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Abstract

We study efficiency and information aggregation in common value elections with con-

tinuous private signals and informative priors. We show that small elections are not

generally efficient and that there are equilibria where some voters vote against their pri-

vate signal even if it provides useful information and abstention is allowed. This is not

the case in large elections, where the fraction of voters who vote against their private

signal tends to zero. In an experiment, we then study how informativeness of priors and

private signals impact efficiency and information aggregation in small elections. We find

that there is a substantial amount of voting against the private signal. Moreover, while

most experimental elections are efficient, we find that it is not generally the case that

better private information leads to better decisions.
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1 Introduction

Consider a meeting of the executive board of a business where a decision by voting is due

as to which of two foreign markets to expand. All members of the executive board have

the same target, to increase the profits of the business, yet they may have different opinions

about which market will be best for their company. Assume all board members have access

to a report detailing which market is likely to be the most profitable one. On top of that,

board members may have their own private information based on their past experience, their

discussions with other colleagues, etc. The question we ask in this paper is twofold: can it be

rational for board members to ignore their private information and vote following the report

even when private information is informative and abstention is allowed? Will the committee

arrive at the best possible decision given the information they have available?

To answer these questions we consider a common value election between two candidates

where voters are not perfectly informed about who is the best candidate. Instead, each voter

receives information about the identity of the best candidate from two sources, one public

and one private. The public source of information is a common prior shared by all voters.

The private source of information consists of an idiosyncratic signal of a certain quality, which

could for example reflect the voter’s expertise. Each voter knows the quality of his own signal

but not the quality of the signals others receive nor these signals themselves. In this setting it

may happen that some voters decide to abstain because they believe that their vote is going

to harm the chances of the best candidate winning the election. This is known as strategic

abstention (see for instance McMurray (2013) or Feddersen and Pesendorfer (1996)), which

can occur if the signal quality of these voters is low, so that they prefer leaving the decision

of selecting a candidate to other, possibly better informed, voters (self-selected experts). In

this paper we ask under which conditions a voter may even vote against his signal and what

are the implications of such behaviour for efficiency and information aggregation.

From our theoretical analysis we obtain three main results: first, we find that a significant

amount of voting against the signal can be observed in equilibrium. Voting against the signal

can be rational if the voter deems the signal of too low quality compared to the information

contained in the asymmetric (and hence informative) prior. Second, we find that voting

does not generally aggregate information efficiently (due to mis-coordination as a result of

equilibrium multiplicity). Still, efficient equilibria can feature voting against the signal in

some cases. Third, for elections with a large number of voters we prove that the effect of an

asymmetric common prior vanishes to zero and the election resembles one where the common

prior is non-informative.

Our analysis is closely related to McMurray (2013), who studies Condorcet (1785)’s classic
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common value environment with symmetric priors. The main difference between McMurray

(2013) and the present paper is that we allow for the common prior to be asymmetric: i.e. not

all candidates are equally likely to be the best one a priori. This gives rise to a phenomenon

not present in McMurray (2013): voters can vote against their own signal. With symmetric

priors any signal is at least as good as the prior in predicting the best candidate. This means

that no voter has incentives to vote against his signal and their decision then reduces to

whether to abstain or not. In our paper the fact that a signal may be less informative than

the common prior means that some voters will choose to vote against their private signal.

Contrary to previous literature (Feddersen and Pesendorfer, 1996; Rivas and Rodŕıguez-

Álvarez, 2017), voting against the private signal is observed in a setting without biased

voters.

Our experiments test both the predictions of the symmetric case studied in McMurray

(2013) as well as the predictions of the asymmetric case introduced here for small elections.

As expected from the theoretical analysis, few voters (< 10%) vote against their signal with

uninformative (symmetric) priors, but 40 − 80%, depending on signal accuracy, do so in

the case with informative (asymmetric) priors. Turnout is higher in the asymmetric case

(83−86%) than in the symmetric case (78%) and slightly higher than theoretically expected.

The experiments deliver a surprising result in terms of efficiency. While, as expected, more

informative priors lead to higher efficiency, more informative signals do not always have this

effect. Specifically, in the case of asymmetric priors more informative signals can lead to

lower efficiency. This is because in the asymmetric prior voters do not abstain enough and

do not react to signal quality enough, particularly when overall signal quality is high.

Duggan and Martinelli (2001) and Meirowitz (2002) have previously studied common

value elections with continuous private signals. Both of these papers study a model where

abstention is not allowed and the unique symmetric equilibrium has voters voting for a certain

option if and only if their signal quality is past a certain threshold, otherwise they vote for the

other option. With abstention, a voter whose signal quality is not high enough may choose

to abstain and delegate the decision to other voters. Without abstention, this is not possible

and the voter is forced to choose between the two options. Thus, the fact that voters can

abstain makes the finding that voters may vote against their signal more robust. On top of

that, compared to Duggan and Martinelli (2001) and Meirowitz (2002), in our model with

abstention the symmetric equilibrium need not be unique and, in particular, it is possible to

find parameter configurations such that there are two equilibria where in one equilibrium no

one votes against their private signal while in the other equilibrium there are some voters

who do.

Our research contributes to the literature on common value elections and strategic ab-
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stention. The classic paper of Austen-Smith and Banks (1996) raised serious questions about

Condorcet’s implicit assumption that all voters will vote naively, i.e. vote as if they were the

only voter. They showed that voting against the signal can arise if abstention is not allowed

and all voters have the same signal quality. In Feddersen and Pesendorfer (1996) voters are

of three types: partisans, fully informed and uninformed. Partisans support a certain can-

didate irrespective of the information available while fully informed and uninformed voters

prefer the best candidate. Fully informed voters know for certain who is the best candidate

while uninformed voters have no information about the best candidate other than the com-

mon prior. They show that a positive fraction of uninformed voters abstain even when they

strictly prefer one candidate over the other (swingers voter’s curse). Battaglini et al. (2010)

experimentally tested this model and found results in terms of efficiency, turnout and the

margin of victory that are in line with theory. We find theoretically and experimentally that

being uninformed is not a requirement for the swingers voter’s curse (see also McMurray

(2013)). Indeed, the fact that voters posses information of different qualities leads to a self

selection in abstention; those with lower quality signals abstain, even if their signal is more

informative than the prior, and even if based on the information they have they strictly prefer

one candidate over the other.

In Feddersen and Pesendorfer (1997) voters receive information from different sources,

where each source may provide information of different qualities. However, they do not

allow for abstention, which is a crucial difference to our model. Feddersen and Pesendorfer

(1998) allow voters to abstain. However, all voters receive information of the same quality.

The reason why voters still do not always vote with their signal is that some voters are

biased towards one of the candidates which can induce others to vote against their signal

to compensate the bias. In our paper, no voter is biased and the driving force behind what

each voter chooses given his signal is the quality of the signal. Hence, while heterogeneous

preferences are key in their setting, heterogeneous quality of information is what drives our

results.

Also related to our paper is the work of Ben-Yashar and Milchtaich (2007) who study

voters with homogeneous preferences and private signals of different qualities. However, they

do not consider the possibility of abstention; their focus is on computing the best monotone

voting rule. Krishna and Morgan (2012) investigate the welfare effects of introducing volun-

tary voting when all voters have the same signal quality. Oliveros (2013) presents a model

where voters can buy information of different qualities and studies the effects of different

ideologies on information acquisition.

A technical difference between our paper and some of the previous theoretical literature

(McMurray (2013), Feddersen and Pesendorfer (1996, 1997, 1999) among others) is that we
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do not consider an uncertain number of voters, i.e. Poisson games (Myerson, 1998), to prove

our results. In elections with a small number of voters, as it is the case in the example in

our starting paragraph, this assumption may seem hard to justify. The fact that we do not

consider Poisson games does not lead to different results when the number of voters is large.

In this case, our results mirror those of McMurray (2013).

Finally, our research also contributes to the experimental literature on the Condorcet Jury

paradigm. The first published experiment on behaviour in voting games was conducted by

Guarnaschelli et al. (2000) who base their experiment on Feddersen and Pesendorfer (1998)’s

analysis of strategic voting with the unanimity rule. Closer to our setting are Battaglini et al.

(2008) and Battaglini et al. (2010) as described above, and also Morton and Tyran (2011)

who extend the setting in Battaglini et al. (2008) by exploring an environment where poorly

informed voters are not completely uninformed - they simply receive lower quality signals.

This can lead to equilibria where all voters vote and to equilibria where the poorly informed

voters abstain. However, as priors are symmetric, there should not be any voting against

the signal in this setting. Interestingly, Morton and Tyran (2011) found experimentally

that voters abstained more than what is optimal in this setting. Elbittar et al. (2017) found

experimentally in a common value election setting with an uninformative common prior, fixed

signal quality and costly information acquisition that many voters vote instead of abstaining

even after choosing not to acquire information. In the symmetric treatments we find that

behaviour is broadly in line with theory, but we find that voters vote too often and do not

abstain enough in the asymmetric treatments. Kawamura and Vlaseros (2017) study a setting

without abstention, but where - in addition to private signals - voters also receive a public

signal (expert opinion). They find that inefficiencies can arise in that setting due to voters

placing too much weight on the public relative to the private signal.

Studying experimentally whether participants would be willing to vote against their signal

when it is rational to do so raises interesting questions in itself. Violations of Bayesian

updating are widely documented in experimental research and there are two types of biases

which would lead to opposite results in terms of participants voting against their signal.

The well documented phenomenon of base-rate neglect (Kahnemann and Tversky (1972)

Grether (1980) and Erev et al. (2008)) will lead agents to overweight sample information and

hence would imply that voting against the signal is not commonly observed in the experiment.

However, there is also the opposing phenomenon of conservatism (Ward (1982)) which implies

that participants overweight the prior and hence would reinforce the strategic incentives to

vote against the signal. By studying for the first time common value elections with informative

priors our experiment can shed some light on the role of these two opposing biases in strategic

voting.
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The rest of the paper is organized as follows. In section 2 we introduce the model and

present the main theoretical results. In section 3 we describe the design of the experiments

and present the experimental results. In section 4 present further theoretical results where

we consider the limit case then the number of voters grows large. Finally, section 5 concludes.

2 Theory

2.1 The Model

Consider a setting where N + 1 ≥ 2 voters have to decide between candidate B(lue) or

candidate R(ed) by simultaneously casting a vote for either candidate or abstaining. The

candidate that receives most votes wins the election. In case of a tie each candidate wins

with equal probability.

Each voter derives one unit of utility if the candidate who wins coincides with the state of

nature and zero units of utility otherwise. The state of nature is a random variable s ∈ {B,R}
where without loss of generality we assume that the probability that the state is B is given

by p ≥ 1
2 .

1 We restrict our attention to situations where p ∈ [
1
2 , 1

)
as if p = 1 then all

voters agree that B is the best candidate and thus will vote for him regardless on any other

information they may have available. The value of p is common knowledge and we refer to

it as the common prior.

Before the election, each voter i receives a signal σi ∈ {B,R} with quality qi ∈ [
1
2 , 1

]
where

P (σi = s|s) = qi.

Given the state of nature, signals of different voters are conditional independent. Both

the signal received by each voter as well as the quality of such signal are private information.

The distribution of signal qualities for each voter in the population is common knowledge,

identical, independently distributed and given by the strictly increasing cumulative density

function F :
[
1
2 , 1

] → [0, 1] and integrable probability density function f :
[
1
2 , 1

] → R+.

Define the average signal quality as μ =
∫ 1

1
2
qf(q)dq and consider μ ∈ (

1
2 , 1

)
to avoid the

trivial cases where all voters receive a useless signal or when all voters receive a perfectly

informative signal.

Thus, before the election each voter knows the common prior, his own signal and the

quality of such signal, as well as the distribution of the quality of other voters’ signals.

1The assumption p ≥ 1
2
is without loss of generality as if p < 1

2
then a relabeling of B to R and vice-versa

makes the analysis that follows still valid.
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However, he does not know the state of nature, the signals received by other voters, and the

quality of such signals.

A strategy for each voter is a map v : {B,R} × [
1
2 , 1

] → {∅, B,R} where v(σi, qi) is the

action of voter i who receives signal σi of quality qi, and ∅ stands for the action of abstaining.

Note that we focus on symmetric strategies: voters that are the same (same signal and

quality) behave the same. The fact that we only consider symmetric equilibria does not

undermine our main findings: if voting against the signal is possible in an equilibrium with

symmetric strategies then it is also possible in an equilibrium when asymmetric strategies

are considered.

Note that unlike most recent papers on voting and information sharing we do not assume

a Poisson distribution for the number of voters (see the seminal work by Myerson (1998) and

Myerson (2000) and more recent references by Myatt (2012) and Nunez (2010) among others).

This assumption is often employed given its technical conveniences, namely, independent

common public information and independence of actions. However, a drawback of assuming

a Poisson distribution for the number of voters is that voters are uncertain of how many other

voters there are in the population. While this seems a suitable assumption in large elections,

with small elections (committees, for example), which are the focus of this paper, it seems

unreasonable to assume that voters ignore how many other voters there are.

2.2 Analysis

When a voter decides whether to vote for B, R or to abstain, he compares the payoff he

obtains under these three actions given the actions of all other voters. However, a voter can

influence his own payoff only when his vote can change the outcome of the election (i.e. he

is pivotal). This can happen if and only if candidates B and R are at most one vote apart

when counting the votes of the other N voters. Thus, let πt(v, s) be the probability that

candidate B receives the same number of votes as candidate R (i.e. there is tie) when N

voters use strategy v and the state is s. Similarly, let πB(v, s) be the probability candidate B

receives exactly one vote less than candidate R when N voters use strategy v and the state

is s. Finally, let πR(v, s) be the probability candidate R receives exactly one vote less than

candidate B when N voters use strategy v and the state is s.

