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Previous work has demonstrated that search for a target in
noise is consistent with the predictions of the optimal
search strategy, both in the spatial distribution of fixation
locations and in the number of fixations observers require
to find the target. In this study we describe a challenging
visual-search task and compare the number of fixations
required by human observers to find the target to
predictions made by a stochastic search model. This model
relies on a target-visibility map based on human
performance in a separate detection task. If the model
does not detect the target, then it selects the next saccade
by randomly sampling from the distribution of saccades
that human observers made. We find that a memoryless
stochastic model matches human performance in this task.
Furthermore, we find that the similarity in the distribution
of fixation locations between human observers and the
ideal observer does not replicate: Rather than making the
signature doughnut-shaped distribution predicted by the
ideal search strategy, the fixations made by observers are
best described by a central bias. We conclude that, when
searching for a target in noise, humans use an essentially
random strategy, which achieves near optimal behavior
due to biases in the distributions of saccades we have a
tendency to make. The findings reconcile the existence of
highly efficient human search performance with recent
studies demonstrating clear failures of optimality in single
and multiple saccade tasks.

Introduction

The human retina provides highly accurate and
detailed central vision, but acuity diminishes rapidly

with eccentricity. Eye movements shift new locations to
central vision, and in doing so sequentially sample finer
grained details from locations that are likely to yield
important information, presumably using some com-
bination of peripheral visual signals, inferences based
on context, and top-down strategies. Each eye move-
ment during extended search can therefore be useful for
understanding how the visual system combines and
prioritizes information both within each fixation and
across a sequence of fixations.

Much of the research on visual search to date has
formalized this general issue by focusing on questions
of feature extraction and of strategy. Feature extraction
includes both top-down guided search (Wolfe, 2007;
Zelinsky, 2008) and stimulus-driven (saliency) effects
(Gao, Mahadevan, & Vasconcelos, 2008; Itti & Baldi,
2009; Itti & Koch, 2000). For the abstract and discrete
search items commonly used as visual-search stimuli,
categorical features such as color, orientation, shape,
and size are often used. Simple qualitative comparisons
between the search items and the target can be used to
model top-down guidance (Pomplun, Shen, & Rein-
gold, 2003; Rutishauser & Koch, 2007). For more
complex stimuli, such as a target hidden in image noise
or in a photograph of a natural scene, there is no
discrete set of items to consider, and more sophisticated
image-processing techniques are required (Hwang,
Higgins, & Pomplun, 2009; Pomplun, 2007; Rao et al.,
2002; Tavassoli, van der Linde, & Bovik, 2009;
Zelinsky, 2008). In either case, the output of a feature-
extraction mechanism is an activation map—that is, a
representation of the visual array in which peaks of
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activity represent the priority of locations for eye
movements.

Strategy refers to the mechanism for selecting which
location to inspect next. While a number of different
mechanisms have been put forward, the most com-
monly implemented has been the maximum a posteriori
(MAP) observer. The MAP observer directs saccades to
the current maximum of the activation map and a
simple inhibition-of-return (IOR) mechanism is used to
stop the model returning to previously fixated maxima.
Depending on the model, a maximum will represent
either a search item or the center of gravity of a number
of search items. As most previous computational
models have primarily been interested in the feature-
extraction stage of search, the MAP observer has often
been used for simplicity (Clarke, Green, & Chantler,
2009; Itti & Koch, 2000; Pomplun et al., 2003; Rao et
al., 2002; Rutishauser & Koch, 2007; Zelinsky, 2008).

An alternative to the MAP observer is the ideal
observer. Here, eye movements are directed to loca-
tions that are likely to yield the most information. An
example of an ideal-observer model comes from
Najemnik and Geisler (2005), who measured visual
sensitivity to a Gabor patch in varying amounts of
noise across a range of eccentricities and angles from
fixation. From the visual-sensitivity data they could
generate a model of optimal eye-movement behavior
that selected as the next fixation the location that would
maximize the probability of detecting the target, given
the amount of background noise and the known
visibility of the target at various eccentricities. The
number of fixations made during search for the target
by the human observers (the two authors) closely
matched the optimal model. In a second study
(Najemnik & Geisler, 2008) they also measured the
fixations generated by an optimal model and found
that, when averaged over all trials, the ideal observer
matched the human spatial distribution of fixations:
Both the model and human observers exhibited a
preference for fixating above and below the center of
the image. The idea that eye movements during search
are near optimal is broadly consistent with studies
demonstrating the speed and efficiency with which eye
movements can be directed to locations in a naturalistic
setting that provide the most task-relevant information.
A now-classic example is the demonstration of expert
cricket batsmen’s ability to shift their eyes rapidly to
the anticipated bounce point of the ball based on its
trajectory as it leaves the bowler’s hand (Land &
McLeod, 2000). This is a specific example of a number
of studies demonstrating that eye movements are
tightly constrained by task goals and driven to
maximize task-relevant information gain (for a recent
review, see Hayhoe & Ballard, 2014).

