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ABSTRACT 

 

Social Capital is considered an important asset for development, both at local and 

higher levels, and has been explored across the social sciences for decades. Attempts 

to define and measure it in increasingly precise ways continue in order to place it at 

the centre of policymaking. Indeed, it is considered a precious capital in times where 

resources are becoming scarce. This thesis investigates the dimensions of social 

capital and estimates them at small area level for England and Wales in 2011. The first 

step is the identification of three factors measuring membership, citizenship and 

politics and neighbourliness dimensions using survey data and a Confirmatory Factor 

Analysis. The second step is to test the hypothesis that other individual characteristics 

and geographical characteristics may influence levels of these factors. Complex 

Multilevel models with individual covariates and area-level covariates from the 

Census and administrative sources confirm the hypothesis: the factors depend on age, 

gender, ethnicity, religion, marital status, socio-economic class, employment, state of 

health and education at individual level and ethnic diversity and economic profile at 

area level. Lastly, Multilevel Model results have been used as a starting point for the 

final synthetic estimates at small area for all the Middle Super Output Areas of the 

average levels of the three factors. While Membership and Citizenship and Politics 

social capital show higher differentials, Neighbourliness seems to be more spread and, 

on average, higher than the other two factors across the two countries.  
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The phoenix hopes, can wing her way through the desert skies, and still defying 
fortune's spite; revive from ashes and rise. 

 
Miguel de Cervantes Saavedra, El ingenioso hidalgo don Quijote de la Mancha,1605. 
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INTRODUCTION 

 

In the wake of significant events that defined the last decades, several implications 

arise on a global level for populations. Indirectly resulting from the worldwide 

financial crisis, they have been enlarged and have spread to different sectors of social 

reality.  

 

The first remarkable consequence is the increased poverty rate among all countries 

in the world. While in the poorest countries it can be easily identified with the 

deterioration of already precarious conditions of subsistence, in the developing and 

developed countries we can examine it in different ways: increasing number of 

persons turning to be poor and the slow disappearance of the middle class. This last 

phenomenon involves the establishment of two major social classes: one even more 

rich and the second even more poor, always on the risk to fall definitively in the 

poverty trap. 

 

The second consequence of this social phenomenon is the diffusion of political 

ideologies and trends closer to independent, racist and extreme positions. Usually, 

these political attitudes and beliefs drive common people to develop attitudes of 

mistrust and suspicion to immigrants and foreign people. 

Finally, where poverty is higher, educational attainment levels are lower and minds 

are closed to diversity, the third indirect big consequence of the last crisis finds fertile 

ground: not only political extremism but also religious integralisms. This last one 

especially, like in a not virtuous circle, feeds again all the previous attitudes and fears.  
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All these consequences have taken a natural erosion of trust within people and 

between people and institutions, frequently incapable to deal with such changes, 

involving a natural decrease of social capital. Moreover, the decrease of such a 

necessary and important capital for development is one of the main current problems 

to study and deal with, given its centrality like a potential and alternative resource to 

money for institutions and their policies. 

 

Indeed, the first important implications concern governmental administration at local, 

national and international levels. In these days, when the resources necessary to 

support economic, development, health, educational and social policies are scarce, 

political bodies search for other incentives they can work with and on which they can 

place their hope. 

 

Conversely, yet at the same time, complementary, other implications emerge from 

the general population. Different dimensions of the daily life of an individual are 

continuously changing, both in terms of their meanings and consequences. The first 

is the structure of society with higher rates of social mobility unfortunately mirroring 

a higher degree of uncertainty. Other social structures that are changing are the 

institution of family and the social meanings of job and employment. Deeply linked 

with these dimensions, social networks are rapidly transforming too. Over recent 

years, the social sciences have sought ways to address these topics, problems and in 

general the complex phenomena with the concept of social capital returning to the 

fore and demanding renewed attention. 
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Intuitively, social capital is determined by the personal and cultural background, and 

shaped by the social network that the individual builds during his or her life. Given the 

presence of a strong personal dimension, it cannot be reduced to the number of ties 

which form the network. In contrast, many different measures have been proposed 

which use different individual characteristics to account for its complexity and 

multidimensionality, as membership to organizations, trust towards people and 

institutions, political involvement, voting behaviour to make some examples. 

 

Partially abandoned due to its perceived volatility and apparent difficult empirical 

application (in relation to the other two capitals, physical and human), it remains an 

interesting concept. But even more so, it can be considered as most probably the most 

useful concept for contemporary times. Mohan and Mohan (2006, p.1) state indeed 

the renewal of the ‘popularity of the concept reflects a combination of academic and 

political developments, notably the search for ostensibly “costless” policies of 

redistribution on the part of centrist governments’. 

 

Following this trend and renewed perception, even the most important governmental 

bodies have started to refocus on it. In 2001, the Organisation for Economic Co-

operation and Development (OECD) Statistics Directorate established, a few years 

after the World Bank (World Bank, 1998), a project funded by the European 

Commission for ‘Measurement of social capital and question databank’ that aimed to: 

‘1) to assess how the notion of “social capital” has been conceptualised in the research 

literature; 2) to detail how it has been measured in national and international surveys; 

and 3) to identify priority areas for statistical development. The main outputs of the 
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project are a report, which has been published as an OECD Working Paper, and a 

question “databank”’ (OECD, 2001).  

 

Following further the international trend and according to a general collaborative 

idea, in 2001 the British Office for National Statics (ONS) established the ‘Social Capital 

Project’: recognising its importance for the general wellbeing and for future policy 

implications, a specific team and concrete studies were structured and implemented 

as well. The first works were a complex review of the concept and its literature in 

order to review its definitions and dimensions. A general agreement on this, indeed, 

would help the following steps: identification of measurements, methodologies, 

analysis and empirical works (ONS, 2001; Harper and Kelly, 2003)  

 

In 2002, the ONS presented a Social Capital Question Bank. This document presented 

a matrix that was able to include a wide range of questions – and derived variables – 

about Social Capital from all the British surveys and was intended to be a reference 

tool for researchers interested in measuring social capital (Ruston and Akinrodoye, 

2002). Characterized by a complexity and richness, social capital is composed by 

different dimensions that are complementary and necessitate each other but which 

remain perfectly identified and autonomous. Its placement at midway between 

society and the people, groups and the individuals, the global and the local, make it 

the perfect concept to address all the previous issues.  
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The ‘Beyond 2011’ ONS Project  

In light of these implications and considerations, this PhD project was born four years 

ago. 

Widely analysed and studied, I decided that a further empirical analysis of this topic 

would be useful not only to confirm and see if it still suits modern times but also to if 

new measurements of it may assist institutional bodies in their policy choices. As a 

consequence of these considerations, the research project was admitted to an 

ESRC/ONS joint funded project, named ‘Beyond 2011’.  

 

The ONS project was designed to reply to the challenge to discover statistical methods 

that would retain the high-quality of population and wider social statistics while falling 

response rates and rising costs become increasingly common in the UK. This problem 

is even more urgent for UK, a country based on a long tradition of important surveys 

and a Census approach. Therefore, following the last Census in 2011, the ONS decided 

to establish this coordinated programme to explore how requirements for population 

and other socio-demographic statistics can be met. A key work area is to assess 

options which may provide alternative or complementary sources for such statistics. 

Therefore, integrating administrative data, extended survey approaches and 

alternative methods of Census taking have been considered together with the need 

to comprehend how these different data sources together can best meet the needs 

of statistics users.  

 

ONS has further specified the ‘Beyond 2011’ project in three fields of study supporting 

it with statistical supervision, access to data and funds: 1) quality measures for 
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population and demographic statistics; 2) small area estimation and 3) statistical 

disclosure control for derived and administrative data. Given my sociological origins, 

I opted for a PhD research proposal that met both levels halfway: I chose an important 

and classical concept that comes from different sociological theories (from Marxist to 

neo-Weberian theories; Woolcock, 1998) focused on trust, social relations and 

development of modern industrial society named social capital. On this concept, I 

then worked empirically with different and challenging methodologies, attempting to 

estimate it at small area. The innovativeness of this PhD project comes first from the 

merging of these aspects, particularly from the application of this method to the 

concept, one of the first to my current knowledge of the current state of the discipline. 

The second innovative aspect of this proposed PhD work is the complex building up 

of the modelling work. Indeed, this work is a specific and fluid flow starting from the 

creation of the dependent variables of interest until the final estimates deriving by 

the test of different models and methodologies.   

 

Besides, according to the description of small area estimation from ‘Beyond 2011’ for 

the small area estimation specification, social capital appears to perfectly fit this kind 

of methodology:  

 

Model-based small area estimation will form a critical component of the methods 

used in the Beyond 2011 project to deliver data for small areas at Local Authority level 

and below. Our key requirement is to be able to estimate and quantify the reliability 

of estimates for multi-category target variables, e.g. ethnicity, to ensure consistency 

at different geographical levels, to explore change over time and to do this in an 
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optimal way under resource constraints. We may also need to produce estimates 

across multiple target variables, e.g. ethnicity and occupation. To date, ONS has 

deployed model-based methods for small area estimation in univariate cases, 

including estimation of proportions, totals and the number of cases below key values, 

and there is a body of ongoing research considering multi-category and multivariate 

estimation. This PhD will build on previous work to investigate how model-based small 

area estimation procedures can be used to deliver these objectives, with particular 

focus on the data requirements, sample designs (including impact and 

appropriateness of weighting methods), reliability (in terms of spatial and temporal 

consistency/discriminatory power) and performance measurement of the estimators 

that are deployed. This work will also need to consider how due to the availability of 

different sources different approaches may need to be taken in the devolved 

administrations (ONS, 2011, pg. 2).  

 

Social capital’s multidimensionality mirrors the multivariate options for statistical 

studies and it is related, as I am going to show, to the target variables identified by 

ONS. It also fits the ‘geographical’ characterization necessary for small area 

estimation. Mohan and Mohan (2002) and Van Oorschot et al. (2006) identify the 

contribution that social capital may make to geography and vice versa and the related 

problems in deriving a spatially disaggregated measure of social capital (Van Oorschot 

and Gelissen, 2006 indeed develop the analysis only at country level for European 

countries). 

Therefore, the PhD research project does not only see the contribution that social 

capital makes to geography but also, according to ONS project’s requirements, it will 
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attempt to estimate its different dimensions covering the second field of studies 

indicated - small area estimates – applied to this multi-category concept, as previously 

quoted.  

 

The final research project 

The overall aim of this thesis is to address these aspects and to develop an in-depth, 

explorative and descriptive work on social capital. More than trying to establish 

correlations and causal relations, I indeed assume that beyond the theoretical 

definitions of social capital, on which there is a general agreement by now, there 

remain open questions about its measurements and methods to estimate it in a more 

precise way, considering individual and geographical aspects together.  With this 

work, then, I intend to address these main research questions: Can it still be defined 

according to the classical dimensions? What additional novel aspects can be 

considered? What are the characteristics that may influence it? How can we measure 

it? Can we predict it at small area? Are there are differences between the dimensions 

of social capital? If yes, how do they work? Are there are also differences in terms of 

which characteristics influence the different dimensions? 

 

In order to answer to these questions, I firstly present an opening chapter with the 

review of the main literature on social capital. It includes the classical and older 

theories and definitions of the concept until the more recent and newer dimensions 

and types identified and added to the main body of studies.  
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In the second chapter using individual level data from two important English surveys 

I develop three social capital factors measuring three main dimensions using Factor 

Analysis. I hypothesis that they could depend on classical (according to the literature) 

variables representing membership, citizenship, trust, social networks, caring and 

neighbourliness but also on more recent and ‘new’ variables for crime and use of 

social media. The analysis will be carried out for 2001 and 2011.     

 

Once these three factors have been developed and modelled, according to different 

hypothesis addressing which other aspects may influence this capital, in the third 

chapter I built and test Multilevel Models.  

Indeed, as described widely in the first two chapters, social capital depends on 

individual and local or geographical characteristics. While the first are related to the 

individual person, the second affect his/her networks at micro level. To test these 

specific hypotheses, Multilevel Models in the third chapter are the best suitable 

models for testing the effects of individual-level and area-level covariates. These 

models use the three factors created in the second chapter as dependent variables.  

 

At the first level, to analyse the individual effects, I use survey data to build individual 

covariates for personal characteristics: gender, age, ethnicity, health, marital status, 

religion, employment and so on. At the second level of analysis, I test geographical 

and local differences at Middle Super Output Areas (MSOA) geographical areas using 

Census information. I also add contextual variables to check the effect of area-level 

covariates only from the Census and other administrative sources, created with a 

Principal Component Analysis.  
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Once these models have been tested, in the fourth chapter I develop synthetic small 

area estimates of the three factors of SC at MSOA level using a model with individual 

and area-level covariates, according to the results from the Multilevel Models 

developed in chapter three previous and main works on small area estimation (Twigg 

et al. 2000). The final synthetic estimates and corresponding maps presented in this 

last, fourth chapter will confirm the idea that social capital and its dimensions are 

related to different and various characteristics both at individual and geographical 

levels in a complex but rich and complementary way. Because of this, it has proven to 

remain a possible, useful tool to leverage on for policies aiming to develop society at 

different levels.  
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CHAPTER 1 - SOCIAL CAPITAL AND ITS DIMENSIONS: A 

LITERATURE REVIEW 

 

1.1 Introduction 

The analysis and use of the concept of social capital (SC hereafter) within the social 

sciences has increased considerably in recent years. This has occurred primarily due 

to the recognition that it has a wide range of applications across numerous fields. This 

wide use in different sectors and fields of study comes from its main characteristic of 

being definable as a capital, remembering classical economic definitions. While the 

firsts types of capital identified have been more related to material assets like money, 

machineries or natural goods (corresponding to financial, physical and natural 

capitals) with the development of tertiary sector and post-industrialism jobs, 

intangible assets and skills have been theorised and defined. The first one was human 

capital, meant like the individual capital derived by the educational level attainments, 

talents, skills that can help the economic growth when considered in an aggregate 

way. After it, SC, intellectual capital and cultural capital have been identified. Focusing 

on SC, topic of our interest, and tracing a useful list of commonalities and difference 

between physical, human and social capital, Akçomak (2009) states that SC can be 

treated like human capital. The ways in which it is created are the basis to treat it as 

a capital. SC could be formed as a by-product (for a higher status or for the education’s 

network), as an endowment on an inheritance and, finally, as result of a deliberate 

investments. 

These are possible for four characteristics of capital:  
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1) as transformative: it converts an input to an output. Indeed, SC can allow 

the achievement of a certain outcome with lower cost. A typical example 

is the fact that high levels of SC and, then, trust, facilitate the transactions 

between economic actors; the effect can be empowering with the 

combination of other inputs (e.g. human capital); 

2) it can be forgone consumption. In this sense, SC can be labelled as capital 

with respect to the important element of the time that the actors decide 

to spend and invest in strengthening their relationships, with expectations 

about future benefits; 

3) deeply linked with the point above, SC involves opportunity costs relating 

to the time that could be used in other useful ways; 

4) it has durability and can decay. Like the others two forms of capital 

(physical and human), SC is durable and its value depreciates over time, 

especially if there are no efforts made to maintain it or, as with human 

capital, it can increase with use.  

 

Another important characteristic of this capital, on which there is an open debate, is 

the rival or non-rival component. Coleman (1988) states that some forms of SC can be 

defined as ‘collective goods’ because they are not the private property of those who 

benefit from them. As Adler and Known (2002) add, this is particularly true for internal 

capital (as we will see in the next sections, is the case with bonding capital): is non-

rivalrous because use by a singular individual does not cause the diminishing of 

availability for other people. Moreover, it can also be traded by individuals in the form 

of goodwill (Putnam, 1993). But it is also true that, unlike the other public goods to 
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which it has been compared, its use can be excludable (people can be excluded from 

networks or relations or can easily communicate in their networks) (Grafton et al, 

2007).  

 

Therefore, the former characteristic makes it a free-riding risky capital and the latter 

makes it a capital on the boundary of definition between private and public good.  

To conclude, the most appropriate term for SC is ‘collective good’. Besides, even if 

strongly correlated, it differs from human capital. Human capital, indeed, resides 

solely in an individual and it depends on the stock of skills, knowledge and expertise 

accumulated.  

 

Consequently, as shown also in different handbooks on the concept (Svendsen and 

Svendsen, 2009; Castiglione et al., 2008; Li, 2015), SC is a kind of capital that can 

leverage different phenomena in different sectors.  

Theoretical and empirical studies report evidence on its impact in the fields of 

economics, development, health, growth, educational attainment, employment, 

poverty, crime, innovation, environmental behaviours, health and services, caring and 

community studies, ethnicity, migration, neighbourliness and so on. Moreover, it is 

emerging especially as a process linking actors within networks such as individuals, 

firms, universities, private and public institutions and government. In addition, there 

are studies that, in contrast to those listed above, explore not only the mechanism 

and results of SC in reality by several points of view but also its link with personal 

characteristics at character level.  
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The nature of these studies relates to the psychological field and the impact of SC on 

attitudes and behaviours: such as the openness, propensity to risk, sociality, personal 

satisfaction about life, relationships and work, acceptance of diversity and so on. 

These particular fields, in relation to those cited above, reveal the more practical and 

direct applications of classic SC and earlier definitions, according to the more 

prominent studies to be described below. With these fields of study and bodies of 

literature in mind, this study addresses one of the more common problems emerging 

from the existing literature: not only to establish a more precise definition of SC, but 

also to identify its multiple dimensionality and to attempt to measure it keeping in 

consideration its complexity and richness (OECD, 2013; ONS, 2003; The World Bank, 

1998).    

 

1.2 Social capital: An introduction 

1.2.1 Concept 

SC is a recent concept but one that is used increasingly to the extent that it has 

become diffused across different fields. This is due to the fact that the concept is 

multi-dimensional and therefore has wide applications; and it crucial that the very 

different realities it refers to in different fields are explained (Fine, 2010). In an 

intellectual environment in which big models or wide concepts frequently 

become problematic when we attempt to adapt them to a world that is 

simultaneously globalized yet even more local, where the strength of a system 

can be located in big systems or local communities and networks, the human 

dimension gains fundamental importance in all its features. One of these 

dimensions is surely the social environment created and shaped by individuals 
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themselves. Following the assertion of the importance of human capital, over 

recent years SC is also becoming the central focus of studies and, more frequently, 

in the policies. Subsequently the character of a community is just as important as 

individual agents.  

 

The term was coined by Jacobs (1961) and Loury (1977); however, typically, the 

authors considered the ‘fathers’ of the concept are Putnam et al. (1993) Bourdieu 

(1986) and Coleman (1988; 1990). Through their seminal works they promoted 

the concept bringing it to the forefront of sociological thought. Subsequent to 

these seminal works, the literature surrounding it has grown in an exponential 

way in recent years. Akçomak (2009) suggested that in the Social Science Citation 

Index, the number of articles with ‘social capital’ in the title increased from less 

than 500 citations and papers to 4000 papers in 2006 and more than 4500 

citations in 2007. Similarly, the number of articles that discuss the topic more 

generally have increased in both categories in a similar way. These numbers do 

not take into consideration those articles that display a similar trend (e.g. all the 

papers on social capital and human capital). Despite this, there is no concrete 

agreement on the definitions and characterizations with even studies on the 

contradictions of capital and its weakness as a concept (Portes, 1995, 1998; 

Murray, 2005).  

 

1.2.2 Origins, definitions and main characteristics of the social capital concept 

SC is ‘the sum of the actual and potential resources embedded within, available 

through, and derived from the network of relations possessed by an individual or 
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social’ (Nahapiet and Goshal, 1998, p.243). It resides in the social structures, 

connections and relationships embedded at different levels of the society: 

families, communities and social organizations (Coleman, 1988) and the concept 

was originally developed in sociology in order to explain the dynamics between 

individuals within the communities. Enlarging its application, it has been 

subsequently used to explain civic engagement and associational activities in 

societies that lead to social and economic wellbeing. This can be identified in 

several ways depending on the SC accumulated: educational attainment, 

community development, crime reduction, economic development, democracy, 

governance, employment, health and caring, children’s welfare and knowledge 

exchange (Zheng 2010). Lin (2001) divides these possible outcomes into two 

types: instrumental, such as wealth, power and reputations and expressive, such 

as health and life satisfaction.  

Commencing with the early works based on a range of economic topics1, four 

sources of SC were identified: 

1) an individual’s social relations, fundamental for status attainment; 

2) identification with a group or a voluntary organization, because of the 

positive sense of belonging; 

3) solidarity, that can enable an individual to consider community well-being 

as being as important as her own well-being; 

                                                           
1 The works regarded a) the influences of interpersonal ties for better opportunities in the labour 
market and gain higher status and income; b) the role of trustworthiness between members for the 
ROSCAS, the rotating savings and credit associations system; c) the effects of social relationships and 
social support on health and well-being, both at the individual level and the community level; d) 
immigration and immigrant entrepreneurs. Generally speaking, SC has a well-established relationship 
with the outcomes pursuit by the policy makers: economic growth, social inclusion, improved health 
and more effective government. 
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4) enforceable trust, arising from information exchanges, social norms and 

monitoring capacity in social networks. 

The first definition was deeply linked to the concept of human capital, which 

remained the main topic related to SC: 

An individual’s social origin has an obvious and important effect on the 
amount of resources that is ultimately invested in his or her development. 
It may thus be useful to employ a concept of social capital to represent the 
consequences of social position in facilitating acquisition of the standard 
human capital characteristics [...] social capital refers to naturally 
occurring social relationships among persons which promote or assist the 
acquisition of skills and traits valued at the market place [...] it is an asset 
which may be as significant as financial bequest in accounting for the 
maintenance of inequality in our society...(Loury, 1977, p. 176). 
 

Classically, the main definitions come from the ‘fathers’ of the concept: Bourdieu, 

Coleman and Putnam.  

More describable as a micro approach, Bourdieu defines it as:  

The aggregate of the actual or potential resources which are linked to 
possession of a durable network of more or less institutionalised 
relationships of mutual acquaintance and recognition (Bourdieu, 1986, p. 
210). 

