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Abstract—Secret key generation (SKG) from shared random-
ness at two remote locations has been shown to be vulnerable
to denial of service attacks in the form of jamming. Typically,
such attacks are alleviated with frequency hopping/spreading
techniques that rely on expansion of the system bandwidth. In
the present study, energy harvesting (EH) is exploited as a novel
counter-jamming approach that alleviates the need for extra
bandwidth resources. Assuming the legitimate users have EH
capabilities, the idea is that part of the jamming signal can
potentially be harvested and converted into useful communication
power. In this framework, the competitive interaction between a
pair of legitimate users and a jammer is formulated as a zero-
sum game. A critical transmission power for the legitimate users
is identified which allows to completely characterize the unique
NE of the game in closed form. Remarkably, this threshold
also provides the option to effectively neutralize the jammer,
i.e., prevent the jammer from carrying out the attack altogether.
Through numerical evaluations, EH is shown to be a counter-
jamming approach that can offer substantial gains in terms of
relative SKG rates.

Index Terms—Energy harvesting, secret key generation, jam-
ming attacks, zero-sum games, Nash equilibrium

I. INTRODUCTION

Secret key generation (SKG) from shared randomness at

two remote locations has been extensively studied for more

than three decades [1]–[4] and is currently being considered

for applications such as the internet of things (IoT) [5]. In

this direction, practical designs combining SKG with standard

message authentication codes for integrity have been shown

to be resilient to spoofing, tampering and man-in-the-middle

(MiM) active attacks [6]. Nevertheless, SKG techniques are

not fully robust against active adversaries. Denial of service

attacks in the form of jamming are a known vulnerability of

SKG systems; in [7] it was demonstrated that with increasing

jamming power, the rate of the generated keys decreases

sharply and the SKG process can in essence be brought to

a halt.

Typically, counter-jamming measures rely on the availability

of spectral resources and employ frequency hopping/spreading

strategies [8], [9]. However, next generation terminals are

likely to be enhanced with many new features that could

prove pivotal in protecting against jamming. For example,

greater energy autonomy exploiting energy harvesting (EH)

approaches [10], [11] is being researched for systems such

as wireless sensors and RFID devices for IoT applications.

Given the interest in employing SKG in IoT, it is sensible to

investigate whether EH could be utilized in such systems as

a counter-jamming approach by using the jamming power to

enhance the quality of the legitimate transmissions.

Motivated by the above, in the present work we investigate

SKG systems under jamming attacks in which the legitimate

nodes are equipped wih EH capabilities. We focus on time

switching EH protocols [11] in which for a portion of time the

legitimate nodes operate in EH mode and switch to the SKG

procedure for the rest. A zero-sum game theoretic framework

is employed to study the adversarial interaction between the

legitimate nodes and the jammer and the game’s unique Nash

equilibrium (NE) is characterized in closed form. Our analysis

reveals the existence of a critical power threshold pth and of

an associated optimal harvesting duration for the legitimate

users; when the legitimate nodes employ EH for longer than

this duration, the attacker’s optimal strategy is not to jam at

all, hence, it is effectively neutralized. However, this proves

a suboptimal strategy; interestingly, at the NE it is found

that both parties transmit at full power. Our numerical results

demonstrate that the gains in employing EH as a counter-

jamming technique are substantial in terms of relative SKG

rates. To the best of our knowledge, this work is the first to

consider EH as a counter-jamming technique.

The paper is organized as follows. In Section II the SKG

model is introduced while in Section III the adversarial in-

teraction between the EH legitimate nodes and the jammer

is formulated as a zero-sum game. In III-A, the necessary

conditions for neutralizing the jammer are investigated while

the complete characterization of the unique NE is presented in

III-B. Numerical illustrations and a detailed discussion of the

possible counter-jamming strategies are presented in Section

IV. Finally, we conclude in Section V.

II. SYSTEM MODEL

In the present work we propose a novel approach for

alleviating the impact of jamming in SKG systems assuming

that the legitimate nodes are equipped with EH capabilities and

examine whether this added functionality is useful in preempt-

ing jamming attacks. The main motivation behind this study

is two-fold. First, the scarcity of the spectral resources renders

the investigation of counter-jamming approaches that do not

require an increase of the necessary bandwidth very attractive.