Before we write down the payoff each voter obtains from playing the three different actions,

it is useful to understand how likely each state is when a voter only considers his available
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information (i.e. ignoring strategic considerations). We have the following:

P (s = B|σi = B, qi) =
pqi

pqi + (1− p)(1− qi)
,

P (s = R|σi = B, qi) =
(1− p)(1− qi)

pqi + (1− p)(1− qi)
,

P (s = B|σi = R, qi) =
p(1− qi)

p(1− qi) + (1− p)qi
,

P (s = R|σi = R, qi) =
(1− p)qi

p(1− qi) + (1− p)qi
.

Notice that the private signal of voter i is more informative than the prior, P (R|σi = R, qi) ≥
1
2 , if and only if qi ≥ p.

The expected utility voter i derives from voting for B compared to voting for R when the

other N voters use strategy v is then given by

ui(B,R, v) = P (s = B|σi, qi)
[
πt(v,B) +

1

2
πR(v,B) +

1

2
πB(v,B)

]

−P (s = R|σi, qi)
[
πt(v,R) +

1

2
πR(v,R) +

1

2
πB(v,R)

]
. (1)

In words, if the state is B then the increase in payoff from voting B instead of R is: 1

if there is a tie when counting all other N votes (the best candidate wins), 1
2 if R is one

vote behind (the best candidate is chosen as opposed to forcing a tie), and 1
2 if B is one vote

behind (a tie is forced as opposed to not having the best candidate win). On the other hand,

if the state is R then the increase in payoff from voting B instead of R is: −1 if there is a

tie when counting all other N votes (the best candidate does not win), −1
2 if R is one vote

behind (the best candidate is not chosen as opposed to forcing a tie), and −1
2 if B is one vote

behind (a tie is forced as opposed to having the best candidate win).

Similarly, the expected utility voter i derives from voting for B or R compared to ab-

staining when the other N voters use strategy v is given respectively by

ui(B, ∅, v) = P (s = B|σi, qi)
[
1

2
πt(v,B) +

1

2
πB(v,B)

]

−P (s = R|σi, qi)
[
1

2
πt(v,R) +

1

2
πB(v,R)

]
, (2)

ui(R, ∅, v) = P (s = R|σi, qi)
[
1

2
πt(v,R) +

1

2
πR(v,R)

]

−P (s = B|σi, qi)
[
1

2
πt(v,B) +

1

2
πR(v,B)

]
. (3)

To simplify the exposition, we assume that if voters are indifferent between the two can-

didates they prefer the one that coincides with their signal. Similarly, if voters are indifferent
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between voting for a certain candidate or abstaining, they follow their signal. As it will be

clear later on, the fact that f is integrable means that the probability that a voter is indiffer-

ent between two options (voting to one candidate or the other, or voting to either candidate

or abstaining) is zero. As such, the way indifference ties are broken has no effect in our results

and it also allows us to ignore mixed strategies.

A voter votes for B if and only if ui(B,R, v) ≥ 0 and ui(B, ∅, v) ≥ 0. A voter abstains if

and only if ui(B, ∅, v) < 0 and ui(R, ∅, v) ≤ 0, and votes for R if and only if ui(B,R, v) < 0

and ui(R, ∅, v) > 0. Thus, expressions (1), (2) and (3) are what determines how a voter

behaves given how the other voters behave.

We have the following characterization of all symmetric equilibria (all mathematical proofs

are presented in the appendix):

Theorem 1. There exists an equilibrium. The equilibrium is either of two types:

- Type 1, characterized by two cutpoints 1
2 ≤ q−R ≤ q+R ≤ 1 with q−R ≤ p such that

v(σi, qi) =

⎧⎪⎪⎨
⎪⎪⎩

B if either σi = B or σi = R and qi < q−R ,

R if σi = R and qi ≥ q+R ,

∅ otherwise.

- Type 2, characterized by two cutpoints 1
2 ≤ q+B ≤ q+R ≤ 1 such that

v(σi, qi) =

⎧⎪⎪⎨
⎪⎪⎩

B if σi = B and qi ≥ q+B ,

R if σi = R and qi ≥ q+R ,

∅ otherwise.

In equilibrium of Type 1 all voters who receive signal B vote and they do so for candidate

B. These are the voters who receive a signal that agrees with the common prior. On the other

hand, voters who receive a signal against the common prior, i.e. signal R, behave as follows:

those with a low quality signal ignore their signal and vote according to the common prior,

those with a moderately informative signal abstain, and those with a sufficiently informative

signal vote according to their signal.

In equilibrium of Type 2 no voter votes against his signal. Note that q+B ≤ q+R implies

that those voters who receive a signal that agrees with the common prior are less likely to

abstain than those who receive a signal against. This is the case because p ≥ 1
2 and, thus, if

a voter receives signal B the common prior makes him trust is signal more whereas if voter

receives signal R he is less convinced about candidate R than his signal quality suggests as

the common prior goes against R.
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The reason why there is not an equilibrium where voters who receive signal B vote for R

is that p ≥ 1
2 and, thus, a voter whose signal agrees with the common prior believes that B is

the best candidate so he either abstains or votes for B. Figures 1 and 2 present a graphical

representation of both types of equilibria.

Figure 1: Equilibrium of Type 1

σi = B

Vote for B

qi1
2

1

σi = R

Vote for B Abstain Vote for R

qi1
2

1q−R q+R

Figure 2: Equilibrium of Type 2

σi = B

Abstain Vote for B

qi1
2

1q+B

σi = R

Abstain Vote for R

qi1
2

1q+R

The expected fraction of voters who vote against their signal in equilibrium of Type 1 is

given by p
∫ q−R

1
2

(1−q)f(q)dq+(1−p)
∫ q−R

1
2

qf(q)dq which, as we shall see with examples, can be

a strictly positive number. The fraction of voters who abstain is given by p
∫ q+R
q−R

(1−q)f(q)dq+

(1 − p)
∫ q+R
q−R

qf(q)dq in equilibrium of Type 1 and p
∫ q+R

1
2

(1 − q)f(q)dq + p
∫ q+B

1
2

qf(q)dq + (1 −
p)

∫ q+R
1
2

qf(q)dq + (1 − p)
∫ q+B

1
2

(1 − q)f(q)dq in equilibrium of Type 2. This is the so-called

strategic abstention (and swing voters curse), found for instance in McMurray (2013) and

Feddersen and Pesendorfer (1996).

The reason why some voters vote against their signal is the following. Consider a very

simple example where there are only two voters. In this case a voter is always pivotal and

thus learns very little from the fact that he is pivotal (he still does learn some information, as

there are three different possibilities for a voter to be pivotal). In this case if a voter receives

a low quality signal against the common prior, given that he does not learn much from being
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pivotal, he may still prefer to vote for what the common prior suggests if the common prior

is informative enough. This reasoning extends to more than just two voters. Assume that a

voter receives a low quality signal supporting the candidate that goes against the common

prior. If such voter is pivotal, he knows that there are mixed signals in the population, which

suggests that the common prior may be wrong. However, his information may still support

the same candidate as the common prior given that his updated belief stills put a significant

probability on such candidate because the voter’s signal is of low quality. Thus, the voter

may have incentives to disobey his signal and vote against it.

The reason why strategic abstention is possible is that if a voter receives a signal of

moderate quality and the common prior is not very informative (or he receives a signal of

high quality against an informative the common prior, but not of sufficiently high quality),

then if the voter is pivotal he may prefer to abstain and leave the decision to those who

are presumably better informed. This is because if the voter is pivotal there is a significant

chance that the best candidate is ahead by one vote as opposed to the other candidate ahead

by one vote or there being a tie. Hence, by voting the voter runs the risk of contradicting

the opinion of most other voters who do not abstain and who have a better signal quality

than himself. In this situation the voter is better off by abstaining, even if he prefers one

candidate over the other, and leaving the decision of electing a candidate to the other more

informative voters.

Note that from the information revelation point, voting against the voter’s signal is worse

than abstaining. When a voter abstains he reveals that his signal is not very informative.

However, in an equilibrium where voters may vote against their signal, if a voter votes for B

it is not clear whether such voter received signal B or R. That is, voting against the signal

harms the chances of the best candidate winning the election more than abstention.

Theorem 1 states that in an equilibrium of Type 1, q−R ≤ p. Numerical examples show

that this inequality can be strict. If instead of a group of voters a single voter (dictator)

chose the winning candidate, straightforward calculations show that this voter will choose to

follow his signal if and only if his signal points at candidate B or if it points at candidate R

and the signal quality is at least p. In the language of the model, if N+1 = 1 then the unique

equilibrium is Type 1 with q−R = q+R = p. Thus, the fact that the group of voters includes

more than just one voter means that voters are less likely to vote against their signal. That

is, more voters means that each of them has more incentives to share their signal even if such

signal is of a quality lower than the prior. Later in the paper we show that the fraction of

voters who vote against their signal converges to zero as the number of voters increases to

infinity.

As discussed in the introduction, McMurray (2013) considers a setting very similar to
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ours where the main difference is that he assumes p = 1
2 . The consequence of this is that in

his setting the only possible equilibria is Type 2 with q+B = q+R . The fact that p > 1
2 is what

allows the existence of an equilibrium of Type 1 with q−R > 1
2 and an equilibrium of Type 2

with q+B < q+R . The comparison of our results to McMurray (2013) is explored in more detail

later on when we consider elections with a large number of voters.

It is worth pointing out the similarities between our result in Theorem 1 and Proposition

1 in Feddersen and Pesendorfer (1998) (particularly striking is the resemblance between

figures 1 and 2 and figure 1 in Feddersen and Pesendorfer (1998)). However, both results

originate from very different sources. In our paper, voters’ behavior depends on the signal

they receive, but also on the quality of such signal. In Feddersen and Pesendorfer (1998),

voters’ behavior depends on the signal they receive and on their and others’ bias towards each

of the candidates.2 Thus, the fact that unbiased voters receive signals of different qualities

mimics the behavior observed when biased voters receive information of equal quality. A

fundamental difference between these two situations is that a voter who is biased takes such

bias as given while an unbiased voter is aware of the fact that his signal may or may not be

very accurate.

One may wonder if voters would still vote against their signal if information was endoge-

nous and costly, i.e. if voters have no private information but they can buy it (as in Persico

(2003) and Martinelli (2006)). In this case it can still happen that a voter buys information

that he then chooses to ignore. Consider a setting where voters have no private signals but

they can buy them. Say that the cost of buying a signal is fixed and the quality of the signal

received is random (this is in between Persico (2003) where the quality is fixed and Martinelli

(2006) where quality is contractible). In this case, in expected terms (ex-ante) having a signal

helps the voter make a better decision and thus he is willing to pay some cost for it, even if it

turns out that given the realization of the signal and its quality the voter chooses (ex-post) to

ignore his signal and vote following the common prior. This can be interpreted as the voter

paying a cost to search for information but only finding poor information that he chooses to

ignore.

2.2.1 Numerical Examples

Next we present some examples that illustrate the results of Theorem 1. In tables 1 and 2

we calculate the possible symmetric equilibria when there are 4 and 5 voters respectively and

signal qualities are distributed uniformly. The parameter constellations in table 1 are the

2In Feddersen and Pesendorfer (1998) unbiased voters may also vote against their signal but only to offset

the effects of the vote of biased voters.
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ones used in the experiments. Note that given the distribution of signal qualities in table 1

the symmetric equilibrium is unique and of type 1 for p = 0.95 and type 2 for p = 0.5.

Table 1: Equilibria, N + 1 = 4

p = 0.5, q ∼ U
[
1
2 , 1

]
p = 0.5, q ∼ U

[
1
2 ,

3
4

]
p = 0.95, q ∼ U

[
1
2 , 1

]
p = 0.95, q ∼ U

[
1
2 ,

3
4

]
q+B = 0.67 q+B = 0.58 q−R = 0.54 q−R = 0.64

q+R = 0.67 q+R = 0.58 q+R = 0.86 q+R = 0.81

Table 2: Equilibria, N + 1 = 5

p = 0.5, q ∼ U
[
1
2 , 1

]
p = 0.8, q ∼ U

[
1
2 , 1

]
p = 0.95, q ∼ U

[
1
2 , 1

]
q+B = 0.5 q+B = 0.68 q+B = 0.60 q−R = 0.59 q+B = 0.51 q−R = 0.68

q+R = 0.5 q+R = 0.68 q+R = 0.75 q+R = 0.59 q+R = 0.82 q+R = 0.68

Numerical results suggest that the equilibrium is unique if and only if N + 1 is even and

that if N + 1 is odd then there are exactly two equilibria. However, we have been unable

to prove this formally. The problem of uniqueness of equilibrium in voting models such as

this is far from trivial (McMurray, 2013) and is often ignored (Feddersen and Pesendorfer

(1996, 1997, 1999)). Nevertheless, uniqueness of equilibrium is not necessary for our results.

Our characterization in Theorem 1 together with the examples above already illustrate one

of the points of this paper: the possibility for rational voters voting against their signal

when such signal is informative and abstention is allowed. On top of that, uniqueness of

equilibrium is also not required for the experimental results; we are not interested in making

point-wise prediction but in understanding whether the behavior of subjects responds the

way the theoretical results predict when we change the parameters of the model.

2.2.2 Efficiency

We say that an equilibrium strategy profile is efficient if the voting strategies maximize

the probability with which the best candidate wins the election. It is known from McLennan

(1998) that in symmetric common value elections, as its the case in this paper, the symmetric

strategy profile that maximizes the probability with which the best candidate wins is an

equilibrium.3 The reason for this result is intuitive: if voters are playing according to the

strategy profile that maximizes their payoff then no voter has incentives to deviate as his

3In particular, McLennan (1998) states that the symmetric mixed strategy that maximizes voters utility is a

Nash equilibrium (Theorem 2). We do not need to worry about mixed strategies as no player is ever indifferent

between voting for either option or abstaining. This is due to our assumption about the way indifference ties
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utility is already being maximized. Thus, if there are any efficiency losses in our model they

must come from equilibrium multiplicity.