 

Bourdieu’s aim was the study of the different forms of capital – cultural (Bourdieu, 

1979), social, political, symbolic and economic – and to attempt an understanding 

of how they transform one another. His approach focused on the singular person 

with SC representing an individual attribute in personal networks.  

 

Lin (2001) makes clear the concept stating that SC is the ‘resources embedded in 

one’s network or associations’ (Lin, 2001, p. 29). Putnam (1995, 2001) broadens 

the definition by including informal social networks in the SC concept. After his 

famous case study on Italy, he specified ten years later that we are inclined to 
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think that the higher form of social involvement includes citizenship, membership 

and public life. But crucial support in everyday-life is situated in the friendships 

and in other types of informal relationships such as those between neighbours. 

These can be included in the informal social networks concept.  

 

Akçomak (2009) and ONS (2003) underline three components that are necessary 

conditions for the existence of SC: social structure, resources and actions and with 

Akçomak identifying the commonalities in the definitions of SC by adopting a 

micro approach (Akçomak, 2009, pp. 6-7): 

1) SC arises from social networks; 

2) the social networks themselves are necessary conditions but not sufficient 

for the creations of SC: they are to be utilized to produce SC; 

3) individuals can invest in social relations with an expected return; 

4) SC may have negative effects as well as positive outcomes, e.g. enabling 

enhanced information exchanges but could affect individual decision 

making, working as a form of social control, encouraging mutual 

assistance but also causing restrictions on access to the networks, 

closureness. 

Coleman’s approach (1988; 1990) is opposed to that of Bourdieu and definable as 

a macro approach to SC. His concept refers to a dimension of social groups, 

organisations and societies. He defines SC in respect to its functions:  

Social capital is defined by its function. It is not a single entity, but a 
variety of different entities having two characteristics in common: they 
all consist of some aspect of social structure and they facilitate certain 
actions of actors – whether persons or corporate actors – within the 
structure... social organization constitutes social capital facilitating the 
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achievement of goals that could not be achieved in its absence or could 
be achieved only at a higher cost (Coleman, 1990, pp. 302-304). 
 

Jacobs’ (1961) description provides an interesting perspective as she identifies 

the role of neighbourhood networks in enabling self-governance: 

[…] Networks are a city’s irreplaceable social capital. Whenever the 
capital is lost [...] the income from it disappears never to return, until and 
unless new capital is [accumulated] (Jacobs, 1961, p. 138). 
 

The author continues by mentioning the importance of acquaintances, the 

knowledge level of neighbours, the public respect and trust that arise from 

social relations within communities but which have influences at macro social 

levels.  

 

Finally, other important specifications of the concept at macro level come with 

Putnam’s (1993) famous work on Italian civic culture. Thanks to him, we have 

an introduction to the concept of trust and civic participation and the entry of 

SC to development and political themes. His definition posits SC as: 

features of social organisation, such as trust, norms and networks that 
can improve the efficiency of society by facilitating coordinated actions 
(Putnam et al., 1993, p. 167).  
 

Thus, following these early definitions, it is possible to add some characteristics 

to them regarding the macro dimensions (Akçomak, 2009, p. 9): 

1) norms, values and solidarity are sources of social capital; 

2) trust is an important source of social capital, both in interpersonal 

relationships (personalized trust that can be also generated from repeated 
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actions) and in relationships between actors of a community (generalized 

trust that can be reinforced by the system of sanctions); 

3) whatever the source of SC, it is based on social networks and/or 

associations. 

 

There is, nonetheless, a subtle distinction regarding the workings of norms and 

values. Authors who orientate towards the micro approach (Dasgupta, 2005; 

Knack and Keefer, 1997), lay stress on individual actions that shift resources 

within social networks, whereas scholars who view SC as a more communal 

asset highlight the role of both community and social structure in facilitating 

certain individual behaviour in terms of individual and/or communal well-being 

(Coleman, 1990; Knack and Keefer, 1997).  

 

Before describing further, the types and classifications of SC that have been 

identified and proposed during the years, it is necessary to mention some 

important issues concerning SC: the ‘adverse SC’. 

 

SC can have, indeed, possible negative effects. Murray (2005) identifies four 

negative aspects of SC: the exclusion of outsiders from networks; the excessive 

claims on individual members; the restrictions on the individual freedom of 

networks’ members and downward levelling norms. Nahapiet and Goshal (1998) 

underline that SC, despite its apparent advantages, can facilitate a certain closure 

of a community and restrict its sensitivity to new information and alternative and 

creative way of doing things, showing drawbacks. One other main problem is the 
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fact that frequently trust, solidarity, mutual assistance can be strong within 

communities but not between different communities. Mohan and Mohan (2002) 

remember Rubio’s definition of ‘perverse SC’, typical of criminal organizations like 

Mafia and gangs. They also list all the criticism to Putnam’s definition of SC: real 

mechanism of production of SC through membership not clearly described, its 

choices about how to measure participations that do not consider organizations’ 

structures and openness and the motivations of individuals, the society-centred 

vision of SC (while frequently States can create or destroy SC). 

The wide range of these definitions and descriptions reveals the difficulties in 

establishing a single and universal definition of the concept. But they also fully 

represent the natural complexity and multidimensionality of this concept, 

making probably useless even the search of a unique definition. Indeed, when 

governmental bodies (at national and international level) set the different 

projects to study SC as described in the Introduction, the first step of analysis 

has been always a revision of the literature that, according to all of their 

reports, has to be related to the definitions just presented inasmuch ‘classically 

stated and fundamental’ and complementary among themselves in defining 

the concept: personal relationship, social network support, civic engagement 

and membership, trust and cooperative norms (World Bank, 1998; ONS, 2001; 

OECD, 2001; Ruston and Akinrodoye, 2002; Australian Bureau of Statistics, 

2002; Haper and Kelly 2003; Scrivens and Smith, 2013).   
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1.2.3 Components and types of social capital 

Having arrived at preliminary definitions it is possible to begin to outline the main 

aspects and components of SC.  

First, we can identify possible three different levels applicable to the study of SC: 

a) individual (Burt, 1992, 2000) 

b) organisational (Nahapiet and Goshal, 1998) 

c) societal (Putnam, 1993) 

 

The common thread that runs throughout these different approaches is that the 

net of relationships within which a person is embedded is the fundamental 

resource that suggests better economic performance. At an individual (or micro) 

level, SC is the embedded resource in one’s relationship with others. Burt (1992, 

2000) underlines the fact that these networks, and their formal and informal ties, 

are the factors underpinning good economic performance. If these networks are 

developed between employees and members of an organisation they help the 

attainment of collective goals resulting in a new source of organisational wealth 

(Nahapiet and Goshal, 1998). 

 

There is also a level regarding the macro dimension of research. These studies try 

to catch the impact of SC in regional or societal reality (Putnam, 1993). On this 

level, SC comprises a range of features. The first characterization is between the 

structural and the cultural aspects (also called cognitive aspects) (Chou, 2003). 

The former is related to connections and social networks (i.e. formal such as 

associations and informal, as in families) and can be externally observed aspects 
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that allow the identification of how the individual gains resources that can be 

developed, while the latter refer to norms, values, trust (with further 

characterisations), attitudes and beliefs. They are more intangible and assist in 

the sharing of information, the collective action and decision-making process 

thanks to established roles, defined rules, procedures and precedents (Grootaert 

and van Bastelaer, 2001). As Modena (2009) describes, it is possible to open two 

boxes of structural and cultural aspects with different elements inside. Among the 

structural aspects of SC (social networks) it is further possible to distinguish 

between horizontal and vertical relations.  

 

Following Coleman (1988) and Putnam (1993), horizontal relations can be further 

classified in bonding and bridging relations (or bonding and bridging social 

capital). The bonding relations are referring to the strong links between people 

on an everyday basis (e.g. the family) while the bridging form is based on weak 

connections between heterogeneous people. Granovetter (1973) pointed out 

that this last kind of capital allows the emergence of mobility opportunities.   

 

The vertical relations can be thought of as linking relations and refer to the 

connections between people across different social strata. More precisely, linking 

social capital allows the leverage of resources, information and ideas from formal 

institutions beyond the community (Woolcock, 2001). Therefore, three further 

dimensions of SC have been identified: bonding, bridging and linking SC. In 

addition, cultural aspects include trust and norms and values. Trust, as a classical 

and principal element of SC, helps facilitate social exchanges and reduces the 
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need for time consuming and costly monitoring. It is a multidimensional construct 

with several forms that can be described following different categorizations.  

Rousseau et al. (1998) identify three forms of trust: 

- deterrence-based: based on utilitarian considerations and on efficient 

penalty mechanisms. The subjects cooperate only because the 

breaking of a contract or agreement is too expensive. 

- calculus-based: based on rational choices and objective information 

regarding the reliability and competence of partners. 

- relational-based: trust is the product of continuous relations in which 

the emotional element enters as a form of affection and intrapersonal 

trust. 

 

Paldam (2000) argues that generalized trust is directed towards unknown people 

while special trust refers to friends and institutions. Uslaner (2002) distinguishes 

between strategic trust (also called knowledge-based trust) and moralistic trust. 

The former regards the trust existing in specific relationships between specific 

persons for a particular context (and which reflects their expectations for future 

behaviour of the actors engaged in this relationship). Moralistic trust is directed 

towards unknown people and is shaped by the expectations about how people 

will behave.  Sabatini (2008) proposes a further classification: horizontal trust (in 

friends, relatives, etc.), intermediate trust (in local institutions) and vertical trust 

(in government institutions).  
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The second components of cultural SC are norms and values, such as obligations, 

tolerance, solidarity and democratic orientations (Castiglione et al., 2008). 

Akçomak and ter Weel (2012) and Dakhli and De Clercq (2004) study two 

dimensions of trust: generalized and institutional. The former is directed towards 

other people, the latter regards the level of trust towards institutions (public or 

private). The second is complex. Indeed, it depends on the perception of the 

efficiency of institutions. If people believe or feel that institutions can be good in 

mediating the exchange, protecting the individuals against every breach of trust, 

people will be more willing to interact, assume risks, share knowledge and 

information. However considerable debate continues around whether it is 

possible to consider trust as an outcome of SC or if it is a component of the shared 

values which constitute social capital or both (Woolcock, 2001).   Other 

components of SC are as follows.  

 

Knack and Keefer (1997) add the dimensions of being an active member of 

associations and organisations voluntary-type. This sense of belonging increases 

the contacts between members and communities, mutual support and solidarity 

and, if there are more associations in a region, the attractiveness of resources. 

Putnam (1993), pointing to the differences in economic performance between 

North and South Italy, states that these are due to the richer associational life of 

northern regions. With regard to the type of organizations, we can identify two 

types of organizations: the Putnam association and the Olson type (Modena, 

2009). The first type identifies those organizations that we can identify as being 

more informal and unstructured, with a real specific target goal shared by the 
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members: sport, education, music, arts, church, charity, voluntary, ecology, 

human rights and peace associations. The Olson type associations, on the other 

hand, are more structured and formal and are linked to a more political aspect: 

professional associations, trade unions, political parties. The last aspect regards 

the respect of norms of civic behaviour (Knack and Keefer, 1997). This refers to 

informal mechanisms that limit predatory behaviour and help promote overall 

well-being.   

 

Deeply linked with the issue of the sharing of knowledges, SC can be composed 

by strong ties and weak ties. Granovetter (1973), in attempting to link micro-level 

interactions and macro-level patterns with an analysis of social networks, points 

out that the relationships between people can exhibit frequent contacts and 

emotional involvement (as with close friends or with relatives and parents) or 

sporadic interactions with a low emotional commitment. The first kind of 

relationships identify strong ties in social networks while the second kind, weak 

ties. The latter from is especially useful and powerful for the sharing of knowledge 

and is an important resource for individuals. These are ties of acquaintances such 

as neighbours or work colleagues and can be compared to Putnam’s bridging 

social capital model, while those that suggest strong ties are related to bonding 

social capital.  

 

Another important aspect is the already proven correlation between SC, 

education and human capital even if it is important is to distinguish the two kinds 

of capitals. Human capital regards how the individual gains the resources that can 
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be developed whereas SC includes a more sociological approach to human action 

in which the individual is likened to an actor shaped by social factors.  Ackomak 

and ter Weel (2012) state that investments in human capital and education have 

an indirect effect on levels of trust in societies. Goldin and Katz (1999) 

demonstrate that high levels of educational attainment induce the dense 

networks in which SC is created. It generates positive externalities that increase 

the knowledge of other people and decrease those that behaviours that are 

opportunistic. Furthermore, they reduce the free-rider problems that occur in 

uncertain and low availability information contests.  

 

Finally, high levels of educational attainment appear to generate a general 

openness of mind, an aptitude in relationships, and the creation of those 

networks in which SC forms (Dakhli and De Clercq 2004; Akcomac and ter Weel, 

2012; Kaasa et al., 2007).  

 

All the concepts, dimensions and theories presented up to here have been helpful 

in identifying how SC is built in social relations and how it can be used and spend. 

The specificity of this capital, indeed, is that its structural aspects like nodes of 

networks, types of nodes (familial, friendly, acquaintances, institutional), types 

and intensity of the relations with these nodes are at the same time the same 

channels through which and with which SC is used, spent and invested. While SC 

is built and nourished, it is also used and reinvested. Woolcock (1998) perfectly 

describe this peculiarity: 
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This leaves unresolved whether social capital is the infrastructure or the 
content of social relations, the ``medium,'' as it were, or the ``message.'' 
Is it both? ``Defining social capital functionally,'' Edwards and Foley 
correctly point out, ``makes it impossible to separate what it is from what 
it does.'' (Woolcock, 1998, p.156).  

 

This particular aspect helps to explain why theoretical dimensions identified can 

be considered at the same time the main measurements of this concept, as I am 

going to describe in the following paragraph.  

  

1.2.4 The measurement issues 

The complexity and richness of conceptualization has clearly taken to a considerable 

variety in the proposal and use of measures, factors and indicators. Therefore, 

researchers rely on broad sets of indicators to measure SC. As van Deth (in Castiglione 

et al. 2008) states, although the exact status of these indicators as conceptualizations 

of SC is not always unique, the common requirement is that they should account for 

anything that facilitates cooperation between individuals. The author also points out 

the four data collection methods: surveys and polling, statistical indicators and official 

statistics, community studies and observations and projects and experiments. He also 

categorizes each measure of SC based on a further two dimensions other than the 

data collection method: the level of analysis (individual or collective property) and its 

characterization (structural or cultural), as described above. His useful summary of 

the major measures of SC in relation to all dimensions is presented in Table 1.1 below. 

 

As we can imagine, the first dimension about the level of the analysis is the more 

difficult to identify because of the natural overlapping between individual aspects and 
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collective aspects of this type of capital. I described in the first paragraphs how even 

the more classical authors like Bourdieu, Coleman and Putnam identify micro, macro 

and intermediate levels of SC ((see par. 1.2.2). The table catches this first important 

dimension, focusing on aggregate and sometimes more formalized measures of SC.  

 

The second dimension used, the characterization, fully summarized all the main 

components and types of SC described so far: from membership to trust to citizenship 

just to cite the most important and used. Chou (2003) (par. 1.2.3) identifies the two 

characteristics: structural versus cultural SC. This helpful definition formalizes and 

includes all the other definitions about formal vs. informal connections and networks, 

strong ties vs. weak ties, bonding vs. bridging/linking SC, generalized trust vs. 

institutional trust, horizontal trust vs. vertical trust, Olson organisations vs. Putnam 

organizations that I described above. 

 

From the combination of the two levels to which measurements and variables 

correspond, we can identify main methodologies and tools to empirically study SC. 

Surveys and the pooling dominate this field. Asking people directly about their 

networks, their values, attitudes, perceptions seem to be the best way (Castiglione et 

al., 2008). Themes such as social cohesion, engagement in networks, civic 

orientations, obligations, norms and reciprocity have been investigated in social 

sciences before the conceptualization of social capital. A large part of these studies 

was based on the World Values Surveys and the European Social Surveys (ESS), which 

provide data at the minimum regional level. Van Oorschot et al. (2006) using classical 

definitions and ESS data, are able to make a national comparison between European 
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countries and their macro-regions (North, South, Western and Eastern Europe). They 

find that, apart for Northern Europe that shows higher levels, SC is strongly 

accumulated together with physical and human capital and that it is strongly related 

to religious beliefs and gendered and to a political left-right stance. 

Then international organizations like World Bank and OECD have developed proper 

project of studying and monitoring SC for several purposes, mainly to enhance 

development policies (World Bank, 1998; OECD, 2001). But even more, the single 

states have begun to systematize national survey on this topic, frequently on the base 

of these two international surveys. International organizations like the World Bank 

and OECD have developed projects for studying and monitoring SC for a range of 

purposes, but primarily to enhance development policies. But even more, the nation 

states have begun to systematize national surveys on this topic, frequently on the 

basis of these two international surveys.  

Generally speaking, mixed-method approaches using both qualitative (in-depth 

interviews and focus groups for example) and quantitative tools (survey and building 

of composed indices) are most widely used to compensate the limitations of surveys 

and polling approaches. It is also true that different measures can be detected more 

efficiently from different techniques. For example, polling methods are useful for the 

analysis of trust while official statistics are efficient for measuring the density of 

voluntary associations (based on objective information) (Castiglione et al., 2008). 

 

In the British case, the most important survey on aspects of SC is the British Household 

Panel Survey (relaunched as Understanding Society for the last two waves). Previously 

the British Social Attitudes Survey and Citizenship Survey were also conducted. We 
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can also find surveys that contained additional core modules on SC for some years, 

such as the General Household Survey.  
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Table 1.1: Major measure of social capital (inverse measures in Italics) 

Characteristics Data collection Structural aspects Cultural aspects 

    
Networks/contacts Trust/confidence 

Civic norms 
and values 

Individual 
feature 

Surveys/polling 

Membership in 
voluntary 

associations 

Trust in other 
people 

Norms of 
reciprocity 

Volunteerism 
Confidence in 

institutions 
Obligations 

(Ego-centred) 
networks and 
social contacts 

Ethic and 
corruption 

Democratic 
attitudes 

Time budgets  
Solidarity and 
identification 

Number of 
children in the 

household 
 Togetherness 

  
Subjective 
well-being 

Statistical indicators/ 
official statistics 

- - - 

Community studies/ 
observations 

Voluntary 
associations 

- - 

Projects/ 
experiments 

- 
Distribution of 

money 
- 

Collective 
feature 

Surveys/polling 

Aggregate 
membership 

figures 

Aggregate 
figures on trust 
in other people 

 
 
 

Aggregate 
figures on 

confidence in 
institutions 

Aggregate 
figures norms 
of reciprocity 

Aggregate 
voluntarism figure 

Aggregate 
figures on 

democratic 
attitudes 

 
Aggregate 
figures on 

solidarity and 
identification 

Aggregate social 
contacts 

Network 
characteristics 
(density, etc.) 

Aggregate time  
budget figures 

Social mobility 

Statistical indicators/ 
official statistics 

Organizational 
activity and 
resources 

 
Volunteerism 

 
Mass media and 

use of (new) 
technology 

Balance sheet of 
co-ops 

Voting 
turnout 

Crime rates 
Legal 

protection - 
number of 

lawyers 
Bloodlettings 

Number of 
co-ops 

 

 

 

 

Community studies/ 
observations 

Voluntary 
associations 

 - 

Projects/experiments  
Lost wallet with 

money 
- 

Source: Elaboration on Van Deth (in Castiglione et al., 2008, p. 160) 
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Another important issue is concerned with the degree to which various measures 

indicate the existence of a single latent construct. Many studies report an attempt to 

construct a factor measuring SC2. Onyx and Bullen (2000) analyse sixty-eight items to 

represent all aspects of SC in order to construct a General Social Capital Factor and 

individuate three stronger factors than the other dimensions: local participation, 

social involvement and trust. Other researchers assert that the creation of overall 

measures makes no statistical sense but that it is more interesting to create composite 

measures (Hauser et al., 2007; Laursen and Masciarelli, 2008) or keep the analysis at 

singular indicators and variables obtained by the surveys or the original sources 

(Criscuolo et al, 2010). Van Deth (in Castiglione et al., 2008) adds a further the issue 

regarding the identification of meaningful sub-dimensions of measures and indicators 

that sometimes make the indicators appear less unrelated. 

 

A more recent approach that is increasingly used is the incorporation of factorial 

analysis or principal component analysis to reduce the number of variables to be used 

without losing the richness deriving from the existence of many variables (Kaasa and 

Vadi, 2010). With this technique, it is possible to obtain ‘macrovariables’ incorporating 

those bearing similar patterns and common factors. These macrovariables can be 

used subsequently for models and correlations.    

 

Other important measures used are the lack of cooperation and low levels of 

economic growth (interpreted as an indirect measure of a lack of SC). Modena (2009) 

                                                           
2 Frequently, by an econometric point of view, happened with the use of factorial analysis or principal 
component analysis, like in the cited worked (see also next chapter about the empirical applications). 
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identifies singular measures and indicators relating to the dimensions of 

formal/informal networks for the structural aspects wherein family, neighbours and 

friends’ networks are considered for informal networks while for the second, besides 

the number of associations, the author stresses two particular kind of associations 

already defined: the more ‘informal’ Putnam associations (sport, education, music, 

arts, church, charity, voluntary, ecology, human rights and peace associations) and 

the more ‘structured’ Olson associations (professional associations, trade unions, 

political parties) (Olson, 1982). For the trust, norms and values (cultural aspect), many 

indicators for the trust and trustworthiness dimensions are indicated more than those 

previously indicated: whether people can be trusted, corruption, number of legal 

proceedings for work disputes, number of protests for bank bills and cheques, number 

of people reported to judicial authorities by police. For the civic and political society 

measure of government inefficiency, human liberty, political stability, political rights 

and civil liberties are listed. Finally, for the social integration, social mobility, suicide 

rates, divorce rates and youth unemployment rates are indicated.  