Secondly, it is interesting to investigate under what conditions

harvesting the jamming power could act as a counter-incentive

to jamming itself, i.e., characterize the operating region in

which the adversary does not benefit from the attack anymore.

In this Section, we build the system model in a progressive and

intuitive manner. First, we briefly review SKG related basics

in II-A. Subsequently, in II-B the baseline system model is

extended to incorporate jamming attacks and finally in II-C

the complete system model is presented assuming that the

legitimate users exploit EH to counteract the jammer’s attacks.

A. Background on SKG Processes

Typically, the SKG process consists of three phases. In

the first phase, known as shared randomness distillation, the

legitimate nodes – referred to as Alice and Bob – observe

dependent random variables denoted by YA, YB while an

eavesdropper, referred to as Eve observes YE . In multi-path

wireless channels, a readily available source of shared random-

ness is provided by the fading channel coefficients [3], [4],

[12]. In this work, we focus precisely on shared randomness

extraction from Rayleigh fading coefficients.

In the next two phases, known as information reconciliation

and privacy amplification, side information V is exchanged

between Alice and Bob. V is generated with the aid of

corresponding encoders fA, fB implemented as Slepian-Wolf

decoders with side information. At the end of the SKG process,

a common key K ∈ K is extracted by Alice and Bob so that

for any ǫ > 0 the following statements are satisfied [4]:

Pr (K = fA (YA, V ) = fB (YB, V )) ≥ 1− ǫ, (1)

I(K;V ) ≤ ǫ, (2)

H(K) ≥ log |K| − ǫ. (3)

The first statement shows that the SKG process can be made

error free, in the asymptotic regime (for long length encoders

fA, fB). Inequality (2) ensures that the exchange of side

information through public discussion does not leak any in-

formation regarding K to eavesdroppers, while (3) establishes

maximum entropy (uniform distribution) of the generated keys.

Under these conditions, an upper bound on the SKG rate

is given by min [I(YA;YB), I(YA;YB|YE)] [1], [2]. In rich

multi-path environments, the decorrelation properties of the

wireless channel over short distances (of the order of a

wavelength) can be exploited to ensure that Eve’s observation

YE is uncorrelated from YA and YB [4]. In such cases, the

previous bound becomes tight and the maximum achievable

SKG rate, referred to as the SKG capacity, is simply given by

C = I(YA;YB) (4)

(see Section II in [1]). Here, we assume that the decorrelation

property of the observations holds.

SKG in Rayleigh fading channels has been analyzed ex-

tensively; in [4] in particular Alice and Bob were assumed

to exchange unit probe signals to excite a Rayleigh fading

channel and obtain observations YA and YB , respectively, as

follows

YA = H + ZA, (5)

YB = H + ZB, (6)

whereH denoted the fading coefficient, modeled as a Gaussian

random variable H ∼ N (0, σ2H), and ZA and ZB de-

noted independent Gaussian noise variables with (ZA, ZB) ∼
N (0, diag (NA, NB)). Using this notation, the SKG capacity

was expressed as [4]

C = I(YA;YB) =
1

2
log2

(

1 +
σ2H

NA +NB + NANB

σ2

H

)

. (7)

B. Jamming Attacks

In the following, we assume that Eve is an active adversary

that launches jamming attacks by transmitting constant jam-

ming signals to excite the Rayleigh fading medium in order to

impair the SKG process. The extended system model captures

the impact of jamming as follows:

YA =
√
pH +

√
γGA +WA, (8)

YB =
√
pH +

√
γGB +WB , (9)

where as previously YA and YB denote Alice’s and Bob’s

observations, respectively. The fading coefficient in the link

between Eve and Alice is denoted by GA ∼ N
(

0, σ2
)

and

in the link between Eve and Bob by GB ∼ N
(

0, σ2
)

.

