Research Repository

Genomic modelling of the ESR1 Y537S mutation for evaluating function and new therapeutic approaches for metastatic breast cancer

Harrod, A and Fulton, J and Nguyen, VTM and Periyasamy, M and Ramos-Garcia, L and Lai, CF and Metodieva, G and De Giorgio, A and Williams, RL and Santos, DB and Gomez, PJ and Lin, ML and Metodiev, MV and Stebbing, J and Castellano, L and Magnani, L and Coombes, RC and Buluwela, L and Ali, S (2017) 'Genomic modelling of the ESR1 Y537S mutation for evaluating function and new therapeutic approaches for metastatic breast cancer.' Oncogene, 36 (16). 2286 - 2296. ISSN 0950-9232

[img]
Preview
Text
onc2016382a-2.pdf - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview

Abstract

Drugs that inhibit estrogen receptor-α (ER) activity have been highly successful in treating and reducing breast cancer progression in ER-positive disease. However, resistance to these therapies presents a major clinical problem. Recent genetic studies have shown that mutations in the ER gene are found in >20% of tumours that progress on endocrine therapies. Remarkably, the great majority of these mutations localize to just a few amino acids within or near the critical helix 12 region of the ER hormone binding domain, where they are likely to be single allele mutations. Understanding how these mutations impact on ER function is a prerequisite for identifying methods to treat breast cancer patients featuring such mutations. Towards this end, we used CRISPR-Cas9 genome editing to make a single allele knock-in of the most commonly mutated amino acid residue, tyrosine 537, in the estrogen-responsive MCF7 breast cancer cell line. Genomic analyses using RNA-seq and ER ChIP-seq demonstrated that the Y537S mutation promotes constitutive ER activity globally, resulting in estrogen-independent growth. MCF7-Y537S cells were resistant to the anti-estrogen tamoxifen and fulvestrant. Further, we show that the basal transcription factor TFIIH is constitutively recruited by ER-Y537S, resulting in ligand-independent phosphorylation of Serine 118 (Ser118) by the TFIIH kinase, cyclin-dependent kinase (CDK)7. The CDK7 inhibitor, THZ1 prevented Ser118 phosphorylation and inhibited growth of MCF7-Y537S cells. These studies confirm the functional importance of ER mutations in endocrine resistance, demonstrate the utility of knock-in mutational models for investigating alternative therapeutic approaches and highlight CDK7 inhibition as a potential therapy for endocrine-resistant breast cancer mediated by ER mutations.

Item Type: Article
Subjects: R Medicine > RC Internal medicine > RC0254 Neoplasms. Tumors. Oncology (including Cancer)
Divisions: Faculty of Science and Health > Biological Sciences, School of
Depositing User: Jim Jamieson
Date Deposited: 24 Apr 2017 09:01
Last Modified: 23 Jan 2019 02:15
URI: http://repository.essex.ac.uk/id/eprint/19533

Actions (login required)

View Item View Item