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Abstract 

Over geological time, changes in climatic factors have contributed to the evolution of 

plants. CO2 is one environmental factor that affects plants, and changes in CO2 

concentration ([CO2]) in the atmosphere across geological time have been thought to 

have driven evolutionary changes in plant leaf anatomy, enabling plant leaves to 

adapt to declining atmospheric [CO2] over the last 120 million years. This thesis 

aimed to study the effect varying anatomical characters had on plant leaf function in 

different taxa. Atmospheric [CO2] at the crown group age of each species sampled 

made it possible to link anatomical and physiological variation to the different 

environmental conditions ([CO2]) each species (or taxa) evolved under. Several leaf 

gas exchange and hydraulics parameters were measured and leaves were subjected 

to light step-change and diurnal regimes to ascertain their gas exchange and 

hydraulic responses over prolonged periods.  

Results showed significant variation between species in leaf anatomical 

characteristics (stomatal and vein density). There was also a significant difference 

between species in their hydraulic responses to changes in light. No significant linear 

relationships were found between leaf anatomical characteristics and gas exchange 

parameters and leaf hydraulics (hydraulic conductance or water flow into the leaf). 

However, significant relationships were found among gas exchange parameters with 

leaf hydraulics, with species exhibiting higher photosynthetic capacities also 

displaying higher leaf water flow. The general difference was between angiosperms 

and other taxa, with angiosperms showing higher values for anatomical and 

functional characters. Under dynamic light (step-change or diurnal change), 

angiosperms had more coordination among gas exchange parameters with leaf 

hydraulic flow. Even though no significant relationships were found between 

variables measured and [CO2] at the time of taxa divergence, the higher values 

shown by angiosperms, which evolved under declining atmospheric [CO2], still 

suggests towards a [CO2] effect on leaf evolution.  
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Abbreviations 

- A : Carbon assimilation rate. 

- auc : Area under the curve. 

- Ci : CO2 concentration inside the leaf. 

- Ds : Stomatal density per unit area. 

- Dv : Vein density per unit area. 

- e : Leaf transpiration rate. 

- E : Water flow into the leaf per unit time and area. 

- gs : Stomatal conductance of the leaf. 

- Gs max : Maximum stomatal conductance of the leaf. 

- mya : Million years ago. 

- ppm : Parts per million. 

- Ss : Stomatal aperture size. 

- Kleaf : Hydraulic conductance of the leaf. 

- WUE : Water use efficiency. 

- Vc max : Maximum carboxylation rate. 

- Ψleaf : Leaf water potential. 
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Chapter 1: Introduction and Literature Review 

Introduction 

Climatic conditions have played a significant role in the evolution of life on earth 

(Matthew 1915; Grenfell et al. 2010), with life responding to changing climate over 

geological times and influencing climate in return (Berner 1997; Beerling & Berner 

2005; Franks et al. 2014). Plants, and their counterparts across marine systems like 

green algae, are active in this atmosphere-biosphere interaction (Kasting & Siefert 

2003). This is mainly because of their dependence on photosynthesis, which 

requires atmospheric carbon dioxide (CO2) and releases oxygen (O2), with this 

exchange impacting the global CO2 and O2 cycles significantly.  

The gas exchange rates of CO2, O2 and water vapour between plants and the 

atmosphere greatly influence local weather and hydrology (Berner 1997; Gedney et 

al. 2006; Keenan et al. 2013), and combined with their influence on terrestrial 

primary productivity, plants provide the fulcrum of the ecological structure on which 

terrestrial ecosystems function. Climatic conditions, on the other hand, have a large 

effect on plant growth, with changes in atmospheric CO2 concentrations ([CO2]), 

water availability, amount of sunlight and temperature fluctuations all important 

environmental factors directly influencing plant performance (Rosenzweig & Parry 

1994; Wagner et al. 1996; Medlyn et al. 2001; Medrano et al. 2002; Bernacchi et al. 

2002; Flexas et al. 2007; Ward & Gerhart 2010; Scoffoni et al. 2011; Franks et al. 

2013; Donohue et al. 2013; Lawson & Blatt 2014). This interconnectivity between 

plants and the environment means that changes in either aspect of this relationship 

(plant productivity or environmental factors) is bound to influence the other aspect. 

For example, changes in atmospheric CO2 levels affect plant gas exchange and this 

feeds back onto the ecosystem as plants will change their stomatal conductance and 

thus the amount of water returning to the ecosystem through evapotranspiration. 
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Furthermore, this is highlighted over evolutionary history (Beerling & Woodward 

1993; Beerling 1996; Ward & Kelly 2004; Brodribb et al. 2009; Grenfell et al. 2010; 

Leakey & Lau 2012; Assouline & Or 2013). Environmental factors that vary over 

geological time periods elicit an adaptive (and eventually, an evolutionary) response 

from plants in response to environmental variation, and chief among those 

environmental variations is fluctuations in atmospheric [CO2] (Ackerly et al. 2000; 

Beerling & Berner 2005; Royer 2006; Ward & Gerhart 2010; Blankenship 2010; 

Leakey & Lau 2012; Boyce & Zwieniecki 2012).  

This aims of this introductory chapter is to highlight drivers of change in atmospheric 

[CO2] across geological history, and consequently the influence of changes in 

atmospheric [CO2] on plant ecophysiology. This chapter will explore evolutionary 

adaptations in plants driven by climatic change, such as the evolution of leaf 

anatomical characters (specifically venation and stomatal characteristics), and how 

the evolution of those anatomical characters influenced leaf physiology, and the 

resulting increase in photosynthetic capacity and plant productivity due to these 

evolutionary improvements. The effect of changing [CO2] on plant anatomy and 

physiology will be linked to the leaf’s hydraulic capacity, represented by variables like 

E, the flow of water into the leaf, and Kleaf, which is the hydraulic conductivity of the 

plant leaf, which over evolutionary timescales helped shape plant photosynthetic and 

hydraulic performance. 

Atmospheric CO2 interactions across geological time and the role of 

plants in the carbon cycle 

CO2 concentration in the atmosphere is regulated through long term and a short term 

natural cycles of carbon (Berner 1998; Berner & Kothavala 2001). The short term 

cycle, taking place on a decades-to-millennia time scale, concerns carbon moving 

between the biosphere (terrestrial or oceanic) and the atmosphere (Berner 1998; 
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Berner & Kothavala 2001). This cycle involves ecological processes like 

photosynthesis, in which plants fix CO2 from the atmosphere into organic 

components. Carbon is transferred to the soil when plants die or leaves fall to the 

ground where it is broken down by soil microbiota. Carbon returns to the atmosphere 

during this cycle mainly due to the action of respiration (microbial, floral or faunal) as 

well as release of volatile carbon compounds like methane and isoprene as well as 

CO2 that are the result of metabolic reactions or material breakdown.  

The long-term carbon cycle centres on weathering. Weathering is the chemical 

reaction of atmospheric elements with rocks and deep earth material, and CO2 is one 

of the atmospheric gases that contribute to rock weathering. This cycle occurs over a 

multi-million year time scale and involves the reaction between CO2 and silicate 

rocks (usually magnesium silicate or calcium silicate), producing carbonates that are 

buried in sediment (Berner et al. 1983; Berner 1998; Berner & Kothavala 2001). This 

process reduces [CO2] in the atmosphere, however this is compensated for by 

processes like rock metamorphism, oxidative weathering and tectonic plate 

movement that force CO2 back to the surface, or a process like magmatism driven by 

thermal pressure that can lead to volcanic eruptions which release large amounts of 

CO2 back into the atmosphere increasing [CO2] in the atmosphere (Berner et al. 

1983; Berner & Canfield 1989; Berner 1998; Berner & Kothavala 2001).  

The long-term carbon cycle was heavily affected by the emergence of plants (Berner 

1997; Berner 1998; Beerling & Berner 2005), especially vascular plants (Berner & 

Kothavala 2001), as plants affect rock weathering (Berner 1997; Bormann et al. 

1998; Beerling & Berner 2005), and weathering is one of the main components of the 

long-term carbon cycle. Plants, especially trees, have deep, burrowing roots, which 

penetrate rocks and sediment exposing them to more contact with atmospheric CO2. 

Release of organic acids from plant roots containing carbon also increases contact 

between rocks and carbon (as well as other minerals), and hence plants accelerate 
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the rate of weathering due to increased contact time between carbon compounds 

(including CO2) and exposed rocks. In addition, the exchange of water between 

plants and the atmosphere through transpiration recirculates water in the ecosystem 

causing extra rainfall, and extensive rooting system can also hold more water in the 

soil and sediment. Thus, the emergence of plants (around Cambrian-Ordovician 

boundary) resulted in creating a more humid atmosphere around the earth surface, 

favouring an increase in weathering rate as rocks are more susceptible to 

weathering under moisture (Beerling & Berner 2005).  

The relationship between plants and the long-term carbon cycle over geological time 

formed a coupling between plants and atmospheric [CO2], and consequently 

between plants and climate (Beerling & Berner 2005). The Devonian (420-360 

million years ago) saw the first radiation of vascular land plants, which ultimately lead 

to an increase in chemical weathering, while it also lead to an increase in CO2 

uptake by plants which caused a decrease in atmospheric [CO2] in the short term as 

well (Berner 1998; Beerling & Berner 2005). However, it is thought that atmospheric 

[CO2] was already declining before the emergence of plants due to the evolution of 

the sun, and the rise in earth’s temperatures associated with this (Berner & 

Kothavala 2001; Beerling & Berner 2005). The rise in earth’s temperature provoked 

a counterbalancing action that included increased weathering (Berner 1998; Berner 

& Kothavala 2001), as weathering rate itself increases at high temperature. Plus, the 

explosion of land plants into the scene can also be considered as a “cooling” 

response from the earth as land plants helped reduce atmospheric [CO2] in the air 

(through weathering or CO2 uptake), and thus minimize the greenhouse effect on 

temperature. The impact of plants on [CO2] in the atmosphere highlights the 

importance of plants in regulating climate, as well as how they can be affected by it 

(Beerling & Berner 2005). Plants evolved more complex features after [CO2] 

decreased after the Devonian, with plants developing leaves 25 times as big as they 
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were pre-Devonian (Beerling et al. 2001; Osborne et al. 2004). However, it is thought 

that this increase in leaf area might have affected plants negatively later. During the 

Triassic-Jurassic boundary (220-180 Mya), a sharp rise in atmospheric [CO2] 

occurred (reaching several thousand ppm) elevated temperatures due to the 

greenhouse effect. Evaporative cooling in large leaves was constricted during this 

period lead to impairment of leaf function, resulting in the loss of many plant taxa 

during this period (Beerling et al. 2001; Beerling & Berner 2005). Leaf evaporative 

cooling depends on increasing water loss, with the water removing latent heat from 

the leaf. The water escapes through the stomatal pores, further highlighting the 

influence of atmospheric [CO2] on plants, as the evolution of complex anatomical, 

specifically stomatal, characteristics is considered one of the main aspects of the 

[CO2] effect on plant evolution (Beerling & Chaloner 1993; McElwain & Chaloner 

1995; Brodribb et al. 2009; Franks & Beerling 2009a; Franks & Beerling 2009b).  

Stomata are small pores on leaf surface, facilitating gas exchange, including uptake 

of CO2 and loss of water. Previous work has shown that plants that emerged in low 

[CO2] environments had smaller but higher densities of stomata, with the opposite 

found in plants that evolved in high CO2 environments (see latter sections of this 

review). These alterations in stomatal size and density had implications for plant 

productivity and water use, because these anatomical characters have on stomatal 

conductance and therefore photosynthetic rate, as well as the leaf’s water relations 

and hydraulic capacity. Also, stomatal properties have been the most prominent and 

conspicuous effect of fluctuating [CO2] on plant evolution. Changes in stomatal 

densities and size have been used to estimate paleo-[CO2] in fossilized leaves 

(McElwain & Chaloner 1995; Berner 1998; Royer 2001; Royer et al. 2004; Fletcher 

et al. 2007; Steinthorsdottir & Vajda 2013). The effect of changing atmospheric [CO2] 

on stomatal characters would affect leaf function, instigating further adaptations in 

the leaf.  
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Atmospheric [CO2] levels in the geologic record 

Reconstructing [CO2] levels of the past provides a gateway towards understanding 

the contribution of current rise in atmospheric [CO2] to current climate change (Yapp 

& Poths 1992). Climatic paleo-proxies, which are natural records that provide 

climatic information (e.g. tree rings, ice cores) have been increasing in prominence in 

the past 2 decades as a method of estimating past climatic conditions (Royer 2006). 

These proxies are usually an earth system component that varies or responds to 

[CO2] change and is quantified and then applied to the past (Royer 2006). Among 

these proxies are paleosols, stratified sedimentary soils that formed during past 

geological eras. Carbonate in those soils usually comes from atmospheric CO2 

precipitating in the soil, and thus analysis of these soils for climatic markers (such as 

stable isotopes) has proved useful in constructing past atmospheric [CO2]. Cerling 

(1984; 1991; 1992) formulated a model of isotopic mass balance to calculate 

atmospheric [CO2] in composition of soils inferred from calcite. Yapp & Poths (1992, 

1996) used a modelling proxy but inferred from the natural mineral goethite (iron 

mineral containing carbon). Ekart et al. (1999) also built a geochemical model from 

data based on pedogenic carbon (carbon from calcite precipitated during soil 

formation). Rothman (2002) used strontium isotopes abundance ratio in marine 

sedimentary rocks, associating this ratio with weathering rates and thus linking CO2 

ocean uptake to weathering, with this study confirming strong dependence of CO2 

cycle on chemical weathering. Other paleo-proxy methods include using the 

stomata-CO2 relationship described earlier, with fossilized leaf material studied to 

infer atmospheric [CO2] from the inverse relationship between stomatal density and 

[CO2] (McElwain & Chaloner 1995; Retallack 2001; Royer 2001; Royer et al. 2001; 

Royer 2003; for review see McElwain 1998; Beerling & Royer 2002). However, the 

stomatal approach has limitations, as the CO2-stomata relationship is species 

specific, and such relationships are generally assumed rather than calculated due to 
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use of fossilized material. Other paleo-proxy techniques include using isotopic 

discrimination of 13C in photosynthesis to infer isotopic ratios from phytoplankton 

(Freeman & Hayes 1992; Pagani et al. 1999; Pagani et al. 2005), however this 

approach has a problem with differentiating the cause of isotopic fractionation as 

phytoplankton growth rate can cause this kind of isotopic discrimination instead of 

changes in [CO2] (Royer 2014). This approach can also be applied to terrestrial 

equivalents of phytoplankton, bryophytes, which are typically astomatous (Fletcher et 

al. 2005; Fletcher et al. 2007). Other studies (Pearson & Palmer 2000; Hönisch & 

Hemming 2005) have used the differences in response of Boron isotopes to pH 

change, linking the variation in isotopic composition of marine carbonate to past 

changes in pH, with pH change ultimately used to estimate dissolved CO2 and then 

atmospheric [CO2]. 

However, biogeochemical modelling based reconstruction of past atmospheric CO2 

concentrations have been more prominent (Royer et al. 2004; Royer 2006; Royer 

2014). These efforts consider the long-term carbon cycle and formulate modelling 

that incorporates long-term carbon cycle processes, such as weathering and 

degassing, into a long term but low resolution reconstruction of paleo-[CO2]. The 

GEOCARB model (Berner et al. 1983; Berner & Canfield 1989; Berner 1994; Berner 

& Kothavala 2001; Berner 2006; Berner 2008) describes paleo-[CO2] fluctuations in a 

model that depends on this long term carbon cycle. The model was later updated 

(GEOCARBSULF) to describe the isotopic mass balance of carbon and sulfur in the 

earth system surface, relating the isotopic composition of carbon at a given time in 

the past to the flux of carbon moving into and out of the earth surface (Berner 2006). 

Several factors are considered in this model, like the impact of rock age, continental 

relief and most relevant to this project, the impact of the evolution and development 

of plants being incorporated into the model along its different manifestations. There 

are other geochemical models that follow similar modelling principles as GEOCARB 
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(Tajika (1998) is an example), while some models expanded on the CO2/O2/sulfur 

framework to include a large biogeochemical feedback model that infers past 

changes of several elements, with the COPSE model (Bergman et al. 2004) a 

prominent example. These long-term models have low time resolutions, usually 

caused by the way data is inputted as these models depend on long term geological 

processes to formulate.  

Fig 1.1 below shows atmospheric [CO2] fluctuations across the phanerozoic. The 

Fig. presents data from GEOCARBSULFvolc (Berner 2008), COPSE (Bergman et al. 

2004) and an amalgamation of paleo-proxy estimates collated by Royer (2014). 

GEOCARB and COPSE are biogeochemical cycling models, while the paleo-proxy 

data include estimations from paleosols, stomatal indices as well as other proxies 

discussed earlier. 2 versions of GEOCARBSULFvolc are presented, based on the 

updated version of Berner (2008). The 2 versions are the maximum and minimum 

estimations that result from the updated model output which added different 

granite/basalt weathering rates. Proxies are based on earth material and so do not 

provide [CO2] estimations for time periods not represented by the fossilized material, 

and so proxy based [CO2] estimations are scattered across geological time. 

However, Royer (2014) collated different paleo-proxy indicators and averaged their 

estimations to present a plot that runs across most of the Phanerozoic. Fig.1.1 

shows that these atmospheric [CO2] estimations have some differences. COPSE 

does not show significant fluctuation in atmospheric [CO2] levels during the pre-

Devonian period like GEOCARBSULFvolc does, and COPSE also has a higher 

atmospheric [CO2] estimation than the other models during the Carboniferous and 

Permian. Post-Permian, COPSE and GEOCARBSULFvolc (maximum) generally 

exhibit similar estimations, while the paleo-proxy estimation shows a higher peak 

during the Triassic-Jurassic boundary (200 mya), that might be explained by the 

mass extinction event that occurred during that period that included the loss of large 
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leafed taxa (Beerling & Berner 2005). Paleo-proxy displayed lower atmospheric 

[CO2] levels during the Cretaceous than GEOCARBSULFvolc (maximum) and 

COPSE, while also showing a peak at around 50 mya. 

 

 

In this thesis GEOCARBSULFvolc will be used as the predictor of past atmospheric 

[CO2] as most previous research that utilised past atmospheric [CO2] to deduce 

conclusions into botanical and paleo-botanical research such as attempted in thesis 

have used the GEOCARB model (Royer 2001; Franks & Beerling 2009b; Franks & 

Beerling 2009a; Haworth et al. 2011; de Boer et al. 2012; Franks et al. 2013; Elliott-

Kingston et al. 2016). It is also the most well-known of paleo-CO2 models. 
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Figure 1.1, Atmospheric [CO2] values (ppm) over the Phanerozoic (approx. last 500 million 

years). The figure is a representation of the GEOCARBSULFvolc long term carbon cycle 

reconstruction model (Berner 2008). The aforementioned study updates the GEOCARB 

model to include basalt and granite weathering rates. The figure presents the minimum CO2 

values presented in the study (blue dots, weathering rate=10, NV=0, fB(0)=0.75), and the 

maximum (orange dots, Weathering rate=2, NV=0.015, fB(0)=5). The COPSE model is also 

presented (grey dots). Paleo-proxy data is presented based on the data presented by Royer 

(2014, Fig. 4), in which data from several studies using varying paleo-proxy methods was 

collated (yellow dots). 
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Biogeochemical model estimations present a better alternative to paleo-proxies due 

to the already discussed features of paleoproxies (scatter of data, uncertainty of 

certain methods like Boron isotopes usage (Royer 2014)). These models also have 

the advantage of producing atmospheric [CO2] estimations spanning the entire 

phanerozoic. GEOCARBSULFvolc (Fig. 1.2) was also preferred to COPSE as it is 

the most recent version of GEOCARB, which is an older and more attuned and 

updated model (Berner & Canfield 1989; Berner 1994; Berner & Kothavala 2001; 

Berner 2006; Berner 2008). Also, it incorporates vegetative feedbacks among the 

earth system components.  
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Figure 1.2, Average estimations of atmospheric [CO2] values (ppm) over the Phanerozoic 

according to the GEOCARBSULFvolc (Berner 2008) model. The model (red line) is the 

averaged estimation as calculated by Royer (2014) from the model by Berner (assuming 

basalt/granite weathering rate of 5 (between 2 and 10, the maximum and minimum model 

estimations). The likely range of model input parameters represent the error estimation 

presented by the 2 outer lines (in black) as originally presented by Berner & Kothavala 

(2001) and then Royer (2014).  
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The influence of vein and stomatal characteristics on leaf productivity 

and leaf hydraulics 

The previous section highlighted the relationship between changing atmospheric 

[CO2] and plant evolution and ecology, highlighting the impact of changing 

atmospheric [CO2] on leaf anatomy and hydraulics. This section will probe the 

mechanisms that illustrate the effect of anatomical l features on plant leaf hydraulics 

and productivity. Stomatal pores are controlled by two cells called the guard cells, 

and the action of these cells controls the size of the stomatal pore and thus 

determine the gas exchange rate. Thus, the behaviour of stomatal pores has gained 

an immeasurable importance in studying leaf physiology (Jarman 1974; Cowan & 

Farquhar 1977; Farquhar 1978; Morison 1985). Since stomata are the major route 

for CO2 uptake into the leaf, the size of their aperture can represent a limitation on 

carbon assimilation rate. The size of the stomatal pore is determined by changes in 

guard cell turgor (Buckley 2005) driven by changes in water potential as a result of 

uptake and release of solutes (Cowan & Farquhar 1977; Mott 1988).  

