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Abstract—Secret key generation (SKG) schemes have been
shown to be vulnerable to denial of service (DoS) attacks in
the form of jamming. In this paper, a comprehensive study on
the impact of correlated and uncorrelated jamming in wireless
SKG systems is presented. First, optimal signalling schemes
for the legitimate users and jamming approaches for an active
adversary launching a DoS attack on the SKG system are derived.
It is shown that the legitimate users should employ constant
signalling. On the other hand, the jammer should inject either
correlated jamming when imperfect channel state information
(CSI) regarding the main channel is at their disposal, or,
uncorrelated jamming when the main channel CSI is completely
unknown. In both cases, optimal power allocation policies are
studied under short-term power constrains for M block fading
additive white Gaussian noise (BF-AWGN) channels. Numerical
evaluations demonstrate that equidistribution of the jamming
power is near-optimal in the case of uncorrelated jamming.
Index Terms—Jamming, communication system security, phys-

ical layer security.

I. INTRODUCTION

The increasing deployment of wireless networks poses secu-

rity challenges in next generation dynamic and decentralized

networks, consisting of low-cost, low-complexity devices.

Over the last two decades alternative/complementary means

to secure data exchange in wireless settings have been in-

vestigated in the framework of physical layer security (PLS),

addressing jointly the issues of reliability and secrecy. One

of the most mature topics in PLS is the generation of secret

keys via public discussion, based on either the so-called source

model [1]–[5] or the so-called channel model [6].

Recently, in [7] the effect of denial of service attacks (DoS)

in the form of jamming was demonstrated to substantially

decrease SKG rates; with increasing jamming power the SKG

rates were shown to asymptotically diminish. In this investiga-

tion the adversaries were assumed to inject constant jamming

signals and have been shown to have a maximum impact on

the SKG system when they were able to evaluate the channel

state information (CSI) in the links between themselves and

the legitimate nodes (partial CSI availability). However, the

optimality of injecting constant jamming signals was not stud-

ied, neither was the scenario in which the adversary obtains

an imperfect estimate of the main channel CSI. Furthermore,

this analysis concerned exclusively narrowband SKG systems

while typical anti-jamming techniques such as direct sequence

spread spectrum, spread spectrum frequency hopping and un-

coordinated hopping/spreading approaches span many parallel

subchannels.

As a result, a systematic analysis of the impact of jamming

in SKG systems with parallel subchannels when imperfect CSI

might be available at the adversarial node is timely. We begin

our investigation by determining optimal signalling schemes

for the pair of legitimate nodes and the jammer. It is shown

that the legitimate nodes should employ a constant signalling

scheme, while the jammer – depending on the availability

of side information in the form of imperfect main channel

CSI – should either inject correlated or uncorrelated jamming.

Next, optimal power allocation policies are investigated for

SKG systems with M parallel subchannels – modeled as

M block fading additive white Gaussian noise (BF-AWGN)

channels – under short-term power constraints. In the case of

uncorrelated jamming attacks, it is shown through numerical

evaluations that equally distributing their power across the

available spectrum is near-optimal for active adversaries.

The rest of the paper is organized as follows. The system

model is described in Section II. Furthermore, in Section III

optimal signalling schemes for the pair of legitimate nodes

and the jammer are derived while optimal power allocation

schemes over M parallel subchannels under short-term power

constraints are investigated in Section IV. Numerical evalua-

tions are presented in Section V while the conclusions of this

work are drawn in Section VI.

II. SYSTEM MODEL

The system model is shown in Fig.1 with Alice and Bob

denoting legitimate nodes and Eve a jammer. The SKG process

includes two distinct cycles over which the channel coefficients

between Alice and Bob are assumed to be reciprocal and

stationary and then to change independently, i.e., both cycles

take place within the channel’s coherence time1. In this work

we assume that Eve attempts to obtain an estimate of the

main channel CSI over the first cycle and transmit jamming

signals over the second. Moreover, given that a common

countermeasure for DoS attacks in wireless systems is the

1This standard assumption in SKG systems analysis does not affect the
nature of the presented results. For more realistic channel models that account
for correlation of the fading coefficients see [8] and related works.
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Fig. 1. System model of the SKG process encompassing two cycles. During
the first cycle (purple) Alice transmits probe signals and Eve attempts to
obtain an estimate of H. During the second cycle (blue) Bob transmits probe
signals and Eve jams the communication.

employment of frequency hopping [9], in the SKG system

model under investigation Alice and Bob exchange messages

over an M BF-AWGN channel with M parallel subchannels.