For simplicity, the noise terms WA and WB are modeled

as independent and identically distributed Gaussian random

variables with zero mean and unit variance. Finally, in order

to incorporate the dimension of power control at the legitimate

users and the adversary, the legitimate transmit power is

denoted by p ≤ P and the jamming power by γ ≤ Γ.
Under these assumptions, a straightforward calculation re-

veals that the SKG capacity can be expressed as a function of

p and γ as:

C(p, γ) =
1

2
log2

 
1 +

σ2Hp

2(1 + σ2γ) + (1+σ2γ)2

σ2

H
p

!
. (10)

We note that C(p, γ) is increasing in p for fixed γ and convex

decreasing in γ for fixed p. Thus, in absence of EH, the optimal
strategy (p∗, γ∗) for the legitimate nodes and the jammer is

to transmit at maximum power, i.e., p∗ = P and γ∗ = Γ.

C. Energy Harvesting to Counteract Jamming

Our aim is to investigate whether EH at the legitimate users

can improve the SKG capacity in the presence of jamming.

For this, we focus on a simple time-switching scheme [11]:

we assume that each transmission symbol of duration T is

divided in two parts. In the first part of duration τT (τ ∈ [0, 1]
being the proportion of the time dedicated to EH) both Alice

and Bob operate in EH mode with efficiency ζ ∈ (0, 1].
In the second part of duration (1 − τ)T , the legitimate

users operate in SKG mode using the overall available power

(including previously harvested power). Also, we assume that



the harvested energy can be stored in an energy storage unit

without any overflowing issues (unlimited storage) [13].

Under the above considerations, the energy harvested by

Alice and Bob can be expressed as

E = ζσ2γτT, (11)

so that the harvested power for each legitimate user per

communication cycle (to be used in the SKG mode) can be

expressed as
E

(1− τ)T
= κγ, (12)

where κ(τ) ,
ζτσ2

1−τ
is a convex increasing function of τ .

Since the SKG process encompasses two cycles (from Alice

to Bob and from Bob to Alice), each legitimate user harvests

2κγ overall power before it actually transmits. Thus, the SKG

capacity can be expressed as

C(p, τ, γ) =
1− τ

2
log2

 
1 +

(p+ 2κγ)σ2H

2(1 + σ2γ) + (1+σ2γ)2

(p+2κγ)σ2

H

!
.

(13)

Inspecting (13), we notice that our model generalizes the

SKG setting in II-B. To be specific, if the legitimate users

decide not to harvest energy (τ = 0), we obtain (10). In the

proposed system model, the legitimate users are able to exploit

an additional degree of freedom (i.e., τ ) to maximize the SKG
capacity. Moreover, by harvesting energy from the wireless

environment, the legitimate users can transform part of the

jamming power to useful transmission power. As a result,

the jammer may not wish to transmit always at its maximum

power.

III. TWO PLAYERS ZERO-SUM GAME

Non-cooperative game theory captures naturally the compet-

itive interaction between the legitimate users and the jammer.

Although the game theoretic framework has already been

exploited in physical layer security problems e.g., [14], to the

best of our knowledge, this work is the first to investigate EH

as an effective means to counteract jamming attacks.

We begin our analysis by discussing two important remarks

and their implications regarding the SKG capacity in (13).

Remark 1: For any fixed τ and γ, C(p, τ, γ) is monotonically
increasing in p and

arg max
p∈[0,P ]

C(p, τ, γ) = P. (14)

Remark 2: For any fixed p and τ , C(p, τ, γ) is monotone in

γ. In particular, it is monotonically decreasing in γ if p >
pth(τ) ,

2ζτ
1−τ

, a constant if p = pth(τ), and monotonically

increasing if p < pth(τ). This implies that:

arg max
γ∈[0,Γ]

C (p, τ, γ) = 0, if p < pth(τ) (15)

arg max
γ∈[0,Γ]

C (p, τ, γ) ∈ [0,Γ], if p = pth(τ) (16)

arg max
γ∈[0,Γ]

C (p, τ, γ) = Γ, if p > pth(τ). (17)

Remark 1 shows that the legitimate users should transmit

at maximum power P to maximize the SKG utility. On the

contrary, Remark 2 shows that the jammer should practically

switch in between staying silent and jamming at full power Γ
depending on the choice (p, τ) of the legitimate users. This

implies that the legitimate users can neutralize the jammer by

choosing first (p, τ) such that p < pth(τ). Intuitively, equation
(15) illustrates that, if the legitimate users transmit at a power

level below the threshold pth(τ), the jammer’s optimal strategy
is to remain silent. Otherwise stated, the harm that the jammer

can cause in the SKG mode is overcome by the harvested

energy in the EH mode. If the legitimate users transmit at

exactly pth(τ), the jammer becomes indifferent between all

its choices γ ∈ [0,Γ] and has no interest in actively jamming

the transmission.