Stomata have been shown to respond to environmental variables like humidity, light 

and most importantly atmospheric [CO2] (Cowan & Farquhar 1977; Woodward & 

Bazzaz 1988; Mott 1988; Morison 1998; Buckley 2005; Franks & Farquhar 2007). 

Stomatal conductance (gs), which is a measure of how much H2O is leaving (or CO2 

entering) through the stomatal pore per unit time, changes in response to 

atmospheric [CO2] fluctuations due to changes in pore size. Stomatal aperture 

decreases in response to increasing [CO2], hence decreasing gs, while the opposite 

response occurs with decreasing [CO2] with gs increasing (Wagner et al. 1996; 

Medlyn et al. 2001; Ainsworth & Rogers 2007; Franks & Farquhar 2007; de Boer et 

al. 2011). Water use efficiency (WUE) is the ratio of carbon assimilation (A) to 

transpiration (i.e. carbon gain to water loss), and stomata have evolved to respond to 

these environmental cues in a way that enhances the leaf’s WUE (Farquhar 1978; 
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Mott et al. 1997; Buckley 2005; Pou et al. 2008; Brodribb et al. 2009; Lawson & Blatt 

2014; Franks et al. 2015). The decrease in gs under high atmospheric [CO2] results 

in plant leaves reducing water loss through transpiration. Since CO2 assimilation 

remains high (due to high atmospheric [CO2] increasing internal CO2 concentrations 

(Ci)), an improvement in WUE can be obtained. When atmospheric [CO2] decreases, 

stomata open to increase CO2 flux into the leaf to maintain photosynthetic 

assimilation rate. The close relationship between gs and A has led to assumptions 

that Ci is the driver behind the stomatal [CO2] response (Mott 1988; Morison 1998; 

Ainsworth & Rogers 2007), linking stomata to the mesophyll demand for CO2. Thus, 

stomata are heavily interlinked with photosynthetic capacity, with leaves that have 

higher gs usually having higher A due to the greater availability of CO2 inside the leaf.  

Stomatal conductance can also be altered through changes to the anatomical 

characteristics of the stomata (Jones 1977; Woodward & Bazzaz 1988; Beerling & 

Chaloner 1993; Wagner et al. 1996). Plants growing under conditions favouring high 

conductance (low atmospheric [CO2]), for example, will usually have leaves with high 

stomatal density and smaller sized pores, which results in reduced stomatal pore 

depth enhancing gs (Franks & Farquhar 2007). Woodward pioneered the research 

into the effect of atmospheric [CO2] on stomatal density (Ds), starting with his 1987 

study (Woodward 1987) where he collected herbarium leaves collected over the last 

200 years and measured their Ds, showing that Ds has decreased as atmospheric 

[CO2] has increased over the same time period. A subsequent study, Woodward & 

Bazzaz (1988), compared Ds and carbon assimilation (A) in species over an altitude 

gradient, as elevated regions have lower atmospheric [CO2] than regions at sea 

level, and the study found increasing Ds as altitude increased (and atmospheric 

[CO2] decreased). Additional studies (Woodward & Kelly 1995; Ainsworth & Rogers 

2007; Franks & Beerling 2009a; Brodribb & Jordan 2011; Doheny-Adams et al. 

2012) only highlighted further the response of Ds to changes in atmospheric [CO2], 
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and how this change alters gs, influencing plant productivity and growth. For 

example, a recent study, Doheny-Adams et al. (2012), used genetic manipulation to 

test the effects of change in Ds and stomatal pore size (Ss) on plant function, finding 

that plants with low Ds and high Ss had lower gs, and thus lost less water. These 

plants also tolerated water stress better. However, there is evidence that increase in 

Ds does not manifest in an increase in gs or A (Zhao et al. 2015), with the cited study 

showing the increase in Ds as a response to low soil water content, still resulting in a 

minor increase in WUE. Tanaka et al. (2013) did show a positive impact of Ds on 

photosynthetic capacity but it did not result in biomass/yield changes, so it remain to 

be seen how important stomatal anatomy can be towards solving food security 

problems.  

Other studies have concentrated on the effect changes in stomatal characters and 

behaviour can have on the wider ecosystem. Medlyn et al. (2001) collated data from 

13 long term studies about the effect of elevated atmospheric [CO2] on European 

forests. The meta-analysis indicated that gs has decreased by 21% in response to 

elevated atmospheric [CO2], prompting a decrease in evapotranspiration rates, which 

leads to increasing moisture levels in the soil due to the plant not absorbing more 

water, ultimately leading to more soil runoff. Keenan et al. (2013) analysed long term 

measurements of ecosystem carbon and water exchange in boreal forests of the 

northern hemisphere, and found that WUE has increased, with this increase 

attributed to the rise in atmospheric [CO2]. The increase in WUE is brought about by 

stomatal closure due to high atmospheric [CO2], reducing the evapotranspiration rate 

while Ci is maintained owing to the increase in atmospheric [CO2]. This change in 

gas rates across the stomatal pore would have an impact on ecosystem hydrology 

similar to that outlined in the Medlyn et al. (2001) study previously. A study by de 

Boer et al. (2011) also developed models that showed similar observations on the 

response of stomata to increased atmospheric [CO2] over the past 200 years, which 
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highlighted the effect of reduced gs on ecosystem hydrology, as it showed ecosystem 

transpiration flux will decrease by 60 W.m-2 if current atmospheric [CO2] levels are 

doubled. Lee & Boyce (2010) also showed that changes in transpiration rates over 

ecosystem wide scales can alter rainfall patterns.  

The full impact of stomatal behaviour on leaf function cannot be fully appreciated 

without taking WUE into consideration. As previously mentioned, stomata respond to 

atmospheric [CO2] in a way that maximizes WUE, which at high atmospheric [CO2] 

means reducing the conductance to decrease transpiration rate, even if less air is 

diffusing in as that air would have a higher [CO2]. Therefore, stomata are also driven 

by hydraulic signals as it senses changing water status (Jarman 1974; Whitehead 

1998; Buckley 2005; Brodribb & Jordan 2008; Brodribb & Jordan 2011; Sack & 

Scoffoni 2012; Locke & Ort 2014). Guard cell turgor, which itself controls stomatal 

aperture, is dependent on leaf osmotic and water potential (Buckley 2005), with 

guard cells being directly affected by the leaf’s hydraulic supply. The association 

between the response of stomatal aperture and leaf hydraulic status has been 

confirmed before. A number of experiments (Rufelt 1963 and Raschke 1970, 

reported in Buckley 2005; Comstock & Mencuccini 1998) in which soil water content 

or water potential was altered via changing humidity levels, resulting in changes to 

leaf water balance, have reported the impact it has on stomatal behaviour. These 

studies often report an initial stomatal opening with decreasing humidity followed by 

closing afterwards, in what is termed the “wrong-way” response. This response is not 

new and has been known for decades as “Ivanov effect” (Ivanov et al. 1950) and has 

been associated with stomata for a long time (Huber 1923 and Stalfelt 1944 cited in 

McAdam & Brodribb 2014). Interestingly, Xu & Zhou (2008) found that Leymus 

chinensis plants that were grown under different soil water content replicated the 

Ivanov effect but through changes in Ds. Ds, which can be an indicator of gs, was 

found to increase as leaf water potential (Ψleaf) decreased (a result of drying or low 
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humidity). Ds then decreases as leaf water potential declined further, thus forming a 

response that mimics the Ivanov effect exhibited by individual stomatal apertures.  

Changing vapour pressure deficit (VPD) has also been shown to cause changes in 

epidermis turgor and this affecting the behaviour of nearby stomata (Mott et al. 1997; 

Mott & Franks 2001). Mott & Parkhurst (1991) attribute stomatal response to 

humidity to water loss rates from the leaf not to stomatal sensing of VPD changes. 

Subsequent studies reported similar findings (Monteith 1995; Franks et al. 1997), 

thus confirming the link between leaf hydraulics. However not all species in those 

studies conformed, and some reports have added a temporal and diurnal elements 

to stomatal response to hydraulic signals (Franks et al. 1997; Mencuccini et al. 

2000). Furthermore, Lake & Woodward (2008) linked changes in Ds (and ultimately 

gs) to changes in humidity triggered through Abscisic acid signal transduction 

pathways. Hence, stomatal behaviour is linked to feedback from hydraulic signals, 

and this itself affects the leaf’s water relations and especially hydraulic capacity, 

represented by factors like Kleaf, which is the flow of water through the leaf divided by 

Ψleaf. Kleaf and gs have been shown to have a positive relationship (Hubbard et al. 

2001; Meinzer 2002; Brodribb & Holbrook 2004; Nardini & Salleo 2005; Franks 2006; 

Brodribb & Jordan 2008), and this interaction helps improve leaf hydraulic viability, 

by restoring leaf water potential (Whitehead 1998) or preventing xylem cavitation 

under high conductive pressure (Brodribb & Holbrook 2004; Nardini & Salleo 2005).  

The relationship between the stomata and the leaf’s water relations status would 

mean that stomata would have a connection with leaf venation. Leaf veins are an 

extension of the xylem, and they distribute water around the leaf. Differences in vein 

architecture or structure affect leaf function (Mott & Buckley 1998; Brodribb et al. 

2005; Sack & Holbrook 2006; Noblin et al. 2008), with high vein densities (Dv) shown 

to correlate with higher A as well as Ds (Brodribb & Jordan 2011) as well as higher 

Kleaf. Sack & Frole (2006) conducted a study on 10 tropical tree species, showing 
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that Kleaf increases with xylem conduit diameter. They also divided the species into 

sun and shade adapted plants, and found that sun plants had larger xylem conduits 

and higher Dv than shade plants, with larger conduits meaning lesser resistance and 

thus higher conductance of water. This indicates that sun species, due to the 

availability of more light, will have higher A and so their leaves are adapted to 

service this high A rate with increased Kleaf, while shade plants, since their 

photosynthesis is limited due to lesser amount of light reaching those leaves, 

increase hydraulic resistance to preserve water status. Sack et al. (2008) showed 

that leaves with higher Dv had better tolerance to damage of xyelm conduits enabling 

them to withstand any damage that might hamper hydraulic performance. The effect 

of veins on Kleaf changing the water supply to the leaf and thus leaf water status, can 

ultimately affect stomatal behaviour, with gs shown to respond to Kleaf and vice versa. 

To illustrate the relationship between veins and stomata, Mott & Buckley (1998) 

found that areas of leaf surface with high Ds align with veins. Veins have a high water 

drawdown and so surrounding them with stomata can provide hydraulic signals 

quickly to the stomata to respond to, with one mechanism being that changes in vein 

water drawdown can affect epidermis cell turgor and this can consequently affect 

guard cell turgor (Mott & Buckley 1998). To provide further evidence that increased 

Dv is associated with improved stomatal function, Noblin et al. (2008) conducted an 

experiment where they used an artificial leaf consisting of parallel polymeric 

channels acting as veins. They showed that the distance between vein edges and 

the evaporative surface (which is the sub-stomatal air cavity in plant leaves 

(Pieruschka et al. 2010)) and Dv have a strong negative relationship. The negative 

relationship indicates that as Dv increases, water will travel a smaller distance to the 

evaporative surface before exiting the leaf, providing the necessary water supply to 

the stomata to sustain a higher transpiration rate. Boyce et al. (2009) further 

established the relationship between stomata characters and vein density by 
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showing that gs and Dv have a positive relationship in a selection of angiosperms, 

confiers and ferns, with angiosperms having the highest gs and Dv (Fig. 2 in Boyce et 

al., 2009). Brodribb et al. (2013) also illustrated a close positive relationship between 

Dv and Ds in a sample of 48 tree species (Fig. 2 in Brodribb et al., 2013). This 

highlights the close link between stomatal and leaf hydraulic characteristics. High gs, 

inflicting higher transpiration, forces the leaf to conduct more water (high Kleaf) in 

order to sustain the high transpiration pressure and keep Ψleaf balanced across the 

leaf, with more sophisticated veinal structure being a key innovation in doing that.               

With both veinal and stomatal characteristics responding and influencing leaf 

hydraulics as well as productivity, it is logical to suggest that leaf hydraulics and 

productivity are strongly correlated (Brodribb & Feild 2000; Sack et al. 2005; 

Brodribb et al. 2007; Locke & Ort 2014). A couple of studies have measured leaf 

photosynthetic efficiency (estimated by chlorophyll fluorescence) and Kleaf and found 

a strong correlation between the two (Brodribb & Feild 2000; Brodribb et al. 2005). In 

another study, carried out across a vast taxonomic range, Brodribb et al. (2007) 

found that Kleaf and A are positively correlated, and are both influenced by Dv and 

vein proximity to stomata. To summarize, there is a correlation between stomatal (Ds, 

Ss and gs) and veinal (Dv, vein proximity to stomata) characteristics in plants aimed 

at tolerating high hydraulic demand that is needed to facilitate higher A, with this 

network generally reacting to the environment in a way that maximizes WUE (as 

suggested by the strong stomatal response that attempts to maximize WUE). 

Maximizing WUE is done either by reducing water loss for the least reduction in 

photosynthetic rate manageable or increasing the photosynthetic rate enough to 

overcome any extra water loss. Subsequently, this interaction between A and 

anatomical characteristics has changed over geological time as plants responded to 

changing climate, and the changes to this hydraulic-photosynthetic coupling, 
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manifested by changes in stomatal and veinal characteristics, can be seen over 

evolutionary history. 

The evolution of leaf anatomical characteristics in response to changing 

atmospheric [CO2] over geological timescales 

The previous section described how stomatal anatomy and leaf vein characters 

influence each other and how these leaf characteristics responded to contemporary 

[CO2] changes, with changes to vein and stomatal characteristics subsequently 

affect leaf gas exchange and hydraulic capacity. Since these anatomical changes 

(Ds, Ss, Dv) can be instigated by changes in atmospheric [CO2] and variation in 

atmospheric [CO2] change over geological time as outlined above, this section will 

centre on the effect of varying atmospheric [CO2] over geological time on plant leaf 

anatomy, specifically the stomata and veins of plants leaves. Over geological time, 

stomata adapted to changing atmospheric [CO2] in a similar direction to the short 

term response (Franks et al. 2012; Franks et al. 2013), with reduced conductance at 

high [CO2] to reduce transpirational water loss, or increased conductance at low 

[CO2] to keep up photosynthetic assimilation. Already cited reports (Woodward 1987; 

Woodward & Bazzaz 1988; Woodward & Kelly 1995) first showed decreased Ds in 

herbarium leaves over the past 200 years, coinciding with rising atmospheric [CO2] 

levels. Beerling & Chaloner (1993) followed up by showing similar findings with 

preserved Quercus robur leaves collected over the last 200 years. Beerling (1996), 

using data from Salix herbacea leaves sampled over the same period to a model of 

stomatal response and showed a 60% decrease in Ds, while also showing increased 

rates of carbon assimilation (A) due to the increase in atmospheric [CO2] over the 

selected period. Beerling (1996) also included data from Pinus flexilis leaves that 

were preserved in packrat middens spanning the last 30000 years (to the last glacial 

maximum). Atmospheric [CO2] has been fluctuating since the last glacial maximum 

with a slight increasing trend, and the results from the P.flexilis data show A 
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increasing with increasing atmospheric [CO2], and gs decreasing correspondingly. 

Beerling & Woodward (1993) have also reported the trend of increasing A and 

decreasing gs since the last glacial maximum. Beerling & Kelly (1997) measured Ds 

changes in woodland flora and compared it with the data in Salisbury (1928), and 

found that Ds has decreased as CO2 levels continued to rise during that time. Franks 

et al. (2012) expanded on these findings by observing changes in guard cell nucleus 

and DNA size in response to changes in atmospheric [CO2] in leaf samples from 

different taxa, highlighting that plants adapt extensively to facilitate changes in Ds or 

Ss to respond to change in atmospheric [CO2]. However, this stomatal response, 

specifically the Ds response, to atmospheric [CO2] change has been shown to be 

species dependent (Knapp et al. 1994), dependant on adjacent change in 

environmental factors (Lake & Woodward 2008), or taxa dependent (De Boer et al. 

2016).  

Over geological time, particularly over the last 150 million years, anatomical changes 

in response to atmospheric [CO2] change were key in leaf evolution, particularly in 

angiosperms. Angiosperms became the dominant plant form over the past 150 

million years (Brodribb & Feild 2010), overlapping with a general trend of decreasing 

atmospheric [CO2], and the resulting [CO2] shortage, affecting the leaf’s 

photosynthetic rate, initiated adaptive feedback responses from plants through 

changes in leaf anatomical characteristics (Franks et al. 2013). There is now solid 

evidence that angiosperms have developed to have the highest gs among plants as 

they dominate the CO2 starved atmospheres (McElwain & Chaloner 1995; Brodribb 

et al. 2009; Franks & Beerling 2009b; Haworth et al. 2011; de Boer et al. 2012; 

Assouline & Or 2013). The high gs occurred through the combination of decreasing 

Ss and increasing Ds. Franks & Beerling (2009b) sampled the stomatal characters of 

fossil and extant leaves from species that emerged or evolved throughout geological 

history under different atmospheric [CO2]. The findings of their study illustrated that 
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Ss increases with atmospheric [CO2], while Ds decreases. The study also found a 

negative relationship between gs and rising atmospheric [CO2]. This means that Ss is 

inversely proportional to gs (see Fig. 4 in Franks & Beerling (2009b) for plots). 

Therefore, increases in gs as atmospheric [CO2] declined over the last 100 million 

years was due to increasing Ds combined with decrease in Ss. Assouline & Or (2013) 

explained that smaller stomata result in resistance forces around the pore being 

reduced, therefore allowing for more gas diffusion into the stomatal pore, while the 

smaller Ss results in shorter pore depth leading to a shorter diffusional path length for 

CO2 to cross. This anatomical response to atmospheric [CO2] change is linked to leaf 

attempts to optimize WUE (Assouline & Or 2013). Decreasing atmospheric [CO2] 

means that to reach a fulfilling photosynthetic activity, plants would require an 

increase in CO2 uptake. However, increasing CO2 uptake through the stomata comes 

at the expense of allowing more water to escape. The extra uptake of CO2 and 

increased A, as well as some biochemical improvements that were also the result of 

leaf adaptation to decreasing atmospheric [CO2], can help leaves improve WUE 

levels (Franks et al. 2013), with angiosperms (with higher Ds, gs and A than any 

other plant taxa) having the highest capacity to optimize WUE ratios (Brodribb et al. 

2009).             

To facilitate increased CO2 uptake, water supply to sites of evaporation also had to 

increase in angiosperms through evolutionary adaptations in their hydraulic 

architecture. Increased transpirational demands due to increased gs means that the 

leaf requires greater supply of water (Franks & Beerling 2009a), and consequently 

this led to the development of more complex venation patterns in the angiospermous 

leaf (Roth-Nebelsick et al. 2001). Dv increased significantly in angiosperms along 

with the matching increase in gs (Boyce et al. 2009; Brodribb & Feild 2010; Boyce & 

Zwieniecki 2012; de Boer et al. 2012). A study by de Boer et al. (2012) proposes a 

mechanism that illustrates how angiosperms revolutionized leaf hydraulic 
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architecture based on inner-leaf geometrical physics. The core of their hypothesis is: 

since higher Ds and lower Ss meant CO2 crosses shorter path lengths increasing 

conductance, this required a high Dv and elaborate veinal structure to keep greater 

water supply to the sites of evaporation, but this venation structure is also designed 

in a way to reduce water loss through the stomata. This is because the stomatal pore 

is most resistant to the substance with the shortest transport length. This means that 

increasing Dv to match the high Ds, increasing veinal networking and reducing the 

post-venous distance between vein endings and the pore would lead to water vapour 

traversing a shorter distance and thus encountering more resistance. de Boer et al. 

(2012) concluded that there is a critical Dv that most modern and more complex 

angiosperms reach that results in the post-venous water distance to the pore being 

shorter than the distance CO2 has to cross thus tipping the conductance rate towards 

CO2. Zwieniecki & Boyce (2014) showed that angiosperm leaves contain a high level 

of precision in placing their veins by measuring the ratio of the distance between 

veins to the distance between vein edge and stomata, and found that apart from 

basal clades, most angiosperms have a vein to vein distance/vein to stomata 

distance ratio that is close 1, stressing the importance of balanced water transport 

around the leaf that goes with sustaining the high hydraulic demands of the complex 

angiosperm leaf. These adaptations are facilitated by increasing Dv, and developed 

to limit water loss that occurs with the increased gs that angiosperms developed 

through the past 100 million years due to decreasing atmospheric [CO2] (Boyce & 

Zwieniecki 2012).  