Equilibrium multiplicity can cause inefficiencies as it presents voters with a coordination

problem. Further, as just discussed above, the strategy profile that maximizes the probability

with which the best candidate wins is an equilibrium. Thus, if the equilibrium is unique then

it is efficient for sure. However, with more than one equilibrium there is no guarantee that

all of them will be efficient. The examples in Table 2 shed light about this issue. On the

one hand, the numerical example there tells us that the equilibrium may not be unique. On

the other hand, it can be calculated that if N + 1 = 5 and p = 0.8 then the probability with

which the best candidate wins is 0.92 in Equilibrium of Type 1 and 0.93 in the equilibrium

of Type 2. Numerical results show that this difference decreases with the number of voters.

Indeed, as we shall show in section 4.1, for elections with a large number of voters the best

candidate wins the election with probability one regardless of the equilibrium played.

Note also that it is not necessarily true that the equilibrium of Type 1, where some voters

vote against their signal, is inefficient. As just discussed, if the equilibrium is unique then an

equilibrium with this property is efficient. For example, according to Table 1 the equilibrium

with N + 1 = 4 and p = 0.95 is unique and of Type 2 both for q ∼ U [12 , 1] and q ∼ U [12 ,
3
4 ] ,

which means that this equilibrium is efficient.

2.3 Testable Predictions and Empirical Questions

In this section we describe some key qualitative properties that we are interested in testing

in the laboratory. One of the new findings in this paper is that, unlike in the symmetric

prior case studied in McMurray (2013), participants may vote against their signal if it is not

accurate enough. We ask the following question:

Voting against one’s signal How is the propensity to vote against the signal affected by

changes in the prior p and the signal accuracy q?

From theory we would expect to see voting against the prior only if priors are asymmetric

and if signal accuracy is “low enough”. Empirically, whether this prediction holds depends

crucially on how people update their prior on the basis of the information they received.

Two different failures of Bayesian updating have been robustly documented in the literature:

(i) base-rate neglect, which leads to overweighing sampled information (Kahnemann and

are broken. Note also that only voters with a particular signal quality will be indifferent between more than

one action and given the continuous distribution of signal qualities the probability of a voter having such

particular signal quality is zero.
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Tversky (1972), Grether (1980) and Erev et al. (2008)) and (ii) conservatism, which leads to

underweighing or even ignoring the sample (Ward (1982)).

Base rate neglect is not important if priors are symmetric (p = 0.5). With asymmetric

priors, however, it could potentially play an important role. Under base-rate neglect partici-

pants would vote with their signal more often, leading to possibly worse outcomes in terms of

the efficiency of the majority decision. Conservatism would lead to the opposite prediction.

Participants would vote with the prior too often leading to worse information aggregation

and lower efficiency. Hence, while theory might be a good predictor of behavior for symmetric

priors, its predictive accuracy could be far worse in the case of asymmetric priors if base-rate

neglect or conservatism play important roles in this setting. If participants vote too often or

too seldom against their signal, information aggregation and efficiency are impacted as well.

We hence ask:

Efficiency How is the efficiency of voting outcomes affected by changes in the prior p and

the signal accuracy q?

We would expect efficiency to increase both as priors become more asymmetric (hence

containing more information) and as signals become more accurate. However, in the presence

of biases, such as base-rate neglect or conservatism, this may not necessarily be the case. Our

experiments will provide an empirical test of how the symmetric and asymmetric settings

differ with regard to these issues and how potential biases affect the explanatory power of

the theory in both these two settings.

3 Experiments

3.1 Design of the Experiments

Our experiment implements the setting described in the theoretical section for N+1 = 4, i.e.

four voters. In all treatments participants played a voting game for 30 rounds. After each

round they were randomly re-matched in a new group of four voters. Each round proceeded

as follows. First, participants were reminded of the value of p illustrated by a wheel as shown

in the Instructions in Appendix B. They were then shown their private signal and informed

about the accuracy of their signal qi. Figure 7 in Appendix C shows a screenshot of how the

signal and signal quality were communicated in the experiment. They were afterwards asked

to vote for either RED, BLUE or to ABSTAIN, where the order of the first two options was

randomized. At the end of each round they were informed about their own vote, the majority

vote in the group, the realized state and their payoff. Participants received 10 experimental
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tokens if the majority vote matched the state and 2 tokens if it did not. At the end of the

experiment one round was randomly drawn and participants were paid for that round only

plus a show up fee of 3 tokens. Tokens were converted into GBP at a rate of 1:1.

To answer our questions regarding information revelation and efficiency we systematically

vary p and q. Treatment SYM implements the symmetric setting analyzed by McMurray

(2013). Both states are equally likely and signal accuracy is drawn from [0.5, 1], where in

the experiment we only used multiples of 0.1.4 In SYM-COARSE the prior is also 0.5,

but signal accuracy is now distributed in [0.5, 0.75] and represented in multiples of 0.05.

In treatment ASYM an asymmetric prior of 0.95 is implemented. Treatment ASYM-

COARSE coincides with treatment ASYM, but the signal accuracy q is again lower and

drawn from [0.5, 0.75]. In each treatment we had 48 participants organized in six matching

groups (clusters) of size 8. The exception is treatment ASYM-COARSE, where due to low

show-up, we had 44 participants only. Theoretical predictions for these different treatments

can be found in Section 2.2.1 in Table 1.

The experiments were conducted in May 2015 and September 2016 at EssexLab at the

University of Essex. Written instructions were distributed at the beginning of the experiment

and can be found in Appendix B. Before starting the experiment participants had to answer

six control questions checking their understanding of the instructions. These questions can

also be found in Appendix B. Participants earned either 13 GBP or 5 GBP depending on

whether, in the round randomly drawn for payment, the majority vote matched the state or

not.5 The experiment lasted around 45min, it was programmed in z-tree (Fischbacher, 2007)

and participants were recruited using hroot.

3.2 Experimental Results

This section contains our experimental results. We study individual behaviour in Section

3.2.1, what consequences it has for aggregate outcomes in Section 3.2.2, and finally we discuss

learning heuristics in Section 3.2.3.

4The reason that we did not allow any number, like e.g. 0.61475368, is (i) that it is difficult and potentially

confusing for participants to communicate a smaller grid visually and (ii) that we deemed it extremely unlikely

that there would be substantial behaviour differences between such a number and the closest multiple of 0.1,

i.e. 0.6.
5In May 2015, 13 GBP equalled about 20.50 US dollars and 5 GBP around 7.90 US dollars. In September

2016, 13 GBP equalled about 17.91 US dollars.
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3.2.1 Individual Behaviour

Table 3 gives a first overview of individual voting behaviour. It shows the distribution of

votes depending on state and signal received for the four different treatments.

Symmetric treatments We start by discussing the treatments with a symmetric prior

SYM and SYM-COARSE. In treatment SYM participants abstain ≈ 28% of the time

(15 − 35% depending on state and signal). Given that (i) according to the symmetric equi-

librium described in Table 1 voters should abstain if their signal accuracy is below 0.67 and

(ii) signals are uniformly distributed in [0.5, 1] we would theoretically expect participants

to abstain around 34% of the time. Subjects behaviour is thus roughly in line with these

predictions. We also see around 10% of voting against the signal which we should not see

theoretically. We discuss possible explanations for this in more detail in Section 3.2.3. In

treatment SYM-COARSE we see around 10− 17% abstentions which is again in line with

theoretical expectations (16%, see Table 1). We also see around 25% of participants voting

against their signal, which is surprisingly high in this treatment.

if state is RED

SYM SYM-COARSE ASYM ASYM-COARSE

σ RED BLUE RED BLUE RED BLUE RED BLUE

(0.72) (0.60) (0.62) (0.62) (0.71) (0.64) (0.61) (0.65)

RED 0.61 0.09 0.59 0.34 0.10 0 0.26 0.24

BLUE 0.08 0.58 0.29 0.55 0.55 1 0.63 0.66

abstain 0.31 0.35 0.12 0.12 0.36 0 0.11 0.10

if state is BLUE

SYM SYM-COARSE ASYM ASYM-COARSE

σ RED BLUE RED BLUE RED BLUE RED BLUE

(0.64) (0.73) (0.58) (0.63) (0.63) (0.73) (0.58) (0.63)

RED 0.51 0.08 0.59 0.25 0.19 0.02 0.15 0.06

BLUE 0.23 0.77 0.24 0.66 0.56 0.92 0.65 0.83

abstain 0.26 0.15 0.17 0.09 0.25 0.06 0.20 0.11

Table 3: Vote distribution (share of participants voting RED, BLUE or abstaining) depend-

ing on state and signal received (average signal accuracy in brackets) for the four different

treatments. Note that participants do not know the state, but average signal quality depends

on the state.

Two previous experiments studied a related common value election setting with a sym-

metric common prior (p = 0.5). Elbittar et al. (2017) found experimentally with fixed signal

quality and costly information acquisition that voters tend to vote too often instead of ab-
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staining given the information they have available. In particular, they found that a significant

proportion of subjects vote when they have no information at all on what is the best alter-

native. The authors suggest subjective priors as a possible explanation for this; each voter

believes that with some probability other voters may be biased and vote for a particular

option when they have no information available. This leads to voters with no information to

vote simply to offset the effect of these biased voters. By contrast, Morton and Tyran (2011)

found experimentally in a setting with symmetric common prior and two different qualities of

information that voters abstained more than what was optimal. In our symmetric treatments

the share of participants abstaining is in line with theoretical predictions.

Figure 3 illustrates how voters with RED (top left panel) and BLUE (top right panel)

signals vote in treatment SYM. As expected, we don’t see substantial differences between the

two cases. Irrespective of the signal received, only few participants vote against their signal.

The share of abstentions is high (around 45%) if the signal is uninformative and decreases

sharply around q ≈ 0.6 in line with theoretical predictions. Also the share of participants

voting against their signal decreases from about 15−20% for uninformative signals to 5−10%

with very informative signals. While the former could be attributed to subjective priors, as

in Elbittar et al. (2017), the latter is likely due to mistakes. The two bottom panels focus on

SYM-COARSE. Here we see much fewer abstentions (≈ 20%) if the signal is uninformative.

Furthermore, this frequency does not decrease by much over the [0.5,0.75] range of accuracies.

Participants in this treatment, hence, react less to signal quality compared to SYM.

Asymmetric treatments In treatment ASYM we see that if the signal is BLUE, i.e.

consistent with the prior, virtually all participants vote BLUE in line with theoretical pre-

dictions (Table 3). If the signal is RED, around 55% of participants vote against the signal

and around 30% abstain. Theoretically we should only expect 10% of voting against the

signal (Table 1). By contrast, we would expect 64% percent of abstentions. Hence, not only

do participants vote against their signal, they even do so excessively at least compared to

theoretical predictions. One reason they might do so is the use of simple heuristics as we

discuss in Section 3.2.3. In ASYM-COARSE participants vote ≈ 65% of the time against

a RED signal, which is in line with the 60% theoretically expected in this treatment and

abstain around 15% of the time (compared to 40% expected theoretically, see Table 1).

Hence, as expected, participants vote against their signal more often with asymmetric

priors. Higher signal accuracy reduces the frequency with which this occurs, but by not as

much as we would expect. Compared to the symmetric equilibrium described in Table 1, too

many participants vote against their signal in ASYM and too many participants vote with

their signal in ASYM-COARSE. To assess how important these differences are we next
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explore in more depth how voting changes with signal accuracy.

(a) RED signal SYM (b) BLUE signal SYM

(c) RED signal SYM-COARSE (d) BLUE signal SYM-COARSE

Figure 3: The figure shows the vote distribution (red, abstain, blue) conditional on signal

accuracy as well as theoretical threshold (vertical line). Mean share of participants voting

with/against signal or abstaining averaged for bands of accuracy of length 0.1 (a,b) or 0.05

(c,d). Treatments SYM and SYM-COARSE.

In treatment ASYM (top panels Figure 4) participants who receive a BLUE signal es-

sentially always vote BLUE (panel (b)). There is some abstention for low signal accuracy

(below 0.65) and a few votes for RED. Conditional on receiving a RED signal the majority of

participants do not vote RED (between 90% if q = 0.5 and around 70% if q > 0.9). Around

50−60% of participants vote against their signal, i.e. vote BLUE when their signal was RED.

This share is pretty stable across levels of accuracy q. The share of participants abstaining

is around 30%. Hence, participants with a RED signal vote according to their signal too

much if signal accuracy is low and too little if signal accuracy is high. Rather than a general

tendency towards conservatism or base-rate neglect we find that participants do not react

enough to the accuracy of their signal. The bottom panels show the analogous graph for

treatment ASYM-COARSE, where signals are less accurate. Behavior conditional on a
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(a) RED signal ASYM (b) BLUE signal ASYM

(c) RED signal ASYM-COARSE (d) BLUE signal ASYM-COARSE

Figure 4: The figure shows the vote distribution (red, abstain, blue) conditional on signal

accuracy as well as theoretical thresholds (vertical lines). Mean share of participants voting

with/against signal or abstaining averaged for bands of accuracy of length 0.1 (a,b) or 0.05

(c,d). Treatments ASYM and ASYM-COARSE.

BLUE signal is very similar to treatment ASYM with most participants voting BLUE. Con-

ditional on receiving a RED signal, participants are now more likely to vote against the signal

with almost 70% voting BLUE if q = 0.5, i.e. if the signal is uninformative. The percentage

shrinks for higher levels of q, but remains substantial at 60% even if q = 0.75.