In contrast with the notion that humans are close to
optimal in search behavior is recent evidence of

suboptimality in a very similar context. Morvan and
Maloney (2012) instructed observers to first make a
single eye movement to their choice of one of three
squares aligned in a row and to then make a judgment
about a dot that could appear in either the left- or the
rightmost square. When the squares are closely spaced,
the center location is the optimal choice because the dot
will be visible whether it appears in the left or the right
location. As the distance between the squares increases,
a point is reached where the center location is no longer
optimal; instead, observers can maximize accuracy by
selecting either the left or the right location. A single
saccade in this experiment represents a very similar
decision to each saccade in the search task of Najemnik
and Geisler (2005), in that observers must use
knowledge about their own visual acuity to guide their
eyes to the location that is likely to yield the most
information. Nonetheless, observers in Morven and
Maloney’s experiment were far from optimal: Not only
did they not change strategy at an optimal spacing, they
did not adapt their strategy to changes in the spacing of
the squares at all, even though they were given a
monetary reward for each correct response. This
finding has been recently replicated and generalized by
Clarke and Hunt (2015), and a similar conclusion was
also reached by Verghese (2012), who demonstrated
that observers failed to adapt their visual-search
strategies to take target probability information into
account, and by Zhang et al. (2012), who found
suboptimal eye–hand coordination in a reaching task.

How can these demonstrations of suboptimal eye-
movement behavior be reconciled with the findings of
Najemnik and Geisler (2005, 2008)? It is unlikely that
observers would be suboptimal at the level of a single
saccade but optimal across multiple saccades. Morvan
and Maloney (2012) suggest that observers may adopt
heuristics during search that generate sequences of
saccades that appear optimal but are not actually based
on a fixation-by-fixation computation of posterior
probability of target location. General tendencies
observed in search scan paths that have been taken to
be indicative of optimal behavior may instead be biases
in saccade selection related to the scene statistics, the
location of the eyes within the scene boundaries, and
local mechanisms like IOR and saccadic momentum.
For example, Over et al. (2007) have shown that search
scan paths exhibit coarse-to-fine structures—that is,
observers make shorter saccades as search progresses.
Over, Hooge, and Erkelens (2003) found that saccade
directions are influenced by the edges of the search
image and reported a preference for making saccades
parallel to the boundaries of the stimuli. Gilchrist and
Harvey (2006) argue that the presence of a horizontal
bias in saccade directions indicates systematic scanning
in visual search. They suggest that these systematic
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tendencies can be hard to detect in scan paths because
of interactions with salience-based object selection.

Chance has also been demonstrated to play a
significant role in visual-search performance. Using
saccade amplitude distributions, Motter and Holsapple
(2001) calculated the probability of fixating the target
by chance under different conditions. While this chance
component decreases as the number of distracters
increases, it continues to account for a sizable fraction
of performance. In natural-scene viewing, spatial biases
to move the eyes in particular ways play an important
role in fixation selection; and indeed, how the eyes
move (in terms of saccade amplitude and direction) can
provide a better account of fixation selection than can
what visual information is selected (Tatler & Vincent,
2009). Random walks have been successfully used to
model an observer’s speed and accuracy in present/
absent forced-choice experiments (Reeves, Santhi, &
DeCaro, 2005; Stone, 1960). Rather than model the
spatial distribution of fixations, these models simulate
the observer’s decision-making process. The random
walk occurs between two boundaries (one for a target-
present response and one for target absent) and is
governed by a drift and bias.

A plausible alternative to the optimal model of
human search behavior is therefore that natural search
behavior is stochastic but constrained by both scene
statistics and heuristics. Here we directly compare the
performance of a random-walk model to human eye
movements during search of a textured surface for an
indentation (for an example, see Clarke et al., 2008,
figure 1). We used textured surfaces because they
appear naturalistic but, unlike photographs of natural
scenes, are fully controlled and parameterized. Our
stochastic model randomly selects the next saccade in
the sequence from the total set of saccades made from
that region of the search array. This model captures the
global biases of saccade programming during search
that we have already reviewed, but unlike the optimal
model, it does not take into account previous fixations
or the visibility of the target given the roughness of the
surface texture. The results demonstrate that the
stochastic model closely matches the number of
fixations required to detect the target in human data.

Experiment 1

In order to compare the search performance of
human observers to a random walk, we carried out an
experiment with a group of nine observers, all unaware
of the aim of the study. There are two main parts to the
study: target detection and visual search.