A. Jammer Neutralization

Given the above discussion and for the sake of simplicity

of the analysis, we assume that the choices of the jammer

are limited to its extremes γ ∈ {0,Γ} instead of [0,Γ] in the

remainder of this work. Denoting by p−1th (P ) , P
P+2ζ the

inverse function of pth(τ) defined in Remark 2, the necessary
conditions for the jammer neutralization are formalized in

Proposition 1.

Proposition 1: The optimal strategy for the legitimate

users that maximizes the SKG utility while ensuring that the

jammer has no interest in jamming the transmission is given

by:

pNJ = min{P, pth(τ̂ )} and τNJ = min{p−1th (P ), τ̂}, (18)

where τ̂ ∈ (0, 1) is the unique maximizer of C(pth(τ), τ, 0)
w.r.t. τ .
For the detailed proof the reader is referred to Appendix A.

Whenever the legitimate user chooses (pNJ , τNJ ), the

legitimate user transmits at the threshold identified in Remark

2. We can argue that the jammer is neutralized as it has no

interest in actively jamming the transmission. To formally

guarantee that the jammer stays silent the legitimate users

should harvest energy a fraction of time equal to τNJ and

transmit at power p = pNJ − εp < pNJ (strictly below the

threshold in Remark 2) for some εp > 0 which can be chosen
arbitrarily small (so that it has negligible impact on the SKG

capacity). Notice that if the jammer stays silent, i.e., γ = 0,
there is no actual energy that is harvested during the EH mode

of duration τNJ . Rather, the legitimate users’ choice to harvest

energy for a duration of τNJ acts as a threat to ensure that

the jammer has no interest in jamming the transmission. This

means that neutralizing the jammer may not be necessarily the

overall optimal strategy for the legitimate users. Another hint

for this is that whenever τNJ = τ̂ < p−1th (P ), the transmit

power is pNJ = pth(τ̂ ) < P , which we know from Remark 1

is not optimal.

B. Game Formulation and Nash Equilibrium

To formalize the interaction between the legitimate users

and the jammer, we define the following two-player zero-sum



game G = {AL,AJ , C (p, τ, γ)}. The players of the game are:
player L representing the legitimate users (that collaborate and

act as a single player) on one hand, and player J, the jammer,

on the other hand. Any of player’s L actions (p, τ) belong to
the set AL = [0, P ]× [0, 1] and player’s J actions γ belong to

the set AJ = {0,Γ}. The objective of player L is to maximize

the SKG capacity C(p, τ, γ) given in (13), whereas player J

aims at minimizing it.

The optimal strategy of one player depends on the choice

of its opponent and cannot be determined unilaterally. In such

interactive situations, the Nash equilibrium (NE) [15] is the

natural solution. Intuitively, a profile (pNE , τNE , γNE) is a
NE if none of the players can benefit by deviating from their

NE actions knowing that their opponents play according to the

NE. Hence, NEs are system states that are stable to unilateral

deviations. We can easily check that neutralizing the jammer

(pNJ , τNJ , 0) in Proposition 1 is not an NE. Knowing that the
jammer stays silent, player L can increase the game’s utility

by deviating to τ = 0 (reducing τ increases the utility if no

energy is harvested in the EH mode). This, in turn, will also

cause the jammer to deviate from γ = 0 to γ = Γ.
The NE of the game G turns out to be unique; at the NE

both players transmit with maximum power (similarly to the

case in which there is no EH capability). Also, depending on

the system parameters, the legitimate users may or may not use

their EH capability. The above are captured in the following

theorem.

Theorem 1: The game G has a unique NE given by

(P, τNE ,Γ). Depending on the system parameters, the EH

strategy is either τNE = 0 or τNE = min{p−1th (P ), τmax}
with p−1th (P ) =

P
P+2ζ and τmax ∈ (0, 1) representing the

critical maximum point of C(P, τ,Γ) w.r.t. τ .
The proof is detailed in Appendix B.