 

1.3 Social capital and its new dimensions: Evidence to date 

After the presentation of the main, classical concepts and definitions of SC, it is 

worthwhile touching upon other recent developments in terms of the applications of 

this concept. Given its stated multidimensionality, the concept has become entangled 

in other, more recent, fields. Indeed, some of the characterizations presented in the 

past, have been increasing used only recently, especially in fields like health, 

behavioural, crime, education, organizational and psychological studies.  
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The first, and perhaps the central and more interesting application, derives from the 

famous Hofstede study on cultural dimensions (Hofstede 1980). In this seminal work, 

the author contemplates the ways of thinking and the social actions of people, 

comparing forty different countries. He conducts this comparison using like a key 

variable – the culture itself – stating that all previous works failed to include this 

factor. Hofstede uses survey data derived from questionnaires submitted to workers 

in multinational business organizations and in analysing them identifies four main 

dimensions along which all the cultures can be described and summarized. These 

dimensions are: uncertainty avoidance, individualism, power distance and 

masculinity-femininity. These dimensions are transmitted through education from a 

young age and they even affect the way individuals work. 

 

The first important study to use these dimensions was Shane (1992) in which the 

author demonstrates that individualistic and non-hierarchical societies are more 

inventive than others.  Shane composes an index of the values of individualism and 

power distance (that can identify the social hierarchy of a society) including several 

variables created from the Hofstede study. The index of individualism includes: the 

belief in the importance of freedom, the cosmopolitan orientation of a society, the 

preference for small organizations in respect to large organizations, the importance 

to people of being compensated, the importance of personal contacts who can assist 

in achieving one’s goals, psychological characteristics such as autonomy, 

independence, dominance, and non-conformity. The power distance index includes: 

the desirability of hierarchy, the lack of informal communication between people of 

different hierarchical levels in organizations, the centralization of power, the belief in 



56 
 

Page 56 of 332 
 

the importance of detailed instructions, fatalism and weak work ethics, the control 

over subordination, and an unwillingness to accept change in the distribution of 

power.  All these studies lead to the application of the SC concept and risk-aversion 

behaviours, also at societal level (Shane, 1995). Other more recent fields of 

applications of the SC concept are social capital and the use of social media, SC and 

crime, SC and migration (and all the related issues linked to the topic of migration and 

ethnicity), SC and financial crisis, SC and health and so on. Indeed, they seem to 

become more and more relevant. The ONS Social Capital Project, started on 2001, in 

one of its paper about literature review on SC highlights the arising importance of the 

following fields for recent policy implications: crime and economy, health, education 

and civic participation. New measurements or updated definitions of original and 

classical variables are being used for these current purposes (ONS, 2001). I choose to 

test some of these dimensions and include them in the first model to be used in what 

follows: a Factor Analysis. I will therefore focus and describe these in the following 

chapter. 

 

1.4 Conclusions 

This first chapter offers a critical summarization of the broad literature on SC and its 

definitions and dimensions, especially those regarded as classical. I will therefore base 

the subsequent building of SC factors on most of them and they will become the 

dependent variables for the following estimation work. I have presented a detailed 

account of the aspects necessary for my work but, at the same time, forwarded the 

general idea about a concept that is at once complex, rich and multidimensional. Due 

to this this complexity, the following work of estimation will be increasingly composite 
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and will be innovative in terms of several aspects. First, the novel use of established 

datasets (i.e. the British Household Panel Survey and Understanding Society Survey). 

Some studies of SC have been carried out using these surveys (Li et al., 2005) but this 

is the first study that uses a Principal Component Analysis to obtain proper and 

complex SC’s factors (see Chapter 2). The innovative contribution of the present study 

will not only be the use of these datasets but also the techniques used: multilevel 

modelling (Chapter 3) and the small area estimates approach (Chapter 4). These 

methods will be tested to see how individual and area characteristics are related to 

SC and to finally estimate average levels of SC factors for all the small areas for 

England and Wales. Lastly, this work will be part of a larger project aimed at 

discovering alternative means of achieving estimations to the Census through the use 

of other kinds of data, especially administrative data sources. This goal makes this 

work innovative in itself.         
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CHAPTER 2 – STATE OF SOCIAL CAPITAL IN ENGLAND AND 

WALES AT CENSUS YEARS: A CONFIRMATORY FACTOR 

ANALYSIS WITH SURVEY DATA FOR 2001 AND 2011                                                                                      

 

2.1 Introduction 

Social capital (SC hereafter) is a concept used increasingly to explain several processes 

across diverse fields. Related mainly to social relationships and networks between 

people (Coleman, 1988) (Nahapiet and Goshal, 1998), this kind of capital has become, 

together with physical and human capitals, an important asset (Fine, 2010).  

Moreover, in comparison to the other forms of capital, especially human, it is notable 

for its multidimensionality and intangibility. Indeed, SC implies numerous concepts 

and has been measured with many different variables.  If one searches for academic 

papers on SC on IDEASRepec.org, one of the largest bibliographic databases dedicated 

to economics, some 280,000 articles are returned. Yet despite the increasing number 

of articles and studies on SC, the effective mechanisms that define its dimensions, and 

even more, the ways these dimensions influence each other and act together, seem 

to remain under intense debate. Certainly, we can recognize that there is general 

agreement on its components and dimensions: from the most classical and theoretical 

as identified in the seminal studies of Bourdieu (1979, 1986), Putnam (1995, 1993, 

2001) and Coleman (1988, 1990) to those more recent and empirical such as Knack 

and Keefer (1997), Akçomak and ter Weel (2005, 2009). We can then surmise from 

these cited works that aspects like memberships, citizenships, attitudes towards 

institutions, trust (both generalized and institutional), voting, political attitudes and 

behaviours have been clearly established. On the other hand, others have been added 
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more recently through several, important works: SC and media use and effects (or 

social media), local effects of SC (especially neighbourhood effects), social control and 

anti-crime effect, individual characteristics and their links with SC – ethnicity, religion, 

personal satisfactions and cognitive skills; healthcare, family networks, migration, 

employment opportunities, cultural improvements, schooling and educational 

attainments, environment and sustainability attitudes and so on. As we can see, it 

seems that the concept is widely linked with all aspects relative to the human being.   

 

In this study, the dimensions taken into consideration are the classical ones: 

memberships, voting behaviours, attitudes and trust towards government, social and 

informal networks (family, friends, neighbourhoods and acquaintances). As we will 

see, they can be confirmed as the most important components in the creation of 

factors of SC, both for 2001 and for 2011 – the specific years that are the subject 

matter of this thesis. Something more interesting and particular occurs with the data 

available for 2011. In addition to these main components, new significant dimensions 

result: use of social media and fear of crime and crime control effect.  

 

In this analysis, I hypothesize two different models that reflect theoretical 

assumptions appropriately, one for 2001 and another one for 2011. The choice of 

these two years is not random as they represent the two last census years in the UK 

but due to differences in sample and availability of variables it is not possible to make 

a comparison between the two models. For 2011 only, therefore, as explained in the 

introduction to this thesis, the factors identified in this work and confirmed by the 
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Factor Analysis will be used in the following multilevel modelling work, where census 

covariates will be required.  

 

In section 2.2, I will describe the methodology applied in this study, the Confirmatory 

Factor Analysis and I will introduce the two main surveys used. I will also add a last 

part on specific technical issues related to the analysis. Special modules with the 

availability of many different variables potentially connected to SC are present in the 

surveys for that will be used for these two years: the British Household Panel Survey 

(BHPS hereafter), wave 11 – covering the year 2001, and the UK Household 

Longitudinal Study, later became Understanding Society (UKHLS hereafter), for which 

I intend to use wave 3 – covering the year 2011. In order to retain the richness of the 

information available in the surveys used, I carry out a Confirmatory Factor Analysis 

(CFA hereafter). As I am going to describe thoroughly in the next paragraphs, this 

method allows for the capture of the common patterns of variance and covariance 

between variables. These common patterns are hypothesized to underlie to the same 

construct (factor) that can be interpreted as a measure, like a ‘macro-dimension’ that 

includes them. It mainly transforms observed correlated variables into factors that are 

a linear combination accounting for a pre-specified proportion of the total variance.  

In this way, the problem of the selection of variables to be used is avoided and the 

factors identified have stronger backgrounds both at the theoretical and empirical 

estimates levels. As I will demonstrate later, despite of a notable literature already 

existing around SC and CFA, this approach seems one of the more complexes, rich and 

innovative for the models presented; the number of variables used the use of one of 
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a significant British survey and, finally, for the strong established theoretical 

background.  

 

Later, in section 2.3 I will identify dimensions and corresponding variables and 

measurements that I am going to use in the models. They will be presented referring 

to a body of literature and studies that are mainly empirical and that found significant 

correlations between similar variables and SC. Some of these studies, besides, even 

used similar methodologies of factor analysis. They will be also introduced under the 

definition of common dimensions or sub-dimensions that helped the identification of 

singular factors.  

As Di Stefano and Hesse (2005) highlight, many articles using CFA do not provide full 

explanations at the theoretical level concerning the development of the model. Given 

that CFA is mainly characterized by the assumption of an a priori model in contrast to 

other exploratory methods, it is necessary and indeed interesting to describe how the 

models were built, how the variables were chosen, and so on; especially in light of the 

wide SC literature available. All the variables included have been recoded or have 

generated new variables that, when ordinal, show a parallel structure of increasing SC 

at the increase of the items.  

 

In section 2.4 and section 2.5, I will describe the empirical process for model 2001 and 

2011. I will specify the process of recoding of the variables, the analysis strategy that 

ended with the proposed models (and their diagrams) and results. I will also report 

and explain main corresponding statistics: descriptive statistics, standardized results 

with correlations and cross-loadings, main goodness of fit’s indices and any other 
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particularities. I will try to offer theoretical explanations of these dimensions, 

especially for those that are more recent. I will indeed focus also on the aspects 

regarding cross-loadings of latent factors on variables and on how several variables 

and related factors from the models were excluded with regard to the original 

hypothesis. These empirical specifications about correlations of underlying 

dimensions cannot be identified always from the theory and they stand out from the 

empirical work on variables and models (according, for example, to modification 

indices).  

 

Some conclusions will be drawn in the last paragraph and, last, complementary 

material useful to the analysis is available in the Appendix and the Supplementary 

Material sections.  

 

2.2 Methodology and data used: Why a Confirmatory Factor Analysis on 

survey data  

The complexity and multidimensional aspect of the concept of SC, as described above, 

is not only due to the vagueness of such dimensions but also to their deep inter-

correlation and their observable/unobservable components. The variables of a study 

or a survey can be defined as attempts to make directly observable and measurable 

such behaviours, attitudes, beliefs and relationships that are latent and indirectly 

measurable. We can also state with a quite high degree of certainty that there are 

strong and common patterns between all these dimensions. These ‘macro patterns’ 

are not directly observed by these variables in themselves.  
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Over the previous twenty years, especially in research methodology and in the 

behavioural and social sciences, several empirical techniques have been created and 

employed in order to study these kinds of cases. The main ones can be brought back 

to Factor Analysis (FA) and Structural Equation Modelling (SEM) frameworks. They 

mainly aim to identify constructs, called latent factors (or also endogenous variables), 

that can be used as indicators of the underlying reliability of observed variables (called 

also exogenous variables), mainly catching common patterns of variance between 

these variables.  These two large groups of statistical techniques are relatively similar 

in approach and conception. The main difference is that while FA primarily aims to 

investigate the structure and the patterns using two main approaches (Confirmatory 

Factor Analysis – CFA - and Exploratory Factor Analysis –EFA), the SEM has as its target 

the testing and building of appropriate models through two different steps: the 

measurement model (via CFA) and a structural model (Schreiber et al., 2006). SEM 

models are also more appropriate in the case of complex models or where different 

levels are required.  

The pertinence of this methodology respect to the theories, concepts and 

measurement widely described in the previous chapter is well explained by Muthén 

& Muthén (1998): 

Confirmatory Factor Analysis is appropriate in situations where the 
dimensionality of a set of variables for a given population is already known 
because of previous research. The task is not to determine the 
dimensionality of a set of variables or to find the pattern of the factor 
loadings. Instead, CFA may be used to investigate whether the established 
dimensionality and factor-loading pattern fits a new sample from the same 
population. This is the confirmatory aspect of the analysis. CFA may also 
be used to investigate whether the established dimensionality and factor-
loading pattern fits a sample from a new population. 

 



65 
 

Page 65 of 332 
 

I chose to carry out a Confirmatory Factor Analysis because this method, more than 

the EFA, is a theory driven exploratory analysis; indeed, the analysis implies an a priori 

hypothesized model to estimate a population covariance matrix that is compared with 

the observed covariance matrix. The main target is to minimize the difference 

between the estimated and the observed matrices. The estimation work is carried out 

in respect to unobserved variables, called latent variables or latent factors, and their 

patterns of variance explained as observed variables are called factor indicators. An 

important part of the CFA is to test the reliability of the observed variables in relation 

to the latent variables on which they are expected to load. Other steps of the analysis 

are also the testing of hypothesized interrelationships or covariation/correlation 

among the latent factors, the variables and the factors and variables.  

 

One of the main advantages in carrying out a CFA instead of an EFA is that indices of 

goodness of fit are available. Despite the thresholds of these indices not being defined 

in a unique way, they help the assessment of the model more than an EFA is able. The 

following use of the factors identified for 2011 in Multilevel Models required a further, 

safe evaluation of their goodness (Geiser, 2013). There are still several empirical 

studies on SC using CFA. Ellison et al. (2014) apply this method to study the formation 

of bridging SC with respect to several variables relating to the use of Facebook. Narian 

and Cassidy (2001) use a CFA with survey data to create an inventory of SC dimensions 

in Ghana and Uganda according to the most classical dimensions (membership, trust, 

neighbourhoods’ connections and so on).  
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Brehm and Rahn (1997) in the study cited above, analyse the correlation between 

variation in classical dimensions of SC (civic engagement, trust and so on) and 

individual characteristics such as psychological involvement with their communities, 

general satisfaction about his/her own life, cognitive skills and economic resources 

using aggregate survey data in a latent framework. Paxton (1999), using a model with 

three factors, investigates the real level of decline in SC in the US as stated in Putnam’s 

(1995) study. Using survey data covering twenty years, she finds no consistent support 

for Putnam’s claim of a general decline: while trust declines in individuals, levels of 

trust in institutions and associations do not decline. 

 

In a later study, Paxton (2000) uses a structural equation modelling (a more complex 

model for variance analysis) to further study SC and democracy, measuring SC with 

respect to associations’ rate of participation and membership. She finds that, despite 

a general and positive correlation between associations and democracy, there are 

isolated cases of detrimental associations. The first main aim was to clarify the ties of 

the associations: the higher the level, the more the positive correlation emerges. 

Therefore, multiple memberships are better for higher interconnections and levels of 

SC. Paxton finds that three associations are less connected than others are: trade 

unions, sports associations and religious associations. In her models, she controls also 

for trust and given that democracy affects trust, she confirms the idea of a reciprocal 

effect between SC and democracy. 

 

Kaasa and Vadi (2010) use CFA to build factors based on cultural aspects (as in 

Hofstede’s dimension) to test their correlations with innovative performances.  Van 
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Oorschot et al.’s (2006) study referred to above of is one of the main references for 

this work, not only theoretically but also empirically. Using data from the European 

Social Survey, they theoretically sort SC factors, building a model of three factors 

(Network, Trust and Civism) confirmed by the CFA, about the geographical distribution 

of SC among European countries and regions (North, South, West and East) and 

among social categories of European citizens. They found that the distribution is 

relatively similar between the countries apart for some exceptions in Northern Europe 

and that SC is strongly gendered, related to religious beliefs and to a political left-right 

stance.   

 

Several studies come from the field of management studies (i.e. organizational 

studies), where a significant number of them use original data collected from firms at 

a micro-level. An important and oft-cited work is Tsai and Goshal (1998) which uses 

data collected from different business units of a multinational company to 

hypothesize factors describing structural, relational and cognitive dimensions of SC 

with a proper CFA model. They examine the relation both among these dimensions 

and between the patterns of resource exchange and product innovation within the 

company, finding a positive relation. Baron and Markman (2003), using data from 

firms and building factors with a CFA based on the items of the created questionnaire, 

measure how different social skills – social competence, social adaptability and their 

related measurements – are more effective in achieving financial success, 

differentiating also with respect to the type of industrial sector.  
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Yli-Renko et al. (2001) apply a CFA to build a model focused on the relational view and 

knowledge based definition of SC. They show that SC facilitates external knowledge 

acquisition necessary as competitive advantage in key customer relationships. A last, 

important field of application of CFA on this topic is the psychological.  Here CFA is 

used mainly to test the internal validity of scale-measures by created items. Luthans 

et al. (2007) based on the assumption already explained that SC is related to 

satisfaction, analyse how hope, resilience, optimism and efficacy can be a higher-

order factor predicting work performance and satisfaction. Phongsavan et al. (2006) 

build a model for three SC constructs at the individual level to quantify the degree to 

which high levels of SC are associated with positive mental health in Australian adults. 

Feelings of trust and safety, community participation and neighbourhood connections 

and reciprocity were found to be related to a lower risk of mental health distress, 

together with control over socio-economic status conditions.  

We can state finally that, despite the still open debate about the reliability of these 

methods of estimation based on the patterns of variance and variables reducing 

modelling, CFA is increasingly used in the social sciences to study SC and its links with 

different topics. We can even presume that the multifaceted, implicit and natural 

definition of this concept fits perfectly with this kind of analysis that, as described 

above, allows for the retaining of the richness of information derived from the several 

options of operationalization available. The following paragraphs will outline how the 

goodness of fit of the two models were reached according to the most used indices in 

the literature, highlighting again similarities and differences between 2001 and 2011.  
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Di Stefano and Hess (2005) create a useful checklist for the validation process of CFA 

constructs, identifying four main parts and sub-parts that a researcher should check: 

1) Background/theory: how does theory or literature support the model? 

In this part, after the explanation on how the model can be justified according 

to the relevant literature, aspects that are more practical should be reported: 

presentation of a model or diagram, a list of alternative models tested; 

2) Data screening: how were the data treated? 

Here, the researcher should report procedures used: outliers check, item 

diagnostics, assumption mentioned, sample size, level of data analysed and 

indices used; 

3) Results: how does the final model fit? 

The most important section should present: estimation procedure used, input 

matrix used (especially covariance matrix – correlation matrices, if reported, 

should be standardized) and all the information about latent variables: 

number of items, ratio of items, estimated parameters (loadings); 

4) Discussion: how does the model respond to the initial theories? 

While the first part will be covered in the next paragraphs about how I build the two 

models, the other more empirical parts will be the main aspects addressed when 

results of the models will be explained.  

 

2.2.1 The datasets used: British Household Panel Survey and Understanding 

Society Survey 

The British Household Panel Survey is one of the most important longitudinal studies 

of individual and households in the UK. Established in 1999, it was carried out until 
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2009, when it was replaced by the Understanding Society survey that has been 

organized in a different way and includes important new modules. Starting with a 

sample of around 5,000 households with 10,000 interviews covering all aspects of 

daily life, its sample has been continuously updated, weighted and changed to reach 

the goals of both a representativeness of the British population and a focus on 

sensitive aspects (such as having a proper sample for Wales and rest of England with 

respect to London and, at the same time, ensuring that minorities are properly 

represented). I use the wave 11 (K) of the BHPS (corresponding to the year 2001). All 

the variables for SC are available in a file on individual answers that presents 1,379 

variables and 18,867 records. After an important and complex work of recoding aimed 

at keeping as many observations as possible, I test my model for 2001 on 15,856 

observations. The sub-sample will not result as equal to the totality of the sample 

because of the listwise deletion3.  

 

The BHPS has been replaced by the Understanding Society survey, named officially as 

the UK Household Longitudinal Study (UKHLS) in 2009. The UKHLS includes 

approximately 40,000 households in the United Kingdom. Different from the BHPS, 

data collection for each wave takes place over twenty-four months so periods of 

waves can overlap. The survey is composed of a General Population Sample (GPS) and 

the Ethnicity Minority Boost (EMB). From Wave 2 onward the Main Survey also 

includes information from BHPS panels creating a proper sub-sample (Former BHPS). 

The particularity of this survey is the information it has because of the precise 

                                                           
3 Further explanations will be given in the next paragraphs, especially about the handling of these 
missing data. 
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modules introduced: Health Assessment, with information about Health, Biomarkers 

and Genetics and an Innovation Panel, which includes multiple experimental studies 

in which households are randomly assigned to a particular instrument or survey 

procedure. The sampling procedure is complex and provide for stratified sampling 

allowing equal probabilities in all the regions, in a similar way to the BHPS.  

Despite the overlapping of the waves, the wave presenting SC variables for the year 

2011 is the third. Considering all the sub-samples together (General, Minorities and 

Former BHPS), the final count of observations include 49,739 individuals for 27,783 

households as released for public access. 

The recoding of the original variables has been carried out in a similar manner to the 

2001 survey data, especially for the variables created in a similar way between the 

two surveys. Table A1 in Appendix A presents the uniform recoding of variables and 

their labels for the membership and active membership definitions and Table A3 the 

other variables used. Notwithstanding the application of listwise deletion in the CFA, 

the final number of observations of the model has been kept. 

 

2.2.2 Other technical issues 

With the checklist of De Stefano et al. (2009) in mind, I end assessing several last 

empirical aspects. The first technical aspect is the handling of missing data for the 

model 2001. As will be shown in the next paragraphs, even after the recoding of 

original variables, missing data are present and CFA results will show a difference in 

the number of observations used in the analysis. 

Main methods to handle missing data are: pairwise deletion, listwise deletion and 

multiple imputations.    
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Schreiber et al. (2006) and Harrington (2009), generally speaking, do not recommend 

pairwise deletion respect to listwise deletion. Even if pairwise deletion allows 

retaining more observations, statistical analysis is computed on different subset of 

cases. Besides, this aspect can imply the case of correlation matrix not positive 

definite that are not desirable at all for factor analysis.  

So, the choice was restricted between the other two options and I opt for listwise 

deletion. The choice can be justified for numerous reasons. The first main reason is 

that imputation in the case of categorical variables, especially dummies, has been 

proven to be more biased than other method of handling missing data. Allison P. D. 