Decreasing atmospheric [CO2] has put pressure on plants to select for those with 

high levels of Ci, through higher gs (and thus higher CO2 uptake), leading to higher A, 

with angiosperms achieving the highest gs values allowing them to achieve higher A 

(Brodribb & Feild 2000; Franks & Beerling 2009a). Hence, the evolution of more 

complex anatomical traits in angiosperms have allowed them to evolve higher A 
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capacities than other plant taxa (Boyce et al. 2009; Brodribb & Feild 2010; McElwain 

et al. 2016). Brodribb & Feild (2010), for example, estimated that high Dv had 

improved angiosperm assimilation capacity at low atmospheric [CO2] by 270% 

compared with other plant groups, while Boyce & Zwieniecki (2012) have determined 

that productivity had increased during the period of angiosperm ascendancy through 

geological history basing this on the amount of charcoal available from that period. 

Similarly, McElwain et al. (2016) also confirmed the relationship between increasing 

Dv and increasing gs, which conferred a competitive advantage for angiosperms over 

other taxa and lead to their diversification, by increasing the plasticity of their gas 

exchange by maintaining higher photosynthetic rates with declining atmospheric 

[CO2] due to their high gs and Dv. However, Franks & Beerling (2009a) have 

developed a model that estimates stable levels of productivity over the last 100 

million years due to the gradual decrease in atmospheric [CO2], which suggests that 

even though photosynthetic capacity in plants increased in response to declining 

atmospheric [CO2], the low atmospheric [CO2] levels might still have kept ecosystem 

wide-productivity at a constant. Ultimately, the innovation in angiosperms is that they 

kept a constant relative gradient for CO2 diffusion (Ci / atmospheric [CO2]) through 

leaf anatomical changes, specifically in stomata (Franks et al. 2013). The increase in 

gs (due to anatomical tweaking like changes in Ds and Ss) maintained the CO2 

gradient favourable to more conductance, and thus angiosperms improved their own 

competitive advantage ahead of other plants groups. Even though it shows stable 

productivity throughout geological time, the model by Franks & Beerling (2009a) still 

shows an increase in gs over geological time as well as greater photosynthetic 

capacity in plants. Boyce & Zwieniecki (2012) also illustrated that there is no direct 

photosynthetic advantage with Dv greater than 8 mm mm-2 to high, but there is a 

hydraulic advantage. Thus, increased hydraulic capacity due to higher Dv quenches 
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the high stomatal transpirational demand, and keeps the stomata open, preserving 

CO2 conductance levels.  

Overall, the key response to low atmospheric [CO2] is the preservation of a high 

WUE (Franks et al. 2013), as water availability is always one of the limiting 

environmental requirements for plants. So, the described changes in anatomical 

characteristics allowed plants to keep a high level of CO2 conductance, but to also 

adapt to the increased water demand that comes with the high conductance, and 

thus plants, mainly angiosperms, have evolved higher photosynthetic capacities to 

balance the high water demands. Low atmospheric [CO2] intervals throughout history 

have coincided with the emergence of some key taxa (Haworth et al. 2011), and this 

illustrates the impact of atmospheric [CO2] as a driver of plant function & evolution. 

Other aspects of plant response to atmospheric [CO2], like the biochemical reaction 

centring around the Rubisco enzyme, may have had a role to play in plant response 

to changing atmospheric [CO2], and the reported study by Franks & Beerling (2009a) 

incorporated the carboxylation efficiency of Rubisco, Vc max, into their model and 

showed that this variable responded to atmospheric [CO2] over geological time. 

Finally, anatomical evolution of the plant leaf also impacted leaf hydraulics, and the 

hydraulic aspect of plant leaves has not been investigated in an evolutionary 

perspective in response to ancient changes in atmospheric [CO2]. Generally, species 

with better hydraulic capacities are more successful (Haworth et al. 2011), and the 

anatomical adaptations reported by previous literature as outlined in this chapter 

point towards a higher hydraulic capacity, with angiosperms already shown to have 

higher Kleaf values than other plant taxa (Brodribb & Feild 2000) to match their more 

sophisticated anatomical characteristics. Changing atmospheric conditions are 

expected to lead to more droughts and water shortages and thus understanding 

response of plant leaf water use to changing environment is becoming more 

important. Future work must focus on the response of plant hydraulic capacity to 
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atmospheric [CO2] fluctuations over geological time and try and reconcile it with the 

responses of other plant leaf characters to atmospheric [CO2].   

Conclusions and Aims  

The driver of plant response to atmospheric [CO2] is to preserve WUE as this has 

been a feature of plant colonization of the terrestrial environment, and so future work 

should focus on how plant adaptation has influenced the leaf’s hydraulic capacity. 

The subsequent chapters will concentrate on determining plant hydraulic capacity in 

leaves of different taxa, but mainly in angiosperm species. Decreasing atmospheric 

[CO2] over the last 100-120 million years means angiosperms have had to adapt 

constantly, and some of the available data does show constant changes in Ds and Ss 

throughout geological history (Franks & Beerling 2009b; unpublished data), along 

with similar trends in venation, and these anatomical changes affecting the hydraulic 

demand of the leaf. This thesis will look at how those anatomical changes affected 

the leaf’s hydraulic capacity by determining the leaf’s hydraulic capacity, through E 

(the water flow into the leaf per unit time and area) or Kleaf and the response of those 

parameters to certain environmental stimuli. Species from different taxa or clades 

that emerged under different atmospheric [CO2] through geological history will be 

sampled, thus providing an inkling into how leaf hydraulic capacity contributed to 

plant response to changing atmospheric [CO2], linking changes in hydraulic capacity 

to precursor changes in leaf anatomy like Dv or Ds.  
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Chapter 2: Variation in leaf anatomical characters because of 

changing atmospheric CO2 concentrations in species of different 

taxa 

Introduction 

Plants depend on CO2 uptake for energy, changes in atmospheric [CO2] 

concentrations throughout earth’s history have had a great evolutionary effect on 

plants compared to other environmental factors (Berner 1997; Royer et al. 2004). 

Stomata facilitate the uptake of CO2 and exit of H2O, and atmospheric [CO2] change 

has been shown to affect these pores as well as assimilation rate (Cowan & 

Farquhar 1977; Morison 1998; Buckley et al. 2003). Exposing plant leaves to real-

time, in situ incremental change in atmospheric [CO2] leads to an increase in carbon 

assimilation levels and a decrease in stomatal conductance (gs). The decrease in gs 

is caused by closer of the aperture, leading to a decrease in the rate of H2O exit. A 

decrease in gs will also affect the rate of CO2 uptake, but since the air taken in will 

contain a higher concentration of CO2, carbon assimilation rate (A) remains high 

because of the increased concentration of CO2 inside the leaf (Ci), and this 

combination leads to a higher water use efficiency (WUE). On the other hand, 

subjecting the leaf to a reduction in atmospheric [CO2] decreases A due to the 

decrease in Ci, while gs increases as stomata open to increase the CO2 flux into the 

leaf and keep a high Ci and hence maintaining A.  

Plants growing under different atmospheric [CO2] or experience change in 

atmospheric [CO2] over several years respond in a similar way to plant leaves 

experiencing a direct, in situ change (like the one described above), and this is 

achieved by modifying the anatomical characters of the stomata over time 

(Woodward & Kelly 1995; Lake et al. 2001; Long et al. 2004; Ainsworth & Rogers 

2007; Lake & Woodward 2008). Under low atmospheric [CO2], leaves develop with a 
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higher stomatal density (Ds; number of stomata per unit area), with this usually 

corresponding with a decrease in the size of the individual stomatal pore (Ss) 

(Woodward & Bazzaz 1988; Miller-Rushing et al. 2009). High atmospheric [CO2] 

stimulates the development of lower Ds and high Ss. Increase in Ds combined with 

low Ss due to low atmospheric [CO2] increases the evaporative surface area of the 

leaf and results in higher gs, thus increasing CO2 uptake. On the other hand, high 

atmospheric [CO2] stimulates low Ds/high Ss and this reduces water loss due to 

decreased gs. Lake et al. (2001) demonstrate that mature leaves in Arabidopsis 

thaliana detect changes in atmospheric [CO2] and transmit this information to 

younger leaves, allowing the younger names to change stomatal development to 

adjust to the new [CO2] environment, and this mechanism is thought to occur within 

plant communities to adjust to environmental change. The leaf’s ability to alter 

stomatal characters in response to atmospheric [CO2] was shown to heavily affect 

leaf transpiration, rosette growth and tolerance to water shortage (Doheny-Adams et 

al. 2012), and this enables the leaf to maintain WUE. Atmospheric [CO2] change 

through glacial to evolutionary time-scales has a similar effect on plant leaves. First 

of all, rising atmospheric [CO2] over the past 200 years caused by the industrial 

revolution has been shown to affect the stomatal characters of leaf samples 

(Woodward 1987; Beerling & Chaloner 1993; Beerling 1996), and the reported data 

generally conform to the expected pattern of decreasing Ds  with some increase in Ss. 

This was expanded to investigating fossil leaves from the period that includes the 

last glacial maximum and up to the Miocene (Beerling & Woodward 1993; McElwain 

& Chaloner 1995; Kurschner et al. 2008), with similar observations reported. This 

change in stomatal characters was eventually also linked to the leaf’s attempt to 

improve WUE like it does in short term responses to changing atmospheric [CO2] 

(Beerling & Woodward 1993; Franks et al. 2012). 
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Significant differences in stomatal characters between taxa have been established 

for a long time (Salisbury 1928). This prompted interest into the evolutionary origins 

of different taxa and their anatomical characters, and how the response of these 

characters to changing atmospheric [CO2] over geological time and the impact that 

had on the evolution of the plant leaf. Work by Franks & Beerling (Franks & Beerling 

2009a; Franks & Beerling 2009b) showed that Ds is higher in fossilized leaves from 

periods of low atmospheric [CO2] compared to fossils from high atmospheric [CO2] 

periods, with Ss responding in concert with high Ss matching the low Ds and low Ss 

matching the high Ds, with this most prominent in the angiosperms (Brodribb et al. 

2009). Decrease in atmospheric [CO2] over the past 100 million years initiated a shift 

to low Ss/high Ds that enabled leaves to have lower diffusive gas exchange 

resistance around the pore and thus gas exchange sensitivity increased (Assouline 

& Or 2013). Species that evolved under low atmospheric [CO2], and thus develop 

these stomatal characters, can decouple gas exchange rate (the rate of CO2 uptake) 

from leaf evaporative area (Assouline & Or 2013), as low Ss/high Ds leads to reduced 

leaf evaporative area as a proportion of leaf surface area, leading to a gain in 

photosynthetic surface area. Improved thermal regulation and evaporative cooling 

capacities also be the result of optimised stomatal characters (Beerling et al. 2001; 

Osborne et al. 2004).  

These evolutionary changes in stomatal characters that led to increase in gs means a 

further hydraulic demand is imposed on the leaf. Hence, the leaf’s hydraulic features 

are thought to have also played a role in the evolution of the leaf in response to 

atmospheric [CO2]. Similar to the evolution of stomatal characters, increased vein 

densities (Dv) have been shown to be more prominent in angiosperms (Boyce et al. 

2009; Brodribb & Feild 2010; Boyce & Zwieniecki 2012), with high Dv also shown to 

correlate with higher assimilation rate in those studies. The distinction in anatomical 

features acquired by angiosperms is generally ascribed to declining atmospheric 
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[CO2] during the period of angiosperm emergence (mid to late-Cretaceous) with low 

atmospheric [CO2] imposing a selection pressure that drove the evolution of the 

angiosperm leaf (Franks & Beerling 2009b; Brodribb & Feild 2010; Boyce & 

Zwieniecki 2012; Franks et al. 2013). McElwain et al. (2016) scaled the relationship 

between anatomical traits (Ds, Dv) and gas exchange capacity in different taxa, and 

they found that the acquirement of higher gs in angiosperms conferred a competitive 

advantage for them by increasing their gas exchange plasticity and expanding their 

ecophysiological niche. 

The aim of this research was to elucidate the effect of atmospheric [CO2] change 

over geological time on plant leaf anatomical characters. Species from different taxa 

were selected, and the diversification age of their crown group was used as a 

temporal variable. Selecting species based on crown group age each species to 

correspond to the atmospheric [CO2] level during the emergence of that species 

ancestors, thus linking each species’ anatomical characters with the atmospheric 

[CO2] level during the emergence of each taxa. Ds and Dv were measured in the 

species selected and then compared to illustrate patterns of difference between taxa, 

group and crown group ages. Ultimately, results presented here would further clarify 

the influence of atmospheric [CO2] on Ds and Dv and to confirm the already 

discussed patterns of declining atmospheric [CO2] stimulating improvements in these 

characters that allowed certain taxa to prosper over others. A portion of the work 

presented here was conducted prior to the start of the thesis, but it was included to 

illustrate the full breadth of the data at hand and to solidify the base on which the rest 

of this thesis is built around, as the anatomical variation between species is key to 

unlocking the hydraulic and photosynthetic characteristics of the species investigated 

in the upcoming chapters. Finally, this effort can add to the understanding of how 

plants would respond to changing atmospheric [CO2] due to climate change and 

provide more areas for investigation (namely manipulating plant leaf anatomy) that 
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can help in the endeavour to improve plant productivity and response to climate 

change. 

Materials and Methods 

Plant material 

Species of varying taxa and evolutionary history were selected. The main selection 

factor to picking those species is the age of their crown group (the group that 

contains the species along with its relatives back to their most recent common 

ancestor; i.e. a species and all its descendants). Crown age is used here to link the 

species to environmental conditions that its group diversified under. This would link 

the evolution of species to environmental factors, specifically atmospheric [CO2], 

allowing for the testing of one of this thesis’ hypotheses that changes in atmospheric 

[CO2] influenced the evolution of the plant leaf. Variation in leaf characteristics 

between the species will be attributed to different levels of [CO2] in the atmosphere 

at the time of the crown group or species evolution, however the ecological and 

phylogenetic factors will also be highlighted. Species are listed below in alphabetical 

order, with information summarised in table 2.1 below. 

Butia capitata 

B.capitata is a palm that belongs to the Arecaceae family (Subfamily Arecoideae), 

which is the largest group of woody monocots. This group is native to South America 

where they grow in humid, warm, neo-tropical conditions (Cornwell et al. 2014). 

B.capitata is known to be a tough species that can withstand uncharacteristically low 

temperatures for this group of palms (Up to -10°C). Observed cells in the vascular 

systems of these palms remain metabolically active for a long time, with substantial  

thickening and secondary thickening occurring around the vascular system, allowing 

palms to have sustained growth and indefinite vascular functioning (Tomlinson 

2006), giving it significant competitive advantage in tropical regions. Crown group 
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Arecales, which is the order that B.capitata belongs to,  has been estimated to have 

diversified 130 mya (Magallón & Castillo 2009). Arecaceae diverged later, with its 

crown group age being estimated at 100 mya ago (Couvreur et al. 2011) up to 120 

mya (Tank et al. 2015). Crown group Arecoideae is thought to have emerged around 

73 mya (Couvreur et al. 2011), and the subfamily Cocoseae (which belongs to 

Arecoideae) estimated to be 63 mya old (Meerow et al. 2015). The crown age of the 

genus Butia has been estimated to be about 7 million years old (Couvreur et al. 

2011; Baker & Couvreur 2013; Meerow et al. 2015). 

Drimys winteri 

D.winteri is an evergreen tree native to the temperate montane forests of southern 

Argentina and Chile. It belongs to the subfamily Winteroideae of the family 

Winteraceae, a group of vessel-less, tracheid-using trees that occur in similar wet 

ecological conditions as D.winteri. These trees are considered primitive angiosperms 

due to their xylem not containing vessel elements (Feild et al. 2000). The leaves of 

Winteraceae have wax-covered, cutin-plugged stomata, thought to help the leaves 

constrict gas exchange to relief excess conductive pressure on their under-

developed xylem (Feild et al. 1998). These families belong to order Canellales which 

has been estimated to have diversified in the early to mid-Cretaceous, with most 

studies pinning its age at around 125-127 mya (Wikström et al. 2001; Magallón & 

Castillo 2009; Bell et al. 2010; Magallón et al. 2013; Thomas et al. 2014; Muller et al. 

2015; Massoni et al. 2015; Tank et al. 2015). Crown group Winteraceae is thought to 

have diversified in the late cretaceous (62 or 90 mya according to Muller et al. (2015) 

and Thomas et al. (2014) respectively). Consequently, those studies pin crown group 

Winteroideae at around 45 or 70 mya respectively. The genus Drimys is thought to 

have diversified 12 mya (Thomas et al. 2014) or 6 mya (Muller et al. 2015).   
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Ginkgo biloba  

G.biloba (The maidenhair tree) is a deciduous tree native to China that is the only 

extant species of the gymnospermous division Ginkgophyta, with leaves that show 

dichotomous venation. Fossil Ginkgo have been associated with riparian, disturbed 

environments with ample water supply and drainage (Royer et al. 2003), with the 

extant G.biloba found to have leaves that are almost identical to fossil G.adiantoides 

leaves that were associated with these habitats (Zhou 2009). This gave indications 

that Ginkgo represents an ancient form of competitive strategy, as current G.biloba 

traits (like long life span, late sexual maturity) are not competitive in modern 

disturbed habitats (Zhou & Zheng 2003; Royer et al. 2003) as they would be 

outcompeted by angiosperms. Thus, Ginkgo are considered to be an example of 

pre-angiospermous life strategy (Royer et al. 2003), as extant G.bilboa occupies 

temperate woodlands (Zhou & Zheng 2003) as opposed to what the Cretaceous and 

pre-Cretaceous fossils indicate (Zhou & Zheng 2003). Zheng & Zhou (2004) attribute 

this change in Ginkgo ecology to changing climatic conditions during the Cretaceous 

and Palaeocene. Family Ginkgoaceae has been estimated to have a stem group age 

as far back as 265 mya (Tank et al. 2015). Clarke et al. (2011) put the age of crown 

group Ginkgo diverging with Coniferae at 165 mya. Crane (2013) Mentions an 

estimated diversification age for Ginkgo at around 160 mya – 100 mya. 

Laurus nobilis 

Bay laurel (or bay tree), L.nobilis, belongs to the Laurus genus of evergreen trees of 

the Lauraceae family (Order Laurales). It is native to the Mediterranean basin. Crown 

group Laurales has been given varying estimates of crown ages, between 130-140 

mya (Wikström et al. 2001), ≈120 mya (Magallón & Castillo 2009; Bell et al. 2010; 

Michalak et al. 2010; Magallón et al. 2013; Tank et al. 2015), to ≈110 (Renner 2004; 

Massoni et al. 2015). Naumann et al. (2013) strays from these estimates to claim an 
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average stem group age of 77 mya for Laurales, however they do have a maximum 

estimate of up to 120 mya. Crown group Lauraceae has been estimated to have 

diversified around 60-70 mya (Michalak et al. 2010; Naumann et al. 2013), 93 mya 

(Tank et al. 2015), 104 mya (Magallón et al. 2013). Crown group Laureae has also 

been estimated to have diverged from Cinnamomumeae around 55 mya (Huang et 

al. 2016) 

Nageia nagi 

N.nagi is a coniferous, evergreen tree native to China and nearby parts of far east 

Asia belonging to the Podocarpaceae family (order Pinales). Podocarps are known 

as shade tolerant species with a diversity of leaf morphologies (Biffin et al. 2012), 

with examples of distichous leaf morphology or leaf flattening, which can be 

strategies to develop leaves capable of capturing light under overcompetitive 

conditions. Crown group Pinales has an age of around 260 mya (Clarke et al. 2011; 

Leslie et al. 2012; Magallón et al. 2013) up to 230 mya (Quiroga et al. 2016). Crown 

group Podocarpaceae has an age of 150-160 mya (Biffin et al. 2012), while Leslie et 

al. (2012) puts it at a slighter older age (between 150-200 mya). Quiroga et al. 

(2016) puts the diversification age of this group even higher at 230 mya, while 

Magallón et al. (2013) estimates the opposite by pinning the age of Podocarpaceae 

at 101 mya. Biffin et al. (2012) and Quiroga et al. (2016) also provide an age for 

crown group Nageia at around 48-50 mya. 

Osmunda regalis 

The royal fern (O.regalis) is a deciduous fern that grows in dark, humid, water 

saturated conditions that is native to most of the old world. It belongs to the family 

Osmundaceae, the only extant family of order Osmundales (Metzgar et al. 2008). 

Ferns are primitive vascular plants, thought to have diversified as far back as the 

Devonian (Clarke et al. 2011; Magallón et al. 2013). They have been used to 
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compare evolutionary changes in plant leaf function across geological time (Brodribb 

& Holbrook 2004; Brodribb & McAdam 2011; McAdam & Brodribb 2012; McAdam & 

Brodribb 2015; Martins et al. 2015), as these evolutionary changes are thought to 

have caused a big competitive dent for ferns when angiosperms diversified in the 

Cretaceous (Schneider et al. 2004). Crown group Osmundaceae has been estimated 

to have diversified between 300 mya (Schneider et al. 2004; Schuettpelz & Pryer 

2009; Schneider et al. 2015) and 250 mya (Carvalho et al. 2013; Grimm et al. 2015). 

Crown group Osmunda has an estimated age of 199 mya (Schuettpelz & Pryer  

2009), 133-143 mya (Grimm et al. 2015) and 120 mya (Schneider et al. 2015).   