In this framework we use the following notation for the

fading coefficients: H =
[

H(1), . . . , H(M)
]

denotes the main

channel CSI over the first and second cycles, and, G =
[

G(1), . . . , G(M)
]

the CSI in the link between Eve and Alice

over the second cycle. All fading coefficients are modeled

to be independent and identically distributed (i.i.d.) complex

zero mean Gaussian random variables, i.e., H ∼ CN (0,ΣH),

G ∼ CN (0,ΣG) with ΣH = diag
Ä

σ2
H

(1)
, . . . , σ2

H

(M)
ä

and ΣG = diag
Ä

σ2
G

(1)
, . . . , σ2

G

(M)
ä

. The case of M = 1
corresponds to single channel SKG systems.

During the first cycle, Alice broadcast probe signals X =
[

X(1), . . . , X(M)
]

with power p =
[

p(1), . . . , p(M)
]

over the

corresponding subchannels subject to (s.t.) a short term power

constrain
∑M

i=1 p
(i) ≤ MP . During this cycle Eve observes

the channel and obtains an estimate Ĥ of the main channel

CSI that satisfies [10], [11]

H =
√

1− α2Ĥ+ αH̃, (1)

where H̃ ∼ CN (0,ΣH) denotes the estimation error and

α ∈ [0, 1]. For α = 0 Eve has a perfect estimate of the main

channel CSI while for α = 1 Eve has no main channel CSI.

During the second cycle Bob broadcasts X and Eve injects

in the channel a jamming signal J =
[

J (1), . . . , J (M)
]

with

power γ =
[

γ(1), . . . , γ(M)
]

over the corresponding subchan-

nels s.t. a short term power constraint
∑M

i=1 γ
(i) ≤ MΓ.

Based on the above, Alice’s and Bob’s observations on the

i-th subchannel, denoted by Z
(i)
1 and Z

(i)
2 , respectively, can

be expressed as

Z
(i)
1 = H

(i)
0 X(i) +W

(i)
1 , (2)

Z
(i)
2 = H

(i)
0 X(i) +G(i)J (i) +W

(i)
2 , (3)

with
Ä

W
(i)
1 ,W

(i)
2

ä

∼ CN (0, I2) denoting i.i.d. circularly

symmetric complex Gaussian random variables modeling the

effect of white noise on the system and In the identity matrix

of dimension n. For the establishment of the secret key Alice
needs to transmit reconciliation data to Bob at a minimum

rate h(Z2|Z1) [1], [2], [3]. On the other hand, denoting by

Ze the observation at Eve, the maximum achievable rate

for the establishment of the secret key is upper bounded by

C ≤ min (I (Z1,Z2) , I (Z1,Z2|Ze)) [1], [2], [3], [4]. Using
this model, in [7] the metric employed to evaluate the impact

of a jammer on the SKG process was defined by

R =
h(Z2|Z1)

C
. (4)

In this study, for simplicity the derivation of optimal

jamming schemes and of the power allocation policies for

the jammer employs as objective function the raw rate of

reconciliation data h(Z2|Z1). However, for compatibility with
[7] the comparison of different policies through numerical

evaluations is performed using as metric R.

III. OPTIMAL PROBE AND JAMMING SIGNALS FOR SINGLE

CHANNEL SKG SYSTEMS

For simplicity in the proofs and without loss of generality

in the case of multiple parallel subchannels, in this Section

we focus on single channel SKG, i.e., we assume that M = 1
in the system model. Furthermore, for ease of notation the

subscript corresponding to the subchannel index is omitted in

the following.

In many studies, e.g., [4], [7] constant probe signals were

assumed to be exchanged between the legitimate parties during

the SKG procedure; on the other hand in [3] raised cosine

pulses where chosen as probe signals. Furthermore, in [7]

active adversaries were assumed to inject constant jamming

signals over the wireless channel, without any formal proof

of their optimality. In this Section we begin by lifting any

related ambiguities and formalize the legitimate users’ optimal

signalling that maximizes the mutual information between

their respective observations in the following proposition.

Proposition 1: In absence of active adversaries, i.e., for

J = 0, the optimal probe signal maximizing I(Z1;Z2) is a
constant signal satisfying the power constraint with equality,

i.e. X =
√
P .

