be associated with eye blinks because these would manifest as large
positive deflections at frontal electrodes with much reduced effects at central and posterior sites
(neither of which is the case in Figure 7.1), and we have corrected for ocular movements and
eye blinks.
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Figure 7.1: Grand average plot for cuts and non-cuts at electrodes (a) FCz, (b)
CPz, (c) Pz, and (d) Oz.

In order to derive a more detailed, cut-by-cut, analysis, we then used the cBCI

technique of averaging signals across the 9 participants. For each epoch in the

averaged signals, the median amplitude was calculated across the time interval

380–420 ms, where the second peak of this ERP appears, across all electrodes.

We term this value Post-Cut Negativity (PCN) hereafter. Median amplitudes

of the PCN for cuts were larger (in absolute value) than median amplitudes for

non-cuts (−1.77 and 0.09 µV , respectively). The distributions in the two groups
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Figure 7.2: Scalp distributions of voltage amplitudes 200 and 400 ms after a cut
for three representative participants.

Table 7.3: P values from a two-sided Mann-Whitney test with Bonferroni cor-
rection for PCNs across different movies.

IM3 SH Exp Ven
IM1 0.39 4.9× 10−2 5.2× 10−3 1.9× 10−2

IM3 – 1.7× 10−2 1.1× 10−2 5.7× 10−2

SH – – 1.5× 10−3 3.1× 10−3

Exp – – – 0.74

differed significantly (W = 369, 415, p < 2.2× 10−16) according to a two-sample

Mann-Whitney test comparing cut and non-cut conditions.

7.3.3 Influence of Movie and Cut Characteristics on PCN

As illustrated in Table 7.3, which reports the Bonferroni-corrected p values ob-

tained from a two-sided Mann-Whitney U test comparing PCNs across different

movies for the cut condition, PCNs vary across movies.

We studied the effects of clip preference (i.e., median subjective ranking of a

clip) and median PCN amplitude in that clip. However, no correlation between

these factors was found (Spearman’s ρ = −0.25, S = 358.4, p = 0.21).
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We then explored whether shot length, cut luminance and optical flow could

be factors in determining such differences in PCNs. Results of these analyses are

reported in the following subsections.

7.3.3.1 Shot Length

We studied the effects of shot length (defined as the period between two cuts) on

PCN amplitude. Figure 7.3 shows that the median shot length and the median

PCN for different clips and movies are correlated (Spearman’s ρ = −0.7, S =

486.3, p = 5.6×10−3). Due to noise, the PCN for individual cuts shows a smaller

correlation with the length of the shot, but this is highly statistically significant

(Spearman’s ρ = −0.23, S = 1.7 × 108, p = 2.4 × 10−13). These results indicate

that the PCN is related to scene length, with long scenes resulting in larger (in

absolute value) PCNs. Since only those cuts that were not preceded by another

one within the previous second were not included in the analysis, this effect is

unlikely to be caused by shorter cuts being baselined at a lower activity level as

not having time to settle back to 0.

7.3.3.2 Luminance

Luminance was calculated as in Cutting et al. [2012]: the last frame preceding

each cut and the first after it were first converted to grayscale, which results in

values between 0–255. The luminance for each image was then calculated as the

median for that frame.

No correlation was found between the average luminance of the first frame

following a cut and PCN (Spearman’s ρ = 0.02; S = 1.3 × 108, p = 0.57),

nor between the average luminance of the last frame before the cut and PCN
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Figure 7.3: Median shot length as a function of median PCN.

(Spearman’s ρ = 0.07; S = 1.2× 108, p = 0.03).

Finally, the difference in luminance across the cut was calculated as the median

luminance after substracting each value from the frames following and preceding

each cut. Again, no correlation was found between this factor and PCN amplitude

(Spearman’s ρ = 0.13; S = 1.3× 108, p = 0.13). Similarly, These results indicate

that variations of PCN amplitude are not related to the low-level features of a

scene.

7.3.3.3 Optical Flow

The optical flow (or image velocity) is a measure of the distribution of apparent

velocities of movement of brightness patterns in a sequence of images. It is an

estimate of the shift that is needed in an image in order to obtain the next one.

It can, thus, be used to determine whether there is motion before, after or on the
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two sides of a cut.

In order to check the impact of motion on the PCN, the average optical

flow was calculated across the ten frames preceding a cut, the average opti-

cal flow across the ten frames after the cut and the difference between them

through Farnebäck [2003]’s algorithm as implemented in the OpenCV library Brad-

ski [2000].

There was no correlation between any of these and the amplitude of the PCN

associated to that cut (Spearman’s ρ = −0.05, ρ = −0.02 and ρ = 0.02, respec-

tively). Hence, there is no evidence that motion before, after or across a cut has

an impact on the amplitude of the PCN evoked by the cut.

7.3.4 Shifts of Attention in Movies

As pointed out previously, researchers that looked into the brain’s response to

cuts found differences between related and unrelated cuts, but no P300-like

ERPs [Francuz & Zabielska-Mendyk, 2013], so we did not expect to find this

component in our data. However, to the best of our knowledge, no attempt at

finding the N2pc to signal a shift of attention after a scene change has occurred.

We will first look at the behavioural response of the participants that anno-

tated the focus of attention for each frame surrounding a cut, and will then show

the ERP (calculated as in previous chapters, by means of the contralateral and

ipsilateral waveforms at channels PO7 — located on the left hemisphere — and

PO8 — on the right on selected cuts).
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Table 7.4: Average normalised scanpath salience (NSS) and overall concordance
correlation (ρc) coefficient for each video clip.

Movie ID NSS ρc
IM1.1 1.67 0.33
IM1.2 1.62 0.16
IM1.3 1.53 0.26
IM3.1 1.67 0.24
IM3.2 1.53 0.26
IM3.3 1.67 0.22
IM3.4 2.01 0.33

SH 1.96 0.40
Exp1 1.78 0.21
Exp2 1.36 0.23
Ven1 1.86 0.56
Ven2 1.80 0.47

Average 1.72 0.30

7.3.4.1 Inter-Subject Agreement in Attentional Spots

In order to evaluate the quality of the ground truth provided by the volunteers

when selecting the focus of attention, we took into account the attentional syn-

chrony that is expected from edited films [Smith & Henderson, 2008a; Smith &

Mital, 2013].

Let us start by looking at the degree of synchrony between the participants.

Table 7.4 shows the average NSS and OCCC from the leave-one-participant-out

loop for each of the video clips. Across all participants and movies, the average

NSS was 1.72, and the OCCC was 0.3.

One of the advantages of the OCCC with respect to the NSS is the fact that

its value is bound between ±1, so there exist guidelines for its interpretation. In

general, values of the OCCC between 0.4–0.59 are typically considered to signal

fair agreement between the judges [Cicchetti, 1994]. In comparison, the values
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that we obtained are quite low, and only three of the clips belong to In contrast,

our average is below this number, and only three of the clips shown to participants

have a ρc in this range. Hence, we decided not to use all the data available, but

only those for which there was a very high NSS value.

If f denotes the first frame after the cut, we asked participants to annotate the

first part of the scene to which they were drawn to, for frames f and f −1, for all

cuts from all the video clips that the first group of participants had watched. The

attentional spot for each image was calculated as the mean of all the x-coordinates

determined by the participants.

The attention shift was then calculated as the difference in the x-coordinate

of the attentional spot at frame f minus that of frame f − 1.

Cuts were divided into those that should have evoked a shift of attention to

the left and those that were expected to shift the viewers’ attention to the right.

7.3.4.2 ERPs in Attention Shifts

Due to the very high restrictions that we imposed on our dataset, the final num-

ber of cuts for which we expected an attentional shift (signalled by the N2pc)

was much lower than the original number of cuts. In total, there were 48 cuts

belonging to the “left” and 21 cuts in the “right” categories. Hence, a total of

621 cuts are included across all participants.

Figure 7.4 shows the grand average of the contralateral minus the ipsilateral

waveforms recorded at electrode sites PO7 and PO8 for cuts that were expected

to produce a shift of attention towards the left or right side of the screen.

Although a lot of noise is present in this grand average, an N2pc-like ERP is

found starting around 250 ms after the cut. We believe the reason for this noise
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Figure 7.4: Contralateral minus ipsilateral grand averages for left and right cuts
across all participants.

is that the shift of covert attention is not produced when the cut occurs, but

rather, as suggested by Smith [2012], viewers may have been cued before the cut

is introduced in order to make the cut invisible, so the shift of attention occurs

before. If this was the case, given the fact that we are locking the epochs to the

occurrence of the cut and the actual shift of attention occurs at a variable time

before it, we would not be able to obtain an ideal-like N2pc.

In any case, at this point, we cannot be certain that the ERP component from

the figure is indeed an N2pc.
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7.3.5 Frequency Analysis

Previous analyses of variations in the EEG while watching video segments found

in the literature focused mainly on the frequency domain. Such previous work

reported variations of power in the alpha band (e.g., [Reeves et al., 1985]), which

were then related to changes in mental effort and attention. For example, it has

been shown that cuts evoke a decrease of power in the alpha band (also known

as alpha blocking), which is known to be representative of a higher mental load

or to a focusing of attention [Lang et al., 1993; Reeves & Thorson, 1986; Reeves

et al., 1985; Rothschild et al., 1986; Smith & Gevins, 2004].

In this chapter we looked at variations of EEG activity in the frequency do-

main, through the traditional study of event-related synchronisation and adding

an analysis of changes in coherence between pairs of electrodes, which, to the best

of our knowledge, had not been attempted before.

7.3.5.1 ERD/ERS Analysis

ERD/ERS maps allow us to look at the distribution of the evoked response to

the occurrence of a cut in different frequency bands. The average ERD/ERS

calculated across all participants and movie clips are shown for different time

intervals and frequency bands (as described on page 183) in Figure 7.5.

These plots show the alpha blocking effect that had been previously reported.

Indeed, the only frequency band for which an ERD effect is clear is the upper

alpha band, whereas the rest of the bands show ERS patterns across the whole

scalp, specially in the low beta frequency range.

Despite the fact that these grand average plots seem to be an all-or-nothing
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Theta Lower alpha Upper alpha Low beta Upper beta
(4–8 Hz) (8–10 Hz) (10–14 Hz) (14–18 Hz) (18–26 Hz)

0–100 ms

200–300 ms

400–500 ms

Figure 7.5: Grand averaged spatial distribution of ERD/ERS after the occurrence
of a cut at different time intervals (from top to bottom: [0,100], [200,300] and
[400,500] ms, referred to cut onset), for theta, lower alpha, upper alpha, low beta
and upper beta bands.

response, individual ERD/ERS plots show more variation on the scalp, as shown

in Figure 7.6, which represents the ERD/ERS response to cuts for participant

003. Even though the color scale is the same as for Figure 7.5, much more detail

can be appreciated from the individual ERD/ERS scalp plots when compared

to the grand averages. As we noted in Section 2.2.1.3, grand averages show the

earliest onset and latest offset of a component [Luck, 2014; Rothschild et al.,

1986]. These may vary noticeably across participants, as seems to be the case for

the ERD/ERS plots. However, the grand average only shows the most persistent

features, and not those that are not common to all participants.

The individual ERD/ERS plots for the remaining participants can be seen in
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Theta Lower alpha Upper alpha Low beta Upper beta
(4–8 Hz) (8–10 Hz) (10–14 Hz) (14–18 Hz) (18–26 Hz)

0–100 ms

200–300 ms

400–500 ms

Figure 7.6: Spatial distribution of ERD/ERS after the occurrence of a cut for
participant 003 at different time intervals (from top to bottom: [0,100], [200,300]
and [400,500] ms, referred to cut onset), for theta, lower alpha, upper alpha, low
beta and upper beta bands.

Appendix D. Even though they, in general, display a higher variance in colours

with respect to the grand average, some patterns are common to all participants:

the very high level of desynchronisation in the upper alpha band that is spread

along the scalp, and similarly high level of synchronisation in the beta band

(both low and upper beta ranges). These are consistent with the literature and,

in particular, with the phenomenon known as alpha blocking [Appel et al., 1979;

Lang et al., 1993; Reeves & Thorson, 1986; Reeves et al., 1985].

So far we have looked at ERD/ERS plots that show the behaviour in the

frequency domain of each electrode site in response to cuts. However, this type

of analysis does not take into account the way in which different regions interact
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Theta Lower alpha Upper alpha Low beta Upper beta
(4–8 Hz) (8–10 Hz) (10–14 Hz) (14–18 Hz) (18–26 Hz)
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Figure 7.7: Average coherence between pairs of electrodes regions before (top
row) and after (bottom row) the occurrence of a cut in different frequency bands.

or influence each other. For this, we looked at the coherence between all possible

pairs of electrodes, before, after and across cuts.

7.3.5.2 Variations in Spectral Coherence Evoked by Cuts

Figure 7.7 shows the average coherence (across all participants and movies) be-

tween all possible pairs of electrodes before and after cuts for different frequency

bands. For clarity purposes, it should be noted that only those links between elec-

trodes for which the coherence was greater than 0.45 were plotted in this figure.

For the interested reader, the original coherence plots are shown in Appendix D.

There are no major changes between the “before” and “after” conditions for

a given frequency range, a fact that indicates that the functional coupling (or

connectivity patterns) between brain areas is not affected by the cut when the
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same time intervals are considered (i.e., when only epochs from before or only

epochs from after the cut are used). In fact, coherence either stays the same or

slightly decreases after the cut (with respect to before the cut). This drop is most

evident in the upper beta band. This seems to indicate that the occurrence of a

cut does not significantly alter the information transfer between brain areas.

Moreover, the highest coherence is consistently found in the anterior regions

of the brain across all frequency bands, both before and after the cut, and de-

creases as we move towards the back of the scalp, with the lowest values being

located in the posterior areas (especially in the left hemisphere). These findings

are consistent with previous reports of coherence during different cognitive tasks

(e.g., [Rappelsberger & Petsche, 1988; Sauseng et al., 2005]).

However, when coherence is calculated across the cut, the pattern changes,

as shown in Figure 7.8. Coherence for a given region calculated between pairs of

regions using epochs before and after the cut decreases to values between 0.29 and

0.32 in all electrode pairs and frequency bands considered. Given the small range

of values for each topoplot, no threshold for the minimum value of coherence was

applied to these plots.

The results shown in this figure, and in Figure 7.9, which illustrates the co-

herence for different frequency bands between the pre- and post-cut conditions at

each particular electrode, show that the dominant frequency within each of the

bands considered changes after the occurrence of the cut. Moreover, they also

highlight that there are changes in information transfer across the brain regions

that occur after the occurrence of a cut.

The fact that the functional connectivity between pairs of electrodes before

and after the cut is not affected (as shown in Figure 7.7 means that the cut does
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Figure 7.8: Average coherence between pre- and post-cut conditions for pairs of
electrodes.

Theta Lower alpha Upper alpha Low beta Upper beta
(4–8 Hz) (8–10 Hz) (10–14 Hz) (14–18 Hz) (18–26 Hz)

Figure 7.9: Average coherence between pre- and post- epochs for each electrode.

not alter the information transfer between different parts of the brain. However,

the drop in coherence seen in Figures 7.8–7.9 indicates that the dominant fre-

quency within each band changes. As we discuss below, this is consistent with

the ERD/ERS plots from the previous section (Figure 7.5), which showed power

changes in all frequency bands after the occurrence of a cut.

209



7.4 Discussion

This chapter explored what happens in the brain as a result of cuts in feature

movies. In particular, both the time (through an ERP analysis) and the frequency

domains (including ERD/ERS and coherence across different regions in the scalp)

were considered.

A large and distinctive negative ERP was found time-locked to the occurrence

of scene changes. This ERP is distributed on most frontal and central electrode

sites and on several parietal sites in most participants. This ERP could be either

an N400 or the SCPs identified in previous research using more constrained types

of videos Francuz & Zabielska-Mendyk [2013]; Reid & Striano [2008]; Sitnikova

et al. [2003, 2008]. In particular, our ERP seems to fit with the time course

and scalp topography of the N400 component reported by Sitnikova et al. [2008].

These components are linked to processes taking place during the integration of

new semantic information acquired after the cut into a context built before the

cut.

Because this ERP has such a wide scalp distribution and an approximate

latency of 400 ms, we chose to characterise it by using the median voltage across

all channels in a 380–420 ms time window. Also, to further increase the SNR of

the ERP, thus allowing a cut-by-cut analysis in the time domain, we borrowed

the technique of averaging epochs (on a trial-by-trial basis) across participants

from the area of cBCIs. The resulting value was called the post-cut negativity.