Passiflora caerulea 

Blue Passionflower (P.caerulea) is a tendril vine, deciduous species native to tropical 

South America. Passiflora are the largest genus of the Passifloraceae family 

(Muschner et al. 2012), and this family belongs to the diverse order Malpighiales 

(APG 1998; APG 2016), which is an ecologically important group as 40% of 

understory tropical tree species belong to Malpighiales (Xi et al. 2012), and almost 

6% of all angiosperms (Davis et al. 2005). Thus, P.caerulea can be a good 

representative of a competitive angiosperm from high productivity environments, and 

would provide good comparison to species used in this thesis from other taxa. Crown 

group Malpighiales has an age of 100-120 mya (Davis et al. 2005; Xi et al. 2012; 

Tank et al. 2015). Wikström et al. (2001) had a younger estimate of 85 mya, similar 

to Magallón & Castillo (2009) (89 mya), while Bell et al. (2010) pins Malpighiales 

diversification to the mid-Cretaceous as well (90-100 mya). Passifloraceae has an 

age of 110 mya according to Davis et al. (2005), which is older than a number of age 

estimates for Malpighiales. A slightly younger age (99 mya) is given by (Tank et al. 

2015), but this a stem group age. Xi et al. (2012) provide an estimation for 

Passifloraceae of 50 mya (stem-group) and 26 mya (crown-group). Muschner et al. 

(2012) present ages for different clades and crown groups that diverged from 
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Passifloraceae (65 mya), including estimating the diversification and radiation of 

crown group Passiflora at around 17 mya. 

Vitis vinifera 

Common Grapevine (V.vinifera) is a species of deciduous climbers that is heavily 

cultivated, native to areas in southern Europe and the middle and near east. It 

belongs to the family Vitaceae, the only family of order Vitales. Vitis have wide 

vessels (Lovisolo & Schubert 1998) that can withstand huge conducting pressure as 

observed during spring refilling of vessels (Sperry et al. 1987), making the 

investigation of its hydraulic capacity interesting. Crown group Vitaceae has 

estimated ages of 117-108 mya in some studies (Wikström et al. 2001; Bell et al. 

2010; Magallón et al. 2013; Tank et al. 2015), down to 95-90 mya in others 

(Magallón & Castillo 2009; Wen et al. 2013; Wan et al. 2013; Liu et al. 2016). Crown 

group Vitis has a diversification age of 28 mya (Wan et al. 2013), up to 32-38 mya 

(Wen et al. 2013; Liu et al. 2016).  

Vicia faba & Phaseolus vulgaris 

Fava beans (V.faba) is a leguminous crop that’s part of the pea family, Fabaceae 

(order Fabales). French bean (P.vulgaris) is a herbaceous leguminous crop that is 

part of the same family as V.faba, both belonging to subfamily Faboideae. Those 

species were picked to represent modern, productive crops. Crown group Fabales 

has an estimated age of 80 mya (Wikström et al. 2001) to ≈ 90 mya (Bell et al. 2010; 

Koenen et al. 2013), with (Magallón & Castillo 2009) putting the stem age more at 

110 mya. Crown group Fabaceae diversified around 60 mya (Wikström et al. 2001; 

Lavin et al. 2005) or 70 mya (Tank et al. 2015) up to 90 mya (Hohmann et al. 2015). 

Hohmann et al. (2015) estimated subfamily Faboideae (both V.faba and P.vulgaris 

belong to it) to have diversified 73 mya down, but other estimates are 59 mya 

(Koenen et al. 2013) or ≈ 50 mya (Cannon et al. 2015). Lavin et al. (2005) offer 
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estimation for diversification ages for the crown group of Vicia & Pisum at 17 mya, 

while also estimating the age for crown group of Phaseolus & Vigna at 10 mya. 

Zea mays 

Corn (Z.mays varieties) is a grain crop plant that is the result of human breeding of 

its ancestor teosinte, native to the new world (mainly Latin America).  Zea belongs to 

the group of C4 grasses in the tribe Andropogoneae (Panicoideae), family Poaceae, 

order Poales, giving it a high rate of productivity that is known in C4 grasses. Age 

estimations for crown group Poales vary but mostly is pinned around 100-110 mya 

(Paterson et al. 2004; Magallón & Castillo 2009; Magallón et al. 2015) or 80-100 mya 

(Merckx et al. 2008; Mennes et al. 2013; Mennes et al. 2015). Crown Poaceae 

diversified in the late Cretaceous, with estimates from ≈ 80 mya to 68 mya 

(Bouchenak-Khelladi et al. (2009) & Bouchenak-Khelladi et al. (2014) respectively). 

The younger age of 59 mya has been estimated by (Magallón et al. 2015). The 

crown group of the BOP/PACMAD clade that contains Z.mays as well as species like 

Oryza sativa has been estimated to have emerged at around 60-70 mya (Paterson et 

al. 2004) or later at around 50 mya (Vanneste et al. 2014). Subfamily Panicoideae 

diversified during the early Miocene, 23-20 mya (Cotton et al. 2015). However 

Bouchenak-Khelladi et al. (2009) pin Panicoideae divergence (tribe Andropogoneae) 

to an earlier date, 29 mya. 

CO2 concentration at age of crown group diversification 

The GEOCARBSULF model (Fig.1.1 and 1.2) adapted from Berner (2006, 2008) will 

be the template used to infer past atmospheric [CO2]. Table 2.1 below shows the 

species sampled with their crown group age and the corresponding atmospheric 

[CO2] at the time of crown group diversification. GEOCARBSULFvolc maximum and 

minimum values are given, plus the average of those values, with the average value 

being used for the rest of the thesis. Atmospheric [CO2] values from COPSE and 
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paleo-proxy (Fig. 1.1) are also presented for comparison. To give a standardised age 

group for the species, the crown age of the genus was used during data analysis and 

presentation throughout the thesis. Hence, species like L.nobilis, that has no genus 

crown group age estimation, had the crown group age of its genus estimated based 

on its subfamily age estimation (55 mya), with an average atmospheric [CO2] level 

taken for the period after subfamily origin, and so on. Average age estimates are 

presented to compensate for lack of exact consensus in the literature. 

Species Mean 

crown age 

(mya) for 

subfamily/ 

tribe 

 

Mean 

crown 

age 

(mya) for 

genus 

Atmospheric 

[CO2] at crown 

genus (ppm) 

based on 

GEOCARBSULF 

volc maximum 

Atmospheric 

[CO2] at crown 

genus (ppm) 

based on 

GEOCARBSULF 

volc minimum 

Atmospheric 

[CO2] at crown 

genus (ppm) 

based on 

GEOCARBSULF 

volc average 

Atmospheric 

[CO2] at 

crown genus 

(ppm) based 

on COPSE 

model 

Atmospheric 

[CO2] at 

crown genus 

(ppm) based 

on 

paleoproxies 

Butia capitata 63 7 285 140 210 405 280 

Drimys winteri 57 9(6-12) 285 140 210 405 280 

Ginkgo biloba 165 160-100 600-1500 200-400 750 1000-1200 1100-650 

Laurus nobilis 55 <55   450 130 290 750 500 

Nageia nagi NA 49 520 150 335 860 880 

Osmunda regalis NA 199-120 750-1300 150-375 650 700-1100 1600-700 

Passiflora caerulea NA 17 285 115 200 475 270 

Vitis vinifera NA 33 330 105 215 725 725 

Vicia faba  17* <17 285 115 200 435 260 

Phaseolus vulgaris 10** <10 285 135 210 400 280 

Zea mays 25 <25 300 100 200 480 280 

*Age of divergence for Vicia-Pisum clade. **Age of Phaseolus-Vigna clade. 

Stomatal density (Ds) 

Stomatal density (Ds) was estimated by taking the impression of the abaxial side of 

leaves using Xantopren polysiloxane-based precision dental material (Hanau, 

Germany), as suggested by (Weyers & Johansen 1985) along with the accompanying 

activation liquid that caused the dental material to harden. A mixture of the dental 

Table 2.1, Range of species sampled for this species with estimations of subfamily and genus 

crown group age and the corresponding atmospheric [CO2] according to the models presented in 

Fig. 1.1. 
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material with the activation liquid was prepared in a clear plastic petri dish. The leaf 

was then cut and its abaxial surface was immediately placed on the mixture and left 

until the mixture completely hardened (few seconds to a min, depending on how much 

activation liquid is added). The leaf needed to be placed on the mixture quickly so that 

the mixture does not solidify before an impression of the leaf was indented into the 

dental material. After the mixture solidifies, ensuring a leaf impression was produced, 

the leaf was removed and nail varnish was applied to the negative xantropen 

impression and left for about 30 seconds to dry. A sellotape was then placed on the 

dry nail varnish, and when the sellotape is removed the nail varnish layer was 

transferred to the surface of the sellotape. The positive nail varnish impression was 

stuck to a microscope glass slide, and was studied under an Olympus BX60 

microscope. The position on the leaf where stomatal counts were taken was chosen 

randomly. A photograph of the position chosen was taken using an eye piece camera 

(Bresser MicroCam 5.0MP, Rhede, Germany) in conjunction with the BX60 

microscope and the photograph then transferred to a computer. The stomata were 

counted in silico. The area of the photography was estimated using a 1 mm graticule 

slide so that Ds could be measured accurately and converted into mm-2. 

Vein density (Dv) 

 A leaf clearing technique (adapted from original protocol in Scoffoni et al. 2011) was 

used to remove epidermal tissue and stain the vein structure of each leaf, with veins 

becoming clearer and easier to see. Leaves were chemically cleared using an 

aqueous solution of 5 NaOH. Leaves were left in the solution until they appeared 

transparent, this varied between 2 and 7 days depending on the species (tougher 

tissues taking considerably more time). Once leaves were transparent they were 

rinsed with H2O and set aside for 30 min to dry. Ethanol (EtOH) dilution series was 

used to bring specimens up to a level for staining. Leaves left in each dilution (20%, 

40%, 80%, 100%) for approximately 5 min. After the 100% dilution each leaf was 
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covered in 1% Safranin (1g safranin/100ml of 100% EtOH) and left to soak for 5 to 15 

min (dependant on tissue delicacy). After being rinsed with 100% EtOH, the leaves 

were covered in 1% Fast green (1g fast green/100ml of 100% EtOH) for seconds and 

then rinsed again with 100% EtOH. Reverse dilution series (100%, 80%, 40%, 20%) 

was used before placing specimens in H2O to allow excess stain to be removed.  A 

photograph of the position chosen was taken using an eye piece camera (Bresser 

MicroCam 5.0MP, Rhede, Germany) in conjunction with the BX60 microscope and the 

photograph then transferred to a computer. Dv was estimated in silico using ImageJ 

(Schneider et al. 2012). The area of the photograph/image was estimated using a 1 

mm graticule slide so that Dv could be measured accurately and converted into mm-2. 

Analysis of data 

Figures and statistical analysis was conducted in R software (R Core Team (2014). 

R: A language and environment for statistical computing. R Foundation for Statistical 

Computing, Vienna, Austria. URL http://www.R-Project.org/.). Normality was checked 

by plotting a generalized linear model and inspecting residual plots. Differences 

between species in Dv and Ds were anaylsed via a linear mixed-effects model 

(package lme4 and nlme), with the Dv or Ds as the variable, Species as the factor 

and the individual as the source of random variation. The model took the following 

form:  

 

Where Fvs is the either the variable Dv or Ds, Sp is the treatment, Is is the random 

effect of the individual, and εivs represents the residuals. Regression analysis was 

carried in R using linear modelling (lm). The model was formulated to predict the 

significance of a linear relationship between the two variables in the plot in the form: 

 

Fvs = μ + Sp + Is + εivs 

y = mx + c 

http://www.r-project.org/
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Where y (predicted) and x (predictor) are the y-axis and x-axis variables respectively, 

and m is the slope of the relationship, and c is the y-axis intercept. m represents the 

direction of the relationship (negative or positive). R2 values and p values were 

obtained from the analysis output and used to interpret significance of relationships. 

Results 

Ds was significantly higher in P.caerulea and L.nobilis than all other species 

(p<0.05), while P.roebellenii and B.capitata also had Ds values significantly higher 

than all other species (p<0.05) except L.nobilis and P.caerulea (Fig. 2.1). There was 

no significant difference between the rest of the species (p>0.05). Dv increases in 

species through geological time and the increase sharpens as [CO2] started to 

decrease from about 150 mya onwards (Fig. 2.2). However, there is a drop in Dv in 

V.faba and especially Z.mays afterwards. P.caerulea, L.nobilis and to a lesser extent 

D.winteri all had significantly higher Dv than all other species (p<0.05). G.biloba, 

N.nagi, O.regalis and V.vinifera had significantly lower Dv values than the other 

species (p<0.05).  

 



48 
 

 

 

 

 

Figure 2.1, The heterogeneity Ds (Stoma mm-2) between species with different crown ages 

(in brackets). Species crown age is used to link the evolution of the species to the [CO2] in 

the atmosphere at that specific time (see Fig. 2.1). 3 Leaves were sampled for each 

species. An impression was taken off the abaxial side of the leaf and put onto a 

microscope slide enabling, after which an image of the impression was taken under the 

microscope. The ANOVA statistical test was applied to a linear mixed effects model of the 

data to ascertain statistical differences in Ds between species. The Fig. helps illustrate the 

statistical differences between the species, with species sharing the same letter above 

them having no significant differences in Ds values.  
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Figure 2.2, The heterogeneity Dv (mm mm-2) between species with different crown ages (in 

brackets). Species crown age is used to link the emergence/evolution of the species to the 

concentration of CO2 in the atmosphere at that specific time. 3 Leaves were sampled for 

each species. Using a protocol adapted from (Scoffoni et al. 2011), the leaf was cleared and 

stained with dye, then put under a microscope where an image was taken, with Dv calculated 

in silico. The ANOVA statistical test was applied to a linear mixed effects model of the data to 

ascertain statistical differences in Dv between species. The Fig. helps illustrate the statistical 

differences between the species, with species sharing the same letter above them having no 

significant differences in Dv values. 
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Figure 2.3, The relationship between Ds (stoma per mm-2) and Dv (mm mm-2) with 

atmospheric [CO2] concentration (ppm) at the time of species crown age. Relationships in 

plot were investigated using linear regression (n=3, error bars=standard error). An 

impression was taken off the abaxial side of the leaf and put onto a microscope slide 

enabling, after which an image of the impression was taken under the microscope. Using a 

protocol adapted from (Scoffoni et al. 2011), the leaf was cleared and stained with dye, then 

put under a microscope where an image was taken. Ds and Dv were calculated in silico. 

Atmospheric [CO2] are taken from Table 2.1. (a) Ds vs. atmospheric [CO2] concentration at 

the time of taxa divergence (R2=<0.2, p>0.05, Ds = (-0.1525) CO2 + 162.2784). (b) Dv vs. 

atmospheric [CO2] concentration at the time of taxa divergence (R2=0.27, p>0.05, Dv = (-

0.004331) CO2 + 4.981841). (c) Ds vs Dv (R2=0.54, p<0.05, Ds = (30.86) Dv - 2.994).  

(c) 

 

(b) 

 

(a) 
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There was no significant relationship between Ds (R2=<0.2, p>0.05) and Dv (R2=0.27, 

p>0.05) with corresponding atmospheric [CO2] levels assigned per crown group age 

(Fig. 2.3). A significant correlation (R2=0.54, p<0.05) was found between Ds and Dv, 

strengthening the assumed relationship and dependence between these two leaf 

characters. Further analysis (Fig. 2.4) showed that higher Ds and Dv is an 

angiospermous characteristic.  

  

 

 

 

 

Figure 2.4, The relationship between Ds (stoma per mm-2) and Dv (mm mm-2) with 

atmospheric [CO2] concentration (ppm) at the time of species crown age. Different 

coloured dots represent the plant division each species belongs to. The figure aims to 

illustrate variation between Angiosperms, Gymnosperms and Ferns in the measured 

parameters. (a) Ds vs. atmospheric [CO2] concentration at the time of taxa divergence 

(R2=<0.2, p>0.05, Ds = (-0.1525) CO2 + 162.2784). (b) Dv vs. atmospheric [CO2] 

concentration at the time of taxa divergence (R2=0.27, p>0.05, Dv = (-0.004331) CO2 + 

4.981841). (c) Ds vs Dv (R2=0.54, p<0.05, Ds = (30.86) Dv - 2.994).  

 

(c) 

 

(b) 

 

(a) 
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Discussion  

Generally, species that emerged under lower atmospheric [CO2] have leaves that 

exhibit higher Ds and Dv, but this was not consistent. There was a significant drop in 

Ds for D.winteri even though it emerged later than species with high Ds like 

P.caerulea, however atmospheric [CO2] was slightly higher (210 ppm) when 

D.winteri emerged compared with earlier periods in the Miocene (200 ppm at around 

17 mya). This reduction in Ds might be a mechanism to reduce water uptake into the 

leave via restricting transpiration rate through the stomata, as this can be associated 

with the assumed function of the cutinous stomatal plugs found on D.winteri leaves, 

believed to be a mechanism to compensate for the lack of water conducting vessels 

in D.winteri wood (Feild et al. 2000). However, the role of those plugs has been 

challenged (Feild et al. 1998), with the high Dv of D.winteri shown here (Fig. 2.2) 

goes against the assumption of reduced leaf hydraulic capacity in D.winteri due to 

lack of vessels in the woody parts. A previous data set from our lab does show 

D.winteri exhibiting higher Ds values (Matthews & Lawson, unpublished data), further 

alluding the possibility of maintained higher hydraulic conductivity by the leaf. Low Ds 

noticed in V.vinifera is also perplexing as it is comparable with Ds values in non-

angiosperms, however it can be speculated the use of V.vinifera as a crop 

throughout human history, leading to selective breeding, would have changed 

original characteristics of the V.vinifera leaf. The low Ds values of V.faba and Z.mays  

can also be  to human-inflicted changes that might have occurred to them as crop 

species. Reducing Ds (and hence gs), coupled with increasing productivity, can be a 

characteristic of breeding for higher WUE which is an important crop trait that 

breeders/farmers select for (Ainsworth & Rogers 2007; Doheny-Adams et al. 2012). 

Results for Dv (Fig. 2.2) show a slightly leaner response as species with a younger 

crown group age usually accompanied by low atmospheric [CO2] and higher Dv. The 

exception is seen towards the end in Z.mays and V.faba, but again it can be 
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attributed to breeding practices in those species trying to lessen crop water 

consumption and achieve more effective use of scarce water resources, or due to 

the C4 photosynthetic pathway in Z.mays which means the Z.mays leaf is more 

adapted to low atmospheric [CO2] biochemically. V.vinifera is known as a species 

with high hydraulic capacity, yet here it has significantly lower Dv than other species. 

However, V.vinifera has very wide vessels (Lovisolo & Schubert 1998) which might 

compensate for the low Dv.  

Angiosperms tend to exhibit higher densities of veins and stomata compared to the 

other taxa (Fig. 2.4), and this is consistent with literature (Boyce et al. 2009; Boyce & 

Zwieniecki 2012; Zwieniecki & Boyce 2014; McElwain et al. 2016). The significant 

correlation between Ds and Dv in Fig. 2.3(c) suggests that these two anatomical traits 

influence each other, with higher conductance as a result of increased Ds requiring a 

high Dv to match its demand (Fiorin et al. 2015). P.caeurlea, which is a good 

example of a species from high productivity environments (Xi et al. 2012), and the 

data show that it has the highest Ds and Dv from the sampled species, indicating 

higher productive and hydraulic capacities. N.nagi, despite emerging in low [CO2] 

environments compared to other non-angiosperms, has low densities of veins and 

stomata, but it is characterized as a shade plant (Biffin et al. 2012), and hence the 

lower productivity associated with low light environments can explain the low 

anatomical densities of N.nagi.  

Conclusion  

Decreasing atmospheric [CO2] over the last 100 million years or so has put a 

selection pressure on plants to maintain productivity (Bateman et al. 1998), leading 

to anatomical innovations (like increase in Ds) which maximized CO2 intake to keep 

productivity up. High gs (due to high Ds) increases water demand by the leaf (Buckley 

2005), which instigated an increase in Dv and thus improved water supply, enabling 

the plant leaf to maintain a healthy WUE (Brodribb et al. 2009; Franks & Beerling 
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2009a; Assouline & Or 2013). The co-evolution of vein and stomatal characters, as 

plants adapted to low atmospheric [CO2], spurred plant evolution (Fig. 2.4) as it 

permitted plant leaves to overcome CO2 starvation by increasing CO2 uptake and to 

handle the repercussions of higher CO2 uptake like higher water demand, leading to 

the emergence of angiosperms, the most productive and dominant taxa of plants on 

the planet (Feild et al. 2009; Boyce & Zwieniecki, 2012). Increased water demand 

would manifest in an increase in the hydraulic capacity of the leaf, which would be 

investigated in the following chapters among other functional characteristics that 

would be effected by improvements in anatomical characters, like flexibility of 

stomatal behavior and the dynamic responses of gas exchange parameters.  
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Chapter 3: Functional analysis of leaf hydraulics and gas 

exchange for species with different crown ages 

Introduction 

Most previous work on the influence of past climatic changes on plants has centred 

on the response of plant leaf anatomy to change in atmospheric [CO2] (Woodward 

1987; McElwain & Chaloner 1995; Franks & Beerling 2009b). The anatomical 

evolution of the plant leaf, especially in angiosperms, reflects a tendency towards 

improving leaf gas exchange through the stomata to achieve higher WUE (Beerling 

& Woodward 1993; Beerling 1996; Brodribb et al. 2009; Boyce & Zwieniecki 2012). 

