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Abstract-Given a multivariate time series, possibly of
high dimension, with unknown and time-varying joint
distribution, it is of interest to be able to completely
partition the time series into disjoint, contiguous subseries,
each of which has different distributional or pattern
attributes from the preceding and succeeding subseries. An
additional feature of many time series is that they display
self-affinity, so that subseries at one time scale are similar
to subseries at another after application of an affine trans-
formation. Such qualities are observed in time series from
many disciplines, including biology, medicine, economics,
finance and computer science. This paper defines the
relevant multiobjective combinatorial optimization prob-
lem with limited assumptions as a biobjective one, and
a specialized evolutionary algorithm is presented which
finds optimal self-affine time series partitionings with a
minimum of choice parameters. The algorithm not only
finds partitionings for all possible numbers of partitions
given data constraints, but also for self-affinities between
these partitionings and some fine-grained partitioning. The
resulting set of Pareto-efficient solution sets provides a rich
representation of the self-affine properties of a multivariate
time series at different locations and time scales.

Index Terms—Partitioning algorithms, genetic al-
gorithms, Pareto optimization, time series analysis,
fractals, optimization methods, finance

I. INTRODUCTION

Given a multivariate time series, possibly of high dimension,
with unknown and time-varying joint distribution, it is of
interest to be able to completely partition the time series
into disjoint, contiguous subseries, each of which might be
assumed for the purpose of further analysis to have dif-
ferent distributional or pattern attributes from the preceding
and succeeding subseries. Whilst in the univariate case it is
sometimes quite easy to agree on such a partitioning simply
by visual inspection, including the number of partitioned
subseries into which it is most appropriate to divide the time
series and the location of the transitions between subseries,
in the multivariate case visual inspection becomes impossible
with more than a few dimensions. Clustering or partitioning
of time series data has been widely studied in the machine
learning and data mining literature; [41] and [39] contain
good introductions to partitioning and clustering algorithms,
respectively. In the case of financial data, it has long been
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recognized that distribution varies over time, not in a smooth
manner but rather in jumps between different states. Many
well-established econometric models developed to deal with
time-varying distributions nonetheless take the states as given,
and do not address the question of identifying the different
subseries corresponding to such states. Furthermore, most
econometric models with time-varying parameters have dif-
ficulty dealing with the multivariate case, especially in high
dimensions.

An additional feature of many time series is that they display
self-affinity, which we may loosely define as the property
that subseries at one time scale are similar to subseries at
another after application of an affine transformation. Such
observations in the natural world date back at least to work
in the mid-20th century on hydrography of the Nile [35] and
the length of international borders [60], and a more general
theory was advanced in [48]. Many examples have since been
found; for example one survey of the literature [59] cites inter
alia work on air temperature, river discharge and tree ring
spectra; variations in solar luminosity, sedimentation, and the
earth’s magnetic field; the structure of river networks; growth
of plankton and many other flora and fauna; and in the human
world, automobile and internet traffic flows.

In economic and financial data, [49, 50] advanced the
idea of self-similarity under power laws, later generalized
and developed into the Multifractal Model of Asset Returns
(MMAR) [51]. Ideas of self-similarity and power laws at work
in financial data however have a longer history, at least back to
work in the 1930s by R.N. Elliott [23, 24] in which he posits
particular patterns occurring at different time scales with a
relationship governed by a power law based on the golden
ratio. A good deal of the most interesting work on self-affine
time series has been conducted within the fields of finance
and econometrics, but many of the theoretical findings and
tools developed can be of use in analyzing a wider range of
data types. However, to our knowledge there is nothing in
the literature that addresses the specific problem of actually
identifying optimal partitionings of multivariate, self-affine
data, as we will describe in this paper.

The limitations shared by most econometric models that
allow time-varying parameters in respect of higher dimension
time series have already been noted. An additional problem
is that most rely on particular assumptions regarding the
underlying distributions and processes, and often require large
numbers of parameters to be either provided or estimated from
the data. This can make it difficult to separate the validity of
the model and its assumptions from the particular data set
and parameterization applied. An alternative approach is to
build a model with as few assumptions and parameters as
possible, in particular limiting the number of a priori choice
parameters supplied by the modeller. Evolutionary algorithms
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(EAs) can be particularly well suited to such an approach if
suitably designed, and the main contribution of this paper is
the development of a simple theoretical model based on self-
affinity of a time series in terms of the similarity of a coarse-
grained partitioning of the whole to a fine-grained partitioning
of a subseries, and its implementation via a specialized EA
with limited choice parameters.

The remainder of this paper is organized as follows. Section
II introduces the concepts of self-affinity and partitioning into
distinct subseries, or regimes as they are known in econo-
metrics, in univariate and multivariate time series, and dis-
cusses some common statistical models. Section III discusses
more specific aspects of modelling self-affine multivariate
time series of financial data including techniques to reduce
computational complexity, and defines the multiobjective op-
timization problem to be addressed in validly partitioning such
time series. Section IV describes the evolutionary algorithm,
as well as certain general principles of design when addressing
problems with high computational complexity and limited
computational resources. Finally, Section V presents some
initial empirical observations using both simulated and real
data, and the paper concludes with a brief discussion of
possible future development of this line of research towards
a general framework for multiscale threat analysis, detection
and mitigation.

II. BACKGROUND AND MOTIVATION

A. Necessity of a specialized approach

In this paper we present an approach designed specifically
to simultaneously identify non-overlapping partitionings of
both coarse-grained and fine-grained subseries. This means
firstly that we are not attempting to define clusters of overlap-
ping or non-contiguous time series subsequences. Although
certain types of clustering algorithm, including the widely-
used k-means algorithm, have been categorized as partitional
algorithms [27], such algorithms are typically not constrained
to produce only partitions that are contiguous along one
dimension (i.e. time) but if used for time series data, can
cluster together individual observations from many different
parts of the entire time series. In terms of taxonomy, we thus
draw a distinction between partitioning algorithms of the type
set out in this paper and the more general case of clustering
algorithms. Hence the approach is also significantly different
in this respect to clustering EAs [19, 54, 34].

Furthermore, clustering algorithms commonly have an as-
sumption of decreasing similarity of points in a cluster as
distance from a centroid increases, as well as decreasing
dissimilarity from points in other clusters as distance from
them decreases. The time series partitioning algorithm presen-
ted here rather assumes homogeneity within partitions and
sharp differences with other partitions, and so is arguably
much more suitable for data that displays rapid transitions
between different subseries in terms of some measure or set
of measures. The combination of a population-based approach
and subgroup separation means that useful results can be
obtained from a single run, although the stochastic nature of
the algorithm still means more useful results may be obtained

from multiple runs. We also make the explicit assumption
that data being examined has the property of self-affinity.
The particular nature of the objective functions required for
simultaneous identification of coarse-grained and fine-grained
partitions together with the constraints necessary to produce
valid partitions cannot be handled by other EAs not created
specifically to solve this particular problem, and requires a
specialized approach, as we will see in later sections.

B. Subseries and self-affinity

Consider the general case of a multivariate time series S
with m simultaneous individual time series, each with T time-
ordered samples. Initially we know nothing a priori about
the distributions of the individual series or about the joint
distribution, except that some distributional features may be
time-varying, and in particular that S may be partitioned into
two or more disjoint subseries each of which has distinct distri-
butional attributes that distinguish each subseries, or partition,
from the preceding or following one, forming a complete and
still strictly time-ordered partitioning of S. We also know that
the first and last time-ordered subseries may be incomplete, in
the sense that data collected after the T -th sample may still
be part of the final subseries, whilst if we could collect data
before the first sample, some number of additional, earlier
samples might still belong to the first subseries. Hence we
may typify such a partitioning Kκ = ∪κk=1 {Kk} of S into κ
partitions, or subseries, in terms of a set of κ − 1 cutpoints
C = {c1, c2,..., cκ−1}, with each ck ∈ [1, T ] , k = 1 . . . κ− 1.
By convention we will consider each cutpoint ck, k < κ to be
the last point in a subseries, so that the next point in S is the
first in subseries Kk+1, and all the ck are unique, so that each
subseries Kk 6= Ø, k = 1 . . . κ.

Our motivation is to discover what we can about the
partitions, in particular where the dividing points ci between
partitions may most usefully be placed for the type of analysis
in which we are interested; yet we do not necessarily even
know yet how many such partitions there are. Indeed, several
optimal partitionings Kκ with different numbers κ of partitions
may be considered possibly equally valid, and indeed as we
shall see later, if we have more than one metric for considering
different partitionings, there may be more than one Pareto
optimal partitioning even when the number of partitions is the
same. Such a partitioning of a multivariate time series could
have many uses for a variety of different types of data. Beyond
using such a partitioning for further analysis of the data set, it
may in particular be possible to solve a further multiobjective
optimization problem of the form

Minimize

f (Kκ (S)) = [f (S1) , f (S2) ...f (Sκ)]
T
, (II.1)

where some multiobjective function over ω objectives f =
[f1 (S) , f2 (S) . . . fω (S)] is applied separately to each parti-
tioned subseries Sk, k = 1 . . . κ and a Pareto-efficient solution
set is obtained. One application of this would be portfolio
optimization, where one could produce portfolios robust to
several different sets of market circumstances, but many other
applications could be imagined. The problem of identifying
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the nature of the last partition, which we may term the current
partition, is of particular interest, but as already noted we may
have incomplete information, since the true end point cκ of
the final subseries cannot be known at time T as it falls at
some later point.