We observe that, at the NE and depending on the system

parameters, player L may either harvest energy at a rate

τNE < τNJ or not at all τNE = 0. Intuitively, at relatively
high transmit power P , the dominant term in the utility (13) is

the multiplicative term 1− τ outside of the logarithmic term.

Thus, when in NJ mode we may expect that the fraction of

time spent neutralizing the jammer is too costly given that no

energy is harvested and the NE provides a better utility to the

legitimate users in spite of full power jamming.

IV. NUMERICAL ILLUSTRATIONS AND DISCUSSION

In this Section, several representative illustrations are cho-

sen allowing the deduction of generic conclusions that carry

over most setups. The benchmark setting is chosen as follows:

unit jamming power Γ = 1, harvesting efficiency ζ = 0.7, unit
variance Rayleigh channel coefficients σ2 = σ2H = 1. The
legitimate users transmit with power P = ρG with ρ ∈ [0, 5].
We start by evaluating the SKG capacity at both the

NJ and NE states as a function of the system parameters.

In Fig. 1, the relative gain in utility obtained at the NE

(CNE = C(P, τNE ,Γ)) compared with the NJ (CNE =

C(pNJ , τNJ , 0)), defined by E , CNE−CNJ

CNE is depicted as

a function of the signal to interference ratio (SIR) P/Γ for

Fig. 1. Relative utility gain at the NE vs. NJ E = (CNE − CNJ )/CNE

as a function of P/Γ ≥ 0 for ζ = 0.7.

different values of σ2 and σ2H . As expected the NJ strategy

never outperforms the NE in terms of utility. However, when

the SIR P/Γ is relatively small, both the NE and the NJ

provide identical utilities. In this case, the strategies of player

L are identical at both NE and NJ: pNJ = P and τNJ = τNE

and the jammer is indifferent between {0,Γ}. With increasing

SIR P/Γ, it is no longer optimal for the legitimate player

to harvest energy for a fraction of time τNJ in order to

neutralize the jammer. Instead, by limiting the duration of EH

to a fraction τNE < τNJ the SKG capacity increases in spite

of full power jamming γ = Γ. Finally, in the very high SIR

regime, i.e., for P/Γ ≫ 1, the legitimate users should not

harvest energy at all.

In Fig. 2, for the benchmark setting, two operating regions

are depicted w.r.t. P/Γ and the harvesting efficiency ζ. The
darker region represents the operating modes in which CNE =
CNJ , and the lighter region the operating modes for which

CNE > CNJ . For small ζ, the harvesting return is limited

and, as a result, a longer fraction of the symbol duration has

to be used to neutralize the jammer. This implies that, at the

NE, the legitimate users gain by decreasing the EH duration

τNE < τNJ for relatively lower values of the SIR P/Γ.
Subsequently, we evaluate the impact of the EH capability

on the SKG capacity. In Fig. 3, the relative gain in utility

obtained at the NE CNE = C(P, τNE ,Γ) compared with the
case in which there is no EH capability CNoEH = C(P, 0,Γ),

defined as F , CNE−CNoEH

CNE , is depicted as a function of

P/Γ. The benchmark setup is considered and the different

curves correspond to different harvesting efficiencies ζ ∈
[0.1, 0.9]. As expected, F increases with ζ. For P/Γ = 1,
ζ = 0.5 the gain is around 20 % while it increases to 30 %
for ζ = 0.7. At high SIR P/Γ, harvesting energy renders

only negligible relative gains, irrespective of the harvesting

efficiency.

Finally the relative utility F above is depicted in Fig. 4 for

ζ = 0.7 and various channel parameters. For low SIR P/Γ,
there is a significant gain in utility when employing EH. This

gain becomes significantly large at very low SIR, exceeding



Fig. 2. NE vs. NJ regions as functions of P/Γ ≥ 0 and 0 ≤ ζ ≤ 1 for
σ2 = σ2

H
= 1.

Fig. 3. Relative utility gain at the NE vs. no EH F = (CNE −

CnoEH)/CNE as a function of P/Γ ≥ 0.

97.5 % in certain cases, while for similar settings it is in the

range of 60 % in the medium SIR range.

In conclusion, EH enables the legitimate users to combat

the jammer’s attacks more efficiently especially at relatively

low SIR. This capability allows either to completely neutralize

the jammer when τNE = τNJ or to simply turn part of the

jamming power to useful communication power.