The goal of the target-detection part of the study was
to generate a target-visibility map. This map was used

to determine, for each fixation generated by the
stochastic model, whether or not the target had been
found. We therefore designed the target-detection task
to match as closely as possible the detection task that
observers would need to perform during each fixation
while searching for the target. The target was presented
at any one of 64 locations, and participants needed to
state whether they detected it or not. A small number of
catch trials were included to permit an estimate of each
participant’s false-alarm rate. It is important to note
that this is a departure from the method used by
Najemnik and Geisler (2005, 2008), in which the target-
visibility maps were generated from a two-alternative
forced-choice (2AFC) task in which the target location
was cued on every trial and then presented on half of
the trials. Their method has the advantage of allowing
the experimenter to take false positives into account
and calculate d0. However, a flaw in this method is that
certainty about the target’s location allows covert
attention to be allocated to the region of the target,
potentially increasing visual sensitivity (Yeshurun &
Carrasco, 1998). This could lead to an overestimation
of visual sensitivity during search, particularly for
targets that are more difficult to detect.

Although a detection task with an uncertain target
location provides a conceptually better match to the
task of finding a target during search, the downside of
our method is that false positives may be problematic.
While in Najemnik and Geisler’s (2005, 2008) work a
false-positive rate could be calculated for a given
eccentricity, in our method a target-absent response
cannot be linked to a particular location. To cope with
this, our experiment was designed to minimize the false-
positive rate. Participants were aware that the target
was present on nearly every trial and were instructed
not to guess but to respond whenever they saw the
target. The experiment included catch trials with no
target presented, on which feedback was provided to
discourage guessing. Two participants were not in-
cluded in the study because their false-positive rates
exceeded 15% in the target-detection session.

To determine which method was more sensitive to
search difficulty manipulations and less likely to
overinflate sensitivity, we also explicitly compared the
detection rates across difficulty and eccentricity for
these two sensitivity-measurement methods (signal
detection at known locations vs. simple detection with
location uncertainty). The results of this short pilot
experiment are presented in the Appendix. The results
from this pilot confirm our hypothesis that cuing the
target’s location to the observer increases detection
rates particularly for difficult search conditions and
makes detection performance less sensitive to differ-
ences in target visibility, presumably because attention
can be deployed to the expected target location. A lack
of sensitivity to the difficulty manipulation is particu-
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larly problematic for direct application of the 2AFC
measure to the search context, because during search
we see clear differences in the search task across
difficulty. We therefore conclude that the target-
detection task described later is a more appropriate

measure than 2AFC for our experiment. In the visual-
search part of the study, a similar strategy was
encouraged in our observers: The target was present on
nearly every trial, and observers were encouraged to
search until they found the target. Catch trials with
feedback were included to discourage guessing.

Methods

Observers

Nine observers, 20–29 years old (mean age ¼ 23.8
years), with corrected or corrected-to-normal vision
took part in the experiment. All were unaware of the
purpose of the study. Two of the participants were
undergraduate research assistants and completed the
visual-search session first and the target-detection
session second. The remaining eight observers were
paid £5 for the visual-search experiment (approxi-
mately 45 min) and £15 for the target-detection part (1
hr 30 min to 2 hr 30 min). Four of these participants
carried out the visual-search experiment first, while the
other four carried out the target-detection session first.
All gave informed consent to participate in the
experiment, which was approved by the Aberdeen
School of Psychology ethics committee.

Surface stimuli and equipment

A range of rough surfaces were generated by
applying Lambert’s cosine law to height maps gener-
ated by a 1/fb noise process (for full technical details,
see Clarke et al., 2008). The surface roughness is
governed by b and a scaling factor, RMS roughness,
which was kept constant at rRMS¼ 1.1. The three levels
of surface roughness created by varying b will be
referred to as smooth (b¼ 1.70), medium (b¼ 1.65),
and rough (b ¼ 1.60). By changing the random seed
used to create the noise, we can create textured surfaces
on each trial that are unique but statistically identical.
The target was created by subtracting an ellipsoid from
the three-dimensional surface. Examples are shown in
Figure 1.

Eye movements were monitored using a desktop-
mounted Eyelink 1000 (SR Research, Ottawa, Cana-
da). Stimulus presentation was controlled using Psy-
chtoolbox (Brainard, 1997) and EyelinkToolbox
(Cornelissen, Peters, & Palmer, 2002) for MATLAB
and run on an Apple Power Mac. All search and
detection arrays were 10243 1024 pixels and displayed
on a 25-in. Sony Trimaster EL OLED monitor with
linear gamma. The viewing distance was controlled by
use of a chin rest placed 57 cm away from the display
monitor. At this distance, 1 pixel is approximately
0.0148 of visual angle; images subtend 14.38 and the
targets 0.28 of visual angle.