Furthermore, we will consider data that has a particular
structural attribute, namely that of self-affinity. Sets with
fractal properties are sometimes loosely referred to as self-
similar, but in many datasets true scale invariance or statistical
self-similarity as posited in [48] is replaced by self-affinity, and
[51] reserves the term self-similarity for geometric objects that
are invariant under isotropic contraction. The concept of self-
affinity is defined in [52]as follows: let X (t, ω) be a random
function defined on −∞ < t < ∞, with ω ∈ Ω the set of
possible values of the functions. Then such a random function
is self-affine with exponent H > 0 if for every h > 0 and any
t0,

X (t0 + τ, ω)−X (t0, ω)
d
= (II.2){

h−H [X (t0 + hτ, ω)−X (t0, ω)]
}
,

where X (t0, ω)
d
= Y (t, ω) indicates two random functions

with the same joint distributions. The literature generally ana-
lyses self-affinity in terms of fractionally integrated Brownian
motion (FBM) processes, i.e. X (t, ω) = BH (t, ω).

In contrast, except where noted we will make no assump-
tions about the underlying data-generating process (DGP) and
will rather describe self-affine sets in terms of similarity
achieved by making affine transformations equivalent to a
restriction of the usual geometric type at different time scales;
later we will consider the statistical invariances involved. In
the most general sense, however, we will define the property of
self-affinity as follows: let {Fk,, k = 2 . . . κ− 1} = Fκ be a
fine-grained partitioning of some subseries s of ∪κ−1k=2 {Kk} ≡
S − {K1,Kκ}, so that the first and last points in s are in
[c1, cκ−1] and in general terms s is sufficiently short compared
to S that it can be considered of a different “scale”. Then S
can be described as self-affine if the two-scale partitioning pair
{Kκ,Fκ} obeys

∪κ−1k=2 {AFk + b}
µ
≈ ∪κ−1k=2 {Kk} (II.3)

for at least one such subseries Fk,; that is to say, at least
one fine-grained partition of a subseries of S is by some
measure µ similar, after the application of a suitable affine
transformation, to a coarse-grained partition of the whole of
S, excluding an initial and a final incomplete subseries. We
define the relationship

µ
≈ in terms of the similarity, by a

measure yet to be defined, of some fine-grained set of subseries
{Fk,κ, k = 1 . . . κ− 2} after such an affine transformation to
the coarse-grained set of subseries {Kk, k = 2 . . . κ− 1}; later
we will impose limitations on the nature of A, induced by
the choice of measure. The first and last subseries of the
coarse-grained partitioning Kκ are excluded because they are
incomplete, so we must always have κ ≥ 3, and Fκ comprises
κ−2 fine-grained partitions. Self-affinity should be understood
at this stage in a very general sense; it does not necessarily
imply that the compared subseries have the same statistical
distribution, though this may be so depending on the measure

employed, but might also refer to other attributes, such as the
recurrence of certain patterns in the time series data.

Consider initially the univariate case with κ = 3 so that
there is a single complete interior coarse-grained partition, and
hence a single fine-grained subseries is considered, so that
(II.3) reduces to

{aF1 + b}
µ
≈ {K2} ; (II.4)

that is, an affinely transformed version of the single fine-
grained subseries is similar under µ to the second, i.e. the
only interior, coarse-grained subseries (the first and third being
incomplete). If we compare (II.2) and (II.4), several key
differences emerge. Firstly (II.2) refers to affinity between a
continuity of subseries of different lengths starting from t0
which can be thought of as an expanding moving average, but
(II.3) compares the interior part of one coarse-grained partition
within the portion of S that excludes the incomplete initial and
final subseries to a single fine-grained subseries which may
start and end at any point within S.

Secondly, (II.2) requires some assumptions about the nature
of X (t, ω) in order to be useful. In the literature X (t, ω) is
usually an FBM process; by contrast, (II.3) makes no assump-
tions about the underlying process. Thirdly, if we consider a
univariate version of (II.3) and take h = b, (II.2) requires a
particular power law relationship between the translation and
linear transformations, namely a = bH ; (II.3) does not make
any assumptions about the relationship between A and b.

We can now define the principal problem, which we
can cast as a biobjective minimization problem. Let dKκ
be a (κ− 1) × 1 vector of values of a distance metric
d (Kk,Kk−1) ∈ [0, 1] , k = 2 . . . κ, and g (dKκ) be some
summarizing function that returns a non-negative scalar, so
that

f1 (S) = g (dKκ) . (II.5)

Also let

f2 (S) = h (−dFκ) , (II.6)

where dFκ is a vector of the same distance metric between each
of the κ − 2 pairs of sequential subseries at the fine-grained
and coarse-grained levels, excluding the incomplete first and
last subseries of the coarse-grained partition:

dFκ = [d (F2,K2) . . . d (Fκ−1,Kκ−1)]
T
, (II.7)

and h (−dFκ) is a summarizing function of the negative of
the distance vector, so that it indicates similarity between the
coarse-grained and fine-grained subseries. Then the problem
for a partition into a given number of subseries κ is the
following biobjective problem:

Minimize

f (S) = [f1 (S) , f2 (S)] (II.8)
= [g (dKκ)h (−dFκ)] .

The only explicit assumptions here are that S may be validly
partitioned into κ distinct coarse-grained subseries, the first
and last of which may be incomplete; that the coarse-grained



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2688521, IEEE
Transactions on Evolutionary Computation

4

partitioning may be typified as similar to some fine-grained
partitioning of a subseries of S; and that the differences
between the subseries of the coarse-grained partitioning and
the similarities between the sequential subseries of the coarse-
grained and fine-grained partitionings respectively both form
metric spaces metrizable by the same metric d. We make no
other assumptions about the actual distributions or DGPs of
S or its subseries. Of course (II.8) allows the possibility that
there may be many valid fine-grained partitionings of different
subseries that show similarity to any given coarse-grained
partitioning, and in forming the Pareto frontier the biobjective
function will make use of functions g, h which in some sense
summarize the distributions of all solutions found.

C. Regimes in econometrics and finance

Having established the framework for a general multivariate
time series S and an unspecified metric d, we now consider
metric spaces (S, d) where d in some way metrizes the time-
varying variance-covariance structure of S, so that we are now
making a more specific assumption, namely that changes over
time in S may be identified and partitioned with reference to
changes in variance and covariance of subseries of S. Such
cases have been extensively studied in econometrics, where
the partitioned subseries are commonly referred to as regimes,
and we will use the terms partition, regime and subseries
interchangeably henceforth. However most of the literature
concentrates on univariate data or data with only a very few
variables, and rather than seeking to identify the regimes,
concentrates on analysis of the distributional qualities of the
data with the regimes taken as given. A very brief summary
of a large literature follows, which although principally from
the areas of econometrics and finance, contains principles and
techniques which may shed light on processes observed in
many types of data.

1) Volatility regimes: Although there is no consistent defin-
ition of a regime, the terminology comes largely from seminal
papers by Hamilton [31, 32, 33] which consider the case where
κ possible regimes exist from which a particular observation yt
may be drawn, and an unobserved state variable st which takes
an integer value (1 . . . κ) such that yt depends on the current
and most recent m autoregressive lags of yt, the current and
most recent m values of st and a vector of parameters θ; that
is:

p
(
yt|st, st−1, . . . st−m,y′t−1,y′t−2 . . .y′t−m

)
(II.9)

≡ p (yt|zt;θ) ,

zt ≡
(
st, st−1, . . . st−m,y

′
t−1,y

′
t−2 . . .y

′
t−m

)
.

Note that there is an assumption that the data is stationary,
and it may be necessary to transform the data, for example by
taking differences, in order to ensure stationarity. A vector
autoregression may be generalized such that the constant
terms, the covariance matrix and the autoregressive coefficients
may all be functions of the state st, and the transition between
states is modelled as a Markov chain. Although the subsequent
literature explores many of the possibilities of this general
formulation, most often the number of states is small (2 or 3)

and a change in level or in volatility are considered more often
than a change in autoregressive structure. An earlier paper
[32] considered the proposal that there might be an occasional
shift in the constant term around which a scalar fourth-order
regression clusters, and many later papers find strong evidence
for volatility clustering in financial time series.

Examples of volatility regimes in the literature include the
finding in [28] that real interest rates can be partitioned in the
time domain into regimes separated by sharp jumps caused
by structural breaks such as the oil shocks of the 1970s;
the analysis in [15] of volatility regime switches in world
stock markets; and the study in [29] of changes in volatility
regime evidenced by the behaviour of the VIX volatility
index. Econometricians have continued to develop a testing
methodology for such regime shifts, and the most commonly
used test is the iterated cumulative sum of squares (ICSS) of
[38], later modified in [63] to be more robust to heteroskedastic
and leptokurtic distributions of returns. Such tests however
concentrate on detecting structural breaks in volatility in a
univariate sense; they cannot analyze shifts in the overall
covariance structure of the returns of a set of assets, such
as the constituents of an index.

2) Time varying models: ARCH and GARCH: In recent
years substantial research has been devoted to applying the
self-affine FBM processes described in Section II-B to the
regime-switching paradigm outlined in Section II-C. By way
of background, it had long been recognized that standard
statistical models which assumed financial time series to
be formed from independent, normally distributed random
variables do not adequately describe the data. [49] and [26]
found that return distributions did not conform to the standard
normal distribution but were leptokurtic and [8] noted that
returns were also asymmetric. As a result, the autoregressive
conditionally heteroskedastic (ARCH) model of [25] and its
various generalizations and adaptations have been used extens-
ively to model financial data, as have the stochastic volatility
(SV) models of [55] and others.

