Accepted Manuscript

Continuous Time ARMA Processes: Discrete Time Representation and Likelihood Evaluation

Michael A. Thornton, Marcus J. Chambers

PII: S0165-1889(17)30064-7
DOI: 10.1016/j.jedc.2017.03.012
Reference: DYNCON 3422

To appear in: Journal of Economic Dynamics & Control

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Continuous Time ARMA Processes: Discrete Time Representation and Likelihood Evaluation

Michael A. Thornton
University of York

and

Marcus J. Chambers
University of Essex

March 2017

Abstract

This paper explores the representation and estimation of mixed continuous time ARMA (autoregressive moving average) systems of orders p, q. Taking the general case of mixed stock and flow variables, we discuss new state space and exact discrete time representations and demonstrate that the discrete time ARMA representations widely used in empirical work, based on differencing stock variables, are members of a class of observationally equivalent discrete time ARMA$(p + 1, p)$ representations, which includes a more natural ARMA(p, p) representation. We compare and contrast two approaches to likelihood evaluation and computation, namely one based on an exact discrete time representation and another utilising a state space representation and the Kalman-Bucy filter. We demonstrate the value of our approach in two applications: a univariate study of the yield curve at different frequencies; and, a multivariate study of the relationship between US GDP and oil prices, taking account of the mixed frequencies with which these data are available.

Keywords: Continuous time; ARMA process; state space; discrete time representation; mixed frequency.

J.E.L. classification number. C32

Acknowledgements: We would like to thank the editors and two anonymous referees, Peter Phillips, Richard Smith, Karim Abadir, Peter Burridge and participants of the Peter C.B. Phillips honorary conference at the University of York, July 12 2012, for helpful comments. All errors remain our own.

Address for Correspondence: Michael A. Thornton, Department of Economics and Related Studies, University of York, Heslington, York, YO10 5DD, England.
Tel: +44 1904 324566; e-mail: michael.thornton@york.ac.uk.
1. Introduction

It seems entirely natural for economic modelling to reflect the fact that economic activity is carried out more or less continuously through time. The advantages of so doing, summarised in Bergstrom (1990), include: the efficient use of information; the accurate imposition of \textit{a priori} restrictions or hypotheses from economic theory on the parameters of the underlying model; and, the ability to forecast the real time economic variables.

Since a continuous record of data is seldom available (and any that is may well suffer from contamination by micro-structure noise) a variety of methods have been proposed enabling the analyst to estimate the parameters of linear continuous time systems using data available at regular, discrete intervals. An important feature of such methods is their ability to take account of whether the data are: \textit{skip-sampled} stock variables; \textit{time averaged} flow variables; or, a combination of the two.

The literature has concentrated on three broad methods for evaluating the pseudo-likelihood that data were generated by a given vector of parameters. Spectral (or frequency domain) representations, as in Robinson (1976, 1993) and Phillips (1991), match the periodogram of the observed data with the theoretical spectrum implied by the parameter vector, accounting for the phenomenon of aliasing by folding frequencies ranging across the real line into the range ($-\pi, \pi$]. Time domain techniques, based around translating a stochastic differential transition equation into a stochastic difference transition equation, making use of the matrix exponential, have, however, found more popularity. Provided some linear combination of the resulting discrete time state vector is observable, perhaps subject to observation noise, the pseudo-likelihood can be evaluated using the Kalman-Bucy filter. Important contributions in this area include Harvey and Stock (1985, 1988, 1989), who consider multivariate autoregressive (AR) models that can allow for stochastic trends, and Zadrozny (1988), whose approach considers multivariate autoregressive moving average (ARMA) models that can also allow for certain types of data irregularities such as mixed observation frequencies and irregular sampling intervals.

An alternative time domain approach proceeds by solving out the unobservable elements from the discrete time state vector using lags of the observable elements and disturbances and by so doing defines a mapping from the continuous time parameters to a discrete time model with identical first- and second-order moments. The resulting exact discrete time representations of the model can then be used to evaluate the likelihood; see, in particular, the contributions in Bergstrom (1990, 1997) and Bergstrom and Nowman (2007). As discussed in Bergstrom (1985), the exact discrete model can be a computationally more efficient way to evaluate the likelihood function at a given point in the parameter space, once the set-up costs of deriving the discrete time model have been borne, taking advantage of the sparse structure of the covariance matrix of the disturbances.

Our main contribution is to derive an exact discrete time representation for a continuous time ARMA process with mixed stock-flow data. Much of the original work on the exact discrete time representation of AR models, such as Bergstrom (1983, 1986, 1997) and Chambers (1999), used a state space representation in which the state vector contained a real-time vector of the variables and its derivatives, a property exploited for mixed stock-flow processes, where representations featured both flow variables and the first difference of the stock variables after integration over time. Continuous time processes with moving
average disturbances were not considered. Recent work by Chambers and Thornton (2012), however, was based on the state space form used by Zadrozny (1988), the structure of which makes it possible to incorporate a moving average disturbance, but did not offer the same route to handle mixed processes. This paper overcomes that hurdle by augmenting the form in Chambers and Thornton (2012). We then show how to recover an exact discrete representation from the resulting stochastic difference equation, taking account of the novel feature that the dimension of the system is not an integer multiple of the number of variables under consideration. In doing so we show that the representations delivered by existing methods are not unique and rely on an arbitrary identifying assumption (that the stocks appear as first differences). We propose a more natural identification method, establishing for the first time the existence and uniqueness of an exact discrete time ARMA(p,q) representation for continuous time mixed stock-flow data, bringing it into line with well known results for discrete time processes subject to high orders of temporal aggregation, such as in Brewer (1973). In addition, our framework unifies the treatment of pure stock data, which is identical to Chambers and Thornton (2012), and pure flow data, which previously relied on double integration of the stochastic difference equation, giving an attractive alternative calculation of the covariance matrix of discrete time flow data requiring the evaluation of only one matrix exponential.

The two time domain techniques depart from a common platform and our analysis also has potential uses in state-space estimation. Since an expression for unobservable components of the state vector in terms of lagged observables and disturbances is an intermediate step in the derivation of the exact discrete time distribution, a second contribution is to provide an expression for the expectation and variance of the state vector conditional on current and lagged data. Not only does this enable recovery of the state vector, in case this is of interest, it also facilitates the calculation of the initial conditions for a Kalman iteration, given p observations, in cases where the unconditional mean is not appropriate, such as when the data are non-stationary; see, for example, Harvey and Stock (1985). Finally, we extend the range of state space models capable of modelling continuous time ARMA process with mixed stock-flow data beyond that in Zadrozny (1988), freeing the analyst to model unobserved components in the state vector, if desired.

The paper is organised as follows. Section 2 outlines the continuous time ARMA(p,q) model and discusses different state space forms. One of these forms, chosen for computational advantage, underpins the derivation in section 3 of a class of exact discrete time ARMA representations for mixed stock-flow data observed at an arbitrary frequency. The discrete time ARMA(p,p) representation within this class forms the basis of discussion of time domain methods to evaluate the likelihood in section 4. In section 5 we demonstrate the value of this modelling approach with two applications: a univariate study of the yield curve at different frequencies; and, a multivariate study of the relationship between US GDP and oil prices, taking account of the differing frequencies with which these data are available. Section 6 concludes, and an Appendix contains proofs of the results stated in the main body of the paper.

2. State space representations of linear continuous time mixed stock-flow processes
The continuous time ARMA(p, q) model for the $n \times 1$ vector $x(t)$ is given by
\[D^p x(t) = a_0 + A_{p-1} D^{p-1} x(t) + \ldots + A_0 x(t) + u(t) + \Theta_1 D u(t) + \ldots + \Theta_q D^q u(t), \quad t > 0, \] (1)
where D denotes the mean square differential operator, $u(t)$ is an $n \times 1$ continuous time white noise process, a_0 is an $n \times 1$ vector and A_0, \ldots, A_{p-1} and $\Theta_1, \ldots, \Theta_q$ are $n \times n$ matrices of coefficients. More precisely, if $x(t)$ is mean square differentiable then there exists a process $\xi(t)$ satisfying
\[\lim_{\delta \to 0} E \left\{ \left(\frac{x(t + \delta) - x(t)}{\delta} - \xi(t) \right)^2 \right\} = 0, \]
in which case $D x(t) = \xi(t)$. In addition the white noise process $u(t)$ satisfies $E[u(t)] = 0$ and, for $t_2 > t_1$, has autocovariance properties
\[E \left[\int_{t_1}^{t_2} u(r) dr \int_{t_1}^{t_2} u(s) ds \right] = \Sigma (t_2 - t_1), \]
\[E \left[\int_{t_1}^{t_2} u(r) dr \int_{t_1}^{t_2} u(r + s) ds \right] = 0, \quad |\tau| > t_2 - t_1. \]
The process $x(t)$ is stationary if the roots of the polynomial $|z^{p-1} - A_{p-1} z^{p-2} - \ldots - A_0| = 0$ have negative real parts and is mini-phase or stable if the the roots of the polynomial $|I + \Theta_1 z + \ldots + \Theta_q z^q| = 0$ have negative real parts. The task is to estimate the matrices A_0, \ldots, A_{p-1} and $\Theta_1, \ldots, \Theta_q$ and the vector a_0 of unknown, but assumed finite, coefficients, plus the variance matrix Σ, not from a continuous record, but from a sequence of data observed at or over discrete intervals of time.