Figure 1. Example stimuli. This is a 256 3 256 pixel crop of one

each of the (a) smooth and (b) rough surfaces. In both cases,

the target is shown in the center of the image. The stimuli used

in the experiment were 1024 3 1024 pixels in size, making the

target much smaller relative to the search area than is shown

here. The slight differences in the target’s shape are due to

randomness in the surface at the location of the target.
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Setup: Target detection

Trials were presented in a random order, with a
break every 50 trials. Each trial started with a central
fixation cross, which the observer was required to fixate
for 1000 ms before the texture appeared. The texture
was presented for 200 ms, during which time the
observer had to maintain a central fixation (within 1.48
of the center of the screen). After the stimulus display
period a white-noise mask was displayed for 500 ms,
followed by a blank gray response screen. Observers
were informed that there was a target on nearly every
trial and their task was simply to press a button to
indicate if they had seen the target or not. If the
observer broke central fixation while the stimulus was
displayed, the trial was terminated.

There were eight equally spaced target eccentricities
(r � [0.708, 5.578] from the center of the screen) and
eight equally spaced directions. There were nine trials
for every possible target location and surface rough-
ness, and an additional 258 catch (target-absent) trials.
This gave a total of 1,986 trials.1 Observers were given
feedback only on catch trials: a green screen if they
correctly responded that they could not see the target,
and a red screen if they responded that they could.

Setup: Visual search

Participants were instructed to search for the target
and press a key when they found it. The search display
was presented until response, or timed out after 1 min.
There were 70 target-present trials for each value of b,
and the target was positioned randomly with the
constraint that it was at least 1.258 away from the edge
of the surface texture and not contained in a 2.58
window positioned on the stimulus center. An addi-

tional 10 target-absent catch trials were included for
each surface roughness. This gave a total of 240 trials.
Trials were presented in a random order.

On catch trials, the search display remained on for a
fixed time (30, 15, or 5 s, depending on surface
roughness) and observers were given feedback on these
trials: a red screen if they responded that they could see
the target, and a green screen if they correctly searched
the stimulus for the target for the full display period.

Analysis

Statistical analysis was carried out using the lme4
(Bates et al., 2013) package for R. The p values were
obtained using the Anova function from the car
package (based on type II Wald chi-square tests; Fox &
Weisberg, 2010).

Results

Target detection

Very few trials were rejected due to failure to
maintain central fixation (mean¼ 0.6% rejected trials
per participant). These trials are excluded from all
further analysis. First we checked each participant’s
false-positive rate (Figure 2) and found them accept-
ably low, ranging from 0.39% to 14.46%, with a median
of 3.88%. This suggests that accuracy (i.e., hit rate) on
target-present trials is a valid measure of target
visibility, although even a small number of false alarms
suggests we may be potentially overestimating the
probability of finding the target by a modest amount.

We analyzed the results using a general linear mixed
model (family¼ binomial), fitted with the model
specified as y ; b * (x2þ y2), where x and y are the

Figure 2. Accuracy of responses to the target for each observer in the target-detection study. The false-positive rate is low.
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coordinates of the target. The model allowed for
random slopes for b as well as random intercepts. We
find statistically significant effects (p , 0.001) of b,
v2(2)¼ 3676; x2, v2(1)¼ 965; and y2, v2(1)¼ 1735. The
interaction of b and x2 was also significant, v2(2)¼20.2.
A simplified version of the target-detection function is
shown in Figure 3. The effect of / is illustrated in
Figure 4. From this figure, we can see that an
ellipsoidal model that is close to radially symmetric will
be sufficient to model human performance.

Visual search

Mean accuracy was 99% and 94% for target-present
and target-absent trials, respectively. We analyze log
reaction time with a linear mixed model: log(rt) ; bþ
(bjparticipantID). As expected, b has a statistically
significant effect on log reaction times, v2¼ 243.75, p ,
0.001, with longer reaction times to find targets on
rougher surfaces. We also examined the spatial
distribution of fixation locations using hot-spot maps.
As can be seen in Figure 5a, the observers exhibit a
central bias (Tatler, 2007) in their fixation locations,
although there appear to be individual differences in
the variance and spread of fixations. Importantly, the
distinctive ‘‘doughnut’’ pattern of fixation locations
observed by Najemnik and Geisler (2008)—and used as
evidence that human observers are consistent with
optimal search strategies—was not replicated. To
explore whether this could be explained by the
difference in the shape of the stimuli (we used square
search areas, while Najemnik and Geisler used circular

areas), we retested a subset of the participants in the
same experiment but using circular stimuli. As Figure
5b shows, this had no effect on the pattern of fixations.