While the PCN is clearly a very coarse-grained quantity along the spatial and

participant axes, it is still maximally sharp in the time domain. That is, each

cut has an associated PCN value. This makes it possible to attempt, for the first
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time, to characterise cuts at a finer resolution than that of the standard taxonomy

including only related and unrelated cuts.

In particular, we were able to highlight a previously unreported relationship

between shot length and the corresponding PCNs in related cuts. This may be

due to movies with longer scenes having richer plots, resulting in more complex

context updates being required following rarer cuts. In contrast, fast-paced movie

clips showing rapid sequences of cuts (e.g., due a number of related explosions)

would only require smaller context updates (and associated PCNs) after the first

cut (perhaps an unexpected explosion). It should be noted that, even in the case

of movies with short scenes, only ERPs that were free of baseline contamination

from previous cuts were included. Thus, it is unlikely that these results are due

to issues with the baseline process.

This is somehow consistent with the behavior of other ERPs, such as the P300,

the amplitude of which is modulated by the rarity (and, correspondingly, the

waiting time) of target stimuli [Polich, 2004a]. However, unlike P300 amplitudes,

PCNs do not depend on low-level features such as the changes in luminance

necessarily associated with cuts, further indicating the high-level nature of the

cognitive processes associated with cuts and represented by the PCN.

In the analysis, it was also found that PCNs varied across movies and, to a

lesser extent, clips extracted from the same movie. This makes sense, as different

techniques for joining shots may be used by professional movie editors, based on

their own style, experience and the intended effect of the cut.

Particularly appealing from this perspective is the possibility of building col-

laborative BCIs, perhaps based on finer features of cut-related ERPs than the

simple PCN used in this chapter. These could objectively evaluate whether spe-
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cific cuts in a movie actually achieve the effect intended by the movie editor or

director, during the test screening phase of the movie. For example, as shown in

Section 2.5, one of the fields that the attentional theory of cinematic continuity

[Smith, 2012] the reasons behind some cuts being perceived by viewers whilst

other are invisible (also termed edit blindness) [Smith & Henderson, 2008b]. In

this work we did not ask participants to detect cuts, so it is not possible to

correlate the amplitude of the PCN with the probability of a cut being missed.

However, recent research shows that motion before and/or after the cut (e.g., in

match-action types of edits, where a cut is introduced after the onset of motion

and shows the continuation of that motion or action in the second shot) affects

this probability [Smith & Yvonne Martin-Portugues Santacreu, 2016]. Unfortu-

nately, the basic experiment included in this chapter that considered the optical

flow as a measure of movement in a scene did not show relationships between

PCN amplitude and movement before and after the cut. However, the analysis

did not distinguish amongst the many different types of cuts and did not consider

which proportion of these were of the match-action type, so it is not possible to

directly compare these results with the aforementioned literature.

It is a well-known fact that power in the upper alpha (especially in the left

hemisphere) and theta bands is linked to the processing of semantic informa-

tion [Klimesch, 1996, 1999]. Given that theta synchronisation signals memory

retrieval and encoding of information, the ERS found after the cut in this fre-

quency band might indicate the activation of context-updating processes. In this

light, the synchronisation observed in theta (as well as the alpha blocking in

the upper alpha region — associated to long-term memory processes) will also

support the hypothesis that the PCN is signalling the integration of new seman-
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tic information [Klimesch, 1996, 1999; Sauseng et al., 2005; Schack et al., 2005]

mentioned above.

Lastly, we looked at the spectral coherence between pairs of electrodes before,

after and across the occurrence of a cut. The results show that coherence is

stronger between anterior brain areas than between posterior regions, both before

and after the cut. Taken together with the results above, and, in particular, with

the hypothesis that the PCN and the changes in ERD/ERS that we found signal a

context updating process in the brain, the fact that coherence is higher in frontal

regions of the brain is consistent with the hypothesis that the prefrontal cortex

is highly involved in working memory processes [Sauseng et al., 2005], e.g., for

updating the previously-built context with the new information presented after

the cut.

Moreover, coherence decreases greatly across all pairs of regions when epochs

before and after the cut are considered. Since coherence is the cross-correlation

of two spectra, the observed drops in coherence values indicate changes in the

dominant frequencies within each band. This is related to the synchronisation

and desynchronisation of the frequency bands considered: synchronisation in a

given band implies that more groups of neurons start oscillating at frequencies

that are very close to each other, thus limiting the bandwidth of the oscillation

frequencies, increasing the chance of interference being constructive (i.e., the

sum of the oscillations is larger) and, thus, the power in the band. In contrast,

when desynchronisation occurs, oscillations at different frequencies might result

in destructive interference, which in turn decreases bandpower.
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7.5 Conclusions

In this chapter we studied the brain’s response to cuts in action movies from

Hollywood. We found a large ERP that is elicited by cuts and whose amplitude

is not correlated with low-level features of the movie, which suggests that it may

be related to processing of information and/or context updating processes. In

addition to this ERP, we showed that an N2pc-like ERP is elicited in response to

lateral shifts of attention in the cut. We cannot be sure at the moment that this

ERP is indeed an N2pc component, but believe that it is quite likely to be one.

Thus, we plan to further study this aspect in the future.

In addition to the ERP analyses, we performed an ERD/ERS analysis that

showed that cuts in our experiment have the same alpha blocking effect that had

been reported previously in the literature. We have not studied this effect on a

movie-by-movie or cut-by-cut basis, but this is another aspect that we would like

to pursue in the future.

Even though this chapter has barely scratched the surface of studying the ef-

fects of cuts on memory and perception, we feel that this research has opened up

a number of promising avenues both for the psychophysiology of motion pictures

and for applications of cBCIs in cinematography, television, advertising, etc. Par-

ticularly promising results may be obtained in the area of edit blindness, which

might, in turn, help understand different mechanisms of the brain associated with

memory and the processing of information.

An important fact that should be born in mind is that in this work we did

not use EOG electrodes to monitor eye movements from the viewers in the free

watching task. It is important in this type of work to ensure that the ERPs that
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we have found are not the product of horizontal saccades, which are not accounted

for in the artefact correction method that we used. However, considering the lack

of activation in the frontal electrodes near the eyes (e.g., AF7, AF8), we do not

believe that this is the case. Moreover, the similarity of our ERP with those pre-

viously reported elsewhere [Francuz & Zabielska-Mendyk, 2013; Sitnikova et al.,

2008] also seems to suggest that this is a real effect, and not the product of hori-

zontal eye movements. In any case, a further data collection with eye tracking is

recommended and remains as a task for the future.
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Chapter 8

Conclusions and Future Work

This chapter ends the thesis with a summary of the main contributions of the

work and a description of different avenues for future exploration.

8.1 Summary of Contributions

Brain-computer interfaces have been developed for a few decades. At first, they

were created with the intention of restoring communication capabilities for people

with severe disabilities. However, advances in different aspects related to BCIs,

such as signal processing, processor capabilities and different technological aspects

have made it possible to conceive such systems for augmenting human capabilities,

e.g., through collaborative BCI systems in which multiple users control a single

device.

This new architecture is very useful at fighting one of the main problems

that traditional single-user BCI systems face: the high amount of noise that is

recorded by the electrodes, an issue that is especially severe when moving out of
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the ideal laboratory conditions. Electromagnetic interference (e.g., in the form

of a 50 or 60 Hz component) and muscular artefacts are some of the causes of

contamination in the EEG signals, which difficult the discrimination task for a

classifier trained to distinguish between a number of classes or states.

Another major source of noise is the background activity of the brain, which

is also affected by distraction or tiredness of the BCI user. External stimuli can

trigger neural responses (e.g., ERPs) that can be picked up by EEG equipment

and used to control a BCI. However, the background activity that is always

present in combination with any other source of contamination in the EEG can

mask these responses in single-trial systems. In systems where speed is a key

factor, or where presenting the same stimulus to a user multiple times to gather

more information to aid classification is not feasible, performance of the BCI

system can be increased by merging evidence from multiple users.

This idea is the basis of this thesis, which explored different alternatives for

blending information from multiple users through ERP-based collaborative brain-

computer interfaces.

We first studied three different types of cBCIs in a visual search task in which

participants had to find targets within rapid streams of images. One of the main

findings of this work was the presence of the N2pc ERP in such a complex

scenario with real-world imagery and its modulation in amplitude due to

the distance from the target to the centre of the screen. This allowed our systems

to not only detect the presence of a target, but also to identify the area of

the image where it was located using the amplitude of this evoked potential

in response to lateralised targets. Moreover, we found that the N2pc varied

significantly depending on the handedness of the user.
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As expected, collaborative BCIs were able to outperform single-user BCI sys-

tems. Moreover, we presented a user selection method for grouping users

which increased the performance of the cBCI even further, and managed to

achieve median improvements above 20% with respect to the best user of a group.

In the second experiment, participants were asked to watch a series of clips

extracted from Hollywood feature movies. We used the approach of averaging

EEG signals from single trials across multiple users. This technique allowed us

to look in detail at a previously unreported ERP, the post-cut negativity

(PCN) that occurs in response to a discontinuity (or cut) in the movie.

We were able to perform a cut-by-cut analysis and found that the amplitude

of this ERP was not affected by the low-level features of the scene, and that it

correlates with the length of the scene in a movie, possibly pointing at a

context-updating mechanism that is signalled by the PCN.

This context-updating theory was further supported through an

analysis in the frequency domain that showed changes in ERD/ERS in the

upper alpha and theta bands in the same way in which they are known to be

related to long-term and working memory, respectively.

To summarise, the main contributions of this work are the following:

• Studying three ways of combining evidence from multiple users for a target

detection task.

• Showing that the N2pc is found in the very hard conditions of our experi-

ments, and that it varies significantly according to the user’s handedness.

• Attempting a target localisation task, both in single-user and collaborative

BCIs, using only EEG signals (the N2pc).
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• Developing and validating a theoretical model for explaining the improve-

ments that are obtained in the collaborative BCI systems.

• Performing a cut-by-cut analysis of ERPs elicited in response to movies,

and showing that this ERP (possibly an N400) is not affected by low-level

features of movies.

8.2 Future Work

The work presented in this thesis has opened up a number of additional research

pathways that we believe are worthy of exploration in future research.

One of the limitations of my RSVP experiment was the use of a limited amount

of different possible target templates (i.e., between one and three different planes,

although randomly rotated), and the repetition of one of the types of airplanes

in most of the levels. Indeed, we saw a drop of performance in difficulty levels

where pictures were presented at the same speed but contained more types of

targets, with respect to levels where only one type of target was used. There are

multiple possible causes for this, but we believe the most likely one is the effect

of intertrial priming (see Section 2.4.3.3) to the most frequent template.

The intertrial priming effect has been studied mainly with pop-out types of

targets (e.g., red targets in a display of black and white distractors), and with

relatively basic shapes (e.g., vertical and horizontal lines). However, to the best

of our knowledge, it has not been studied with complex stimuli such as the ones

used in this PhD thesis. We believe that further research on this effect would be

beneficial for triage systems.

As discussed in Section 4.3.1, another limitation of this work is that, for very
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practical reasons associated with how participants react to high-speed protocols,

the order of the 5, 6, 10, 12 and 15 Hz conditions was not randomised across

subjects. Obviously, this would be required for a more precise comparison across

presentation rates. In future research we will address this issue by extending

the pre-experiment practice sessions, e.g., by inviting participants twice: once for

practice, and a second time, after they are rested again, for the real experiment.

This will make it possible for participants to adapt to the speed of the proto-

col before the real experiment starts, thereby allowing a fully counterbalanced

experimental design.

Although most of the difficulty levels used in this work include only one specific

template of an airplane, we saw that, for the relatively high presentation rate of

10 Hz, the changes in peak amplitude of the N2pc are not significant when moving

from this paradigm to one which contains multiple different airplanes. In future

work, we will need to verify if these results still hold for different shapes of targets

and types of images, to see to what extent it is possible to build BCIs that can

be used for target detection and localisation across a range of target types.

Moreover, the discovery of the differences in the N2pc related to handedness

should be taken into account in the future, both in the literature of the N2pc

related to attentional processes, and for creating cBCIs (especially in the sin-

gle classifier approach — SC-cBCI — i.e., when averaging EEG epochs across

multiple users).

Another limitation of this work is the amount of data that was analysed in the

first scenario. Multiple methods have been tested on the same dataset, which may

have resulted in our methods overfitting to these data. Thus, as we have indicated

throughout this PhD thesis, applying our methods to a completely unseen test
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set is needed in order to fully validate the results presented here.

With respect to the second scenario, as stated before, we believe it should

be possible to link the presence and amplitude of the PCN with the theory of

cinematic continuity. Determining what are the differences in the brain’s response

between cuts that are and those that are not perceived by a viewer might give us

an additional insight into the psychophysiology of movie-watching, with possible

applications in the cinematic community. The correlations used in this thesis (see

Chapter 7) considered either the whole clip or individual cuts to study the PCN.

Instead, smaller fragments of the clip (e.g., of 5–10 seconds of duration) might

increase the resolution of this measure. For example, this would allow researchers

to study whether the PCN correlates with the emotional state of viewers.

Furthermore, the movies selected for this experiment were explicitly selected

for the high number of cuts presented in them, due to the fast pace that is typical

of action movies (further enhanced by the occurrence of explosions). An extension

of this analysis to other types of movies might provide extra information on the

behaviour of the PCN.

Finally, further work is needed in the field in terms of artefact correction

mechanisms and a study of the ways in which movement artefacts really affect

BCI performance. Considering that the cBCIs presented in this thesis are de-

signed mainly with the able-bodied population in mind — although they can, of

course, be used by people with disabilities—, positive results in this area would

definitely open the door to the use of the EEG to study neural responses and au-

tomatic reactions without requiring participants to stay still for the duration of

the experiment. “Normal” behaviour is affected by the fact that a person is being

observed. This is also the case when the person under observation is wearing a
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device to monitor different types of physiological data, as is the case of an EEG

cap, and more so when he/she is asked to remain as motionless as possible. Thus,

if the requirements that we impose on participants in experiments can be relaxed,

they will allow a more natural experience for the user (which might be a desired

effect, e.g., in the movie-watching scenario), and might provide researchers with

additional information, e.g., from a psychophysiological point of view.

Moreover, research in this area could also be appended to the results presented

from the cBCI systems in the early chapters of this thesis, making also EEG-based

triage systems more attractive for intelligence analysts. As it is unlikely that all

group members will perform movements simultaneously, this would be the case

if the robustness to noise achieved by our systems is able to cope better with the

motion artefacts.

Collaborative BCIs are a promising solution to many of the issues currently in-

herent in single-user BCI systems. The work presented in this thesis has explored

some of the open problems in this blooming field of research, but we believe that

it has also opened some promising avenues for future work, that we will hope-

fully aid to explore with contributions from other enthusiasts from the scientific

community, that we hope to keep being a part of.
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Appendix B

Comparisons Between the

Collaborative BCI Methods

This appendix complements the results from Chapters 3–4, where the different

methods of combining evidence to form collaborative BCIs were compared.

The tables included in this appendix report the results of pairwise compar-

isons between the three modes of creating cBCIs: LDA-cBCI (“L”), MC-cBCI

(“M”) and SC-cBCI (“S”). The symbol > indicates that the method on the left is

significantly better than the one of the right (at the 5% significance level). These

values are also highlighted in bold face. However, if method names are separated

by the symbol =, they are not significantly different. N/A values are used to indi-

cate cases in which there were not enough samples to perform the test. Numbers

in the tables represent p values from one-sided paired Wilcoxon tests comparing

pairs of methods (after Bonferroni correction for multiple comparisons).
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Comparisons between the three modes of creating cBCIs for target detection. See
text for full description.