In economic applications, the difficulty of this task is often compounded by an unavoidable heterogeneity in the way that the elements of $x(t)$ are observed: data on prices, interest rates or capital stocks are typically observed at a point in time; whereas measures of quantity, activity or accumulation are observed as aggregates over time. Many economic models feature both types of variable. Without loss of generality, we partition the vector of interest as
\[x(t) = \begin{bmatrix} x^s(t) \\ x^f(t) \end{bmatrix}, \]
where $x^s(t)$ ($n^s \times 1$) contains stock variables, $x^f(t)$ ($n^f \times 1$) contains flow variables, and $n^s + n^f = n$. A pure stock (flow) process results when n^f (n^s) is zero. We suppose our data, observed at intervals of length $h > 0$, take the form
\[x_{th} = \begin{bmatrix} x_{th}^f \\ x_{th}^s \end{bmatrix} = \begin{bmatrix} h^{-1} \int_{th-h}^{th} x^f(r) dr \\ \int_{th-h}^{th} x^s(t) \end{bmatrix}, \quad t = 0, 1, 2, \ldots, T. \]
The flow data\footnote{Flows are brought to the top of the observed vector to ease exposition of the partitioned matrices to follow.} are represented as time averages, corresponding to, say, the scaling of a quarterly figure (when $h = 1/4$) as an annualised equivalent. This scaling is of minimal consequence in stationary systems and a time aggregate is as easily constructed. The effect is to make the scale of the flow variables comparable in models estimated at different
frequencies. However, this scaling has been shown to be important in models containing nonstationary and cointegrated variables by Chambers (2009, 2011) and so we proceed using the scaled observations on flow variables. For the bulk of this paper we will assume that \(h \) remains uniform across all elements of \(x_t \), although the second application in section 5 considers estimation when this is not the case.

Time domain methods involve transforming (1) into a first order stochastic differential equation in a state vector, linear combinations of which correspond to the discretely observed data after integration. Estimation proceeds either using the Kalman-Bucy filter or by removal of unobservable (combinations of) components to reveal the discrete time dynamics. As with linear processes in discrete time, there is more than one viable state space representation of (1), with some particularly suited to moving average errors and others to modelling mixed stock-flow data.

Much of the work on linear continuous time systems in econometrics, such as Bergstrom (1983, 1986), Harvey and Stock (1989) and Chambers (1999), used the representation

\[
Dy^b(t) = \bar{a} + A^b y^b(t) + \Theta^b u^b(t), \quad t > 0, \tag{2}
\]

where

\[
\bar{a} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ a_0 \end{bmatrix}, \quad A^b = \begin{bmatrix} 0 & I & 0 & \ldots & 0 \\ 0 & 0 & I & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & I \end{bmatrix}, \quad \Theta^b = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ I \end{bmatrix},
\]

and \(y^b(t) = [y^b_1(t), D_y^b(t), \ldots, D^{p-1} y^b(t)]' \). For equation (1), the disturbance is defined by \(u^b(t) = u(t) + \Theta_1 Du(t) + \ldots + \Theta_q D^q u(t) \). A discrete time representation is derived by manipulations of the integral

\[
y^b(t) = e^{At} y^b(0) + \int_0^t e^{(t-r)A} \left[\bar{a} + \Theta^b u^b(r) \right] dr, \quad t > 0,
\]

which is unique in a mean square sense and where the matrix exponential is defined by \(e^{At} = I + \sum_{j=1}^\infty (A^t)^j / j! \). Associating \(x(t) = y^b_1(t) \) links (1) to (2) and places derivatives of \(x(t) \) in the state vector. Bergstrom (1986) based his representation on the integral of the state vector over \([th - h, th]\), which contains the observable sub-vectors \(\int_{th-h}^{th} x^f(r) dr = x^b(th) - x^b(th-h) \), enabling extraction of the observed variables in the form

\[
x^b_{th} = \begin{bmatrix} x^b(th) - x^b(th-h) \\ \int_{th-h}^{th} x^f(r) dr \end{bmatrix}, \quad t = 1, 2, \ldots, T.
\]

The evaluation of the second moments of the weighted integral of \(u^b(t) \), which are key components in evaluating the likelihood, can be accomplished by methods in Chambers

\[2\] The measurement of stock variables is often independent of sampling frequency although some stock variables, such as interest rates, may also need expressing as a particular rate of return.

\[3\] Note that Bergstrom normalised \(h \) to 1. Time averaging of the flow variables can accomplished by an appropriate scaling of the relevant rows and columns of selection matrices.
(1999), for the purely autoregressive case where $\Theta_1 = \ldots = \Theta_q = 0$. For CARMA processes, however, the weighted integral of $u^b(t)$ is not tractable. A modification of (2) has been used by Brockwell (2004, 2009) to model scalar CARMA processes, incorporating the moving average disturbance via the observation equation $x(th) = S^b y^b(th)$ where

$$S^b = [I, \Theta_1, \ldots, \Theta_q]$$

and setting $u^b(t) = u(t)$. This avoids the problem of intractable derivatives in $u^b(t)$ at the expense of maintaining derivatives of the observables in the state vector. Because $x(t) \neq y^1_1(t)$ unless $\Theta_1 = \ldots = \Theta_q = 0$, however, the integral of the state vector no longer contains both stock and flow data.

Chambers and Thornton (2012) utilised the state space representation in Zadrozny (1988) to derive the exact discrete time representation of a CARMA process, in which the $np \times 1$ state vector is defined as $y^c(t) = [y_1(t)', \ldots, y_p(t)']'$ with $y_1(t) = x(t)$. The state space form is based on the following set of p equations in the derivatives of the components of $y^c(t)$, given by

$$Dy_1(t) = A_{p-1}y_1(t) + y_2(t) + \Theta_{p-1}u(t), \quad (3)$$
$$Dy_2(t) = A_{p-2}y_1(t) + y_3(t) + \Theta_{p-2}u(t), \quad (4)$$
$$\vdots \quad \vdots$$
$$Dy_{p-1}(t) = A_1y_1(t) + y_p(t) + \Theta_1u(t), \quad (5)$$
$$Dy_p(t) = a_0 + A_0y_1(t) \neq u(t), \quad (6)$$

in which we define $\Theta_j = 0$ for $j > q$. Combining the expressions for $Dy_1(t), \ldots, Dy_p(t)$ above, the state space form can be written

$$Dy^c(t) = \bar{a} + A y^c(t) + \Theta^c u(t), \quad (7)$$

where

$$A = \begin{bmatrix} A_{p-1} & I & 0 & \ldots & 0 \\ A_{p-2} & 0 & I & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ A_1 & 0 & 0 & \ldots & I \\ A_0 & 0 & 0 & \ldots & 0 \end{bmatrix}, \quad \Theta^c = \begin{bmatrix} \Theta_{p-1} \\ \Theta_{p-2} \\ \vdots \\ \Theta_1 \\ I \end{bmatrix}$$

and the vector \bar{a} is defined following (2). Examination of equations (3)–(6) reveals that (7) incorporates a moving average error seamlessly, but that the state vector, $y^c(t)$, does not contain derivatives of $x(t)$.

This paper extends the method of Chambers and Thornton (2012) to mixed sample processes. In doing so it also sheds new light on the exact discrete representation of purely autoregressive continuous time processes and offers some computational efficiencies for the modelling of pure flow data. It is well known that the effect of time aggregation on a

\footnote{The assertion underpinning the method in Chambers and Thornton (2012) for mixed processes was therefore in error. This error does not, however, affect Corollaries 1 and 2 of Chambers and Thornton (2012) that relate to pure stock and flow processes respectively which, along with the empirical applications in the paper, remain valid.}
discrete time mixed VAR(p) produces a VARMA(p, p) once the order of time aggregation becomes sufficiently large relative to the model order; see Brewer (1973). The discrete time representation for the continuous time mixed VAR(p), developed in Bergstrom (1983) and in Chambers (1999), produces an ARMA(p, p) in x_{th}^b, that is after the stock variables have been differenced. Once the stock variables are re-integrated, these representations correspond to an ARMA($p + 1, p$), which discrete time results would suggest is not the most parsimonious form. We show that the differencing of the stock variables identifies the representation among a wider class of ARMA($p + 1, p$) processes and that the more parsimonious ARMA(p, p) is also among this class.

The reasoning behind our method is very simple. We construct our system in such a way that the integration transforming it from a stochastic differential equation to a stochastic difference equation also produces the time-averaged flows. Let $S_0 = \begin{bmatrix} S_0^c & S_0^f \end{bmatrix}$ denote the $n \times np$ matrix of rank n, such that

$$S_0 y^c(t) = x(t).$$

If $x(t)$ contains only stock process then this may be considered the observation equation, but not if any flow variables are present. To cover this case, define the $nf \times 1$ vector, $y_0(t)$, such that

$$Dy_0(t) = \frac{h^{-1}}{h} S_0^f y^c(t) = \frac{h^{-1}}{h} x^f(t),$$

which usefully implies that its integral,

$$\int_{th-h}^{th} Dy_0(r) dr = y_0(th) - y_0(th-h) = \frac{h^{-1}}{h} \int_{th-h}^{th} x^f(r) dr = x^f_{th},$$

is the vector of observed flow variables. Now consider the augmented state vector, $\tilde{y}(t) = [y_0(t)', y^c(t)']'$, which satisfies the system

$$D\tilde{y}(t) = a + H\tilde{y}(t) + \Theta u(t),$$

where

$$a = \begin{bmatrix} 0 \\ \bar{a} \end{bmatrix}, \quad H = \begin{bmatrix} 0 & h^{-1} S_0^f \\ 0 & A \end{bmatrix}, \quad \Theta = \begin{bmatrix} 0 & \Theta^c \end{bmatrix}.$$

The integral of (8), conditional on $\tilde{y}(0)$, can be written

$$\tilde{y}(t) = e^{Ht} \tilde{y}(0) + \int_0^t e^{H(t-s)} [a + \Theta u(s)] ds, \quad t > 0,$$

from which it follows that

$$\tilde{y}(th) = c + e^{Hh} \tilde{y}(th-h) + c(th), \quad t = 1, 2, \ldots, T,$$

where

$$c = \left[\int_{th-h}^{th} e^{H(t-s)} ds \right] a = \left[\int_0^1 e^{Hhr} dr \right] \bar{a} h, \quad c(th) = \int_{th-h}^{th} e^{H(th-s)} \Theta u(s) ds.$$
It follows from the definition of the matrix exponential and the construction of \(H \) that the first \(n_f \) columns of \(e^{Hh} \) are \([I, 0]'\). Subtracting \(y_0(th - h) \) from both sides of (10) leaves a state vector \(y(th) = [x(th), y'(th)]' \), with transition equation
\[
y(th) = c + C y(th - h) + \epsilon(th), \quad t = 1, 2, \ldots, T,
\]
where \(\epsilon(th) \) is defined following (10). It can be shown (see the Appendix) that
\[
C = e^{Hh} - \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} e^{Ah} = \begin{bmatrix} 0 & S_0' \Phi \\ 0 & e^{Ah} \end{bmatrix}
\]
in which
\[
\Phi = \int_0^1 e^{Ah}s \ ds = \sum_{j=1}^{\infty} (Ah)^j/j!.
\]
In cases where \(A \) is non-singular \(\Phi = (A)^{-1} [e^{Ah} - I] \) but this is not essential for (11) to hold.