Table 7 in Appendix C shows the result of a multinomial logit regression of voting out-

comes (categorized as “voting with the signal”, “abstaining” or “voting against the signal”)

on signal accuracy separately for the case where a RED (columns (1)-(4)) or a BLUE (columns

(5)-(6)) signal was received. The baseline category is to vote with the signal.6

Participants in treatments SYM and SYM-COARSE are increasingly likely to vote

with their signal compared to abstaining or voting against it as the signal accuracy increases.

6Tables 9 and 10 in Appendix C show OLS regressions on binary outcomes of “Abstention” and “Voting

against the signal”, respectively.
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In treatment ASYM this is only true when the signal is in line with the prior, i.e. BLUE.

If participants in these treatments receive a RED signal, by contrast, they become more

likely to abstain compared to voting with (or against) the signal as signal accuracy increases.

One intuition could be that participants do predominantly vote against the signal in these

treatments when signal quality is low, while they resolve the tension between a high signal

accuracy on the one hand and a strong prior against it on the other hand by abstaining.

This leads to relatively more abstentions as signal accuracy increases. Interestingly, Figure

4 reveals that the mean positive effect of q on abstention is mostly driven by a comparison

of “medium levels” of accuracy with “high” levels of accuracy, while the highest number of

abstentions can still be found for very low levels of accuracy also in this treatment. Table 8

in Appendix C, which controls for the number of times a participant saw a red signal, shows

qualitatively the same results.

To sum up, voting behaviour in the experiment is largely in line with what we expected

from theory. Participants are not hesitant to vote against their signal if its quality is low.

They even do so excessively in treatment ASYM. Furthermore, they do not react enough to

signal accuracy.

Result 1 In line with theoretical predictions, participants in the asymmetric prior treatments

vote against their signal if signal quality is low. They do, however, not react enough to

signal quality i.e. do not vote enough against the signal if quality is low and too often

when signal quality is high.

3.2.2 Efficiency

We next assess the impact of voting behaviour on aggregate outcomes, in particular on the

efficiency of voting outcomes. We would expect efficiency to increase both as priors become

more asymmetric (hence containing more information) and as signals become more accurate.

In terms of our treatments we would hence expect higher efficiency in ASYM compared to

SYM and higher efficiency inASYM compared toASYM-COARSE as well as SYM com-

pared to SYM-COARSE.

Figure 5 shows efficiency over time across the three treatments. As expected, efficiency

is higher in ASYM compared to SYM, even though the gap is narrowing over time, as

efficiency in SYM is steadily increasing. Efficiency in ASYM-COARSE is substantially

higher compared to SYM-COARSE. A more asymmetric prior clearly increases efficiency.

The picture is less clear-cut when it comes to the effect of signal accuracy. Under sym-

metric priors the effect is as we expected. Higher signal accuracy in SYM leads to higher effi-

ciency compared to SYM-COARSE. The difference appears for both states with outcomes
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Figure 5: Efficiency: percentage of time the majority vote agreed with the state over time

across the four treatments as well as benchmark based on the symmetric or asymmetric prior,

respectively.

in SYM being around 10% (13%) more efficient than outcomes in SYM-COARSE when

the state is BLUE (RED). Interestingly, the difference appears only after some learning has

taken place, i.e. after the first five rounds (see also Table 4).

Under asymmetric priors, by contrast, the effect is not as expected with no difference

in efficiency across the two treatments overall. While across the first five periods effi-

ciency is higher in ASYM this effect reverses over time, as efficiency increases in ASYM-

COARSE, but not in ASYM. By the last five periods there is a substantial and sta-

tistically significant difference between the two treatments with ≈ 14% more efficiency in

ASYM-COARSE compared to ASYM (column (3) in Table 4). Table 11 in the Ap-

pendix additionally explores linear time trends and shows that those are statistically differ-

ent in ASYM compared to ASYM-COARSE. Above, we have seen above that voters in

ASYM vote against their signal too much and do not abstain enough. Furthermore, voters

in ASYM do not react to signal quality enough, i.e. vote against their signal even when

signal quality is very high. Voters in ASYM-COARSE still do make this mistake, but to

a lesser extent, possibly because the lower signal quality makes them less confident. The

fact that average efficiency in the second half of the experiment is only reduced by 4% (in

ASYM compared to ASYM-COARSE) when the state is BLUE, while it is reduced by

≈ 16% when the state is RED, suggests that this type of mistakes could be the underlying

reason for why signal accuracy does not increase efficiency with asymmetric priors.

Result 2 Higher signal accuracy increases the efficiency of voting outcomes in the symmet-

ric case, but not in the asymmetric case. Across the last 5 rounds of the experiment
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(1) (2) (3)

VARIABLES All periods periods 1-5 periods 26-30

SYM-COARSE(β1) -0.118*** -0.041 -0.108**

(0.027) (0.060) (0.050)

ASYM(β2) 0.218*** 0.338*** 0.041**

(0.019) (0.017) (0.018)

ASYM-COARSE(β3) 0.201*** 0.178** 0.188***

(0.039) (0.079) (0.017)

Constant 0.709*** 0.612*** 0.771***

(0.020) (0.015) (0.017)

β2 − β3 0.017 0.160* -0.146***

p-value 0.6671 0.0688 <0.0001

Observations 5,640 940 940

Participants 188 188 188

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 4: Random effects OLS regression of efficiency on treatment dummies. Standard errors

are clustered at the matching group level.

efficiency is even higher in ASYM-COARSE compared to ASYM.

How efficient are voting outcomes compared to theoretical benchmarks? There are at least

three benchmarks one could consider. The first is the probability of choosing the best candi-

date if only the common prior was available, which is 0.5 in SYM and SYM-COARSE and

0.95 in ASYM and ASYM-COARSE. Figure 5 shows that with a symmetric prior, partic-

ipants significantly outperform the common prior benchmark, while in ASYM and ASYM-

COARSE participants cannot improve on the common prior on average. It should be noted,

however, even if voters played the symmetric strategy equilibrium, which as discussed in sec-

tion 2.2.2 is the strategy profile that maximizes the chances of choosing the best candidate,

they will barely do any better than in the common prior benchmark. In this respect, efficiency

in the asymmetric prior treatments seems in line with the common prior benchmark.

A second benchmark could be the ex-ante (i.e. before signals and qualities are realized)

probability of choosing the best candidate when the symmetric equilibrium (calculated in Ta-

ble 1) is played. Under this benchmark the expected probability with which the best candidate

wins the election is given by 0.88 in SYM, 0.71 in SYM-COARSE, 0.97 in ASYM and

0.95 in ASYM-COARSE.7 Empirically, efficiency in SYM and SYM-COARSE is below

these levels. Thus, while information from private signals is used somewhat effectively in

7In treatment ASYM-COARSE signal qualities are so low compared to the quality of the common prior

that there is barely any gain in efficiently using private signals when compared to just voting the common

prior.

23



treatments SYM and SYM-COARSE, as the probability of choosing the right candidate

is higher than 50%, it is used less effectively than what the theory suggests.

The third benchmark asks how much efficiency could be obtained if all private information

was perfectly aggregated, i.e. if all signals and qualities were observed by all voters. To this

end, given the set of signals and qualities for all voters (σi, qi)
N+1
i=1 we first compute the

probability that the state is Blue:

P (s = B|(σi, qi)N+1
i=1 ) =

pΠN+1
i=1 (1σi=Bqi+1σi=R(1−qi))

pΠN+1
i=1 (1σi=Bqi+1σi=R(1−qi))+(1−p)ΠN+1

i=1 (1σi=Bqi+1σi=R(1−qi))
.

Second, we have that Blue is the most likely state of nature given all private signals and

qualities if and only if P (s = B|(σi, qi)N+1
i=1 ) ≥ 1

2 . Thus, the probability of choosing the best

candidate given all private signals and their qualities is max{P (s = B|(σi, qi)N+1
i=1 ), 1−P (s =

B|(σi, qi)N+1
i=1 )}. This benchmark delivers even higher probabilities of choosing the right can-

didate on average across all 30 rounds (between 0.94 in SYM and 0.98 in ASYM). In sum,

participants in the symmetric treatments use information effectively enough to substantially

outperform the prior, but information aggregation is not perfect. In the asymmetric treat-

ments participants do not outperform the (very high) prior substantially.

3.2.3 Heuristics

So far we have taken an equilibrium perspective. In this Section we briefly explore some

heuristics participants might use in the experiment. Specifically, we focus on how participants

learn from feedback and in particular from three statistics: (i) whether the majority vote in

the past period was incorrect (i.e. not coinciding with the state), (ii) whether participant i’s

vote was incorrect and (iii) whether participant i was pivotal and incorrect. We ask what

effect these statistics have on abstention as well as on switching behaviour, i.e. the propensity

to switch vote across rounds.

Table 5 shows the results for the symmetric prior treatments. In SYM none of these

statistics matter for abstention and switching. As predicted by theory, abstention is mostly

determined by the signal accuracy q, but none of the other variables do seem to matter. This

changes in treatment SYM-COARSE. Here participants seem to rely somewhat more on

heuristics. Again, signal accuracy predicts abstention, but now also whether agent i’s vote

herself was correct does matter. If they were wrong in the past period participants in SYM-

COARSE are more likely to abstain subsequently. Whether or not the mistake happened

in a pivotal position does not seem to matter.
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Symmetric Prior treatments

SYM SYM-COARSE

Abstention Switching Abstention Switching

(1) (2) (3) (4) (5) (6) (7) (8)

q -1.147*** -1.146*** -0.071 -0.070 -0.737*** -0.738*** -0.143 -0.145

(0.071) (0.071) (0.092) (0.092) (0.111) (0.111) (0.178) (0.178)

Majority wrongt−1 -0.003 -0.003 -0.002 -0.002 -0.003 -0.003 -0.000 -0.000

(0.002) (0.002) (0.003) (0.0036 (0.002) (0.002) (0.003) (0.003)

i wrongt−1 -0.008 0.013 -0.024 -0.005 0.056** 0.058** -0.098 -0.091

(0.017) (0.029) (0.034) (0.033) (0.015) (0.015) (0.055) (0.073)

i (pivotal∧wrong)t−1 -0.037 -0.032 -0.004 -0.012

(0.044) (0.029) (0.037) (0.047)

Constant 0.992*** 0.992*** 0.636*** 0.636*** 0.518** 0.518** 0.670*** 0.670***

(0.140) (0.140) (0.046) (0.046) (0.148) (0.147) (0.118) (0.117)

Observations 1,392 1,392 1,392 1,392 1,392 1,392 1,392 1,392

R-squared 0.159 0.160 0.002 0.002 0.039 0.039 0.010 0.010

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 5: Simple Heuristics in Symmetric Prior treatment. Abstention and Switching regressed

on signal accuracy and three dummies indicating whether (i) the majority vote in the past

period was incorrect (i.e. not coinciding with the state), (ii) participant i’s vote was incorrect

and (iii) whether participant i was pivotal and incorrect.

Table 6 shows the results for the asymmetric prior treatments. While abstention decreases

again with signal accuracy, as expected, participants in the asymmetric treatments also seem

to rely a great deal on their experience from the previous period. Having voted wrongly makes

participants more likely to abstain or to switch (in any way between RED, BLUE or Abstain)

in the period immediately after. The effect on switching is particularly strong if participants

have been wrong and pivotal in the immediately preceding period. Interestingly, having

been wrong and pivotal makes participants less likely to abstain in the subsequent period

in ASYM-COARSE. Note also that in the case of switching the R2 in the asymmetric

regressions is almost ten times higher than in the corresponding symmetric treatments.8

Table 12 in Appendix C additionally controls for the number of times a participant saw a

RED signal with qualitatively the same results.

To sum up, participants in the asymmetric prior treatments seem to try and learn from

past experience to a much greater extent than participants in the symmetric treatments.

One reason could be that the asymmetric environment with two different and sometimes

conflicting pieces of information about the state (the prior and the signal) seems more difficult

8There is no clear ranking of R2 in the case of abstention. While past experience explains more of the

variation in the asymmetric treatments, signal accuracy explains more in the symmetric treatments.
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Asymmetric Prior treatments

ASYM ASYM-COARSE

Abstention Switching Abstention Switching

(1) (2) (3) (4) (5) (6) (7) (8)

q -0.437*** -0.438*** -0.080 -0.086 -0.329*** -0.321*** 0.052 0.043

(0.062) (0.062) (0.078) (0.078) (0.115) (0.114) (0.148) (0.148)

Majority wrongt−1 -0.005 -0.005 -0.003 -0.003 -0.020** -0.017*** 0.010** 0.008

(0.004) (0.004) (0.005) (0.005) (0.003) (0.005) (0.005) (0.005)

i wrongt−1 0.086*** 0.085*** 0.511*** 0.456*** 0.304*** 0.347*** 0.367*** 0.322***

(0.022) (0.025) (0.027) (0.032) (0.021) (0.023) (0.044) (0.055)

i (pivotal∧wrong)t−1 0.002 0.170*** -0.151*** 0.157***

(0.040) (0.050) (0.039) (0.050)

Constant 0.363** 0.363** 0.214* 0.219* 0.073 0.090 0.220** 0.203**

(0.115) (0.115) (0.096) (0.096) (0.089) (0.079) (0.083) (0.078)

Observations 1,392 1,392 1,392 1,392 1,276 1,276 1,276 1,276

R-squared 0.043 0.043 0.205 0.212 0.145 0.155 0.144 0.151

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 6: Simple Heuristics in asymmetric Prior treatment. Abstention and Switching re-

gressed on signal accuracy and three dummies indicating whether (i) the majority vote in

the past period was incorrect (i.e. not coinciding with the state), (ii) participant i’s vote was

incorrect and (iii) whether participant i was pivotal and incorrect.

for participants, which is why they try to use past experience to inform their decisions to

a greater extent. The fact that some of the decision is based on past experience could

also explain why participants in the asymmetric treatments do not react “enough” to signal

accuracy.