Over geological time, stomata have responded in a similar fashion to long term 

change in atmospheric [CO2]. Plants that evolved under low atmospheric [CO2] 

increased their gs via increasing their stomatal density (Ds), with increasing Ds also 

linked with a corresponding reduction in stomatal size (Ss) (Woodward & Kelly 1995; 

McElwain & Chaloner 1995; Franks & Beerling 2009b). Whereas in plants that 

evolved during periods of high [CO2], the reverse is observed with these species 

having low gs due to them retaining a high Ss/low Ds stomatal characters that lead to 

a reduction in gs. The development of high Ds/low Ss characteristics was mostly 

prominent in angiosperms leading to their high gs values compared to other taxa 

(Feild et al. 2004), and which subsequently explains their higher photosynthetic 

capacities (Brodribb et al. 2005; McElwain et al. 2016).  

Impact of stomatal acclimation affects the water status of the leaf (because changing 

gs alters the rate of H2O exchange which changes hydraulic demand on the leaf), 

and so an evolutionary trend in leaf hydraulic features is observed alongside this 

stomatal change, manifested by modifications to leaf vein characteristics. The 

increase in gs in angiosperms was matched by an increase in vein density (Dv), in 

order to facilitate the expected increase in hydraulic demand imposed by high gs  
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(Beerling et al. 2001; Brodribb et al. 2007; Noblin et al. 2008; Boyce et al. 2009; de 

Boer et al. 2012; Zwieniecki & Boyce 2014; Fiorin et al. 2015). Chapter 2 elucidated 

the relationship between stomatal and veinal characters between each other and 

atmospheric [CO2], and found a general trend of increasing densities in low [CO2] 

environments. It also found a strong correlation between the two anatomical 

variables, Ds and Dv.    

This indicates the strong relationship, and probable correlation, between leaf gas 

exchange and hydraulic capacity (Brodribb et al. 2005; Brodribb et al. 2007). 

Brodribb & Feild (2010) showed that increased Dv led to an increase in 

photosynthetic capacity in plants over geological times, while there is data showing 

strong correlation between Ds (i.e gas exchange) and Dv (i.e hydraulic capacity) 

(Brodribb et al. 2013) with other studies (Brodribb & Feild 2000; Brodribb et al. 2005) 

confirming this relationship in different types of plant taxa, confirming the findings in 

Chapter 2. Leaf hydraulic conductance (Kleaf) was shown to be higher in angiosperms 

than any other taxa (Brodribb & Holbrook 2004; Brodribb et al. 2005; Sack & 

Holbrook 2006), and shown to be associated with anatomical characteristics of the 

leaf mesophyll and epidermis (Aasamaa et al. 2001). Changing stomatal size and 

density have also been assumed to change stomatal behaviour and speed of 

response, with Drake et al. (2013) demonstrating that the stomatal opening response 

is negatively correlated with Ss but positively correlated with Ds. Thus, high Ds/low Ss 

species are more equipped to achieve higher photosynthetic gas exchange rates 

through a faster in gs in response to environmental variables, with Raven (2014) 

showing how stomatal size can affect guard cell function. However this does not 

always lead to higher WUE (Drake et al. 2013).  

The relationship between smaller stomata and quicker opening/closing responses is 

not always consistent and can depend on other environmental conditions. 

Angiosperms have been shown to differ in their gs response to other taxa (Brodribb & 
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Holbrook 2004) under dry conditions, showing a delay in their stomatal closing 

response, with this behaviour thought to be a mechanism to maximize gas exchange 

capacity, relying on xylem investment and complex venation to withstand hydraulic 

demand (Brodribb & Holbrook 2004). This is evidenced by higher Dv found in 

angiosperms, and its correlation with higher assimilation rates. Lawson & Blatt 

(2014) also show that under water stress, the advantage of the high Ds/low Ss 

characteristics can be reduced. A study has also found an increase in gs response 

with increase Ss in an Arabidopsis ecotype (Monda et al. 2016), so the high Ds/low Ss 

mechanism does not always result in higher gs values. Franks & Farquhar (2007) 

also found stomatal responses to be correlated with guard cell and aperture shape 

rather high Ds or low Ss. McAusland et al. (2016) also found no correlation between 

Ds and stomatal response speed in elliptical shaped guard cells, but the correlation 

was observed in dumbbell shaped stomata. The differences in response speeds has 

been attributed to climate, with most species that have shown faster response 

speeds in those studies being graminoid grasses that thrive in dry climates (Vico et 

al. 2011). Elliott-Kingston et al. (2016) also found no strong correlation between low 

Ss/high Ds pattern and stomatal response in varying taxa. Hence, relationship of 

stomatal anatomy with stomatal behaviour is still unclear and requires further 

investigation. 

This chapter aims to quantify the hydraulic capacity of species from varying taxa in 

response to environmental stimulus. Also, leaf stomatal and photosynthesis 

response to light will also be assessed. The chapter aims to link leaf hydraulic and 

gas exchange capacities in species of varying taxa, and subsequently link the 

variation in functional capacity to leaf anatomical characters illustrated in Chapter 2. 

The species were selected based on crown group ages as per Chapter 2. Species 

were picked to represent a wide geological time frame and that incorporated different 

atmospheric [CO2] during these periods. This study involved measurement of 
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hydraulic flow (E) or Kleaf, as well as gas exchange parameter like A and gs. The 

results of this research will provide insight into how plant species will respond to 

future climatic changes in atmospheric [CO2]. The research also aims to expand the 

knowledge of the relationship between leaf stomatal behaviour and leaf hydraulic 

and productive capacities. 

Materials and Methods 

Plant material 

Species that were sampled for this study were picked based on crown group age 

and taxa as outlined in Chapter 2. They were: Butia capitata; Drimys winteri; Ginkgo 

biloba; Laurus nobilis; Nageia nagi; Osmunda regalis; Passiflora caerulea; Vitis 

vinifera. 

Measurement of E and Kleaf 

Sack & Scoffoni (2012) outlined a set-up to measure plant leaf hydraulics via the 

evaporative flux method (also see Flexas et al. (2013)), and a variation on the 

protocol and methods of Sack & Scoffoni (2012) was used (Fig. 3.1). A leaf was cut 

under water at the petiole and then connected to water filled tubing whilst 

maintaining the cut petiole and tubing under water. This is to ensure a continuous 

column of water inside the leaf petiole with no air bubbles infiltrating. To make sure 

the leaf-tubing connection was sealed, water proof oil grease (Dow Corning High 

Vacuum Grease, USA) was applied around the petiole-tube connection to prevent air 

entering the tubing and losing the water column. The tubing draws water from a 

cylinder or small beaker that was placed on a recording sensitive balance from 

Sartorius (Sartorius CP | GemPlus Series, Sartorius, Goettingen, Germany). The 

balance was linked to a computer that records balance measurements at 30 seconds 

interval. The leaf, after it was connected to tubing, was placed inside a chamber 

(Plant cuvette NPH 1000, Campbell Scientific, Logan, Utah, USA) where the 
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environmental conditions were controlled. [CO2] around the leaf was controlled via a 

mass flow controller (Bronkhorst, Newmarket, UK) connected to 0% CO2 air source 

and a 10% CO2 air source; temperature was controlled using a water bath connected 

to the chamber. The chamber has a clear top through which photosynthetically active 

radiation (PAR) is provided by white LEDs (Luxeon Star LEDs, Brantford, Ontario, 

Canada), with light levels controlled by computer software (TLC application, 

Technologica, Frating, UK). As the leaf transpires, water is drawn from the beaker on 

the balance as the leaf takes in water. The water lost from the beaker is recorded 

and is used to estimate water uptake by the leaf per unit time. Wet tissue was placed 

inside the balance chamber in and around the water filled beaker to increase the 

humidity and reduce evaporation from the beaker, further ensuring that the water lost 

from the beaker (and recorded by the balance) is attributed to leaf conductance. This 

setup allows for the manipulation of environmental conditions (light, [CO2], 

temperature) to induce different functional responses from the leaf.  
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Hydraulic response to light 

Using the setup described above, light response experiment was conducted. The 

light response experiment involved supplying different light levels to the leaf and 

Figure 3.1, an illustration of the technique and setup used to measure the hydraulic 

flow and conductance of plant leaves. (a) outlines a horizontal cross-section used to 

measure leaf hydraulic capacity: at the centre the Campbell chamber contains the 

leaf. The chamber has fans underneath the leaf which keep the air moving inside the 

chamber and try to reduce the effect of boundary layer around the leaf. The leaf is 

connected through tubing to a beaker on a balance, which itself connected to a 

computer that records balance readings. The environment inside the chamber is 

controlled via a water bath for temperature and a mass flow controller to control 

[CO2]. Photosynthetically active radiation is provided through an LED sheet placed 

vertically above the chamber (the Campbell chamber has a clear top) and the LEDs 

are connected to a computer that allows for the control of the light level that the LEDs 

provide. Fig. 1(b) provides a vertical cross-section of the Campbell chamber showing 

the input and output to and from the chamber. (Picture icons of gas cylinders and computer were taken 

from the following online sources respectively: http://www.3dcadbrowser.com/download.aspx?3dmodel=15612 & 

http://www.iconsdb.com/gray-icons/computer-icon.html) 

 

) 

b 

a 

http://www.3dcadbrowser.com/download.aspx?3dmodel=15612
http://www.iconsdb.com/gray-icons/computer-icon.html
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measuring E at each level. The leaf was given an average of 30 minutes under each 

light level to stabilise, with the last 10 to 15 balance readings being used to calculate 

an average E value for that specific light level. Four light levels were applied: 100, 

500, 1000 and 1500 μmol m-2 s-1. Temperature was kept at 23°C and CO2 at 400 

ppm. After each regime ends the leaf was removed and placed inside a plastic bag 

with a wet tissue put inside it, and the bag is then exhaled in and sealed. The leaf is 

left in the bag for about 20 minutes as leaf stabilizes to prepare the leaf for water 

potential, Ψleaf, measurement, which was conducted using a psychrometer (PSYPRO 

water potential datalogger, Wescor Inc., Logan, Utah, USA). To calculate Kleaf, the 

ratio of E to -Ψleaf is obtained and further normalized by leaf area (Sack & Holbrook 

2006; Sack & Scoffoni 2012). For each light level, the corresponding E measurement 

was divided by -Ψleaf to find Kleaf at that light level. Species used for the light 

experiment are: G.biloba, N.nagi, O.regalis, B.capitata, V.vinifera, D.winteri, 

L.nobilis, P.caerulea.  

Hydraulic response to CO2 and temperature 

Using the setup described above, the response of E to temperature and CO2 was 

measured. The leaf was cut under water and connected to water filled tubing that 

draws water from a beaker on a recording balance, and then the leaf was put in a 

chamber where the environment surrounding the leaf (light level, [CO2] and 

temperature) can be controlled. Light was kept constant at 500 μmol m-2 s-1. [CO2] 

and temperature of the air around the leaf were manipulated instead using the mass 

flow controller and water bath respectively. Once the leaf is put through the system, 

it is first subjected to an increase in air [CO2] while temperature was kept constant, 

then [CO2] was stabilised and temperature was then increased, as follows: the leaf is 

put in the chamber with temperature at 23°C, and is kept at that level while [CO2] is 

incrementally increased to induce a response. [CO2] starts at 100 ppm and then 

raised to 400 and then 800 ppm. Just like the light response experiment, the leaf was 
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kept under each [CO2] level for about 30 minutes, and after each [CO2] level the 

average of the last 10 balance readings is taken as the E value for that [CO2] level. 

After the [CO2] treatment is finished, [CO2] was reduced back to the ambient 

concentration of 400 ppm and the leaf is left for 30-35 minutes to stabilize under 400 

ppm with temperature and light kept constant as well. Then, temperature is increased 

to 35°C and then 50°C, with the leaf kept under each temperature condition for about 

30 minutes, after which E was calculated after each condition like it was for the [CO2] 

response above. Due to equipment failure, sampling was restricted to only 

P.caerulea for this experiment.  

Effect of light on A and gs  

The response of leaf gas exchange to a change in light was investigated using an 

Infra-Red Gas Analyser (Li-Cor 6400, Licor Biosciences, Lincoln, Nebraska, USA). 

The leaf was equilibrated at 100 μmol m-2 s-1 of light for 20 minutes. Light was then 

notched up to 1000 μmol m-2 s-1 for 90 minutes, after which light was returned to 100 

μmol m-2 s-1 for 60 more minutes before the leaf was removed. During the 

experiment, leaf chamber [CO2] was maintained at 400 ppm, vapour pressure deficit 

(VPD) maintained at around 1. Species sampled for this experiment were: G.biloba, 

N.nagi. O.regalis, B.capitata, V.vinifera, D.winteri, L.nobilis, P.caerulea.  

Data analysis 

Figures and statistical analysis was conducted in R software (R Core Team (2014). 

R: A language and environment for statistical computing. R Foundation for Statistical 

Computing, Vienna, Austria. URL http://www.R-Project.org/.). The effect of light on 

Kleaf across the different species was investigated via a mixed effects model, LME 

(package lme4 and nlme) of the form:  

 

Wipk = μ + Si + Lp + Is + (SL)ip + εipk 

http://www.r-project.org/
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Where Wipk is the variable Kleaf, μ is the overall mean, Si is the Species effect on Kleaf 

variation, Lp is the effect of light levels on Kleaf variation, Is is the random effect of the 

individuals, (SL)ip is the Species*Light interaction effect and εipk represents the 

residuals. Normality was checked by plotting a generalized linear model (GLM) and 

inspecting residual plots. A GLM was also used to analyse the difference in Kleaf 

between Species in each light level. In a similar vein, the temperature/CO2 

experiment was also analysed via a LME, with the treatment applied (e.g. 23°C with 

400 ppm) as the environmental factor and the individual as the source of random 

variation. The model took the following form:  

 

Where Fitk is the variable E, Tt is the treatment, Is is the random effect of the 

individual, and εitk represents the residuals.  

To analyse data from the light step-change study, the maximum A and gs values 

were used and taken from the end of the high light (1000 μmol m-2 s-1) period after 

the A/gs response had stabilized. The area under the curve (auc) was also calculated 

for both the A and gs response, calculating the area under the A or gs response curve 

for each sample, with this providing an indication of each Species total assmiliation 

of conductance capacity over a prolonged response. Statistical differences in 

maximum A or gs values or in auc values were obtained in a similar method to that 

used to obtain differences in E between different temperature and CO2 treamtment 

(see above), with A or gs or auc as the variable and Species as the factor. 

Furthermore, Vico et al. (2011) provide an equation describing the response time of 

stomata to a step change in light, in the form of:  

 

Where g(φ) is the maximum, stable gs value at the high light period, g0 is the initial 

starting conductance, tg is the time necessary to get to 63% of the variation between 

Fitk = μ + Tt + Is + εitk 

g(t) = g(φ) + [g0 + g(φ)]exp(-k/tg)  
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g0 and g(φ), while k is the exponential time evolution variable used to estimate the 

speed of response of the stomata. This k value was obtained using non-linear 

squares modelling in R. Regression analysis was carried in R using linear modelling 

(lm). The model was formulated to predict the significance of a linear relationship 

between the two variables in the plot in the form: 

 

Where y (predicted) and x (predictor) are the y-axis and x-axis variables respectively, 

and m is the slope of the relationship, and c is the y-axis intercept. m represents the 

direction of the relationship (negative or positive). R2 values and p values were 

obtained from the analysis output and used to interpret significance of relationship. 

Results  

Hydraulic response to light 

Measurement of hydraulic response to increase in light intensity is summarised in 

Fig. 3.2 below. P.caerulea and D.winteri had higher Kleaf values than all other 

species. O.regalis and N.nagi showed no clear response to increasing light intensity. 

G.biloba showed the lowest Kleaf values while P.caerulea showed the highest. 

L.nobilis appears to be an outlier, as its Kleaf values are similar to species that 

evolved earlier like V.vinifera and O.regalis. L.nobilis also did not display an increase 

in Kleaf as light increased. Statistically, there was a significant interaction between 

species and light (p<0.0001) influencing the Kleaf response, meaning that Kleaf in 

respond differently in different species to light. This is evidenced in species such as 

P.caerulea and D.winteri that showed strong increase in Kleaf in response to 

increasing light intensity, while species such as N.nagi and G.biloba showed little or 

no response to change in irradiance. Variation between species were further 

highlighted as significant variation between species in Kleaf value within each light 

* 
* 

y = mx + c 
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level was found (p<0.05).   

 

 

 

 

 

 

 

 

Hydraulic response to CO2 and temperature 

The response of E to temperature and [CO2] in P.caerulea was measured and shown 

in Fig. 3.3. As [CO2] is increased, E increases as well. The increase in E is then 

exacerbated with rising temperatures. There was a significant difference in E 

between treatments, with E significantly at a [CO2] of 400 & 800 ppm than at 100 

Figure 3.2, the response of Kleaf (mmol m-2 s-1 MPa) to incremental change in light 

intensity (μmol m-2 s-1). Measurements were conducted via the hydraulic set up 

described in Materials and Methods (Fig. 3.1), under 23°C temperature and 400 ppm 

CO2 concentration. The leaf was first cut under water and attached to tubing that 

connected to a water filled beaker on a balance. A computer connected to the balance 

recorded the water loss from the beaker. The rate of water loss from the beaker allows 

for the estimation of E, and combined with Ψleaf, Kleaf can be calculated. Each species 

sampled corresponded to a specific crown age (in brackets after species name in the 

legend). (For G. biloba, N.nagi, L.nobilis, P.caerulea, V.vinifera, n=6. For B.capitata, 

O.regalis, n=4. For D.winteri, n=3). The asterisks signify that there was significant 

difference between species in Kleaf values at that light level. (error bars=standard error). 

* 

* 

* 
* 
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ppm (p<0.05). There was a larger increase in E when temperature rose, with E being 

significantly different at 35°C (p<0.05) than at any of the different CO2 

concentrations. E at 50°C was significantly higher than any of other the temperature 

or [CO2] values (p<0.05) as well.  

  

 

 

 

 

 

 

 

 

Figure 3.3, The response of E (mmol m-2 s-1) to temperature (°C) and [CO2] (ppm) in 

P.caerulea. [CO2] was increased under a constant temperature of 23 °C, after which [CO2] 

was stabilised at 400 ppm while temperature was increased, hence the effect of each of the 

2 factors was observed separately. Using the setup highlighted in Fig. 3.1, the leaf was cut 

under water and attached to tubing linked to a beaker on a balance that records water loss 

from the beaker on a computer. The leaf is put into a chamber were the environmental 

conditions surrounding the leaf are controlled, allowing for the manipulation of those 

environmental conditions for this experiment. Light was kept constant at 500 μmol m-2 s-1 

throughout. Statistical analysis highlighted the difference in E between the different 

conditions applied, and the Fig. illustrated those differences by showing the same letter 

above the conditions that produce E values that were not significantly different. (n=6). 
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Effect of light on A and gs  

The response of A and gs to the increase in light intensity from 100 to 1000 μmol m-2 

s-1 seemed to varied among species (Fig. 3.4). All species had a rise A to the 

increase in light, except N.nagi, with A ultimately reaching steady state in the 

species. gs increased in response to the increase in light intensity in all species, with 

N.nagi again being the exception. However, compared to the A response, the 

response of gs was not as rapid or as directional as the A response, with A reaching 

steady-state earlier than gs does in all the species. Despite the lack of synchrony 

between gs and A, the maximum steady state values of A and gs were correlated 

among the species, with species reaching high gs values also having high A values 

(Fig. 3.5 and 3.6) except for O.regalis and L.nobilis, with the former having higher gs 

values but low A, while L.nobilis experienced the opposite. Significant differences 

were observed between the steady state A maximum of G.biloba, D.winteri, L.nobilis 

and P.caerulea and the steady state A maximum of N.nagi (p<0.05). In general, 

however, there was no significant difference in the maximum steady state A values 

between most species (Fig. 3.5). The maximum steady-state value of gs was also not 

significantly different between most species (Fig. 3.6), with the only significant 

difference observed between the steady state gs maximum of G.biloba and D.winteri 

and the steady state gs maximum of N.nagi (p<0.05).  
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Figure 3.4, The response of A (µmols m-2 s-1) and gs (mols m-2 s-1) to a step increase in light 

intensity in species with different crown ages. The leaf was put inside a Li-6400 Infra-Red Gas 

Analyser chamber under 100 µmols m-2 s-1 of light for 20 minutes (0-20 mins on the y-axis), 

before light was increased to 1000 µmols m-2 s-1 for 90 minutes (20-110 mins on the y-axis). 