V. CONCLUSIONS

In this work, energy harvesting at the legitimate users was

investigated as a possible way to counteract malicious jam-

ming in wireless SKG systems. A zero-sum game framework

was introduced to analyze the adversarial interaction between

a jammer and a pair of legitimate nodes; the game’s unique

NE was characterized in closed-form. The EH capability was

shown to offer to the legitimate users the opportunity to

effectively neutralize the jammer. However, this option does

Fig. 4. Relative utility gain at the NE vs. no EH F = (CNE −

CnoEH)/CNE as a function of P/Γ ≥ 0 for ζ = 0.7.

not necessarily correspond to the optimal strategy because

when the jammer remains silent no actual energy can be

harvested and the EH capability simply acts as a threat against

jamming. Hence, at the NE, the legitimate users do not

necessarily neutralize the jammer; in many cases the jamming

power should instead be harvested in order to be used in the

actual transmission. Numerical simulations show that the EH

capability can greatly improve the relative utility compared

to a system without EH, especially in the low SIR regime in

which the relative gain can be particularly high.

APPENDIX A

PROOF OF PROPOSITION 1

Proof: Assume that the legitimate users neutralize the

jammer by transmitting at power p ∈ [0,min pth(τ), P ]. The
jammer observes the legitimate user’s choice and decides to

stay silent. Notice that the legitimate user can force the jammer

to remain silent by transmitting at p ∈ [0,min{pth(τ)−εp, P}]
for an arbitrarily small εp > 0 (with little impact on the SKG
utility). However, for simplicity, we will ignore this detail here.

The remaining question is: how will the legitimate user

choose τ ∈ [0, 1) and p ∈ [0,min{pth(τ), P}] to maximize

the resulting SKG utility

C(p, τ, 0) =
1− τ

2
log2

(

1 +
pσ2H

2 + 1
pσ2

H

)

, (19)

(while ensuring that the jammer stays silent). Since the feasible

set of p depends on τ , we first have to find the maximum

of C(p, τ, 0) w.r.t. p for any fixed τ . The function C(p, τ, 0)
is strictly increasing in p and, hence, the optimal power is

given by p̂(τ) = min{P, pth(τ)}. Now, we need to maximize
C(p̂(τ), τ, 0) w.r.t. τ ∈ [0, 1]:

C(pth(τ), τ, 0) =
1− τ

2
log2

(

1 +
2ζσ2Hτ

(2 + 1−τ
2ζσ2

H
τ
)(1− τ)

)

.

At the extremes τ = 0 and τ → 1 the utility goes to zero.

By investigating its second order derivatives w.r.t. τ , which



amounts to the following quadratic equation:

(1− τ)2 − 8σ4Hζ2τ2 = 0, (20)

it can be shown that C(pth(τ), τ, 0) always has an inflexion

point in between (0, 1) and starts as convex and then becomes
concave. Knowing that the the utility is always positive, we can

conclude that C(pth(τ), τ, 0) has a unique critical point that

is the global maximizer τ̂ ∈ (0, 1) and which is the solution

to
dC(pth(τ),τ,0)

dτ
= 0. This implies that, if pth(τ̂ ) ≤ P , then

the optimal solution that neutralizes the jammer is τNJ = τ̂
and pNJ = pth(τ̂ ). If pth(τ̂ ) > P , then the optimal solution

that neutralizes the jammer is pNJ = P and τNJ = p−1th (P ).

APPENDIX B

PROOF OF THEOREM 1

Proof: From Remark 1, we know that transmitting at

maximum power is a strictly dominant strategy for player L

and, hence, pNE = P .
We start by proving that, at the NE, player L will not spend

time harvesting energy longer than the threshold p−1th (P ). Let’s
suppose by absurdum that τNE > p−1th (P ), then the jammer’s
best response would be to remain silent γNE = 0. Then,
the optimal τNE maximizing the utility C(P, τ, 0) (which

is decreasing in τ ) would be τNE → p−1th (P ) obtaining the

utility CNE → C(P, p−1th (P ), 0). However, this state cannot

be an NE. Indeed, if the jammer stays silent γNE = 0, no
energy is harvested during τNE and player L gains in utility

by deviating to τ = 0. This will also cause the jammer to

deviate to γ = Γ.
The above implies that player L will choose an EH strategy

such that τNE ≤ p−1th (P ) at the NE. This condition is

equivalent to P ≥ pth(τ
NE), which means that the utility

is either decreasing or simply a constant in γ (see Remark 2).