4 Further Theoretical Results

4.1 Large Elections

In this section we extend our theoretical results by focusing on elections where the number

of voters tends to infinite. Our first result is that in large elections the fraction of voters who

vote against their signal converges to zero and, moreover, the difference in behavior between

those who receive different signals of the same quality also converges to zero.

Theorem 2. The equilibrium in a large election is either Type 1 with
∫ q+R

1
2

f(q)dq → 0 or

Type 2 with
∫ q+R
q+B

f(q)dq → 0.

The first part of the theorem states that in equilibrium of Type 1 we have
∫ q+R

1
2

f(q)dq → 0.
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Since in such equilibrium q−R ≤ q+R , we have then that
∫ q−R

1
2

f(q)dq → 0. Therefore, the

proportion of voters that vote against their signal converges to zero. Note that it may happen

that the number of voters who vote against their signal is bounded away from zero, that is, it

could be that limN→∞(N +1)
∫ q−R

1
2

f(q)dq > ε for some ε > 0. However, the number of voters

voting against their signal in the population is insignificant compared with the number of

voters who vote according to their signal.

Another implication of the first part of the theorem is that the difference in behavior

between those who receive signal B or R converges to zero. A voter who receives signal B

always votes for B while the fraction of voters who do not vote for R when they receive signal

R is
∫ q+R

1
2

f(q)dq, which converges to zero.

The second part of the theorem states that in equilibrium of Type 2 we have
∫ q+R
q+B

f(q)dq →
0. Again this implies that the difference in behavior between those who receive signal B or

R converges to zero. Therefore, Theorem 2 implies that when the number of voters tends

to infinity the fraction of voters who vote against their signal (
∫ q−R

1
2

f(q)dq) and the fraction

of voters whose behavior depend on the specific signal received (
∫ q+R
q+B

f(q)dq) vanishes in the

limit. That is, as the number of voters increases the effect of an asymmetric common prior

(p > 1
2) vanishes in the limit and the results in McMurray (2013) apply. (i.e. the equilibrium

is characterized by a cut-point q that determines who abstains and who votes for his signal

independently on the particular signal received).

The reason behind the result in Theorem 2 is the following. Assume that
∫ q+R

1
2

f(q)dq does

not converge to zero. In this case if a voter is pivotal then it must be that in proportion more

voters received signal R than B: as
∫ q+R

1
2

f(q)dq does not converge to zero, not all voters who

receive signal R vote for R yet all voters who receive signal B vote for B. If more voters

receive signal R than B then since the average signal quality μ is greater than 1
2 by law of

large numbers the state of nature is R with probability one. This implies that all voters

should vote for R, contradicting the fact that all voters who receive signal B prefer to vote

for B.

A similar argument shows that as the number of voters grows large in equilibrium of

Type 2 we must have
∫ q+R
q+B

f(q)dq → 0. If
∫ q+R
q+B

f(q)dq does not converge to zero then if a

voter is pivotal it must be that a greater proportion of voters receive signal R than signal B.

This is because a higher fraction of those voters who receive signal R compared to those who

receive signal B abstain. Law of large number then means that the state is R with probability

one, which implies that all voters should vote for R. This represents a contradiction to the

characterization of equilibrium of Type 2.

Our final result states that in large elections the best candidate wins with probability one.
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This result is in line with the Condorcet Jury Theorem and the findings in previous literature

(see for instance Feddersen and Pesendorfer (1996, 1997, 1999) and McMurray (2013)).

Proposition 1. The equilibrium in a large election is such that the best candidate wins with

probability one.

Given the result in Theorem 2, whether a voter chooses to vote or to abstain depends on

the quality of his signal, not on the value of the signal itself. Thus, for a given state of nature

and given level of abstention, the best candidate is expected to receive a share μ of the votes

while the other candidate is expected to receive a share 1− μ of the votes. Since μ > 1
2 law

of large numbers implies that the best candidate wins with probability one.

5 Conclusions

We presented a common value election setting where voters have private information of

different qualities. We showed both theoretically and experimentally that voters may have

incentives to vote against their private information, even if such private information is useful,

all have the same preferences, and abstention is allowed. Moreover, we found that elections do

not generally aggregate information efficiently. Experimental participants used their private

information not always as predicted by Bayesian equilibrium analysis. This produced the

unexpected result that higher quality of information is not always better. We also found that

participants seem to rely on simple heuristics to a greater extent when priors are asymmetric.

Future research could build on our work and study behaviour in asymmetric prior settings

in more detail. Our research has shown that, both theoretically and empirically, there are

interesting and non-trivial differences between the asymmetric and symmetric prior cases.

References

Austen-Smith, D. and J. Banks (1996). Information aggregation, rationality, and the con-

dorcet jury theorem. The American Political Science Review 90(1), 34–45.

Battaglini, M., R. Morton, and T. Palfrey (2008). Information aggregation and strategic

abstention in large laboratory elections. American Economic Review 98(2), 194–200.

Battaglini, M., R. Morton, and T. Palfrey (2010). The swing voter’s curse in the laboratory.

Review of Economic Studies 77, 61–89.

Ben-Yashar, R. and I. Milchtaich (2007). First and second best voting rules in committees.

Social Choice and Welfare 29, 453–486.

28



Condorcet, M. d. (1785). Essai sur la application del analyse à la probabilité des décisions
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A Appendix: Proofs

The following lemma is used in the proof of Theorem 1.

Lemma 1. The best response of any voter i against any strategy v played by the other N

voters is given v′, which is characterized by four cutpoints q−B , q
+
B , q

−
R and q+R in

[
1
2 , 1

]
such

that

v′(θi, qi) =

⎧⎪⎪⎨
⎪⎪⎩

B if either σi = B and qi ≥ q+B or σi = R and qi < q−R ,

R if either σi = B and qi < q−B or σi = R and qi ≥ q+R ,

∅ otherwise.

Proof. Take any arbitrary voter i and assume all voters except i use strategy v. Consider

equations (1), (2) and (3) and assume that σi = B. We have that both Eu(B, v)−Eu(R, v)

and Eu(B, v) − Eu(∅, v) are increasing in qi. Therefore, there exists a x ∈ [0, 1] such that

both equations are positive and voter i votes for B whenever qi ≥ x. Since qi ∈
[
1
2 , 1

]
if we

define q+B = max
{
1
2 , x

}
we have that voter i votes for B whenever qi ≥ q+B .

Moreover, both Eu(R, v)−Eu(B, v) and Eu(R, v)−Eu(∅, v) are decreasing in qi. There-

fore, there exists a y with 0 ≤ y ≤ x such that both equations are positive and voter i

votes for R whenever qi < y. If we define q−B = max
{
1
2 , y

}
we have that voter i votes for B

whenever qi < q−B .

The final possibility is that both Eu(B, v)−Eu(∅, v) and Eu(R, v)−Eu(∅, v) are negative,
which can happen if and only if qi ∈ [y, x) or, in other words, qi ∈ [q−B , q

+
B). In this case,

voter i prefers to abstain.

A similar reasoning when σi = R leads to the conclusion in the lemma.

Proof of Theorem 1. An Equilibrium Exists

First we demonstrate existence. Given the result in Lemma 1, we know that for any

strategy v employed by the other N voters every voter employs a strategy that is charac-

terized by four cutpoints q−B , q
+
B , q

−
R and q+R . Define the function φ :

[
1
2 , 1

]4 → [
1
2 , 1

]4
where

φ(q−B , q
+
B , q

−
R , q

+
R) is the best response of any voter to a situation where all other N voters

employ an strategy characterized the four cutpoints q−B , q
+
B , q

−
R , q

+
R . We have to prove that φ

has a fixed point. By the fixed point theorem, since the set
[
1
2 , 1

]4
is convex and compact in

the Euclidean space we are left to show that φ is continuous.

When N voters are using strategy v characterized by the four cutpoints q−B , q
+
B , q

−
R and
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q+R we have that

πt(v,B) =


N
2 �∑

sB(B)=0

�N
2 −sB(B)∑
sR(B)=0

N−2(sB(B)+sR(B))∑
sB(∅)=0

sB(B)+sR(B)∑
sB(R)=0

N !

sB(B)!sR(B)!sB(∅)!sB(R)!(sB(B) + sR(B)− sB(R))!(N − 2(sB(B) + sR(B))− sB(∅))!

×
[∫ 1

q+B

qf(q)dq

]sB(B) [∫ q−R

1
2

(1− q)f(q)dq

]sR(B)

×
[∫ q+B

q−B
qf(q)dq

]sB(∅) [∫ q−B

1
2

qf(q)dq

]sB(R)

×
[∫ 1

q+R

(1− q)f(q)dq

]sB(B)+sR(B)−sB(R) [∫ q+R

q−R
(1− q)f(q)dq

]N−2(sB(B)+sR(B))−sB(∅)
(4)

Since F (q) =
∫ q

1
2

f(q)dq we have that F is continuous and, because it is a cumulative

density function, it is bounded in [0, 1]. Therefore, F is integrable and moreover continuous

with respect to the integration limits. Thus,
∫
qf(q)d(q) = qF (q) − ∫

F (q)dq is continuous

with respect to the integration limits. As a result, πt(v,B) is continuous with respect to the

cutpoints q−B , q
+
B , q

−
R and q+R .

It can be shown in a similar fashion that πt(v, s), πR(v, s) and πB(v, s) are continuous

with respect to the cutpoints q−B , q
+
B , q

−
R and q+R for all s ∈ {B,R}. Hence, we have that

Eu(B, v)−Eu(R, v), Eu(B, v)−Eu(∅, v) and Eu(B, v)−Eu(∅, v) are continuous with respect

to the cutpoints q−B , q
+
B , q

−
R and q+R . Thus, φ is continuous as we wanted to show.

Equilibrium is of Two Types

Given the result in Lemma 1, any equilibrium is characterized by the four threshold

values q−B , q
+
B , q

−
R and q+R . Assume that q−R > 1

2 , then we have that Eu(B, v)− Eu(R, v) > 0

and Eu(B, v) − Eu(∅, v) > 0 for all i with σi = R and qi ∈ [
1
2 , q

−
R

)
, which implies that

Eu(B, v)−Eu(R, v) > 0 and Eu(B, v)−Eu(∅, v) > 0 for all i with σi = B and qi ∈
[
1
2 , q

−
R

)
.

This means that q−B , q
+
B = 1

2 , which leads to equilibrium of Type 1 in the proposition.

Assume now that q−R = 1
2 and q+R > 1

2 . In this case we have that Eu(R, v)−Eu(∅, v) < 0

for all i with σi = R and qi ∈
[
1
2 , q

+
R

)
, which implies that Eu(R, v) − Eu(∅, v) < 0 for all i

with σi = B and qi ∈
[
1
2 , q

+
R

)
. This means that q−B = 1

2 , which leads to equilibrium of type 2

in the proposition.

Finally, assume that q−R = q+R = 1
2 . We proceed by showing that πt(v,B) + πR(v,B) ≥

πt(v,R) + πR(v,R). If this were true, and since q+R = 1
2 implies that Eu(R, v)−Eu(∅, v) ≥ 0

for all i with σi = R and qi ∈
[
1
2 , 1

]
, equation (3) together with the fact that p ≥ 1

2 implies
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that πt(v,R)+πR(v,R) ≥ πt(v,B)+πR(v,B), which would represent a contradiction (unless

q−R = q+R = q−B = q+B = p = 1
2 , which is an equilibrium of either Type in the proposition).

First we show that πt(v,B)− πt(v,R) ≥ 0 for all 1
2 ≤ q−B ≤ q+B ≤ 1. Note that

πt(v,B) =


N
2 �∑

j=0

j∑
r=0

N !

j!(j − r)!r!(N − 2j)![∫ 1

q+B

qf(q)dq

]j [∫ q−B

1
2

qf(q)dq

]j−r [∫ 1

1
2

(1− q)f(q)dq

]r [∫ q+B

q−B
qf(q)dq

]N−2j

,

πt(v,R) =


N
2 �∑

j=0

j∑
r=0

N !

j!(j − r)!r!(N − 2j)![∫ 1

q+B

(1− q)f(q)dq

]j [∫ q−B

1
2

(1− q)f(q)dq

]j−r [∫ 1

1
2

qf(q)dq

]r [∫ q+B

q−B
(1− q)f(q)dq

]N−2j

.

Given that qi ≥ 1
2 for all voter i we have that

πt(v,B)− πt(v,R) ≥

N

2 �∑
j=0

j∑
r=0

N !

j!(j − r)!r!(N − 2j)!⎛
⎝[∫ 1

q+B

qf(q)dq

]j [∫ 1

1
2

(1− q)f(q)dq

]r

−
[∫ 1

q+B

(1− q)f(q)dq

]j [∫ 1

1
2

qf(q)dq

]r
⎞
⎠ .

Thus, if q+B = 1
2 or q+B = 1 then πt(v,B)−πt(v,R) ≥ 0. Consider now the cases where q+B ∈(

1
2 , 1

)
. Using once more that qi ≥ 1

2 for all i, a necessary condition for πt(v,B)−πt(v,R) ≥ 0

is that[∫ 1

q+B

qf(q)dq

]r [∫ 1

1
2

(1− q)f(q)dq

]r

≥
[∫ 1

q+B

(1− q)f(q)dq

]r [∫ 1

1
2

qf(q)dq

]r

.