Difficulty level
Method Size 1 2 3 4 5 6 7

M
C

-c
B

C
I

v
s

S
C

-c
B

C
I

2
M=S M=S M=S M=S M=S M=S M=S
0.997 0.096 1 1 1 0.105 1

3
M>S M>S M>S M>S S>M M>S M>S
< 0.001 < 0.001 0.005 < 0.001 < 0.001 < 0.001 0.016

4
M>S M>S M>S M>S S>M M>S M>S
< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

5
M>S M>S M>S M>S S>M M>S M>S
< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

6
M>S M>S M>S M>S M>S M>S M>S
< 0.001 < 0.001 < 0.001 < 0.001 0.065 < 0.001 < 0.001

7
M>S M>S M>S M>S M=S M>S M>S
< 0.001 < 0.001 < 0.001 < 0.001 1 < 0.001 < 0.001

8
M>S M>S M>S M>S M=S M>S M>S
< 0.001 < 0.001 < 0.001 < 0.001 1 < 0.001 < 0.001

9
M>S N/A M>S N/A N/A N/A N/A
< 0.001 – < 0.001 – – – –

L
D

A
-c

B
C

I
v
s

S
C

-c
B

C
I

2
L>S L>S L>S L>S S=L L>S S=L
< 0.001 < 0.001 < 0.001 < 0.001 0.339 < 0.001 1

3
L>S L>S L>S L>S L>S L>S L>S
< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.000467

4
L>S L>S L>S L>S L>S L>S L>S
< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

5
L>S L>S L>S L>S L>S L>S L>S
< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

6
L>S L>S L>S L>S L>S L>S L>S
< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

7
L>S L>S L>S L>S L>S L>S L>S
< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

8
L>S L>S L>S L>S L>S L>S L>S
< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

9
L>S N/A L>S N/A N/A N/A N/A
< 0.001 – < 0.001 – – – –

L
D

A
-c

B
C

I
v
s

M
C

-c
B

C
I

2
L>M L>M L>M L>M L>M L>M M=L
< 0.001 0.012 0.025 < 0.001 < 0.001 < 0.001 1

3
L>M L>M L>M L>M L>M L>M M=L
< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 1

4
L>M L>M L>M L>M L>M L>M L>M
< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.009

5
L>M L>M L>M L>M L>M L>M L>M
< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

6
L>M L>M L>M L>M L>M L>M L>M
< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

7
L>M L>M L>M L>M L>M L>M L>M
< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

8
L>M L>M L>M L>M L>M L>M L>M
< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.010

9
L>M N/A L>M N/A N/A N/A N/A
< 0.001 – < 0.001 – – – –
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Comparisons between the three modes of creating cBCIs for target localisation.
See text for full description.

Difficulty level
Method Size 1 2 3 4 5 6 7

M
C

-c
B

C
I

v
s

S
C

-c
B

C
I

2
M>S M>S M>S M>S M>S M>S M>S
< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.007

3
M>S M>S M>S M>S M>S M>S M>S
< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

4
M>S M>S M>S M>S M>S M>S M>S
< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

5
M>S M>S M>S M>S M>S M>S M>S
< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

6
M>S M>S M>S M>S M>S M>S M>S
< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

7
M>S M>S M>S M>S M>S M>S M>S
< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

8
M>S M>S M>S M>S N/A M>S M>S
< 0.001 < 0.001 < 0.001 < 0.001 – < 0.001 < 0.001

9
M>S N/A M>S N/A N/A N/A N/A
< 0.001 – < 0.001 – – – –

L
D

A
-c

B
C

I
v
s

S
C

-c
B

C
I

2
L>S L>S L>S L>S L>S L>S L>S
< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.001

3
L>S L>S L>S L>S L>S L>S L>S
< 0.001 < 0.001 < 0.001 < 0.001 0.375 < 0.001 < 0.001

4
L>S L>S L>S L>S L>S L>S L>S
< 0.001 < 0.001 < 0.001 < 0.001 0.375 < 0.001 < 0.001

5
L>S L>S L>S L>S L>S L>S L>S
< 0.001 < 0.001 < 0.001 < 0.001 0.375 < 0.001 < 0.001

6
L>S L>S L>S L>S L>S L>S L>S
< 0.001 < 0.001 < 0.001 < 0.001 0.375 < 0.001 < 0.001

7
L>S L>S L>S L>S L>S L>S L>S
< 0.001 < 0.001 < 0.001 < 0.001 0.375 < 0.001 < 0.001

8
L>S L>S L>S L>S N/A L>S L>S
< 0.001 < 0.001 < 0.001 < 0.001 – < 0.001 < 0.001

9
L>S N/A L>S N/A N/A N/A N/A
< 0.001 – < 0.001 – – – –

L
D

A
-c

B
C

I
v
s

M
C

-c
B

C
I

2
M=L M=L M=L L>M M=L M=L M=L

1 1 1 0.010 1 1 1

3
L>M L>M M=L L>M L>M L>M M=L
< 0.001 0.002 1 < 0.001 < 0.001 < 0.001 1

4
L>M L>M L>M L>M L>M L>M M=L
< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 1

5
L>M L>M L>M L>M L>M L>M L>M
< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

6
L>M L>M M=L L>M L>M L>M L>M
< 0.001 < 0.001 1 < 0.001 < 0.001 < 0.001 < 0.001

7
M=L M=L L>M L>M L>M M=L M=L
0.384 1 0.008 < 0.001 < 0.001 1 1

8
M=L M=L M>L M=L N/A M=L L>M

1 0.055 < 0.001 1 – 0.083 0.002

9
M=L N/A M=L N/A N/A N/A N/A

1 – 1 – – – –
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Appendix C

Participant Selection results

This appendix complements the results from Chapter 6. The two sections of

the appendix focus on the target detection (Section C.1) and the target location

systems (Section C.2). For each of them, we start reporting the full results on

the effects of group member selection by providing the median AUC values for

each difficulty level and group size, for different values of the dissimilarity index

together with the percentages of groups (with respect to the maximum groups

that can be formed for each group size) that are accepted for each value of δ

considered. These subsections are then followed by level-by-level comparisons

between the AUCs achieved by the cBCIs and the average AUC performance

of the groups. Finally, each section concludes with tables that report the level-

by-level improvements that are obtained by the cBCIs with respect to the best

performer of the groups.
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C.1 Group Member Selection on the Target De-

tection System

C.1.1 Median AUCs with Group Member Selection

The tables from this section report the median AUC performance for each level

and group size, as a function of the dissimilarity threshold, as well as the per-

centages of groups that are accepted for each level and value of δ.
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Median AUC values for the three types of cBCIs for target vs non-target classifi-
cation for difficulty level 1, as a function of group size and the dissimilarity-index
threshold δ.

Group size

Method δ 2 3 4 5 6 7 8 9 10 11

SC-cBCI

5% 0.95 0.97 0.98 0.98 – – – – – –

10% 0.95 0.97 0.98 0.99 0.99 0.99 – – – –

15% 0.94 0.97 0.98 0.98 0.99 0.99 – – – –

20% 0.93 0.96 0.97 0.98 0.98 0.99 0.99 0.99 – –

25% 0.92 0.94 0.96 0.97 0.97 0.98 0.98 0.98 – –

100% 0.92 0.94 0.95 0.96 0.97 0.98 0.98 0.98 0.99 0.99

MC-cBCI

5% 0.96 0.97 0.98 0.99 – – – – – –

10% 0.96 0.97 0.98 0.99 0.99 1.00 – – – –

15% 0.95 0.97 0.98 0.99 0.99 1.00 – – – –

20% 0.94 0.96 0.97 0.97 0.98 0.98 0.99 0.99 – –

25% 0.92 0.94 0.96 0.97 0.97 0.98 0.98 0.98 – –

100% 0.92 0.94 0.96 0.96 0.97 0.98 0.98 0.98 0.99 0.99

LDA-cBCI

5% 0.96 0.98 0.99 0.99 – – – – – –

10% 0.96 0.98 0.99 0.99 1.00 1.00 – – – –

15% 0.96 0.98 0.99 0.99 1.00 1.00 – – – –

20% 0.94 0.97 0.98 0.99 0.99 0.99 0.99 1.00 – –

25% 0.94 0.96 0.97 0.98 0.98 0.99 0.99 0.99 – –

100% 0.94 0.96 0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.99
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Percentages of groups that are accepted by the selection mechanism for the tar-
get vs non-target discrimination task for different group sizes and values of the
dissimilarity-index threshold δ at difficulty level 1.

Group size

δ 2 3 4 5 6 7 8 9 10 11

5% 32% 9% 2% 0% 0% 0% 0% 0% 0% 0%

10% 49% 23% 10% 4% 1% 0% 0% 0% 0% 0%

15% 60% 29% 12% 4% 1% 0% 0% 0% 0% 0%

20% 81% 60% 42% 28% 18% 10% 5% 1% 0% 0%

25% 92% 80% 65% 50% 34% 21% 10% 3% 0% 0%
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Median AUC values for the three types of cBCIs for target vs non-target classifi-
cation for difficulty level 3, as a function of group size and the dissimilarity-index
threshold δ.

Group size

Method δ 2 3 4 5 6 7 8 9 10 11

SC-cBCI

5% 0.83 0.88 0.90 – – – – – – –

10% 0.78 0.83 0.88 0.90 – – – – – –

15% 0.78 0.82 0.78 0.76 0.75 – – – – –

20% 0.79 0.83 0.85 0.88 0.90 0.91 – – – –

25% 0.78 0.82 0.84 0.86 0.87 0.89 0.90 0.90 – –

100% 0.78 0.82 0.83 0.85 0.86 0.87 0.88 0.88 0.90 0.90

MC-cBCI

5% 0.85 0.90 0.92 – – – – – – –

10% 0.78 0.85 0.92 0.93 – – – – – –

15% 0.78 0.82 0.78 0.78 0.78 – – – – –

20% 0.79 0.84 0.87 0.90 0.92 0.93 – – – –

25% 0.79 0.83 0.85 0.87 0.89 0.90 0.91 0.91 – –

100% 0.79 0.83 0.86 0.87 0.89 0.90 0.91 0.91 0.92 0.92

LDA-cBCI

5% 0.85 0.90 0.92 – – – – – – –

10% 0.78 0.85 0.92 0.93 – – – – – –

15% 0.78 0.82 0.78 0.79 0.79 – – – – –

20% 0.80 0.85 0.88 0.91 0.92 0.93 – – – –

25% 0.80 0.84 0.87 0.88 0.90 0.91 0.92 0.93 – –

100% 0.80 0.84 0.87 0.89 0.90 0.91 0.92 0.92 0.93 0.93
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Percentages of groups that are accepted by the selection mechanism for the tar-
get vs non-target discrimination task for different group sizes and values of the
dissimilarity-index threshold δ at difficulty level 3.

Group size

δ 2 3 4 5 6 7 8 9 10 11

5% 25% 3% 0% 0% 0% 0% 0% 0% 0% 0%

10% 43% 12% 2% 0% 0% 0% 0% 0% 0% 0%

15% 58% 25% 8% 1% 0% 0% 0% 0% 0% 0%

20% 72% 43% 20% 8% 2% 0% 0% 0% 0% 0%

25% 92% 80% 65% 50% 34% 21% 10% 3% 0% 0%
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Median AUC values for the three types of cBCIs for target vs non-target classifi-
cation for difficulty level 4, as a function of group size and the dissimilarity-index
threshold δ.

Group size

Method δ 2 3 4 5 6 7 8 9 10

SC-cBCI

5% 0.85 0.89 0.90 0.91 – – – – –

10% 0.85 0.89 0.90 0.91 0.92 – – – –

15% 0.84 0.88 0.89 0.91 0.92 – – – –

20% 0.84 0.88 0.90 0.91 0.92 0.92 – – –

25% 0.82 0.84 0.88 0.90 0.90 0.91 – – –

100% 0.80 0.83 0.86 0.87 0.89 0.90 0.90 0.91 0.93

MC-cBCI

5% 0.87 0.88 0.89 0.90 – – – – –

10% 0.87 0.88 0.89 0.90 0.91 – – – –

15% 0.84 0.87 0.89 0.90 0.91 – – – –

20% 0.84 0.87 0.89 0.90 0.91 0.92 – – –

25% 0.81 0.86 0.89 0.90 0.91 0.91 – – –

100% 0.80 0.84 0.86 0.88 0.90 0.91 0.91 0.92 0.93

LDA-cBCI

5% 0.87 0.89 0.90 0.91 – – – – –

10% 0.87 0.89 0.90 0.91 0.91 – – – –

15% 0.85 0.89 0.90 0.91 0.91 – – – –

20% 0.85 0.89 0.90 0.91 0.92 0.92 – – –

25% 0.84 0.88 0.90 0.91 0.91 0.92 – – –

100% 0.83 0.87 0.89 0.90 0.91 0.92 0.92 0.92 0.93
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Percentages of groups that are accepted by the selection mechanism for the tar-
get vs non-target discrimination task for different group sizes and values of the
dissimilarity-index threshold δ at difficulty level 4.

Group size

δ 2 3 4 5 6 7 8 9 10

5% 35% 13% 4% 0% 0% 0% 0% 0% 0%

10% 42% 17% 7% 2% 0% 0% 0% 0% 0%

15% 55% 26% 11% 4% 0% 0% 0% 0% 0%

20% 60% 32% 17% 8% 3% 0% 0% 0% 0%

25% 77% 52% 31% 16% 6% 1% 0% 0% 0%
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Median AUC values for the three types of cBCIs for target vs non-target classifi-
cation for difficulty level 5, as a function of group size and the dissimilarity-index
threshold δ.

Group size

Method δ 2 3 4 5 6 7 8 9 10

SC-cBCI

5% 0.58 0.54 0.55 – – – – – –

10% 0.59 0.60 0.59 0.60 0.59 0.60 – – –

15% 0.59 0.63 0.62 0.61 0.61 0.61 0.63 – –

20% 0.59 0.64 0.64 0.65 0.65 0.65 0.65 0.63 0.63

25% 0.59 0.64 0.64 0.65 0.65 0.65 0.65 0.63 0.63

100% 0.59 0.64 0.64 0.65 0.65 0.65 0.65 0.63 0.63

MC-cBCI

5% 0.58 0.57 0.57 – – – – – –

10% 0.58 0.59 0.59 0.59 0.59 0.59 – – –

15% 0.59 0.60 0.62 0.62 0.63 0.63 0.63 – –

20% 0.60 0.62 0.63 0.64 0.64 0.65 0.66 0.66 0.67

25% 0.60 0.62 0.63 0.64 0.64 0.65 0.66 0.66 0.67

100% 0.60 0.62 0.63 0.64 0.64 0.65 0.66 0.66 0.67

LDA-cBCI

5% 0.59 0.60 0.59 – – – – – –

10% 0.59 0.60 0.60 0.61 0.61 0.62 – – –

15% 0.59 0.61 0.63 0.63 0.64 0.64 0.66 – –

20% 0.60 0.65 0.67 0.68 0.68 0.69 0.70 0.70 0.71

25% 0.60 0.65 0.67 0.68 0.68 0.69 0.70 0.70 0.71

100% 0.60 0.65 0.67 0.68 0.68 0.69 0.70 0.70 0.71
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Percentages of groups that are accepted by the selection mechanism for the tar-
get vs non-target discrimination task for different group sizes and values of the
dissimilarity-index threshold δ at difficulty level 5.

Group size

δ 2 3 4 5 6 7 8 9 10

5% 37% 9% 1% 0% 0% 0% 0% 0% 0%

10% 77% 51% 30% 15% 6% 1% 0% 0% 0%

15% 88% 72% 54% 38% 23% 12% 4% 0% 0%

20% 100% 100% 100% 100% 100% 100% 100% 100% 100%

25% 100% 100% 100% 100% 100% 100% 100% 100% 100%
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Median AUC values for the three types of cBCIs for target vs non-target classifi-
cation for difficulty level 6, as a function of group size and the dissimilarity-index
threshold δ.

Group size

Method δ 2 3 4 5 6 7 8 9 10

SC-cBCI

5% 0.72 0.74 0.71 – – – – – –

10% 0.66 0.73 0.78 0.79 – – – – –

15% 0.67 0.73 0.78 0.79 0.81 – – – –

20% 0.66 0.69 0.71 0.71 0.72 0.72 0.73 – –

25% 0.66 0.69 0.71 0.71 0.72 0.73 0.71 0.72 –

100% 0.67 0.71 0.72 0.74 0.75 0.76 0.77 0.79 0.79

MC-cBCI

5% 0.74 0.78 0.80 – – – – – –

10% 0.71 0.76 0.79 0.82 – – – – –

15% 0.69 0.74 0.78 0.81 0.83 – – – –

20% 0.68 0.71 0.73 0.75 0.76 0.78 0.78 – –

25% 0.68 0.71 0.73 0.75 0.76 0.77 0.78 0.79 –

100% 0.69 0.72 0.75 0.77 0.78 0.80 0.81 0.82 0.83

LDA-cBCI

5% 0.74 0.79 0.82 – – – – – –

10% 0.71 0.75 0.80 0.83 – – – – –

15% 0.71 0.76 0.80 0.82 0.84 – – – –

20% 0.69 0.73 0.74 0.76 0.77 0.78 0.79 – –

25% 0.69 0.73 0.74 0.76 0.77 0.77 0.78 0.79 –

100% 0.71 0.74 0.76 0.78 0.80 0.81 0.81 0.82 0.83
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Percentages of groups that are accepted by the selection mechanism for the tar-
get vs non-target discrimination task for different group sizes and values of the
dissimilarity-index threshold δ at difficulty level 6.