(2000, 2005) in different studies shows how listwise deletion produced less biased 

results respect to multiple imputed data and that these results are even more strong 

when predictor are categorical and missing are MAR (Missing At Random). Therefore, 

I decide to do not opt for multiple imputations. The second is the sample size, large 

enough to allow this procedure and do not lose too many observations respect to the 

total sample. The third is the structure of the survey itself. The questionnaire was 

organized with a main filter question and following sub-sections to be filled in case 

the answer to the first general question was positive. In this way, the recoding of the 

variables in the sub-sections has been completed with the generation of dummy 

variables for all the ‘inapplicable’ responses like ‘event that does not occur’. The few 

stated missing data in the survey common for all variables (approx. 850), were mainly 

attributable to proxy respondents’ answers (few to wild or missing). In this case, a 

listwise deletion would not have affected the sample size and the distribution. 

One of the main assumptions to check in the case of listwise deletion – called also 

complete case analysis – is that missing data are Missing Completely At Random 
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(MCAR) or at least Missing At Random (MAR). While MCAR would be a strong 

assumption for this case (because of the structure of the survey and the variables we 

cannot consider the missing data just a random subset of the data), I consider that 

proving that missing values are MAR is the appropriate step. The propensity for a data 

to be missing is related to some of the other observed data, like in this case. This is 

also the main reason why MAR is frequently called Missing Conditionally at Random 

(MCR) because the missingness is conditional on another variable (in this case, the 

filter question variable). To check that the presence of MAR data does not affect 

results, I decide to check if there is a difference in characteristics of the two samples 

(the initial sample and the sample after listwise deletion). At the end of the Appendix 

of this chapter, in the section Supplementary Materials I show results of this analysis.  

 

The second issue is about checking for possible multicollinearity between the factors 

indicators. According to Byrne (2012) it can be a problem in CFA if the observed 

variables have been hypothetically relied on in the same construct and the construct 

is used to predict other variables. The problem does not arise if the construct is used 

as a dependent variable in another model (a later SEM for example or in this study in 

the next models built with the factors identified with this CFA). Incidentally, to make 

the pre-analysis more complete the correlation matrix of variables is presented in the 

Table A6 and A7 in Appendix A. Only two correlations are greater than the threshold 

of 0.9: between two variables bout being member (active or not) of religious groups 

for 2001 (active4 and member4) and between two variables about closeness and 

supporting parents for 2011 (clospar and strongsup). 
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Other correlations that are worthy to look at are those ones in the range between 0.6 

and 0.9. From both the tables as we can see, high correlations are present between 

variables belonging to three main aspects: 

- Variables measuring membership and active membership; 

- Variables about voting; 

- Variables about informal care. 

All these correlations were in some way expected. Indeed, correlating the residuals of 

these variables in the model allows a better fit despite the risk of reducing variance. 

According to Geiser (2013), the correction for measurements error leads to an 

attenuation of the relationships at the latent level. 

 

Finally, with regard to the estimator, Confirmatory Factor Analysis with categorical 

variables can be done only with the Weighted Least Squares Means and Variance 

Adjusted (WLSMV) estimator available only with the software Mplus (Muthén & 

Muthén, 1998). In the past, categorical variables have been treated as continuous in 

these kinds of analyses, especially in the Monte Carlo analysis. But this procedure 

revealed several problems of affected 𝑋2 statistics mainly linked to the number of 

categories (if less than four) and the skewness of the variables’ distribution (if 

variables are skewed and if the skewness has opposite directions) (Green, Akey, 

Fleming, Hershberger and Marquis, 1997; Bentler and Chou, 1987).  

According to Byrne (2012) WLSMV estimator has shown to yield more accurate test 

statistics, parameter statistics and standard errors under both the assumptions of 

normal and non-normal latent response distributions. Indeed, one of the main 

assumptions about observed variables in CFA is that under each categorical variable 
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there is an unobserved latent counterpart with a scale that is continuous and normally 

distributed. This criterion is quite difficult to meet. The analysis with categorical 

variables proceeds from a frequency table comprising the number of threshold, 

multiplied by the number of observed variables to the estimation of the correlation 

matrix. The problem arises with the high occurrence of 0 cells or near-0 cases. This 

particular estimator not only derives parameter estimates from use of a diagonal 

weight matrix, robust standard errors, robust mean and variance-adjusted 𝑋2 

statistics but also fits better for categorical variables with low number of categories.    

These considerations took me to use Mplus, the only software providing this type of 

estimator and one of the most recommended for performing Factor Analysis (both 

Exploratory and Confirmatory) and Structural Equation Modelling especially when 

outcome variables are ordinal or binary.  

To help further the comprehension and the development of the models, I attach in 

the Supplementary Material section the Mplus syntax for both models.   

 

2.3 Identifying observed variables and latent factors: General 

framework 

As described in the introduction and in the previous chapter and as summarized in 

Table 1.1 page 53, SC has several dimensions. The main classical ones are 

memberships and active membership, voting behaviours, attitudes and trust towards 

the government, and social and informal networks.  

To these ones, we can add more recent dimensions according to studies about health 

and caring, neighbourliness, crime control, use of social media and mobility.  
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Strictly related to these dimensions, several measurements have been developed and 

applied in different and many studies. Before describing how I built my models for 

2001 and 2011 using these variables, in the following paragraphs I am going to 

describe how these dimensions have been turned into measurements and variables 

and how they have been used in empirical studies, sometimes even using different 

methods of Factor Analysis.  

 

2.3.1 First dimension: Membership and active membership and religious aspects  

Coleman (1988; 1990) was one of the first authors to emphasize how SC can be 

characterized by an initial dimension regarding the belonging of individuals to groups, 

organisations, associations and societies. He defines SC in terms of its functions:  

Social capital is defined by its function. It is not a single entity, but a 
variety of different entities having two characteristics in common: they 
all consist of some aspect of social structure and they facilitate certain 
actions of actors – whether persons or corporate actors – within the 
structure [...] social organization constitutes social capital facilitating the 
achievement of goals that could not be achieved in its absence or could 
be achieved only at a higher cost. (Coleman, 1990, pp. 302-304). 

 

Putnam (2001), in expanding the SC concept, introduces the concept of informal social 

networks. He specifies that we are inclined to think that the higher form of social 

involvement includes citizenships, memberships and the public life. However, the 

crucial support in everyday-life is found in friendships and other types of informal 

relationships such as positive neighbourliness. These can be included in the informal 

social networks concept. Deeply linked with this concept are the idea of bridging SC 

(Putnam 2001 and Coleman 1988) and weak ties (Granovetter 1973), typical of this 

kind of SC related to associations and organizations, where relationships should be 
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open and serve to connect individuals to others outside of the family and friends’ 

networks – the so called weak ties – and which, due to this aspect, reveal high3er 

levels of openness, creativity and innovativeness.   

Another important difference is between membership and active membership.  

The differences between these two aspects and the impact on individuals’ social 

networks are discussed in an interesting study on participation and SC formation in 

Norway (Wollerbᴂk and Selle, 2003). Trying to understand if face-to-face interaction 

and direct participation have fundamental roles in the formation of SC, the authors 

investigate three dynamics deeply linked with this interpersonal means of interaction: 

how active participation can have a higher impact than passive membership 

(intensity), how affiliations and number of affiliation work in relation to the level of 

the activity; and finally, if the political/non-political aspects of organisation makes a 

difference.  

Wollerbᴂk and Selle refer to Putnam’s main works wherein he asserts that civic 

engagement is related to participation in voluntary organizations (1993; 1995; 2000). 

The authors anticipate a positive response to these questions but in their conclusions, 

remain unclear even if they are nonetheless interesting. Indeed, while their results 

suggest that those affiliated display higher levels of SC than outsiders did, the 

difference between active and passive is not strong, and perhaps even negligible. This 

result changes only if they add a cumulative effect of participation, defined as 

belonging to several associations at the same time (and this effect is even stronger if 

the associations have different purposes).  

 



78 
 

Page 78 of 332 
 

The importance of this characterization is also confirmed in another interesting study 

incorporating CFA using data from the European Social Survey sorts SC dimensions in 

order to study their geographical distribution across European regions and countries. 

Van Oorschot et al. (2006) find that a first-order Factor of Networks accounts 

significantly for these variables: passive membership, active membership, socializing 

with friends and socializing with family. The Trust Factor accounts for the variables 

measuring trust to others and trust in State and institutions and the last Factor, 

Civism, accounts for the variance of the two variables representing civic commitment 

and morality and discussing and following politics.   

It is quite acknowledged that, in any case, this particular difference arises clearer at 

measurement level with the frequent identification of specific variables for both the 

types of memberships than being formally theorized a priori.  

 

Another important distinction is found in the informal/formal character of 

organisations. Putnam’s associations are more informal and are usually related to 

more entertainment or personal activities like sport, education, music, arts, church, 

charity, voluntary, ecology, human rights and peace associations. For Olson (1982), 

organisations are more structured and refer to associations linked more to 

political/structured characteristics such as professional associations, trade unions and 

political parties. Olson also states that the involvement in these associations is 

stronger than is the case for others (and probably directly more active) and has more 

effects on the formation of social networks and SC. Besides, it is more formal and 

more linked to the institutional level (Olson, 1982).  



79 
 

Page 79 of 332 
 

Beugelsdijk and van Schaik (2005) in a regional study of correlation between SC and 

economic growth in the European regions use both definitions as measurements: 

Putnam vs Olson groups and active versus passive membership. They found positive 

relations, confirming and extending the Putnam studies on Italian regions, underlining 

also that active involvement makes the difference respect to the mere existence of 

the associations.  

 

2.3.1.2 The religious aspect 

An important sub-dimension, and the subject of many different studies, deserves an 

apart description: the religious aspect. The hypothesis is that it can be included under 

the membership dimension, both passive and active, formal and informal. Several 

studies have focused on the relationship between religious belonging and SC 

attempting to understand how religion is able to establish strong ties between 

members. Most studies agree on the fact that it is more related to a bridging SC as 

well as other membership variables. Ebstyne King and Furrow (2004), using a 

Structural Equation Model, find that religiously active youths report higher levels of 

SC and that the influence of adolescent religiousness on moral outcomes is mediated 

by other classical SC resources. Wuthnow (2002) attempts to distinguish between the 

‘bonding’ and the ‘bridging’ SC and finds that religious involvement is more related to 

bridging SC. Using American survey data, he finds that membership of a religious 

congregation and holding a congregational leadership position are associated 

positively with a higher likelihood of having bridging friendships. He also states that, 

controlling mainly for the different ethnicity groups, data do not show a correlation 
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between frequencies of attendance but that other variables like the religious 

traditions and the size of congregation are significant.  

 

2.3.2 Second dimension: Sense of citizenship, attitudes towards the institutions 

and voting behaviours 

The aspects of SC more linked to political definitions are revealed as important and 

continue to be as relevant as many of the more classical aspects. La Due Lake and 

Huckfeldt (1998), beginning with the Coleman’s structural and functional definition of 

SC, test the hypothesis that the politically relevant SC, defined as SC facilitating 

political engagement, is generated in social networks where there are social 

interactions between individuals and proper citizen discussants. Moreover, these 

interactions, characterize the amount of SC through the level of political expertise 

present in social networks, the frequency of political interactions within the network 

and the size of this network, showing that human capital cannot be the only 

explanations of active behaviours at the political level. Higher levels of SC involve both 

higher political active participation and higher rates of voting. Duke et al. (2009) show 

that strong connections in family and community contexts, especially during 

adolescence, predict a greater likelihood of voting and involvement at the social level, 

endorsing civic trust in young adulthood.   

 

Finally, yet importantly, all these considerations and studies can be summarized under 

the wider and classical definition of institutional trust that can be defined as the 

vertical trust of people towards the institutions in terms of the degree to which it is 

believed that they truly serve people through their work and actions. Derived from 
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the important work of Putnam et al. (1993) together with the concept of generalized 

trust (the horizontal trust between individuals at more or less the same level) 

(Ackomak and ter Weel 2005, 2009; Dakhli and De Clercq 2004), they effectively justify 

the structure and use of these variables. Both for 2001 and for 2011, questions are 

raised about the trust towards the Government and its main institutions, the 

conviction that people can contribute effectively to the wellbeing of their country 

exerting their civic duties and rights in an active way and about their voting behaviours 

and parties’ closeness.  

 

2.3.3 Third dimension: Health and caring and informal networks 

The third dimension identified is about health and caring provided inside and outside 

the household. Under this definition, we can include both a normal activity of 

temporary caring or supporting and more structured and permanent activities of 

caring, like for example, long-term illnesses and disabilities.  

This dimension is therefore naturally linked with the informal networks that an 

individual owns. Usually these links are stronger connected to the household’s 

network and closer acquaintances (like closer friends and neighbours). 

 

Discussions surrounding links between SC and health and caring have increased 

definitively in recent years. The emerging problem of the sustainability of public 

health systems on a global scale and the fairness of private or semi-private systems 

has come to focus more on possible alternatives to tackle the problems deriving from 

the process of informal care.   
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With this term, the literature identifies the amount of caring for old people, disabled 

or seriously ill people carried out by family or close networks. In reality, this aspect 

becomes central in discussions on the reduction of costs for whole health systems and 

many studies have confirmed this perspective. Just to cite some, Rose (2000), using 

Russian self-assessed individual data, shows that human capital and SC account for a 

notable amount of variance in health. When both forms of capital are combined in a 

composite model, they have even more influence, demonstrating that SC does make 

an independent contribution to health. She also shows how the influences of SC 

include involvement or exclusion from formal and informal networks or friends to rely 

on when ill – the informal care networks – and also on more personal dimensions such 

as control over one’s own life and trust. Finally, focusing on the joint effect, she finds 

that SC then increases physical and emotional health more than human capital but 

that together they can easily raise an individual’s self-reported health from just below 

average to approaching good health.    

 

Hendryx et al. (2002), using American data and trying to test the main hypothesis that 

variation in reported access to healthcare is positively related to the level of SC 

present in a community, confirm this positive correlation and identify a strong 

‘metropolitan’ effect, whereby this means that the relation is even stronger for 

individuals living in the metropolitan areas of the sample. Cattell (2001) using a more 

qualitative approach through deep interviews conducted in two similar deprived 

areas, looks at the dynamics between poverty, exclusion, neighbourliness, health and 

wellbeing. Considering several dimensions of SC – networks’ typologies with respect 

to structural and cultural aspects, density and level of heterogeneity – she develops 
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the interviews to address how this complexity is related to the role of another three 

factors that affect an individual’s health: neighbourhood characteristics and 

perceptions, poverty and social exclusion, and social consciousness. She finds that 

heterogeneity is a better predictor – as much as participation and perceptions of 

inequality. However, she finds mainly a partial correlation: despite the capacity of SC 

to buffer its harsher effects, the concept is not wholly adequate for explaining the 

deleterious effects of poverty on health and wellbeing. 

 

Barrett et al. (2014) discuss the theme of family care and SC and the related transitions 

in informal care, linking all the classical characteristics of SC (bridges, bonding, micro 

approach, macro approach, ties, networks) and the different aspects of informal care: 

subjects that are expected to carry it out (family, community, professionals and 

policies) and subjects that receive it (children with disabilities, individuals with lifelong 

disabilities, old people). Mohnen et al. (2011), using a multilevel analysis and Dutch 

survey data, confirm that in neighbourhoods where SC is higher, people are more 

active and more likely to have healthier habits and behaviours (e.g. being non-

smokers). Therefore, the direct effect of neighbourhood SC on health is reduced 

significantly and strongly by physical activity. 

 

All of these studies support the idea that SC is strongly connected, mostly in a positive 

relation, with the familial and local provision of care, where local chiefly refers to the 

neighbourhood level. 
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2.3.4 Fourth dimensions: Neighbourliness and local networks, crime control 

effect, use of social media and mobility 

In this last paragraph, I am going to identify variables and related uses of more recent 

dimensions respect to the more classical ones. These dimensions have been studied 

increasingly over the last years. One main consequence, as we will see, is that the 

availability of variables and measurements about these dimensions only for 2011 

model.  

 

2.3.4.1 Neighbourhoods’ relations and networks  

As hypothesized and outlined above, neighbourhood SC, family networks and 

individual health are strongly correlated and interdependent. Like a fundamental 

resource embedded within the families and between them, reaching the 

neighbourhood local level, all these aspects can be easily loaded on one or more 

factors. These kinds of ‘informal’ networks are frequently identified as Bridging SC 

(Putnam, 2000), characterised by those weak ties described by Granovetter (1973) 

that can be useful in increasing SC due to more heterogeneous social ties. These kinds 

of social ties usually imply more novel information and broadened worldviews (with 

respect, for example, to the strong ties of the family networks – called also Bonding 

SC). This kind of SC, as Granovetter describes, can sometimes limit the openness of 

individuals outside the parental and relative network despite its usefulness in other 

cases such as health and care internal to the household. Carpiano and Kimbro (2012) 

find evidence of a ‘negative SC’ when testing the hypothesis that, especially for female 

primary caregivers of children, neighbourhood SC moderates the influence of 

parenting strain on mastery, interpreted on the basis of individuals' understanding of 
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their ability to control personal life circumstances. Using American survey data and 

controlling for different types of SC, they find a negative relationship between 

parenting strain and mastery that become even worse as informal social control 

increases. Social support and informal social control, however, buffer this parenting 

strain-mastery relationship when caregivers have stronger ties to neighbours. Thus, 

they define this mechanism in terms of ‘negative SC’ and justify more nuanced 

considerations of neighbourhood SC’s health-promoting potential. 

 

Portes (1998), identifies four negative consequences of Bonding SC as can be derived 

from the studies of Bourdieu, Putnam and Coleman: exclusion/barring of outsiders of 

groups (appropriate examples are the various ethnic groups or categories and 

professional associations), excess claims on group members, restrictions on individual 

freedoms and downward levelling norms. Recent studies have further described how 

these relations are built and maintained between neighbours and within local 

communities. Generalized trust, the type of trust we regard as being typical of this 

dimension, is consistent over time so ‘…it is not simply and ephemeral notion with 

unknown consequences’ (Li, 2015b, pg. 55). According to this study, it is not 

dependent upon reciprocity or group membership but generalized trust matters 

where inequality matters and leads to charity and volunteering. Uslaner (2015) finds 

that trust in any case increases with membership even if it is not directly correlate in 

a causal way (by twenty-five percent for each additional membership). Sturgis et al. 

(2012) using BHPS in a longitudinal study find really little evidences to support the 

view that generalized trust results from integration within social networks, either of 

either a formal or an informal nature.     
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In a famous study, Li et al. (2005) state that many studies focus more on SC defined 

as civic engagement and membership whereas lack of data and means for 

investigation of informal social networks remain an actual problem in studies on SC. 

They build three latent variable scores defined as: neighbourhood attachment, social 

network and civic participation. The first two are more informal with the last 

considered more formal. Analysing the socio-cultural determinants of the three 

variables and their impact on social trust, they show that these determinants affect 

SC generation. Indeed, people in disadvantaged positions build up SC from weak ties 

whereas those in advantaged positions do so from formal civic engagement. They also 

find that SC has an effect over and above people’s own socio-cultural positions. 

Informal social networks, especially having good neighbourly relations, tend to foster 

greater trust than does formal civic engagement. 

 

Without lingering on this aspect, it seems from the majority of studies that the effect 

of SC is derived from good relations in neighbourhoods and informal networks and is, 

more frequently, positive. Furthermore, sometimes it works more than formal 

membership and civic engagement in fostering SC.  

 

2.3.4.2 Crime control effect of SC 

In recent years, many studies have begun to focus on the effect that SC has on crime. 

Akçomak and ter Weel (2008), using Dutch data, show that higher levels of SC are 

associated with lower crime rates. Using several variables derived by the literature 

(for example blood donations) and using an IV OLS estimation, they also test which 

dimensions of SC are more related with this problem and they find out that population 
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heterogeneity of the local system analysed (in this case municipalities), religiosity and 

level of educational attainment are the most important.  

 

Buonanno et al. (2009) confirm the idea that higher levels of SC are correlated with 

lower levels of crime. Besides, their paper attempts to also deal with all the empirical 

problems derived using data and variables for this topic: endogeneity, omitted 

variables, spatial correlation and measurement errors. They partially solve this 

problem using Italian data. Italy, indeed, shows a high variance in social and economic 

characteristics and, at the same time, homogeneity in policies and institutions. Using 

variables measuring associational networks and civic norms, they show that there is a 

significant negative effect of both on property crimes.  

 

Lorenc et al. (2013) show that several factors in the physical environment are 

perceived as impacting on the fear of crime (e.g. visibility, signs of neglect, built 

environment) but that factors relating to local social environment such as social 

networks and familiarity seem to be more important drivers of the fear of crime, 

leading even to limitations on physical activities like going out. They also find evidence 

of the significance of factors at national level (i.e. national policies).  Brunton-Smith 

and Sturgis (2011) analyse how neighbourhoods influence the fear of crime. Using the 

British Crime Survey in a complex, empirical multilevel model, they find evidence that 

individual-level differences in the fear of crime are negatively associated with 

cohesive neighbourhood social and organizational structures and collected signs of 

neighbourhood disorder (even visual, like declining areas).  
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These studies, like many others, present two interesting aspects: SC has a deterrent 

effect on crime rates and this effect can work in two ways. The first is a kind of 

‘stigmatizing effect’: in neighbourhoods, community or local networks where SC and 

mutual trust are high, the incentive to commit crime and be excluded by the 

supporting community is lower. The second aspect is even more practical: as 

Buonanno et al. (2009) state, associational networks may offer official cover to 

criminal activities but more frequently they increase returns to noncriminal activities, 

raising detection probabilities.  

 

Because of this, many recent surveys, including the British Crime Survey, inspect not 

only the proper, ‘numerical’ aspects of  individuals’ and households’ experiences of 

victimisation in relation to different types of crime 4  but also inquire into the 

‘neighbourhood effect’ on feeling safe when going out or walking in the dark and so 

on (Brunton-Smith and Sturgis, 2001), enriching, to some extent, the mere statistical 

treatment of this problem (classical studies using crime’s records from Police forces 

for example).   

 

2.3.4.3 Use of social media 

The development and global diffusion of the use of social media is a recent event. 