Proof: For J = 0 the system model in (2), (3) corresponds

to the two-look channel [12, pp. 290] with input variable

HX and a power constraint p ≤ P . As a result, the input

distribution that maximizes I (Z1;Z2) is Gaussian [12] while

the convexity of the mutual information dictates transmitting

with maximum power. Since H ∼ CN
(

0, σ2
H

)

, the optimal

X reduces to a scalar with X =
√
P .

Subsequently, we derive optimal jamming strategies when

imperfect main channel CSI might be available at the active

adversary. In this investigation we account for the worst case

scenario in which a jammer can be closely located to a

legitimate user or employ ray tracing techniques to obtain

an imperfect estimate of the main channel CSI. The metric

to be maximized by the jammer is the minimum rate of

reconciliation data that should be exchanged between Alice

and Bob, given by h(Z2|Z1) [1]–[3]. To this end we focus

on two limiting cases: in Subsection III-A the case α = 0
corresponding to full CSI availability at Eve and in Subsection

III-C α = 1 corresponding to the case in which Eve has no CSI



in her disposal. Although when α = 0 it is apparent that the

SKG capacity is C = 0, this limiting scenario will enable us

gain valuable intuition regarding the optimal jamming strategy

in the realistic scenario with imperfect CSI α ∈ (0, 1) in

Subsection III-B.

A. Full Main Channel CSI at Eve: Correlated Jamming

In the following, we assume that the legitimate users employ

constant signalling X =
√
P as dictated by Proposition 1.

In the case of perfect CSI availability at the jammer, it has

been shown that correlated jamming is optimal in point-to-

point as well as multi-user and multiple input multiple output

systems [13], [14]. We will demonstrate that the same is true

in the case of SKG systems when α = 0. When the jammer

has a perfect estimate of the main channel CSI H the SKG

capacity is C = 0 and it can be argued that jamming is not

necessary; however, the following analysis will serve as the

basis in deriving the jamming strategy in the realistic scenario

α > 0.

In this context, following the methodology introduced in

[7] we assume that Eve’s objective is the disruption of the

SKG process (instead of eavesdropping), by increasing the

cost of the reconciliation phase, i.e., by maximizing h(Z2|Z1).
Employing this criterion the following proposition formalizes

the jammer’s optimal jamming strategy.

Proposition 2: When full CSI is available at the jammer,

the optimal jamming signal J that maximizes the minimum

required rate of reconciliation data h(Z2|Z1) is linear to H .

Proof: The jammer wishes to maximize

h(Z2|Z1) = h(Z1, Z2|H) + h(H)− h(Z1). (5)

The maximization is achieved by maximizing the term

h (Z1, Z2|H) that is controlled by the jammer; h(H) and

h(Z1) are independent of the jammer’s actions. We show that

a linear jamming signal achieves this goal.

We have that

h (Z1, Z2|H)

= h (Z1, Z2 − λH |H)

≤ h (Z1, Z2 − λH) (6)

≤ log
(

(2πe)2|Λ|
)

, (7)

where (6) holds because conditioning reduces entropy and Λ
is the covariance matrix of (Z1, Z2 − λH). Regarding (7),

we note that for a given autocorrelation matrix the entropy

is maximized by a Gaussian distribution [12]. (6) and (7) hold

for arbitrary λ; here we choose λ = E[Z2H
∗]

σ2
H

.

Now let’s assume that the jammer employs linear jamming

so that the jamming signal can be expressed as

J =
κ

G
H +

√
v, (8)

where κ ∈ R and v ∈ R
+. We assume that the following power

constraint is met: κ2/σ2
Gσ

2
H + v ≤ Γ. Taking into account

Proposition 1 and substituting (8) into (2)-(3), the observations

at Alice and Bob can then be rewritten as

Z1 =
√
PH +W1, (9)

Z2 =
Ä√

P + κ
ä

H +
√
vG+W2. (10)

Next, suppose that optimal J̃ is found so that h (Z1, Z2|H)
is maximized, or, equivalently, (7) is satisfied with equality.

We define R such that

R = J̃ −
E

î

J̃H∗
ó

σ2
H

H, (11)

so that R is uncorrelated with H . Exploiting this fact, the

power of the optimal jamming signal is found to be

E

î

|J̃ |2
ó

=

E

ï

∣

∣

∣
J̃H∗

∣

∣

∣

2
ò

σ2
H

+ E
[

|R|2
]

,

and must satisfy the power constraint so that the optimal

jamming signal is feasible.