Light intensity was then diminished back to 100 µmols m-2 s-1 for 60 minutes (110-170 mins on 

the y-axis). [CO2] was kept at 400 ppm throughout. The 8 species are presented above in the 

order of their crown age, with the oldest, O.regalis, first and the youngest, B.capitata last. 

Standard error bars were excluded from the figure for clearer presentation (check appendix for 

individual figures with error bars). (n=2-3). 
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Figure 3.5, The maximum steady state A (µmols m-2 s-1) value reached by a species 

after step increase in light, taken towards the end of the high light period when the 

response of A had stabilised. Light during this period was 1000 µmols m-2 s-1. 

Measurement was carried out using a Li-6400 from Licor, with [CO2] in the leaf 

chamber maintained at 400 ppm. Species are laid out in order of oldest to youngest in 

terms of crown age (see Table. 2.1). Species that share the same letter above have 

no significant difference between them. (n=2-3). 
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Analysis of the exponential time evolution variable, k, which was used to examine 

the relative speed of stomatal response, showed no significant difference between 

the species in the speed of response of gs to increase in light intensity. At the other 

end of the light regime, when light was returned to 100 µmols m-2 s-1, species also 

show some variation in response of A and gs. The decline in A was quickest in 

Figure 3.6, The maximum steady state gs (mol m-2 s-1) value reached by a species 

after step increase in light, taken towards the end of the high light period when the 

response of A had stabilised. Light during this period was 1000 µmols m-2 s-1. 

Measurement was carried out using a Li-6400 from Licor, with [CO2] in the leaf 

chamber maintained at 400 ppm. Species are laid out in order of oldest to youngest 

in terms of crown age (see Table. 2.1). Species that share the same letter above 

have no significant difference between them. (n=2-3). 
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G.biloba, D.winteri, L.nobilis and P.caerulea, but for G.biloba the gs decreasing 

response (stomatal closing) is slower than the 3 other species, in which gs declines 

with the same rapidity as the decline in A. Reducing the light intensity did not result 

in any noticeable decline in gs in O.regalis and N.nagi, while V.vinifera and B.capitata 

decreased in gs to match their decreasing A, although the reduction in gs was still 

slower than that of species such as D.winteri or P.caerulea.  

Relationship between gas exchange and hydraulic parameters with leaf anatomical 

characters and atmospheric [CO2] concentration at time of taxa divergence 

The hydraulic (E) and gas exchange (A, gs) parameters measured were plotted with 

atmospheric [CO2] at the time of taxa divergence and leaf anatomical data from 

Chapter 2 to infer the relationship between leaf function, leaf anatomy and the effect 

of CO2 levels on leaf characteristics and function. There was generally very weak 

(p=0.07 in Fig.3.7(a)) to no correlation (p>0.05 in Fig.3.7(b) and (c)) between 

hydraulic and gas exchange parameters with [CO2] at time of crown group age. The 

relationship between the functional parameters themselves was also not significant 

(Fig. 3.7(d) and (e), p>0.05) except for the significantly positive relationship between 

A and gs (R2=0.6 and p<0.05, Fig. 3.7(f)). There were no significant correlations 

between the functional parameters and leaf anatomical parameters presented in 

Chapter 2 (Fig. 3.8), except for Fig.3.8(e), which shows a weak correlation (p=0.07) 

between E and Dv. Fig. 3.9 and 3.10 show the same correlation plots shown in the 

previous 2 figures but with the data points sorted per plant division, with the plots 

showing angiosperms generally exhibiting higher Dv and Ds combined with higher 

hydraulic and gas exchange variables.    
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Figure 3.7, The relationship between leaf hydraulic and gas exchange parameters 

for each species sampled with each other and with atmospheric [CO2]. The plots 

display the maximum recorded value for each species for the respective variable (E, 

A and gs) against atmospheric [CO2] at the time of taxa divergence (Table 2.1), as 

well as linear regression trends. Coloured dots represent the species sampled. (a) E 

(mmol m-2 s-1) vs. atmospheric [CO2] (ppm) (R2=0.43, p=0.07, E = (-0.0017953) CO2 

+ 1.4934854). (b) A (μmol m-2 s-1) vs. atmospheric [CO2] (ppm) (R2=0, p>0.05, A = 

(0.0001597) CO2 + 5.7196408). (c) gs (mol m-2 s-1) vs. atmospheric [CO2] (ppm) 

(R2=0.1, p>0.05, gs = (0.00005078) CO2 + 0.03327). (d) E (mmol m-2 s-1) vs. A (μmol 

m-2 s-1) (R2=0.1, p>0.05, E = (0.06436) A + 0.47989). (e) E (mmol m-2 s-1) vs. gs (mol 

m-2 s-1) (R2=0.1, p>0.05, E = (4.4130) gs + 0.6247). (f) A (μmol m-2 s-1) vs. gs (mol m-2 

s-1) (R2=0.6, p<0.05, A = (64.532) gs + 2.458). (error bars=standard error, n=3-6) 
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Figure 3.8, The relationship between leaf hydraulic and gas exchange parameters 

for each species sampled with leaf anatomical variables measured in Chapter 2. The 

plots display the maximum recorded value for each species for the hydraulic and gas 

exchange variables (E, A and gs) against the anatomical variables (Ds and Dv) as 

presented in Chapter 2. The figure also shows linear regression trends in the plots. 

Coloured dots represent the species sampled. (a) A (μmol m-2 s-1) vs. Ds (stoma per 

mm2) (R2=<0.2, p>0.05, A = (0.01336) Ds + 4.11476). (b) E (mmol m-2 s-1) vs. Ds 

(stoma per mm2) (R2=0.42, p>0.05, E = (0.00499) Ds + 0.23072). (c) gs (mol m-2 s-1) 

vs. Ds (stoma per mm2) (R2=<0.2, p>0.05, gs = (-0.00003468) Ds + 0.05574). (d) A 

(μmol m-2 s-1) vs. Dv (mm per mm2) (R2=0.36, p>0.05, A = (0.9831) Dv + 2.3768). (e) 

E (mmol m-2 s-1) vs Dv (mm per mm2) (R2=0.43, p=0.07, E = (0.22463) Dv + 0.02189). 

(f) gs (mol m-2 s-1) vs. Dv (mm per mm2) (R2=<0.2, p>0.05, gs = (0.004726) Dv + 

0.037757). (error bars=standard error, n=3-6) 
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Figure 3.9, The relationship between leaf hydraulic and gas exchange parameters 

for each species sampled with each other and with atmospheric [CO2]. The plots 

display the maximum recorded value for each species for the respective variable (E, 

A and gs) against atmospheric [CO2] at the time of taxa divergence (Table 2.1), as 

well as linear regression trends. Coloured dots represent the group that the sampled 

species belongs to. (a) E (mmol m-2 s-1) vs. atmospheric [CO2] (ppm) (R2=0.43, 

p=0.07, E = (-0.0017953) CO2 + 1.4934854). (b) A (μmol m-2 s-1) vs. atmospheric 

[CO2] (ppm) (R2=0, p>0.05, A = (0.0001597) CO2 + 5.7196408). (c) gs (mol m-2 s-1) 

vs. atmospheric [CO2] (ppm) (R2=0.1, p>0.05, gs = (0.00005078) CO2 + 0.03327). (d) 

E (mmol m-2 s-1) vs. A (μmol m-2 s-1) (R2=0.1, p>0.05, E = (0.06436) A + 0.47989). (e) 

E (mmol m-2 s-1) vs. gs (mol m-2 s-1) (R2=0.1, p>0.05, E = (4.4130) gs + 0.6247). (f) A 

(μmol m-2 s-1) vs. gs (mol m-2 s-1) (R2=0.6, p<0.05, A = (64.532) gs + 2.458).  
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Figure 3.10, The relationship between leaf hydraulic and gas exchange parameters 

for each species sampled with leaf anatomical variables measured in Chapter 2. The 

plots display the maximum recorded value for each species for the hydraulic and gas 

exchange variables (E, A and gs) against the anatomical variables (Ds and Dv) as 

presented in Chapter 2. The figure also shows linear regression trends in the plots. 

Coloured dots represent the group that the sampled species belongs to. (a) A (μmol 

m-2 s-1) vs. Ds (stoma per mm2) (R2=<0.2, p>0.05, A = (0.01336) Ds + 4.11476). (b) E 

(mmol m-2 s-1) vs. Ds (stoma per mm2) (R2=0.42, p>0.05, E = (0.00499) Ds + 

0.23072). (c) gs (mol m-2 s-1) vs. Ds (stoma per mm2) (R2=<0.2, p>0.05, gs = (-

0.00003468) Ds + 0.05574). (d) A (μmol m-2 s-1) vs. Dv (mm per mm2) (R2=0.36, 

p>0.05, A = (0.9831) Dv + 2.3768). (e) E (mmol m-2 s-1) vs Dv (mm per mm2) 

(R2=0.43, p=0.07, E = (0.22463) Dv + 0.02189). (f) gs (mol m-2 s-1) vs. Dv (mm per 

mm2) (R2=<0.2, p>0.05, gs = (0.004726) Dv + 0.037757). 
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Discussion 

This study aimed to characterize some physiological and hydraulic variables of 

leaves from taxa that evolved under different atmospheric [CO2] throughout 

geological time. The evolution of anatomical traits, mainly complex venation and 

higher stomatal densities, especially in angiosperms, that facilitated functional 

improvement in plant leaves (Franks & Beerling 2009a; Franks et al. 2013). Higher 

Ds was accompanied by a reduction in Ss, and this increased gs (see Assouline & Or 

2013), leading to increased carbon assimilation capacity. The rise in gs means the 

leaf would require an increase in water supply to keep up with the increase in 

transpiration rate brought about by increase in gs.  

The results showed that P.caerulea and D.winteri had greater and more responsive 

hydraulic capacities to light (Fig. 3.2). P.caerulea is a species endemic to high 

productivity tropical forests, and tropical species, especially trees, have been shown 

to have high hydraulic capacity (Sack & Frole 2006). P.caerulea also exhibited the 

higher Ds and Dv than other species, and several studies have shown high 

productivity tropical species exhibiting more complex anatomical characters to match 

their high hydraulic capacity (Sack et al. 2005; Sack & Frole 2006). The response of 

E in P.caerulea, was higher under high temperatures than at high [CO2] (Fig. 3.3), 

and the response of E to increased temperature was quicker than the response to 

increased atmospheric [CO2]. Under high atmospheric [CO2] stomata close, reducing 

the evaporative demand on the leaf; however, increased [CO2] increases A, and A 

has been shown to correlate with higher hydraulic conductivity (Brodribb et al. 2007; 

Scoffoni et al. 2016), and this is manifested by the rise in E. A rise in temperature 

(depending on the magnitude) can cause an increase in photosynthetic rate 

(Farquhar et al. 1980; Kobza & Edwards 1987), mainly due to optimal enzymatic 

activity, and this can eventually result in increased hydraulic activity. Increased 

hydraulic conductance has been shown to increase with temperature (Sellin & 



77 
 

Kupper 2007), however higher temperatures have also been observed to cause a 

decrease in Ds (Beerling & Chaloner 1993) which would mean reduced transpiration 

and thus reduced hydraulic demand. Beerling & Chaloner (1993) only focused on 

growth temperatures, however, and on more mild temperature variation than used in 

this experiment. Evaporative cooling can be one mechanism to explain the 

significant rise observed in E (Fig. 3.3), as a substantive rise in temperature can 

cause over-heating and damage the leaf. Evaporative cooling, which is an increase 

in transpiration rate aimed at getting the leaf to lose heat energy, can protect the leaf 

from this damage, and accompanied by higher leaf conductance of water can protect 

the xylem from embolism that might be brought upon by higher transpiration rate 

(Schymanski et al. 2013). On the whole, the author of this chapter is not aware of 

many studies that measured leaf hydraulic conductivity in response to a change in 

temperature. Hu et al. (2014) investigated the effect of varying growth temperatures 

on tobacco leaf characteristics, and observed leaves growing under higher 

temperatures exhibiting higher Kleaf as well as higher Dv and Ds than leaves growing 

under lower temperatures. Changing temperatures over geological time are bound to 

have played a role in shaping plant evolution, and coupled with the effect of 

temperature on membrane fluidity and permeability (Cochard et al. 2000), plus the 

reported observation from Hu et al. (2014) that growing temperature can affect leaf 

anatomy, would mean leaves with different anatomical characteristics would respond 

differently to temperature. This chapter had a minor aim of investigating the reported 

response in Fig 3.3 in different species, but equipment failure and time constraints 

thought otherwise.  

D.winteri belongs to a family of woody, vessel-less trees, and this trait has been 

thought to impact their hydraulic capacity as they have been assumed to be an 

ancestral, angiosperm relic, but this idea has been challenged (Feild et al. 2000). 

D.winteri exhibited higher Kleaf values than other angiosperms, except for P.caerulea. 
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This does support the growing notion that Winteraceae is not a static, unchanging 

group and that it might have adapted throughout its history to overcome its 

anatomical restrictions, as also evidence by its higher A and gs values (Fig. 3.5 and 

3.6). 

There was no significant trend in correlation between atmospheric [CO2] and 

functional parameters measured (E, A, gs). However, there was a general trend of 

angiosperms leaning towards displaying higher hydraulic and gas exchange values 

coupled with higher vein and stomatal densities (Fig. 3.8 and 3.10). Angiosperms 

diversified under decreasing atmospheric [CO2] in the mid-Cretaceous, (Wing & 

Boucher 1998; Boyce et al. 2009; Brodribb & Feild 2010; Boyce & Zwieniecki 2012; 

Brodribb et al. 2013), and so the impact of atmospheric [CO2] change on plant 

evolution cannot be discounted. Angiosperms have been shown to have higher Kleaf 

than other taxa (Brodribb & Holbrook 2004; Brodribb et al. 2005). Most recently, a 

study by Scoffoni et al. (2016) found a correlation between A and Kleaf in different 

species of the genus Viburnum, finding that this correlation diverged depending on 

the climate the species is accustomed to, with this influencing the venation 

architecture of the leaf. This highlights the importance of leaf anatomical features in 

the ecological success of a species, as anatomical features, specifically vein and 

stomata, develop in tandem to achieve a higher photosynthetic rate, while keeping 

up high hydraulic supply to the leaf.  

The response of A and gs of the sampled species to a step increase in light followed 

by a decrease in light was conducted to give an insight into the variation in gas 

exchange capacity and stomatal behaviour between the species. Significant 

differences between species were rare, and this was attributed to limited replication 

(n=2-3), as well as timing of the experiment, which was conducted in the summer of 

2015, with this time expected to be optimum for species. Instead, some species 

(V.vinifera, G.biloba) did not look at their optimum and were either losing leaves or 



79 
 

have just initiated leaves again. Having said this, some species had higher A than 

others (like P.caerulea, L.nobilis and D.winteri), and those were angiosperms that 

evolved under lower atmospheric [CO2], agreeing with observations in the literature 

(Franks & Beerling 2009a; Boyce & Zwieniecki 2012) that declining atmospheric 

[CO2] conferred a selection pressure for higher photosynthetic capacity. G.biloba 

was an outlier, however, having high gs and A values despite being a gymnosperm 

with an old crown group age. Ginkgos are thought to have emerged ecologically in 

riparian, disturbed environments (Zhou 2009) which is an environment that requires 

adaptability. Still, some studies have reported lower gas exchange values for Ginkgo 

(McAusland et al. 2016; Elliott-Kingston et al. 2016), so the values displayed here by 

Ginkgo might not be representative of its actual capacity as a species. 

Upon further observation, there is a difference in how species gs behaves in 

response to the light regime and how the gs response differs with A response. 

Species that had higher A also had a quicker decline in gs after light was decreased 

after the high light period. This is most probably a water loss restricting mechanism 

(Lawson & Blatt 2014), allowing the stomata to respond rapidly and in synchrony 

with mesophyll demand for CO2, which would decrease with decreasing light and 

thus sustaining high gs would not be beneficial to the leaf and would only incur 

further water loss. A quick closing response time of stomata has been considered an 

important trait that correlates with higher WUE (Pou et al. 2008; Lawson & Blatt 

2014; McAusland et al. 2016), and to see it exhibited in species that 1) achieve 

higher A values and 2) have a higher Ds and Dv values (see chapter 2) than species 

that lack this closing response adds to the possible contributions that these 

anatomical characters (Dv, Ds) provide to the plant leaf. Drake et al. (2013) already 

provided a report that confirms this (see Introduction). Furthermore, Dow et al. 

(2014) used different Arabidopsis thaliana genotypes that produces leaves with 

different Ds, and they reported results that show that as Ds increases within the 
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genotypes the quicker the stomatal closing response in that genotype. It needs to be 

said, however, that Dow et al. (2014) use change in [CO2] to stimulate stomatal 

response as opposed to the use of light in the present study. Also, some reports 

have contradicted this conclusion regarding higher Ds correlation with stomatal 

speed of response (Monda et al. 2016; Elliott-Kingston et al. 2016). 

In an evolutionary context, the slight response of O.regalis and also N.nagi can be 

explained by the difference in passive vs. active stomatal control. Basal plant 

lineages, like ferns, do not exhibit significant changes in stomatal behaviour in 

response to environmental or chemical (ABA) stimulus (Brodribb & McAdam 2011) 

and this can be shown by the minimal change in gs for O.regalis in response to light 

(Fig. 3.4). McAdam & Brodribb (2014) also found a similar tendency in a conifer 

(Metasequoia glyptostroboides) that can also explain the lack of response from 

N.nagi, another conifer. Angiosperms have an active stomatal control that depends 

on osmotic and ionic changes that propel changes in stomatal aperture, with this 

being an adaptation at maximizing CO2 uptake under drought stress (Brodribb & 

McAdam 2011), another indication of angiosperm innovation and evolution 

compared to their plant ancestors.  

Conclusion 

The coordinated evolution of anatomical characters (Ds, Dv and Ss) is thought to be a 

driver of the improvement in hydraulic capacities and stomatal responses in the 

species that evolved under low atmospheric [CO2], specifically angiosperms. Data 

presented here does support the superiority of angiosperms of in displaying higher 

gas exchange and hydraulic values. However, differences between species, whether 

in crown group age and atmospheric [CO2] were rare and only taxonomic differences 

were noticed.  
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Chapter 4: Simultaneous diurnal responses of leaf gas exchange 

and hydraulics in species with different crown ages 

Introduction 

The current rise in CO2 concentration ([CO2]) in the atmosphere presents an 

opportunity to observe the effects of changing atmospheric [CO2] on plant and 

ecosystem function (de Boer et al. 2011). Stomata respond to changes in the 

environment, especially to changes in atmospheric [CO2] (Cowan & Farquhar 1977; 

Mott 1988; Franks & Farquhar 2007), and hence changing atmospheric [CO2] will 

affect plant leaf’s gas exchange rates with the environment. Abrupt changes in gs 

can destabilize internal water potential and lead to xylem cavitation (Buckley 2005; 

Locke & Ort 2014); On the other hand, an increase in gs increases the transpiration 

rate, leading to an increase in hydraulic demand on the plant leaf which leads to the 

cavitation of the xylem if supply and demand are not in coordination (Medrano et al. 

2002; Tixier et al. 2013; Schymanski et al. 2013).  

The link of stomatal performance to hydraulic signals in the leaf  (Jarman 1974; 

Whitehead 1998; Buckley 2005; Brodribb & Jordan 2008; Brodribb & Jordan 2011) is 

key understanding the bottleneck stomata represent to water movement in the soil-

plant-atmosphere continuum (Meinzer 2002). Individual stomates respond to nearby 

changes in leaf turgor and water potential (Buckley et al. 2003; Buckley 2005 for an 

extensive review), and so stomata both respond to and subsequently influence 

hydraulic supply and demand, as changes in gs influence leaf hydraulic demand 

(Addington et al. 2004; Locke & Ort 2014; Ocheltree et al. 2014), while changes in 

leaf water status also elicit a change in stomatal behaviour (Raschke 1970; Maier-

Maercker 1998; Medrano et al. 2002; Grassi & Magnani 2005; Bunce 2006). The 

correlation between stomatal behaviour and hydraulics has been confirmed in a 

number of studies that showed a positive relationship between gs, and subsequently 
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carbon assimilation (A), with leaf hydraulic conductance, Kleaf (Hubbard et al. 2001; 

Meinzer 2002; Brodribb & Holbrook 2004; Nardini & Salleo 2005; Hernandez-

Santana et al. 2016). Atmospheric [CO2] fluctuations over geological timescales have 

affected stomatal and vein characteristics (Royer 2001; Franks & Beerling 2009a; 

Boyce et al. 2009; Ward & Gerhart 2010; Brodribb & Feild 2010). The past 120 

million years have seen a gradual decrease in atmospheric [CO2], coinciding with the 

emergence of angiosperms (which dominate terrestrial ecosystems), with 

angiosperms generally exhibiting higher Ds (and thus higher gs) (Brodribb et al. 2009) 

and Dv (Brodribb & Feild 2010). High Dv enable the angiosperm leaf to supply the 

high hydraulic demand required by higher gs, and Chapter 2 has already illustrated 

that higher vein densities correlate with higher Ds (and thus gs). 