To recap, the original ARCH model of [25] considers a
first-order autoregressive (AR(1)) process of the form

yt = γyt−1 + εt,, (II.10)

where E [ε] = E [y] = 0, V (ε) = σ2, but the conditional
mean E [yt|yt−1] = γyt−1. By introducing heteroskedasticity,
that is, time-varying variance,we find the ARCH(1) model:

yt = εth
1/2
t (II.11)

ht = h (yt−1,α) = α0 + α1y
2
t−1, (II.12)

where α is a vector of unknown parameters, and the ARCH(p)
model follows from a generalization of ht to p lags. The
GARCH model [10] offered a generalization of ARCH
which has been shown to outperform empirically and can be
more parsimonious than a higher-order ARCH model. The
GARCH(p,q) model defines:

ht = α0 +
∑q
i=1 αiε

2
t−i +

∑p
i=1 βiht−1 , (II.13)

so that GARCH(0,q)≡ARCH(q).The general null hypothesis
is that α = β = 0.
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Multivariate extensions to the ARCH/GARCH family exist,
but are generally hard to specify and estimate in higher
dimensions.

3) The Multifractal Model of Asset Returns: Likelihood-
based estimation of Markov-switching processes in the stat-
istics literature predates the treatment of regimes in finance
outlined in Subsection II-C1 [13]. Stochastic regime-switching
models involve the conditional mean and variance being
dependent on an unobserved and time-variant latent state
which can change markedly and quickly. The latent state
Mt =

{
m1,m2, . . .md

}
gives rise to a model of returns

rt = µ (Mt) + σ (Mt) εt. (II.14)

The Markov chain Mt is governed by a transition matrix A, the
components aij of which represent the probability that state
j will follow state i. In ([51]), the authors introduced a new
model based on FBM incorporating new scaling properties.
They note that whilst FBM captures long memory in the
persistent case where 1/2 < H < 1, H = 1/2 representing
ordinary Brownian motion, it captures neither the fat tails
of the distribution of returns nor the time-variant volatility
clustering often observed in financial data. Consider first a
generalization of (II.2):

X(t+ c∆t)−X(t)
d
= (II.15)

M(c)[X(t+∆t)−X(t)], c > 0,

where X and M are independent random functions. With
certain restrictions on the distribution of the process, this
implies the scaling rule:

E(|X(t)|q) = c(q)tτ(q)+1, (II.16)

where τ(q) and c(q) are both deterministic functions of q,
and τ (q) is referred to as the scaling function. In the special
case of self-affine processes, the scaling function τ(q) is linear
and fully determined by its index H , and such processes are
referred to as unifractal or uniscaling; in the more general
case, where τ(q) is non-linear, the processes are referred to as
multiscaling.

Now let

X(t) = lnP (t)− lnP (0), 0 ≤ t ≤ T, (II.17)

where P (t) is the price of a financial asset at time t. Note that
X (t) is generally assumed to be a stationary process in the
econometrics literature. Then under the MMAR, it is assumed
that

X(t) ≡ BH [θ(t)], (II.18)

where stochastic trading time θ (t) is the cumulative distri-
bution function of a multifractal measure defined on [0, T ],
BH(t) is FBM with self-affinity index H , and BH(t) and
θ (t) are independent. Under these assumptions, X (t) is
multifractal, with scaling function

τX(q) = τθ(Hq). (II.19)

Trading time θ (t)can be thought of as a time deformation
process, squeezing or stretching the price action, and trading
time controls the moments of the distribution of X (t).

4) Markov-Switching Multifractal (MSM) models: [11] in-
troduce a discretized version of trading time, in which prices
are driven by a first-order Markov state vector with k com-
ponents:

Mt = {M1,t;M2,t; . . . ;Mk,t} ∈ Rk+, (II.20)
E [Mk,t] = 1.

Returns are modelled as

rt = σ

(
k∏
i=1

M
(i)
t

)1/2

· µt, (II.21)

where σ is the unconditional standard deviation and µt the
mean return at time t. The multipliers in (II.20) differ in their
transition probabilities γk but not in their marginal distribution
M , and M ≥ 0, E [M ] = 1. The Markov property guarantees
that the distribution of the future multipliers depends only
on the current multipliers. The transition probabilities are
specified as

γk = 1− (1− γ1)
bk−1

(II.22)
, γ1 ∈ (0, 1) , b ∈ (0,∞) ,

and this process is referred to as Markov-Switching Multi-
fractal (MSM) [12]. MSM is the main statistical technique
embodying and generalizing the idea of self-affinity in fin-
ancial time series in use today and indeed has become one
of the more popular models in financial econometrics overall.
The model can be estimated using maximum likelihood (ML)
methods and the log-likelihood has a parsimonious closed
form, making estimation relatively simple, albeit for restricted
cases. [45] introduced GMM estimation techniques which
addresses the case where the distributional model requires
an infinite state space, as in the lognormal model proposed
in [51], as well as addressing the computational complexity
implied by some choices of distribution, for example the
2k × 2k transition matrix required by the binomial model
proposed in [11]. However the author notes that GMM is itself
relatively computationally intensive compared to ML methods.

A sizeable body of empirical work has grown up in recent
years around various approaches to the estimation of MSM
models on different data sets using differing underlying distri-
butions, including findings in inter alia [6, 12, 16, 30, 36, 37,
42, 43, 47, 46, 56, 62, 70] However there is evidence that not
all financial data fits well with the hypothesis that the DGP
for financial data is FBM; for example [58] finds anomalies
in high-frequency data, especially when stock index data from
emerging markets is analysed. Also, [18] claims that a new ap-
proach, discrete autoregressive stochastic volatility (DSARV)
outperforms MSM, and critique the high-dimensional state
space inherent to the MSM approach.

A multivariate extension has been proposed [14], but in the
natural generalization of the univariate MSM, the number of
parameters therefore grows at least as fast as a quadratic func-
tion of the number of assets and so like multivariate GARCH
is potentially highly computationally expensive, as well as
complicated to analyse, for larger number of assets; hence the



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2688521, IEEE
Transactions on Evolutionary Computation

6

authors propose a factor model simplification rather than the
true multivariate model. A bivariate model based on univariate
decomposition [14, 36, 44] has also been studied, although
the approach in [44] requires different volatility parameters at
high and low frequencies, and [42] considered an extension
of the GMM approach to multivariate models. A further
approach to multivariate multifractals in the general literature
uses operator fractional Brownian motion (OFBM) [22, 1]. In
general however, as with most competing econometric models
with time-varying volatility, most studies consider only the
bivariate case or at most a handful of assets.

However [57] finds that the degree of multifractality dis-
played by different stocks is positively correlated to their depth
in the hierarchy of cross-correlations, as measured through a
correlation based clustering algorithm (DBHT, [64]). Since we
know that such hierarchies demonstrate persistence in related
correlation-based clustering techniques but nonetheless vary
over time [53, 66], this further suggests the possibility that
the correlation structure of financial markets may itself display
multifractal characteristics.

III. PARTITIONING BASED ON REALIZED COVARIANCE

A. Correlation of subperiod covariances

Consider again a T×m multivariate time series S consisting
of individual, in general correlated series sj , j = 1 . . .m,
where sjt = ln vjt − ln vjt−1, t = 2 . . . T , the vjt being
the raw data observations. We assume that S is globally
weakly stationary and that a valid partitioning Kκ into κ
non-overlapping and contiguous subseries subseries is locally
jointly ergodic, meaning that over sufficient time each mean
µj −→ 0 and that S may have joint distributional features
that vary over time but are similar within a given partition
Kk, k = 1 . . . κ. In particular, we assume initially that at a
particular level of scaling, the cross-sectional vector of log
differences rj,t of the m time series at time t obeys

[s1t, s2t . . . smt]
T

= µk + Σkεt, (III.1)
t ∈ Kk, k ∈ [1, κ] ,

where Kk ∈ Kκ represents a given subseries of the partition,
µs is a vector of the subseries-dependent means for each
individual series of log differences sj , Σk is the subseries-
dependent variance-covariance matrix and εt is a vector of
random innovations for each sj at time t with unknown
distribution. Let us further assume that the variances and
covariances are sufficiently locally stable for the purpose of
forming a valid partitioning.

We might consider a distance metric of the form

d (SA, SB) =

√
1

2
(1− ρAB), (III.2)

where SA, SB are any two subseries of S, and ρAB is a
standard matrix correlation between two covariance matrices,
so that d (SA, SB) ∈ [0, 1]. There would however be several
problems with using ordinary covariance matrices for such
calculations in an EA with a large population and many
generations. Firstly, the computational complexity scales in
theory quadratically with m, although in practice the use of

parallel processing and efficient algorithms reduces this scaling
substantially. More seriously, the covariance matrices must be
recalculated for each and every instance of the metric. In the
next subsection we examine the potential for a technique from
financial econometrics to considerably decrease the computa-
tional complexity.

B. Realized covariance

There is always a tension in considering sampling fre-
quency between the desire to gain potentially greater accur-
acy, especially in complex time-varying frameworks, from a
higher sampling rate against the inevitable increase in noise.
As higher-frequency financial data has become more freely
available, one approach to this has been to use realized
volatility, where time-varying volatility is estimated as a series
of observations for sub-periods (typically one trading day), the
latter in turn being estimated from intraday data sampled at
5-minute or more frequent intervals, so that an estimator of
RV [2, 3, 4, 5] is:

ψ2
t =

N∑
n=1

s2nt, t = 1..T, (III.3)

where snt is the nth return observation of N total on day
t; this very simple formulation is derived from arguments
using stochastic calculus. Through aggregation, the use of
RV can reduce the complexity inherent in the use of high-
frequency data. As such, it is used as an input to many models,
including GARCH, but can also be used in and of itself as a
non-parametric modelling device; [7] proposes RV as a third
dynamic volatility model class in its own right, alongside SV
and GARCH, and use RV estimates both as an input to SV
and GARCH and on their own to estimate volatility dynamics
on the WIG20 stock index and the EUR/PLN exchange rate.
The authors conclude that in general, models perform better
using progressively higher sampling rates for RV, but that this
is also true simply using RV on its own.