We observe that setting

κ =
E

î

J̃GH∗
ó

σ2
H

, (12)

v = E
[

|R|2
]

, (13)

results in J having the same power as J̃ . Furthermore, the
autocorrelation matrix Λ is the same for both J and J̃ . Since
uncorrelated Gaussian signals are also independent, J̃ achieves

(6) and (7) with equality, and therefore so does J . In conclu-
sion, J has power equal to that of the optimal jamming signal

and satisfies the same constraints as the optimal jamming

signal; as a result, J is optimal.

Remark: If P/σ2
Gσ

2
H ≤ Γ, the optimal jamming signal can

designed so that κ = −
√
P , i.e., Bob’s transmission during

the second cycle can be completely canceled off. On the other

hand whenever P/σ2
Gσ

2
H > Γ, the optimal strategy would be

to cancel off as much as possible Bob’s transmission.

B. Imperfect Main Channel CSI at Eve: Linear Jamming

Now let us assume that Eve has imperfect main channel CSI

s.t. H =
√
1− α2Ĥ + αH̃ for some α ∈ (0, 1) and perfect

channel CSI for the link Eve-Alice. Based on the analysis in

III-A Eve can simply inject linear jamming in the form

J =
κ

G

√

1− α2Ĥ, (14)

so that Bob’s observation can be expressed as:

Z2 = (
√
P + κ)H + W̃2, (15)

with W̃2 = W2 − ακH̃ . Similarly to the case of perfect main

channel CSI, h(Z2|Z1) is maximized for κ = −
√
P if the

jammer has sufficient power resources, P
√
1− α2 σ2

H

σ2
G

≤ Γ.

Corollary 1: When imperfect main channel CSI Ĥ is at

Eve’s disposal, the jamming signal that maximizes the rate of

reconciliation data h(Z2|Z1) is linear to Ĥ .



C. Absence of Main Channel CSI at Eve: Uncorrelated Jam-

ming

Next, the optimal jamming is characterized in absence of

main channel CSI, i.e., α = 1 in the following proposition.

Proposition 3: For α = 1 when no main channel CSI is
available at the jammer the optimal jamming signal J is the
constant signal J =

√
Γ.

Proof: The case of absence of main channel CSI can be

treated as a subcase of the full CSI availability case examined

in III-A. Based on this observation, as shown in the proof of

Proposition 2, the optimal jamming signal can be expressed

as J = E[JGH∗]
σ2
H
G

H +
√
v. In absence of knowledge of H ,

the term JG is necessarily uncorrelated with H so that J =
E[JG]E[H∗]

σ2
H
G

H+
√
v =

√
v. Finally, due to the convexity of the

entropy, maximization is achieved when the power constraint

is satisfied with equality, i.e., J =
√
v =

√
Γ.

IV. POWER ALLOCATION POLICIES OVER M PARALLEL

SUBCHANNELS

In this Section we investigate the power allocation policies,

first for the legitimate users and then for the jammer when M
parallel subchannels are used in the SKG process. The metric

to be optimized by the legitimate users is naturally their mutual

information over the M parallel subchannels. On the other

hand, assuming that the adversary’s goal is the interruption

of the SKG process, the metric to be maximized is the rate

of the reconciliation data that need to exchanged between the

legitimate parties to establish a common secret key h(Z2|Z1).
For the pair of legitimate users it is straightforward to

demonstrate that equidistribution of the power resources is the

optimal strategy, denoted henceforth as the “blind” policy. On

the other hand, for the jammer the optimal policy depends on

α, i.e., on the accuracy of the main channel CSI estimates.

A. Optimal Power Allocation for the Legitimate Users

During the SKG process the legitimate users do not possess

any knowledge regarding the fading coefficients they attempt

to estimate to establish the secret key. Alice’s and Bob’s

optimal power allocation strategies can be determined by the

following optimization problem

argmax
p

min (I (Z1,Z2) , I (Z1,Z2|Ze)) , (16)

s.t.

M
∑

i=1

p(i) ≤ MP, (17)

Irrespective of the type of jamming injected by Eve (correlated

or uncorrelated), the objective function is monotone increasing

in p so that in both cases the optimal power allocation policy –

denoted by p∗ – is the equidistribution of the power resources,
i.e.,

p∗ = [P ]
M

i=1 . (18)

This is a general result for the maximization of monotonically

increasing cost functions in blind scenarios. For details on a

proof using dynamic programming see Appendix A.