This can be written as[∫ 1

q+B

qf(q)dq

][∫ 1

q+B

(1− q)f(q)dq +

∫ q+B

1
2

(1− q)f(q)dq

]
≥

[∫ 1

q+B

(1− q)f(q)dq

][∫ 1

q+B

qf(q)dq +

∫ q+B

1
2

qf(q)dq

]
.
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In other words,

∫ q+B
1
2

(1− q)f(q)dq∫ 1
q+B
(1− q)f(q)dq

≥
∫ q+B

1
2

qf(q)dq∫ 1
q+B

qf(q)dq
,

∫ q+B
1
2

(1− q)f(q)dq

∫ q+B
1
2

qf(q)dq
≥

∫ 1
q+B
(1− q)f(q)dq∫ 1
q+B

qf(q)dq
,

∫ q+B
1
2

f(q)dq

∫ q+B
1
2

qf(q)dq
≥

∫ 1
q+B

f(q)dq∫ 1
q+B

qf(q)dq
,

∫ 1
q+B

qf(q)dq∫ q+B
1
2

qf(q)dq
≥

∫ 1
q+B

f(q)dq∫ q+B
1
2

f(q)dq
.

Since it is true that ∫ 1
q+B

qf(q)dq∫ q+B
1
2

qf(q)dq
≥

∫ 1
q+B

q+Bf(q)dq∫ q+B
1
2

q+Bf(q)dq

=

∫ 1
q+B

f(q)dq∫ q+B
1
2

f(q)dq
,

we have that πt(v,B)− πt(v,R) ≥ 0.

Proceeding in a similar fashion, it can be shown that πR(v,B)− πR(v,R) ≥ 0. Thus, we

have that πt(v,B)− πR(v,B) ≥ πi(v,R)− πR(v,R) as required.

In Equilibrium of Type 1 q−R ≤ p

We can use the algebra from the previous part of the proof to show that in equilibrium of

Type 1 πt(v,B)− πt(v,R) ≤ 0 and πB(v,R)− πB(v,B) ≥ 0 for all 1
2 ≤ q−R ≤ q+R ≤ 1. Hence,

equation (2) together with the definition of q−R implies p(1− q−R) ≥ (1− p)q−R , which in turn

implies q−R ≤ p.

In Equilibrium of Type 2 q+R ≥ q+B

Next we prove that in any equilibrium of type 2 it must be that q+R ≥ q+B . Assume the
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opposite, q+B > q+R . Note that in any Type 2 equilibrium we have that

πt(v,B) =


N
2 �∑

j=0

[∫ 1

q+B

qf(q)dq

]j [∫ 1

q+R

(1− q)f(q)dq

]j

×
N−2j∑
r=0

N !

j!j!r!(N − 2j − r)!

×
[∫ q+B

1
2

qf(q)dq

]r [∫ q+R

1
2

(1− q)f(q)dq

]N−2j−r

.

Thus, it is true that

πt(v,B) =


N
2 �∑

j=0

[∫ 1

q+B

qf(q)dq

]j [∫ 1

q+R

(1− q)f(q)dq

]j

×

N−2j

2 �∑
k=0

N !

j!j!k!(N − 2j − k)!

×
[∫ q+B

1
2

qf(q)dq

]k [∫ q+R

1
2

(1− q)f(q)dq

]k

×
⎛
⎝[∫ q+B

1
2

qf(q)dq

]N−2j−2k

+

[∫ q+R

1
2

(1− q)f(q)dq

]N−2j−2k
⎞
⎠ , (5)

πt(v,R) =


N
2 �∑

j=0

[∫ 1

q+B

(1− q)f(q)dq

]j [∫ 1

q+R

qf(q)dq

]j

×

N−2j

2 �∑
k=0

N !

j!j!k!(N − 2j − k)!

×
[∫ q+B

1
2

(1− q)f(q)dq

]k [∫ q+R

1
2

qf(q)dq

]k

×
⎛
⎝[∫ q+B

1
2

(1− q)f(q)dq

]N−2j−2k

+

[∫ q+R

1
2

qf(q)dq

]N−2j−2k
⎞
⎠ . (6)

We now show that πt(v,B) − πt(v,R) ≥ 0 in three steps. First, we have that q+B > q+R

implies

[∫ 1

q+B

qf(q)dq

]j [∫ 1

q+R

(1− q)f(q)dq

]j

≥
[∫ 1

q+B

(1− q)f(q)dq

]j [∫ 1

q+R

qf(q)dq

]j

(7)
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for all j ∈ {0, 1, . . .} if and only if

∫ 1

q+B

qf(q)dq

[∫ 1

q+B

(1− q)f(q)dq +

∫ q+B

q+R

(1− q)f(q)dq

]
≥

∫ 1

q+B

(1− q)f(q)dq

[∫ 1

q+B

qf(q)dq +

∫ q+B

q+R

qf(q)dq

]
.

which can be rewritten as∫ 1

q+B

qf(q)dq

∫ q+B

q+R

(1− q)f(q)dq ≥
∫ 1

q+B

(1− q)f(q)dq

∫ q+B

q+R

qf(q)dq,

∫ q+B
q+R

(1− q)f(q)dq∫ q+B
q+R

qf(q)dq
≥

∫ 1
q+B
(1− q)f(q)dq∫ 1
q+B

qf(q)dq
,

∫ q+B
q+R

f(q)dq∫ q+B
q+R

qf(q)dq
≥

∫ 1
q+B

f(q)dq∫ 1
q+B

qf(q)dq
,

∫ 1
q+B

qf(q)dq∫ q+B
q+R

qf(q)dq
≥

∫ 1
q+B

f(q)dq∫ q+B
q+R

f(q)dq
,

which given that ∫ 1
q+B

qf(q)dq∫ q+B
q+R

qf(q)dq
≥

∫ 1
q+B

q+Bf(q)dq∫ q+B
q+R

q+Bf(q)dq
,

=

∫ 1
q+B

f(q)dq∫ q+B
q+R

f(q)dq
,

proves that equation (7) holds true when q+B > q+R .

Second, we have that q+B > q+R implies

[∫ q+B

1
2

qf(q)dq

]k [∫ q+R

1
2

(1− q)f(q)dq

]k

≥
[∫ q+B

1
2

(1− q)f(q)dq

]k [∫ q+R

1
2

qf(q)dq

]k

(8)
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for all k ∈ {0, 1, . . .} if and only if

∫ q+R
1
2

f(q)dq

∫ q+B
1
2

f(q)dq
≥

∫ q+R
1
2

qf(q)dq

∫ q+B
1
2

qf(q)dq
,

∫ q+B
1
2

qf(q)dq

∫ q+R
1
2

qf(q)dq
≥

∫ q+B
1
2

f(q)dq

∫ q+R
1
2

f(q)dq
,

∫ q+B
q+R

qf(q)dq∫ q+R
1
2

qf(q)dq
≥

∫ q+B
q+R

f(q)dq∫ q+R
1
2

f(q)dq
,

which given that

∫ q+B
q+R

qf(q)dq∫ q+R
1
2

qf(q)dq
≥

∫ q+B
q+R

q+Rf(q)dq∫ q+R
1
2

q+Rf(q)dq
,

=

∫ q+B
q+R

f(q)dq∫ q+R
1
2

f(q)dq
,

proves that equation (8) holds true when q+B > q+R .

Third, we have that q+B > q+R implies[∫ q+B

1
2

qf(q)dq

]m

+

[∫ q+R

1
2

(1− q)f(q)dq

]m

≥
[∫ q+B

1
2

(1− q)f(q)dq

]m

+

[∫ q+R

1
2

qf(q)dq

]m

(9)

for all m ∈ {0, 1, . . .} if and only if[∫ q+R

1
2

qf(q)dq +

∫ q+B

q+R

qf(q)dq

]m

−
[∫ q+R

1
2

qf(q)dq

]m

≥
[∫ q+R

1
2

(1− q)f(q)dq +

∫ q+B

q+R

(1− q)f(q)dq

]m

−
[∫ q+R

1
2

(1− q)f(q)dq

]m

which is always true for m = 0 and true for m ∈ {1, 2, . . .} if and only if

m∑
l=1

(
m

l

)[∫ q+R

1
2

qf(q)dq

]m−l [∫ q+B

q+R

qf(q)dq

]l

≥

m∑
l=1

(
m

l

)[∫ q+R

1
2

(1− q)f(q)dq

]m−l [∫ q+B

q+R

(1− q)f(q)dq

]l

.

37



Since the expression above is true we have that q+B > q+R implies equation (9) as required.

Therefore, we have shown that q+B > q+R implies equations (7), (8) and (9) are true. Hence,

from equations (5) and (6) we have that q+B > q+R implies πt(v,B)− πt(v,R) ≥ 0.

Equations (2) and (3) together with the fact that q+B > q+R and p ≥ 1
2 imply that

q+B (πt(v,B) + πB(v,B)) ≤ (1− q+B) (πt(v,R) + πB(v,R)) ,

q+B (πt(v,R) + πR(v,R)) > (1− q+B) (πt(v,B) + πR(v,B)) .

Given that, as we have just shown, q+B > q+R implies πt(v,B) − πt(v,R) ≥ 0, the two

expressions above imply

(1− q+B) (πB(v,R)− πR(v,B)) > q+B (πB(v,B)− πR(v,R)) . (10)

Note now that

πR(v,B) =

�N
2 ∑

j=1

[∫ 1

q+B

qf(q)dq

]j [∫ 1

q+R

(1− q)f(q)dq

]j−1

×

N−2j+1

2 �∑
k=0

N !

j!j!k!(N − 2j + 1− k)!

×
[∫ q+B

1
2

qf(q)dq

]k [∫ q+R

1
2

(1− q)f(q)dq

]k

×
⎛
⎝[∫ q+B

1
2

qf(q)dq

]N−2j+1−2k

+

[∫ q+R

1
2

(1− q)f(q)dq

]N−2j+1−2k
⎞
⎠ ,

πB(v,R) =

�N
2 ∑

j=1

[∫ 1

q+B

(1− q)f(q)dq

]j−1 [∫ 1

q+R

qf(q)dq

]j

×

N−2j+1

2 �∑
k=0

N !

j!j!k!(N − 2j + 1− k)!

×
[∫ q+B

1
2

(1− q)f(q)dq

]k [∫ q+R

1
2

qf(q)dq

]k

×
⎛
⎝[∫ q+B

1
2

(1− q)f(q)dq

]N−2j+1−2k

+

[∫ q+R

1
2

qf(q)dq

]N−2j+1−2k
⎞
⎠ ,
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and similarly for πB(v,B) and πR(v,R). Define

KB =


N−2j+1
2 �∑

k=0

N !

j!j!k!(N − 2j − k + 1)!

×
[∫ q+B

1
2

qf(q)dq

]k [∫ q+R

1
2

(1− q)f(q)dq

]k

×
⎛
⎝[∫ q+B

1
2

qf(q)dq

]N−2j+1−2k

+

[∫ q+R

1
2

(1− q)f(q)dq

]N−2j+1−2k
⎞
⎠ ,

KR =


N−2j+1
2 �∑

k=0

N !

j!j!k!(N − 2j − k + 1)!

×
[∫ q+B

1
2

(1− q)f(q)dq

]k [∫ q+R

1
2

qf(q)dq

]k

×
⎛
⎝[∫ q+B

1
2

(1− q)f(q)dq

]N−2j+1−2k

+

[∫ q+R

1
2

qf(q)dq

]N−2j+1−2k
⎞
⎠ .

Then, equations (8) and (9) imply KB ≥ KR. Moreover, as q+B > q+R implies equation (7),

we have that

(1− q+B) (πB(v,R)− πR(v,B)) ≤ (1− q+B)

(∫ 1

q+R

qf(q)dq −
∫ 1

q+B

qf(q)dq

)
KR,

q+B (πB(v,B)− πR(v,R)) ≥ q+B

(∫ 1

q+R

(1− q)f(q)dq −
∫ 1

q+B

(1− q)f(q)dq

)
KB.

This means that equation (10) holds only if

(1− q+B)

(∫ 1

q+R

qf(q)dq −
∫ 1

q+B

qf(q)dq

)
KR ≥ q+B

(∫ 1

q+R

(1− q)f(q)dq −
∫ 1

q+B

(1− q)f(q)dq

)
KB,

(1− q+B)

(∫ q+B

q+R

qf(q)dq

)
≥ q+B

(∫ q+B

q+R

(1− q)f(q)dq

)
,

(∫ q+B

q+R

qf(q)dq

)
≥

(∫ q+B

q+R

q+Bf(q)dq

)
,

holds. However, given that q+B > q+R the expression above is false. This leads to a contradic-

tion, which means that the claim q+B > q+R is false as required.

The following Lemma from Feddersen and Pessendorfer (1996) is used in the proof of the

Theorem 2.
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Lemma 2 (Lemma 0 in Feddersen and Pessendorfer (1996)). Let (aN , bN , cN )∞N=1 a sequence

that satisfies (aN , bN , cN ) ∈ [0, 1]3 and aN < bN − δ and δ < cN for all N and some δ > 0.

Then, for i = 0, 1 as N → ∞∑N
2
−i

j=0
N !

(j+i)!j!(N−2j−i)!c
N−2j−i
N ajN∑N

2
−i

j=0
N !

(j+i)!j!(N−2j−i)!c
N−2j−i
N bjN

→ 0.

Proof of Theorem 2. Equilibrium of Type 1

Define γxy as the proportion of voters who vote for x ∈ {B,R, ∅} when the state is

y ∈ {B,R}.
First we show that as N → ∞ the equilibrium of Type 1 is such that

∫ q+R
1
2

f(q)dq → 0.