Search strategies

Here we describe a stochastic model of the search
task described later, based on the visibility map. That
is, the probability of detecting a target d located at (x,
y), when fixating fi ¼ (xf, yf), is given by

pðdx;yjfi; bÞ ¼ F
�
~b1
~bþ ~b2

~bðx� xfÞ2

þ ~b2
~bðy� yfÞ2

�
ð1Þ

where ~b is a vector encoding the categorical factor b �
{rough, medium, smooth} and ~b1, ~b1, and ~b3 are the
model’s parameters to be fitted. The function F is the
logistic transform:

FðzÞ ¼ 1

1þ e�z
ð2Þ

This model is fitted to the results of the target-detection
experiment later, collapsing over participants. The
coefficients are given in Table 1 and the function is
illustrated in Figure 6.

The main aim of this study is to explore the extent to
which visual-search performance can be explained by a
random walk. For each fixation, the stochastic searcher
uses the target-detection function given in Equation 1
to determine if the target is present. To decide where to

Figure 3. Probability of detecting the target, collapsed over angle (i.e., taking only the target’s eccentricity into account). The

individual points show each participant’s performance, while the lines show a binomial fit (general linear model).
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fixate next, this model samples a saccade at random
(from empirical data) conditioned on the current
fixation location, S(x0, y0, xi, yi)¼ p((x0, y0) j (xi, yi)).
We base S on the distribution of saccades recorded
during the visual-search experiment. To estimate S, we
start by quantizing the fixations to a Q 3 Q grid (Q ¼
32). This gives a mean of 27 saccades starting from any
given position; due to the central bias, this distribution
is skewed, with most of the saccades starting in the
central cells. Then we simply count the number of

saccades from ðqx1
; py1
Þ to ðqx2

; py2
Þ; 1 � xi, yi � Q. As

the last saccade in each trial is likely to be directed
towards the target rather than searching for it, these
saccades are not included in this distribution. In order
to deal with the sparsity of the data, we convolve S with
a four-dimensional Gaussian filter (r ¼ 3). Figure 7
shows a simplified version of this distribution (with Q¼
3).

The use of this distribution allows the stochastic
searcher to act as a realistic baseline: It will make
saccades with amplitudes and directions similar to
those made by human observers, and it avoids making
saccades to locations outside of the search area. On the
other hand, as the probability of making a fixation to a
given location is only conditioned on the sample of
saccades to that region in previous data, it has no
memory of where it has looked before, and it has no
notion of IOR or saccadic momentum. Furthermore,
the stochastic searcher does not adjust its behavior

Figure 4. Comparing the probability of detecting the target for horizontal, vertical, and diagonal directions from fixation. We can see

that there are no strong anisotropies and that performance is not systematically worse along the diagonals.

b Rough Medium Smooth

Intercept �0.17 1.27 2.39

x
2 �0.089 �0.062 �0.074

y
2 �0.103 �0.103 �0.103

Table 1. Coefficients used in Equation 1, the target-detection
function.
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based on the difficulty of the search task or the
probability of detecting the target.

Comparison between human
observers and the model

We now compare the model to human performance
by simulating search over the same number as trials
used in the human experiment. As Figure 8 shows, the
stochastic searcher requires a similar number of
fixations to find the target as our human participants.

We can analyze how the number of fixations differs
between human and stochastic observers using a
general linear mixed-effect model (family¼ Poisson),
with random slopes for b and random intercept: nfix ;

b * sþ (1þ bi j ph), where s is a two-level factor coding
human or model and ph is the human observer’s ID.
The only statistically significant difference between the
human observers and the stochastic model was for the
smooth surfaces, for which the stochastic model
required on average half a fixation more than the
human observers to find the target.

Figure 9 shows the distribution of saccade ampli-
tudes and directions. Interestingly, we see that even

Figure 5. Hot-spot maps for (a) square and (b) circular search areas for Participants 2, 4, and 5 (left to right). While there are some

individual differences—in particular, how strong the central bias is for each observer—there is no clear tendency to fixate above and

below the fixation.

Figure 6. Contour plot showing the target-detection model.
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though the stochastic model is only constrained by the
distribution of saccades made by human observers, this
is sufficient to give a reasonable match for the
displacement over two saccades, and hence it exhibits a
similar level of IOR as the human observers. The
largest difference between the model and the observers
can be seen in the relative direction between two
successive saccades. Human observers show a large
peak around 08¼ 3608, which indicates saccadic
momentum: A second saccade is likely to be made in
the same direction as the first saccade.