By construction, \(H \) has \(n_f \) zero roots. The first \(n_f \) columns of both \(H \) and \(C \) are null, reflecting the property that while the real time flow variables are influential within the system their aggregates are not. In the case where \(A \) may be diagonalised, \(A = QAQ^{-1} \), where \(Q \) contains the eigenvectors of \(A \) and \(\Lambda \) is a diagonal matrix containing the corresponding eigenvalues, we can write \(H = \tilde{Q}\tilde{\Lambda}\tilde{Q}^{-1} \), where
\[
\tilde{\Lambda} = \begin{bmatrix} 0 & 0 \\ 0 & \Lambda \end{bmatrix}, \quad \tilde{Q} = \begin{bmatrix} A^{-1}S_0'QA^{-1} \\ 0 \end{bmatrix}
\]
from which it follows that we can calculate
\[
e^{Hh} = \tilde{Q}e^{Ah}Q^{-1} = \begin{bmatrix} I & S_0'Q[Ah]^{-1}[e^{Ah} - I]Q^{-1} \\ 0 & Qe^{Ah}Q^{-1} \end{bmatrix}.
\]

The associated observation equation is
\[
x_{th} = \begin{bmatrix} x_{th} \\ x_{th}' \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & S_0' \end{bmatrix} y(th) \equiv S_1y(th), \quad t = 1, 2, \ldots, T.
\]
The advantage of the system in (7) is that the state vector, \(y(th) \), contains the observed variables as a sub-vector; it is clear that the \(n \times (np + n_f) \) observation matrix \(S_1 = [I, 0] \) since our infeasible observation matrix \(S_0 = [I, 0] \). In this case the system is a reordered version of that in Zadrozny (1988), with our derivation showing that the discrete time transition matrix, \(C \), may be found from a single matrix exponential, avoiding calculation of the whole \(np \) square matrix \(\Phi \).

In fact the arguments above may be applied to any suitable state space translation of (1) or of any other linear continuous time model, that can be written in the form
\[
Dy^a(t) = \bar{a} + Ay^a(t) + \Theta^au(t), \quad t > 0,
\]
\[
x(t) = S_0y^a(t),
\]
\[
Dy^a(t) = \bar{a} + Ay^a(t) + \Theta^au(t), \quad t > 0,
\]
\[
x(t) = S_0y^a(t),
\]
7
where \(y^a(t) \) is the state vector. When the form (2) is chosen our results translate arguments used in modelling mixed cointegrated processes by Harvey and Stock (1989) to processes with moving average errors through the choice of a different selection matrix. Other representations are available and may be preferred in different contexts, for example, to populate the state vector with unobserved but meaningful components. Our aim in the next section, however, is to derive a discrete time ARMA process that is satisfied exactly by equally spaced observations of \(x_{th} \).

3. Exact discrete ARMA representations of mixed stock-flow processes

We return to the transition equation (11), which has the simplifying advantage that selection matrices

\[
S_1 = [I_n, 0_{n \times r}], \quad S_2 = [0_{r \times n}, I_r],
\]

(14)

where \(r = n(p - 1) + n^f = np - n^s \) have the property that \(S_1'S_1 + S_2'S_2 = I \). Further reasons for choosing this form will be discussed in the next section. As in Chambers (1999) we define the \(n \times 1 \) vector \(x_{th} \equiv S_1 y(th) \) and the \(r \times 1 \) vector \(w_{th} \equiv S_2 y(th) \) \((t = 1, 2, \ldots, T) \) of unobservable variables and partition (11) as

\[
x_{th} = c_1 + C_{11} x_{th-h} + C_{12} w_{th-h} + \epsilon_{1,th},
\]

(15)

\[
w_{th} = c_2 + C_{21} x_{th-h} + C_{22} w_{th-h} + \epsilon_{2,th},
\]

(16)

where \(\epsilon_{th} \equiv (\epsilon'_{1,th}, \epsilon'_{2,th})' = \epsilon(th) \), \(c_i = S_i c \), \(C_{ij} = S_i S_j \) \((i, j = 1, 2) \) and the first \(n^f \) columns of both \(C_{11} \) and \(C_{21} \) are null.

The exact discrete time representation replaces the \(r \times 1 \) vector \(w_{th-h} \) in (15) with terms in \(x_{(t-j)h} \) and \(\epsilon_{(t-j)h} \). We introduce \(m \) as the number of times that equations (15) and (16) are lagged in order to perform this replacement and write the resulting system

\[
M w_{th} = \bar{c} + N x_{th} + \epsilon_{th},
\]

(17)

where \(w_{th} = [w'_{th-h}, \ldots, w'_{th-(m+1)h}]' \) is the vector containing the lagged unobservable variables, \(x_{th} = [x'_{th-h}, \ldots, x'_{th-(m+1)h}]' \) is the vector containing the lagged observable variables, \(\epsilon_{th} = [\epsilon'_{1,th-h}, \ldots, \epsilon'_{1,th-mh}, \epsilon'_{2,th-h}, \ldots, \epsilon'_{2,th-mh}]' \) contains the lagged disturbances, the intercept term is \(\bar{c} = [\bar{c}_{11}, \bar{c}_{12}, \ldots, \bar{c}_{n1}, \bar{c}_{n2}]' \) and

\[
M = \begin{bmatrix}
0 & -C_{12} & 0 & \ldots & 0 & 0 \\
0 & 0 & -C_{12} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & -C_{12} \\
I_r & -C_{22} & 0 & \ldots & 0 & 0 \\
0 & I_r & -C_{22} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & I_r & -C_{22}
\end{bmatrix}, \quad N = \begin{bmatrix}
-I_n & C_{11} & 0 & \ldots & 0 & 0 \\
0 & -I_n & C_{11} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & -I_n & C_{11} \\
0 & C_{21} & 0 & \ldots & 0 & 0 \\
0 & 0 & C_{21} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & C_{21}
\end{bmatrix}.
\]

\[\text{To keep the stock variables at the top set } S_1 = \begin{bmatrix}
0_{n^s \times n^f} & I_{n^f} & 0_{n^s \times n^f} & 0_{n^s \times r} \\
I_{n^f} & 0_{n^f \times n^s} & 0_{n^f \times r}
\end{bmatrix}.\]
We further partition \(N \equiv [N_1, \ldots, N_{m+1}], \) \(N_j = [N^f_j, N^s_j] \) \((j = 1, \ldots, m+1) \), where \(N^s_j \) contains \(n_s \) columns, and \(N_{m+1} = [0, N^s_{m+1}] \).

The condition that \(m \geq r/n \) ensures that (17) has at least as many equations as there are elements in \(\hat{\omega}_{th} \). In order to solve the system we maintain the following assumptions, which correspond to the detectability and reconstructability of the state vector.

Assumption 1. The \(r \times r \) matrix \(C_{22} \) is non-singular.

Assumption 2. The \(n \times r \) matrix \(C_{12} \) has rank \(n \).

Assumptions 1 and 2 are widely used in the exact discrete time representation literature and guarantee that \(\bar{M} \) has full column rank, see Lemmas A1 and A2, which is essential for Theorem 1 below. In the event that \(\bar{M} \) does not have full column rank then a transformation of the system exists with the effect of reducing \(r \), the dimension of the vector \(w_{th} \). and permitting construction of a smaller \(\bar{M} \) matrix retaining full column rank, see Lemma A3.

Theorem 1. Under Assumptions 1 and 2, for \(m \geq r/n \):

- (a) there exists at least one matrix \(R \) such that \(R\bar{M} \) is non-singular; and,

- (b) the observed vector \(x_{th} \) of mixed stock and flow variables generated by the continuous time ARMA \((p, q)\) system (1) then satisfies the discrete time ARMA \((m+1, m)\) system

\[
x_{th} = f + F_1 x_{th-h} + \ldots + F_{m+1} x_{th-(m+1)h} + \eta_{th}, \quad t = m + 2, \ldots, T,
\]

where \(f = c_1 + C_{12} \bar{M} \bar{e}, \) \(F_1 = C_{11} + C_{12} \bar{M} N_1, \) \(F_j = C_{12} \bar{M} N_j \) \((j = 2, \ldots, m+1) \),

\[
\bar{M} = [I_r, 0_{r \times mr}] [R\bar{M}]^{-1} R = [\bar{M}_1, \bar{M}_2],
\]

\[
\bar{M}_1 = [\bar{M}_{1,1}, \bar{M}_{1,2}, \ldots, \bar{M}_{1,m}],
\]

\[
\bar{M}_2 = [\bar{M}_{2,1}, \bar{M}_{2,2}, \ldots, \bar{M}_{2,m}],
\]

the matrices \(\bar{M}_{1,i} \) and \(\bar{M}_{2,i} \) \((i = 1, \ldots, m) \) being \(r \times n \) and \(r \times r \), respectively. Furthermore, the autocovariance matrices of \(\eta_{th} \) are given by

\[
\Gamma_j^h = E(\eta_{th} \eta_{th-j}^h) = \begin{cases} \sum_{i=0}^{m} C_i \Omega_e C_{i-j}' & j = 0, \ldots, m, \\ 0 & j > m, \end{cases}
\]

where \(C_0 = S_1, \) \(C_j = C_{12}(\hat{M}_{1,j} S_1 + \hat{M}_{2,j+1} S_2) \) \((j = 1, \ldots, m) \), and

\[
\Omega_e = E(\epsilon(th) \epsilon(th)') = \int_0^1 e^{Hhr} \Theta \Sigma \Theta' e^{Hhr} hdr.
\]

Theorem 1 presents a general set of ARMA processes consistent with (1). Unlike dis-
crete time dynamic models, see Lütkepohl (1986) and Marcellino (1999), (1) is flexible in the
frequency of data collection, \(h \), which does not change the orders of these discrete processes. Once \(m \geq r/n \) then \(\tilde{M} \) has full column rank (see Lemma A1) and \(\tilde{M}^t \) is always a suitable choice of \(R \). Alternative choices of \(m \) and of \(R \), up to pre-multiplication by a non-singular \((m + 1)r \) square matrix, would provide different exact discrete time ARMA\((m + 1, m)\) representations. The form of \(N_{m+1} \) means that the coefficients on the first \(n^f \) elements of \(x_{t-(m+1)} \) would always be zero. These representations are observationally equivalent in the sense of corresponding to the same causal rational transfer function, given the parameters of (1),

\[
x_{th} = \sum_{j=0}^{\infty} S_1 C^j [c + \epsilon_{t-j|1}],
\]

as a result of sharing a common state space representation (11); see, for example, Hannan and Diestler (1988, p.17). Thus each representation would provide the same unconditional likelihood for a given data set.