Assume for now that there exists a ρ > 0 such that
∫ 1
q+R

f(q)dq > ρ for all N and consider an

equilibrium of Type 1 and assume that there exists a ε > 0 such that either
∫ q−R

1
2

f(q)dq ≥ ε or∫ q+R
q−R

f(q)dq ≥ ε for all N . We have that there exists a δ1 > 0 such that γRRγBR−δ1 > γBBγRB

if and only if ∫ 1

q+R

qf(q)dq

(∫ 1

1
2

(1− q)f(q)dq +

∫ q−R

1
2

qf(q)dq

)
− δ1 >

∫ 1

q+R

(1− q)f(q)dq

(∫ 1

1
2

qf(q)dq +

∫ q−R

1
2

(1− q)f(q)dq

)
,

∫ 1

q+R

qf(q)dq

(∫ 1

q−R
(1− q)f(q)dq +

∫ q−R

1
2

f(q)dq

)
− δ1 >

∫ 1

q+R

(1− q)f(q)dq

(∫ 1

q−R
qf(q)dq +

∫ q−R

1
2

f(q)dq

)
,

∫ 1

q+R

qf(q)dq

(∫ q+R

q−R
(1− q)f(q)dq +

∫ q−R

1
2

f(q)dq

)
− δ1 >

∫ 1

q+R

(1− q)f(q)dq

(∫ q+R

q−R
qf(q)dq +

∫ q−R

1
2

f(q)dq

)
.

B necessary condition for this is∫ 1

q+R

(q − q+R)f(q)dq

∫ q+R

q−R
f(q)dq +

∫ 1

q+R

(2q − 1)f(q)dq

∫ q−R

1
2

f(q)dq − δ1 > 0,

∫ 1

q+R

(q − q+R)f(q)dq

∫ q+R

q−R
f(q)dq + (2q−R − 1)

∫ 1

q+R

f(q)dq

∫ q−R

1
2

f(q)dq − δ1 > 0.

By assumption
∫ 1
q+R

f(q)dq > ρ for some ρ > 0. Therefore, if
∫ q−R

1
2

f(q)dq ≥ ε then

q−R ≥ F−1(ε) and the expression above is true for any δ1 ∈ (0, (2F−1(ε)− 1)ρε).9

9F−1 exists because f is integrable and, hence, F is continuous.
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Assume
∫ q−R

1
2

f(q)dq < ε, which implies that
∫ q+R
q−R

f(q)dq ≥ ε. Note that
∫ 1
q+R

f(q)dq > ρ for

some ρ > 0 implies that for all ρ̄ ∈ (0, ρ) there exists a β > 0 such that
∫ 1
q+R+β f(q)dq > ρ̄,

fix such ρ and consider its corresponding β. Thus, a necessary condition for γRRγBR − δ1 >

γBBγRB is ∫ 1

q+R

(q − q+R)f(q)dq

∫ q+R

q−R
f(q)dq − δ1 > 0,

∫ 1

q+R+β
βf(q)dq

∫ q+R

q−R
f(q)dq − δ1 > 0,

βρ̄

∫ q+R

q−R
f(q)dq − δ1 > 0,

βρ̄ε− δ1 > 0.

Hence, for any δ1 ∈ (0,min{(2F−1(ε)−1)ρε, βρ̄ε}) we have that γRRγBR− δ1 > γBBγRB.

If
∫ q+R
q−R

f(q)dq < ε for all ε > 0 then γ∅s → 0. Since γRRγBR − δ1 > γBBγRB implies

lim
N→∞

(γBBγRB)
N
2
−i

(γRRγBR)
N
2
−i

→ 0

for i = 0, 1, we have πt(v,B)
πt(v,R) → 0 and, if

∫ q+R
q−R

f(q)dq �= 0, also that πB(v,B)
πB(v,R) → 0 and πR(v,B)

πR(v,R) → 0.

If
∫ q+R
q−R

f(q)dq = 0 then πB(v,B) = πB(v,R) = πR(v,B) = πR(v,R) = 0.

On the other hand, if
∫ q+R
q−R

f(q)dq ≥ ε then there exists a δ2 > 0 such that γ∅s > δ2. Define

δ = min {δ1, δ2}. By Lemma 2 we have that as N grows large πt(v,B)
πt(v,R) → 0, πB(v,B)

πB(v,R) → 0 and
πR(v,B)
πR(v,R) → 0.

Therefore, equations (2) and (3) then imply q−R → 1
2 and q+R → 1

2 which in turn implies∫ q−R
1
2

f(q)dq → 0 and
∫ q+R
q−R

f(q)dq → 0, which contradicts the fact that either
∫ q−R

1
2

f(q)dq ≥ ε

or
∫ q+R
q−R

f(q)dq ≥ ε for a fixed ε.

Assume now that for all ρ > 0 there exists an N̄ such that for all N ≥ N̄ , we have∫ 1
q+R

f(q)dq ≤ ρ. Fix a ρ ∈ (
0, 12

)
and the corresponding N̄ . This means that at most a

fraction ρ of voters vote for R for any N ≥ N̄ . In equilibrium of Type 1, q+B = 1
2 and all

voters who receive signal B vote for B. Hence, if a voter is pivotal it must be that at most

a fraction ρ of voters plus one received signal B. Since ρ can be chosen as small as desired

and N as large as desired, we have that if a voter is pivotal then the fraction of voters who

received signal B is negligible compared to the fraction of voters who received signal R and,

hence, the probability that the state of nature is R converges to one when a voter is pivotal

by law of large numbers. By equation (3) this implies q+R → 1
2 which contradicts the fact that∫ 1

q+R
f(q)dq ≤ ρ.
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Equilibrium of Type 2

We prove next that in an equilibrium of Type 2 we must have
∫ q+R
q+B

f(q)dq → 0. Assume

for now that there exists a ρ > 0 such that
∫ 1
q+R

f(q)dq > ρ for all N . Consider an equilibrium

of Type 2 and suppose there exists a ε > 0 such that
∫ q+R
q+B

f(q)dq ≥ ε for all N . We have that

a necessary condition for there to be a δ1 > 0 such that γRRγBR − δ1 > γBBγRB is∫ 1

q+B

qf(q)dq

∫ 1

q+R

(1− q)f(q)dq − δ1 >

∫ 1

q+B

(1− q)f(q)dq

∫ 1

q+R

qf(q)dq,

∫ 1

q+B

qf(q)dq

∫ 1

q+R

f(q)dq − δ1 >

∫ 1

q+B

f(q)dq

∫ 1

q+R

qf(q)dq,

∫ 1

q+R

qf(q)dq

∫ q+R

q+B

f(q)dq − δ1 >

∫ 1

q+R

f(q)dq

∫ q+R

q+B

qf(q)dq,

∫ 1

q+R

(q − q+R)f(q)dq

∫ q+R

q+B

f(q)dq > δ1.

Since
∫ 1
q+R

f(q)dq > ρ for some ρ > 0 then for all ρ̄ ∈ (0, ρ) there exists a β > 0 such

that
∫ 1
q+R+β f(q)dq > ρ̄, fix such ρ and consider its corresponding β. Moreover, by assumption∫ q+R

q+B
f(q)dq ≥ ε. Thus, if we choose any δ1 ∈ (0, βρ̂ε) then γRRγBR − δ1 > γBBγRB.

Given that
∫ q+R
q+B

f(q)dq ≥ ε it is true that
∫ q+R

1
2

f(q)dq ≥ ε and, hence, there exists a δ2 > 0

such that γ∅s > δ2. Define δ = min {δ1, δ2}. Then by Lemma 2 we have then that as N grows

large πt(v,B)
πt(v,R) → 0, πB(v,B)

πB(v,R) → 0 and πR(v,B)
πR(v,R) → 0. Equations (2) and (3) then imply q+R → 1

2

which in turn implies
∫ q+R
q+B

f(q)dq → 0, this contradicts the fact that
∫ q+R
q+B

f(q)dq > ε for a

fixed ε.

Assume now that for all ρ > 0 there exists an N̄ such that for all N ≥ N̄ , we have∫ 1
q+R

f(q)dq ≤ ρ. Fix a ρ ∈ (
0, 12

)
and the corresponding N̄ . This means that at most a

fraction ρ of voters vote for R for any N ≥ N̄ . In equilibrium of Type 2, q−R = 1
2 and we

have two possibilities. If for all ρ > 0 there exists an N such that for all N ≥ N̄ we have∫ 1
q+B

f(q)dq ≤ ρ, then
∫ q+R
q+B

f(q)dq ≤ ρ which is what the result in the Theorem states. If,

on the other hand, there exists a ε > 0 such that
∫ 1
q+B

f(q)dq ≥ ε for all N , then at least a

fraction ε of voters who receive signal B vote for B. If a voter is pivotal, it must be because

at most a fraction ρ of voters plus one receive signal B. However, since ρ can be chosen as

small as desired and N + 1 as large as desired, the fraction of voters who receive signal B

must be arbitrarily small as otherwise a fraction ε of them vote for B against the fraction

ρ that vote for R and the voter is not pivotal. Therefore, the probability that the state of

nature is R converges to one when a voter is pivotal by law of large numbers. By equation

(3) this implies q+R → 1
2 which contradicts the fact that

∫ 1
q+R

f(q)dq ≤ ρ.
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Proof of Proposition 1. Using the proof of Theorem 2 we have that either
∫ q+R

1
2

f(q)dq → 0 or∫ q+R
q+B

f(q)dq → 0. Assume first that
∫ q+R

1
2

f(q)dq → 0. In this case almost all voters vote for

the candidate that coincides with their signal (for all δ > 0 there exists a N for which the

proportion of voters who do not is smaller than δ). Therefore, by law of large numbers the

proportion of voters who vote for the candidate that coincides with the state of nature is μ

while the proportion of voters who vote for the other candidate is 1−μ. Since μ > 1
2 implies

that there exists a ε > 0 such that μ−ε > 1
2 , we have that most voters vote for the candidate

that coincides with the state of nature which gives the desired result.

Assume now
∫ q+R
q+B

f(q)dq → 0. In this case all voters who do not abstain vote for the

candidate that coincides with their signal and, furthermore, the decision on whether to vote

or not is independent on the signal received (for all δ > 0 there exists a N for which the

number of voters choose whether to abstain or not depending on their signal is smaller than

δ). Therefore, by law of large numbers the proportion of voters who vote for the candidate

that coincides with the state of nature is (N + 1)
∫ 1
q+R

qf(q)dq while the proportion of voters

who vote for the other candidate is (N + 1)
∫ 1
q+R
(1 − q)f(q)dq. If there exists a ρ > 0 such

that
∫ 1
q+R

f(q)dq > ρ for all N + 1 then for all ρ̄ ∈ (0, ρ) there exists a β > 0 such that∫ 1
q+R+β f(q)dq > ρ̄ we have∫ 1

q+R

qf(q)dq −
∫ 1

q+R

(1− q)f(q)dq =

∫ 1

q+R

(2q − 1)f(q)dq

≥
∫ 1

q+R+β
(2q − 1)f(q)dq

≥ 2β

∫ 1

q+R+β
f(q)dq

> 2βρ̄.

Thus, most voters vote for the candidate that coincides with the state of nature as we wanted

to show.

Consider now the case where for all ρ > 0 there exists a N̄ such that
∫ 1
q+R

f(q)dq ≤ ρ for

all n > N̄ . By monotonicity of F and the fact that
∫ q+R
q+B

f(q)dq → 0 we have q+B → q+R → 1.

Moreover,

lim
q+R→1

γBR

γRR
= lim

q+R→1

∫ 1
q+R
(1− q)f(q)dq∫ 1
q+R

qf(q)dq
,

= lim
q+R→1

(1− q+R)f(q
+
R)

q+Rf(q
+
R)

,

= lim
q+R→1

1

q+R
− 1,

= 0,
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and similarly limq+B→1
γRB
γBB

= 0, where we have used L’Hôpital’s rule for computing the limit

above. That is, the probability that a random voter votes for the candidate that does not

match the state of nature is insignificant compared to the probability that a random voter

votes for the candidate that does, which implies P (V = S) → 1.
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B Appendix: Experimental Instructions

Welcome! You are about to participate in a decision making experiment. If you follow

the instructions carefully, you can earn a considerable amount of money depending on your

decisions and the decisions of the other participants. Your earnings will be paid to you in

cash at the end of the experiment

This set of instructions is for your private use only. During the experiment you are not

allowed to communicate with anybody. In case of questions, please raise your hand. Then

we will come to your seat and answer your questions. Any violation of this rule excludes you

immediately from the experiment and all payments.

For your participation you will receive a show-up fee 3 pounds. You can earn additional

amounts of money. Below we will describe how. All your decisions will be treated confiden-

tially both during the experiment and after the experiment. This means that none of the

other participants will know which decisions you made.

Experimental Instructions The experiment will last for 30 rounds. In each round you

will be matched randomly in groups of four participants. Remember that the groups change

in each round, so the participants you play with in one round are most likely different from

those you played with the round before. At the beginning of each round of the experiment

the computer randomly draws one of two colours RED or BLUE. We call the colour that was

drawn “the state”. BLUE is much more likely than RED to be drawn. In particular there

is a 95% chance that BLUE is drawn and only a 5% chance that RED is drawn. Remember

that the state is drawn anew in each round, i.e. it can be different in each round. The state

is the same, though, for all group members in each round.

Figure 6: The state is BLUE with a 95% chance, i.e. a chance of 95 in 100.
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Goal of the experiment: You will be asked to guess whether the state is RED or BLUE.

Your goal is to guess correctly as a group. Hence it will not matter whether you guess

correctly yourself. The only thing that matters is whether the majority of your group guesses

correctly. We will explain now what additional information each group member gets before

making a guess, what guesses you can make and how your payments are computed.

Information you receive: Each group member receives a “signal” about whether the

state is BLUE or RED before they submit their guess. A signal is a ball drawn randomly

from a box containing RED and BLUE balls. All balls in a box are equally likely to be drawn.

There are however, two boxes for each player and you don’t know which one the ball is

drawn from. If the state is BLUE the ball will be drawn from your BLUE box. (Remember

that this is the case with a 95% chance). If the state is RED, the ball will be drawn from

your RED box. (This is the case with a 5% chance). Hence if you knew the box you would

know the state. This is true for all participants.