The interlinking between stomatal characters and hydraulic signals through 

evolutionary history, as suggested by the increase in Dv with Ds (see Chapter 2), 

indicate that there is a synchrony in hydraulic and gas exchange parameters 

response to rapid changes in the environment. The evolution of anatomical 

characters in angiosperm leaves clarifies this trend. Observations reported by de 

Boer et al. (2012) and Zwieniecki & Boyce (2014), outlined in previous chapters, 

show that leaf venation and stomata have developed in concert to achieve optimal 

control over water exchange between the leaf and atmosphere, to effectively supply 

stomatal demand for water under high transpirational conditions, and to attune the 

stomata’s ability to detect changes in leaf water status more quickly. Most of these 

improvements are achieved by manipulating leaf architecture. The functional 

relationship between stomatal responses (and subsequently carbon assimilation) 

and leaf hydraulic capacity, however, has not been examined, especially when 

considering leaf anatomical differences. Investigating the effect of varying leaf 

anatomical differences on the dynamic response of leaf hydraulics and gas 

exchange can give insight into limiting factors among the leaf’s ecophysiological 



83 
 

response parameters. Consequently, illustrating the temporal relationship between 

the hydraulic and gas exchange parameters can further highlight the impact of 

changing environmental conditions on plant leaf response.  

Stomata are known to have different response speeds in different species and can 

be, for example, much slower to open in response to light compared to the leaf’s 

biochemistry (Buckley et al. 2003; Franks & Farquhar 2007; Drake et al. 2013; Dow 

et al. 2014; Lawson & Blatt 2014; McAusland et al. 2016). This lag in the stomatal 

opening response means the leaf fails to capitalize fully on the light increase as its 

stomata responds slowly while A increases in response to light. On the other hand, 

the stomatal closing response represents a bigger disadvantage, as the stomata 

have been shown to also lag behind the leaf’s biochemistry when light levels drop, 

causing excess water loss without any benefit in photosynthetic rate, hence 

decreasing leaf’s WUE (Lawson & Blatt 2014; McAusland et al. 2016). This indicates 

that the leaf’s ability to coordinate the response of its physiological parameters to 

environmental change is a key adaptation to environmental change. Since plant 

evolution has been greatly influenced by changing atmospheric [CO2], it is intriguing 

to explore variation in coordinated response of hydraulic and gas exchange 

parameters in different species and lineages that evolved under different 

atmospheric [CO2]. Chapter 3 has already highlighted some differences in stomatal 

responses between different species, as well as highlighting differences in hydraulic 

capacity. Previous studies have also highlighted differences in A and gs in species 

instigated by changes in atmospheric [CO2] over geological time (Brodribb et al. 

2005; Boyce et al. 2009; Franks & Beerling 2009a; McElwain et al. 2016), as well as 

differences in hydraulic capacity (Scoffoni et al. 2016). 

The aim of this chapter is to further investigate the effect of the evolution of plant leaf 

anatomical characteristics on leaf function. With plants playing a key role in 

ecosystem function and geo-processes (Field et al. 1995; Hetherington & Woodward 
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2003; Gedney et al. 2006; Lee & Boyce 2010; Keenan et al. 2013), changing 

atmospheric [CO2] over geological time, which drove these anatomical changes, 

would have resulted in evolutionary adaptations which have changed the ecological 

structure of ecosystems, as well as influencing geo-hydrological processes (Kasting 

& Siefert 2003; Beerling & Berner 2005; Feild et al. 2009). It is hypothesized that 

species that have higher Ds and gs, as well as higher Dv, would have higher and 

more responsive and synchronized hydraulic and gas exchange capacities 

compared to species that have lower Ds and gs. It is projected that atmospheric [CO2] 

will keep increasing throughout this century, and thus understanding how past 

atmospheric [CO2] change affected plant response can be of importance to 

understanding the effect of future atmospheric [CO2] change on plant and ecosystem 

function, especially as effect of atmospheric [CO2] on plant anatomy has been shown 

and explored in the literature as well as this thesis earlier. 

Combining the hydraulic conductance setup illustrated in Chapter 3 with an Infra-Red 

Gas Analyser chamber allows for the measurement of gas exchange and hydraulic 

parameters simultaneously. This provided a chance to explore the synchrony in 

response between hydraulic and gas exchange leaf variables in response to 

environmental stimulus. Since a step-change experiment was conducted earlier, 

exposing the leaf to a diurnal light regime was thought to provide an interesting and 

fresh angle to explore leaf ecophysiological responses in species from different taxa, 

ecological habitat and different anatomical characters. Using a diurnal regime would 

subject the leaf to a more natural fluctuating environment and would offer a way to 

link the prevalence of leaf characteristics, whether anatomical (Ds or Dv) or 

physiological (A, gs), to the species’ ecology, taxonomic relationships or to the effect 

of past environmental change (atmospheric [CO2]) on its function. All these factors 

(ecology, taxonomy, past [CO2] change) shape the leaf’s ecological suitability and 
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efficient leaf function, and using a diurnal regime, with frequent light variation, would 

highlight differences between species in leaf function along those lines.  

Material and Methods 

Plant Material 

Species that were sampled for this study were picked based on crown group age 

and taxa as outlined in Chapter 2. They were: Drimys winteri; Nageia nagi; Passiflora 

caerulea; Vitis vinifera. Phaseolus vulgaris, a modern crop species, was also 

sampled. Only 5 species were used due to time constraints, initial uncertainty about 

methodology, and problems with species losing leaves and health (G.biloba and 

L.nobilis). Still, the 5 species encompassed different taxonomic groups and different 

crown group ages and ecological habitats, allowing for ample comparison points. 

Three leaves were sampled off each species.     

Setup to simultaneously measure leaf gas exchange and hydraulic flow 

A system like that described in Chapter 3 was used here to combine measurement 

of leaf hydraulic flow and gas exchange parameters. The gas exchange chamber of 

the Infra-Red Gas Analyser (IRGA) was used to control the environment surrounding 

the leaf, similar to the way the Campbell chamber was used in Chapter 3, and 

enabling measurement of gas exchange parameters (stomatal conductance, gs; 

carbon assimilation, A; Transpiration, e) while simultaneously water flow into the leaf 

(E) was determine from changes in water loss measured from water uptake from a 

beaker placed on a balance. Before placing the leaf in the chamber, a branch is cut 

from the individual plant, and then a leaf off the branch is cut under water and 

attached, also under water, to tubing that contains a water column drawn from a 

cylinder placed on a sensitive balance (Sartorius CP | GemPlus Series, Sartorius, 

Goettingen, Germany). To make sure the leaf-tubing connection was sealed, water 

proof oil grease (Dow Corning High Vacuum Grease, USA) was applied around the 
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petiole-tube connection to prevent air entering the tubing and losing the water 

column. The balance was connected to a computer used to record balance readings 

every 30 seconds. Wet tissue was placed inside the balance chamber to increase 

humidity and reduce evaporation from the cylinder. This controlled for any change in 

the balance reading from evaporation; and thus, all variation in balance readings will 

be assumed to have been instigated by leaf conductance.  

The leaf was placed inside the gas exchange chamber of the IRGA (LCPro SD 

Portable Photosynthesis System, ADC Bioscientific, Hoddesdon, Hertfordshire, UK). 

The gas exchange cuvette has a clear glass top, to allow for the passage of light 

from an LED light source (Iso Light 400, Technologica, UK) placed above the 

chamber. The diurnal response was elicited by programming a light regime into a 

computer software (TLC application, Technologica, Frating, UK). The light regime 

was a sinusoidal wave pattern that replicates field-like light conditions based on light 

measurements from the field, with Fig. 4.1 below showing the light values throughout 

the wave. [CO2] inside the chamber was set at 400 ppm. [H2O](ref) generally varied 

between 18 and 25 mmol m-2 s-1. Since the IRGA chamber can only cover a limited 

surface area of the leaf, the area of the leaf outside the IRGA chamber was covered 

with oil grease (Dow Corning High Vacuum Grease, USA) to prevent any exchange 

through the leaf surface that might affect the leaf’s hydraulic activity, and only the 

leaf area inside the chamber was considered to be “active” in terms of gas 

exchange, with measurements controlled for the area inside the chamber. After the 

leaf is put into the chamber the light was switched on starting at 20-40 μmol m-2 s-1 

and the light regime was run for about 10 hours, with the plant experiencing the light 

variation highlighted in Fig. 4.1. 
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Statistical Analysis 

Figures and data representation was done in R (R Core Team (2014), R Foundation 

for Statistical Computing, URL http://www.R-project.org). To statistically analyse the 

data, the maximum observed value of each parameter measured, as well as the area 

under the response curve (auc) of each parameter, was calculated for each sample 

and compared statistically between the species. Normality was checked by plotting a 

generalized linear model (GLM) and inspecting residual plot. A linear mixed effects 

(LME) model was applied to the data, with the model taking the following form:   

 

 

Where Fs is the variable considered (A, E, gs, e or auc), Ss is the effect of different 

Species, Is is the random effect of the individual, and εisf represents the residuals. 

Analysis of Variance test was then applied to the model to deduct statistical 

differences between species. Regression analysis was carried in R using linear 

Figure 4.1, The diurnal sinusoidal light wave supplied over the IRGA chamber. The 

figure above shows the main part of the wave were photosynthetically active 

radiation is provided. The light wave replicates field condition light variability. 

Fs = μ + Ss + Is + εisf 

http://www.r-project.org/
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modelling (lm). The model was formulated to predict the significance of a linear 

relationship between the two variables in the plot in the form: 

 

Where y (predicted) and x (predictor) are the y-axis and x-axis variables respectively, 

and m is the slope of the relationship, and c is the y-axis intercept. m represents the 

direction of the relationship (negative or positive). R2 values and p values were 

obtained from the analysis output and used to interpret significance of relationship. 

Results 

The response of the variables (A, gs, e and E) measured to diurnal light change. E 

and e show similar responses to each other in response to light for all the species, 

as E increases with e and vice versa (Fig. 4.2). P.vulgaris achieved the highest 

values of E (5.5 mmol m-2 s-1) during the period of high light between 4 and 5 hours 

while e was highest in P.caerulea (2.3 mmol m-2 s-1), also observed during the same 

period. gs and A also show similar responses, as A increases as gs increases (Fig. 

4.3). However, gs, in all species, still showed a “lag” in response to light change 

behind A, similar to what was observed in the step change responses in Chapter 3 

(Fig. 3.4). For example, for D.winteri, when light intensity increased at around 2.5 

hours a quick A response was elicited, reaching a stable high of 3 μmol m-2 s-1, while 

gs kept increasing with time and did not stabilise. P.caerulea on the other hand, had 

an A and gs responses that matched each other more closely compared to the other 

species, but gs still showed what looks like a linear increase during the first 4-5 hours 

when A was a more responsive to the occasional light intensity drop during that 4-5 

hour period, so there was still some mismatch. There was also a similarity in the 

responses of A and E within all species, with an increase in one is matched by an 

increase in the other, and both responses showing a solid match throughout the 

y = mx + c 
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diurnal regime. gs and e also show a matched response, but that is mainly because 

gs itself is estimated by the IRGA through estimating the e rate. 

 

 

 

 

 

 

Figure 4.2, The response of E (mmol m-2 s-1) and e (mmol m-2 s-1) to diurnal light 

variability for the 5 species sampled. The leaf is cut and connected to tubing under water, 

and then placed inside the chamber of an Infra-Red Gas Analyser. The leaf draws water 

through the tubing from a beaker placed on a balance. CO2 concentration inside the 

chamber was kept at 400 µmol m-2 s-1. E was estimated via change in water loss from a 

balance and normalized for the stomatal ratio and leaf area, while e was measured by the 

Infra Red Gas Analyser. The unit for both E and e is mmol m-2 s-1, hence the “E” label on 

the y-axis is not supposed to represent E only. The grey shading represents the error 

margins (standard error). (n=3) 
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The maximum E value achieved during the diurnal light period for P.vulgaris, 

P.caerulea and V.vinifera was significantly higher (p<0.05) than the values achieved 

by D.winteri and N.nagi (Fig. 4.4a). P.vulgaris had the highest average maximum E 

(6.1 mmol m-2 s-1) while N.nagi had the lowest (1.03 mmol m-2 s-1). For e, a similar 

pattern was observed (Fig. 4.4b); however, P.caerulea achieved the highest 

maximum e value (3.17 mmol m-2 s-1), while N.nagi was significantly lower than all 

the other species (p<0.05). For gs (Fig. 4.4c), P.vulgaris had significantly higher 

maximum than any of the other species (1.73 µmol m-2 s-1; p<0.05). Similarly, 

Figure 4.3, The response of A (µmols m-2 s-1) and gs (mol m-2 s-1) to diurnal light variability 

for the 5 species sampled. The leaf is cut and connected to tubing under water, and then 

placed inside the chamber of an Infra Red Gas Analyser. The leaf draws water through the 

tubing from a beaker placed on a balance. CO2 concentration inside the chamber was kept 

at 400 µmol m-2 s-1. A & gs was measured by an Infra Red Gas Analyser. The figure shows 

the mean response, but for clearer presentation, standard error bars were not plotted (they 

are shown in appendix figures). The data was taken from the IRGA measurements of leaf 

gas exchange. (n=3) 
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P.vulgaris had significantly higher maximum value for A (15 µmol m-2 s-1; p<0.05) 

than all the other species (Fig. 4.4d). Almost all the samples realised their maximum 

values during the period of high light between 2.5 and 5 hours into the diurnal 

regime, usually towards the end of that period as the plant leaf response stabilizes.  

The area under the curve (auc) was calculated from the response curves shown in 

Fig 4.2 and 4.3. As opposed to showing the maximum values achieved by each 

species, the auc values (Fig. 4.5) would highlight the ability of each species to 

maintain higher gas exchange or hydraulic capacity levels over the whole period of 

the light regime. For E (Fig. 4.5a), P.vulgaris, P.caerulea and V.vinifera had 

significantly higher auc than both D.winteri and N.nagi (p<0.05). For e (Fig. 4.5b), 

N.nagi had significantly lower auc than the rest of the species (p<0.05), while 

P.caerulea had the highest auc for e (15.02 mmol m-2). The auc for gs (Fig. 4.5c) was 

highest for P.vulgaris followed by P.caerulea (3.83 and 2.87 µmol m-2 respectively), 

with those species being significantly higher than the other species (p<0.05). The 

auc for A (Fig. 4.5d) had a similar pattern to the auc for gs, with P.vulgaris and 

P.caerulea having the significantly higher auc (p<0.05). Basically, for each 

parameter, the species that achieved the higher maximum values were the ones 

showing higher auc values, and vice versa, and so the two sets of data follow similar 

patterns between the species. 
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Figure 4.4, Variation in the maximum observed value between the species sampled for 

the 4 variables measured: (a) E (mmol m-2 s-1); (b) e (mmol m-2 s-1); (c) gs (mol m-2 s-1); (d) 

A (µmols m-2 s-1). The Fig. also illustrates statistical difference between the species, with 

the species sharing the same letter above their panel having NO significant statistical 

difference between them. The highest value for each sample was picked for each variable, 

with these values generally observed during the high light period of the light regime 

between 2.5 and 5 hours. Data was collected by excising a leaf under water and attaching 

it to tubing to draw water from a beaker on a balance, with the leaf then placed in an Infra 

Red Gas Analyser (IRGA) chamber. This combination allows for the measurement of gas 

exchange parameters (A, gs, e) through the IRGA chamber and hydraulics (E) through 

water loss difference from the balance. (n=3) 

(a) (d) (c) (b) 
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Figure 4.5, Variation in the area under the curve (auc) between the species sampled 

for the 4 variables measured: (a) auc_E (mmol m-2); (b) auc_e (mmol m-2); (c) auc_gs 

(mol m-2); (d) auc_A (µmols m-2). The auc was calculated from each sample response 

curves for each variable, of which the mean responses were shown in Fig. 4.2 and 4.3. 

The auc was calculated in order to give a holistic view into each species’ capacity over 

the diurnal period, as opposed to individual points showing maximums like in Fig. 3.4. 

The Fig. illustrates statistical difference between the species, with the species sharing 

the same letter above their panel having NO significant statistical difference between 

them. Data was collected by excising a leaf under water and attaching it to tubing to 

draw water from a beaker on a balance, with the leaf then placed in an Infra Red Gas 

Analyser (IRGA) chamber. This combination allows for the measurement of gas 

exchange parameters (A, gs, e) through the IRGA chamber and hydraulics (E) through 

water loss difference from the balance. (n=3) 

 

(a) (d) (c) (b) 
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There was variation between the species in their dynamic response to diurnal light 

variation in each of the 4 variables. Increasing light intensity elicited an increase in all 

variables, and vice versa, but different species had different speeds of response to 

light increase and different relationships within variables (Fig. 4.6). Such variation 

between species can be observed in the response of A to light change (Fig. 4.6A). 

When light intensity increased quickly around 1.5 hrs into the light regime, A 

increased to maximum levels in P.vulgaris and D.winteri, while V.vinifera and 

P.caerulea also increase but to a fraction of their maximum. A for P.vulgaris reached 

its maximum during this period much earlier than the A response of D.winteri, which 

seems to lag behind a little, with the A response of V.vinifera and P.caerulea similar 

to that of D.winteri, also increasing at lower rate than P.vulgaris to light increase. 

During the same period of light increase (after 1.5 hrs), P.vulgaris showed a sharper 

slope of increase in gs compared to the other species (Fig. 4.6C). V.vinifera did not 

show a significant increase in gs in response to light increase during this period, 

while D.winteri showed an increase in gs but at a slower rate compared to P.vulgaris, 

with this slow increase in gs for D.winteri observed again when light increases again 

after 2.5 hrs. V.vinifera, however, did have a higher increase in gs when light 

increased again after 2.5 hrs. P.caerulea had an increase in gs that continued 

throughout the first few hours of the light regime, with the increase in gs becoming 

slower when light levels decrease, until P.caerulea reached its maximum in both A 

and gs. P.vulgairs, over the length of the light regime, displayed quicker gs response 

to light change, with gs values increasing and decreasing sharply with light. D.winteri 

did not display a similar magnitude of change in gs, with gs in D.winteri remaining 

within 50% (0.5) or more of the maximum and changing with that limit in response to 

light change. The response of E throughout the diurnal period was matched more 

closely to the response of A than gs for each species (Fig. 4.6B), while e followed gs 

(Fig. 4.6D). N.nagi, alone among the species, showed very little interaction with light 
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level change across variables, with the only noticeable activity is an increase in gs in 

the first 2 hrs of the regime and gs then stays the same through the regime, with E 

and e also following the same pattern in N.nagi. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6, Diurnal responses of (a) carbon assimilation (A), (b) water flow into the leaf 

(E), (c) stomatal conductance (gs) and (d) transpiration (e) in response to a diurnal light 

regime for the 5 species sampled normalized between 0 and 1. This is to eliminate the 

disparity in values between species and to highlight the variation in the dynamic 

responses between the species to light change. Data was collected by excising a leaf 

under water and attaching it to tubing to draw water from a beaker on a balance, with 

the leaf then placed in an Infra Red Gas Analyser (IRGA). This combination allows for 

the measurement of gas exchange parameters (A, gs, e) through the IRGA and 

hydraulics (E) through water loss difference from the balance. The species sampled are 

shown in the legends accompanied by the crown age of each species. (n=3) 

(b) (a) 

(c) (d) 
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Figure 4.7, The relationship between leaf hydraulic and gas exchange parameters 

for each species sampled with each other and with atmospheric [CO2]. The plots 

display the maximum recorded value for each species for the respective variable (E, 

A and gs) against atmospheric [CO2] at the time of taxa divergence (Table 2.1), as 

well as linear regression trends. Coloured dots represent the species sampled. (a) E 

(mmol m-2 s-1) vs. atmospheric [CO2] (ppm) (R2=0.5, p>0.05, E = (-0.02561) CO2 + 

9.49350). (b) A (μmol m-2 s-1) vs. atmospheric [CO2] (ppm) (R2=0.65, p=0.09, A = (-

0.07972) CO2 + 25.57543). (c) gs (mol m-2 s-1) vs. atmospheric [CO2] (ppm) 

(R2=0.34, p>0.05, gs = (-0.006671) CO2 + 2.205810). (d) E (mmol m-2 s-1) vs. A 

(μmol m-2 s-1) (R2=0.84, p<0.05, E = (0.3379) A + 1.1584). (e) E (mmol m-2 s-1) vs. gs 

(mol m-2 s-1) (R2=0.71, p=0.07, E = (2.6892) gs + 1.7816). (f) A (μmol m-2 s-1) vs. gs 

(mol m-2 s-1) (R2=0.9, p<0.05, A = (8.169) gs + 1.705). (n=3, error bars=standard 

error) 

 

  

 

(b) (a) 

(c) (d) 

(e) 

(f) 
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Regression analysis showed no significant correlation between the maximum values 

of each parameter measured and atmospheric [CO2] at crown group age (Fig. 4.7(a)-

(c)). On the other hand, there was a significant correlation between the maximum 

values of the functional parameters measured (Fig. 4.7(d)-(f), p<0.05), with R2 values 

as high 0.9, strengthening the hypothesis that leaf hydraulics and gas exchange are 

linked.  