In practice interest is likely to centre on the most parsimonious representations, when \(m \) is closest to \(r/n \). When \(x(t) \) is a pure stock process then the smallest \(m \geq r/n \) is \(p - 1 \). The matrix \(\tilde{M} \) is then square and invertible, and the results of Theorem 1 naturally become those of Corollary 1 of Chambers and Thornton (2012) for any non-singular \(R \), producing an ARMA\((p, p - 1)\) representation. When \(x(t) \) is a pure flow process then the smallest \(m \geq r/n \) is \(p \), but again \(\tilde{M} \) is square and invertible. In this case the \(N_{p+1} \) matrix is null, producing an ARMA\((p, p)\) representation equivalent to that in Corollary 2 of Chambers and Thornton (2012). It is worth noting that the evaluation of \(T_j^\dagger \) simplifies existing methods, such as Bergstrom (1983) and Chambers (1999), which treat pure flow processes as integrals of pure stock processes. Such a treatment leads to a discrete time disturbance expressed using a double integral, requiring the evaluation of integrals of \(\Phi(r) = \int_0^r e^{Ahs} ds \), something our augmented state equation avoids.

When \(x(t) \) is a mixed process then \(p \) remains the smallest \(m \geq r/n \). In this case, however, the matrix \(\tilde{M} \) has \(n^s \) fewer columns than rows. Multiplying (17) by any \((p + 1)r \times p(r + n)\) linear transformation, \(R \), such that \(RM \) is non-singular would give a possible ARMA\((p + 1, p)\) representation with zero coefficients on \(p + 1 \) lags of the flow variables, due to the \(n^f \) null columns of \(N_{p+1} \). Different choices of \(R \) have the potential to produce different exact discrete time representations. The representations in Bergstrom (1983) and Chambers (1999) result from choosing \(R \) such that the last \(n^s \) columns of the matrix \([I - F_1 - \ldots - F_{p+1}]\) are null, which is equivalent to differencing the stock variables. This is not the most natural representation of the model, however. If \(R \) is chosen such that \(RN_{p+1} = 0 \) then the resulting discrete time process would have an ARMA\((p, p)\) representation. Theorem 2 establishes the existence and uniqueness of such a discrete time representation for \(x_t \) in this case.

Theorem 2. (a) There exists a \((p + 1)r \times p(r + n)\) matrix \(R \) such that \(RN_{p+1} = 0 \) and \(RM \) is non-singular.

(b) The observed vector \(x_{th} \) of mixed stock and flow variables generated by the continuous time ARMA\((p, q)\) system (1) then satisfies a unique discrete time ARMA\((p, p)\) with coefficients given in Theorem 1.

Since \((p - 1)(r + n)\) rows of \(N_{p+1} \) are null, \(R \) may take \((p - 1)(r + n)\) rows from the
\[p(r + n) \text{ identity matrix alongside rows of the form} \]
\[
\begin{bmatrix}
0_{r+n \times (p-1)n}, T_1, 0_{r+n \times (p-1)n}, T_2
\end{bmatrix},
\]

where \(T_1\) and \(T_2\) are chosen so that \(T_1C_{11} + T_2C_{21} = 0\). For processes without moving averages the representation in Chambers (1999), which does not require the identification of such a space, has computational advantages in estimation. Ours may still be used, however, to translate the estimates of the parameters of a continuous time model into the most easily comparable discrete time form.

4. Evaluation of the pseudo-likelihood

We now consider the evaluation of the log-likelihood function for given values of the parameters of (1) \((A_0, \ldots, A_{p-1}, \Theta_1, \ldots, \Theta_q, a_0, \Sigma)\) based on a sample of \(T\) observations, \(x_h, x_{2h}, \ldots, x_{Th}\), using both the exact discrete representation, outlined in Theorems 1 and 2, and the Kalman-Bucy filter applied to the stochastic difference equation (11). We focus attention on estimation conditional on the first \(p\) of those observations, although both methods can be used to provide unconditional estimates, as demonstrated by Bergstrom (1990) and Harvey and Stock (1985). The techniques differ in the order of conditioning applied to the joint density of the sample, which can be decomposed as

\[
f(x_{Th}, \ldots, x_{(p+1)h}|x_{ph}, \ldots, x_h) = \prod_{j=p+1}^{T} f(x_{jh}|x_{(j-1)h}, \ldots, x_h).
\]

Through the repeated conditioning stated in the expression on the right, the prediction error form of the Kalman-Bucy filter is based around uncorrelated errors resulting from optimal forecasts produced at the expense of calculating the full state vector for each observation. Gaussian estimation, on the other hand, reflects the joint distribution on the left using knowledge about the effects of time aggregation to characterise the disturbance, \(\eta_{th}\), with a sparse (auto-)covariance matrix. The two methods have much in common, however, and it is common practice in Gaussian estimation to calculate the likelihood via a normalised residual vector that is, in effect, the standardised prediction error vector.

As in discrete-time systems with moving average errors, all mini-phase or stable systems have observationally equivalent complements that are not stable. Given that these will then have identical likelihoods, the analyst has a choice of approach towards a preferred stable solution. Zadrozny (1988) suggests initialising the estimation in a stable region of the parameter space and imposing a hefty penalty in the likelihood function in the event that the algorithm strays beyond this region. Alternatively, it may be computationally easier merely to extract the stable representation \textit{ex post} using an eigenvalue decomposition as in Zadrozny (1998, 2016).

4.1. Gaussian estimation using the exact discrete representation

Gaussian estimation uses the discrete time ARMA\((p, q_d)\) representation, where \(q_d = p-1\) for pure stock processes and \(q_d = p\) if the data vector contains any flow variables, of equation (1) derived in Theorems 1 and 2. Let \(\eta = (\eta'_{(p+1)h}, \ldots, \eta'_{Th-h}, \eta'_{Th})'\), denote the \(n(T - p)\)
vector of discrete time disturbances with
\[\eta_{th} = x_{th} - f - F_1 x_{th-h} - \ldots - F_p x_{th-ph}, \quad t = p + 1, \ldots, T. \]

Its covariance matrix, \(E(\eta \eta') = \Omega_\eta \), has a block Toeplitz structure with \(ij \)'th block denoted by the \(n \) matrix
\[\Omega_{\eta,ij} = \begin{cases} \Gamma^h_{i-j}, & |i-j| \leq q_d, \\ 0, & |i-j| > q_d, \end{cases} \]
noting that \(\Gamma^h_{i-j} = \Gamma^h_{j-i} \) with \(\Gamma^h_{i-j} \) defined in Theorem 1. Under the assumption that \(\eta \) has a multivariate normal distribution the likelihood may be evaluated as
\[\log L_G = -\frac{n(T-p)}{2} \log(2\pi) - \frac{1}{2} \log |\Omega_\eta| - \frac{1}{2} \eta' \Omega^{-1}_\eta \eta. \]

Two comments are worth making at this stage. The first is that the matrices \(A_0, \ldots, A_{p-1} \) feature in both \(\eta \), through the \(f \) vector and \(F_j \) matrices, and \(\Omega_\eta \), through the \(\Gamma^h_{i-j} \) matrices, a common result in temporally aggregated dynamic systems. The second is to highlight the computational advantages of the representation (7), which maintains the selection matrices \(S_1 \) and \(S_2 \) during the maximisation procedure and restricts the impact of the \(\Theta_j \) parameters to \(\Omega_\eta \) via \(\Omega_\epsilon \). In contrast, the form in (2) in which \(S_1 \) is a function \(\Theta \), requires repeated recalculation of the matrix \(S_2 \).

The sparse nature of \(\Omega_\eta \) makes it possible to accelerate the calculation of this likelihood. Since \(\Omega_\eta \) is positive definite and symmetric we can find a lower triangular matrix, \(U \), with \(ij \)'th block denoted (for consistency with the Kalman-Bucy filter) \(U_{p+i,p+j} \), such that
\[UU' = \Omega_\eta, \]
with the sparse nature of \(\Omega_\eta \) reflected in the sparse nature of \(U \). The matrix \(U \), which has a maximum of \(q_d + 1 \) non-zero blocks in each block row, can be calculated using the following recursions
\[
U_{p+1,p+1} U'_{p+1,p+1} = \Gamma^h_0,
\[
U_{i,j} = \left[\Gamma^h_{i-j} - \sum_{k=1}^{j-1} U_{ik} U'_{jk} \right] U_{j,j}^{-1}, \quad p + 1 < i \leq p + q_d + 1, \quad p < j < i,
\]
\[
U_{i,i} U'_{i,i} = \Gamma^h_0 - \sum_{k=1}^{i-1} U_{ik} U'_{ik}, \quad p + 1 < i \leq p + q_d + 1,
\]
\[
U_{i,j} = 0, \quad i > p + q_d + 1, j < i - q_d,
\]
\[
U_{i,j} = \left[\Gamma^h_{i-j} - \sum_{k=i-q_d}^{j-1} U_{ik} U'_{jk} \right] U_{j,j}^{-1}, \quad i > p + q_d + 1, \quad q_d - i \leq p < j < i,
\]
\[
U_{i,i} U'_{i,i} = \Gamma^h_0 - \sum_{k=i-q_d}^{i-1} U_{ik} U'_{ik}, \quad i > p + q_d + 1,
\]
with \(U_{ii} \) chosen to be lower triangular. Only this lower triangular matrix need be inverted,
firstly to find further block rows and secondly to calculate a vector of normalised residuals,
\(\zeta = (\zeta_{(p+1)h}, \ldots, \zeta_{T-h, h}, \zeta_{T'h}) \), satisfying \(UC = \eta \). It follows straightforwardly that \(E(\zeta) = 0 \) and \(E(\zeta') = I_{n(T-p)} \), the subvectors of \(\zeta \) being computed using

\[
\begin{align*}
\zeta_{(p+1)h} &= U_{p+1,p+1}^{−1} \eta_{(p+1)h}, \\
\zeta_{th} &= U_{tt}^{−1} \left(\eta_{th} - \sum_{k=1}^{\min\{t-p-1, q_k\}} U_{t,t-k} \eta_{(t-k)h} \right), \quad t = p + 2, \ldots, T.
\end{align*}
\]