There are always at least as many BLUE balls in your BLUE box as there are in your

RED box. Hence, if both boxes were equally likely, a BLUE ball is more likely to come from

a BLUE box and a RED ball is more likely to come from a RED box.

How much more likely will depend on the exact composition of the boxes. In each round

you will be shown the composition of your boxes. You will also be shown the colour of the

ball drawn.

It is important to note that the composition of boxes can be different for different group

members. In particular, for each participant, the number of BLUE balls in their BLUE box is

randomly drawn from anything between half the balls being BLUE to all balls being BLUE.

The number of RED balls in a participant’s RED box always equals the number of BLUE

balls in their BLUE box10

Things to remember about signals:

• You will see a ball drawn from either your RED or your BLUE box.

• If the state is BLUE the ball will be drawn from the BLUE box. If the state is RED it

will be drawn from the RED box.

10In ASYM-COARSE and SYM-COARSE the version of this paragraph reads “It is important to note

that the composition of boxes can be different for different group members. In particular, for each participant,

the number of BLUE balls in their BLUE box is randomly drawn from anything between half the balls being

BLUE to three quarters of the balls being BLUE. The number of RED balls in a participant’s RED box always

equals the number of BLUE balls in their BLUE box”
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• You will also see how many RED and BLUE balls your RED and BLUE boxes contain.

• All other group members will also see a ball drawn from one of their boxes.

• Remember, though, that their boxes can have a different composition.

• Boxes change in each round for each participant.

Making a guess: After all group members have received their signals, all will make a guess

simultaneously. You have three options. You either guess RED, BLUE or you can ABSTAIN.

Remember that the goal is to guess correctly as a group.

Your payment: Apart from the show up fee you receive, one round is drawn for payment

and you receive

• 10 additional pounds if the group guesses correctly in that round and

• 2 additional pounds if the group is not correct in that round.

When is the group correct? The group is correct if the majority of group members who

do not abstain indicate the correct state.

Hence, if the state is BLUE then the group is correct if

• at least 3 group members vote BLUE,

• at least 2 group members vote BLUE and at least one abstains,

• at least 1 group member votes BLUE and all others abstain.

Similarly, if the state is RED then the group is correct if

• at least 3 group members vote RED,

• at least 2 group members vote RED and at least one abstains,

• at least 1 group member votes RED and all others abstain.

If the same number of group members vote RED and BLUE, then there is a tie and

whether the group’s guess is considered correct is determined by the flip of a coin.
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Control Questions: Are the following statements TRUE or FALSE? If you have any

questions please raise your hand.

1. My group members change from round to round.

2. All group members receive a ball from the same box.

3. The composition of the box of my group members can be different from the composition

of my box.

4. If I vote RED, one group member abstains and two vote BLUE, I receive 2 pounds if

the state is RED and 10 pounds if the state is BLUE.

5. If I vote BLUE, one group member abstains and two vote BLUE, I receive 2 pounds if

the state is RED and 10 pounds if the state is BLUE.

6. Only one round is randomly drawn for payment.

ENJOY THE EXPERIMENT !!
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C Appendix: Additional Tables and Figures

This Appendix collects additional tables and figures. Figure 7 shows a screenshot of how the

signal and signal accuracy were communicated during the experiment.

Figure 7: Screenshot of how the signal drawn was communicated.

(1) (2) (3) (4) (5) (6) (7) (8)

RED signal BLUE signal

SYM SYM-COARSE ASYM ASYM SYM SYM-COARSE ASYM ASYM

COARSE COARSE

Vote

with signal

Abstain

q -8.640*** -5.034*** 6.130*** 2.629* -9.251*** -9.946*** -4.854*** -3.344**

(0.863) (1.839) (0.976) (1.958) (0.968) (1.532) (1.060) (1.474)

Constant 4.754*** 1.505 -2.865*** -5.082*** 4.687*** 3.936*** 0.561 -0.098

(0.552) (1.082) (0.663) (1.816) (0.591) (0.913) (0.704) (0.913)

Vote

against signal

q -1.634** -1.093 -0.382 1.159 -3.677*** -9.917*** -3.020* -3.357

(0.719) (1.360) (0.905) (1.816) (0.995) (1.819) (1.690) (3.563)

Constant 0.076 -0.091 -0.541 -1.936* 0.487 3.524*** -1.715 -1.957

(0.523) (0.831) (0.582) (1.074) (0.673) (1.080) (1.173) (2.202)

Observations 739 719 471 350 701 721 969 970

Standard Errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 7: Multinomial logit regression on voting outcomes categorized as “voting with the

signal”, “abstaining” or “voting against the signal”.

Table 8 addresses the potential concern in the asymmetric treatments, that the frequency

of receiving RED signals is low making learning difficult. Empirically this frequency ranges

between 16− 53% in the asymmetric treatments. Table 8 linearly controls for the frequency

with which a RED signal was seen by a participant and shows that results are qualitatively

robust.
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(1) (2) (3) (4) (5) (6) (7) (8)

RED signal BLUE signal

SYM SYM-COARSE ASYM ASYM SYM SYM-COARSE ASYM ASYM

COARSE COARSE

Vote

with signal

Abstain

q -8.641*** -4.797*** 5.076*** 2.627*** -9.203*** -9.995*** -5.675*** -3.403**

(0.863) (1.853) (1.948) (0.976) (0.971) (1.532) (1.060) (1.479)

Constant 4.575*** 2.616** -6.239*** -2.763*** 6.106*** 4.053*** -2.722*** 0.954

(0.785) (1.226) (1.347) (1.816) (0.823) (1.009) (0.909) (0.962)

Vote

against signal

q -1.632** -1.170 -0.351 1.158 -3.686*** -9.879*** -3.091* -3.352

(0.720) (1.360) (0.905) (1.827) (0.996) (1.820) (1.699) (3.563)

Constant -0.083 -0.470 -1.611** -1.615* 0.075 3.139*** -2.066 -0.157

(0.737) (0.944) (0.757) (1.201) (0.982) (1.201) (1.415) (2.275)

Observations 739 719 471 350 701 721 969 970

Standard Errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 8: Multinomial logit regression on voting outcomes categorized as “voting with the

signal”, “abstaining” or “voting against the signal” including linear controls for the frequency

with which participants saw a red signal across the 30 rounds.

yit = αi + β0qit + β1SYM-COARSE+ β2ASYM+ β3ASYM-COARSE (11)

+ β10 ∗ (qit ∗ASYM) + β20 ∗ (qit ∗ASYM) + β30 ∗ (qit ∗ASYM-COARSE) + εit

Table 9 shows the results of running regression (11) in our sample using as binary outcome

yit whether or not a participant i voted against her signal in period t. Columns (1) and

(2) include the whole sample, columns (3) and (4) only the second half of the experiment

after potentially some learning has occurred. Columns (1) and (3) focus on participants

who received a RED signal. The estimates show that in the baseline (treatment SYM)

participants rarely vote against their signal. They do so more often in ASYM and ASYM-

COARSE if the signal is RED, i.e. goes against the prior and less often if it is BLUE, i.e.

consistent with the prior. Interestingly, in SYM-COARSE they tend to vote more often

against a BLUE signal compared to SYM. Signal accuracy decreases the propensity to vote

against the signal across all treatments, albeit not always significantly so.

Table 10 shows the results of running regression (11) in our sample using as binary out-

come yit whether or not a participant i abstained in period t. Irrespective of the signal,

participants abstain less often in SYM-COARSE, ASYM and ASYM-COARSE com-

pared to SYM. An increased signal accuracy decreases the propensity to abstain in SYM and

to a lesser extent in SYM-COARSE, but not in ASYM and ASYM-COARSE, where

especially with RED signals participants decide to abstain rather than voting against the

signal.
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(1) (2) (3) (4)

Vote against signal if it is: RED BLUE RED 15-30 BLUE 15-30

q 0.129 -0.119** 0.120 -0.021

(0.102) (0.0509) (0.128) (0.0705)

SYM-COARSE 0.212 0.248*** 0.099 0.219**

(0.167) (0.067) (0.215) (0.088)

ASYM 0.550*** -0.117** 0.794*** -0.0689

(0.132) (0.052) (0.160) (0.069)

ASYM-COARSE 1.041*** -0.123* 0.858*** -0.075

(0.187) (0.068) (0.236) (0.089)

SYM-COARSE×q -0.188 -0.449*** 0.0312 -0.423***

(0.255) (0.101) (0.328) (0.134)

ASYM×q -0.254 0.0680 -0.514** -0.024

(0.181) (0.068) (0.219) (0.093)

ASYM-COARSE×q -0.962*** 0.060 -0.562 -0.021

(0.296) (0.102) (0.378) (0.135)

Constant 0.097 0.175*** 0.076 0.114**

(0.081) (0.037) (0.101) (0.050)

Observations 1,979 3,661 1,052 1,768

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 9: Random Effects OLS regressions: Voting against one’s signal when it indicates the

low prior (column (1)) or high prior (column (2)) state. Columns (3) and (4) only consider

data from the last 15 periods.

Table 11 corresponds to Table 4 in the main text, but includes linear time trends (and

treatment interactions).

Table 12 corresponds to Table 6 in the main text, but linearly controls for the frequency

with which a RED signal was seen by a participant and shows that results are qualitatively

robust.
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(1) (2) (3) (4)

Abstain if signal is RED BLUE RED 15-30 BLUE 15-30

q -1.195*** -1.142*** -1.292*** -1.187***

(0.0879) (0.068) (0.120) (0.096)

SYM-COARSE -0.601*** -0.374*** -0.414** -0.349***

(0.145) (0.093) (0.201) (0.124)

ASYM -0.633*** -0.706*** -0.892*** -0.805***

(0.115) (0.072) (0.149) (0.098)

ASYM-COARSE -0.944*** -0.705*** -0.936*** -0.857***

(0.162) (0.093) (0.221) (0.125)

SYM-COARSE×q 0.672*** 0.329** 0.359 0.271

(0.220) (0.135) (0.307) (0.183)

ASYM×q 0.919*** 0.849*** 1.330*** 0.921***

(0.157) (0.091) (0.205) (0.128)

ASYM-COARSE×q 1.332*** 0.856*** 1.288*** 1.066***

(0.255) (0.136) (0.354) (0.185)

Constant 1.058*** 0.982*** 1.142*** 1.031***

(0.070) (0.052) (0.094) (0.071)

Observations 1,979 3,661 1,052 1,768

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 10: Random Effects OLS regressions: Abstaining when the signal indicates the low

prior (column (1)) or high prior (column (2)) state. Columns (3) and (4) only consider data

from the last 15 periods.
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(1) (2) (3)

VARIABLES All periods periods 1-5 periods 26-30

period 0.003*** -0.079*** 0.027

(0.001) (0.016) (0.024)

SYM-COARSE(β1) -0.076** -0.404*** 1.117***

(0.037) (0.086) (0.384)

ASYM(β2) 0.342*** 0.100 -0.600***

(0.022) (0.069) (0.231)

ASYM-COARSE(β3) 0.180** 0.056 1.328**

(0.075) (0.067) (0.540)

SYM-COARSE×period (γ1) -0.007*** 0.079*** 0.022***

(0.001) (0.016) (0.008)

ASYM×period (γ2) 0.001 0.040 -0.040**

(0.003) (0.025) (0.019)

ASYM-COARSE×period (γ3) -0.002 0.121*** -0.043***

(0.001) (0.010) (0.013)

Constant 0.649*** 0.850*** 0.012

(0.013) (0.058) (0.700)

β2 − β3 0.162** 0.044 -1.928***

p-value 0.0464 0.3657 <0.0001

γ2 − γ3 -0.001*** -0.081** -0.083***

p-value 0.0006 0.0272 <0.0001

Observations 5,640 940 940

Number of id 188 188 188

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 11: Random effects OLS regression of efficiency on treatment dummies including linear

time trends. Standard errors are clustered at the matching group level.
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Asymmetric Prior treatments

ASYM ASYM-COARSE

Abstention Switching Abstention Switching

(1) (2) (3) (4) (5) (6) (7) (8)

q -0.423*** -0.423*** -0.071 -0.078 -0.344** -0.335** 0.072 0.064

(0.102) (0.101) (0.095) (0.088) (0.120) (0.113) (0.149) (0.151)

Majority wrongt−1 -0.005 -0.005 -0.002 -0.002 -0.019** -0.017** 0.009 0.007

(0.003) (0.003) (0.006) (0.006) (0.005) (0.005) (0.008) (0.008)

i wrongt−1 0.064*** 0.063* 0.497*** 0.443*** 0.303*** 0.345*** 0.369*** 0.326***

(0.015) (0.031) (0.065) (0.074) (0.070) (0.080) (0.041) (0.053)

i (pivotal∧wrong)t−1 0.002 0.170** -0.148* 0.152*

(0.050) (0.043) (0.059) (0.071)

Frequency RED signals 0.687* 0.687* 0.409* 0.409* -0.236 -0.224 0.339 0.327

(0.322) (0.322) (0.176) (0.176) (0.285) (0.272) (0.339) (0.345)

Constant 0.135 0.136 0.078 0.084 0.153 0.165 0.106 0.093

(0.086) (0.086) (0.110) (0.107) (0.134) (0.120) (0.165) (0.164)

Observations 1,392 1,392 1,392 1,392 1,276 1,276 1,276 1,276

R-squared 0.073 0.073 0.211 0.217 0.149 0.158 0.149 0.155

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 12: Simple Heuristics in asymmetric Prior treatment with linear controls for the fre-

quency with which a red signal was observed across the 30 rounds. Abstention and Switching

regressed on signal accuracy and three dummies indicating whether (i) the majority vote in

the past period was incorrect (i.e. not coinciding with the state), (ii) participant i’s vote was

incorrect and (iii) whether participant i was pivotal and incorrect.
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