Several recent studies reveal different aspects of this topic and we can notice that 

many of them are focused on the most famous social network: Facebook. In this work, 

incidentally, I am going to use variables from the UKHLS 2011 survey representing 

                                                           
4  The types are usually related to crimes against the person: attack, insult, harassment, physical 
violence, burglaries, robbery and so on.  
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more general ‘social websites and networks’. Burke et al. (2011) and Ellison et al. 

(2007) document a relationship between the use of the Social Networking Sites (SNS), 

Facebook, and increased levels of SC, particularly bridging SC. Tong and Walther 

(2011) find evidence that SNS reduce the cost of maintenance of the relationships. 

Ellison et al. (2014) in attempting to explore the relationship between bridging SC and 

Facebook users using American survey data, deepen the study identifying the 

differences in levels of friendships with respect to Facebook-enabled communication 

behaviours. It is then plausible relating this aspect to the informal networks. But there 

is no agreement on the sign of this relation.  

 

Many authors state that even if we can consider social media as an alternative means 

of interaction, their intensive use subtracts real time spent outside with people so we 

can find negative correlations between use of media and interactions with people 

(family, friends or acquaintances). References for these aspects are numerous and 

related further to psychological problems of interpersonal relations. Rubin et al (1985) 

set out to establish a link between a lesser degree of interpersonal communication, a 

higher degree of loneliness and parasocial interaction resulting from increasing 

number of hours spent in front of a television. Some may argue that the use of 

television differs from the potential ‘social’ dimension of SNS. Nie et al. (2002) find 

that Internet use at home has a strong negative impact on face-to-face interactions 

and time spent with family and friends, while Internet use at work is strongly related 

to decreasing time spent with colleagues. Even more so, time spent on the Internet 

during the weekend decreases further the time spent with family and friends. Caplan 

(2003) further confirms this hypothesis also revealing the more problematic 
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psychological implications of this modality that lead to personal state of depression 

and, at the same time, problematic use of the Internet.   

 

The last interesting aspect is that, according to more recent works, the use of social 

media also helps the crime control effect, especially at the level of personal 

perceptions relating to the fear of crime. This aspect further strengthens the 

hypothesis on the third latent factor. Uysal (2014) examines the predictive roles of 

social safeness and flourishing in connection to the problematic use of Facebook, 

finding a negative correlation. The author even finds that the two aspects can be 

predictors of problematic use. Kohm et al. (2012) find partial evidence that the 

amount of exposure to specific news media – newspapers, television, radio and 

Internet – can affect the fear of crime, increasing particularly the fear of violent 

crimes.  

 

2.3.4.4 Mobility 

The topic of SC and mobility has been widely explored, both at international migration 

level and at more localised geographical levels. In a qualitative study, Kaufmann et al. 

(2004) find that spatial mobility not only refers to physical movements of goods or 

people but can be considered as a structuring dimension of social life that shapes 

important societal changes. It can be thought of as a proper asset and, consequently, 

differs in access opportunities, competences and appropriation. Kaufmann and 

colleagues define it in terms of a proper capital than can be exchanged for other forms 

of capital, such as economic, cultural and social. But it differs from all of these because 

it refers both to vertical and horizontal dimensions of social positioning. They 



91 
 

Page 91 of 332 
 

underline how, more so than SC (which can also be referred to in terms of horizontal 

and vertical dimensions), it represents a new form of social inequality, whereby local 

and geopolitical context is even more emphasized.  

 

Using European data, David et al. (2010) discover interesting connections between 

membership, informal networks and mobility. While in the North of Europe the club 

membership is higher than in the South, the frequencies of contacts with relatives, 

friends and neighbours are lower. Identifying the cause in the lower rates of 

geographical mobility of Southern people, they build a proper model of SC and 

mobility. They find that workers invest time and efforts in building networks and make 

them wider by adding ties when they do not expect to move to another region. They 

find also that employment protection, even in case of high rates of unemployment, 

nonetheless reinforces the accumulation of local SC and reduces mobility. Generally, 

they demonstrate how SC is more associated with lower mobility.  

 

Teachman et al. (1996), examining which dimensions of SC affect the likelihood of US 

children dropping out early from school, find one causal element to be the decrease 

of SC deriving from the number of times that child changes schools, normally 

depending on the history of the family’s moving. In a famous and interesting 

qualitative study, De Souza Briggs (1998) examines how SC can be linked to 

geographical areas or even urban opportunities. In addition, particular housing 

policies can have positive or negative effects. Observing and interviewing African-

American and Latin-American adolescents in an area of New York subjected to a 

peculiar housing program, he finds that the ‘movers’ appeared to be more cut off in 
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terms of SC than ‘stayers’. One of the main reasons found is that participants reported 

fewer chances to access good sources of information on jobs or school advice, 

decreasing their opportunities to enhance their situation. They also show how the 

perception of lack of access to such leverage changes completely when an employed 

adult is added to their circle of significant ties.   

 

After the depiction of this wide framework, it is now possible describe how I build my 

models and relative results. In the following Figure, I outline the general strategy and 

then the two following paragraphs will describe empirical applications of this strategy 

for 2001 and 2011. 
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Figure 2.1: Strategy for models’ derivation 
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2.4 Model for 2001: strategy, analysis and results   

After the description of the methodology – CFA –, the dataset – BHPS – and the 

variables and measurements for each SC dimensions used in the literature, it is now 

possible to focus on the empirical building up of the model, beginning with 2001 data. 

All the variables used, with labels and recoded names are reported in Appendix A 

(Table A1 and A2).  

In accordance with the empirical studies listed in the previous paragraphs, I build my 

theoretical latent factors based on several variables available from survey and I 

confirm them with the current CFA.  

 

Starting from the variables about membership and active membership dimension, 

BHPS survey presents sixteen variables representing membership and sixteen for 

active membership to these organizations or groups: political parties, trade unions, 

environmental groups, parents associations, tenants or residents groups, religious 

groups, voluntary groups, other community groups, social groups, sports clubs, 

women’s institute, women’s groups, professional organisations, pensioners’ 

organisations, Scout/Guides organisations and other general organisations.    

In order to retain the richness of the available information, I first summarise the 

original variables by types of organisations, according to the following groupings (see 

Table A1 in Appendix A):  

1) Political and professional organisations: parties, trade unions, professional 

and pensioners’ organisations (member1 and active1); 

2) Social organisations: environmental, parents, voluntary, communities, 

women groups (member2 and active2); 
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3) Local organisations: tenants or residents and social groups (member3 and 

active3);     

4) Religious organisations (member4 and active4); 

5) Sport organisations: sports club and Scout organisations (member5 and 

active5). 

 

The five types were created both for the membership and for the active membership5. 

As we can see from the Table A4 in Appendix A, the univariate proportions and the 

counts for these categorical variables show ordinal variables reaching even five items. 

Where variables are ordinal and not dummies, the recoding has been done in order 

to ensure uniformity between all the variables: increasing levels of SC for each 

variable are expressed in the increase of the item from 0 to higher level of SC. 

Subsequently, for example, variables measuring expected negative levels of SC have 

been recoded in the opposite way with respect to the other variables6.   

This is because I decide to sum the original variables up: so, for example, member1 

assumes value of 1 if the individual is a member of only one of the organizations 

considered for this variable (in this case a political party, trade union, professional 

organisation or pensioners organisation), 2 if he or she is a member of at least two 

organizations out of the four listed and so on. The same approach has been also used 

for the sum of the active membership variables. This mechanism allows me to keep 

                                                           
5 Table A1 about the creation of these variables from the original in the survey is available in Appendix 
A.  
6  For example, govern2, a variable that asks for agreement or non-agreement to this statement 
‘ordinary people cannot influence government’ has been recoded in terms that 1 – that is ‘No’ in the 
survey – would have had the highest score of SC. Indeed, replying ‘No’ or expressing disagreement in 
this case means demonstrating trust in the institutions.  
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even the intensity of membership for each singular individual. Paxton (2002) finds 

evidence of the importance of multiple memberships to measure ties and connections 

between associations. Where associations are closer than others, there is even a 

negative impact on democracy level.  

 

Focusing further on the religious aspect of the membership dimension, despite the presence 

of a variable representing membership and active membership to religious groups or 

church organisations, I choose to retain also the variable related to a more subjective 

way of living in this personal dimension but still being able to create fundamental and 

strong networks (including them in the same factor). Indeed, the relig variable is used 

to describe the attendance or non-attendance at religious services.  

 

Regarding the second dimension about sense of citizenship, attitudes towards the institutions 

and voting behaviours, we have three dummy variables (govern1, govern2 and govern3) 

for being in agreement with general statements on government actions and principles 

and four variables (vote1, vote2, vote3 and vote4) on voting behaviour, closeness to a 

party and level of interest in politics (see Table A2 in the Appendix A).   

 

With regard to the third dimension, nine variables have been recoded and tested. 

Most of them are related to the help and support that the individual can receive from 

someone outside the household because the recoding on variables about health and 

caring conditions internal to the family did not allow their retention in the model. One 

variable, carenr, is about providing care to someone outside the family and only 

another variable is about informal networks and the frequency of meeting people.  
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 Finally, on the last dimension, only two variables about liking and talking to the 

neighbours and one variable about the preference to move to a new house have been 

included in the final model to confirm.  

 

2.4.1 Strategy for building up the model 

With regard to the first two classical and important dimensions, initially I 

hypothesized a model with four factors: a first factor about membership and active 

membership (with religious variables included), a second one about citizenship 

(institutional trust, voting behaviours and similar), a third one about health and caring 

related issues and a fourth one about local networks and relations with neighbours, 

mirroring the dimensions (classical and recent) described in the previous paragraph.   

 

On the basis of Mplus first results, I immediately found that in this way the model did 

not converge in first instance. Mplus provides Modification Indices (MI hereafter), as 

proposed by Sörbom (Byrne, 2012). Their essential function is to identify parameter 

constraints that are badly chosen, causing a model misspecification. As such, all 

parameters are assessed to identify which parameters, if freely estimated, would 

contribute to a significant drop in the 𝑋2 statistics. Usually, MIs higher than 100 

indicate the first variables needed to be modify or dropped out. The second highest 

range is between 70 and 100. Values of MIs below 70 indicate not necessary changes.  

 

According to the modification indices available in Mplus, residuals covariances have 

been added especially between the variables of the same latent factor and between 

all the variables of membership and active memberships (even if in different factors). 
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In this case, adding up further specifications such as these helped the final fit of the 

model according to the highest thresholds of the indices used given that they are all 

significant with a P-value of 0.001. Besides, this can be justified by the structure of the 

survey used and a high, natural correlation between these two groups of variables. 

Modification indices were also useful to identify the weakest relationships between 

variables or between factors at the start of the model building. One initial important 

step was the change of the model from one with four factors (membership, active 

membership, citizenship and social network) to a model just with three factors (Wang 

and Staver, 2001) where the last two dimensions would have better fit as a one factor. 

Indeed, the second version of the model proposed with three factors immediately 

converged with the main goodness of fit indices for CFA showing these values: RMSEA 

index around 0.078 and CFI and TLI around 0.80 (description of these indices will be 

reported in the Results paragraph).  

 

The first major leap in the assessment of the model was derived from the correlation 

of the latent variables between themselves and the correlation of the residuals of the 

variables about membership and active membership: RMSEA decreased further 

around the critical value of 0.05 and CFI and TLI around the other critical value of 0.90. 

As will be described in more detail in the next paragraphs, these are the cut-off values 

identified in the literature such as goodness of fit threshold for these indices.   

 

To reach even better values, I then reformulated the model looking more at the 

formal/informal character of membership. And indeed, the variables regarding 

political and professional organizations and local organisations - member1 and 
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member3, with the equivalent active3 and active3 -, fit in the same factor better than 

the model with the first factor loading onto all the variables about membership 

together. Indeed, all variables are explained appropriately by the same factor of being 

a member (or active member) of political parties, trade unions, professional 

organizations, pensioners’ organisations, tenants or residents’ groups or social 

groups. 

All these organizations and associations are, indeed, more structured, formal and 

related to political interests and general community affairs, as previously described 

as in Olson typology of organisations (1982). According to this hypothesis, I further 

checked MIs. They confirmed this idea showing how formal membership variables 

would better fit in one factor together with all the variables representing voting 

behaviours and citizenship towards institutions. This final solution saw therefore the 

fit of a first latent factor loading on formal membership (passive and active) and 

related variables of institutional trust and citizenship.  

 

According to these studies and dealing with the empirical results of the analysis, I then 

decide to keep the two aspects of passive and active membership (quite critical given 

the high possible linearity between them) crossed with the types of organisations – 

Putnam organisations and Olson organisations –  for the building of the model. It is 

possible see the underlying link between membership and attitudes towards formal 

institutions.    

The other variables regarding more informal associations (member2, member4, 

member5, active2, active4 and active5) (even personal such as religious ones) fit 
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better in a second factor with a further variable for attendance to religious services 

(relig), probably linked with membership (active or not) of religious associations.   

Parallel to this step by step work of building up the model, analytical strategy’s 

description focuses also on the third factor. As previously sketched, a unique factor 

loads better on health and caring variables together with local networks and relations 

with neighbours. Consequently, the third and last factor fits in expressing the common 

pattern of variance of nine variables for providing caring to someone else and 

receiving help or support from outside when in a difficult situation (both at a 

psychological and practical level): carenr, help1ext, help2ext, help3ext, help1net, 

help2net, help3net, help4net and help5net (see Table A2 in the Appendix A) and four 

variables representing good relations with neighbours load on a factor in a significant 

way. Among these four variables, there is one variable about the willing to move from 

the current residence inversely related to the others.   

The two levels show, therefore, to be deeply linked even if overlapped in the daily life 

of an individual. This hypothesis has been also confirmed by the already cited study 

of Van Oorschot et al. 2006.  

 

Finally, it is now possible to show the final fitted model: three main latent factors 

loading on thirty-one variables.  

I name the three factors according to the characteristics of the variables on which 

they load: 

• Factor 1: Formal membership and citizenship; 

• Factor 2: Informal membership; 

• Factor 3: Social networks.  
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Figure 2.2: Final model for 2001 
 

 

Values shown between variables and paths from Factors represent standardized β coefficients. Other 
values are error terms. Significance at 0.001 
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Description of the strategy of building up the model implies also identification of 

empirical aspects like correlated covariances and cross-loadings. As previously 

outlined, these types of specifications cannot be theorized a priori and confirmed by 

CFA but they emerge from analysis of MIs.    

As we can see from Figure 2.2, the final model proposed is complex and it is composed 

by thirty-one variances (equal to the number of variables), two covariances (between 

Factor 1 and Factor 2 and Factor 1 and Factor 3) and thirty-four residual covariances 

for a total of ninety-eight parameters. The last step to add different residual 

covariances was due to the structure of the survey and they have been identified using 

MIs. In the Mplus syntax (as reported in Supplementary Material section) they can be 

identified by the statement WITH. With this statement, general covariances are 

suggested by MIs and they can set as covariances between residuals of the observed 

variables or covariances between latent factors.  

After the model fitted with the structure of three factors loading on the observed 

variables described, the first important jump towards good values of main goodness 

of fit indices was reached with the set of covariances between the latent factors and 

covariances between residuals of membership variables with active membership 

variables internal to the first and second factors.  

For these cases, MIs showed quite clearly the importance to set such correlations 

(highest values of MIs reported among all the other, even greater than 120).  

Following, the second important change was due to the identification of covariances 

between the variables about attitudes towards Government and voting behaviours in 

Factor 1 (MIs between 100 and 120). 
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Last definitive improvement to the values of indices recommended in literature for a 

really goodness of fit was reached thanks to the correlation of residuals between 

variables in the third factor (MIs between 70 and 100). 

After these three steps, further slight improvements up to the threshold suggested 

for fit indices were due to the specifications of covariances between residuals of 

observed variables loading onto different factors that I am going to describe in the 

next paragraph (see Table 2.1). Most part of them is related again to membership and 

active membership variables, supporting the idea that even if the character of 

informal versus formal membership results primary in this analysis, this 

characterization is still strong.  

 

Given the complexity of the model and the important number of residuals 

correlations, I report the residual covariances and their standard errors of variables 

loading on different factors in the following table, in order to make the diagram above 

more readable. 

Table 2.1: Residuals' correlations – 2001 

 
Variable Estimate S.E. 

MEMBER1 with   

MEMBER2 0.265 0.015 

MEMBER5 0.253 0.015 

ACTIVE2 0.172 0.016 

ACTIVE5 0.172 0.015 

MEMBER2 with   

MEMBER3 0.137 0.019 

ACTIVE1 with   

MEMBER2 0.243 0.021 

ACTIVE2 0.258 0.021 

VOTE3 with   

MEMBER2 0.263 0.020 

VOTE4 with   
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MEMBER2 0.329 0.026 

ACTIVE2 0.287 0.026 

HELP2EXT with   

MEMBER5 0.187 0.016 

ACTIVE5 0.191 0.016 

MOVE with   

RELIG 0.458 0.036 

VOTE4 0.266 0.022 

All the correlations are significant at 0.001 

 

According to Schreiber et al. (2006) and Pohlmann (2004) for one sample analysis, the 

ratio between the number of observations and the number of parameters to be 

estimated should be higher than ten. Here the ratio is 161.8, definitively higher than 

the threshold suggested. In Appendix A, I report table for: univariate proportions and 

counts that are more useful in this case of categorical variables (Table A4).  

 

The high goodness of fit, besides, made me stop to add further specifications despite 

of high values among the BY statements. These statements usually suggest cross-

loadings of factors on observed variables from other factors and they are considered 

as changes slightly more structural than correlating residuals (Byrne, 2012). Indeed, 

adding many significant correlations make the model progressively dependent on the 

specific sample. 

 

2.4.2 Results: analysis of three factors characteristics and main indices of 

goodness of fit  

In this paragraph, I am finally going to describe and interpret the model obtained.  

With regard to the latent factors, from the Table below we can see the correlation 

and covariances between factors. The Table 2.2 show that the factors are positively 
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correlated, as I expected, but the correlation matrix highlights how the correlation is 

stronger between Factor 1 - formal membership and citizenship - and Factor 2 – 

informal membership. Factor 3 – social networks - seems slightly correlated with 

Factor 2 and weakly with Factor 1. This result can be explained by all the previous 

descriptions of variables and the reasons behind their selection. As expected, Factor 

1 and Factor 2 share the strong ‘membership’ aspect of SC, whereby the first loads on 

variables measuring more formal types of membership, the second factor measures 

the more informal one. At the same time, Factor 2 loads on variables representing 

more ‘informal networks’, bridging SC and weak ties and I explained how, 

theoretically, they may be deeply linked with all the variables for health and caring 

and neighbourhoods’ relations, that are the variables loading significantly on Factor 3.    

Table 2.2: Correlation matrix for the latent variables – 2001 

 
 Factor 1 Factor 2 Factor 3 

Factor 1 1.000   

Factor 2 0.282 1.000  

Factor 3 0.058 0.111 1.000 

 
Table 2.3: Covariance matrix for the latent variables – 2001 

 
 Factor 1 Factor 2 Factor 3 

Factor 1 0.112   

Factor 2 0.033 0.119  

Factor 3 0.003 0.006 0.024 

 

The covariance matrix shows that Factor 1 and Factor 2 have high variance with 

respect to the third factor (0.112 and 0.110 respectively) and that they also co-vary 

together. Standard deviations confirm this higher internal dispersion of data (almost 

the double, even more, respect to 0.11 of Factor 3). A second important aspect to 

take account of is descriptive statistics and distributions. Graphics and box plots below 

are then reported.  
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Table 2.4: Descriptive statistics for Factor1, Factor 2 and Factor 3 – 2001 

 
 

Obs. Mean 
Standard 
Deviation 

Min. Max. 

Factor 1 
Formal membership and 
citizenship 

10,155 0.0093 0.26 -0.424 0.858 

Factor 2 
Informal membership 

10,155 0.0173 0.20 -0.259 0.832 

Factor 3 
Social networks 

10,155 -0.0144 0.11 -0.378 0.141 

 

Figure 2.3: Frequencies for Formal and citizenship factor (Factor 1) - normal distribution, 
2001 
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Figure 2.4: Frequencies for Informal membership factor (Factor 2) - normal distribution, 
2001 

 

 

Figure 2.5: Frequencies for Social networks factor (Factor 3) - normal distribution, 2001 
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Figure 2.6: Box plots for the Factor 1, Factor 2 and Factor 3 – 2001 

 

 

 

Starting from the distribution, we can explore the box plots in order to identify 

immediately if there is the need to deal with outliers or not. They clearly show that 

not one of the latent factors can be defined as normally distributed and the box plots 

also show the proportion of outliers. The box plots show the outliers and the 

comparison of the distributions for the three factors together. We can observe how 

the three factors are different mainly in the larger values and Factor 1 seems to be 

the most skewed between them. But, despite the outliers appearing as several and 

important, given the data about mean, standard deviations as from Table 2.4 and 

especially minimum and maximum value, it is possible to keep the outliers thanks also 

to the tight range of scores. 
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The second aspect to check, and the most important, can be described by looking at 

the three graphs of the frequencies (Figure 2.3, 2.4 and 2.5). They show a notable 

number of observations on negative scores for all three factors considered (especially 

the third factor of Social networks) and, from Table 2.4 about descriptive statistics, 

we can see that Factor 3 even shows a negative mean. Besides, for all three factors, 

the mean is close to 0 (or less) with a remarkable standard deviation if related to the 

scores and the minimum and maximum values. Indeed, we can see how, apart for 

Factor 1 that has a more spread distribution, Factor 2 and Factor 3 show a high 

number of frequencies just below their mean. 

According to the theory, the factor scores are composite variables that retain 

information about an individual’s placement on the factors. Di Stefano et al. (2009) 

explain clearly how the score of 0 for a factor means that the individual’s ratings of 

the importance for that attribute is close to the average of the sample. Similarly, a 

negative score places the individual under the average rating for that factor but this 

does not necessarily mean a negative value. Undoubtedly, the sample average is not 

necessarily the middle of the scales. 