The log likelihood, conditional on \(x_{h}, \ldots, x_{ph} \), can be evaluated as

\[
\log L_G = -n(T-p) \frac{1}{2} \log(2\pi) - \frac{1}{2} \sum_{t=p+1}^{T} \left(\zeta_{th}^{'} \zeta_{th} + 2 \log(|U_{tt}|) \right)
\]

where \(\log(|U_{tt}|) \) is easily calculated as the sum of the terms on the principle diagonal of \(U_{tt} \). Calculation of \(U \) involves inverting a maximum of \(T-p \) lower triangular matrices of dimension \(n \), but in practice \(U_{ij} \) and \(U_{i+1,j+1} \) often converge quickly, removing the need to calculate the rows of \(U \) further, see Bergstrom (1990, ch 7). The non-zero blocks in block row \(i \) contain coefficient matrices for a moving average representation of \(\eta_{th} \).

4.2. The Kalman prediction error

Letting \(\hat{x}_{th|h−h} \) denote the predicted value of the vector \(x_{th} \) given information at time \(th − h \) and \(\Omega_{th|h−h} = E[\hat{x}_{th|h−h} − x_{th}|\hat{x}_{th|h−h} − x_{th}] \) denote the variance of the prediction error, then the likelihood can be written in the form

\[
\log L_K = -n(T-p) \frac{1}{2} \log(2\pi) - \frac{1}{2} \sum_{t=p+1}^{T} \log(\Omega_{th|h−h})
\]

\[
\frac{1}{2} \sum_{t=p+1}^{T} \left(x_{th} - \hat{x}_{th|h−h} \right)^{'} \Omega_{th|h−h}^{-1} \left(x_{th} - \hat{x}_{th|h−h} \right).
\]

The one step ahead predictions and forecast variances can be calculated recursively using the Kalman-Bucy filter, with

\[
\begin{align*}
\hat{x}_{th|h−h} &= S_1 \hat{y}(th|th−h), \\
\Omega_{th|h−h} &= S_1 P_{th|h−h} S_1', \\
\hat{y}(th+h|th) &= c + C \hat{y}(th|th−h) + K_{th} \left[x_{th} − \hat{x}_{th|h−h} \right], \\
K_{th} &= C P_{th|h−h} S_1' \left[\Omega_{th|h−h} \right]^{-1}, \\
P_{th+h|h} &= \left[C - K_{th} S_1 \right] P_{th|h−h} \left[C - K_{th} S_1 \right]^{'} + \Omega_c
\end{align*}
\]

\(\hat{y}(th|th−h) \) denoting the one step ahead prediction of the full state vector \(y(th) \), \(P_{th|h−h} \) its covariance matrix and \(K_{th} \) the Kalman gain. Computation of the likelihood eases considerably once changes in \(P_{th+h|h} \) become relatively small and it no longer becomes necessary to compute equations (19), (21) or (22).

In the case that the time series are stationary, it is common to commence the Kalman
iterations with the unconditional mean $\hat{y}(h|0) = [I-C]^{-1}c$ and with $P_{h|0}$ solving the discrete time Lyapunov equation $P_{h|0} = CP_{h|0}C' + \Omega_c$; see, for example, Hamilton (1994, p.378). If the analyst does not wish to evaluate the initial conditions in this way, or if the data are non-stationary, Harvey and Stock (1985) suggest estimating the initial condition of the state vector as a parameter in the model, which can be concentrated out of the likelihood function. The exact discrete representation, which concentrates w_{th} out of the dynamics of x_{th}, provides an alternative method. Equation (A8) provides an expression for the unobserved elements of the state vector that can be used to appraise $w_{ph|ph}$ and its variance. We might then chose to commence the recursions with

$$\hat{y}_{ph+h|ph} = c + C\hat{y}(ph|ph),$$
$$P_{ph+h|ph} = CP_{ph|ph}C' + \Omega_c,$$
$$\hat{y}(ph|ph) = (x'_ph, \hat{w}'_{ph|ph})',$$
$$\hat{w}_{ph|ph} = M[\bar{c} + N\bar{x}_{ph+h}],$$

with

$$P_{ph|ph} = \begin{bmatrix} 0 & 0 \\ 0 & \tilde{P}_{ph|ph} \end{bmatrix}, \tilde{P}_{ph|ph} = M \begin{bmatrix} I \otimes \Omega_{11} & I \otimes \Omega_{12} \\ I \otimes \Omega_{21} & I \otimes \Omega_{22} \end{bmatrix} \hat{M}' ,$$

where $\Omega_{ij} = S_i \Omega_c S_j'$.

Comparing the two methods, it is clear that in Gaussian estimation the vector $U_{tt} \zeta_{th}$ is the part of x_{th} that is not explained by lagged values of x_{th} or of η_{th}. This naturally corresponds to the Kalman prediction error $x_{th} - \hat{x}_{th|th-h}$. If the model is correctly specified then ζ_{th} is a standard normal n vector and the variance of this error, $U_{tt}U_{tt}'$ corresponds to $\Omega_{th|th-h}$.

5. Applications of the CARMA model

Beside being of interest in its own right, the exact discrete representation can be used to estimate the parameters of the continuous time system, following the above procedure. Here we consider two macroeconomic applications: the yield curve for short term interest rates; and, the relationship between US GDP and oil prices, both of which exploit the property that continuous time models are not tied to any particular frequency of data. In the first application estimates of the same underlying model using monthly data are compared with those using quarterly data. The second models mixed frequency data with a high frequency stock variable alongside a low frequency flow variable.

5.1. Short-term Interest rates

Recent work, e.g. Andresen et al. (2014) and Thornton and Chambers (2016), has suggested that CARMA models can provide suitable representations for short-term interest rates, with the CARMA(2, 1) model performing well in empirical applications. It is of interest to compare the robustness of the estimates of the CARMA parameters obtained across different sampling frequencies of data with the robustness of estimates of discrete time ARMA models which either take the temporal aggregation into account or do not. Defining $r(t)$ to
be the interest rate under consideration, the CARMA(2, 1) model of interest is given by

$$D^2 r(t) = a_0 + A_1 Dr(t) + A_0 r(t) + u(t) + \Theta_1 Du(t), \quad t > 0,$$

(23)

where a_0, A_0, A_1 and Θ_1 are unknown scalar parameters, and $u(t)$ is a mean zero uncorrelated process with variance σ_u^2. It follows, from Corollary 1 of Chambers and Thornton (2012), that the discrete time observations at sampling frequency h satisfy

$$r_{th} = f_{h,1} + F_{1,h} r_{th-h} + F_{2,h} r_{th-2h} + \eta_{th}, \quad t = 1, \ldots, T,$$

where $r_{th} = r(th)$, $f_{h,1}$, $F_{1,h}$ and $F_{2,h}$ are scalar functions of the CARMA parameters that take into account the temporal aggregation, and η_{th} is an MA(1) process. Given that, regardless of sampling frequency, the same continuous time parameters are being estimated, one would expect a reasonable amount of conformity of estimates obtained at different frequencies.

Another approach to temporal aggregation is to specify the underlying (fundamental) model not in continuous time but at a pre-determined discrete time interval. The application that follows uses monthly and quarterly data so we shall consider a model for r_{th} at the monthly frequency ($h = 1/12$) and then aggregate to the quarterly frequency by finding the law of motion for the series consisting of every third monthly observation. Suppose that the monthly data satisfy the discrete time ARMA(2, 1) model

$$r_{th} = \phi_0 + \phi_1 r_{th-h} + \phi_2 r_{th-2h} + \epsilon_{th} + \psi \epsilon_{th-h}, \quad t = 1, \ldots, T,$$

where ϵ_{th} is white noise with variance σ_ϵ^2. Then, using results of Wei (1981), it is possible to show that the quarterly series, r_{3th} i.e., the series of every third monthly observation, also satisfies an ARMA(2, 1) model whose parameters are known functions of those specifying the monthly model. It is then possible to examine how close estimates of the ARMA parameters are when the temporal aggregation is accounted for and when it is not.

Data on the Sterling one-month mean interbank lending rate6 were obtained from the Bank of England for the period January 1978 to December 2016. As this period covers the financial crisis that began in 2008 we use as our estimation period the 336 monthly observations from January 1980 to December 2007; observations from the end of 1979 are used as conditioning variables. As the data are sampled as stocks it is easy to derive the corresponding quarterly series by taking every third monthly observation, which results in 112 quarterly systematically sampled observations.7

Estimation results for the CARMA(2, 1) model are given in Table 1. The parameter estimates appear to be well determined (in terms of the ratios of estimates to standard errors) at both data frequencies and show a broad degree of consistency across frequencies. It should also be stressed that the estimates using monthly data are obtained with a sample size that is three time larger than with quarterly data and so some differences are to be expected.

Table 2 contains the estimation results when the underlying model is a discrete time ARMA(2, 1) model. The column headed Quarterly1 takes into account the fact that the

6The observations are the end-of-month values so that the series is genuinely of the stock variety.