B. Optimal Power Allocation for a Jammer Employing Cor-

related Jamming

We begin with the case in which Eve has full CSI, i.e.,

knowledge of H,G and of the power allocation policy p∗

(18). We denote the jammer’s optimal power allocation γ∗ =

[γ(1)∗, . . . , γ(M)∗] where γ(i)∗ =
(

κ(i)∗)2 σ2
H

(i)

σ2
G

(i) + v(i)∗. γ∗ is

evaluated as the solution of the optimization problem

argmin
γ

h(Z2|Z1) = h(Z1,Z2)− h(Z1), (19)

s.t.

M
∑

i=1

γ(i) ≤ MΓ. (20)

The cost function in (19) is nonnegative and the maximum is

achieved when Z2 is uncorrelated with Z1, i.e, from the point

of view of disruption of the SKG process the worse case is

when Eve has enough power to cancel off Bob’s transmission.

This is feasible only if

Γmin =
1

M

M
∑

i=1

P
σ2
H

(i)

σ2
G

(i)
≤ Γ. (21)

If condition (21) is true, then κ(i) = κ = −
√
P

and h(Z2|Z1) = h(Z2) = M log(2πe) +
∑M

i=1 log
Ä

1 + v(i)σ2
G

(i)
ä

. The objective function can

be further maximized by using the waterfilling algorithm for

v = [v(1), . . . , v(M)] over the remaining powerMΓ−MΓmin:

iff

M
∑

i=1

P
σ
2(i)
H

σ
2(i)
G

≤ MΓ then







κ(i) = κ = −
√
P ,

v(i) =

Å

λ− 1

σ2
G

(i)

ã+

,

(22)

where (·)+ = max(·, 0) and λ is the waterlevel chosen

to satisfy the constraint
∑M

i=1 v
(i) ≤ MΓ − MΓmin with

equality.

If the condition (21) is not satisfied, a heuristic power

allocation policy that minimizes the correlation between Z2

and Z1 is obtained by

argmin
κ

M
∑

i=1

√
P
Ä√

P + κ(i)
ä

σ2
H

(i)
(23)

s.t.

M
∑

i=1

(κ(i))2
σ2
H

(i)

σ2
G

(i)
≤ MΓ, (24)

while setting v(i) = 0, ∀i. The solution to (23) is given by

κ(i) =
−
√
Pσ2

G

(i)

2µ
, (25)

where µ > 0 is chosen such that the power constraint (24) is

satisfied with equality, i.e.,

µ =

Ã

P

4MΓ

M
∑

i=1

σ2
H

(i)

σ2
G

(i)
. (26)



C. Power Allocation for a Jammer with Imperfect CSI

Extending the previous analysis to the case of α ∈ (0, 1),
it is straightforward to see that the optimal jamming signal

would cancel off Bob’s signal if the jammer’s power budget

is sufficient, i.e., if

M
∑

i=1

P
√

1− α2
σ
2(i)
H

σ
2(i)
G

≤ MΓ (27)

then J (i) = κ(i)

G

√
1− α2Ĥ(i) and κ(i) = κ −

√
P . If

condition (27) is not met, then the power allocation policy

κ(i) =
−
√
Pσ2

G

(i)

2ξ could be adopted where ξ satisfies the power
constraint with equality and is given by

ξ =

Ã

P
√
1− α2

4MΓ

M
∑

i=1

σ2
H

(i)

σ2
G

(i)
. (28)

D. Optimal Power Allocation for a Jammer Employing Un-

correlated Jamming

Next, we turn our attention to the scenario of uncorrelated

jamming assuming that Eve has knowledge of G but no

information regardingH. Employing uncorrelated jamming as

dictated by Proposition 3, Eve’s optimal power allocation can

be evaluated by maximizing

h(Z1,Z2)− h(Z1) = M log(2πe) +
M
∑

i=1

log
(

1 + v(i)σ2
G

(i)
)

i.e., as the solution of the standard waterfilling optimization

problem

argmin
v

M
∑

i=1

log
(

1 + v(i)σ2
G

(i)
)

, (29)

s.t.

M
∑

i=1

v(i) ≤ MΓ, (30)

with the well know solution v(i) =

Å

χ− 1

σ2
G

(i)

ã+

where χ

satisfies (30) with equality.