 

Various authors have proposed several ways to deal with this aspect but in a more 

exploratory fashion. They identify several methods mainly classified according to two 

main groups: non-refined methods and refined methods. The non-refined methods 

are simple and cumulative procedures to provide information about an individual’s 

placement on the factor distribution. They are easy to compute and interpret but are 

less exact than the refined methods which are more complex techniques that also 

provide standardized results. These methods are based on a sum of scores, 
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standardization or cut-off above an arbitrary value. One first drawback is the risk of 

reduction of the variability in the scores that creates problems for cross-loadings or 

confer similar weights to scores that, in actuality, have none. Besides, another 

perhaps more important drawback is the possibility that these methods can create 

factors correlated between them.   

 

Refined methods, according to De Stefano et al. (2009), may be applied when principal 

component and common factor extraction methods are used with EFA, so they are 

even more focused on an exploratory approach. After considering these methods, 

more relate to an exploratory analysis and are used mainly in psychological studies I 

prefer to opt for retaining the original factors. Apart from the uniform recoding of all 

the variables carried out, it is also quite clear from the univariate counts that most of 

my variables show an important percentage of frequencies on null or low items, due 

to the topic in itself (for example, despite of the sum up of variables, membership 

variables record many 0 from many individuals). A further rescaling or averaging 

would have reduced further the variability of my factors score.  

  

Continuing further with the analysis of the results, the literature suggests that for 

categorical analysis further interpretation of the results has to be done for the 

standardized results. This is due to the set of the variances of the factors to the 

standardized value of one. In this way, the interpretation of factor-loading estimates 

is based on the squared standardized factor loadings (Byrne, 2012). According to 

Schreiber (2006), interpretation of coefficients and residuals are often 

underestimated in most parts of studies where only fit indices are reported. The 
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following Tables report the standardized model results with the parameter estimates 

by factor with P-values confirming strongly their significance (Table 2.5) and the 

estimates about R-Square (Table 2.6).  

Table 2.5: Standardized Model Results – 2001 
 

 Estimates S.E. Est./S.E. P-Value 

FACTOR  1 by        

MEMBER1 0.334 0.013 25.492 0.000 

ACTIVE1 0.388 0.018 22.125 0.000 

MEMBER3 0.139 0.017 8.33 0.000 

ACTIVE3 0.115 0.018 6.377 0.000 

GOVERN1 0.318 0.013 23.687 0.000 

GOVERN2 0.288 0.014 20.133 0.000 

GOVERN3 0.162 0.016 10.35 0.000 

VOTE1 0.686 0.011 60.212 0.000 

VOTE2 0.618 0.015 41.445 0.000 

VOTE3 0.659 0.011 59.116 0.000 

VOTE4 0.767 0.013 61.257 0.000 

FACTOR 2 by     

MEMBER2 0.345 0.014 24.132 0.000 

MEMBER4 0.972 0.003 279.148 0.000 

MEMBER5 0.083 0.016 5.318 0.000 

RELIG 0.909 0.005 194.049 0.000 

ACTIVE2 0.376 0.014 27.178 0.000 

ACTIVE4 0.969 0.004 275.4 0.000 

ACTIVE5 0.092 0.015 5.953 0.000 

FACTOR 3 by     

NEIGH 0.155 0.015 10.539 0.000 

MEET 0.247 0.017 14.914 0.000 

CARENR 0.065 0.018 3.639 0.000 

HELP1EXT 0.729 0.009 79.627 0.000 

HELP2EXT 0.467 0.012 39.031 0.000 

HELP3EXT 0.497 0.012 40.072 0.000 

HELP1NET 0.913 0.006 144.159 0.000 

HELP2NET 0.854 0.008 113.754 0.000 

HELP3NET 0.833 0.008 102.463 0.000 

HELP4NET 0.802 0.008 96.437 0.000 

HELP5NET 0.902 0.006 146.729 0.000 

LIKENBRD 0.213 0.02 10.938 0.000 

MOVE 0.085 0.014 6.038 0.000 

Standardized results for latent variables 

FACTOR 1  with    
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FACTOR 2 0.282 0.014 20.706 0.000 

FACTOR 3 0.058 0.014 4.068 0.000 

FACTOR 2 with    

FACTOR 3 0.111 0.014 7.688 0.000 

 

Table 2.6: R-Square Estimates -2001 

 
Variable Estimate S.E. Est./S.E. P-Value Residual variance 

MEMBER1 0.112 0.009 12.746 0.000 0.888 

MEMBER2 0.119 0.010 12.066 0.000 0.881 

MEMBER3 0.019 0.005 4.165 0.000 0.981 

MEMBER4 0.945 0.007 139.574 0.000 0.055 

MEMBER5 0.007 0.003 2.659 0.008 0.993 

ACTIVE1 0.150 0.014 11.062 0.000 0.85 

ACTIVE2 0.141 0.010 13.589 0.000 0.859 

ACTIVE3 0.013 0.004 3.188 0.001 0.987 

ACTIVE4 0.940 0.007 137.7 0.000 0.06 

ACTIVE5 0.008 0.003 2.976 0.003 0.992 

RELIG 0.827 0.009 97.025 0.000 0.173 

GOVERN1 0.101 0.009 11.844 0.000 0.899 

GOVERN2 0.083 0.008 10.066 0.000 0.917 

GOVERN3 0.026 0.005 5.175 0.000 0.974 

VOTE1 0.471 0.016 30.106 0.000 0.529 

VOTE2 0.382 0.018 20.723 0.000 0.618 

VOTE3 0.435 0.015 29.558 0.000 0.565 

VOTE4 0.588 0.019 30.628 0.000 0.412 

NEIGH 0.024 0.005 5.269 0.000 0.976 

MEET 0.061 0.008 7.457 0.000 0.939 

CARENR 0.004 0.002 1.819 0.069 0.996 

HELP1EXT 0.532 0.013 39.813 0.000 0.468 

HELP2EXT 0.218 0.011 19.516 0.000 0.782 

HELP3EXT 0.247 0.012 20.036 0.000 0.753 

HELP1NET 0.834 0.012 72.079 0.000 0.166 

HELP2NET 0.730 0.013 56.877 0.000 0.27 

HELP3NET 0.693 0.014 51.232 0.000 0.307 

HELP4NET 0.643 0.013 48.218 0.000 0.357 

HELP5NET 0.813 0.011 73.365 0.000 0.187 

LIKENBRD 0.045 0.008 5.469 0.000 0.955 

MOVE 0.007 0.002 3.019 0.003 0.993 
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According to Byrne (2012), to interpret the factors and the loadings the R-square 

estimates must be explored. In the case of continuous variables, we should look at 

the standardized parameters in order to see how much the proportion of variance in 

the observed variables is explained by the underlying factor. For categorical variables, 

the interpretation is based on the squared standardized factor loadings. All the 

variables are significant with a P-value of 0.000, obtained immediately from the first 

attempts at fitting the model. This can confirm that the theoretical hypothesis for the 

model is correct.     

 

Consequently, for example, member1 for Factor 1 has a parameter estimate equal to 

0.334. Its squared value is equal to the rounded off value of 0.112 in Table 2.6. This 

means that the 11 percent of the variance in the underlying latent aspect of member1 

can be explained by the construct of Factor 1. At the same time, if we subtract the 

squared standardized loading (0.112) from 1.00, we obtain a value of 0.888, which is 

the residual variance for the same variables (last column on the right of Table 2.6).    

 

Starting from Factor 1, Table 2.5 strongly suggests an important proportion of the 

variances of the variables representing voting such as first group (range from 0.61 to 

0.76) and then, quite uniformly, on the membership’s variables (all of them about 

0.30 on average apart for member3 and active3). Despite this low loading (and a 

corresponding low R-square, as we can see from Table 2.6) when I tried an alternative 

model removing them from Factor 1, I had problem of linear dependences between 

other variables. The significant p-values, both at parameter estimates level and at R-

square level, and the strong theoretical justification suggested that they needed to be 
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kept in the factor. In a symmetric way, from Table 2.6, we can see that Factor 1 

explains on average almost half of the variance for the underlying variables 

representing voting behaviour (vote1n, vote2n, vote3n and vote4n).  

 

The same argumentation can be retained for Factor 2, about informal membership. 

Member5 and active5 have a low loading estimate (around 0.10) while the other 

variables show higher and, in some cases, important estimates (about 0.9 for some 

variables and 0.3 for others). In this case, even more so than the previous one, the 

variance explained by these variables is really low (but significant) (Table 2.5 and 2.6). 

But again, also in this case, the removal of these variables showed the rising of 

linearity among other variables and, consequently, an important decrease in the 

overall fit indices. Factor 2, finally, fits the variables that appear to show the highest 

importance in all the models: member4 (parameter estimate at 0.972 and R-square at 

0.945).  

 

Finally, for the third factor on informal networks, carenr is the variable that exhibits a 

low loading and, consequently, variance. Its significance and the fact that, as 

described previously, it is the only variable for informal caring fitting the model, 

suggested that I should keep it in the model. Lower loadings and R-square but with 

significant P-values are reported for the four variables representing neighbourhood 

relations (likenbrd, move, neigh and meet) confirming their better fit in this last factor 

concerning informal networks.  
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Finally, Table 2.5 reports also the P-values (all significant at 0.001) for the correlation 

between the latent factors previously described in paragraph 3.3.1.  

In reference to the general model fit (Hu and Bentler, 1995; Di Stefano and Hess, 

2005), literature provides different indices that can be divided in two bigger classes: 

absolute and relative goodness of fit indices.  

 

Absolute fit indices determine how a priori model reproduces the data. Among them, 

the main used are the Chi-Square Value Test and the Root Mean Square Error of 

Approximation (RMSEA).  The first one indicates the difference between observed and 

expected covariance matrices. Therefore, P-Value closer to zero indicate a better fit. 

RMSEA is the index that better deals with sample size issues and it analyses the 

discrepancy between the hypothesized model and the population covariance matrix. 

In addition to this case, smaller values indicate a better goodness of fit, with values 

lower than 0.6 indicating acceptable models.  

 

The second group of indices is the relative fit indices. Among them, the more used are 

the Comparative Fit Index (CFI) and the Tucker-Lewis Index (TLI) called also Non-

Normed Fit Index (NNFI). Generally speaking, the relative fit indices compare the chi-

square of the hypothesized model to a baseline model or null model, where usually in 

the null model all the variables are uncorrelated (with a large chi-square and, 

therefore, a poor fit). 

The CFI analyse the discrepancy between the data and the hypothesized model 

adjusting also for sample size issues. With a range between zero and one, larger values 

greater than 0.9 indicate acceptable models. The TLI analyses the discrepancy 
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between the chi-square of the hypothesized model and the null model avoiding 

negative biases of the Normed Fit Index (NFI).    

With regard to 2001 model, the most common indices show goodness of fit, all of 

them under the suggested cut-off values: 

1. Chi-Square Value Test:  5307.950 with 397 degrees of freedom and a P-Value 

equal to 0.000, the value suggested for a good goodness of fit; 

2. RMSEA: 0.028 with 1.0 probability of RMSEA to be under the critical value of 

0.05. Hu and Bentler (1999) suggested a cut off value of <0.06; 

3. CFI: 0.98, >0.95 (Hu and Bentler 1999); 

4. TLI or NNFI: 0.976, >0.95 (Hu and Bentler 1999). 

Schreiber et al. (2006) underline that RMSEA, CFI and TLI are the preferable fit indices 

to consider for one-time analysis. 

  

2.5 Model for 2011: strategy, analysis and results   

In this paragraph, I am going to explain the procedure I followed for 2011. Keeping in 

mind the description done in paragraph 2.2 about the CFA methodology and the 

UKHLS dataset used in this case, we can consider valid also for this model the variables 

and measurements of SC dimensions presented in the literature and in accordance 

with the empirical studies listed in the previous paragraphs. Many of them will be 

similar to the 2001 case but other different dimensions will be tested. All the variables 

used, with labels and recoded names are reported in Appendix A (Table A1 and A3). 

As for 2001, I build my theoretical latent factors based on several variables available 

from survey and I confirm them with the current CFA, applying the general strategy 

summarized in Figure 2.1. 
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Starting from the membership and active membership dimension UKHLS survey 

present the same variables of BHPS. Therefore, they have been summarized and 

recoding in the same way as for 2001. We can see from the Table A5 in Appendix A, 

the univariate proportions and the counts for these categorical variables.  

Focusing on the religious aspect, it has been possible recoding and testing more 

variables than the previous case: relig, att_relig and imp_relig. While the relig is the 

same as for 2001 measuring the belonging to a religion, the other two variables are 

about: 

- att_relig: frequency of attendance at religious services (recoded like an ordinal 

variable depending on the frequency of attendance), 

- imp_relig: if religion makes a difference to life.   

 

With regard to the second dimension on citizenship and voting behaviours, UKHLS 

presents a wide range of variables about this topic. After the recoding, I even obtain 

fourteen variables on generalized trust and institutional trust (Ackomak and ter Weel 

2005, 2009; Dakhli and De Clercq 2004): voting behaviours and expectations, personal 

skills and level of participation in political life, statements on government actions and 

principles and a uniform number of sources of information on political news (see 

Table A3 in the Appendix A). 

 

The discussion about the third dimension is more complex for 2011 case. Given the 

rich availability of data, I recoded a wide set of variables representing: 

- general health condition with variables about illness, sleeping condition, sense 

of happiness, confidence, levels of satisfaction for different aspects of life,  



118 
 

Page 118 of 332 
 

- providing care to someone else (both in the household and outside); 

- the amount of caring (hours per week); 

- frequencies of contacts, types of contacts and types of help - given or received 

- by typologies of family members; 

- two variables representing informal networks not related to the family 

dimension: two variables, closefr (recoded like an ordinal variable with respect 

to the number of close friends listed by the interviewee) and gout (frequency 

of going out with friends) 

 

Some of them are attributable to definitions of health and caring and informal 

networks, both familial and not, as previously described while the other variables 

about personal health conditions have been used more in recent years in studies 

about SC and its effect on individual mental health. Other some variables, according 

to the studies previously described, can be considered as measurements of kinds of 

actions not as proper care provision or healthcare, but at least linked to the same 

amount and type of SC required for an individual to be willing to care for other persons 

(especially if belonging to the same nuclear family). 

 

Also for the fourth dimension, a richer set of variables was available. In first instance, 

I recoded and tested twelve variables for several aspects of local mutual trust – 

derived from a local result of a more generalized and horizontal trust between 

individuals (Ackomak and ter Weel 2005, 2009; Dakhli and De Clercq 2004).  

On the crime topic, differently from BHPS, UKHLS survey contains several variables 

about feeling unsafe, avoiding actions, being insulted or threatened, being physically 
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attacked in different public places and for different reasons (ethnicity, gender and so 

on). There are also questions on reasons for not going out and socialising. However, 

the structure of the survey and the necessary recoding allowed me to test only two 

variables: fearcrime and safedark, recoded as ordinal variables representing the level 

of fear and the feeling of being safe walking alone at night. 

 

Regarding the last aspect of use of social media, it is possible to notice again a 

different and richer availability of data. This difference in availability can also reflect a 

more general and theoretical aspect: the development and global diffusion of the use 

of social media as a recent event. After the recoding, I obtained four variables:  

- socnet_chat: an ordinal variable representing the number of hours spent 

chatting per week on social websites; 

- mobile: having or not a personal mobile; 

- internetfr: how often internet is used; 

- hrstv: number of hours in front of tv per day. 

 

Finally, a smaller group of variables representing the time spent at the current address 

after the last move was introduced and relevant variables created. In addition, in this 

case I have a wider availability of variables. Apart for the variable about liking or not 

the neighbours, four dummy variables about the last moving were created for 

different time lapse: moved in the last three years, between three and five years ago, 

between five and ten years and more than 10 years ago.   

Through these examples, it is quite clear that the amount of time spent in a specific 

place is an important and fundamental asset to build and maintain SC with people. 
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2.5.1 Strategy for building up the model 

As for 2001 model and according to De Stefano et al. (2009), before describing the 

internal structure of the factors with regard to their loadings, I will describe the 

several steps done before the fitting of the final model as presented in Figure 2.7.  

 

My first main hypothesis was a model mirroring the four dimensions just descried: 

one factor about membership (both passive and active) and religious aspects, a 

second factor about citizenship and voting behaviours, a third factor about health and 

caring and relations with close friends and a last factor about relations with 

neighbours, crime, use of social media and mobility.   

At the first test, the model did not converge and from MIs was quite clear that the 

groups of variables representing personal satisfaction and family network and 

contacts did not result significant in the model.   

 

The richness of information of the UKHLS allows me to consider a model for 2011 with 

one or more factors corresponding to other dimensions that are deeply related to SC. 

The addition of these variables and corresponding latent factors prevented a proper 

fit of the model and, in some case, even its convergence. This can be due to high 

correlation between the variables used 7  and the small number of observations 

available even after the recoding and so on. The first big dimension is related to the 

satisfaction towards several aspects of personal life and temporary personal 

difficulties also experienced at a physical level (loss of sleep, inability to overcome 

                                                           
7 This aspect is frequently due to the structure of the original questionnaire where, following an initial 
filter question, in the case of a positive answer the individual is asked to complete a sub-section of 
questions on singular aspects, creating in this way variables almost multicollinear.  
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difficulties, being under stress and so on). We saw previously how, especially – but 

not exclusively – in psychological studies, individual levels of personal satisfaction 

with job or relationships seem to be positively related to a higher level of SC. 

Consequently, all the variables representing temporary difficulties were supposed to 

be strongly related and loaded on a proper factor. Without focusing further on this 

interesting topic, as an example Brehm and Rahn (1997) find evidence of a correlation 

between classical dimensions of SC (like interpersonal trust and civic engagement) 

and psychological involvement with the community, cognitive skills and general 

satisfaction (linked also to the economic personal condition).   

 

A second significant dimension that was hypothesized as related to health and caring 

is composed by all the variables for the kinds of contacts, supports and help provided 

internally to the family network: to and from the mother, father or children. The 

integration of the factor representing health and caring or the creation of a proper 

factor with only these variables has made the model non-converging. This is probably 

due to variances or residual variances approaching 0. 

 

After the removal of the factors loading on these variables (on personal and 

psychological dimensions and health and caring the family network), the model 

immediately fitted with RMSEA Index around 0.080 and CFI/TLI around 0.70. 

Therefore, the second attempt was done on a model with three factors confirmed 

respect to the hypothesis and the theory, and where the factor about health and 

caring and informal networks was removed. In particular, the third factor resulted 

loading onto composite and different variables. I make the hypothesis, confirmed by 
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the results, that crime variables would load on the same factor of a neighbourhood’s 

relations and networks, according to the literature. So fearcrime and safedark, 

recoded as ordinal variables representing the level of fear and the feeling of being 

safe walking alone at night, perfectly fitted loading on the last third factor of 2011 

model.   

 

Other hypotheses for this third factor were done respect to the use of social media. If 

in 2001 it was enough to question individuals on the use of a mobile phone, for 2011 

we have different variables available about the use of social media. 

My hypothesis, also according to the literature, is to load these variables on the last 

factor corresponding to informal networks. Indeed, this hypothesis has been 

confirmed by the fit of the model. Accordingly, socnet_chat (an ordinal variable 

representing the number of hours spent chatting per week on social websites) and 

mobile result significantly linked to the other variables relating to neighbourhood 

relations, friends’ networks and crime. As we can see from the results set out in the 

following sections, the sign of the relation is negative: many authors state that even 

if we can consider social media as an alternative means of interaction, their intensive 

use subtracts real time spent outside with people8. 

 

Not confirmed by the analysis was my hypothesis about mobility’s variables (recoded 

according to different lapses of time since the moving up to more than 10 years). They 

were supposed to load on the same factor of neighbourhood’s relations and Bridging 

                                                           
8 As we can see from the Mplus syntax in the Supplementary Material section, other variables about 
use of internet and TV but they were removed according to Indices in order to make the model 
converge.  
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SC but, as in the previous case of variables for family networks, the high 

multicollinearity between them or, most probably, again variances or residual 

variances approaching 0 made the model non-converging. 

   

Focusing on a more general level, I have already anticipated how in this case further 

specifications for the correlations of residuals between variables and cross-loadings 

of factors on variables of other variables have been kept only if necessary to have a 

more generalizable model. As for 2001, correlating the residuals of the variables of 

membership with their reciprocal active counterpart helped the fitting of the model 

in a crucial way. I then correlated some variables in the second factor about closeness 

and support to a party, interest and preparation about politics and trust towards 

Government variables. The last specification was about the third factor and the 

variables about fear of crime, going out and use of social media. 

  

Another interesting point arose from the modification indices: is the main cross-

loading of Factor 2 about citizenship, politics and voting on the variables about 

membership and active membership in Factor 1 that are about these types of 

organizations: member and active 1 and 2 (parties, trade unions, professional 

organizations and so on), confirming a strong correlation. The third factor about 

neighbourliness shows only a necessary cross-loading on variable about membership 

to tenants and resident groups from Factor 1.  

All these specifications of covariances and cross-loadings have been added to reach 

highest values of goodness of fit. How Mplus syntax shows in Supplementary Material 

section and according to MIs, (BY and WITH statements).   
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For 2011, differently from 2001, defining cross-loadings helped the statistical 

improvement of the model. From Fig. 2.7 it is possible to see how mainly the second 

factor has different cross-loadings  

Following on all the strategy, the final model proposed for 2011 has three factors 

named according to the characteristics of the variables on which they load: 

• Factor 1: Membership; 

• Factor 2: Citizenship and politics; 

• Factor 3: Neighbourliness. 
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Figure 2.7: Final model for 2011 

 

 

Values shown between variables and paths from Factors represent standardized β coefficients. Other 
values are error terms. Significance at 0.001    
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Even if it is not possible to compare in a proper way the two models because of the 

differences between the two samples (it is not longitudinal study) and in variables 

used, we can only touch on a comparison. There are differences between 2001 and 

2011 for membership, religious and political variables. Membership to formal and 

informal organizations are separated in 2001 (no matter the active characterization) 

while in 2011 they underlie the same factor. Political variables in 2001 are based in 

the same factor of formal organization membership (active or non-active) whilst in 

2011 they are better explained by proper a factor apart. Only the religious aspect 

confirms a similarity between the two years: the variables underlie the same factor of 

membership 9 . These variables fit better when they are linked with membership, 

because of their personal and intimate aspect and at the same time the stronger 

bridging aspect. 