A natural extension of RV is realized covariance:

RC
(n)
ijt =

N∑
n=1

sintsjnt, i, j = 1 . . .m, (III.4)

t = 1..T

Realized variance/covariance has the useful property that it
simply sums over periods of aggregation:

RCijT =
T∑
t=1

N∑
n=1

sintsjnt. (III.5)

In practice this means much simpler recalculation of the
realized covariance matrices for a given subseries compared
to calculating ordinary covariances. We can then conveniently
specify a single partitioned 1

2m (m+ 1)× κ array consisting
of the realized variances and covariances for each subseries
stacked into column vectors σk, k = 1 . . . κ:
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RC11t1 . . . RC11tκ
...

. . .
...

RCmmt1 . . . RCmmtκ
RC21t1 . . . RC21tκ

...
. . .

...
RCmm−1t1 . . . RCmm−1tκ

(III.6)

=
[
σK1 · · · σKk · · · σKκ

]
. (III.7)

We can then simply define the correlation of covariance
matrices for successive coarse-grained partitions as:

ρKk,Kk−1
= corr

(
σKk ,σ

K
k−1
)
, k = 2 . . . κ, (III.8)

and similarly the correlation of the correlation of a fine-grained
partition as

ρFk,Kk = corr
(
σFk ,σ

K
k

)
, k = 2 . . . κ− 1, (III.9)

where the variances and covariances of the fine-grained par-
titions, labelled σFk , are constructed analogously with (III.7).
It then remains only to specify suitable metric summarization
functions g and h that capture enough of the distribution of
the correlations. We will use:

g
(
dKk,Kk−1

)
=

√
1

4

(
ρg + sup

{
ρKk,Kk−1

}
+ 2
)
, (III.10)

ρg =
1

κ− 1

κ∑
k=2

ρKk,Kk−1
;

h (dFk,Kk) =

√
1

4

(
2− ρh − inf

{
ρFk,Fk−1

})
, (III.11)

ρh =
1

κ− 2

κ−1∑
k=2

ρFk,Kk .

Both g, h ∈ [0, 1], and these formulations are suitable for
use in a minimization problem per (II.8), given that we
wish to simultaneously minimize the similarity between suc-
cessive coarse-grained subseries and the difference between
the coarse-grained subseries and some set of fine-grained
subseries.

C. Formulation of the optimization problem

We are now ready to fully state the computable final form
of our optimization problem. Consider a set of m data series
each of length T , with the observations grouped into equal
periods of length n of log differences of observations. Form
a (T − 1) × m matrix which can be completely partitioned
into κ ≥ 3 non-overlapping and contiguous coarse-grained
subseries Kk, k = 1 . . . κ, and call this partitioning Kκ, not-
ing that the first and last subseries K1 and Kκ are considered
incomplete. Further, let Fκ be a fine-grained partition of κ−2
sub-subseries Fk, k = 2 . . . κ−1 of a subseries in ∪κ−1k=2 {Kk},
which is sufficiently short as to be considered of a different
scale to S as a whole.

We further require a minimum number of observations
tmin in a given sub-subperiod in order for statistics such as
covariance to be meaningful, and hence it is also a requirement
that the length ` (Fk) of each fine-grained sub-subseries be
at least tmin. In order to maintain scale differentiation we
further require that the length ` (Kk) of each coarse-grained
interior subseries be at least (κ− 2)

2 · tmin, the idea being
that any coarse-grained subseries could at least contain a fine-
grained partition which has all its sub-subseries of minimum
length tmin. For the first and last incomplete coarse-grained
subseries, we only require that they are of length at least
tmin. Hence for a given T, tmin, we can calculate a maximum
feasible number of coarse-grained subseries:

κMAX =

⌊√
T − 1− 2 · tmin

tmin
+ 2

⌋
, (III.12)

T > 0, 0 < tmin ≤
⌊
T − 1

2

⌋
.

We wish firstly to minimize the similarity between each
successive coarse-grained subseries Kk, k = 2 . . . κ and the
preceding subseries; note that we do not require dissimilarity
of non-contiguous subseries, so a partition in which Kk is
statistically very similar to Kk−α.α > 1 is permissible in
this scheme. Next, for some fine-grained partition, we wish
to minimize the dissimilarity of each sub-subseries Fk, k =
2 . . . κ− 1 to its counterpart interior coarse-grained subseries
Kk, k = 2 . . . κ−1. We might also consider a third objective,
namely the maximization of the dissimilarity of successive
fine-grained sub-subseries, but this is implied by the first two
objectives, and is omitted in order to simplify the problem.
Hence the biobjective minimization problem is:

Minimize

f (S) =
[
g
(
dKk,Kk−1

)
, h (dFk,Kk)

]
, (III.13)

subject to:

` (Kk) ≥ (κ− 2)
2 · tmin, k = 2 . . . κ− 1; (III.14)

` (Kk) ≥ tmin, k = 1, k = κ; (III.15)
` (Fk) < ` (Kk) , k = 2 . . . κ− 1, (III.16)

where g
(
dKs,Ks−1

)
, h (dFk,Ks) are as defined in

(III.10),(III.11).

IV. A SPECIALIZED EVOLUTIONARY ALGORITHM FOR
PARTITIONING SELF-AFFINE MULTIVARIATE TIME SERIES

A. The computational complexity trade-off

When brute force methods which guarantee finding the
global optimum are too computationally expensive and we
wish to avoid use of greedy algorithms which guarantee
finding only a local optimum, we often use iterative methods
such as evolutionary algorithms (EAs) which although they
may not find the true global optimum within a limited time
frame given finite computational resources, will find a use-
ful approximation depending on the computational resources
available. Furthermore EAs are often designed so that the
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Algorithm 1 Random initial assignment of constrained cut-
points (coarse-grained version)

Step 0: initialize a T×1 vector v of true binary values and set
the first and last tmin entries to false, indicating these zones
are unavailable for cutpoints
Step 1: randomly assign a cutpoint to any point in v with a
true value and set the up to (κ− 2) tmin entries vk, k ≥ 1
preceding the cutpoint and the up to (κ− 2) tmin entries
vk, k ≤ T including and following the cutpoint to false, i.e
[min {1, ck − (κ− 2) tmin + 1} ,max {ck − (κ− 2) tmin, T}] =
false;
Step 2: loop to Step 1 until κ− 1 valid cutpoints are found.

solution at each generation is at least as good as that provided
at the previous generation, and so the top level problem
common to all such procedures may be stated as:

Minimize

z =
TC
CT

(IV.1)

subject to

f (Ω) ≤ θ. (IV.2)

Here TC is the computational cost for the algorithm; this
could be measured in computation time if resources are fixed,
proportion of resources used if resources are shared, or even
a monetary cost if for example resources are paid for on a
time-per-node basis. CT is the value of the solution according
to some measure, which might be a theoretical measure of
progress, or else could be measured in more concrete ways,
for example as a cost saving in a logistics problem or a
trading profit in a financial application. The set of constraint
parameters Ω is a subset of the parameters used in IV.1;
f (Ω) is often nonlinear (and may be combinatorial) . This
naturally includes all of the constraints used in the underlying
optimization problem, but in addition could include parameters
which have upper bounds set in the vector of constants θ
governing not only cost or time or share of resources but also
available memory, for example, including aspects such as the
maximum size of individual arrays or maximum total size
of all stored arrays. These parameters, which depending on
algorithm design may also include population size or number
of runs or number of generations, may be included in both the
numerator and denominator of IV.1.

It is (IV.1) which will form the highest level of analysis
for our optimization algorithm; we will take CT to be (II.8),
whilst in practice, we may not be able to calculate z a priori
from analysis of the algorithm and computing resources, but
may need to rely on empirical estimation. We will return to
these issues as we examine the structure of our EA.

Algorithm 2 Random assignment of initial constrained cut-
points (fine-grained version)

Step 0: initialize a (t2 − t1 + 1) × 1 vector v of true binary
values, where [t1, t2] ∈ R, tmin < t1 < t2 − tmin ≤ T − 2 ·
tmin corresponds to a subinterval of a coarse-grained partition
in Algorithm 1;
Step 1: randomly assign a cutpoint to any point in v
with a true value and set the up to tmin entries vk, k ≥
1 preceding the cutpoint and the up to tmin entries
vk, k ≤ T including and following the cutpoint to false, i.e
[min {1, ck − tmin + 1} ,max {ck − tmin, T}] = false;
Step 2: loop to Step 1 until κ− 3 valid cutpoints are found.

B. General aims of the EA

Following [17], we note four general goals common in
design of (a posteriori) multiobjective EAs:

1) Preservation of nondominated points;
2) Progress towards points on PFtrue, the Pareto front (PF)

representing the global optimal multiobjective solution
set;

3) Maintenance of diversity of points on PFknown, the set
of currently known nondominated solutions;

4) Provide the decision maker (DM) with a limited number
of PF points on termination of the algorithm.