7The quarterly data are then end-of-quarter values.
quarterly data are obtained from the monthly data by systematic sampling and also show a
broad degree of consistency across sampling frequencies. However, ignoring the systematic
sampling means, effectively, that different parameters are being estimated, and this is clear
in the column headed Quarterly\(^2\) in which the estimates are rather different from those at
the monthly frequency.

The results in Tables 1 and 2 are illustrative of two important features. The first shows
the importance of taking into account the systematic sampling (or temporal aggregation)
that is inherent when dealing with a variable observed at two or more frequencies. Whether
the fundamental dynamics are assumed to be in continuous time or at a pre-determined
discrete time interval it is the case that the lower frequency variables satisfy models whose
parameters depend on those characterising the model governing the fundamental process.
Such dependencies should be taken into account if knowledge of the fundamental dynamics
is to be obtained. Second, and conversely, ignoring the systematic sampling (or temporal
aggregation) can lead to rather different inferences about the dynamics of a variable being
drawn. In the interest rate examples examined here it would perhaps be difficult to justify
the fundamental dynamics evolving at a monthly frequency in view of the interest rate being
subject to frequent changes even within the period of a day, so a continuous time underlying
model may be deemed more appropriate here. But the effects of accounting for systematic
sampling can be seen even in the discrete time ARMA models.

5.2. Mixed-frequency Oil price and Economic output

We explore the relationship between US output, as measured by real GDP in trillions
of chained 2009 dollars, and the oil price, as measured by the price of West Texas Intermediate
in dollars per barrel, since the end of the great moderation. The data, from the Federal
Reserve bank of St Louis, range from the first quarter of 2008 to the third quarter of 2016.
While the oil price is available for most days, the price indices required to deflate them are
only available monthly and so we use the end-month price deflated by the CPI index for that
month. Data for real GDP are only available quarterly, expressed as an annual rate of flow.
In common with most authors who have examined these series, see for example Hamilton
(1996), we find that both time series showed strong evidence of unit root behaviour with
augmented Dickey Fuller test statistics that are insignificant at the 10 per cent level (and
significant at the 2 per cent level once differenced), but find no evidence of a cointegrating
relationship.\(^8\) Non-stationary but not cointegrated data are consistent with the specification
in (1) with \(p = 2\) and \(A_0 = 0\).

We define the \(2 \times 1\) vector \(x(t) = [\text{Oil}(t), \text{GDP}(t)]\)' and consider two candidate models
nested within a continuous time ARMA(2, 1) model, the continuous time CARIMA(1, 1, 1)
and the continuous time CARIMA(1, 1, 0). Following the methods of Theorems 1 and 2,
both have an exact discrete representation

\[
\Delta x_t = f_0 + F_1 \Delta x_{t-1} + \eta_t, \quad t = 3, \ldots, T, \tag{24}
\]

where \(x_t = [\text{Oil}(t), \int_{t-1}^t \text{GDP}(s) ds]'\) and \(\Delta = (1 - L)\) is the first difference operator. The
discrete time disturbance vector \(\eta_t = (\eta_{1,t}, \eta_{2,t})'\) has a a second-order moving average repre-

\(^8\)For example, using the end quarter figure for the oil price.
sentation in both models, with the CARIMA(1, 1, 1) offering more flexibility in its autocovariance structure.

To account for the unavailability of GDP at the monthly frequency we modify Theorem 2 in Chambers (2016),\(^9\) which proposes a representation for mixed frequency flow data following a continuous time AR(1) process. We set our model in terms of \(X_t = s(L)^2 \Delta x_t\), where

\[
s(z)^2 = \left(\frac{1 - z^3}{1 - z} \right)^2 = 1 + 2z + 3z^2 + 2z^3 + z^4.
\]

The first ‘dose’ of \(s(L)\) is required to capture the flow nature of the low frequency GDP data while the second changes the differencing from the high to the low frequency. This (differenced) data series then has the representation

\[
X_t = 9f_0 + F_1 X_{t-1} + s(L)^2 \eta_t, \quad t = 3, \ldots, T,
\]

with the factor of 9 before \(f_0\) reflecting the impact of \(s(z)^2\) on the intercept. While the high frequency oil price component of \(X_t = \sum_{j=0}^{2}(x_{t-j} - x_{t-3-j})\) is available for \(t = 1, 2, 3, \ldots, T\), the low frequency GDP component is only available for \(t = 3, 6, 9, \ldots, T\). Representations for such mixed frequency data are available in equations (15–18) of Chambers (2016) but require modification of the covariance structure of the disturbance for the higher power of \(s(L)\) and the the second order moving average representation of \(\eta_t\), see the appendix for further details.

Table 3 contains the estimation results for both models. Given the short and relatively turbulent period under consideration it is perhaps unsurprising that the drift term, \(a_0\) proved to be insignificant and so was omitted from the final specifications. Both models have coefficients in the stationary region, after differencing, the eigenvalues of \(A_1\) are \(-2.9414, -0.0652\) for the CARIMA(1, 1, 0) – \(-0.4373, -0.1552\) in the CARIMA(1, 1, 1) specification. It is worth commenting that its higher eigenvalues indicate more persistence in the CARIMA(1, 1, 1) specification, as shown by the fact that their exponentials are the eigenvalues of the discrete representation AR matrices, \(F_1\). The likelihood ratio test statistic between the two model, which is asymptotically chi-squared distributed with four degrees of freedom, is in excess of 13, strongly suggesting the CARIMA(1, 1, 1) specification be preferred. Individually, the elements of \(\Theta\) on the principal diagonal are both significantly different from zero. For a first order moving average, stability of the MA roots corresponds to the eigenvalues of \(\Theta\) having positive real parts. To ensure this property, the initial values for \(\Theta\) were chosen to be positive and a penalty imposed if its eigenvalues became negative. The eigenvalues of the estimated \(\Theta\) are 1.0746 and 5.0586.

6. Concluding comments

This paper has explored the structure of state space representations of continuous time ARMA processes. Furthermore, it has provided exact discrete time representations for data generated by a continuous time ARMA\((p, q)\) system in the general case where the data may be stocks, flows, or a combination of the two. We have demonstrated that, once flow variables are used, an ARMA\((p, p)\) without differencing the stock variables is an appropriate discrete

\(^9\)As (24) describes the representation for mixed stock-flow data based on Theorem 1 above we do not need to use Theorem 3 in Chambers (2016).
time representation, in line with the results for higher orders of discrete time aggregation. Intermediate results can be used to estimate the expectation and variance of the state vector conditional on \(p \) observations. We have demonstrated the usefulness of this approach in applications estimated over a range of frequencies and on mixed stock-flow mixed frequency data.

References

Table 1
Estimates of CARMA(2, 1) for short-term interest rate

<table>
<thead>
<tr>
<th></th>
<th>Monthly</th>
<th>Quarterly</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0</td>
<td>10.1596</td>
<td>8.2617</td>
</tr>
<tr>
<td></td>
<td>(5.2681)</td>
<td>(2.6236)</td>
</tr>
<tr>
<td>A_0</td>
<td>-1.4951</td>
<td>-1.2012</td>
</tr>
<tr>
<td></td>
<td>(0.7395)</td>
<td>(0.3697)</td>
</tr>
<tr>
<td>A_1</td>
<td>-5.8521</td>
<td>-4.3776</td>
</tr>
<tr>
<td></td>
<td>(2.5278)</td>
<td>(1.3153)</td>
</tr>
<tr>
<td>θ_1</td>
<td>0.1611</td>
<td>0.1981</td>
</tr>
<tr>
<td></td>
<td>(0.0686)</td>
<td>(0.0553)</td>
</tr>
<tr>
<td>σ_u</td>
<td>11.5877</td>
<td>8.9555</td>
</tr>
<tr>
<td></td>
<td>(5.3051)</td>
<td>(3.0998)</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses.

Table 2
Estimates of ARMA(2, 1) for short-term interest rate

<table>
<thead>
<tr>
<th></th>
<th>Monthly</th>
<th>Quarterly1</th>
<th>Quarterly2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_0</td>
<td>0.0558</td>
<td>0.0481</td>
<td>0.3120</td>
</tr>
<tr>
<td></td>
<td>(0.0333)</td>
<td>(0.0262)</td>
<td>(0.1664)</td>
</tr>
<tr>
<td>ϕ_1</td>
<td>1.6054</td>
<td>1.6872</td>
<td>1.2894</td>
</tr>
<tr>
<td></td>
<td>(0.1281)</td>
<td>(0.0819)</td>
<td>(0.1679)</td>
</tr>
<tr>
<td>ϕ_2</td>
<td>-0.6136</td>
<td>-0.6941</td>
<td>-0.3347</td>
</tr>
<tr>
<td></td>
<td>(0.1258)</td>
<td>(0.0807)</td>
<td>(0.1613)</td>
</tr>
<tr>
<td>ψ</td>
<td>-0.5951</td>
<td>-0.6557</td>
<td>-0.2742</td>
</tr>
<tr>
<td></td>
<td>(0.3667)</td>
<td>(0.0995)</td>
<td>(0.1814)</td>
</tr>
<tr>
<td>σ_ϵ</td>
<td>0.5694</td>
<td>0.7241</td>
<td>0.9654</td>
</tr>
<tr>
<td></td>
<td>(0.0634)</td>
<td>(0.0316)</td>
<td>(0.0323)</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses.

1 Takes account of temporal aggregation.
2 Does not take account of temporal aggregation.
Table 3. Estimates of CARIMA models for GDP and oil prices

<table>
<thead>
<tr>
<th>CARIMA(1, 1, 0)</th>
<th>CARIMA(1, 1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>A_1</td>
</tr>
<tr>
<td>(-2.9300)</td>
<td>(-0.5053)</td>
</tr>
<tr>
<td>((1.2457))</td>
<td>((0.1890))</td>
</tr>
<tr>
<td>(-0.3204)</td>
<td>(0.0262)</td>
</tr>
<tr>
<td>((0.0457))</td>
<td>((0.0612))</td>
</tr>
</tbody>
</table>

Continuous time model parameters

Oil price

\[
\begin{align*}
-2.9300 & \quad -0.0812 & -0.5053 & -0.9050 & 1.0836 & -6.7083 \\
(1.2457) & (2.0592) & (0.1890) & (1.0404) & (0.3814) & (5.9868)
\end{align*}
\]

GDP

\[
\begin{align*}
-0.3204 & \quad -0.6767 & 0.0262 & -0.0873 & 5.0496 \\
(0.0457) & (0.5392) & (0.0612) & (0.0526) & (0.0084) & (1.4457)
\end{align*}
\]

$\log L = 227.2783$

Exact discrete time model parameters

\[
\begin{align*}
F_1 & \quad F_1 \\
0.0626 & \quad -0.0114 & 0.5487 & -0.6490 \\
0.3896 & \quad 0.5043 & 0.0255 & 0.9173
\end{align*}
\]

Robust standard errors in parentheses.