Discussion

In general, the stochastic model’s results provide a
good match for human behavior, in terms of the
number of fixations to find the target. This conclu-
sion is somewhat surprising given that Najemnik and
Geisler (2008) demonstrated that the number of
fixations required by observers to find a target is also
consistent with an optimal strategy. Najemnik and
Geisler also pointed to the distribution of fixation
locations as evidence that humans employ an optimal
strategy: The model predicts a distribution with
peaks above and below the central fixation cross,
which they also observed in their three human
searchers. However, using a larger sample of partic-

ipants, we found that this result did not replicate.
One plausible reason our results from nine observers
did not produce this pattern is that our experiments
used a square search array, whereas their array was
circular. In order to investigate this potential reason
for the discrepant findings, we repeated our visual-
search experiment with a circular search array with
three of our observers, and found that this made no
difference.

Reanalysis of Clarke, Green, and
Chantler (2009)

In the previous experiment we found evidence that
a random walk is a viable explanation of human
visual-search performance. In this section we apply
the same analysis to a similar data set (Clarke et al.,
2009). The empirical data were collected in a different
lab with a different eye tracker and fixation filter, and
should therefore provide a good test of the robustness
of our results. In addition, in the visual-search task
used in this data set the target’s eccentricity is
systematically varied, allowing us to compare the
stochastic model to human performance separately
for different target eccentricities. As in Experiment 1,
we first generated a target-visibility function using a

Figure 7. Each subplot shows a hot-spot map of fixation locations from a different region of the stimuli. For example, saccades

originating from the corner regions tend to be directed back towards the center or along one of the edges.
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target-detection task. We collected target-visibility
data from two naı̈ve observers who did not perform
the visual-search task.

Target-detection experiment

Observers

Two observers carried out all the trials, split into 20
blocks of 132 trials each, over a number of days. They
were paid £50 each. The research was conducted in
accord with the Code of Ethics of the World Medical
Association (Declaration of Helsinki), and informed
consent was obtained from both observers.

Stimuli

Surface textures were created as detailed in Exper-
iment 1. For the target-present trials, the target was
located at one of 72 potential locations: Nine different
eccentricities were used (0.848 � r � 7.58) and eight
evenly spaced orientations. For each parameter com-
bination, 20 different trials were created. Based on pilot
results, we created 160 target-absent trials for each
value of b, giving a total of 2,160 target-present trials
and 480 target-absent trials. This ratio of target-present
to target-absent trials ensured that observers made
roughly equal numbers of ‘‘present’’ and ‘‘absent’’
responses.

Setup

Observers were instructed to keep their eyes fixated
on the center of the image. After each trial, they were
asked to respond with a button press to indicate if they
had seen the target or not. Each trial consisted of a
fixation cross (500 ms), stimulus (200 ms), white-noise
mask (500 ms), and finally another fixation cross
displayed until a target-present or target-absent re-
sponse was given. Trials were presented in a random
order.

A Tobii x50 eye tracker was used to sample the
observers’ gaze every 20 ms, and trials were included in
the further analysis only if the mean gaze location was
within 18 of the central fixation cross and the standard
deviation of the gaze’s x and y components was less
than 0.678.

Results

A total of 13.6% of trials were removed from
analysis (due to breaking central fixation). We first
checked the false-positive rates on target-absent trials,
which were similar to those seen in Experiment 1 (less
than 10% in all conditions for both observers). We
therefore focus on the probability of detecting the
target when it was present as a measure of visibility. We
collapse over the two observers and fit a model as in
Experiment 1. Results and model coefficients are
similar.

Figure 8. Number of saccades made by human observers and the stochastic search simulation.
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Visual-search data set

The visual-search data were taken from an experi-
ment originally published by Clarke et al. (2009). The
methods and data are summarized here.

Observers

Seven observers, aged 18–30 years, were given
several practice trials and informed that the target
would be present in all trials and would always be an
indent in the surface of the same size and shape. They
were instructed to respond by pressing the space bar on
the keyboard once they had found the target. No time
limit was imposed on the task. Observers were told to
inform the experimenter if they were having great

difficulty in finding the target, in which case they were
allowed to skip the trial (in practice this accounted for
less than 1% of trials).

Surface stimuli

These stimuli were created as in Experiment 1. For
each trial a target was positioned randomly on a circle,
centered on the middle of the image, with a radius of
1.78 6 0.78, 3.88 6 0.78, or 5.98 6 0.78 of visual angle.

Setup

Stimulus presentation was controlled by Clearview
(Tobii Technology Inc., Stockholm, Sweden). All
stimuli were 10243 1024 pixels in size and displayed on

Figure 9. (a) Displacement over one and two saccades. (b) Absolute and relative direction of saccades. The fact that the stochastic

model matches the distribution of displacement and direction over a single saccade is a direct result of sampling from empirical data

and is therefore unsurprising.
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an NEC LCD2090UXi monitor. The pixel dimensions
were 0.255 3 0.255 mm, resulting in images with
physical dimensions of 26.1 3 26.1 cm. The monitor
was linearly calibrated with a GretagMacBeth Eye-
One; maximum luminance was set at 120 cd/m2. This
results in the rendered images appearing as if they were
under bright room-lighting conditions.