If the jammer uses maximum power γNE = Γ, then it

does not gain by deviating. Thus, we only need to find the

optimal value of τ ∈ [0, p−1th (P )] that maximizes the function
C(P, τ,Γ) given by:

C(P, τ,Γ) =
1− τ

2
log2

 
1 +

(P + 2κ(τ)Γ) σ2H

2(1 + σ2Γ) + (1+σ2Γ)2

(P+2κ(τ)Γ)σ2

H

!
,

where κ(τ) = ζτσ2

1−τ
. At τ = 0, this function is strictly positive

C(P, 0,Γ) > 0 equal to the SKG capacity without EH and,

when τ → 1 the function goes to 0. By investigating the

second order derivative of C(P, τ,Γ) w.r.t. τ , which amounts
to the analysis of the following quadratic equation

(1− τ)2(1 + σ2Γ)2 − 2σ4H(P (1− τ) + 2σ2ζΓτ)2 = 0, (21)

two different cases arise:

- Case A: If 1 + σ2Γ ≥
√
2σ2HP , C(P, τ,Γ) has a unique

inflexion point that lies in (0, 1) and the function starts as

convex and then becomes concave. Thus, C(P, τ,Γ) has a

critical point that is a local maximum τmax ∈ (0, 1), which is
a solution of the equation

du(P,τ,Γ)
dτ

= 0. Hence, the optimal

strategy is either τmax or one of the borders of [0, p−1th (P )],
depending on the system parameters:

τNE = arg max
τ∈{0,min{p−1

th
(P ),τmax}}

C(P, τ,Γ). (22)

- Case B: If 1 + σ2Γ <
√
2σ2HP , then the function is

always concave (and it does not have an inflexion point)

in (0, 1). If the function has a critical point in (0, 1), then
this critical point is a maximum point denoted by τmax

and τNE = min{p−1th (P ), τmax}. Otherwise, the function is

concave decreasing and τNE = 0.
Since the state (P, pth

−1(P ), 0) is not a NE, the game’s

unique NE is given by (P, τNE ,Γ) where τNE depends on

the system parameters and equals zero ormin{p−1th (P ), τmax}.
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[9] C. Pöpper, M. Strasser, and S. Cǎpkun, “Anti-jamming broadcast com-
munication using uncoordinated spread spectrum techniques,” IEEE J.
Sel. Areas Commun., vol. 28, no. 5, pp. 703–715, Jun. 2010.

[10] R. Ramachandran, V. Sharma, and P. Viswanath, “Capacity of Gaussian
channels with energy harvesting and processing cost,” IEEE Trans. Inf.
Theory, vol. 60, no. 5, pp. 2563–2575, May 2014.

[11] Y. Gu and S. Aı̈ssa, “RF-based energy harvesting in decode-and-forward
relaying systems: Ergodic and outage capacities,” IEEE Trans. Wireless
Commun., vol. 14, no. 11, pp. 6425–5434, Nov. 2015.

[12] A. Mukherjee, S.A.A., Fakoorian, H. Jing, and A. Swindlehurst, “Princi-
ples of physical layer security in multiuser wireless networks: A survey,”
IEEE Commun. Surveys and Tuts., vol. 16, no. 3, pp. 1550–1573, Third
Quarter 2014.

[13] S. Ulukus, A. Yener, E. Erkip, O. Simeone, M. Zorzi, P. Grover, and
K. Huang, “Energy harvesting wireless communications: A review of
recent advances,” IEEE J. Sel. Areas Commun., vol. 33, no. 3, pp. 360–
381, Mar. 2015.

[14] S. Wei, R. Kannan, V. Chakravarthy, and M. Rangaswamy, “CSI usage
over parallel fading channels under jamming attacks: a game theory
study,” IEEE Trans. Wireless Commun., vol. 60, no. 4, pp. 1167–1175,
Apr. 2012.

[15] D. Fudenberg and J. Tirole, Game theory. MIT press, 1991.