Group size

δ 2 3 4 5 6 7 8 9 10

5% 24% 5% 0% 0% 0% 0% 0% 0% 0%

10% 44% 14% 3% 0% 0% 0% 0% 0% 0%

15% 66% 35% 14% 4% 0% 0% 0% 0% 0%

20% 88% 72% 54% 38% 23% 12% 4% 0% 0%

25% 93% 82% 69% 55% 42% 30% 20% 10% 0%
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Median AUC values for the three types of cBCIs for target vs non-target classifi-
cation for difficulty level 7, as a function of group size and the dissimilarity-index
threshold δ.

Group size

Method δ 2 3 4 5 6 7 8 9 10

SC-cBCI

5% 0.64 0.69 0.74 0.76 – – – – –

10% 0.62 0.63 0.64 0.65 0.67 0.66 0.68 0.74 –

15% 0.61 0.62 0.63 0.64 0.65 0.66 0.66 0.69 0.70

20% 0.61 0.62 0.63 0.64 0.65 0.66 0.66 0.69 0.70

25% 0.61 0.62 0.63 0.64 0.65 0.66 0.66 0.69 0.70

100% 0.61 0.62 0.63 0.64 0.65 0.66 0.66 0.69 0.70

MC-cBCI

5% 0.64 0.68 0.72 0.74 – – – – –

10% 0.62 0.64 0.66 0.68 0.69 0.70 0.71 0.73 –

15% 0.61 0.63 0.65 0.66 0.68 0.70 0.71 0.72 0.72

20% 0.61 0.63 0.65 0.66 0.68 0.70 0.71 0.72 0.72

25% 0.61 0.63 0.65 0.66 0.68 0.70 0.71 0.72 0.72

100% 0.61 0.63 0.65 0.66 0.68 0.70 0.71 0.72 0.72

LDA-cBCI

5% 0.64 0.68 0.74 0.75 – – – – –

10% 0.62 0.65 0.67 0.69 0.70 0.71 0.72 0.74 –

15% 0.61 0.63 0.66 0.68 0.69 0.70 0.72 0.72 0.73

20% 0.61 0.63 0.66 0.68 0.69 0.70 0.72 0.72 0.73

25% 0.61 0.63 0.66 0.68 0.69 0.70 0.72 0.72 0.73

100% 0.61 0.63 0.66 0.68 0.69 0.70 0.72 0.72 0.73
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Percentages of groups that are accepted by the selection mechanism for the tar-
get vs non-target discrimination task for different group sizes and values of the
dissimilarity-index threshold δ at difficulty level 7.

Group size

δ 2 3 4 5 6 7 8 9 10

5% 35% 11% 2% 0% 0% 0% 0% 0% 0%

10% 91% 78% 64% 51% 40% 30% 20% 10% 0%

15% 100% 100% 100% 100% 100% 100% 100% 100% 100%

20% 100% 100% 100% 100% 100% 100% 100% 100% 100%

25% 100% 100% 100% 100% 100% 100% 100% 100% 100%

C.1.2 Comparison with avg(AUC1, AUC2, ..., AUCr)

This section contains the results for the target detection system. In particular,

here we report, for the target detection system, the median improvements (in

percentage) when using collaborative BCIs over the average AUC performance of

the group, for each level and group size.
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Median improvements over the average participant in the group when using collaborative BCIs for target detection at
difficulty level 1, as a function of group size and the dissimilarity-index threshold δ. Values in bold face are statistically
significantly superior at the 1% confidence level according to a two-sample one-sided Kolmogorov-Smirnov test (group
AUC vs average AUC of the group). Values in italics are statistically superior at the 5% confidence level.

Group size
Method δ 2 3 4 5 6 7 8 9 10 11

SC-cBCI

5% +1.1% +2.7% +3.9% +4.0% – – – – – –
10% +1.2% +2.7% +3.6% +4.1% +4.4% +4.8% – – – –
15% +1.6% +3.1% +3.7% +4.1% +4.4% +4.8% – – – –
20% +3.6% +6.0% +7.2% +7.8% +8.4% +9.2% +9.4% +9.6% – –
25% +4.2% +7.0% +9.2% +10.2% +11.1% +11.4% +12.2% +13.1% – –
100% +4.5% +8.7% +10.6% +12.2% +13.0% +13.7% +14.2% +14.3% +15.3% +15.1%

MC-cBCI

5% +2.1% +4.3% +5.5% +5.7% – – – – – –
10% +2.3% +4.1% +5.4% +5.7% +6.4% +6.5% – – – –
15% +2.6% +4.9% +5.5% +5.8% +6.4% +6.5% – – – –
20% +5.0% +7.3% +8.8% +9.5% +10.2% +11.2% +11.3% +11.4% – –
25% +5.7% +8.2% +10.4% +11.8% +12.7% +13.0% +13.8% +14.5% – –
100% +5.9% +9.7% +11.5% +13.3% +14.2% +15.0% +15.6% +15.6% +16.7% +16.5%

LDA-cBCI

5% +2.5% +4.7% +5.7% +5.8% – – – – – –
10% +2.8% +4.7% +5.4% +5.8% +6.4% +6.6% – – – –
15% +3.0% +5.0% +5.6% +5.9% +6.4% +6.6% – – – –
20% +5.6% +8.4% +9.5% +9.9% +10.3% +11.3% +11.3% +11.4% – –
25% +6.7% +10.0% +11.4% +12.8% +13.2% +13.4% +14.2% +15.0% – –
100% +7.2% +10.8% +13.1% +14.4% +15.1% +15.8% +16.2% +16.1% +17.1% +16.9%
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Median improvements over the average participant in the group when using collaborative BCIs for target detection at
difficulty level 2, as a function of group size and the dissimilarity-index threshold δ. Values in bold face are statistically
significantly superior at the 1% confidence level according to a two-sample one-sided Kolmogorov-Smirnov test (group
AUC vs average AUC of the group). Values in italics are statistically superior at the 5% confidence level.

Group size
Method δ 2 3 4 5 6 7 8 9 10

SC-cBCI

5% +4.9% +6.4% +7.7% +8.7% – – – – –
10% +4.4% +6.3% +7.2% +7.8% +8.9% – – – –
15% +5.2% +7.1% +7.9% +8.7% +10.2% – – – –
20% +5.4% +7.6% +9.3% +10.2% +10.3% +11.0% – – –
25% +5.7% +9.4% +11.0% +12.9% +14.0% +15.3% +16.4% – –
100% +6.6% +11.0% +13.2% +14.7% +16.1% +17.0% +17.8% +18.7% +18.6%

MC-cBCI

5% +6.2% +9.2% +10.1% +10.5% – – – – –
10% +6.2% +8.7% +9.1% +9.5% +9.7% – – – –
15% +7.4% +9.5% +10.1% +10.5% +11.7% – – – –
20% +7.6% +10.1% +11.0% +12.0% +12.5% +12.5% – – –
25% +8.0% +11.6% +13.7% +15.2% +16.4% +17.3% +17.8% – –
100% +9.4% +13.4% +16.1% +17.5% +18.6% +19.2% +19.9% +20.2% +20.2%

LDA-cBCI

5% +6.3% +9.3% +10.5% +10.6% – – – – –
10% +6.5% +8.8% +9.0% +9.7% +9.8% – – – –
15% +7.6% +9.8% +10.5% +10.6% +11.8% – – – –
20% +8.2% +10.6% +11.2% +12.3% +12.8% +12.5% – – –
25% +9.3% +13.0% +14.7% +16.3% +17.4% +18.0% +18.5% – –
100% +10.7% +15.0% +17.7% +18.8% +20.1% +20.4% +21.0% +21.2% +21.0%
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Median improvements over the average participant in the group when using collaborative BCIs for target detection at
difficulty level 3, as a function of group size and the dissimilarity-index threshold δ. Values in bold face are statistically
significantly superior at the 1% confidence level according to a two-sample one-sided Kolmogorov-Smirnov test (group
AUC vs average AUC of the group). Values in italics are statistically superior at the 5% confidence level.

Group size
Method δ 2 3 4 5 6 7 8 9 10 11

SC-cBCI

5% +5.4% +9.7% +11.6% – – – – – – –
10% +3.4% +8.5% +11.1% +12.1% – – – – – –
15% +4.6% +8.2% +10.4% +11.6% +12.9% – – – – –
20% +4.8% +8.4% +11.5% +13.3% +14.7% +14.6% – – – –
25% +5.4% +9.4% +12.3% +14.6% +16.4% +17.7% +18.8% +19.7% – –
100% +5.4% +9.6% +12.8% +15.2% +16.9% +18.3% +19.4% +20.4% +21.1% +21.4%

MC-cBCI

5% +6.6% +12.0% +14.5% – – – – – – –
10% +4.3% +9.7% +12.8% +14.9% – – – – – –
15% +4.8% +8.4% +8.0% +8.3% +9.6% – – – – –
20% +5.1% +9.4% +12.3% +15.0% +16.6% +17.8% – – – –
25% +5.4% +10.0% +13.0% +15.4% +17.2% +18.7% +19.8% +21.0% – –
100% +5.4% +9.9% +12.9% +15.2% +16.9% +18.4% +19.7% +20.7% +21.5% +22.3%

LDA-cBCI

5% +7.4% +12.5% +14.9% – – – – – – –
10% +5.2% +10.1% +13.3% +15.4% – – – – – –
15% +6.5% +10.1% +11.2% +12.2% +13.5% – – – – –
20% +7.1% +11.7% +14.5% +16.7% +18.2% +19.1% – – – –
25% +7.9% +13.2% +16.5% +18.5% +20.2% +21.5% +22.3% +23.3% – –
100% +8.3% +14.0% +17.7% +20.2% +22.0% +23.2% +24.2% +25.0% +25.9% +26.1%
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Median improvements over the average participant in the group when using collaborative BCIs for target detection at
difficulty level 4, as a function of group size and the dissimilarity-index threshold δ. Values in bold face are statistically
significantly superior at the 1% confidence level according to a two-sample one-sided Kolmogorov-Smirnov test (group
AUC vs average AUC of the group). Values in italics are statistically superior at the 5% confidence level.

Group size
Method δ 2 3 4 5 6 7 8 9 10

SC-cBCI

5% +1.4% +6.0% +8.3% +10.3% – – – – –
10% +1.8% +5.9% +8.3% +10.4% +11.1% – – – –
15% +2.7% +6.7% +9.1% +10.9% +12.3% – – – –
20% +2.9% +7.3% +9.9% +12.3% +13.6% +14.7% – – –
25% +2.9% +7.3% +10.2% +12.6% +13.7% +15.7% – – –
100% +3.9% +9.3% +12.4% +15.3% +17.3% +18.5% +20.0% +20.7% +22.6%

MC-cBCI

5% +4.3% +8.8% +11.2% +12.7% – – – – –
10% +4.2% +8.4% +11.2% +12.7% +13.5% – – – –
15% +4.5% +8.8% +11.6% +13.1% +14.6% – – – –
20% +4.5% +9.1% +11.6% +13.3% +15.5% +15.7% – – –
25% +4.3% +9.1% +11.9% +14.8% +15.8% +17.0% – – –
100% +4.6% +9.7% +13.5% +16.2% +18.4% +20.0% +21.5% +22.6% +23.3%

LDA-cBCI

5% +4.8% +9.5% +12.3% +13.5% – – – – –
10% +4.8% +9.2% +12.0% +13.4% +14.0% – – – –
15% +5.8% +9.8% +12.5% +13.7% +15.5% – – – –
20% +5.8% +10.1% +12.7% +14.0% +16.5% +16.8% – – –
25% +6.6% +11.8% +15.4% +16.9% +17.7% +19.0% – – –
100% +7.7% +15.3% +18.6% +21.1% +23.1% +24.4% +25.1% +26.5% +26.8%
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Median improvements over the average participant in the group when using collaborative BCIs for target detection at
difficulty level 5, as a function of group size and the dissimilarity-index threshold δ. Values in bold face are statistically
significantly superior at the 1% confidence level according to a two-sample one-sided Kolmogorov-Smirnov test (group
AUC vs average AUC of the group). Values in italics are statistically superior at the 5% confidence level.

Group size
Method δ 2 3 4 5 6 7 8 9

SC-cBCI

5% -2.1% -4.9% +0.7% – – – – – –
10% -0.4% +3.3% +6.2% +5.6% +6.3% +10.6% – – –
15% -0.4% +2.9% +6.0% +5.9% +7.4% +8.9% +9.9% – –
20% -0.4% +4.4% +6.9% +8.7% +10.7% +12.1% +12.7% +13.6% +10.6%
25% -0.4% +4.4% +6.9% +8.7% +10.7% +12.1% +12.7% +13.6% +10.6%
100% -0.4% +4.4% +6.9% +8.7% +10.7% +12.1% +12.7% +13.6% +10.6%

MC-cBCI

5% +0.6% -2.6% -2.7% – – – – – –
10% +0.6% +2.6% +2.8% +3.9% +4.9% +5.4% – – –
15% +0.6% +2.6% +4.2% +4.8% +6.5% +7.4% +8.6% – –
20% +0.6% +2.9% +5.2% +7.1% +8.7% +10.3% +11.5% +12.9% +14.1%
25% +0.6% +2.9% +5.2% +7.1% +8.7% +10.3% +11.5% +12.9% +14.1%
100% +0.6% +2.9% +5.2% +7.1% +8.7% +10.3% +11.5% +12.9% +14.1%

LDA-cBCI

5% +1.3% +3.0% +2.8% – – – – – –
10% +2.5% +5.5% +7.6% +8.5% +9.9% +11.1% – – –
15% +3.1% +6.4% +8.6% +10.5% +11.6% +13.0% +13.8% – –
20% +3.6% +7.8% +10.5% +12.8% +15.3% +17.0% +18.4% +19.7% +20.5%
25% +3.6% +7.8% +10.5% +12.8% +15.3% +17.0% +18.4% +19.7% +20.5%
100% +3.6% +7.8% +10.5% +12.8% +15.3% +17.0% +18.4% +19.7% +20.5%
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Median improvements over the average participant in the group when using collaborative BCIs for target detection at
difficulty level 6, as a function of group size and the dissimilarity-index threshold δ. Values in bold face are statistically
significantly superior at the 1% confidence level according to a two-sample one-sided Kolmogorov-Smirnov test (group
AUC vs average AUC of the group). Values in italics are statistically superior at the 5% confidence level.

Group size
Method δ 2 3 4 5 6 7 8 9 10

SC-cBCI

5% +3.3% +9.5% +15.8% – – – – – –
10% +7.2% +11.2% +15.5% +17.1% – – – – –
15% +7.8% +13.6% +16.8% +19.3% +20.9% – – – –
20% +7.7% +11.8% +15.4% +18.2% +19.9% +20.9% +24.0% – –
25% +7.8% +12.7% +16.3% +18.7% +20.6% +22.1% +23.2% +24.4% –
100% +8.0% +13.4% +16.7% +19.4% +21.5% +22.9% +25.3% +27.2% +27.7%

MC-cBCI

5% +5.6% +10.5% +14.7% – – – – – –
10% +8.5% +12.2% +16.2% +18.9% – – – – –
15% +8.0% +13.9% +18.4% +20.3% +22.5% – – – –
20% +7.6% +12.1% +16.1% +18.7% +21.0% +23.1% +24.6% – –
25% +7.9% +13.2% +16.5% +19.4% +21.7% +23.5% +25.5% +27.1% –
100% +8.0% +13.2% +16.8% +19.9% +22.2% +24.1% +26.1% +27.3% +28.3%

LDA-cBCI

5% +5.5% +11.2% +15.1% – – – – – –
10% +9.1% +13.1% +17.1% +19.4% – – – – –
15% +9.1% +15.1% +19.0% +21.6% +23.6% – – – –
20% +9.0% +14.4% +18.4% +21.1% +23.4% +25.4% +26.9% – –
25% +9.1% +15.1% +19.0% +21.9% +24.1% +26.2% +27.6% +29.2% –
100% +9.5% +15.7% +20.1% +23.0% +25.5% +27.4% +29.0% +30.5% +31.3%
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Median improvements over the average participant in the group when using collaborative BCIs for target detection at
difficulty level 7, as a function of group size and the dissimilarity-index threshold δ. Values in bold face are statistically
significantly superior at the 1% confidence level according to a two-sample one-sided Kolmogorov-Smirnov test (group
AUC vs average AUC of the group). Values in italics are statistically superior at the 5% confidence level.