A Tobii x50 eye tracker was used to record
observers’ gaze patterns. The fixation filter was set to
count only those fixations lasting longer than 100 ms
within an area of 30 pixels. The accuracy of the eye
tracker was 0.58 to 0.78, and the spatial resolution was
0.358. The viewing distance was controlled by use of a
chin rest placed 87 cm away from the display monitor.
At this distance, 1 pixel is approximately 1 arcmin of
visual angle; images subtend 16.78 of visual angle, and
the targets 0.668.

Results

The number of fixations required to find the target is
shown in Figure 10. Using a generalized linear mixed
model (family¼ Poisson) we confirm that both
roughness b and target eccentricity, along with their
interaction, have a statistically significant effect (p ,

0.05) on the number of fixations required to detect the
target.

Comparison with search models

We now compare the model to human performance
by simulating search over the same number as trials as
used in the original experiment (incorrect and target-
absent trials are discarded). The results closely match
those of Experiment 1. In terms of the number of
saccades required to find the target, we find that the
stochastic searcher offers very similar performance to
the seven human observers over the range of surface
roughnesses and target eccentricities used (Figure 10).

General discussion

Human visual-search performance can be modeled
by a stochastic process. Beyond the number of fixations
required to find the target, the stochastic model also
does a reasonable job of explaining the spatial
distribution of fixations, the frequency of saccade

Figure 10. Number of saccades made by human observers and search simulations. The stochastic search model is sufficient to explain

the number of fixations required to find the target.
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amplitudes, and the relative angles of sequences of
saccades.

It is interesting that the stochastic and optimal
models—two models that have very different architec-
tures and produce very different search behavior—
could both take a similar number of fixations as
humans to detect a target. Clearly there is more than
one way to achieve this single end, and maximizing the
probability of detecting the target separately for each
fixation is not a requirement for relatively efficient
search to be achieved. It should be mentioned that
Najemnik and Geisler (2005) did compare their optimal
model to a random baseline, and that this baseline
made far more fixations to detect the target than did
either the optimal model or human searchers. However,
their random model selected uniformly random coor-
dinates within the search stimulus as the target of each
fixation in the sequence. This baseline differs from the
current model in that it does not take into account the
natural tendencies in saccade behavior that make some
fixations and sequences of fixations more likely than
others. Our results demonstrate that these tendencies
alone, irrespective of any knowledge about previous
fixations or target-detection probabilities, can produce
efficient search.

An important difference between our study and
those of Najemnik and Geisler (2005, 2008) is in the
experiment used to collect data to create the target-
visibility map. Najemnik and Geisler made use of a
2AFC procedure in which observers had to select which
of two intervals contained the target. Target location
was blocked, and observers were also spatially cued to
the target location on each trial. Cuing a target’s
location has long been known to improve performance
(Posner, 1980), possibly by enhancing the target signal
(Yeshurun & Carrasco, 1998). Indeed, our pilot
experiment comparing these two measures of sensitivity
demonstrated that the 2AFC method inflates sensitiv-
ity, particularly in the difficult search conditions, and
reduces differences between difficulty manipulations.
We therefore opted to use a simpler target-detection
procedure in which the observer did not know the
target’s location ahead of time. We chose this because it
is a better approximation of visual sensitivity in the
context of visual search, where the target location is
also not known. Another key difference is that
Najemnik and Geisler (2008) report a tendency to fixate
above and below the center of the search display for
both human observers and their optimal model. This
tendency did not appear in our human data, even when
we reran the search experiment using a circular search
display to match the one used by Najemnik and Geisler
(2008).

We do not wish to claim that stochastic selection of
saccades is the only process involved in search. As
stated in the Introduction, search strategy and feature

extraction work together to produce search behavior. A
stochastic process would work in concert with guided
search in a more typical search context, in which there
are many objects and/or contextual information is
available. One could imagine that if there are several
search items that could potentially be the target, a
random-walk model could be used to choose which
item should be fixated next. Also, although our model
did not need any form of memory or IOR to achieve
humanlike behavior, we do not mean to suggest there is
no IOR in human search. Indeed, as our stimuli contain
no search objects, any IOR processes would have to be
operating in spatiotopic coordinates defined with
respect to the search array’s boundaries, rather than
being applied to discrete search objects. IOR is
strengthened by objects (Jordan & Tipper, 1998), and
this may be particularly true when the eyes move,
necessitating inhibition of spatiotopic, rather than
retinal, coordinates (e.g., Krüger & Hunt, 2013). We
echo the sentiments of Najemnik and Geisler (2005) in
their conclusions in noting that our stochastic model
complements, rather than contends with, existing
models of search. While our model provides a good
match for search in this limited context, an important
question for future work is how a stochastic saccade-
selection process combines with other search mecha-
nisms, such as salience, IOR, and contextual cuing, in
more complex search situations (e.g., Farrell et al.,
2010).