The first goal may be attained by virtue of the operation
of genetic operators or through explicit or implicit elitism
strategies. The second implies that successive generational PFs
should themselves be nondominated with respect to previous
PFs and should if possible be better than previous PFs, in that
they either contain additional points that fill out the previous
PF or contain points that dominate one or more points from
the previous PF. The third implies that points on the PF
should not be crowded into a small number of regions, as
this may indicate similar crowding into particular regions of
the representation space, i.e. a lack of diversity in search
directions, and also does not provide the DM with a diverse
set of combinations of objective values. The final goal simply
indicates that solution sets with a large number of points
may be counterproductive in not sufficiently distinguishing
between solutions from the DM’s standpoint, and may indicate
deficiencies in the fitness function or other aspects of EA
design. We will refer to these goals in describing the EA in
following sections.

C. Functional description of the EA

1) Representation: Each individual is represented by a pair
of integer vectors of κ − 1 cutpoint locations, one coarse-
grained and one fine-grained, with the cutpoint representing
the first point in each coarse-grained subseries or fine-grained
sub-subseries.

2) Initialization and specialization in selection of fine-
grained subseries: Random initialization of the population N
of initial solutions is performed using Algorithms 1 and 2.
However, were we to leave a single, unrestricted population,
we should leave the evolutionary selection process open to
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two undesirable features. Firstly, as is usual with unrestricted
EAs, solutions would quickly crowd into certain sections of the
solution space, potentially leading to premature convergence.
Typical countermeasures to this crowding effect [17] include:
• A weight-vector approach, where different weights are

applied to bias the search and move solutions away from
neighbours:

• Niching, where a penalty is applied to the fitness of
solutions based on the number of solutions sharing
some neighbourhood. MOEAs employing versions of this
strategy include NSGA [65];

• Crowding/clustering, where solutions are subject to selec-
tion based on a crowdedness metric, as used in NSGA-II
[21];

• Relaxed dominance, as in the ε-dominance technique
used in [40];

• Restricted mating, where a minimum distance is required
for recombination between any two given individuals.

In some other approaches, diversity may be intrinsic to the
EA design; for example [69] finds that the decomposition
technique that forms the basis of MOEA/D leads to a good
chance of producing a uniform distribution of Pareto solutions.

In this EA, we subdivide the population into a number
of subgroups, and restrict the range [t1, t2] within which
each fine-grained subseries may be initialized, but with the
requirement that the whole of S is covered, so that these
ranges usually overlap. No restriction is placed on the coarse-
grained subseries, which are initialized over the whole of S.
Since crossover is only allowed within a given subgroup, and
mutation is also restricted (see Subsection IV-C7 below), the
algorithm is forced to try to find solutions involving fine-
grained sub-subseries within the initial range unless mutation
changes the available range. This maintains diversity, but it
also solves the problem that in the absence of such subdivision,
selection would over time push the fine-grained sub-subseries
towards the same scale as the coarse-grained subseries, yield-
ing a trivial solution set. This approach differs somewhat from
the Island Model of [68] and similar distributed EAs in that
no migrations of individuals between subgroups or crossover
between individuals from different subgroups is allowed, and
the subgroups overlap, potentially to an increasing degree
under the operation of mutation over numerous generations,
which to some extent substitutes for migration (see Subsection
IV-C5).

The number of subgroups is set to

I =
⌊√

T/tmin

⌋
; (IV.3)

initial cutpoints for the coarse-grained partitions are de-
termined randomly but subject to the length constraints
(III.14),(III.15), and initial fine-grained partitions are set by
first selecting two successive points from a random permuta-
tion of available coarse-grained cutpoints as the start and
end points and then selecting fine-grained cutpoints randomly,
subject to constraint (III.16). This initialization scheme is
designed, subject to the amount of data available, to produce
a wide variety of initial fine-grained partitions, in terms of
both size and location, which also cover the entire data set.

On average the length of the initial fine-grained partitions
decreases with increasing κ. Note that initialization is in effect
a constrained a priori multiobjective optimization process in
itself, given the need to to balance variety and total coverage of
the fine-grained partitions and obey all length constraints, and
in practice Algorithms 1,2 requires careful programming to
ensure valid results, especially if solutions are sought entailing
large numbers of partitions.

3) Fitness function and invariance properties of correla-
tion: We will now consider the suitability of metrics of the
type developed in Section III for developing a fitness function
for use in the EA. For the purpose of summarizing the distribu-
tional properties of a given subseries, variance-covariance has
the advantages of familiarity and well-understood properties,
and as already set out, realized covariance has additional
advantages in terms of simplicity and speed of computation.
Furthermore, there are specific properties of invariance in
respect of the standard coefficient of correlation between two
sets of subseries variances-covariances that will prove most
useful in relation to the value of our fitness function in as-
sessing similarity and difference under affine transformations.

Recall firstly the basic property of the correlation coefficient
that

corr (a1x1 + b1, a2x2 + b2) = corr (x1, x2) (IV.4)

provided that a1a2 > 0. Now let X and Y be sets of
observations, with the latter an affinely-transformed copy of
the former, and ρX,Y = corr (σX ,σY ) be the correlation
between the set of m realized variances and m (m− 1) /2
realized covariances for X and Y , stacked into column vectors
σX and σY as defined in (III.7) ; then from (IV.4),

corr ([a · σX + b] , [c · σY + d]) = 1, (IV.5)

where a, c and b,d are non-zero real-valued vectors. This
leaves ρX,Y invariant to affine transformations. In particular,
ρX,Y is invariant to stretching or squeezing in either the fre-
quency or amplitude domains. Note that since we are dealing
with log differences of the form rj,t = ln vi,t− ln vj,t−1, then
with regard to the original data, applying a translation will
change the slope of the time series trajectory, whilst applying
a scalar linear transformation rj 7→ aj · rj is equivalent
to applying a nonlinear, power law effect to the original
observations.

These properties are inherited by the metrics used in our
constrained objective (III.13). In the case that successive
coarse-grained subseries in a given partitioning are all identical
except for affine transformations of the types specified, then
g
(
dKk,Kk−1

)
= 1, whilst if successive fine-grained sub-

subseries are all identical to their reference coarse-grained
subseries except for affine transformations of the types spe-
cified, then h (dFk,Kk) = 0. More importantly, in the data
if successive coarse-grained subseries are close but for such
affine transformations, in other words the underlying DGPs are
quite similar, then the objective function f1 should have values
close to 0, whilst if the underlying DGPs are quite different,
objective values will approach 1 as the correlation approaches
-1. For f2, the value will approach 1 if the correlation of
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the relevant pair of coarse-grained and fine-grained subseries
approaches -1, and will be close to 0 if they are quite similar.

Hence our biobjective fitness function will be (III.13), with
the functions defined as per (III.10) and (III.11), and the
constraints (III.14),(III.15),(III.16) are dealt with as far as
possible by obeying these constraints at all stages of the
programming.

4) Fitness function evaluation and the set of Pareto fronts:
After an initial calculation of T vectors σt, each containing
sets of m (m+ 1) /2 stacked realized variance and covariance
entries RC(n)

ijt , fitness function evaluation using the form out-
lined above requires for each subgroup with population Ng at
each generation, only κ summations of vectors, as per (III.5),
which is far simpler in computational terms than recalculating
covariance matrices repeatedly. It is also guaranteed that all
individuals in the population at all generations will be feasible,
provided all the original σt have valid entries.

We can then find the Pareto front for each subgroup. For a
minimization problem with k objectives, let M be the set of
at most k points pmini out of n total which have the minimum
values for each individual objective fi; that is:

M =
{
pmini = min {fi (pj)} , (IV.6)
i = 1 . . . k, j = 1 . . . n} .

Define Pareto dominance in the usual fashion:

pA � pB ⇐⇒ (IV.7)
fi (pA) ≥ fi (pB)∀fiand (IV.8)
∃fi| [f (pA) > fi (pB)] .

This leads to the definition of the nondominated set:

PF = {p ∈ Ω : p ⊀ p′∀p′, p 6= p′} . (IV.9)

It follows that

‖pj‖1 > ‖supM‖1 ⇐⇒ pj /∈ PF (IV.10)

where ‖p‖1is the taxicab norm of the objective function values,
that is

‖pj‖1 =

k∑
i=1

|fi (pj)| , (IV.11)

and ‖supM‖1 is the norm of the lowest values for each
objective of any of the points in M ; all such points must be
dominated by at least one point in M , and we can immediately
eliminate them from consideration as members of the PF. In
the biobjective minimization case, this then implies that if we
first take the point with the lowest global value of f1, all points
with a higher value for f2 than that point can be excluded; we
then find the point with the next lowest value for f1 from the
points not dominated by the first point, and so on.

We do not need to sort the points at any stage, only find the
suprema of successively smaller nondominated sets. Taking
the number of points on the final PF as nPF and the number
of remaining nondominated points at each iteration as m⊀

i the
complexity is thus

O

(
m+

nPF∑
i=2

m
⊀
i

)
≤ O (nPF ·M) . (IV.12)

Algorithm 3 Fast biobjective Pareto front algorithm

Step 0:initialize with m pairs of fitness function values
{f1, f2};
Step 1: find and archive the point pmin1 with the lowest value
for f1;
Step 2: eliminate all points with a value for f2 more than or
equal to f2

(
pmin1

)
;

Step 3: loop to Step 1 whilst any points remain.

This compares favourably with the O
(
kM2

)
complexity of

exhaustive algorithms. Because ours is a biobjective problem
using continuous values and all individuals are unique, we can
use a particularly fast and simple algorithm (3) to find the PF.
The algorithm works as a simplification of the following more
general case with m objectives, and does not need to calculate
norms.