Group size
Method δ 2 3 4 5 6 7 8 9 10

SC-cBCI

5% -6.1% -5.9% -2.4% -0.4% – – – – –
10% -5.9% -4.1% -2.6% -0.7% -1.8% +0.1% +3.0% +2.1% –
15% -4.9% -1.9% -0.1% +1.4% +2.7% +3.9% +5.3% +7.6% +8.5%
20% -4.9% -1.9% -0.1% +1.4% +2.7% +3.9% +5.3% +7.6% +8.5%
25% -4.9% -1.9% -0.1% +1.4% +2.7% +3.9% +5.3% +7.6% +8.5%
100% -4.9% -1.9% -0.1% +1.4% +2.7% +3.9% +5.3% +7.6% +8.5%

MC-cBCI

5% -5.4% -0.5% +2.4% +4.3% – – – – –
10% -4.5% -2.2% -0.0% +1.1% +2.5% +3.6% +5.0% +6.5% –
15% -4.2% -0.6% +2.2% +4.8% +7.3% +9.0% +10.2% +11.0% +12.0%
20% -4.2% -0.6% +2.2% +4.8% +7.3% +9.0% +10.2% +11.0% +12.0%
25% -4.2% -0.6% +2.2% +4.8% +7.3% +9.0% +10.2% +11.0% +12.0%
100% -4.2% -0.6% +2.2% +4.8% +7.3% +9.0% +10.2% +11.0% +12.0%

LDA-cBCI

5% -4.3% +0.1% +3.5% +4.8% – – – – –
10% -4.0% -1.7% -0.2% +1.3% +2.4% +3.5% +4.3% +5.7% –
15% -3.5% -0.0% +2.9% +6.0% +8.9% +10.1% +10.8% +11.6% +12.4%
20% -3.5% -0.0% +2.9% +6.0% +8.9% +10.1% +10.8% +11.6% +12.4%
25% -3.5% -0.0% +2.9% +6.0% +8.9% +10.1% +10.8% +11.6% +12.4%
100% -3.5% -0.0% +2.9% +6.0% +8.9% +10.1% +10.8% +11.6% +12.4%

278



C.1.3 Comparison with max(AUC1, AUC2, ..., AUCr)

This section contains, for the target detection system, the median improvements

(in percentage) when using collaborative BCIs over the AUC performance of the

best participant of the group, for each level and group size.
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Median improvements over the best participant in the group when using collaborative BCIs for target detection at
difficulty level 1, as a function of group size and the dissimilarity-index threshold δ. Values in bold face are statistically
significantly superior at the 1% confidence level according to a two-sample one-sided Kolmogorov-Smirnov test (group
AUC vs maximum AUC of the group). Values in italics are statistically superior at the 5% confidence level.

Group size
Method δ 2 3 4 5 6 7 8 9 10 11

SC-cBCI

5% -1.3% -0.4% -0.0% -0.2% – – – – – –
10% -0.9% -0.2% -0.4% -0.4% -0.4% -0.0% – – – –
15% -1.4% -0.6% -0.5% -0.4% -0.4% -0.0% – – – –
20% -2.0% -1.8% -0.9% -0.5% -0.3% -0.2% +0.2% +0.2% – –
25% -2.8% -2.3% -1.6% -0.8% -0.4% -0.1% +0.3% +0.6% – –
100% -3.1% -2.8% -1.9% -1.2% -0.8% -0.6% -0.4% -0.3% -0.1% +0.0%

MC-cBCI

5% -0.1% +0.9% +1.4% +1.5% – – – – – –
10% -0.1% +0.9% +1.3% +1.2% +1.6% +1.6% – – – –
15% -0.1% +0.9% +1.1% +1.2% +1.6% +1.6% – – – –
20% -1.2% -0.3% +0.6% +1.1% +1.4% +1.6% +1.7% +1.9% – –
25% -1.4% -1.2% -0.2% +0.5% +1.0% +1.4% +1.7% +1.9% – –
100% -1.6% -1.4% -0.6% +0.1% +0.4% +0.7% +0.9% +1.0% +1.1% +1.2%

LDA-cBCI

5% +0.3% +0.9% +1.5% +1.6% – – – – – –
10% +0.8% +0.9% +1.3% +1.3% +1.5% +1.7% – – – –
15% +0.4% +0.9% +1.2% +1.3% +1.5% +1.7% – – – –
20% -0.7% +0.3% +0.9% +1.2% +1.5% +1.6% +1.8% +1.9% – –
25% -0.8% -0.1% +0.6% +1.0% +1.5% +1.7% +1.9% +2.3% – –
100% -0.8% -0.3% +0.4% +0.7% +1.0% +1.2% +1.3% +1.4% +1.5% +1.5%
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Median improvements over the best participant in the group when using collaborative BCIs for target detection at
difficulty level 2, as a function of group size and the dissimilarity-index threshold δ. Values in bold face are statistically
significantly superior at the 1% confidence level according to a two-sample one-sided Kolmogorov-Smirnov test (group
AUC vs maximum AUC of the group). Values in italics are statistically superior at the 5% confidence level.

Group size
Method δ 2 3 4 5 6 7 8 9 10

SC-cBCI

5% +2.0% +2.1% +2.7% +3.0% – – – – –
10% +0.3% +0.9% +1.3% +1.4% +2.1% – – – –
15% +0.6% +0.9% +1.3% +1.5% +2.5% – – – –
20% +0.3% +0.8% +0.9% +1.0% +0.9% +1.6% – – –
25% -0.0% +0.3% +0.8% +1.2% +1.4% +2.2% +2.5% – –
100% -0.9% -1.2% -0.6% -0.4% -0.1% +0.2% +0.2% +0.9% +0.7%

MC-cBCI

5% +3.3% +4.1% +4.4% +4.8% – – – – –
10% +2.0% +2.8% +2.6% +2.8% +3.0% – – – –
15% +2.2% +3.0% +3.1% +4.1% +3.9% – – – –
20% +2.0% +2.5% +2.7% +2.6% +2.6% +2.9% – – –
25% +1.4% +2.3% +2.8% +2.9% +3.1% +3.2% +3.8% – –
100% +0.7% +1.0% +1.4% +1.7% +1.6% +1.7% +1.9% +1.8% +2.0%

LDA-cBCI

5% +3.4% +4.1% +4.7% +4.9% – – – – –
10% +2.1% +3.0% +2.7% +2.8% +3.0% – – – –
15% +2.2% +3.2% +3.5% +4.2% +4.0% – – – –
20% +2.2% +3.0% +2.8% +2.7% +2.7% +3.0% – – –
25% +2.0% +3.0% +3.5% +3.7% +4.0% +4.0% +4.4% – –
100% +1.6% +2.1% +2.4% +2.5% +2.5% +2.6% +2.5% +2.6% +2.7%
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Median improvements over the best participant in the group when using collaborative BCIs for target detection at
difficulty level 3, as a function of group size and the dissimilarity-index threshold δ. Values in bold face are statistically
significantly superior at the 1% confidence level according to a two-sample one-sided Kolmogorov-Smirnov test (group
AUC vs maximum AUC of the group). Values in italics are statistically superior at the 5% confidence level.

Group size
Method δ 2 3 4 5 6 7 8 9 10 11

SC-cBCI

5% +2.7% +5.5% +7.1% – – – – – – –
10% -0.3% +0.8% +4.8% +5.2% – – – – – –
15% -0.3% +0.8% +3.2% +1.2% +2.8% – – – – –
20% -1.5% +0.8% +2.8% +3.7% +4.8% +3.7% – – – –
25% -1.9% -0.3% +1.0% +2.2% +2.9% +3.7% +4.3% +4.7% – –
100% -2.7% -1.2% -0.5% +0.4% +0.7% +1.1% +1.5% +1.7% +1.8% +1.8%

MC-cBCI

5% +3.8% +8.3% +9.9% – – – – – – –
10% +0.5% +2.4% +5.8% +7.9% – – – – – –
15% +0.1% +2.1% +1.9% -0.0% -0.2% – – – – –
20% -0.5% +1.2% +3.5% +5.3% +6.2% +6.6% – – – –
25% -2.0% -0.5% +1.1% +2.3% +3.6% +4.4% +5.4% +5.8% – –
100% -3.1% -1.6% -0.9% +0.1% +0.7% +1.3% +1.6% +1.9% +2.6% +2.6%

LDA-cBCI

5% +4.7% +8.6% +10.3% – – – – – – –
10% +1.2% +3.2% +6.3% +8.3% – – – – – –
15% +1.3% +3.1% +4.4% +3.3% +3.3% – – – – –
20% +1.1% +3.2% +5.3% +7.0% +7.7% +7.8% – – – –
25% +0.8% +2.6% +4.3% +5.6% +6.6% +7.1% +7.3% +7.8% – –
100% +0.7% +2.0% +3.6% +4.5% +5.0% +5.3% +5.5% +5.6% +5.8% +5.8%
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Median improvements over the best participant in the group when using collaborative BCIs for target detection at
difficulty level 4, as a function of group size and the dissimilarity-index threshold δ. Values in bold face are statistically
significantly superior at the 1% confidence level according to a two-sample one-sided Kolmogorov-Smirnov test (group
AUC vs maximum AUC of the group). Values in italics are statistically superior at the 5% confidence level.

Group size
Method δ 2 3 4 5 6 7 8 9 10

SC-cBCI

5% +0.2% +3.9% +5.7% +7.8% – – – – –
10% +0.1% +3.7% +6.0% +7.8% +8.5% – – – –
15% -0.6% +2.4% +5.4% +7.0% +8.2% – – – –
20% -0.6% +2.4% +5.3% +6.7% +8.0% +9.2% – – –
25% -1.4% +0.1% +2.7% +3.2% +6.1% +7.7% – – –
100% -3.5% -3.0% -0.7% +0.8% +1.7% +2.7% +4.1% +4.5% +6.0%

MC-cBCI

5% +3.1% +6.3% +8.6% +10.1% – – – – –
10% +2.8% +6.4% +8.6% +10.0% +10.9% – – – –
15% +2.0% +5.6% +7.7% +9.0% +10.4% – – – –
20% +1.0% +5.1% +6.9% +8.3% +9.4% +10.2% – – –
25% -2.6% +1.0% +4.1% +6.2% +7.8% +8.9% – – –
100% -4.3% -2.7% -0.4% +1.5% +3.0% +4.4% +5.4% +5.5% +6.6%

LDA-cBCI

5% +3.6% +6.9% +9.3% +10.9% – – – – –
10% +3.5% +6.9% +9.3% +10.5% +11.4% – – – –
15% +2.4% +6.3% +8.4% +10.4% +11.3% – – – –
20% +2.0% +5.9% +7.9% +9.4% +10.4% +11.2% – – –
25% -0.6% +3.0% +6.4% +8.1% +9.9% +10.8% – – –
100% -2.1% +2.1% +3.7% +5.5% +6.8% +7.7% +8.7% +8.9% +9.6%
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Median improvements over the best participant in the group when using collaborative BCIs for target detection at
difficulty level 5, as a function of group size and the dissimilarity-index threshold δ. Values in bold face are statistically
significantly superior at the 1% confidence level according to a two-sample one-sided Kolmogorov-Smirnov test (group
AUC vs maximum AUC of the group). Values in italics are statistically superior at the 5% confidence level.

Group size
Method δ 2 3 4 5 6 7 8 9

SC-cBCI

5% -7.0% -8.7% -11.7% – – – – – –
10% -6.3% -5.5% -3.7% -4.7% -4.0% -0.1% – – –
15% -5.8% -5.8% -6.0% -7.0% -6.7% -6.6% -6.0% – –
20% -6.3% -6.1% -6.9% -6.9% -6.9% -6.7% -6.9% -6.3% -9.3%
25% -6.3% -6.1% -6.9% -6.9% -6.9% -6.7% -6.9% -6.3% -9.3%
100% -6.3% -6.1% -6.9% -6.9% -6.9% -6.7% -6.9% -6.3% -9.3%

MC-cBCI

5% -2.7% -7.8% -10.1% – – – – – –
10% -5.3% -5.9% -5.7% -5.5% -5.6% -4.8% – – –
15% -5.4% -6.7% -7.0% -7.7% -7.8% -7.1% -7.0% – –
20% -6.3% -7.7% -8.4% -8.2% -8.1% -7.9% -7.8% -7.0% -6.4%
25% -6.3% -7.7% -8.4% -8.2% -8.1% -7.9% -7.8% -7.0% -6.4%
100% -6.3% -7.7% -8.4% -8.2% -8.1% -7.9% -7.8% -7.0% -6.4%

LDA-cBCI

5% -3.3% -7.0% -9.6% – – – – – –
10% -3.4% -3.6% -2.4% -1.7% -0.3% +0.4% – – –
15% -3.7% -3.9% -3.9% -3.9% -4.0% -3.8% -2.6% – –
20% -4.1% -4.2% -3.9% -3.3% -2.8% -2.1% -1.7% -1.4% -1.1%
25% -4.1% -4.2% -3.9% -3.3% -2.8% -2.1% -1.7% -1.4% -1.1%
100% -4.1% -4.2% -3.9% -3.3% -2.8% -2.1% -1.7% -1.4% -1.1%
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Median improvements over the best participant in the group when using collaborative BCIs for target detection at
difficulty level 6, as a function of group size and the dissimilarity-index threshold δ. Values in bold face are statistically
significantly superior at the 1% confidence level according to a two-sample one-sided Kolmogorov-Smirnov test (group
AUC vs maximum AUC of the group). Values in italics are statistically superior at the 5% confidence level.

Group size
Method δ 2 3 4 5 6 7 8 9 10

SC-cBCI

5% -1.3% +2.2% +5.8% – – – – – –
10% +0.4% +3.0% +5.3% +4.9% – – – – –
15% +1.4% +2.6% +5.0% +5.3% +6.2% – – – –
20% -1.1% +0.0% +0.8% +1.7% +1.6% +0.8% +2.6% – –
25% -1.1% +0.5% +1.2% +2.6% +1.9% +1.4% +2.4% +1.9% –
100% -1.2% -0.0% +0.5% +1.1% +1.5% +1.6% +3.0% +3.3% +4.1%

MC-cBCI

5% -1.5% +2.5% +4.8% – – – – – –
10% +3.2% +7.1% +6.3% +6.5% – – – – –
15% +2.1% +3.7% +4.8% +6.5% +7.6% – – – –
20% +0.6% +1.3% +1.8% +1.9% +2.3% +2.6% +3.0% – –
25% +0.6% +1.7% +2.7% +3.0% +3.1% +2.8% +2.6% +4.1% –
100% +0.1% +0.1% +0.5% +1.5% +1.9% +2.6% +3.2% +3.8% +4.6%

LDA-cBCI

5% -1.0% +3.0% +5.2% – – – – – –
10% +4.0% +7.2% +6.7% +7.0% – – – – –
15% +3.4% +4.8% +6.1% +7.4% +8.6% – – – –
20% +2.0% +3.0% +3.6% +4.2% +4.2% +4.1% +4.9% – –
25% +2.0% +3.7% +4.5% +4.8% +5.0% +4.7% +5.0% +5.8% –
100% +1.2% +2.6% +3.4% +4.2% +4.7% +5.3% +5.9% +6.1% +7.1%
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Median improvements over the best participant in the group when using collaborative BCIs for target detection at
difficulty level 7, as a function of group size and the dissimilarity-index threshold δ. Values in bold face are statistically
significantly superior at the 1% confidence level according to a two-sample one-sided Kolmogorov-Smirnov test (group
AUC vs maximum AUC of the group). Values in italics are statistically superior at the 5% confidence level.