Health and caring factor has not been confirmed at all for 2011 apart for one variable 

for care provided to non-resident individuals (not belonging to the household). Even 

more, the removal of all these variables allow the full model of three factors to 

converge for the first time. This is also probably due to the number of observations 

available and the high number of frequencies on 0 values that create a sizeable 

problem of linearity between all variables considered. 

 

 

                                                           
9 As will be described later, even if between 2001 and 2011 we can notice this different loading of the 
latent factors on variables. We will see also that a complex cross-loadings of factors on variables 
belonging to other factors and correlation between residuals of original variables has been necessary 
for an important improvement in the goodness of fit of the indices. This fact confirms further this strong 
link between them.  
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2.5.2 Results: analysis of three factors characteristics and main indices of 

goodness of fit  

Figure 2.7 shows the complexity of the model: forty-five variances and fourteen 

residual covariances and seven cross-loadings for a total of sixty-six parameters to 

estimate.  According to Schreiber et al. (2006) and Pohlmann (2004) for one sample 

analysis, the ratio between the number of observations and the number of 

parameters to be estimated should be higher than ten. The ratio is 753.62, higher than 

the threshold value indicated. As for the model for 2001, a pre-analysis includes 

discussion on sample statistics, software and estimator used. Table A5 in Appendix A 

shows the univariate proportions and counts for the categorical variables. The 

recoding presents the same uniformity for all the variables like in 2001: increasing 

levels of SC for each variable are parallel to the increase of the values of the items.  

 

If we look at the following Tables (Table 2.7 and 2.8), we can examine correlation and 

covariances between factors. 

Table 2.7: Correlation matrix for the latent variables – 2011 

 
 Factor 1 Factor 2 Factor 3 

Factor 1 1.000   

Factor 2 0.288 1.000  

Factor 3 0.197 0.203 1.000 

 

Table 2.8: Covariance matrix for the latent variables – 2011 

 
 Factor 1 Factor 2 Factor 3 

Factor 1 0.010   

Factor 2 0.020 0.484  

Factor 3 0.012 0.091 0.415 
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As expected, the correlation is positive between all factors. The highest correlation is 

between Factor 1 and Factor 2 and it can be easily interpreted as the stated 

relationship, at theoretical level, between attitudes to being a member (and active 

member) and level of interest in politics and sense of citizenship. Factor 3, loading on 

all the variables relating to neighbourhood relations, informal networks and fear of 

crime, is correlated with both the factors with really close intensity (0.197 with Factor 

1 and 0.203 with Factor 2). This aspect can be explained by the fact that, as explained, 

informal networks, more formal relations with neighbours and sense of being safe are 

reciprocally influenced by personal attitudes and behaviours regarding the wider 

levels of society (such as associations, organisations and institutions).  

 

The covariances between factors are quite low. This means that Factor 2 and Factor 3 

have high variance while Factor 1 seems less dispersed. Standard deviation in Table 

2.7 and box plots in Figure 2.11 strongly confirm the lowest dispersion of data for 

Factor 1. The higher covariance, on the other hand, is between Factor 2 and Factor 3 

(0.091) showing again a strong theoretical link.   

 

Table 2.9: Descriptive statistics for Factor1, Factor 2 and Factor 3 – 2011 

 
 

Obs. Mean 
Standard 
Deviation 

Min. Max. 

Factor 1 
Membership 

49,739 0.0073 0.07 -0.146 0.297 

Factor 2 
Citizenship and politics 

49,739 0.0180 0.62 -2.129 2.724 

Factor 3 
Neighbourliness 

49,739 -0.0143 0.53 -2.02 1.283 
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Figure 2.8: Frequencies for Membership factor (Factor 1) - normal distribution, 2011 

 

 

 

Figure 2.9: Frequencies for Citizenship and politics factor (Factor 2) - normal distribution, 
2011 
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Figure 2.10: Frequencies for Neighbourliness factor (Factor 3) - normal distribution, 2011 

 

 

 

Figure 2.11: Box plots for the Factor 1, Factor 2 and Factor 3 – 2011 
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Examining carefully both graphs and box plots, we can notice that latent factors in 

2011 are close to a normal distribution even though the range of the factors’ scores 

is wider. Even if outliers are present and expected, we can also state that skewness 

and anomalies in the factors are minor. This can depend on a large sample (in this 

case the number of observations is more than double) and lower dispersion of data. 

As previously described, this also means that an individual’s rating of importance for 

that attribute is close to the average of the sample (De Stefano, 2009). As in the 

previous case, I opted for retaining the original factors.  

 

The structure of the model can be also confirmed looking at the correlation matrix 

(Table A7 in Appendix A). 

Higher correlations are present between variables of membership and their active 

counterpart in an expected way (member1 and active1, member3 and active3, 

member4 and active4, member5 and active5). Already explained from a theoretical 

perspective, in this case the variables about religious aspects also seem to be highly 

correlated with some of the membership variables with which they load on the same 

factor. Empirically, this justifies the strong structure of the first factor.   

 

The other large group of variables highly correlated belongs to the second factor 

about citizenship and politics. Willvote, the variable about voting in the next election 

is naturally highly correlated with variables representing support to party and 

attitudes to voting (clospar, strongsup, interpol,cividuty). The variables representing 

supporting a party – clospa - and degree of closeness – strongsup - are naturally highly 
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correlated (0.937) but the elimination of one of the two creates problems to the fitting 

of the models.  

 

The last notable correlation is related to the third factor. Belongne, the variable 

representing how much the individual feels they belong to the neighbourhood where 

he/she lives, is correlated with other several variables representing relations between 

them: accepting advice from them (adviceloc), number of local friends (localfr), similar 

feelings to neighbours (simileni) and talking to them (talknei) with a coefficient slightly 

above 0.6. 

 

Focusing on goodness of fit of the model and a more general view of it, we can see 

how the 2011 model required much less residual covariances and cross-loadings in 

relation to the previous model. This aspect is extremely important as it implies two 

main considerations: the model in this way is less current data dependent and the 

factors explain more variance because it has been not reduced by adding correlations 

between the residuals (Geiser, 2013). The first consideration is especially important. 

The model is more generalizable and less dependent on this specific sample and its 

characteristics. This aspect is fundamental also for the following Multilevel Modelling 

framework. Deeply linked with this result is the choice to not pursue the perfect fit 

according to the highest thresholds of the fitting indices, as I am going to describe 

shortly.  

As in the previous case, the interpretation of the factors extracted and their loadings 

can be achieved on standardized results for categorical variables. All the variables in 
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this case were also significant immediately with a P-value of 0.000, showing a right 

theoretical model was hypothesized.   

Table 2.10: Standardized Model Results – 2011 

 
  Estimate S.E. Est./S.E. P-Value 

Factor 1 by         

MEMBER1 0.098 0.009 10.842 0.000 

MEMBER2 0.271 0.009 31.131 0.000 

MEMBER3 0.111 0.012 9.275 0.000 

MEMBER4 0.998 0.003 346.892 0.000 

MEMBER5 0.166 0.010 17.047 0.000 

ACTIVE1 0.251 0.011 23.313 0.000 

ACTIVE2 0.302 0.009 35.036 0.000 

ACTIVE3 0.263 0.013 20.787 0.000 

ACTIVE4 0.932 0.003 287.864 0.000 

ACTIVE5 0.187 0.010 19.246 0.000 

RELIG 0.626 0.008 79.295 0.000 

ATT_RELIG 0.882 0.005 174.962 0.000 

IMP_RELIG 0.556 0.006 89.922 0.000 

Factor 2 by         

CLOSPAR 0.696 0.004 177.892 0.000 

STRONGSUP 0.699 0.004 187.250 0.000 

INTERPOL 0.729 0.003 215.998 0.000 

POLINF 0.494 0.005 100.416 0.000 

CIVDUTY 0.793 0.003 235.840 0.000 

ENGPOL 0.265 0.006 44.080 0.000 

PEOPVOTE 0.187 0.007 27.616 0.000 

PERSBENEF 0.703 0.004 188.135 0.000 

WILLVOTE 0.903 0.003 309.475 0.000 

PREPARPOL 0.471 0.005 89.581 0.000 

INFORMPOL 0.524 0.005 112.028 0.000 

PUBOFIC 0.257 0.006 43.734 0.000 

GOVNOCARE 0.351 0.006 62.405 0.000 

SOURCES_N 0.322 0.006 56.917 0.000 

Factor 3 by         

KNITNEIGH 0.644 0.004 164.080 0.000 

HELPNEIGH 0.774 0.003 221.700 0.000 

TRUSTNEIGH 0.677 0.004 168.107 0.000 

NEIGHARGUE 0.586 0.005 118.308 0.000 

BELONGNE 0.824 0.003 293.070 0.000 

LOCALFR 0.821 0.003 302.826 0.000 

ADVICELOC 0.767 0.003 246.775 0.000 

BORROWNEI 0.642 0.004 158.209 0.000 
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IMPROVNEI 0.487 0.006 86.626 0.000 

PLANSTAY 0.627 0.005 134.616 0.000 

SIMILNEI 0.685 0.004 174.185 0.000 

TALKNEI 0.743 0.004 202.702 0.000 

CLOSEFR 0.215 0.006 36.402 0.000 

SOCNET_CHA -0.237 0.006 -39.552 0.000 

MOBILE 0.214 0.008 26.565 0.000 

GOOUT -0.070 0.010 -7.104 0.000 

FEARCRIME 0.186 0.006 30.343 0.000 

SAFEDARK 0.212 0.007 31.399 0.000 

Standardized results for latent variables  

Factor 1 with        

Factor 2 0.288 0.007 41.354 0.000 

Factor 3 0.197 0.007 28.628 0.000 

Factor 2 with        

Factor 3 0.203 0.006 34.793 0.000 

 
Table 2.11: R-Square Estimates -2011 

 

Variable Estimate S.E. Est./S.E. P-Value 
Residual 
variance 

MEMBER1 0.164 0.005 31.038 0.000 0.836 

MEMBER2 0.204 0.006 34.015 0.000 0.796 

MEMBER3 0.063 0.005 13.496 0.000 0.937 

MEMBER4 0.995 0.006 173.446 0.000 0.005 

MEMBER5 0.028 0.003 8.523 0.000 0.972 

ACTIVE1 0.204 0.008 26.869 0.000 0.796 

ACTIVE2 0.193 0.006 31.992 0.000 0.807 

ACTIVE3 0.069 0.007 10.394 0.000 0.931 

ACTIVE4 0.869 0.006 143.932 0.000 0.131 

ACTIVE5 0.035 0.004 9.623 0.000 0.965 

RELIG 0.392 0.010 39.647 0.000 0.608 

ATT_RELI 0.731 0.008 97.060 0.000 0.269 

IMP_RELI 0.309 0.007 44.961 0.000 0.691 

CLOSPAR 0.484 0.005 88.946 0.000 0.516 

STRONGSU 0.488 0.005 93.625 0.000 0.512 

INTERPOL 0.532 0.005 107.999 0.000 0.468 

POLINF 0.244 0.005 50.208 0.000 0.756 

CIVDUTY 0.629 0.005 117.920 0.000 0.371 

ENGPOL 0.070 0.003 22.040 0.000 0.930 

PEOPVOTE 0.035 0.003 13.808 0.000 0.965 

PERSBENE 0.494 0.005 94.068 0.000 0.506 

WILLVOTE 0.815 0.005 154.738 0.000 0.185 

PREPARPO 0.221 0.005 44.790 0.000 0.779 

INFORMPO 0.275 0.005 56.014 0.000 0.725 
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PUBOFIC 0.066 0.003 21.867 0.000 0.934 

GOVNOCAR 0.123 0.004 31.203 0.000 0.877 

SOURCES_ 0.104 0.004 28.459 0.000 0.896 

KNITNEIG 0.415 0.005 82.040 0.000 0.585 

HELPNEIG 0.599 0.005 110.850 0.000 0.401 

TRUSTNEI 0.510 0.005 97.475 0.000 0.490 

NEIGHARG 0.344 0.006 59.154 0.000 0.656 

BELONGNE 0.679 0.005 146.535 0.000 0.321 

LOCALFR 0.674 0.004 151.413 0.000 0.326 

ADVICELO 0.589 0.005 123.387 0.000 0.411 

BORROWNE 0.412 0.005 79.105 0.000 0.588 

IMPROVNE 0.297 0.006 50.916 0.000 0.703 

PLANSTAY 0.393 0.006 67.308 0.000 0.607 

SIMILNEI 0.469 0.005 87.093 0.000 0.531 

TALKNEI 0.552 0.005 101.351 0.000 0.448 

CLOSEFR 0.046 0.003 18.201 0.000 0.954 

SOCNET_C 0.056 0.003 19.776 0.000 0.944 

MOBILE 0.046 0.003 13.282 0.000 0.954 

GOOUT 0.005 0.001 3.552 0.000 0.995 

FEARCRIM 0.035 0.002 15.171 0.000 0.965 

SAFEDARK 0.045 0.003 15.700 0.000 0.955 

 

As we can see from Table 2.10 and 2.11, Factor 1, the factor representing 

membership, active membership and religious beliefs, loads strongly on variable 

member4 (0.998) and its active counterpart active4 (0.932). These variables address 

religious membership and together with the other variables for religious beliefs that 

also have high loadings (relig, att relig, imp_relig) may show that this dimension is 

very important in relation to the other memberships. This result is similar to 2001 

where also, in that case, member4 and active4 showed a high proportion of variance 

perfectly explained by their underlying factor (Factor 2). Confirmation arises also from 

Table 2.11 where 99.5 percent for member4, 86.9 percent for active4, 73.1 percent 

for att_relig of variance is explained by Factor 1.  
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Factor 2 mainly explains the variance of variables representing a party’s proximity 

(around 0.70 for parameter estimates of clospar and strongsup) and some of the 

variables for voting (0.79 for civduty, 0.70 for persbenef, 0.90 for willvote as estimates 

of parameter and 62.9%, 49.4% and 81.5% for the squared proportion of variance). 

After these high values, we can observe still quite uniform and normal loadings that 

are never less than 0.2 for the other variables (with only one exception for peopvote).  

 

Factor 3 on Neighbourliness shows how the first big group of variables representing 

relations within the neighbourhood are well explained by the latent factor. All the 

parameter estimates are quite high (from 0.60 upward with only one exception of 

0.48) and from Table 2.11 at least 30 percent of their variance is explained on average 

by the construct. The second group of variables is about the fear of crime, use of 

media and relations with friends. All of them show an average loading of the estimates 

around 0.2. We can notice the negative relations between the variable for frequency 

of use of social media and the variable representing going out with friends. One 

theoretical justification for this last negative loading can be related to the possibility 

that the informal networks of friends does not coincide with the network of 

neighbours. Then the time spent with one network is inversely related to the time 

spent with the others. Some evidence confirming this arises from qualitative studies 

(Southerton, 2003). Another possible reason is that active people spend less time on 

social networks: they do it because they also have more information on what to do. 

Then, they usually spend time actively than being at home and spending time on social 

networks. This can be attributed to the overlap between SC and cultural capital, as 
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described by Bourdieu (1986). Li (2015) finds this inverse correlation between active 

individuals and time spent in front of the television. 

 

The main cross-loadings are for Factor 2 on variables loading on the other two factors. 

When I attempted to correlate the latent Factor 2 with Factor 1 and Factor 3 instead 

of making explicit so many cross-loadings, the results did not improve as much as 

when I correlated the residuals of the variables. Therefore, correlating the latent 

factors has not resulted as a necessary element in the fitting of this model and cross-

loadings are all significant with a P-Value of 0.000 (as we can see from the diagram of 

the model in Figure 2.7). The lack of setting covariances between factors is also 

confirmed by the low covariances (Table 2.6). As already described, factors for 2011 

seem to have a higher internal variance as well as a higher independence from the 

variation of the other factors. Finally, all these correlations and cross-loadings are also 

justified both at the empirical level (all of them are significant at 99 percent) and 

theoretical (same dimension and definition of SC) but are definitively less than the 

previous case, especially with regard also to the higher number of original variables 

involved in the model.  

 

In reference to the general model fit (Hu and Bentler, 1995 and Di Stefano and Hess, 

2005) and according to Schreiber et al. (2006) and like already described RMSEA, CFI 

and TLI are the preferable fit indices to consider for one-time analysis, the most 

common indices show the following values: 

1. Chi-Square Value: 83918.581 with 921 degrees of freedom and a P-Value equal to 

0.000; 
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2. RMSEA: 0.043 with 1.0 probability of RMSEA to be under the critical value of 0.05. Hu 

and Bentler (1999) suggested a cutoff value of <0.06; 

3. CFI: 0.946, slightly close to the suggested cut off value of 0.95 (Hu and Bentler 1999); 

4. TLI or NNFI: 0.941, slightly close to the suggested cut off value of 0.95 (Hu and Bentler 

1999). 

 

2.6 Conclusions 

The models for SC factors proposed in this work confirm the idea of the 

multidimensionality of this concept. All the dimensions, both classical and more 

recent, have found strong confirmation: membership and active membership, voting 

behaviour, citizenship, party’s closeness, informal networks, neighbourliness, use of 

social media and crime control. 

Following Li (2015b) and Li et al. (2005) and the findings on the parallel operation of 

trust and membership (parallel but not causal), we can see how the models tested in 

this work produce an important conclusion: their fit was not possible if one variable 

or one factor would have been removed or changed. This means that SC has been 

confirmed as a complex and multi-construct capital. Indeed, as suggested at the 

conference on the state of SC in Britain (2015), we can identify different indicators 

interacting: informal support is necessary for health and happiness with small-scale 

economic benefits, whereas voluntary organizations may have a civic value but at the 

same time widening the social network. It is more effective to refer to types or classes 

of SC according to the degree to which the clear majority of individuals have ‘mix and 

match’ profiles of SC rather than ‘high or low’ levels.    
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However, each of the factors identified also work on their own as proper further 

variables, showing that each dimension has its own reliability and consistency on 

which it is possible to carry out analysis, confirming for example Swales (2015) that 

analysing participation in communities’ associations find that it follows different and 

autonomous trend respect to the membership to other types of organizations. 

Therefore, we can see how membership and neighbourliness may rely on 

complementary but different patterns. In relation to previous studies, this work shows 

higher levels of richness and complexity both at theoretical and at empirical levels. All 

the dimensions analysed and the factors hypothesized have been derived from a 

careful literature review and have been strongly confirmed as significant both for 

2001 and for 2011. The number of variables involved cannot be compared with 

previous studies such as the use of BHPS and UKHLS for this kind of analysis and 

purposes.  

 

According to the 2001 and 2011 models, the classical dimensions of membership 

identified by the fathers of the concept (Bourdieu, Putnam and Coleman) and the 

other sub-classifications – active and passive membership and formal and informal 

organizations (Olson’s organisation types) – are still actual and appear to still mirror 

attitudes and behaviour of people even over a time lapse of ten years. In a similar 

way, the dimension regards the party’s closeness and citizenship remains constant 

between the two years considered. Despite the different loading of the variables with 

regard to the structure of the factors, all these kinds of variables result as strongly 

significant.  
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Keeping in mind clearly that it is not possible to compare statistically the two models 

because of the differences in sample, data and variables, we can just highlight some 

differences between the two models. The most important one is demonstrated in the 

third factor for both years. While variables representing caring and informal networks 

load significantly on a proper factor in 2001, the same does not occur for 2011 where 

instead variables about neighbourliness load on to a proper, strong factor. In the same 

factor, finally, we have seen how variables representing more recent topics are 

significantly explained in their variance component by this factor. Here we are 

referring to crime control and use of social media, new important aspects for 2011. 

 

Apart from similarities and differences in relation to the variables, the structure of the 

latent factors also deserves further thought. The 2001 model has factors that are 

more dispersed yet slightly more correlated to each other, with higher covariance. 