Each subgroup thus yields its own PF at each generation
and these are stored and added to the next generation only for
the purpose of calculating the new PF, which will change only
if new points are found that dominate points on the old PF so
that the location of the PF changes and the number of points
thereon may shrink, or if additional nondominated points are
found, so that the number of points on the PF grows. We can
apply Algorithm 3 a second time to these points if we wish to
find a global PF for the union of populations all the subgroups,
and the result will be the same as if we had calculated the
global PF directly from this total population, but a further
advantage of the subgroup approach is that computation is
generally faster if we compute in two stages. However the
union of the subgroup PFs is itself of interest, as discussed in
Subsection V-D.

5) Permuted biobjective tournament selection : Selection
is performed per Algorithm 4; note that the number of parti-
cipants in each tournament, τ , is randomized so that selection
pressure [9] for each subgroup at each generation is also ran-
dom. Individuals may compete in more than one tournament
and all individuals will compete at least once; individuals in
the population PF found in IV-C4 will win all tournaments
in which they take part; using complete permutations of the
population also removes the chance that elite individuals fail to
participate in any tournament and obviates the need for explicit
elitism. Note also that elite individuals are stored and hence
will remain nondominated until the EA terminates unless new
individuals emerge that dominate them.

6) Permuted affine crossover: Crossover is performed as
per Algorithm 5. All individuals are subject to crossover and
existing individuals are passed intact only if two copies are
sampled for the same tournament, although individuals on
the PF are ultimately recorded and stored; hence there is no
parameter associated with crossover probability. The spacing
conditions referred to are those used in Algorithms 1,2. In
practice, programming Algorithm 5 in such a way that each
new individual is guaranteed to have a feasible pair of sets of
cut points obeying all constraints may be very computationally
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Algorithm 4 Permuted tournament selection

Step 0: initialize with objective values of current population,
including those on the PF;
Step 1: randomly permute the current population;
Step 2: Take the next τ = X of Ñ remaining individuals in
the permutation, where X is uniform random ∈

[
2, Ñ

]
; use

Algorithm 3 to find non-dominated individuals, and add copies
of these to the list to be passed to genetic operators;
Step 3: while individuals remain in the permutation which
have not competed, loop to Step 2;
Step 4: whilst the list of copies of individuals to be passed is
smaller than the twice the desired population N , loop to Step
1.

Algorithm 5 Affine crossover

Step 0: initialize with list from Algorithm 4;
Step 1:randomly split list into 2 parent lists;
Step 2: take the next parent from each list; if both parents are
copies of the same individual, add an untransformed copy of
that individual to the next generation and move to the next
entry pair;
Step 3: merge the sets of coarse-grained and fine-grained cut
points from each parent;
Step 4: check which cutpoints in the combined lists (if any)
violate no spacing conditions;
Step 5: randomly remove one cutpoint not included in those
found in step 4 (if any) or otherwise randomly remove any
one cutpoint;
Step 6: loop to Step 4 until the required number of cut points
for the number of subperiods κ is reached and all spacing
conditions are met;
Step 7: if left with insufficient cutpoints, randomly add back
deleted cutpoints which do not violate spacing conditions;
Step 8: loop to Step 1 until all pairs of parents have been
subject to crossover.

expensive and it may be necessary to allow through a certain
number of infeasible individuals to be caught and eliminated
by error checking later. The effect of combining sets of
cutpoints in this way is to stretch or squeeze the coarse-
grained subseries and fine-grained sub-subseries in a way
tantamount to applying offsetting affine transformations in the
time domain so that the new set of cutpoints does not change
the length or location of the specialized subperiod on which
the fine-grained cuts are determined. It is worth noting that
the crossover scheme implemented in Algorithm 5 is highly
specialized and it is not possible to replicate its operation using
general purpose EAs. Employing a more standard crossover
scheme, even with many constraints, results in an unacceptable
number of infeasible individuals at each generation.

7) Mutation: A simple random point mutation is applied to
the whole representation of the individuals in each generation,
so that either either the coarse-grained and fine-grained part of
the representation is affected, per Algorithm 6. If an individual
is selected for mutation, one cut point is deleted and another
one randomly inserted in such a way that spacing conditions

Algorithm 6 Mutation

Step 0: initialize with new population generated from Al-
gorithm 5;
Step 1: randomly select individuals based on the mutation
probability (IV.13);
Step 2: randomly select one cutpoint for each selected in-
dividual, delete these cutpoints and replace with new valid
cutpoints subject to length constraints; for the fine-grained
partitions, allow new cutpoints up to tmin before and after
the original range of the partition;
Step 3: loop to Step 2 until mutation complete.

are again met. A difference with crossover is that a small time
window of length tmin is added to the beginning and end of
the list of valid locations in the specialization subperiod for the
purpose of randomly determining the location of the new cut-
point, so that it is possible for the fine-grained sub-subseries to
migrate in the time domain. The mutation threshold probability
should be set quite low, so that most mutation will typically
still occur within the original specialization parameters, and
this migration is typically slow and not of great magnitude
unless the number of generations is large. This migration
is the only mechanism by which the original specialization
locations can be changed, but the algorithm needs to prevent
the tendency for the scale of the fine-grained subseries to
simply expand over many generations towards the scale of the
coarse-grained subseries, leading to favouring of individuals
with fine-grained subseries almost identical to their coarse-
grained subseries. In the algorithm, the mutation rate is fixed
as

mutRate =
I

N
, (IV.13)

so that on average just one population member per subgroup
will be subject to mutation in each generation. Note that the
number of subgroups I is itself a function of the length of the
dataset, per (IV.3).

D. Parameters, parallelization and the specialized nature of
the EA

A notable feature of the construction of the EA is that it
has very few choice input parameters; in fact the only choices
are:
• N , the total population size;
• G, the number of generations;
• tmin, the minimum number of observations in any sub-

period.
In practice, given limited computational resources, whilst res-
ults can be expected to improve with higher N,G, the first is
limited by available memory and if parallel processing is used,
the available number of cores, and the second by processor
speed and the number of cores used. The third parameter tmin
can generally be left to the minimum meaningful value of 2,
as it was in all the studies in Section V, but might need to be
adjusted for very large and complex problems if it is found that
too many infeasible individuals are generated. This problem
did not come up in our testing for this paper, however.



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2688521, IEEE
Transactions on Evolutionary Computation

12

On the subject of parallelization, in general the specialized
EA shares attributes with many other EAs, namely that:
• Multiple runs can be executed in parallel, with the same

or different parameters;
• Many operations within a single generation can be par-

allelized;
• The whole set of operations on a given subgroup within

a single generation can be parallelized;
• Generations themselves cannot be parallelized within a

given run, by the fundamental nature of the evolutionary
process.

The first and fourth aspects are standard and require no further
explanation. As to the second, all of the key algorithms as set
out in Algorithm 7 below for each generation can be parallel-
ized. Furthermore, certain aspects, such as the evaluation of the
fitness function and tournament selection, are also tractable to
GPU computation by virtue of their simplified nature, though
this is not currently implemented. Finally as to the third,
operations on different subgroup can be entirely parallelized
across generations, unless any adjustment to the groups is
required from generation to generation, for example changing
population sizes in an adaptive manner; such intergenerational
adjustments were not implemented in the EA.

As noted, the algorithm permits only 3 choice input para-
meters, and the values used for these is generally driven by
practical matters including available time and computational
resources as well as the size and complexity of the data used,
rather than any speculation on the part of the user about
what parameter settings might produce the best results. For
this reason, if multiple runs are conducted, it should only
be to increase confidence in the optimality of results, and it
may well be that better results are to be obtained by using
available computation time and resources to increase N,G,
rather than performing more runs, with the caveat that this
may also depend on the nature of the data.

Otherwise as regards selection and genetic operations, the
use of permuted biobjective tournament selection (Subsection
IV-C5) means that all individuals in each generation are
sampled for at least one tournament and have the same chance
of being sampled for more than one tournament, depending
on the number of victors produced by the initial permutation.
Rather than the number of participants per tournament τ being
set arbitrarily (many algorithms uses τ = 2), τ is randomized,
and as a consequence so is selection pressure. In crossover
(IV-C6), individuals are passed as is only if two copies are
assigned as parents in a particular pairing, and all individuals
passed from tournament selection are assigned as parents,
so there is no crossover probability parameter. Finally, the
mutation probability is determined by population size and
length of the dataset (IV.13).

It is also worth emphasizing that the EA is highly special-
ized in several respects, but most notably in the initialization,
the type of fitness function and its method of calculation,
the affine crossover algorithm and the design of mutation to
avoid infeasible individuals. Some of these innovations can
be expected to improve performance for this very specific
task against other types of algorithms, but others, in particular
the crossover and mutation algorithms, are designed to avoid

Algorithm 7 Evolutionary algorithm for partitioning self-
affine multivariate time series

Step 0: load (T − 1) × M array of log differences of the
multivariate time series S. Generate initial population divided
into subgroups using Algorithms 1 and 2;
Step 1: calculate fitness function and find subgroup PFs using
Algorithm 3;
Step 2: perform tournament selection using Algorithm 4;
Step 3: perform crossover using Algorithm 5;
Step 4: perform mutation using Algorithm 6;
Step 5: loop to Step 1 until convergence conditions met or
maximum number of generations reached.

the population being swamped with infeasible or very low
fitness individuals, which is what should be expected if general
purpose EAs are used for this problem. This, together with the
issue of how to set the many parameters general purpose EAs
generally require, makes comparison with existing EAs very
tricky in practice, and for these reasons we have not included
any such comparisons in this paper.

The entire EA is summarized as Algorithm 7.