Group size
Method δ 2 3 4 5 6 7 8 9 10

SC-cBCI

5% -7.7% -7.7% -4.6% -2.1% – – – – –
10% -9.0% -9.4% -8.7% -7.7% -8.6% -6.8% -5.2% -5.7% –
15% -8.5% -8.8% -6.5% -5.9% -5.2% -3.9% -3.0% -1.0% -0.6%
20% -8.5% -8.8% -6.5% -5.9% -5.2% -3.9% -3.0% -1.0% -0.6%
25% -8.5% -8.8% -6.5% -5.9% -5.2% -3.9% -3.0% -1.0% -0.6%
100% -8.5% -8.8% -6.5% -5.9% -5.2% -3.9% -3.0% -1.0% -0.6%

MC-cBCI

5% -5.6% -2.0% +1.1% +2.5% – – – – –
10% -9.1% -7.4% -6.8% -5.4% -5.0% -3.4% -3.5% -1.6% –
15% -8.8% -5.5% -4.1% -2.7% -1.5% -0.1% +1.3% +1.9% +2.7%
20% -8.8% -5.5% -4.1% -2.7% -1.5% -0.1% +1.3% +1.9% +2.7%
25% -8.8% -5.5% -4.1% -2.7% -1.5% -0.1% +1.3% +1.9% +2.7%
100% -8.8% -5.5% -4.1% -2.7% -1.5% -0.1% +1.3% +1.9% +2.7%

LDA-cBCI

5% -4.8% -1.1% +2.0% +3.0% – – – – –
10% -8.6% -7.1% -6.6% -5.3% -5.0% -3.7% -3.2% -2.3% –
15% -7.7% -4.9% -3.0% -2.1% -0.3% +0.9% +1.9% +2.4% +3.0%
20% -7.7% -4.9% -3.0% -2.1% -0.3% +0.9% +1.9% +2.4% +3.0%
25% -7.7% -4.9% -3.0% -2.1% -0.3% +0.9% +1.9% +2.4% +3.0%
100% -7.7% -4.9% -3.0% -2.1% -0.3% +0.9% +1.9% +2.4% +3.0%
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C.2 Group Member Selection on the Target Lo-

calisation System

C.2.1 Median AUCs with Group Member Selection

This section includes the tables for the target localisation system, which report

the median AUC performance for each level and group size, as a function of the

dissimilarity threshold, as well as the percentages of groups that are accepted for

each level and value of δ.
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Median AUC values for the three types of cBCIs for left vs right classification of
targets for difficulty level 1, as a function of group size and the dissimilarity-index
threshold δ.

Group size

Method δ 2 3 4 5 6 7 8 9 10 11

SC-cBCI

5% 0.66 0.76 – – – – – – – –

10% 0.68 0.75 0.80 0.73 – – – – – –

15% 0.68 0.74 0.76 0.77 0.78 0.81 – – – –

20% 0.68 0.74 0.76 0.79 0.81 0.84 0.85 0.86 – –

25% 0.68 0.72 0.75 0.78 0.80 0.82 0.83 0.86 – –

100% 0.68 0.72 0.75 0.77 0.79 0.81 0.82 0.81 0.83 0.85

MC-cBCI

5% 0.84 0.90 – – – – – – – –

10% 0.84 0.89 0.92 0.94 – – – – – –

15% 0.83 0.88 0.91 0.93 0.94 0.96 – – – –

20% 0.84 0.88 0.91 0.93 0.94 0.95 0.95 0.96 – –

25% 0.84 0.89 0.91 0.93 0.94 0.96 0.97 0.98 – –

100% 0.84 0.88 0.90 0.92 0.94 0.95 0.96 0.97 0.97 0.97

LDA-cBCI

5% 0.85 0.90 – – – – – – – –

10% 0.85 0.90 0.91 0.93 – – – – – –

15% 0.85 0.89 0.91 0.94 0.95 0.96 – – – –

20% 0.85 0.89 0.91 0.93 0.95 0.96 0.96 0.96 – –

25% 0.85 0.89 0.91 0.93 0.95 0.96 0.96 0.96 – –

100% 0.85 0.89 0.91 0.92 0.94 0.95 0.96 0.96 0.97 0.97
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Percentages of groups that are accepted by the selection mechanism for the tar-
get vs non-target discrimination task for different group sizes and values of the
dissimilarity-index threshold δ at difficulty level 1.

Group size

δ 2 3 4 5 6 7 8 9 10 11

5% 25% 3% 0% 0% 0% 0% 0% 0% 0% 0%

10% 47% 15% 3% 0% 0% 0% 0% 0% 0% 0%

15% 70% 43% 23% 11% 4% 0% 0% 0% 0% 0%

20% 85% 66% 47% 31% 19% 11% 5% 1% 0% 0%

25% 92% 80% 65% 50% 34% 21% 10% 3% 0% 0%
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Median AUC values for the three types of cBCIs for left vs right classification of
targets for difficulty level 3, as a function of group size and the dissimilarity-index
threshold δ.

Group size

Method δ 2 3 4 5 6 7 8 9 10 11

SC-cBCI

5% 0.61 0.67 0.75 0.86 – – – – – –

10% 0.65 0.68 0.71 0.74 0.77 0.79 0.79 – – –

15% 0.63 0.66 0.69 0.73 0.75 0.78 0.79 – – –

20% 0.63 0.63 0.66 0.69 0.70 0.70 0.73 0.75 – –

25% 0.64 0.65 0.66 0.67 0.69 0.70 0.73 0.73 0.75 0.75

100% 0.64 0.65 0.66 0.67 0.69 0.70 0.73 0.73 0.75 0.75

MC-cBCI

5% 0.70 0.70 0.69 0.72 – – – – – –

10% 0.69 0.73 0.72 0.73 0.74 0.77 0.79 – – –

15% 0.69 0.73 0.75 0.76 0.76 0.77 0.79 – – –

20% 0.70 0.74 0.76 0.78 0.78 0.80 0.82 0.84 – –

25% 0.73 0.75 0.78 0.80 0.82 0.83 0.85 0.86 0.87 0.88

100% 0.73 0.75 0.78 0.80 0.82 0.83 0.85 0.86 0.87 0.88

LDA-cBCI

5% 0.73 0.71 0.70 0.72 – – – – – –

10% 0.72 0.73 0.73 0.74 0.75 0.77 0.78 – – –

15% 0.71 0.74 0.74 0.74 0.75 0.77 0.78 – – –

20% 0.72 0.75 0.76 0.76 0.77 0.78 0.80 0.83 – –

25% 0.73 0.75 0.78 0.79 0.79 0.80 0.81 0.83 0.84 0.85

100% 0.73 0.75 0.78 0.79 0.79 0.80 0.81 0.83 0.84 0.85
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Percentages of groups that are accepted by the selection mechanism for the tar-
get vs non-target discrimination task for different group sizes and values of the
dissimilarity-index threshold δ at difficulty level 3.

Group size

δ 2 3 4 5 6 7 8 9 10 11

5% 30% 7% 1% 0% 0% 0% 0% 0% 0% 0%

10% 58% 34% 21% 12% 6% 2% 0% 0% 0% 0%

15% 80% 55% 33% 17% 7% 2% 0% 0% 0% 0%

20% 90% 76% 59% 42% 27% 15% 6% 1% 0% 0%

25% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
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Median AUC values for the three types of cBCIs for left vs right classification of
targets for difficulty level 4, as a function of group size and the dissimilarity-index
threshold δ.

Group size

Method δ 2 3 4 5 6 7 8 9 10

SC-cBCI

5% 0.62 0.59 – – – – – – –

10% 0.71 0.82 0.85 – – – – – –

15% 0.71 0.81 0.87 0.90 – – – – –

20% 0.69 0.79 0.83 0.86 0.90 0.87 – – –

25% 0.68 0.72 0.81 0.84 0.90 0.87 – – –

100% 0.64 0.70 0.72 0.75 0.77 0.77 0.78 0.81 0.83

MC-cBCI

5% 0.64 0.61 – – – – – – –

10% 0.78 0.83 0.87 – – – – – –

15% 0.77 0.81 0.85 0.89 – – – – –

20% 0.73 0.78 0.80 0.82 0.84 0.85 – – –

25% 0.72 0.73 0.77 0.81 0.84 0.85 – – –

100% 0.69 0.72 0.76 0.77 0.78 0.80 0.79 0.80 0.81

LDA-cBCI

5% 0.66 0.63 – – – – – – –

10% 0.77 0.83 0.87 – – – – – –

15% 0.76 0.81 0.85 0.89 – – – – –

20% 0.73 0.78 0.81 0.83 0.84 0.85 – – –

25% 0.72 0.76 0.79 0.82 0.84 0.85 – – –

100% 0.72 0.76 0.77 0.79 0.80 0.81 0.80 0.81 0.80

292



Percentages of groups that are accepted by the selection mechanism for the tar-
get vs non-target discrimination task for different group sizes and values of the
dissimilarity-index threshold δ at difficulty level 4.

Group size

δ 2 3 4 5 6 7 8 9 10

5% 20% 1% 0% 0% 0% 0% 0% 0% 0%

10% 35% 8% 0% 0% 0% 0% 0% 0% 0%

15% 46% 19% 6% 1% 0% 0% 0% 0% 0%

20% 62% 33% 17% 8% 3% 0% 0% 0% 0%

25% 73% 45% 23% 10% 3% 0% 0% 0% 0%
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Median AUC values for the three types of cBCIs for left vs right classification of
targets for difficulty level 5, as a function of group size and the dissimilarity-index
threshold δ.

Group size

Method δ 2 3 4 5 6 7 8 9

SC-cBCI

5% 0.57 0.56 – – – – – –

10% 0.55 0.56 0.46 0.41 – – – –

15% 0.55 0.53 0.52 0.47 0.44 0.40 – –

20% 0.54 0.50 0.52 0.50 0.51 0.49 0.53 –

25% 0.54 0.51 0.51 0.49 0.48 0.48 0.49 0.52

100% 0.54 0.51 0.51 0.49 0.48 0.48 0.49 0.52

MC-cBCI

5% 0.74 0.78 – – – – – –

10% 0.67 0.70 0.68 0.66 – – – –

15% 0.67 0.70 0.68 0.67 0.69 0.67 – –

20% 0.64 0.68 0.71 0.73 0.76 0.79 0.81 –

25% 0.64 0.68 0.71 0.73 0.75 0.77 0.78 0.81

100% 0.64 0.68 0.71 0.73 0.75 0.77 0.78 0.81

LDA-cBCI

5% 0.74 0.77 – – – – – –

10% 0.69 0.73 0.71 0.69 – – – –

15% 0.69 0.70 0.72 0.73 0.72 0.71 – –

20% 0.69 0.73 0.76 0.79 0.82 0.83 0.84 –

25% 0.69 0.73 0.76 0.79 0.82 0.83 0.83 0.87

100% 0.69 0.73 0.76 0.79 0.82 0.83 0.83 0.87
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Percentages of groups that are accepted by the selection mechanism for the tar-
get vs non-target discrimination task for different group sizes and values of the
dissimilarity-index threshold δ at difficulty level 5.

Group size

δ 2 3 4 5 6 7 8 9

5% 27% 3% 0% 0% 0% 0% 0% 0%

10% 63% 30% 11% 2% 0% 0% 0% 0%

15% 83% 60% 38% 21% 9% 2% 0% 0%

20% 97% 91% 83% 72% 58% 41% 22% 0%

25% 100% 100% 100% 100% 100% 100% 100% 100%
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Median AUC values for the three types of cBCIs for left vs right classification of
targets for difficulty level 6, as a function of group size and the dissimilarity-index
threshold δ.

Group size

Method δ 2 3 4 5 6 7 8 9 10

SC-cBCI

5% 0.60 0.62 0.64 0.65 0.68 – – – –

10% 0.61 0.63 0.62 0.61 0.60 0.67 – – –

15% 0.61 0.64 0.64 0.67 0.66 0.69 0.64 – –

20% 0.61 0.64 0.65 0.67 0.67 0.68 0.68 0.71 –

25% 0.61 0.64 0.66 0.68 0.68 0.68 0.68 0.67 0.66

100% 0.61 0.64 0.66 0.68 0.68 0.68 0.68 0.67 0.66

MC-cBCI

5% 0.77 0.79 0.83 0.84 0.88 – – – –

10% 0.76 0.79 0.81 0.83 0.84 0.86 – – –

15% 0.77 0.80 0.83 0.85 0.87 0.88 0.90 – –

20% 0.77 0.80 0.83 0.85 0.87 0.88 0.90 0.93 –

25% 0.79 0.80 0.83 0.85 0.87 0.89 0.90 0.91 0.93

100% 0.79 0.80 0.83 0.85 0.87 0.89 0.90 0.91 0.93

LDA-cBCI

5% 0.79 0.84 0.87 0.89 0.91 – – – –

10% 0.80 0.83 0.85 0.88 0.90 0.91 – – –

15% 0.81 0.85 0.89 0.91 0.92 0.95 0.96 – –

20% 0.81 0.85 0.89 0.91 0.92 0.94 0.97 0.97 –

25% 0.82 0.86 0.89 0.91 0.93 0.94 0.96 0.97 0.97

100% 0.82 0.86 0.89 0.91 0.93 0.94 0.96 0.97 0.97
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Percentages of groups that are accepted by the selection mechanism for the tar-
get vs non-target discrimination task for different group sizes and values of the
dissimilarity-index threshold δ at difficulty level 6.

Group size

δ 2 3 4 5 6 7 8 9 10

5% 40% 16% 7% 2% 0% 0% 0% 0% 0%

10% 66% 42% 26% 14% 6% 1% 0% 0% 0%

15% 91% 76% 59% 42% 26% 13% 4% 0% 0%

20% 95% 87% 76% 63% 50% 35% 22% 10% 0%

25% 100% 100% 100% 100% 100% 100% 100% 100% 100%
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Median AUC values for the three types of cBCIs for left vs right classification of
targets for difficulty level 7, as a function of group size and the dissimilarity-index
threshold δ.

Group size

Method δ 2 3 4 5 6 7 8 9 10

SC-cBCI

5% 0.48 0.44 0.41 0.39 0.37 – – – –

10% 0.50 0.47 0.47 0.43 0.42 0.47 0.34 – –

15% 0.54 0.51 0.48 0.43 0.42 0.47 0.34 – –

20% 0.54 0.53 0.51 0.52 0.52 0.53 0.52 0.42 0.34

25% 0.54 0.53 0.51 0.52 0.52 0.53 0.52 0.42 0.34

100% 0.54 0.53 0.51 0.52 0.52 0.53 0.52 0.42 0.34

MC-cBCI

5% 0.57 0.54 0.53 0.55 0.55 – – – –

10% 0.56 0.54 0.52 0.54 0.53 0.54 0.53 – –

15% 0.58 0.56 0.57 0.55 0.54 0.54 0.53 – –

20% 0.58 0.63 0.64 0.67 0.68 0.70 0.71 0.70 0.70

25% 0.58 0.63 0.64 0.67 0.68 0.70 0.71 0.70 0.70

100% 0.58 0.63 0.64 0.67 0.68 0.70 0.71 0.70 0.70

LDA-cBCI

5% 0.54 0.52 0.49 0.52 0.53 – – – –

10% 0.56 0.53 0.53 0.54 0.53 0.49 0.48 – –

15% 0.57 0.56 0.56 0.55 0.53 0.49 0.48 – –

20% 0.59 0.62 0.63 0.66 0.66 0.67 0.67 0.67 0.70

25% 0.59 0.62 0.63 0.66 0.66 0.67 0.67 0.67 0.70

100% 0.59 0.62 0.63 0.66 0.66 0.67 0.67 0.67 0.70
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Percentages of groups that are accepted by the selection mechanism for the tar-
get vs non-target discrimination task for different group sizes and values of the
dissimilarity-index threshold δ at difficulty level 7.

Group size

δ 2 3 4 5 6 7 8 9 10

5% 44% 19% 7% 2% 0% 0% 0% 0% 0%

10% 71% 48% 33% 22% 13% 6% 2% 0% 0%

15% 82% 60% 40% 24% 13% 6% 2% 0% 0%

20% 100% 100% 100% 100% 100% 100% 100% 100% 100%

25% 100% 100% 100% 100% 100% 100% 100% 100% 100%

C.2.2 Comparison with avg(AUC1, AUC2, ..., AUCr)

The tables included in this section report, for the target localisation system, the

median improvements (in percentage) when using collaborative BCIs over the

average AUC performance of the group, for each level and group size.
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Median improvements over the average participant in the group when using collaborative BCIs for target localisation
at difficulty level 1, as a function of group size and the dissimilarity-index threshold δ. Values in bold face are sta-
tistically significantly superior at the 1% confidence level according to a two-sample one-sided Kolmogorov-Smirnov
test (group AUC vs average AUC of the group). Values in italics are statistically superior at the 5% confidence level.