Appendix

The dimensions and forms of the vectors and matrices used in (17) are:

\[
\begin{align*}
\bar{M} & : m(r+n) \times (m+1)r; \\
\hat{M} & : r \times m(r+n); \\
\hat{N}_j & : m(r+n) \times n \ (j = 1, \ldots, m+1); \\
\bar{w}_t & : (m+1)r \times 1; \\
\bar{x}_t & : (m+1)n \times 1; \\
e_t & : m(r+n) \times 1; \\
c & : m(r+n) \times 1.
\end{align*}
\]

Partitions of matrix exponentials

The following partitions are needed to establish Theorems 1 and 2. Given the matrix A we can write, for integer j,

\[
[hH]^j = \begin{bmatrix} 0 & S_0^j \\ 0 & hA \end{bmatrix}^j = \begin{bmatrix} 0 & S_0^j(hA)^{j-1} \\ 0 & (hA)^j \end{bmatrix}.
\]

Applying the formula for the matrix exponential we see that

\[
e^{hH} = \begin{bmatrix} I & S_0^j \left(I + \sum_{j=2}^{\infty} (Ah)^{j-1}/j! \right) \\ 0 & I + \sum_{j=2}^{\infty} (Ah)^j/j! \end{bmatrix} = \begin{bmatrix} I & S_0^j \Phi \\ 0 & e^{Ah} \end{bmatrix},
\]

where $\Phi = I + \sum_{j=2}^{\infty} (Ah)^{j-1}/j! = \int_0^1 e^{Ah}s \, ds$. Since the first n' columns of H^j (for $j > 0$) contain only zeros, the top left n' square of C is equal to the identity.
The following sub-matrices constitute the partitions of C used in Theorems 1 and 2.

$$
C_{11} = \begin{bmatrix}
0_{n \times n} & \Phi[n^* + 1:n, 1:n^*] \\
0_{n \times n} & e^{Ah}[1:n^*, 1:n^*]
\end{bmatrix} \equiv \begin{bmatrix} 0 & C_{11}' \\
0 & 0 \end{bmatrix},
$$

$$
C_{12} = \begin{bmatrix}
\Phi[n^* + 1:n, n^* + 1:n] \\
e^{Ah}[1:n^*, n^* + 1:n]
\end{bmatrix} \equiv \begin{bmatrix} C_{12}' \\
C_{12}'
\end{bmatrix},
$$

$$
C_{21} = \begin{bmatrix} 0_{np \times n} & e^{Ah}[n^* + 1:n, 1:n^*] \end{bmatrix} \equiv [0, C_{21}'].
$$

$$
C_{22} = e^{Ah}[n^* + 1:n, n^* + 1:n],
$$

where $B[a:b; c:d]$ denotes the sub-matrix containing rows a to b and columns c to d of the matrix B. Defining $\bar{C}_{11} = S_1e^{Hh}S_1$, the matrix

$$
W = \bar{C}_{11} - C_{12}C_{22}^{-1}C_{21} = \begin{bmatrix}
I_{n^f} & C_{11}' - C_{12}'C_{22}^{-1}C_{21} \\
0_{n^s \times n^f} & C_{11}' - C_{12}'C_{22}^{-1}C_{21}
\end{bmatrix} \equiv \begin{bmatrix} I_{n^f} & W' \\
0_{n^s \times n^f} & W
\end{bmatrix}
$$

(A1)

is the Schur complement of C_{22} in the matrix e^{Hh}. Since e^{Hh} is non-singular, Assumption 1 implies that both W and W' are non-singular.

The following lemmas establish the ranks of the large partitioned matrices needed in Theorems 1 and 2. The proofs are well-known in the linear systems literature but are included for completeness. Lemma A1 establishes the necessary and sufficient conditions for the Popov-Belevitch-Hautus eigenvector tests (see Kailath, 1980, p.135), which are then deployed in Lemmas A2 and A4. Lemma A3 considers the elimination of unobservable variables in the event that assumptions 1 and 2 do not hold.

Lemma A1. Under Assumptions 1 and 2, the nullspace of C_{11} does not contain any (non-trivial) eigenvectors of C_{22}.

Proof

Let d be an eigenvector of C_{22} such that $C_{12}d = 0$. Then the $n + r$ vector $q = (0', d')'$ must be an eigenvector of e^H. Since this is an exponential, the associated eigenvalue, $\lambda > 0$, and $[H - \log \lambda I_{r+n}]q = 0$. Using (8), this gives

$$
q[n^f + 1:n + n^f] = q[1:n^f] \log \lambda,
$$

$$
A_{p-1}q[n^f + 1:n + n^f] + q[n^f + 1:n + 2n] = q[n^f + 1:n + n^f + 2n] \log \lambda,
$$

$$
A_{p-2}q[n^f + 1:n + n^f] + q[n^f + 2n + 1:n + 3n] = q[n^f + n + 1:n + 2n] \log \lambda,
$$

$$
\vdots
$$

$$
A_1q[n^f + 1:n + n^f] + q[n^f(p - 1)n + 1:n + pn] = q[n^f(p - 2)n + 1:n + (p - 1)n + 1] \log \lambda,
$$

$$
A_0q[n^f + 1:n + n^f] = q[n^f(p - 1)n + 1:n + pn] \log \lambda.
$$

Since $q[1:n] = 0$ the top line implies that $q[n^f + 1:n + n^f] = 0$. In the second line this implies that $q[n^f + n^f + 1:n + 2n] = 0$ and a recursive argument establishes that $q = 0$ and hence $d = 0$. □

Lemma A2. Under Assumptions 1 and 2, the matrix \bar{M} has full column rank for $m \geq r/n$.

Proof

Suppose there were an $(m+1)r$ non-null vector $d = [d_1', d_2', \ldots, d_{m+1}']$ such that $\bar{M}d = 0$. Given Assumption 1, it would have to be the case that $C_{22}d_i = d_{i-1}$ and $C_{12}d_i = 0$, for $i = 2, 3, \ldots, m + 1$, or equivalently, a non-null vector d_{m+1} such that

$$
\begin{bmatrix}
C_{12} \\
C_{12}C_{22} \\
C_{12}C_{22}^2 \\
\vdots \\
C_{12}C_{22}^{m+1}
\end{bmatrix}d_{m+1} \equiv M^*d_{m+1} = 0.
$$
Hence \bar{M} has full column rank provided the matrix M^* does. The matrix M^* has the form of the observability matrix of a linear system with transition matrix C_{22} and observation matrix C_{12}. It is well known from the linear systems literature – see, for example, Theorems 6.4 and 6.5 of Szidarovsky and Bahill (1991) – that Lemma A1 is necessary and sufficient for M^* to have full column rank (and for such a system to be observable), but the following is included for completeness.

Suppose that M^* has rank $k < r$. Let the $k \times r$ matrix G_1 consist of the k linearly independent rows of M^*, spanning its rowspace, and let G_2 be an $(r-k) \times r$ matrix spanning the rest of r space. Then the $r \times r$ matrix

$$ G = \begin{bmatrix} G_1 \\ G_2 \end{bmatrix}, $$

is non-singular. Partition its inverse $G^{-1} = \begin{bmatrix} B_1 & B_2 \end{bmatrix}$, where B_2 is $r \times r - k$, then it follows that $G_1B_2 = 0$. Then $M^*B_2 = 0$ as G_1 spans the rowspace of M^* and B_2 spans the $r-k$ dimensional nullspace of M^*. It then follows that $C_{12}B_2 = 0$ and that $G_1C_{22}B_2 = 0$ as space spanned by the columns of B_2 is invariant under C_{22}. We can therefore write Given that

$$ V = GC_{22}^{-1}G^{-1} = \begin{bmatrix} V_{11} & 0 \\ V_{12} & V_{22} \end{bmatrix}, \quad Z = C_{12}G^{-1} = [z_1, 0], $$

(A2)

where V_{11} is $k \times k$ and Z_1 has k columns. Let $q \neq 0$ be an arbitrary $r - k$ eigenvector of V_{22} with associated eigenvalue, λ, so that the eigenvector $v = [0', q']'$ is an eigenvector of V in the nullspace of Z. Let $x = G^{-1}v \neq 0$.

Then

$$ C_{22}^{-1}x = G^{-1}C_{22}^{-1}G^{-1}Gx = G^{-1}v = G^{-1}v\lambda = Zx, \quad \text{and} \quad C_{12}x = Zv = 0. $$

As Lemma A1 shows that such no eigenvectors of C_{22}^{-1} lie in the nullspace of C_{12} then \bar{M} has full column rank. □

Lemma A3. If the matrix \bar{M} is of rank $k < m$ then the dimension of the unobservable state variables in (15) and (16) can be reduced to k.

Proof

Suppose M^* has rank $k < r$. Define a new unobservable variable $\tilde{w}_{1h} = Gw_{1h}$, and rewrite (15) and (16) as

$$ x_{1h} = c_1 + C_{11}x_{1h-h} + C_{12}G^{-1}\tilde{w}_{1h-h} + \epsilon_{1,1h}, \quad (A3) $$

$$ \tilde{w}_{1h} = Gc_2 + GC_{21}x_{1h-h} + GC_{22}G^{-1}\tilde{w}_{1h-h} + G\epsilon_{2,1h}, \quad (A4) $$

Partitioning $\tilde{w}_{1h} = [\tilde{w}^T_{1,1h}, \tilde{w}^T_{2,1h}]'$, the expressions in (A2) mean that the columns of $C_{12}G^{-1}$ relating the $r-k$ vector $\tilde{w}_{2,1h-h}$ to x_{1h} in (A3) and the block of $GC_{22}G^{-1}$ relating it to the k vector $\tilde{w}_{1,1h}$, in (A4) are zero.