V. TESTING WITH SIMULATED AND REAL DATA

A. Formation of the simulated data

Testing with real multivariate data, especially of higher
dimension, is problematic as in general we do not know how
to partition the data, this being precisely the problem the
techniques developed in this paper are designed to address.
A first step is to formulate a set of data we know more about,
specifically one in which we know that the data inherently
displays self-affinity. The approach used in testing is to “stitch”
together subseries which are individually self-affine and which
repeat patterns from one subseries to the next, but which are
each sufficiently different to the preceding subseries in terms
of the coarse-grained metric (III.10) that the EA can detect a
change in subseries.

The fundamental building blocks of this approach are
multivariate fractionally integrated time series (FITS), which
use FBM processes in their construction. The approach used
is the p-model set out in [20], and the implementation is
adapted from [67]. The p-model itself produces only stationary
random time series and has one parameter, p ∈ [0, 1], which
is associated with increasingly peaked series as it approaches
0 or 1, and calmer series as it approaches 0.5. To create
nonstationary series, the result of the p-model is filtered in
Fourier space and a further slope parameter is specified; slopes
flatter than -1 are called stationary in [20], whilst slopes
between -1 and -3 are called nonstationary, with stationary
increments. These nonstationary cases are at least continuous,
but not differentiable. Slopes steeper than -3 are nonstationary
and differentiable.

The approach in constructing multivariate test series with
differentiated subseries is as follows. Firstly, for each of κ
subseries as required, m “master” series of length n · Tk, k =
1 . . . κ and random parameters p ∈ [0.25, 0.49] and slope ∈
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[−3,−1] are generated, the random parameters recorded and
log differences taken and the series “stitched” together so that
the total length is n · T . The parameter ranges are set so
that the series are neither too peaked nor excessively smooth
and are nonstationary. Next, for each subseries k = 1 . . . κ , m
FITS of length Tk are generated for each subseries, again each
with independent uniformly random parameters but with the
random seed reset to the same state s recorded before the first
series was generated. Hence the random numbers used are the
same for each FITS, but the parameters are different, such that
the correlations between different FITS vary randomly. Log
differences are taken and scaled down by a factor of n1/α,
where α is a scaling parameter, and each t-th log difference
from these series is added to the t ·n-th log difference of each
of the m FITS. The effect is to add an additional shock to
the beginning of each period. This might be thought of for
example in the context of financial returns series, as reflecting
new information available at the beginning of each trading day,
and is meant to simulate the phenomenon of price jumps at
the beginning of the trading day which is commonly observed
in financial data. Finally the entire system is normalized to be
non-zero and have the same starting values.

It is not of course guaranteed that the stitched FITS gener-
ated by such a process will have subseries that are sufficiently
distinct, in terms of the serial correlation of the realized
covariances of the constructed coarse-grained subseries, to be
useful in testing our EA. Therefore, suitable FITS are found
by running a Monte Carlo simulation and selecting FITS with
sufficiently distinct subseries. With small values of T , it is
not hard to find series with significantly negatively correlated
subseries, but with larger values of T it becomes difficult
to find series with maximum correlations between successive
subseries that are any lower than a small positive number
(less than 0.1, say). This means that the task faced by our
EA will not necessarily be easy, as the original cutpoints in
the construction of the simulated data are hard to identify.
The actual stitched FITS generated and used in the first study
study with just described below are illustrated in Figure (V.1),
with actual observations plotted in the upper window, and log
differences in the lower window.

B. Results from the EA for simulated data

In an initial experiment the generated FITS comprised m =
8 series with 2 central partitions and a further 2 incomplete
subseries at the beginning, so that κ = 4, with a total length
of T = 512 periods, each comprising n = 32 observations,
for 16,384 high frequency observations in all. Because of the
difficulties in constructing test data with significantly negative
serial correlations between subseries, especially with larger
numbers of periods, correlation coefficients observed in data
used tend to be slightly negative and close to zero (typically in
[0,−0.1]. The EA was run over 15 generations with a popula-
tion size of 10,000 individuals for each of 11 subgroups. All
testing was conducted on a 3.7GHz, 4 core system with 32GB
of RAM. Earlier experimentation had shown that such pop-
ulation sizes could lead to relatively rapid convergence with
reasonable results, whilst smaller population sizes tend to lead

to convergence after more generations but with poorer results,
though possibly with lower overall runtime. The number of
series in the multivariate system was chosen so that sufficient
covariances were generated to make correlations meaningful
but not so many that in particular the clarity of graphical
representations is compromised. Computational complexity is
also an issue but for reasons explained in Subsection IV-C4,
the choice of m affects only the κ−1 correlation calculations,
generally in a sub-quadratic manner, and does not affect
the underlying calculations of realized covariance at each
generation. Hence this approach is potentially well suited to
high-dimensional problems.

Two measures were considered to assess the success of
the EA in finding suitable coarse-grained partitions. The first
looks at the errors between the individuals with the best (i.e.
lowest) values for the first objective f1, i.e. the solutions with
the highest dissimilarity between regimes, as assessed by the
following formula:

θ
(1)
i,r,g =

1

T · (κ− 1)

κ−1∑
k=1

∣∣cEAk,i,r,g − cFITSk

∣∣ , (V.1)

where cEAk,i,r,gis the k-th cut point for a given subgroup,
partition and generation, and cFITSk is the actual cut point
used to generate the FITS; lower scores are better. The second
is derived from our fitness metric (III.10) as follows:

θ
(2)
i,r,g = (V.2)[√

1

4

(
ρFITS + sup {ρFITS (s, s− 1)}+ 2

)
−
√

1

4

(
ρ∗EAi,r,g + sup

{
ρ∗EAi,r,g (s, s− 1)

}
+ 2
)]

,

that is, the difference between the coarse-grained metric values
for the best individual generated by the EA and for the FITS
cut points; again, lower scores are better. Note that these
measures consider only the coarse-grained partitioning for a
given solution.

The best results in terms of the first measure had a maximum
error of 5 periods, i.e. an “error” of less than 1%, for any
cut point (there were several individuals, distributed across
different subgroups, which met this standard) . the results
demonstrate that the EA can find the “correct” cut points with
a good degree of accuracy, although larger T and κ will lead to
slower convergence or equivalently, lower accuracy for a given
computational budget.One solution is illustrated in Figure V.1,
where the solid lines indicate the cutpoints in the original data
and the dashed lines the coarse-grained cutpoints found by the
algorithm.

A second simulated FITS dataset was then generated for
the main experiment with m = 8 and n = 32 as before
but with a much larger number of periods, T = 4096, or
131,072 observations in all, and κ = 6, so 4 internal partitions
instead of 2; constructing the test data was significantly more
computationally expensive, and this time the correlations of
successive subseries tend to to be close to zero but slightly
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Figure V.1. A typical close fit to the original subseries cut points

Figure V.2. Coarse-grained and fine-grained partitionings

positive, typically in [0, 0.1]. The EA was then run for 100
generations with a total of 32 subgroups, each with a popu-
lation of 10,000, and a total of 30 runs, and the results were
aggregated by subgroup across the runs. Typical running times
for this data were around 22 seconds per generation but this
dropped to below 7 seconds when parallelization of subgroups
across 4 cores was implemented, showing that parallelization
is highly effective in reducing computation time.

Figure V.2 shows an example result. In the upper plot, the
solid black lines represent the coarse-grained cutpoints used to
set up the actual dataset, whilst the dashed lines represent the
cutpoints found in the EA solution. The plots of the data use
log differences rather than the untransformed data, and this
makes the distinctions between the partitions much clearer. In
the lower plot of Figure V.2, only a zoomed-in section of the
data is shown, and the dashed lines represent the cutpoints of
the fine-grained partitioning found in this particular solution.
Note that the relative lengths of the subseries in the fine-
grained partitioning are quite different to those in the coarse-

Figure V.3. trade-off of theta scores

grained partitioning. It is also quite difficult to detect by
eye, even with a system with just 8 different series, that the
subseries in the fine-grained partitions correlate quite closely
with those in the coarse-grained partitions, even though this
is in fact the case; for a higher-dimensional system, visual
interpretation becomes impossible, but for the EA, only a
relatively modest increase in computational complexity is
involved.

Figure V.3 shows scatter plots of solutions for selected
subgroups in terms of their values for θ(1)i,r,g and θ

(2)
i,r,g , the

one on the left after the first generation, the one on the right
after the last. The lines represent Pareto fronts for each of
the subgroups shown; these PFs are not to be confused with
the ones constructed during the running of the EA, which use
metrics (III.10) and (III.11) instead of (V.1) and (V.2), and
so have no knowledge of the partitioning used to set up the
simulated data. The best results from the EA show an error
(as measured by θ(1)) of less than 2%, and manage to find
reasonable fine-grained partitionings as well.

There is a clear trade-off between θ(1) and θ(2), but notice
also that most individuals have a negative value for θ(2),
indicating that in terms of metric (III.10), the EA finds
coarse-grained partitions of subseries that are actually better
differentiated than those used in the original construction of
the test data. Also note that, although the EA has no knowledge
of the partitioning used to set up the simulated data but which
is used in the ex post calculation of θ(1)i,r,g and θ(2)i,r,g after the
EA has run, at the last generation the EA has in fact found
many more solutions close to the bottom left extremes of the
plot, that is, solutions with, in particular, better solutions in
terms of θ(1), than was the case at the first generation. Note
also that no single subgroup’s PF completely dominates that
of all others, though some are completely dominated; indeed,
just 6 of the original 32 subgroups (only 10 of which in total
are shown in the plots, for clarity) have PFs containing points
which are non-dominated with respect to all other points from
all subgroups.