Group size
Method δ 2 3 4 5 6 7 8 9 10 11

SC-cBCI

5% -9.1% -4.3% – – – – – – – –
10% -9.9% -3.7% -1.7% -1.7% – – – – – –
15% -8.4% -2.0% +2.0% +5.2% +4.1% +1.0% – – – –
20% -9.8% -4.3% +0.2% +1.8% +4.7% +6.1% +8.0% +6.6% – –
25% -10.6% -4.7% -1.5% +1.0% +3.1% +4.1% +4.6% +4.2% – –
100% -10.2% -4.5% -1.0% +1.3% +3.4% +4.2% +4.9% +5.0% +8.2% +6.4%

MC-cBCI

5% +4.1% +13.5% – – – – – – – –
10% +3.7% +7.7% +9.9% +13.5% – – – – – –
15% +4.6% +10.5% +14.9% +18.0% +19.2% +21.5% – – – –
20% +3.7% +9.2% +14.5% +17.9% +20.0% +21.7% +22.8% +26.3% – –
25% +2.8% +7.9% +12.3% +15.8% +18.0% +20.1% +22.3% +25.3% – –
100% +2.4% +7.9% +11.8% +15.3% +17.9% +20.2% +21.9% +23.2% +24.3% +25.6%

LDA-cBCI

5% +2.7% +5.4% – – – – – – – –
10% +2.8% +9.0% +10.6% +12.3% – – – – – –
15% +4.7% +10.7% +15.4% +18.9% +20.0% +22.2% – – – –
20% +3.4% +9.6% +14.7% +17.8% +20.4% +22.1% +23.2% +24.3% – –
25% +2.1% +9.1% +13.1% +16.4% +19.2% +20.9% +21.4% +23.6% – –
100% +3.4% +9.3% +13.2% +16.4% +19.2% +21.4% +23.1% +24.5% +25.2% +25.3%
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Median improvements over the average participant in the group when using collaborative BCIs for target localisation
at difficulty level 2, as a function of group size and the dissimilarity-index threshold δ. Values in bold face are sta-
tistically significantly superior at the 1% confidence level according to a two-sample one-sided Kolmogorov-Smirnov
test (group AUC vs average AUC of the group). Values in italics are statistically superior at the 5% confidence level.

Group size
Method δ 2 3 4 5 6 7 8 9 10

SC-cBCI

5% -8.9% -8.5% – – – – – – –
10% -5.2% -3.3% -1.7% +4.1% – – – – –
15% -5.2% -2.7% -0.1% +0.1% -2.4% – – – –
20% -3.5% -1.4% +0.8% +3.5% +5.7% +7.6% – – –
25% -2.8% -0.3% +2.5% +5.9% +6.9% +9.2% +10.3% +14.1% –
100% -2.5% +0.0% +3.3% +6.4% +8.2% +10.1% +11.5% +10.4% +13.9%

MC-cBCI

5% +1.4% +6.1% – – – – – – –
10% +2.7% +5.5% +9.8% +12.8% – – – – –
15% +2.7% +7.3% +10.7% +13.3% +17.1% – – – –
20% +3.0% +7.6% +10.4% +12.4% +13.7% +15.2% – – –
25% +3.5% +8.0% +11.4% +14.7% +17.4% +20.5% +22.2% +22.9% –
100% +3.9% +8.9% +12.3% +15.6% +17.7% +20.1% +21.5% +22.8% +23.9%

LDA-cBCI

5% +0.2% +4.1% – – – – – – –
10% +3.3% +5.8% +9.2% +12.5% – – – – –
15% +4.0% +7.6% +10.2% +12.4% +18.3% – – – –
20% +4.0% +8.1% +10.5% +12.3% +13.9% +16.1% – – –
25% +4.4% +9.9% +13.8% +16.6% +19.5% +21.9% +23.7% +24.9% –
100% +4.7% +11.2% +14.8% +17.1% +19.1% +20.1% +21.5% +22.2% +23.4%
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Median improvements over the average participant in the group when using collaborative BCIs for target localisation
at difficulty level 3, as a function of group size and the dissimilarity-index threshold δ. Values in bold face are sta-
tistically significantly superior at the 1% confidence level according to a two-sample one-sided Kolmogorov-Smirnov
test (group AUC vs average AUC of the group). Values in italics are statistically superior at the 5% confidence level.

Group size
Method δ 2 3 4 5 6 7 8 9 10 11

SC-cBCI

5% +7.0% +14.5% +11.6% +13.1% – – – – – –
10% +10.3% +14.9% +17.1% +20.6% +21.7% +23.1% +28.1% – – –
15% +8.4% +10.9% +13.9% +17.5% +19.7% +21.8% +28.1% – – –
20% +5.4% +9.3% +12.6% +14.9% +15.7% +19.4% +19.4% +16.3% – –
25% +3.0% +7.7% +10.1% +12.0% +12.0% +13.8% +15.6% +14.5% +16.6% +14.7%
100% +3.0% +7.7% +10.1% +12.0% +12.0% +13.8% +15.6% +14.5% +16.6% +14.7%

MC-cBCI

5% +21.2% +33.3% +42.1% +45.8% – – – – – –
10% +20.8% +28.8% +34.8% +38.2% +40.4% +43.2% +44.5% – – –
15% +18.2% +25.4% +32.8% +35.9% +39.6% +42.5% +44.5% – – –
20% +16.1% +24.0% +31.1% +35.2% +39.6% +42.5% +45.7% +46.6% – –
25% +15.5% +23.0% +27.1% +31.3% +34.4% +37.4% +39.8% +41.5% +42.5% +45.5%
100% +15.5% +23.0% +27.1% +31.3% +34.4% +37.4% +39.8% +41.5% +42.5% +45.5%

LDA-cBCI

5% +22.9% +33.6% +41.7% +47.2% – – – – – –
10% +20.1% +29.6% +34.9% +38.6% +41.3% +43.1% +45.3% – – –
15% +18.8% +28.0% +33.7% +37.6% +41.3% +43.3% +45.3% – – –
20% +18.0% +26.0% +31.4% +35.8% +40.2% +42.6% +45.3% +46.5% – –
25% +17.2% +23.9% +28.6% +33.0% +36.2% +38.8% +41.3% +43.1% +43.2% +44.7%
100% +17.2% +23.9% +28.6% +33.0% +36.2% +38.8% +41.3% +43.1% +43.2% +44.7%
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Median improvements over the average participant in the group when using collaborative BCIs for target localisation
at difficulty level 4, as a function of group size and the dissimilarity-index threshold δ. Values in bold face are sta-
tistically significantly superior at the 1% confidence level according to a two-sample one-sided Kolmogorov-Smirnov
test (group AUC vs average AUC of the group). Values in italics are statistically superior at the 5% confidence level.

Group size
Method δ 2 3 4 5 6 7 8 9 10

SC-cBCI

5% -7.5% -6.7% – – – – – – –
10% -4.8% +2.7% +7.1% – – – – – –
15% -4.8% +4.7% +9.9% +14.2% – – – – –
20% -5.4% +2.3% +7.3% +14.0% +13.0% +22.6% – – –
25% -5.2% +0.3% +4.9% +9.7% +12.5% +22.6% – – –
100% -5.3% -2.8% +1.9% +5.6% +8.7% +10.9% +10.8% +16.5% +20.0%

MC-cBCI

5% +4.5% +5.7% – – – – – – –
10% +9.0% +15.7% +18.3% – – – – – –
15% +10.7% +16.2% +18.4% +22.1% – – – – –
20% +7.1% +15.4% +18.9% +22.0% +23.2% +26.0% – – –
25% +7.3% +14.5% +17.3% +21.2% +23.1% +26.0% – – –
100% +7.6% +14.7% +18.0% +21.1% +23.4% +25.8% +27.0% +29.5% +31.8%

LDA-cBCI

5% +5.2% +3.1% – – – – – – –
10% +9.3% +15.6% +18.3% – – – – – –
15% +10.1% +16.6% +18.6% +23.0% – – – – –
20% +8.7% +17.0% +19.8% +23.4% +24.5% +27.5% – – –
25% +8.9% +17.6% +20.8% +23.0% +24.3% +27.5% – – –
100% +10.7% +18.9% +22.6% +25.4% +27.5% +29.4% +31.2% +33.2% +34.7%
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Median improvements over the average participant in the group when using collaborative BCIs for target localisation
at difficulty level 5, as a function of group size and the dissimilarity-index threshold δ. Values in bold face are sta-
tistically significantly superior at the 1% confidence level according to a two-sample one-sided Kolmogorov-Smirnov
test (group AUC vs average AUC of the group). Values in italics are statistically superior at the 5% confidence level.

Group size
Method δ 2 3 4 5 6 7 8 9

SC-cBCI

5% -11.2% -14.7% – – – – – –
10% -13.5% -16.5% -17.3% -16.6% – – – –
15% -13.5% -12.4% -12.2% -11.9% -14.2% -12.1% – –
20% -14.9% -14.7% -12.2% -10.8% -10.0% -9.1% -10.0% –
25% -14.2% -13.6% -11.0% -9.9% -7.9% -7.6% -7.2% -1.5%
100% -14.2% -13.6% -11.0% -9.9% -7.9% -7.6% -7.2% -1.5%

MC-cBCI

5% -8.6% -6.7% – – – – – –
10% -7.3% -7.1% -7.3% -7.3% – – – –
15% -6.1% -6.7% -7.0% -7.2% -5.1% -5.4% – –
20% -7.3% -4.8% -2.5% -0.5% +0.8% +3.3% +3.2% –
25% -6.1% -3.9% -1.7% +0.9% +1.9% +3.4% +3.4% +3.8%
100% -6.1% -3.9% -1.7% +0.9% +1.9% +3.4% +3.4% +3.8%

LDA-cBCI

5% -8.2% -0.9% – – – – – –
10% -7.4% -2.9% -0.2% +1.4% – – – –
15% -4.6% -1.3% -0.3% -0.9% -0.2% +0.3% – –
20% -2.7% +3.2% +5.5% +7.6% +9.7% +8.8% +10.9% –
25% -2.5% +3.4% +6.9% +9.6% +10.9% +12.0% +13.7% +13.4%
100% -2.5% +3.4% +6.9% +9.6% +10.9% +12.0% +13.7% +13.4%
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Median improvements over the average participant in the group when using collaborative BCIs for target localisation
at difficulty level 6, as a function of group size and the dissimilarity-index threshold δ. Values in bold face are sta-
tistically significantly superior at the 1% confidence level according to a two-sample one-sided Kolmogorov-Smirnov
test (group AUC vs average AUC of the group). Values in italics are statistically superior at the 5% confidence level.

Group size
Method δ 2 3 4 5 6 7 8 9 10

SC-cBCI

5% -13.4% -13.2% -8.5% -8.6% -14.3% – – – –
10% -12.0% -12.4% -11.2% -10.7% -7.0% -6.8% – – –
15% -17.1% -13.3% -13.1% -12.1% -8.2% -8.0% -4.7% – –
20% -16.9% -13.9% -12.8% -12.5% -9.9% -8.1% -4.9% -2.5% –
25% -16.9% -15.3% -14.9% -15.8% -14.5% -14.7% -15.0% -8.6% -5.5%
100% -16.9% -15.3% -14.9% -15.8% -14.5% -14.7% -15.0% -8.6% -5.5%

MC-cBCI

5% -5.2% -0.8% +1.8% +6.2% +5.9% – – – –
10% -3.3% +0.3% +2.3% +6.7% +6.5% +8.4% – – –
15% -4.2% +0.3% +2.7% +5.8% +7.5% +9.8% +11.6% – –
20% -4.2% +0.3% +3.1% +6.3% +8.4% +10.5% +12.0% +13.3% –
25% -5.2% -0.4% +2.1% +4.3% +6.7% +8.6% +9.7% +10.5% +11.4%
100% -5.2% -0.4% +2.1% +4.3% +6.7% +8.6% +9.7% +10.5% +11.4%

LDA-cBCI

5% -2.3% +0.9% +3.8% +6.1% +7.6% – – – –
10% -1.9% +1.6% +4.9% +6.3% +8.3% +9.8% – – –
15% -2.4% +1.7% +5.2% +7.0% +8.6% +9.7% +12.2% – –
20% -2.4% +1.7% +4.9% +7.5% +9.3% +11.0% +13.5% +12.9% –
25% -2.4% +1.7% +4.6% +7.3% +9.2% +10.6% +12.1% +13.1% +12.2%
100% -2.4% +1.7% +4.6% +7.3% +9.2% +10.6% +12.1% +13.1% +12.2%
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Median improvements over the average participant in the group when using collaborative BCIs for target localisation
at difficulty level 7, as a function of group size and the dissimilarity-index threshold δ. Values in bold face are sta-
tistically significantly superior at the 1% confidence level according to a two-sample one-sided Kolmogorov-Smirnov
test (group AUC vs average AUC of the group). Values in italics are statistically superior at the 5% confidence level.

Group size
Method δ 2 3 4 5 6 7 8 9 10

SC-cBCI

5% -12.0% -11.6% -6.0% -2.8% -4.6% – – – –
10% -7.8% -6.9% -4.6% -2.3% -3.9% +2.4% -2.3% – –
15% -6.3% -5.2% -3.6% -1.3% -3.7% +2.4% -2.3% – –
20% -8.4% -7.0% -5.1% -3.6% -2.2% -1.7% -4.0% -5.5% -13.2%
25% -8.4% -7.0% -5.1% -3.6% -2.2% -1.7% -4.0% -5.5% -13.2%
100% -8.4% -7.0% -5.1% -3.6% -2.2% -1.7% -4.0% -5.5% -13.2%

MC-cBCI

5% -3.8% -1.2% -0.0% +2.3% +7.8% – – – –
10% +0.9% +6.6% +10.6% +12.2% +12.1% +14.0% +15.7% – –
15% +1.7% +9.2% +11.8% +13.4% +12.1% +14.0% +15.7% – –
20% +2.9% +9.4% +13.5% +16.0% +18.0% +19.7% +20.9% +22.8% +23.6%
25% +2.9% +9.4% +13.5% +16.0% +18.0% +19.7% +20.9% +22.8% +23.6%
100% +2.9% +9.4% +13.5% +16.0% +18.0% +19.7% +20.9% +22.8% +23.6%

LDA-cBCI

5% -4.3% -4.9% -0.6% +1.2% +4.4% – – – –
10% -0.8% +4.0% +9.3% +10.3% +10.7% +9.9% +10.1% – –
15% -0.1% +9.4% +11.7% +11.1% +11.0% +9.9% +10.1% – –
20% +2.8% +9.9% +13.7% +15.6% +17.7% +20.5% +20.9% +20.9% +19.2%
25% +2.8% +9.9% +13.7% +15.6% +17.7% +20.5% +20.9% +20.9% +19.2%
100% +2.8% +9.9% +13.7% +15.6% +17.7% +20.5% +20.9% +20.9% +19.2%

306



C.2.3 Comparison with max(AUC1, AUC2, ..., AUCr)

The results in this section report, for the target localisation system, the me-

dian improvements (in percentage) when using collaborative BCIs over the AUC

performance of the best participant of the group, for each level and group size.
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Median improvements over the best participant in the group when using collaborative BCIs for target localisation at
difficulty level 1, as a function of group size and the dissimilarity-index threshold δ. Values in bold face are statistically
significantly superior at the 1% confidence level according to a two-sample one-sided Kolmogorov-Smirnov test (group
AUC vs maximum AUC of the group). Values in italics are statistically superior at the 5% confidence level.

Group size
Method δ 2 3 4 5 6 7 8 9 10 11

SC-cBCI

5% -12.2% -7.6% – – – – – – – –
10% -13.2% -9.1% -10.2% -10.2% – – – – – –
15% -12.3% -11.0% -7.3% -5.0% -4.9% -7.9% – – – –
20% -14.0% -11.6% -8.3% -6.8% -5.5% -4.7% -3.2% -4.4% – –
25% -15.0% -11.7% -9.9% -8.5% -7.6% -7.6% -5.8% -6.9% – –
100% -14.3% -11.6% -10.0% -8.4% -7.4% -7.0% -6.0% -6.7% -4.1% -5.7%

MC-cBCI

5% +0.4% +0.3% – – – – – – – –
10% -4.0% -0.5% +1.6% +3.5% – – – – – –
15% -2.2% +1.8% +4.7% +6.2% +6.5% +8.8% – – – –
20% -2.6% +1.4% +4.6% +7.1% +8.5% +9.6% +11.3% +13.3% – –
25% -3.3% +0.1% +2.4% +4.6% +6.6% +7.9% +9.3% +12.0% – –
100% -3.3% -0.1% +2.2% +4.2% +6.2% +7.5% +8.6% +10.0% +10.5% +11.3%

LDA-cBCI

5% +0.7% +1.7% – – – – – – – –
10% -4.0% +1.2% +2.2% +2.4% – – – – – –
15% -1.6% +2.2% +5.1% +6.7% +8.8% +8.5% – – – –
20% -4.1% +1.5% +4.8% +6.8% +8.8% +9.8% +10.2% +11.5% – –
25% -4.2% +0.9% +3.2% +5.4% +7.0% +8.7% +9.6% +10.4% – –
100% -4.1% +1.2% +3.2% +5.2% +6.9% +8.7% +9.7% +10.8% +11.6% +11.0%
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Median improvements over the best participant in the group when using collaborative BCIs for target localisation at
difficulty level 2, as a function of group size and the dissimilarity-index threshold δ. Values in bold face are statistically
significantly superior at the 1% confidence level according to a two-sample one-sided Kolmogorov-Smirnov test (group
AUC vs maximum AUC of the group). Values in italics are statistically superior at the 5% confidence level.