We may therefore write the system as

$$ x_{1h} = c_1 + C_{11}x_{1h-h} + Z_1\tilde{w}_{1,1h-h} + \epsilon_{1,1h}, \quad (A5) $$

$$ \tilde{w}_{1,1h} = Gc_2 + Gc_{21}x_{1h-h} + V_{11}T_1\tilde{w}_{1,1h-h} + G\epsilon_{2,1h}, \quad (A6) $$

$$ \tilde{w}_{2,1h} = Gc_2 + Gc_{21}x_{1h-h} + V_{12}\tilde{w}_{1,1h-h} + V_{22}\tilde{w}_{2,1h-h} + G\epsilon_{2,1h}, \quad (A7) $$

Since $\tilde{w}_{2,1h}$ neither appears in, nor is not needed to remove $\tilde{w}_{1,1h-h}$ from, (A5), we are free to ignore (A7) in deriving the exact discrete time representation, reducing the dimension of the unobservable vector from r, to k.

Lemma A4. Under Assumptions 1 and 2, with $m = p$ and $0 < n^* < n$ the matrix $[\bar{M}, N_{p+1}^+]$ is non-singular.

Proof

Suppose there were an $(p+1)r$ non-null vector $d = [d_1', d_2', \ldots, d_{p+1}']'$ and a n^* non-null vector z such that $Md + N^*z = 0$. Following the argument used in Lemma A2, it must be that $d_i = C_{22}\bar{d}_{i,-1}$, $C_{12}\bar{d}_i = 0$ ($i = 2, 3, \ldots, p$), while $d_p = C_{22}\bar{d}_{p+1} - C_{22}^0z$ and $C_{12}\bar{d}_{p+1} - C_{12}^0z = 0$. Pre-multiplying the penultimate
expression by C_{22}^{-1} and substituting in this is equivalent to a non-null pn vector, $(d'_1, z')'$, such that

\[
\begin{bmatrix}
C_{12}C_{22}^{-1} & 0 \\
C_{12}C_{22}^{-2} & 0 \\
\vdots & \vdots \\
C_{12}C_{22}^{-p} & C_{12}C_{22}^{-1}C_{21} - C_{21}'
\end{bmatrix}
\begin{bmatrix}
d_1 \\
z
\end{bmatrix} = 0.
\]

Note that $C_{12}C_{22}^{-1}C_{21} - C_{21}'$ is (-1) times the final n^* columns of W. Using (A1) the bottom block row produces

\[
-W^* z = C_{12}C_{22}^{-p} d_1 \implies z = -(W^*)^{-1}C_{12}C_{22}^{-p} d_1,
\]
\[
-W' z = C_{12}C_{22}^{-p} d_1 \implies W'(W^*)^{-1}C_{12}C_{22}^{-p} d_1 = C_{12}C_{22}^{-p} d_1,
\]

and hence an equivalent condition is the non-singularity of the $r \times r$ matrix,

\[
W = \begin{bmatrix}
C_{12}C_{22}^{-1} \\
C_{12}C_{22}^{-2} \\
\vdots \\
C_{12}C_{22}^{-p} & W^* C_{22}^{-1}
\end{bmatrix},
\]

where $W^* = \begin{bmatrix} I_{n^*} & -W' (W^*)^{-1} \end{bmatrix}$. $C_{12}C_{22}^{-1}$ has full row rank and can be shown to contain the top n' rows of $S_1 e^{-Hh} S_2$. The matrix $[C_{12}, W^*]'$ must also have full row rank, otherwise there would exist n vectors $z_1 \neq 0$ and $z_2 \neq 0$ such that $z_1 C_{12} C_{22}^{-1} = 0$ and M_1 would have rank less than r, in contradiction to Lemma A2. Identical arguments to Lemma A2 establish that the matrix

\[
\begin{bmatrix}
C_{12} & C_{12}^{-1} \\
W^* & C_{22}^{-2} \\
\vdots & \vdots \\
C_{12} & W^* C_{22}^{-1}
\end{bmatrix}
\]

has full column rank r. The rows of $W^* C_{22}^{-i}$ are not linearly independent of the rows of $C_{12} C_{22}^{-i+1}$ ($i = 1, \ldots, p - 2$) and can be withdrawn from the matrix without reducing its rank, leaving \tilde{W}.

Proof of Theorem 1

(a) The existence of an $(m+1)r \times m(r+n)$ matrix R such that RM that is non-singular follows naturally from Lemma A2. (b) Pre-multiplying (17) by R and solving leads to

\[
w_{th-h} = \tilde{M} [z + N \epsilon_{th} + \epsilon_{th}]
\]

where $\tilde{M} = [I_r, 0, \ldots, 0] [RM]^{-1} R$. The matrices F_j ($j = 1, \ldots, m + 1$) and vector f follow directly from substituting back into (15). The error process, η_{th}, can be written

\[
\eta_{th} = \epsilon_{1,th} + C_{12} \tilde{M} \epsilon_{th} = \epsilon_{1,th} + C_{12} \sum_{i=1}^{m} [\tilde{M}_1 \epsilon_{1,th-i,th} + \tilde{M}_2 \epsilon_{2,th-i,th}]
\]

\[
= \int_0^1 \left\{ S_1 \tilde{C}(r) \tilde{\Theta} h u(r) + C_{12} \sum_{i=1}^{m} [\tilde{M}_1 S_1 + \tilde{M}_2 S_2] \tilde{C}(r) \tilde{\Theta} h u(r-i) \right\} dr.
\]

The covariance structure of η_{th} then follows from the properties of $u(t)$.
Proof of Theorem 2

(a) The \(p(r+n) \times ns \) matrix \(N_{p+1} \), which contains \(ns \) columns of the non-singular matrix \(e^{Hh} \), appended with additional rows of zeros, has rank \(ns \) and the dimension of its left nullspace is \(p(r+n) - ns = (p+1)r \). Let \(R \) denote any matrix whose rows span this space. \(RM \) is non-singular provided the column space of \(M \) and the nullspace of \(R \) are disjoint. Since, by construction, the nullspace of \(R \) is spanned by the columns of \(N_{p+1} \), this follows from Lemma A.4. (b) Given this choice of \(R \), theorem 1 then gives the coefficients of an ARMA\((p+1,p)\) process but with \(F_{p+1} = 0 \). Since any matrix, \(\hat{R} \), whose rows span the left nullspace of \(N_{p+1} \) can be written \(YR \), where \(Y \) is a \((p+1)r \) invertible matrix, the representation is unique. \(\square \)

Mixed Frequency CARIMA \((1,1,1)\) process

In the main, the formulae in Theorem 2 of Chambers (2016) are easily adapted from the CARMA\((1,0)\) to the CARMA\((1,1,1)\) case by the replacement of \(s(L) \) with \(s(L)^2 \) throughout, including in the construction of the high-frequency data. The exception is the covariance structure of the disturbance term of the mixed frequency process, denoted \(u_t \) in that paper, which instead has a second order moving average representation resulting from the convolution of this matrix polynomial with the covariance structure of \(\eta_t \). Taking these in order, the matrix polynomial \(F_\eta(z) = \sum_{j=0}^{2} F_{\eta,j} z^j \) remains as defined on page 401 of Chambers (2016) but the matrix polynomial \(H(z) \) discussed in lemma 1 of that paper becomes

\[
H(z) = \sum_{i=0}^{6} H_i z^i = F_\eta(z) s(z)^2
\]

\[
= F_{\eta,0} + (2F_{\eta,0} + F_{\eta,1})z + (3F_{\eta,0} + 2F_{\eta,1} + F_{\eta,2})z^2
\]

\[
+ (2F_{\eta,0} + 3F_{\eta,1} + 2F_{\eta,2})z^3 + (F_{\eta,0} + 2F_{\eta,1} + 3F_{\eta,2})z^4 + (F_{\eta,1} + 2F_{\eta,2})z^5 + F_{\eta,2}z^6.
\]

The formulae for \(E \{ \eta_t \eta'_{t-j} \} \equiv \Gamma_j \), given in Theorem 1 above are non-zero for \(j = 0, 1, 2 \). The expressions for \(\Omega_{u,j} \equiv E \{ u_t u'_{t-|j|} \} \) follow from the convolution of this matrix polynomial with covariance structure of \(\{ \eta_t \} \)

\[
\Omega_{u,0} = \Omega_{00} + \Omega_{01} + \Omega_{02} + \Omega_{03} + \Omega_{04}, \\
\Omega_{u,1} = \Omega_{10} + \Omega_{11} + \Omega_{12} + \Omega_{13} + \Omega_{14} + \Omega_{15}, \\
\Omega_{u,2} = \Omega_{20} + \Omega_{21} + \Omega_{22}.
\]

where,

\[
\Omega_{00} = \sum_{i=0}^{6} H_i \Gamma_0 H'_i, \quad \Omega_{01} = \sum_{i=0}^{5} H_i \Gamma_1 H'_{i+1}, \quad \Omega_{02} = \sum_{i=0}^{4} H_i \Gamma_2 H'_{i+2}, \\
\Omega_{10} = \sum_{i=0}^{5} H_{i+3} \Gamma_0 H'_i, \quad \Omega_{11} = \sum_{i=0}^{4} H_{i+2} \Gamma_1 H'_i, \quad \Omega_{12} = \sum_{i=0}^{3} H_{i+1} \Gamma_2 H'_i, \\
\Omega_{13} = \sum_{i=0}^{3} H_{i+5} \Gamma_3 H'_i, \quad \Omega_{14} = \sum_{i=0}^{2} H_{i+4} \Gamma_4 H'_i, \\
\Omega_{20} = H_6 \Gamma_0 H'_6, \quad \Omega_{21} = \sum_{i=0}^{2} H_{i+5} \Gamma_4 H'_i, \quad \Omega_{22} = \sum_{i=0}^{1} H_{i+4} \Gamma_4 H'_i.
\]