Discussion 

This chapter concentrated on examining the responses of hydraulic and gas 

exchange parameters in response to a dynamic light regime mimicking what would 

be observed under natural conditions in species with different crown group ages 

(and different leaf anatomical characteristics; see Chapter 2). Results from this 

chapter conform to the trend that species from taxa that diversified under lower 

atmospheric [CO2], like P.vulgaris, had higher A values than species that evolved 

under higher [CO2] like V.vinifera. Species that evolved under low atmospheric [CO2] 

also generally had higher E and gs values as well (Fig. 4.4). V.vinifera showed higher 

E values than it did in Chapter 3, probably because it was producing newer leaves at 

the time of this experiment compared to the Kleaf one in Chapter 3. V.vinifera are 

known for their highly conductive vessels (Sperry et al. 1987) and the E observed 

here is expected. Chapter 3 already outlined the difference in photosynthetic and 

hydraulic capacity between several species of different crown ages, including ones 

used in this chapter, and the causes of these differences in capacity. These 

differences in ecophysiological and functional responses were linked to anatomical 

changes in the leaf over geological time, and this links to the variation in the dynamic 

response over the diurnal period explored in this chapter. Anatomical change over 

geological time has been linked to changing atmospheric [CO2], highlighting the 

possible effect of environmental change in shaping the evolution of plant leaf 

performance and characteristics. Still, the highest values for these variables where 
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exhibited by P.vulgaris (which is a high productivity leguminous crops) and 

P.caerulea (a species from high productivity tropical forests), while the lowest were 

exhibited by N.nagi, which is a gymnosperm accustomed to low light environments 

(Biffin et al. 2012), so the species’ habitat and ecology does play a role in its 

performance. 

A step-change response like the one used in Chapter 3 is the standard protocol to 

examine stomatal behaviour, but the diurnal regime experienced by the leaves here 

offers insight into how the leaf behaves to constant variation over a prolonged 

period, however it is more difficult to evaluate or quantify the closing and opening 

responses. Nonetheless, enough variation was observed between species in the 

dynamic responses of the parameters measured to gain an idea into 

ecophysiological responses of the species selected. P.vulgaris, a modern crop 

species, was selected for this study to provide a comparison to the older species 

selected throughout this thesis in terms of ecophysiological capacity. Indeed, 

P.vulgaris had a more responsive gs to changes in light over the diurnal period, with 

gs increasing quickly when light increases and gs also decreasing quickly when light 

levels decrease. This quick response by the stomata can explain the sharp A 

response of P.vulgaris, with A in P.vulgaris not “lagging” when light increases like the 

other species when light levels rise around 1.5 hrs into the regime. P.vulgaris, across 

the variables measured, generally had a synchronized response, with light causing a 

decrease in A with gs  and E decreasing with A. A quick decrease in gs in response to 

low light means that P.vulgaris is more equipped to limit excess water losses, as a 

delayed gs decrease permits more H2O leaving the leaf with no CO2 benefit to the 

plant as A levels are already diminishing due to low light. At the other end, a quick 

increase in gs in response to light level increase means P.vulgaris could make the 

most of the light increase by increasing CO2 uptake.  
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Older species, like D.winteri, P.caerulea and V.vinifera had more variation in 

response between them, with no specific dynamic pattern distinguishing between 

them. The constant increase, irrespective of light levels, in gs during the first 5 hrs of 

the light regime in P.caerulea suggests that P.caerulea aims to maximize 

photosynthetic gain over water loss. Interestingly, P.caerulea had the highest e 

among all the species sampled, including P.vulgaris, indicating that P.caerulea might 

have less of a  control on water exit from the stomata compared to P.vulgaris or even 

D.winteri or V.vinifera. P.caerulea, as mentioned, is endemic to tropical forests (Xi et 

al. 2012), which are wet and water saturated, and thus P.caerulea might not prioritise 

water retentions, with the high E of P.caerulea might be a mechanism by which the 

leaf keeps the water supply high in order to match the transpirational demand and 

keep the stomata opened. P.caerulea also had more of a match between the gs and 

A response compared to D.winteri, signifying that the P.caerulea leaf is indeed more 

built to maximize photosynthetic gain compared to D.winteri. Compared to 

P.vulgaris, P.caerulea seems to have sharp gs responses to light increase, 

stimulating A increase, while decreasing light levels elicit less of a response from gs. 

On the other hand, compared to D.winteri, P.caerulea also had more of an 

adventurous opening response, with gs increasing with light at a quicker rate 

compared to the gs response of D.winteri, but D.winteri had more tangible closing 

responses. Thus, P.caerulea seems to possess the A maximizing tendencies of 

P.vulgaris, while D.winteri seems to exhibit the water-loss limiting tendencies of 

P.vulgaris, as gs decreases in D.winteri in response to light level decrease. However, 

findings by Feild et al. (1998) have shown that the waxy stomatal plugs characteristic 

to D.winteri function to increase transpiration rate, with the authors of the study 

concluding that the plugs are mechanisms to minimize the effect of water films on 

leaves preventing CO2 entry, thus keeping assimilation rates high. However, these 

plugs have long been theorized to be water loss constricting mechanisms until those 
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findings (Feild et al. 2000). In any case, the results presented here adds to the 

debate regarding the evolutionary history of Winteraceae. 

V.vinifera also had a good match between the A and gs response, except for 

approximately the first 2.5 hrs of the regime, with gs increasing sharply when light 

increases at 2.5 hrs. V.vinifera had a higher hydraulic values (E and auc_E) than 

D.winteri, despite D.winteri achieving higher gs. However, V.vinifera had a less 

limiting gs response when light increased at 2.5 hrs. The higher hydraulic values of 

V.vinifera might also be connected to the climates that V.vinifera grows in, hotter 

Mediterranean climates (Lavee 2000), that would select for leaves that better control 

their temperature through higher water flow into the leaf (Schymanski et al. 2013; Hu 

et al. 2014), as well as V.vinifera’s specialised vessels mentioned earlier (Sperry et 

al. 1987; Lovisolo & Schubert 1998). Generally, the response of E was more 

synchronized with A than gs for all species, with a clear example in D.winteri, with its 

gs response lagging when light increases at around 2.5 hrs (Fig 4.6C), while the A 

and E response of D.winteri (Fig. 4.6A and B respectively) increase sharply together. 

Even though transpirational demand can drive leaf hydraulic conductance, the 

importance of water to the leaf’s biochemistry would mean that other factors in the 

leaf also determine the leaf’s hydraulic behaviour, and higher photosynthetic rates do 

require high water supply to drive electron transport.  

Finally, the lack of activity of N.nagi is not particularly surprising, as previous 

measurements from our lab show that N.nagi has low photosynthetic and stomatal 

response capacities, a result of their very primitive leaf anatomical characters, that 

include low Ds, Dv and high Ss. The negative A values of N.nagi are attributed to the 

IRGA machine not picking the low assimilation levels usually exhibited by N.nagi. 

The low light environment from which gymnosperms like N.nagi come from does not 

encourage the development of higher gas exchange capacities. Also, these 

environments are similar to those ferns occupy, and ferns have been shown to 



101 
 

exhibit the passive stomatal response that lacks the ability for dynamic change in 

response to stimulus (Brodribb & McAdam 2011; McAdam & Brodribb 2012; 

McAdam & Brodribb 2014). This was also mentioned in Chapter 3 and can explain 

the lack of hydraulic and gas exchange response from N.nagi in this experiment.   

Conclusion 

This study reported data that emphasised the relationship between leaf gas 

exchange and hydraulic parameters over a diurnal period. Variation in response 

between species to diurnal light change is attributed to their evolutionary history and 

ecological niche that allowed for the development of leaf anatomical characters that 

allow to leaf more flexibility in controlling their physiological responses. The variation 

in auc and maximum values (Fig. 4.4 & 4.5) do suggest that these different species 

exhibit different capacities over a diurnal period, and thus the evolution of those 

species would have influenced ecosystem function and productivity. The variation in 

the matching of responses to light change between the different parameters (gs with 

A, or A with E) means that the evolution of those species might also have contributed 

to changing ecosystem ecology as species acquired different ecophysiological 

capacities and ultimately different niches.  
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Chapter 5: Summary and future directions 

Examining plant response to climatic factors could benefit our understanding of 

ecosystem response as well as helping in the exploitation of areas for improving crop 

performance. Over geological times, changes in atmospheric [CO2] have influenced 

the evolution of plants (Ward & Kelly 2004; Leakey & Lau 2012), with this influence 

manifested in changes in leaf anatomy aimed at minimized the limitations imposed 

by declining atmospheric [CO2] over the past 100 million years (Boyce et al. 2009; 

Brodribb & Feild 2010; Franks et al. 2013; McElwain et al. 2016). Probing the effect 

of past climatic changes on plant leaf physiology can act as indicator for the 

response of flora to future climatic changes, and can provide a glimpse into how 

different species and taxa evolved their different physiological capacities. 

This thesis was devised to build on previous work done in the lab that aimed to 

understand the effect of atmospheric [CO2] change over geological time in shaping 

anatomical variation between taxa. It was interesting to see how such anatomical 

characters influenced leaf function. Extant species, belonging to different taxa that 

diverged at different points through geologic history (crown group age was used), 

were picked to represent a gradient of atmospheric [CO2] across geological time. 

The variation in anatomical characters was investigated previously, with some of this 

data presented in Chapter 2. Despite the lack of significant regressions (Fig. 2.3) 

presented in chapter 2, the anatomical data does follow findings in previous studies 

that showed changes in leaf anatomical characters can be a response to changing 

atmospheric [CO2] over geological time. Increase in stomatal density (Ds) under low 

[CO2] is also accompanied by decreasing Ss (Franks & Beerling 2009b; Matthews 

and Lawson, Unpublished). The combination of high Ds/low Ss is thought to 

contribute to increasing gs and subsequently gas exchange rates at the leaf surface 

(Konrad et al. 2008; Assouline & Or 2013). The increase in gas exchange capacity, 

including the increase in transpiration rates, means an increase in water demand by 



103 
 

the leaf, and the corresponding increase in Dv means leaves that evolved under low 

atmospheric [CO2] increased their hydraulic supply to match the demands of the 

higher gs required to respond to low atmospheric [CO2].  

Most of the experimental work in this thesis was dedicated to demonstrating the 

variation in the leaf’s ecophysiological and hydraulic capacities in species with 

different Ds and Dv. Generally, higher hydraulic capacities were observed in species 

that evolved under lower atmospheric [CO2], with all being angiosperms, than older 

species that had crown ages in high atmospheric [CO2] periods, which were non-

angiosperms (Fig. 3.9). Hydraulic capacity increased with increased Ds and Dv (Fig. 

3.8). Increased gs due to high Ds (and low Ss) means an accompanying increase in 

transpiration, putting an extra hydraulic demand on the leaf. Thus, a limited leaf 

capacity to uptake water would limit the leaf’s ability to sustain stomatal opening, and 

under low atmospheric [CO2] reduced stomatal opening would affect a species’ 

productivity. Increased Dv was already a signal that species under selection pressure 

from low atmospheric [CO2] had a hydraulic adaptation, and previous research 

(Boyce et al. 2009; de Boer et al. 2012) has shown that innovation in vein 

characteristics has allowed angiosperms to leap over other taxa and achieve higher 

gs, and subsequently higher A, due to their better supply of water to and around the 

leaf.  

Changes in Ds and Ss do not only affect bulk gs values, but they can have an impact 

on the behaviour and the responsiveness of the stomatal aperture. A few studies 

(Drake et al. 2013; Lawson & Blatt 2014; Raven 2014) have shown that, in some 

cases, high Ds/low Ss stomatal ratio results in a faster response by the stomatal 

aperture to environmental changes, allowing the leaf to match the responses of gs 

and A much more efficiently and thus making the most of increases in light, while 

also minimizing excess water loss when A decreases and extra CO2 uptake is not 

needed. This is not set in stone and those same studies (Lawson & Blatt 2014; 
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McAusland et al. 2016), plus some others (Franks & Farquhar 2007; Monda et al. 

2016; Elliott-Kingston et al. 2016) have argued against the extent of influence high 

Ds/low Ss has on stomatal behaviour. Data presented in Chapter 3 (Fig. 3.4) did not 

show any significant variation in the gs response to an increase in light. However, 

there was more of an observable difference in the gs response to decreasing light, 

with species that evolved under lower atmospheric [CO2] (with high Ds/low Ss) 

showing a sharper decrease in gs when light diminishes, thus limiting excess water 

loss through the stomatal pore. Water is always a limiting resource in plants, and 

thus increasing hydraulic supply without taking into consideration water availability is 

disadvantageous to plants, hence developing mechanisms to limit excess water 

usage are beneficial to a species’ ecophysiological success. However, the current 

ecological characteristics of a species’ habitat cannot be discounted, with the impact 

of previous environments (CO2 change) not representing a full explanation for leaf 

function of the different species. For example, the species that exhibited this 

decrease in gs are endemic to high humidity forests (P.caerulea, D.winteri), and so 

might not be water constrained. However others like L.nobilis are endemic to the 

more dry Mediterranean environment. B.capitata, which also exhibited this decrease 

in conductance, has been known to have extensive vascular thickening that can be a 

mechanism of more efficient water supply (Tomlinson 2006).  

P.vulgaris, a crop species, was used in Chapter 4 to compare its responses with 

those of species which have crown group ages further back across geological 

history. P.vulgaris displayed faster gs responses across a diurnal period compared to 

the other species sampled, highlighting its capacity to make the most of favourable 

photosynthetic conditions, while limiting losses under less favourable conditions. It 

provided a contrast to the responses of the other species across the diurnal period. 

A diurnal light regime subjects the plant to different rates of light change, similar to 

what a plant would experience in the field, and thus the species ability to adapt and 
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coordinate its physiological processes is put under pressure. There was some 

variation in stomatal speeds of response and in the matching of the A and gs 

responses, with species that generally achieve more of a match between the A and 

gs response also achieving higher A and gs values. What the data from the diurnal 

responses highlighted was that hydraulic capacity might be at least as influenced by 

photosynthesis as by stomatal activity, as the E and A responses were closer in 

shape to each other than E and gs. Fig. 4.7 did show a stronger positive correlation 

between E and A than between E and gs. Also, in chapter 3, Fig. 3.3 did show E 

responding to increasing atmospheric [CO2], which brings back the point highlighted 

earlier that water remains an important resource for plants for a variety of intra-leaf 

processes, and increasing photosynthetic capacity through higher gs would mean 

extra amounts of water is needed not just to sustain transpiration but to also supply 

water for biochemical reactions and processes.  

The diurnal responses shown also enabled the estimation of photosynthetic and 

hydraulic capacities across a prolonged period, and the results (Fig. 4.5) showed a 

general trend of increasing total (over the whole diurnal period) photosynthetic and 

hydraulic capacity (represented by calculating the auc) in species that emerged 

under lower atmospheric [CO2], despite the not very discernible variation in dynamic 

responses across the diurnal regime. However, those species, like P.vulgaris and 

P.caerulea, are part of taxonomic groups that are known for higher productivity rates 

(a leguminous crop and a tropical forest species respectively), recollecting the effect 

of species ecological niche on their exhibited capacity. Also, while there is some 

evidence that some species do achieve some control over stomatal response to 

light, it seems that leaf control and balance of carbon gain to water loss, or in other 

words WUE, developed later. WUE and how its coordinated is complicated to 

elucidate (Vialet-Chabrand et al. 2016), but a difference was found between basal 

plants and modern angiosperms in the way the stomata responds, the termed 
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“passive vs. active” control, and this is thought to be a mechanism to coordinate 

carbon gain with water loss under environmental change (Brodribb & McAdam 2011; 

McAdam & Brodribb 2014). 

Suggestions for future investigation 

While leaf anatomical characters like Ds, Ss and Dv have been investigated already, it 

is interesting to probe further and find intra-leaf variation in leaf anatomy. A number 

of studies have already highlighted evolutionary responses in leaf form and size 

(Beerling et al. 2001; Osborne et al. 2004), and so one area for further examination 

could be intra-leaf anatomical variation that can affect the leaf’s photosynthetic or 

hydraulic capacity. Examining leaf vein size and diameter, intra-leaf distances 

between mesophyll, veins and sub-stomatal air spaces, concentration of air spaces 

and other anatomical aspects that help limit or restrain water loss can give an idea 

into how the leaf is equipped to its ecophysiological functions. Putting these findings 

in an evolutionary context as a response to changing environmental conditions 

across geological time can bring about a holistic picture of the plant evolution. 

Measuring functional parameters in extant plants can help link anatomical changes 

to leaf function, however more species need to be used to correspond to different 

crown ages, as this study assumed that species that share crown ages would evolve 

similar characters, but of course, drivers of natural variation are not that 

straightforward. Finally, highlighting the relationship between leaf hydraulics and gas 

exchange and pinning down the main drivers of coordination of leaf hydraulics with 

leaf gas exchange can have a huge impact on understanding plant evolution, 

ecological function as well as providing ideas for exploitation in terms of improving 

plant traits for agriculture, especially under current climatic predictions that project 

increased drought and water unavailability.   
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Supplementary material 

Appendix 1 

This appendix is supplemented to Fig. 3.4, as that figure excluded error bars for 

clearer presentation. Here the responses of A and gs are separated into two separate 

graphs with error margins added. The figures show the step change response for 

each variable, with the grey shading around the curve representing the error 

(standard error). Figures are presented in order of species crown age (oldest to 

youngest): 

1.1 O.regalis
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1.2 G.biloba  

 

 

1.3 N.nagi 
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1.4 V.vinifera 

 

 

1.5 L.nobilis 
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1.6 P.caerulea 

 

 

1.7 D.winteri 
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1.8 B.capitata 
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Appendix 2 

This appendix is supplemented to Fig. 4.3, which showed diurnal response of A and 

gs to light change. As with Appendix 1, this Appendix is to separate the A and gs 

responses, as well as E and e, and show each curve with the margin of error 

associated with it (the grey shaded area around the curve; standard error was used). 

This is presented for the 5 species sampled. 
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2.3 P.caerulea 
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2.4 D.winteri 
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2.5 P.vulgaris 

 

 

 

 

 

 

 

 

 

 



130 
 

Appendix 3 

Presented here is the full output of the regression analysis shown in Chapters 2, 3 

and 4. Below is each figure with the accompanying statistical output and regression 

equation. 

Figure number Statistical output Regression equation 

2.3(a) F(1,8) = 1.727, p=0.2253, R2= 0.1775 Ds = (-0.1525) CO2 + 162.2784 

2.3(b) F(1,7) = 2.533, p=0.155,. R2= 0.2657 Dv = (-0.004331) CO2 + 4.981841 

2.3(c) F(1,7) = 8.347, p=0.02335 , R2= 0.5439 Ds = (30.86) Dv - 2.994 

3.7(a) F(1,6) = 4.544, p= 0.07704, R2= 0.4309 E = (-0.0017953) CO2 + 1.4934854 

3.7(b) F(1,6) = 0.0008726, p= 0.9774, R2= 0.0001454 A = (0.0001597) CO2 + 5.7196408 

3.7(c) F(1,6) = 0.6817, p= 0.4406, R2= 0.102 gs = (0.00005078) CO2 + 0.03327 

3.7(d) F(1,6) = 0.6459, p= 0.4522, R2= 0.09719 E = (0.06436) A + 0.47989 

3.7(e) F(1,6) = 0.4227, p= 0.5397, R2= 0.06582 E = (4.4130) gs + 0.6247 

3.7(f) F(1,6) = 8.994, p= 0.02404, R2= 0.5998 A = (64.532) gs + 2.458 

3.8(a) F(1,6) = 0.9096, p= 0.377, R2= 0.1316 A = (0.01336) Ds + 4.11476 

3.8(b) F(1,6) = 4.538, p= 0.07692, R2= 0.4312 E = (0.00499) Ds + 0.23072 

3.8(c) F(1,6) = 0.03721, p= 0.8534, R2= 0.006163 gs = (-0.00003468) Ds + 0.05574 

3.8(d) F(1,5) = 2.822, p= 0.1538, R2= 0.3608 A = (0.9831) Dv + 2.3768 

3.8(e) F(1,5) = 3.617, p= 0.1156, R2= 0.4197 E = (0.22463) Dv + 0.02189 

3.8(f) F(1,5) = 0.3232, p= 0.5942, R2= 0.06072 gs = (0.004726) Dv + 0.037757 

4.7(a) F(1,3) = 2.941, p= 0.1849, R2= 0.495 E = (-0.02561) CO2 + 9.49350 

4.7(b) F(1,3) = 5.576, p= 0.09929, R2= 0.6502 A = (-0.07972) CO2 + 25.57543 

4.7(c) F(1,3) = 1.541, p= 0.3027, R2= 0.3393 gs = (-0.006671) CO2 + 2.205810 

4.7(d) F(1,3) = 16.03, p= 0.02793, R2= 0.8424 E = (0.3379) A + 1.1584 

4.7(e) F(1,3) = 7.554, p= 0.07084, R2= 0.7157 E = (2.6892) gs + 1.7816 

4.7(f) F(1,3) = 25.69, p= 0.01483, R2= 0.8954 A = (8.169) gs + 1.705 

 

 