It would be simple to extract from the several subgroup PFs
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Figure V.4. Progress of PFs by generation

for any given partition into κ subseries a single global PF.
However, each subgroup PF is a valid subset of solutions on
its own, and if not completely dominated by another subgroup
PF, has valuable information about the solution space, given
that each subgroup is optimizing over a different location of
the fine-grained partition and potentially also a different scale.
Similarly, with real data where the actual number of partitions
is unknown, for each partition size κ = 3 . . . κMAX , that
solution subset is also valid in its own right, and in many cases
we cannot say that one number of subseries κ forms a superior
partition to another number; it is again operating at a different
scale. Taken together, all the subgroup PFs for all the partition
sizes κ may be thought of as forming a single solution set
over a number of different scalings and fine-grained subseries
locations; in other words an optimized sample of a much larger
optimal solution set.

C. Testing with real data

We used the public access CRSP data1 for second-by-second
calculations of 9 capitalization and market indices calculated
using intraday prices of US stocks over a 12-month period
ending March 2016. As examples, CRSPSCT is an index of
the total return of smaller stocks, whilst CRSPTMT is an
index of total market return. To ensure greater stability of
the realized covariance matrices and reduce noise, the second-
by-second measurements were first aggregated into 5-minute
bars and the daily covariance matrices were then calculated
from these. The system is highly correlated, with correlations
between series over the period varying between 0.0072 and
0.9985 but averaging 0.7718.

D. Results from the EA for real data

A total of 100 runs were effected for the data and the results,
i.e. the sets of coarse-grained and fine-grained cutpoints with
objective values on the PFs produced after 100 generations for
each run, were recorded for each subgroup. This produced a

1Available at: https://wrds-web.wharton.upenn.edu/wrds/about/index.cfm

Figure V.5. Means and variances of silhouette numbers

large number of partitionings, all of which are potentially valid
(as they are non-dominated). The EA was used to investigate
partitionings with 3 and with 4 cutpoints (i.e. 2 or 3 regimes),
and was run with a smaller population per subgroup (1000)
and a smaller number of subgroups (11) than used in the
experiment with simulated data, and 100 generations per run
as before. The progress of of the combined PFs for the
whole population, aggregated from all runs and subgroups,
is illustrated in Figure V.4. Note that in later generations the
f2 values are extremely small (and so close to the axis) and
this phenomenon is seen more quickly for the runs with 3
regimes; this provides strong evidence of the self-affinity of
the real data set.

We used k-means to cluster the sets of coarse-grained
cutpoints obtained from all the PFs obtained from the EA,
with k = {2, 3, 4, 5}, running the algorithm 1000 times for
each k and retaining the results with the lowest sums of in-
cluster distances from centroids. We then calculated silhouette
numbers [61] for each subgroup; V.5 shows the means and
variances for each subgroup, for both 2 and 3 regimes. The
subgroups generally show similar patterns. For 2 regimes, the
silhouette means do not vary greatly but variances increase
with the number of clusters, indicating more low silhouette
values. For 3 regimes, means decrease significantly for more
than 4 clusters and variances also increase with the number of
clusters. This indicates that a low number of clusters is most
supported by the data, with in all likelihood, just 2 clusters
being best of all in the case of 2 regimes, whilst for 3 regimes,
results are very similar for 2-4 clusters. Overall this implies
that after 100 generations, results were already tightly grouped
into a small number of clusters. In particular, the number
of clusters is much smaller than the number of subgroups,
indicating some convergence of results between subgroups.
The silhouettes for different numbers of clusters for 2 regimes
and for 3 regimes are shown in Figures V.6 and V.7; note that
whatever the number of clusters, with 2 regimes there are 2
clusters of results that contain most of the results, whilst with
3 regimes a single cluster contains most of the results.

Figures V.8 and V.9 for partitionings with 3 and 4 cutpoints
respectively show the indices together with vertical lines
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Figure V.6. Silhouette plots for clusters of results with 2 regimes

Figure V.7. Silhouette plots for clusters of results with 3 regimes

Figure V.8. CRSP data with representative partitionings: 3 cutpoints

indicating the centroids of the 4 clusters; each cluster has 3
cutpoints with the line colour and line type the same, which
may be taken as representative of a particular type of solution
with two defined partitions (which have corresponding fine-
grained partitions) plus “incomplete” partitions before the first
and after the last cutpoint.

With real data, we do not know the “true” partitionings
although with small systems we might be guided by visual
cues, standard multivariate statistical techniques or some other
known facts in guessing one or more valid partitionings;
with large systems, such guesses may be impossible. If we
look at the results as represented in the two figures without
any prior knowledge, several observations can nonetheless
be made regarding the representative partitionings. Firstly,
the “incomplete” final partition of the data lying after each
final cutpoint is in all cases quite large, with almost all final
cutpoints indicated before the end of 2015 and some much
earlier. This tells us either that later data the system is consid-
erably different from earlier sections in terms of our coarse-
grained metric III.10 or that it is easier to find similar fine-
grained partitions in terms of our fine-grained metric III.11
for earlier data, or both. With this relatively low-dimension
and highly correlated dataset, it is perhaps possible to note
visually that there is a change in the system in late 2015,
but it is not feasible to check the similarity of coarse-grained
and fine-grained partitions visually even with such a relatively
small system. Secondly, the partitionings vary considerably in
spread, i.e. the distance between the first and last cutpoints, so
some solutions involve much larger “incomplete” first and last
partitions than others, or looked at differently, the partitionings
in effect operate on different time scales to one another; this is
arguably a desirable feature in the context of our assumption
that the system has scalable, fractal properties and is likely
maintained by the island approach to segregating the EA
population. Finally, the greatest concentration of cutpoints
is in the August-November period, this being particularly
noticeable in the second figure, and this is perhaps indicative of
a greater change in the system covariances during that period.

CONCLUSION

We have seen that the problem of how to best partition a
multivariate time series into subseries with different distribu-
tional properties is an important one with many potential uses
in different areas of research, but is also at root a difficult
combinatorial problem with high computational complexity.
The problem becomes more complex still if we assume self-
affinity in the underlying DGP; yet many real data types,
including but by no means limited to financial data, display this
attribute. Identifying valid partitions on this basis may not only
be the best way to identify time-varying features of the data
but may also open the door to prediction of future states, or at
least identification of the current state on some scale. However,
statistical techniques currently available are not well-suited to
high-dimensional multivariate analysis of time series showing
time-varying, self-affine distributional attributes. Furthermore,
all rely on assumptions about the underlying DGP and often
on large numbers of model parameters.
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Figure V.9. CRSP data with representative partitionings: 4 cutpoints

The novel approach investigated in this research makes
only the simplest of assumptions about the DGP and uses
only 3 input parameters, 2 of which, the population size N
and the maximum number of generations G, relate to the
computational structure of the EA rather than being model
parameters as such, with the third, the minimum partition
size tmin, in practice being set to the effective minimum
value 2 in all experiments. The price paid is that the starting
computational complexity is very high. To address this, a
highly parallelizable population-based evolutionary algorithm
was developed, which reduces the problem to a biobjective one
using objective functions based on the correlation of realized
covariances for successive coarse-grained subseries and for
fine-grained sub-subseries with the coarse-grained subseries.

The problem is formulated so as to minimize the similarity
between successive coarse-grained subseries and maximize
the similarity between this coarse-grained partitioning and
some fine-grained partitioning at a smaller time scale, using
functions that summarize each objective. This summarizing
approach significantly simplifies the problem, yet still yields
a set of solutions for analysis a posteriori rather than a single
solution based on a priori objective weightings, say, which
would yield much less in terms of insights into the fitness
landscape.

The population is split into subgroups specialized to ex-
amining fine-grained partitions in differing sections of the time
series, and all possible partition sizes can be investigated.
The algorithm uses biobjective tournament selection and a
crossover method that in effect applies affine transformations
where necessary to fit together elements of each parent’s
representation.

Testing was conducted using both simulated data and real
stock market data. The simulated data was constructed using
generation processes known to be self-affine and designed to
have as clear a partitioning as possible in terms of the main
metric used by the EA to assess differentiation of successive
subseries. Initial results have indicated that the EA may be

able to come close to the partitioning used in the simulated
data whilst simultaneously finding reasonable self-affinity, and
indeed in limited testing was able to find partitions with better
differentiation than the ones used to set up the test data. It was
also observed that there is a clear trade-off between closeness
to the original partition and the measured power of the
differentiation between successive coarse-grained subseries,
but that the overall solution set improved with successive
generations. For the testing using real data, although it is not
possible to comment directly on the accuracy of results as the
“true” partitions are unknown, we were able to make several
useful observations regarding the operation of the EA on the
specific data set.

To progress further with the work, it is anticipated that it
will be necessary to develop new techniques and extensions to
the EA framework to test whether the partitionings produced
are useful for example in minimizing variance of a portfolio
of assets in out-of-sample testing when the current state of the
asset market is unknown. It will then be possible to address
the feasibility of probabilistically assessing the current state. It
would also be useful to develop suitable metrics for quality of
the PF, with attention to the particular nature of the problem.
Although the motivation for this research comes from financial
applications, it can be seen more widely as the first steps on
the road to a broader framework for threat analysis, detection
and mitigation, and it would be useful to extend testing to
other types of data. For example, the work presented in this
paper could be used to detect abnormal patterns temporarily
present at different time scales in multivariate data of many
types. Future work might allow optimization to mitigate the
adverse impact of such patterns, and even detect the onset of
such patterns in real time, allowing re-optimization.
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