Finally, when neither H nor G are available at Eve, the

monotonicity of the objective function suggests that the opti-

mal power allocation policy is equidistribution of the power,

i.e., ”blind” power allocation.

V. NUMERICAL RESULTS

In the following we define the normalized rate of reconcili-

ation data to the upper bound of the SKG capacity as follows

for the various cases:

R =
h(Z2|Z1)

min (I (Z1,Z2) , I (Z1,Z2|Ze))
(31)

where

Ze = Ĥ linear jamming, (32)

Ze = 0 uncorrelated and blind jamming. (33)

The case of correlated jamming is not examined because in

this case min (I (Z1,Z2) , I (Z1,Z2|Ze)) = 0. In Fig. 2 R is
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Fig. 2. R vs Γ for P = 10,M = 100, α = 0.2.
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Fig. 3. R vs P for Γ = 10,M = 100, α = 0.2

depicted as a function of the jamming power Γ for P = 10,
M = 100, α = 0.2, averaged over 104 repetitions. As

expected, it is demonstrated that the impact of linear jamming

is severely more acute than that of uncorrelated jamming.

Interestingly, using uncorrelated jamming (i.e., employing the

waterfilling algorithm for the jamming power) versus blind

jamming (i.e., equidistribution of the jamming power across

all subchannels) bears negligible gains. As a result, a jammer

that cannot obtain an estimate of the main channel CSI need

not spend resources in estimating the CSI between itself and

the legitimate nodes in order to inject uncorrelated jamming.

Similar conclusions can be reached by examining the nu-

merical evaluations of R versus P in Fig. 3 for Γ = 10,
P = 100 and α = 0.2. A further point that can be made

is that when the jamming power is substantially bigger than

the power available at the legitimate nodes, the jammer can

benefit from using a simple power allocation policy such as
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blind jamming.

Finally, in Fig. 4 R is depicted as a function of M for

P = Γ = 10 and α = 0.2. The cost of reconciliation increases
monotonically with M , demonstrating that the impact of jam-

ming grows faster than the rate of the secret key establishment.

VI. CONCLUSIONS

In this study optimal signalling and jamming schemes were

derived for SKG systems. Furthermore, optimal and heuristic

power allocation policies were investigated in M BF-AWGN

channels. It was shown that when the jammer has imperfect

main channel CSI at his disposal the injection of linear

jamming can severely impact SKG systems. When no main

channel CSI is available at the jammer, it was shown that

equidistibution of the jamming power is nearly optimal.

APPENDIX A

LEGITIMATE USERS OPTIMAL POWER ALLOCATION

Proof: Following the proof in [15], the stochastic opti-

mization objective function can be written as follows:

max
p

f(p) s.t.

M
∑

i=1

p(i) ≤ MP, (34)

where we define f(p) ≡ min (I (Z1,Z2) , I (Z1,Z2|Ze)) .
We introduce the auxiliary variables pi, i = 1, . . . ,M to

denote the remaining power at step i of the dynamic program
(DP). Then, the problem in (34) can be written as a stochastic

DP as follows: We let Vi(pi) be the SKG capacity gained

from block i to the end of the horizon if the optimal power

allocation policy is used. Then the DP equations can be written

as:

Vi(pi) = max
0≤p(i)≤pi

f(p(i)) + Vi+1(pi − p(i)), i ≤ M − 1

VM (pM ) = 0.

We perform backward DP starting the recursion at block

i = M , where the optimality equations are:

VM (pM ) = max
0≤p(M)≤pM

f(p(M)). (35)

Since f is nondecreasing, the maximization in (35) is achieved

at p(M) = pM . Thus, we have: p(M) = pM and VM (pM ) =
f(pM ). Thus, at block i = M − 1 the optimality equations

are:
VM−1(pM−1) = max

0≤p(M−1)≤pM−1

f(p(M−1))

+ f(pM−1 − p(M−1)).
(36)

In (36) the maximum is achieved at p(M−1) = pM−1

2 and there-

fore VM−1(pM−1) = 2f(pM−1

2 ). Continuing the recursion we
get

VM−n(pM−n) = (n+ 1)f
(pM−n

n+ 1

)

(37)

and the optimal decision is p(M−n) = pM−n

n+1 . This implies that

if we have no information about the channel the optimal thing

to do is to divide the power into as many equal parts as there

are periods remaining, i.e., p(i) = P, ∀i.
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