Our results suggest that the process of deciding
where to look next may be driven by a simple random
selection from a subset of possible saccades. What
determines this subset of possible saccades is an
interesting question, but is likely to involve a combi-
nation of visual and motor constraints together with a
lifetime of experience searching for objects. As far as we
can tell from our data, the difficulty of the current
search task only has a limited effect on the distribution
of saccades (median saccadic amplitude increases from
3.28 for the easy trials to 3.98 for the most difficult
condition, but there is considerable overlap between
distributions). The relative similarity of the saccade
amplitudes across search difficulty suggests that, at
least in the context of our search arrays, the set of
possible saccades and selection from this set is not very
sensitive to the search context. The mechanism that has
been assumed to subserve efficient eye-movement
behavior in natural tasks is reinforcement learning
(e.g., Hayhoe & Ballard, 2014). Prior learning during
search tasks could cause particularly effective saccades
and sequences of saccades to be selected rapidly and
efficiently, without the need for a computationally
taxing process of keeping track of the probability of a
target’s being in any possible location given target
visibility and a memory of all previous fixations over an
extended sequence. Our conclusion is consistent with
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recent work suggesting that humans are suboptimal in
search (Morvan & Maloney, 2012; Verghese, 2012;
Zhang et al., 2012), in that saccades during search do
not appear to maximize the probability of detecting the
target based on previous fixations and knowledge
about the limits of our own visual acuity. Fortunately,
our results suggest that this kind of optimality is not a
prerequisite for search efficiency: A stochastic model
can perform as well as human observers.

Keywords: visual search, saccades, optimal behavior
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Footnote

1 Participant 1 did 1,799 trials, and Participant 7 did
2,439 trials. These were the first two participants to
carry out this part of the experiment, and adjustments
to the number of trials were made to make the
experiment last approximately 1.5 hr.
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Appendix

Yes/no versus 2AFC

Here, we compare and contrast the visibility maps
obtained via the target-detection task used in the study
with 2AFC, similar to that used by Najemnik and
Geisler (2005, 2008). We used one naı̈ve observer, who
carried out the 2AFC task first and then the target-
detection task. This means that any practice effects will
mainly inflate the target-detection experiment.

Methods

All stimuli were the same as in the main experiments.

2AFC

Following Najemnik and Geisler (2005, 2008), the
experiment was run in a number of blocks. Within each
block, the target was presented at a single known
location. The observer was shown two stimuli, each for
250 ms, with an interstimulus interval of 750 ms. The
observer was then required to respond using the
keyboard and indicate whether the target had been
present in the first or second stimuli. The experiment
was run over several sessions, six blocks at a time. Only
target positions along the horizon were tested.
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Yes/no

This part of the experiment was identical to the
target-detection task presented in the main text.

Results

The results shown in Figure A1 show a clear
difference between methods: The d0 values obtained
from the 2AFC task are largely insensitive to back-
ground difficulty. This intuitively makes sense. In the
2AFC task the target’s location is known to the
observer, allowing the deployment of covert attention
to the correct location before stimulus onset.

We can confirm this difference with a two-way
ANOVA. We find that for the 2AFC data, there is a
statistically significant effect of target eccentricity on d0,
F(1) ¼ 67.7, p , 0.001, but no significant effect of b,
F(2)¼ 0.81, or of the interaction, F(2)¼ 0.80. However,
when looking at the target-detection results, we find
statistically significant effects of target eccentricity, F(1)
¼ 70.3, p , 0.001, and b, F(2)¼ 54.8, p , 0.001. Again,
there was no statistically significant interaction, F(2)¼
0.09.

Discussion

We find that the two methods for measuring the
target’s visibility map give qualitatively different
results. The d0 scores obtained using 2AFC appear to
be insensitive to changes in surface texture. This is at
odds with the results of the visual-search data presented
in this article (Figure 8) and in reports by Clarke et al.
(2008; 2009), where we can see that surface roughness
has a large effect on search difficulty. In particular, we
see that the observer had a much higher d0 for rough
surfaces under the 2AFC measurement, which would
be expected given the literature on covert attention. For
smoother surfaces, the opposite effect is observed. This
is potentially due to practice effects. Either way, the
implications of underestimating target visibility for
smooth cases are minimal, as observers are already
finding the target with only one or two fixations.

Figure A1. Results from the comparison of 2AFC and yes/no.
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