Group size
Method δ 2 3 4 5 6 7 8 9 10

SC-cBCI

5% -12.8% -11.4% – – – – – – –
10% -11.0% -10.0% -9.0% -4.1% – – – – –
15% -12.7% -10.9% -10.5% -10.0% -13.2% – – – –
20% -12.6% -10.5% -10.1% -7.7% -4.4% -4.0% – – –
25% -12.5% -11.3% -10.5% -9.1% -8.0% -6.8% -7.1% -5.1% –
100% -12.6% -11.5% -10.2% -8.2% -7.0% -5.9% -5.4% -6.4% -4.1%

MC-cBCI

5% -1.3% +2.7% – – – – – – –
10% -1.9% +0.5% +3.0% +3.9% – – – – –
15% -2.5% -1.4% +0.6% +2.3% +3.8% – – – –
20% -2.5% -1.6% -0.5% +1.6% +2.7% +2.8% – – –
25% -3.9% -2.1% -1.2% +0.0% +1.4% +1.7% +2.4% +2.2% –
100% -4.2% -2.5% -1.3% +0.1% +1.4% +2.1% +2.8% +4.0% +4.3%

LDA-cBCI

5% -1.5% +0.9% – – – – – – –
10% -1.1% +0.6% +1.8% +3.6% – – – – –
15% -2.4% -0.9% +1.1% +3.7% +4.8% – – – –
20% -2.8% -1.5% +0.5% +1.4% +2.4% +3.1% – – –
25% -2.8% -1.2% +0.5% +1.3% +2.1% +2.8% +2.9% +3.9% –
100% -2.7% -1.1% +0.4% +1.3% +2.0% +2.6% +3.0% +3.6% +3.9%
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Median improvements over the best participant in the group when using collaborative BCIs for target localisation at
difficulty level 3, as a function of group size and the dissimilarity-index threshold δ. Values in bold face are statistically
significantly superior at the 1% confidence level according to a two-sample one-sided Kolmogorov-Smirnov test (group
AUC vs maximum AUC of the group). Values in italics are statistically superior at the 5% confidence level.

Group size
Method δ 2 3 4 5 6 7 8 9 10 11

SC-cBCI

5% -5.5% +0.7% -5.5% -6.1% – – – – – –
10% +3.4% +0.6% +1.8% +2.7% +3.1% +4.2% +7.5% – – –
15% -0.2% -0.2% -1.1% +0.7% +1.3% +3.5% +7.5% – – –
20% -1.7% -1.9% -3.0% -2.4% -2.5% +0.2% -1.2% -4.2% – –
25% -5.5% -3.2% -4.4% -4.5% -5.0% -3.5% -3.9% -4.5% -3.6% -5.2%
100% -5.5% -3.2% -4.4% -4.5% -5.0% -3.5% -3.9% -4.5% -3.6% -5.2%

MC-cBCI

5% +10.1% +14.2% +18.9% +21.1% – – – – – –
10% +10.3% +13.8% +16.2% +17.8% +19.7% +20.3% +21.3% – – –
15% +10.1% +12.7% +14.5% +16.8% +19.5% +19.9% +21.3% – – –
20% +9.9% +11.5% +13.1% +15.9% +17.5% +19.5% +21.2% +20.9% – –
25% +8.4% +10.2% +11.5% +13.4% +14.6% +16.1% +16.8% +17.7% +18.5% +20.2%
100% +8.4% +10.2% +11.5% +13.4% +14.6% +16.1% +16.8% +17.7% +18.5% +20.2%

LDA-cBCI

5% +10.5% +15.0% +19.6% +22.2% – – – – – –
10% +10.5% +14.2% +16.9% +18.8% +20.5% +21.2% +21.9% – – –
15% +10.0% +13.6% +15.5% +18.1% +19.6% +21.1% +21.9% – – –
20% +9.7% +12.2% +14.4% +16.3% +17.9% +19.7% +19.5% +20.7% – –
25% +8.7% +11.2% +12.9% +14.6% +16.0% +16.7% +18.4% +18.9% +18.7% +19.6%
100% +8.7% +11.2% +12.9% +14.6% +16.0% +16.7% +18.4% +18.9% +18.7% +19.6%
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Median improvements over the best participant in the group when using collaborative BCIs for target localisation at
difficulty level 4, as a function of group size and the dissimilarity-index threshold δ. Values in bold face are statistically
significantly superior at the 1% confidence level according to a two-sample one-sided Kolmogorov-Smirnov test (group
AUC vs maximum AUC of the group). Values in italics are statistically superior at the 5% confidence level.

Group size
Method δ 2 3 4 5 6 7 8 9 10

SC-cBCI

5% -16.4% -12.7% – – – – – – –
10% -14.6% -9.6% -8.5% – – – – – –
15% -12.8% -7.8% -7.0% -6.2% – – – – –
20% -12.3% -8.3% -5.8% -6.5% -5.0% +1.2% – – –
25% -11.8% -11.4% -9.2% -6.8% -5.5% +1.2% – – –
100% -12.8% -15.1% -13.4% -13.1% -11.6% -10.6% -13.2% -9.0% -7.6%

MC-cBCI

5% -2.8% -1.1% – – – – – – –
10% -0.6% +0.6% +0.8% – – – – – –
15% +0.4% +2.3% +1.3% -0.9% – – – – –
20% -1.0% +2.2% +2.2% +2.5% +3.1% +4.0% – – –
25% -0.6% +2.2% +1.7% +1.9% +2.9% +4.0% – – –
100% -1.5% -0.7% -0.5% -0.6% -0.6% -0.1% -0.3% +0.0% +1.4%

LDA-cBCI

5% -2.8% -3.6% – – – – – – –
10% -0.0% +1.6% +0.9% – – – – – –
15% +0.8% +3.0% -0.1% -1.1% – – – – –
20% -0.4% +3.3% +3.7% +3.3% +4.2% +5.2% – – –
25% +0.1% +4.9% +4.7% +4.2% +4.3% +5.2% – – –
100% +0.8% +4.0% +3.3% +3.0% +2.7% +2.4% +2.9% +3.0% +3.7%
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Median improvements over the best participant in the group when using collaborative BCIs for target localisation at
difficulty level 5, as a function of group size and the dissimilarity-index threshold δ. Values in bold face are statistically
significantly superior at the 1% confidence level according to a two-sample one-sided Kolmogorov-Smirnov test (group
AUC vs maximum AUC of the group). Values in italics are statistically superior at the 5% confidence level.

Group size
Method δ 2 3 4 5 6 7 8 9

SC-cBCI

5% -17.2% -21.9% – – – – – –
10% -20.7% -21.7% -26.5% -27.1% – – – –
15% -18.2% -18.0% -17.1% -20.0% -23.4% -22.7% – –
20% -18.4% -21.2% -19.7% -18.8% -17.1% -18.7% -19.1% –
25% -18.4% -20.3% -18.3% -17.8% -15.9% -15.4% -15.4% -11.3%
100% -18.4% -20.3% -18.3% -17.8% -15.9% -15.4% -15.4% -11.3%

MC-cBCI

5% -14.3% -12.6% – – – – – –
10% -13.7% -15.7% -15.5% -18.9% – – – –
15% -12.4% -13.0% -14.8% -15.7% -16.7% -16.8% – –
20% -12.1% -9.9% -10.5% -9.1% -8.4% -8.0% -7.3% –
25% -11.6% -9.6% -9.6% -8.1% -7.2% -7.1% -5.0% -6.5%
100% -11.6% -9.6% -9.6% -8.1% -7.2% -7.1% -5.0% -6.5%

LDA-cBCI

5% -14.0% -7.1% – – – – – –
10% -11.6% -11.7% -8.8% -11.3% – – – –
15% -9.4% -8.5% -9.0% -11.0% -11.0% -11.8% – –
20% -6.2% -3.4% -3.2% -1.5% -1.4% -2.0% -0.4% –
25% -5.8% -3.2% -2.0% -0.1% +0.5% +2.8% +2.9% +2.1%
100% -5.8% -3.2% -2.0% -0.1% +0.5% +2.8% +2.9% +2.1%
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Median improvements over the best participant in the group when using collaborative BCIs for target localisation at
difficulty level 6, as a function of group size and the dissimilarity-index threshold δ. Values in bold face are statistically
significantly superior at the 1% confidence level according to a two-sample one-sided Kolmogorov-Smirnov test (group
AUC vs maximum AUC of the group). Values in italics are statistically superior at the 5% confidence level.

Group size
Method δ 2 3 4 5 6 7 8 9 10

SC-cBCI

5% -19.7% -23.8% -27.7% -26.4% -34.6% – – – –
10% -19.5% -23.7% -27.7% -27.9% -29.4% -30.0% – – –
15% -21.5% -24.5% -29.2% -28.3% -27.6% -28.7% -26.5% – –
20% -21.1% -24.6% -27.7% -28.9% -28.2% -27.9% -24.6% -23.9% –
25% -21.5% -27.9% -29.4% -31.6% -31.7% -32.6% -33.0% -29.9% -27.1%
100% -21.5% -27.9% -29.4% -31.6% -31.7% -32.6% -33.0% -29.9% -27.1%

MC-cBCI

5% -12.5% -17.4% -16.6% -18.5% -19.3% – – – –
10% -13.6% -16.5% -17.6% -18.1% -19.0% -18.7% – – –
15% -13.7% -14.5% -15.2% -14.8% -14.5% -14.4% -13.8% – –
20% -13.5% -13.7% -13.8% -13.7% -13.5% -13.0% -12.4% -11.6% –
25% -13.7% -15.1% -15.0% -15.0% -14.5% -14.4% -14.0% -15.1% -14.0%
100% -13.7% -15.1% -15.0% -15.0% -14.5% -14.4% -14.0% -15.1% -14.0%

LDA-cBCI

5% -10.3% -18.0% -16.3% -17.9% -18.0% – – – –
10% -11.8% -16.2% -16.4% -16.7% -17.8% -17.6% – – –
15% -12.4% -13.1% -13.7% -14.3% -14.1% -13.8% -13.5% – –
20% -11.9% -12.3% -12.4% -12.9% -12.8% -12.5% -11.9% -11.9% –
25% -12.3% -12.6% -12.7% -12.8% -12.8% -12.7% -12.7% -12.4% -13.4%
100% -12.3% -12.6% -12.7% -12.8% -12.8% -12.7% -12.7% -12.4% -13.4%
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Median improvements over the best participant in the group when using collaborative BCIs for target localisation at
difficulty level 7, as a function of group size and the dissimilarity-index threshold δ. Values in bold face are statistically
significantly superior at the 1% confidence level according to a two-sample one-sided Kolmogorov-Smirnov test (group
AUC vs maximum AUC of the group). Values in italics are statistically superior at the 5% confidence level.

Group size
Method δ 2 3 4 5 6 7 8 9 10

SC-cBCI

5% -20.9% -21.5% -17.6% -15.0% -17.0% – – – –
10% -16.8% -17.8% -18.6% -18.0% -17.9% -14.0% -18.9% – –
15% -16.6% -15.7% -16.8% -16.1% -17.8% -14.0% -18.9% – –
20% -17.5% -17.1% -15.8% -16.2% -15.9% -16.3% -18.9% -19.3% -26.0%
25% -17.5% -17.1% -15.8% -16.2% -15.9% -16.3% -18.9% -19.3% -26.0%
100% -17.5% -17.1% -15.8% -16.2% -15.9% -16.3% -18.9% -19.3% -26.0%

MC-cBCI

5% -11.0% -12.4% -11.3% -9.6% -6.2% – – – –
10% -6.6% -6.2% -5.8% -5.0% -5.6% -4.4% -4.0% – –
15% -5.3% -3.8% -3.6% -3.9% -5.2% -4.4% -4.0% – –
20% -4.6% -2.1% -1.4% +0.6% +2.0% +2.7% +4.0% +4.6% +5.5%
25% -4.6% -2.1% -1.4% +0.6% +2.0% +2.7% +4.0% +4.6% +5.5%
100% -4.6% -2.1% -1.4% +0.6% +2.0% +2.7% +4.0% +4.6% +5.5%

LDA-cBCI

5% -12.8% -14.2% -12.8% -11.6% -9.2% – – – –
10% -8.1% -8.2% -7.2% -6.8% -7.2% -7.4% -8.6% – –
15% -3.4% -4.2% -4.7% -6.1% -7.2% -7.4% -8.6% – –
20% -3.1% -2.9% -1.5% -0.5% +2.3% +3.8% +3.9% +3.5% +1.7%
25% -3.1% -2.9% -1.5% -0.5% +2.3% +3.8% +3.9% +3.5% +1.7%
100% -3.1% -2.9% -1.5% -0.5% +2.3% +3.8% +3.9% +3.5% +1.7%
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Appendix D

Individual ERD/ERS Analysis in

Response to Cuts

This appendix contains additional results for the frequency analysis sections

from Chapter 7.

In particular, it contains a section devoted to illustrating the differences in

individual ERD/ERS patterns as opposed to the grand average that was provided

in the chapter, and a grand average of coherence in the pre- and post-cut condi-

tions to which no threshold has been applied, so the magnitude of all connections

can be seen.

D.1 Individual ERD/ERS Topoplots

This section contains the ERD/ERS analysis from Chapter 7, which has been

performed on an individual-by-individual basis, across all movies.
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In order to make comparisons easier, the color scale has been kept constant

across all participants

Theta Lower alpha Upper alpha Low beta Upper beta

(4–8 Hz) (8–10 Hz) (10–14 Hz) (14–18 Hz) (18–26 Hz)

0–100 ms

200–300 ms

400–500 ms

Spatial distribution of ERD/ERS after the occurrence of a cut for participant 001
at different time intervals and frequency bands.
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Theta Lower alpha Upper alpha Low beta Upper beta

(4–8 Hz) (8–10 Hz) (10–14 Hz) (14–18 Hz) (18–26 Hz)

0–100 ms

200–300 ms

400–500 ms

Spatial distribution of ERD/ERS after the occurrence of a cut for participant 001
at different time intervals and frequency bands.
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Theta Lower alpha Upper alpha Low beta Upper beta

(4–8 Hz) (8–10 Hz) (10–14 Hz) (14–18 Hz) (18–26 Hz)

0–100 ms

200–300 ms

400–500 ms

Spatial distribution of ERD/ERS after the occurrence of a cut for participant 001
at different time intervals and frequency bands.
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Theta Lower alpha Upper alpha Low beta Upper beta

(4–8 Hz) (8–10 Hz) (10–14 Hz) (14–18 Hz) (18–26 Hz)

0–100 ms

200–300 ms

400–500 ms

Spatial distribution of ERD/ERS after the occurrence of a cut for participant 001
at different time intervals and frequency bands.

319



Theta Lower alpha Upper alpha Low beta Upper beta

(4–8 Hz) (8–10 Hz) (10–14 Hz) (14–18 Hz) (18–26 Hz)

0–100 ms

200–300 ms

400–500 ms

Spatial distribution of ERD/ERS after the occurrence of a cut for participant 001
at different time intervals and frequency bands.
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Theta Lower alpha Upper alpha Low beta Upper beta

(4–8 Hz) (8–10 Hz) (10–14 Hz) (14–18 Hz) (18–26 Hz)

0–100 ms

200–300 ms

400–500 ms

Spatial distribution of ERD/ERS after the occurrence of a cut for participant 001
at different time intervals and frequency bands.
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Theta Lower alpha Upper alpha Low beta Upper beta

(4–8 Hz) (8–10 Hz) (10–14 Hz) (14–18 Hz) (18–26 Hz)

0–100 ms

200–300 ms

400–500 ms

Spatial distribution of ERD/ERS after the occurrence of a cut for participant 001
at different time intervals and frequency bands.
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Theta Lower alpha Upper alpha Low beta Upper beta

(4–8 Hz) (8–10 Hz) (10–14 Hz) (14–18 Hz) (18–26 Hz)

0–100 ms

200–300 ms

400–500 ms

Spatial distribution of ERD/ERS after the occurrence of a cut for participant 001
at different time intervals and frequency bands.
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D.2 Grand Average Coherence Plots Preceding

and Following Cuts
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