The 2011 factors’ covariances are low but they present high internal variance and a 

distribution approaching a more normal one. We can conclude then that, apart for a 

wider sample (that could explain this difference), while they have been created to 

capture a common pattern of variance they are also reliable on their own. These 

conclusions confirm the idea that the choice of using a variances analysis involving the 

identification of different factors relying on different dimensions of SC seems better 

than using other approaches involving the choice of variables or the building of a 

unique index of SC. Theoretically and empirically, SC is confirmed once more to be 

deeply linked with many aspects of the individual’s life and their networks. 
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Appendix A 

Table A1: Membership and active membership variables – the first recoding process to 
sum up original variables and obtain main variables for CFA – year 2001 and 2011 

 

Final variable Survey variable Label  

member1 Orgma Member of political party 

  Orgmb Member of trade union 

  Orgmo Member of professional organisation 

  Orgmp Member of pensioners’ organisation 

member2 Orgmc Member of environmental group 

  Orgmd Member of parents’ association 

  Orgmg Member of voluntary service group 

  Orgmh Member of other community group 

  Orgmk Member of women institute 

  Orgml Member of women group 

  Orgmm Member of another organisation 

member3 Orgme Member of tenants or residents group 

  Orgmi Member of social group 

member4 Orgmf Member of religious group 

member5 Orgmj Member of sports club 

  Orgmq Member of Scout/Guides organisation 

active1 Orgaa Member of political party 

  Orgab Member of trade union 

  Orgao Member of professional organisation 

  Orgap Member of pensioners’ organisation 

active2 Orgac Member of environmental group 

  Orgad Member of parents’ association 

  Orgag Member of voluntary service group 

  Orgah Member of other community group 

  Orgak Member of women institute 

  Orgal Member of women group 

  Orgam Member of another organisation 

active3 Orgae Member of tenants or residents group 

  Orgai Member of social group 

active4 Orgaf Member of religious group 

active5 Orgaj Member of sports club 

  Orgmq Member of Scout/Guides organisation 
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Table A2: Other variables used – year 2001 
 

Variable Label 

Relig Attendance at religious services 

govern1 Government reflects will of the people 

govern2 Ordinary people can't influence gov't 

govern3 Government ought to impose earnings ceiling 

vote1 Supports a particular political party 

vote2 Strength of support for stated party 

vote3 Level of interest in politics 

vote4 Voted in June 2001 general election 

neigh Frequency of talking to neighbours 

meet Frequency of meeting people 

carenr Provides care for non-resident person 

help1ext Someone outside HH can help if depressed 

help2ext Someone outside HH can help find job 

help3ext Someone outside HH can borrow money from 

help1net Is there someone who will listen 

help2net Is there someone to help in a crisis 

help3net Is there someone you can relax with 

help4net Anyone who really appreciates you 

help5net Anyone you can count on to offer comfort 

likenbrd Likes present neighbourhood 

move Prefers to move to a new house 
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Table A3: Other variables used – year 2011 
 

Variable  Label 

relig  Belong to a religion 

att_relig  Attendance at religious services ordinal 

imp_relig  Religion makes difference to life ordinal 

clospar  Closer to a party if not a supporter 

strongsup  Strongness of support/being closer 

interpol  Interested in politics 

polinf  Your vote will make a difference 

civduty  Voting is a duty for citizen 

engpol  Too much effort being involved in politics/public affairs 

peopvote  People around me generally vote in elections 

persbenef  Feel personal satisfaction when vote 

willvote  Will vote before the next interview 

preparpol  Feel qualified to participate in politics 

informpol  More informed on politics than other people 

pubofic  Public officials don't care about what people like me think 

govnocare People like me cannot say anything to the government 

sources_n  Number of sources of news 

knitneigh  This is a close-knit neighbourhood 

helpneigh  People willing to help neighbours 

trustneigh  People in this neighbourhood can be trusted 

neighargue  People in this neighbourhood don't get along 

belongne  Feel like belonging to neighbourhood 

localfr  Local friends mean a lot 

adviceloc  Can ask advice to neighbours 

borrownei  Can borrow things from neighbours 

improvnei  Feel like belong to neighbourhood 

planstay  Plan to stay per year 

similnei  Feel similar to neighbours 

talknei  Stop and talk with neighbours 

closefr  How many close friends_ordinal 

socnet_chat  
Number of hours spent chatting between Monday to Friday on social 
networks 

mobile  Have a personal mobile 

goout  Go out with friends when feel like it 

fearcrime  Level of worry of a crime_ordinal 

safedark  Feel safe walking in the dark 
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Table A4: Univariate proportions and counts for observed variables – year 2001 
 

Variable Category Proportion Counts Variable Category Proportion Counts 

MEMBER1 1 0.762 12,088 GOVERN2 1 0.781 12,378 
 2 0.202 3,195  2 0.219 3,478 
 3 0.034 541 GOVERN3 1 0.830 13,155 
 4 0.002 31  2 0.170 2,701 
 5 0.000 1 VOTE1 1 0.610 9,677 

MEMBER2 1 0.839 13,306  2 0.390 6,179 
 2 0.132 2,090 VOTE2 1 0.749 11,870 
 3 0.024 377  2 0.251 3,986 
 4 0.004 70 VOTE3 1 0.600 9,510 
 5 0.001 13  2 0.400 6,346 

MEMBER3 1 0.878 13,917 VOTE4 1 0.322 5,105 
 2 0.117 1861  2 0.678 10,751 
 3 0.005 78 NEIGH 1 0.225 3,562 

MEMBER4 1 0.872 13,833  2 0.775 12,294 
 2 0.128 2,023 MEET 1 0.119 1,894 

MEMBER5 1 0.818 12,971  2 0.881 13,962 
 2 0.179 2,832 CARENR 1 0.884 14,021 
 3 0.003 53  2 0.116 1,835 

ACTIVE1 1 0.918 14,556 HELP1EXT 1 0.187 2,960 
 2 0.075 1,186  2 0.813 12,896 
 3 0.007 111 HELP2EXT 1 0.408 6,473 
 4 0.000 2  2 0.592 9,383 
 5 0.000 1 HELP3EXT 1 0.283 4,494 

ACTIVE2 1 0.837 13,264  2 0.717 11,362 
 2 0.140 2,213 HELP1NET 1 0.089 1,406 
 3 0.020 325  2 0.911 14,450 
 4 0.003 47 HELP2NET 1 0.100 1,589 
 5 0.000 7  2 0.900 14,267 

ACTIVE3 1 0.899 14,262 HELP3NET 1 0.095 1,511 
 2 0.098 1,557  2 0.905 14,345 
 3 0.002 37 HELP4NET 1 0.120 1,895 

ACTIVE4 1 0.875 13,869  2 0.880 13,961 
 2 0.125 1,987 HELP5NET 1 0.102 1,616 

ACTIVE5 1 0.804 12,753  2 0.898 14,240 
 2 0.191 3,027 LIKENBRD 1 0.073 1,165 
 3 0.005 76  2 0.927 14,691 

RELIG 1 0.767 12,160 MOVE 1 0.316 5,006 
 2 0.233 3,696  2 0.684 10,850 

GOVERN1 1 0.712 11,285     

 2 0.288 4,571     
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Table A5: Univariate proportions and counts for observed variables – year 2011 
 

Variable with 
category 

Proportion Counts 
Variable with 

category 
Proportion Counts 

MEMBER1    PREPARPO    

Category 1 0.783 35,325 Category 1 0.477 21,626 

Category 2 0.179 8,076 Category 2 0.257 11,659 

Category 3 0.035 1,599 Category 3 0.266 12,036 

Category 4 0.003 129 INFORMPO    

Category 5 0.000 5 Category 1 0.479 21,741 

MEMBER2    Category 2 0.319 14,470 

Category 1 0.796 35,934 Category 3 0.202 9,174 

Category 2 0.159 7,161 PUBOFIC    

Category 3 0.035 1,594 Category 1 0.498 22,517 

Category 4 0.008 362 Category 2 0.292 13,193 

Category 5 0.002 73 Category 3 0.209 9,460 

Category 6 0.000 8 GOVNOCAR    

Category 7 0.000 2 Category 1 0.512 23,189 

MEMBER3    Category 2 0.238 10,762 

Category 1 0.910 41,057 Category 3 0.250 11,306 

Category 2 0.087 3,942 SOURCES_    

Category 3 0.003 135 Category 1 0.010 467 

MEMBER4    Category 2 0.568 25,923 

Category 1 0.876 39,527 Category 3 0.331 15,097 

Category 2 0.124 5,607 Category 4 0.091 4,174 

MEMBER5    KNITNEIG    

Category 1 0.823 37,142 Category 1 0.214 9,760 

Category 2 0.174 7,858 Category 2 0.279 12,752 

Category 3 0.003 134 Category 3 0.508 23,199 

ACTIVE1    HELPNEIG    

Category 1 0.903 40,761 Category 1 0.095 4,360 

Category 2 0.085 3,841 Category 2 0.191 8,728 

Category 3 0.011 475 Category 3 0.714 32,605 

Category 4 0.001 47 TRUSTNEI    

Category 5 0.000 3 Category 1 0.094 4,260 

ACTIVE2    Category 2 0.254 11,540 

Category 1 0.795 35,866 Category 3 0.653 29,674 

Category 2 0.160 7,233 NEIGHARG    

Category 3 0.035 1,566 Category 1 0.081 3,692 

Category 4 0.008 361 Category 2 0.200 9,128 

Category 5 0.002 82 Category 3 0.719 32,774 

Category 6 0.000 18 BELONGNE    

Category 7 0.000 1 Category 1 0.077 3,117 

ACTIVE3    Category 2 0.283 11,488 
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Category 1 0.928 41,889 Category 3 0.641 26,059 

Category 2 0.070 3,156 LOCALFR    

Category 3 0.002 82 Category 1 0.105 4,281 

ACTIVE4    Category 2 0.330 13,430 

Category 1 0.876 39,536 Category 3 0.564 22,946 

Category 2 0.124 5,591 ADVICELO    

ACTIVE5    Category 1 0.243 9,880 

Category 1 0.826 37,275 Category 2 0.246 9,992 

Category 2 0.170 7,653 Category 3 0.511 20,788 

Category 3 0.004 199 BORROWNE    

RELIG    Category 1 0.357 14,517 

Category 1 0.431 14,037 Category 2 0.230 9,359 

Category 2 0.569 18,527 Category 3 0.413 16,787 

ATT_RELI    IMPROVNE    

Category 1 0.765 24,343 Category 1 0.062 2,514 

Category 2 0.077 2,447 Category 2 0.214 8,681 

Category 3 0.158 5,037 Category 3 0.725 29,460 

IMP_RELI    PLANSTAY    

Category 1 0.292 5,599 Category 1 0.135 5,487 

Category 2 0.349 6,704 Category 2 0.187 7,598 

Category 3 0.359 6,884 Category 3 0.678 27,551 

CLOSPAR    SIMILNEI    

Category 1 0.450 22,345 Category 1 0.136 5,541 

Category 2 0.181 8,993 Category 2 0.249 10,124 

Category 3 0.370 18,371 Category 3 0.615 24,979 

STRONGSU    TALKNEI    

Category 1 0.500 22,949 Category 1 0.133 5,413 

Category 2 0.286 13,147 Category 2 0.194 7,904 

Category 3 0.213 9,798 Category 3 0.672 27,343 

INTERPOL    CLOSEFR    

Category 1 0.293 13,407 Category 1 0.036 1,645 

Category 2 0.614 28,029 Category 2 0.645 29,283 

Category 3 0.093 4,250 Category 3 0.252 11,428 

POLINF    Category 4 0.056 2,562 

Category 1 0.009 340 Category 5 0.006 278 

Category 2 0.585 22,688 Category 6 0.003 147 

Category 3 0.253 9,808 Category 7 0.001 42 

Category 4 0.154 5,968 SOCNET_C    

CIVDUTY    Category 1 0.620 28,430 

Category 1 0.021 837 Category 2 0.243 11,151 

Category 2 0.195 7,790 Category 3 0.128 5,853 

Category 3 0.163 6,494 Category 4 0.010 443 

Category 4 0.621 24,744 MOBILE    

ENGPOL    Category 1 0.136 6,254 

Category 1 0.360 14,257 Category 2 0.864 39,612 
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Category 2 0.365 14,462 GOOUT    

Category 3 0.275 10,889 Category 1 0.079 3,951 

PEOPVOTE    Category 2 0.921 45,773 

Category 1 0.106 3,799 FEARCRIM    

Category 2 0.336 12,030 Category 1 0.000 6 

Category 3 0.558 20,015 Category 2 0.060 2,754 

PERSBENE    Category 3 0.347 15,918 

Category 1 0.030 1,185 Category 4 0.592 27,141 

Category 2 0.247 9,805 SAFEDARK    

Category 3 0.259 10,270 Category 1 0.145 6,673 

Category 4 0.464 18,372 Category 2 0.125 5,740 

WILLVOTE    Category 3 0.729 33,452 

Category 1 0.202 8,031    
Category 2 0.141 5,599    
Category 3 0.658 26,174    
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Table A6: Correlation matrix of variables for 2001 
 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1. MEMBER1               

2. MEMBER2 0.267              

3. MEMBER3 0.168 0.141             

4. MEMBER4 0.215 0.374 -0.015            

5. MEMBER5 0.246 0.091 0.125 0.079           

6. ACTIVE1 0.762 0.248 0.144 0.251 0.196          

7. ACTIVE2 0.186 0.867 0.071 0.355 0.062 0.262         

8. ACTIVE3 0.088 0.049 0.858 -0.042 0.089 0.165 0.075        

9. ACTIVE4 0.152 0.335 -0.039 0.938 0.045 0.292 0.384 -0.025       

10. ACTIVE5 0.170 0.063 0.063 0.048 0.896 0.211 0.113 0.123 0.077      

11. RELIG 0.094 0.239 -0.118 0.890 0.001 0.200 0.278 -0.095 0.891 0.006     

12. GOVERN1 0.104 0.029 0.005 0.072 0.072 0.111 0.018 -0.005 0.059 0.069 0.099    

13. GOVERN2 0.160 0.119 -0.014 0.143 0.125 0.130 0.110 -0.047 0.117 0.120 0.089 0.466   

14. GOVERN3 -0.051 -0.054 0.037 -0.014 0.004 0.012 -0.058 0.036 -0.007 0.008 0.036 0.491 0.233  

15. VOTE1 0.164 0.101 0.112 0.143 -0.016 0.159 0.076 0.111 0.103 -0.020 0.072 0.258 0.158 0.200 

16. VOTE2 0.128 0.103 0.067 0.125 -0.034 0.192 0.075 0.106 0.090 -0.033 0.108 0.262 0.163 0.221 

17. VOTE3 0.277 0.250 0.110 0.151 0.090 0.280 0.181 0.084 0.131 0.083 0.081 0.211 0.239 0.090 

18. VOTE4 0.262 0.273 0.150 0.289 0.034 0.261 0.252 0.104 0.278 0.001 0.260 0.149 0.129 0.043 

19. NEIGH -0.018 0.084 0.182 0.077 -0.039 0.028 0.105 0.173 0.115 -0.028 0.065 -0.006 -0.036 0.021 

20. MEET -0.082 -0.001 0.069 0.021 0.104 -0.003 0.031 0.092 0.043 0.124 0.044 0.017 -0.012 -0.009 

21. CARENR 0.086 0.176 0.123 0.145 0.002 0.085 0.185 0.139 0.132 0.022 0.113 -0.061 0.013 -0.045 

22. HELP1EXT 0.046 0.064 0.010 0.085 0.102 0.008 0.065 0.020 0.078 0.113 0.015 0.022 0.074 -0.038 

23. HELP2EXT 0.060 0.010 -0.017 -0.032 0.169 0.025 0.025 0.017 -0.023 0.173 -0.038 0.044 0.086 -0.001 

24. HELP3EXT 0.060 -0.027 0.015 -0.048 0.126 0.001 -0.007 0.030 -0.037 0.133 -0.073 0.017 0.050 0.000 

25. HELP1NET 0.045 0.081 0.016 0.128 0.100 0.012 0.078 0.011 0.118 0.084 0.066 0.057 0.055 0.028 

26. HELP2NET 0.062 0.091 0.038 0.120 0.149 0.028 0.092 0.023 0.118 0.152 0.055 0.102 0.088 0.030 
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27. HELP3NET 0.005 0.019 0.019 0.065 0.119 0.013 0.052 0.044 0.057 0.117 0.036 0.048 0.038 -0.020 

28. HELP4NET 0.062 0.092 -0.015 0.131 0.102 0.026 0.085 -0.015 0.123 0.086 0.098 0.077 0.095 0.046 

29. HELP5NET 0.005 0.033 0.016 0.123 0.049 -0.011 0.049 0.043 0.107 0.049 0.107 0.035 0.060 0.035 

30. LIKENBRD 0.116 0.148 0.087 0.170 0.125 0.112 0.116 0.018 0.162 0.107 0.162 0.130 0.117 0.088 

31. MOVE 0.023 0.090 0.047 0.169 0.003 0.064 0.096 0.010 0.165 -0.013 0.198 0.074 0.037 0.073 

 

 

 

  15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

16. VOTE2 0.784                

17. VOTE3 0.485 0.603               

18. VOTE4 0.5600 0.515 0.457              

19. NEIGH 0.099 0.074 0.021 0.157             

20. MEET -0.029 -0.021 -0.075 -0.084 0.183            

21. CARENR 0.070 0.008 0.030 0.136 0.090 0.161           

22. HELP1EXT -0.002 -0.023 -0.007 -0.014 0.112 0.223 0.053          

23. HELP2EXT -0.066 -0.050 0.024 -0.107 0.018 0.188 -0.025 0.541         

24. HELP3EXT -0.040 -0.069 -0.012 -0.055 0.049 0.195 0.035 0.598 0.556        

25. HELP1NET 0.073 0.032 0.039 0.052 0.098 0.185 0.016 0.730 0.453 0.513       

26. HELP2NET 0.030 -0.012 0.035 0.070 0.121 0.201 0.015 0.639 0.469 0.610 0.795      

27. HELP3NET 0.015 -0.011 -0.015 -0.005 0.123 0.165 0.025 0.584 0.373 0.405 0.740 0.687     

28. HELP4NET 0.052 0.052 0.085 0.092 0.093 0.107 0.058 0.507 0.373 0.384 0.666 0.647 0.726    

29. HELP5NET 0.076 0.013 0.009 0.050 0.146 0.189 0.034 0.630 0.387 0.451 0.797 0.759 0.765 0.775   

30. LIKENBRD 0.088 0.040 0.089 0.185 0.142 0.046 0.002 0.139 0.072 0.081 0.162 0.196 0.151 0.177 0.166  

31. MOVE 0.095 0.072 0.017 0.174 0.145 0.007 -0.001 0.029 -0.042 -0.042 0.108 0.086 0.097 0.083 0.093 0.83 
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Table A7: Correlation matrix of variables for 2011 
 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1. MEMBER1                   

2. MEMBER2 0.307                  

3.MEMBER3 0.223 0.192                 

4. MEMBER4 0.222 0.369 0.064                

5.MEMBER5 0.219 0.127 0.170 0.069               

6. ACTIVE1 0.761 0.333 0.195 0.284 0.180              

7. ACTIVE2 0.230 0.838 0.132 0.327 0.096 0.381             

8. ACTIVE3 0.140 0.153 0.859 0.057 0.146 0.270 0.231            

9. ACTIVE4 0.170 0.316 0.040 0.937 0.043 0.325 0.390 0.103           

10. ACTIVE5 0.168 0.104 0.117 0.057 0.885 0.236 0.183 0.199 0.118          

11. RELIG 
0.004 0.101 0.019 0.699 

-
0.053 

0.096 0.102 0.014 0.610 
-

0.058 
        

12. ATT_RELI 
0.054 0.182 

-
0.066 

0.839 
-

0.048 
0.139 0.168 

-
0.039 

0.779 
-

0.035 
0.786        

13. IMP_RELI 
0.000 0.070 

-
0.086 

0.546 
-

0.125 
0.073 0.059 

-
0.067 

0.479 
-

0.125 
0.433 0.627       

14. CLOSPAR 0.219 0.196 0.143 0.182 0.079 0.220 0.157 0.125 0.161 0.067 0.158 0.087 0.055      

15. STRONGSUP 0.225 0.190 0.145 0.177 0.078 0.226 0.154 0.129 0.157 0.070 0.142 0.073 0.048 0.937     

16. INTERPOL 0.322 0.275 0.129 0.187 0.155 0.302 0.236 0.130 0.176 0.141 0.074 0.066 0.036 0.559 0.591    

17. POLINF 0.087 0.068 0.044 0.102 0.009 0.093 0.072 0.055 0.102 0.021 0.144 0.126 0.054 0.341 0.342 0.294   

18. CIVDUTY 0.279 0.270 0.171 0.264 0.071 0.263 0.242 0.138 0.246 0.064 0.218 0.188 0.074 0.546 0.540 0.511 0.465  

19. ENGPOL 
0.135 0.134 0.028 0.061 0.074 0.151 0.136 0.041 0.063 0.080 

-
0.042 

0.024 
-

0.002 
0.119 0.141 0.269 0.101 0.089 

20. PEOPVOTE 
-

0.033 
0.019 0.030 0.072 0.032 

-
0.005 

0.029 0.029 0.083 0.033 0.108 0.102 0.034 0.103 0.093 0.043 0.118 0.159 

21. PERSBENEF 0.200 0.181 0.126 0.203 0.013 0.194 0.158 0.109 0.194 0.020 0.205 0.165 0.068 0.528 0.524 0.449 0.451 0.733 

22. WILLVOTE 0.285 0.299 0.153 0.268 0.123 0.259 0.259 0.120 0.251 0.115 0.223 0.196 0.080 0.661 0.642 0.605 0.455 0.752 

23. PREPARPOL 0.294 0.221 0.072 0.118 0.130 0.264 0.179 0.063 0.112 0.126 0.004 0.055 0.033 0.321 0.341 0.540 0.186 0.325 

24. INFORMPOL 0.254 0.193 0.088 0.126 0.130 0.237 0.151 0.090 0.106 0.108 0.041 0.078 0.068 0.365 0.381 0.571 0.184 0.352 

25. PUBOFIC 
0.121 0.120 

-
0.006 

0.113 0.125 0.124 0.137 0.004 0.102 0.130 0.013 0.069 0.003 0.115 0.115 0.162 0.164 0.149 

26. GOVNOCARE 0.178 0.160 0.004 0.146 0.121 0.166 0.171 0.012 0.139 0.133 0.026 0.087 0.025 0.161 0.162 0.235 0.213 0.236 

27. SOURCES_N 
0.287 0.215 0.092 0.092 0.202 0.225 0.222 0.111 0.097 0.220 

-
0.061 

-
0.036 

-
0.068 

0.144 0.162 0.324 0.067 0.179 

28. KNITNEIGH 
-

0.032 
0.041 0.068 0.064 

-
0.006 

0.003 0.058 0.078 0.065 0.010 0.113 0.105 0.045 0.037 0.038 
-

0.025 
0.069 0.069 

29. HELPNEIGH 
0.096 0.140 0.099 0.123 0.094 0.092 0.144 0.086 0.118 0.098 0.075 0.080 

-
0.010 

0.109 0.106 0.089 0.090 0.178 
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30. TRUSTNEIGH 
0.122 0.174 0.115 0.145 0.113 0.109 0.167 0.083 0.140 0.105 0.115 0.076 

-
0.029 

0.179 0.165 0.151 0.106 0.251 

31. NEIGHARGUE 
0.168 0.179 0.104 0.114 0.148 0.122 0.172 0.088 0.106 0.145 0.016 

-
0.015 

-
0.074 

0.119 0.117 0.149 0.060 0.201 

32. BELONGNE 0.051 0.147 0.165 0.173 0.055 0.087 0.150 0.163 0.143 0.058 0.180 0.147 0.058 0.121 0.106 0.045 0.120 0.187 

33. LOCALFR 0.021 0.159 0.176 0.166 0.014 0.066 0.169 0.178 0.158 0.026 0.183 0.147 0.062 0.100 0.091 0.042 0.112 0.184 

34. ADVICELOC 
0.007 0.126 0.153 0.135 0.006 0.046 0.135 0.149 0.129 0.015 0.132 0.117 0.047 0.062 0.056 

-
0.007 

0.078 0.134 

35. BORROWNEI 
0.076 0.127 0.099 0.043 0.102 0.083 0.143 0.108 0.047 0.108 0.005 0.031 

-
0.012 

0.044 0.047 0.052 0.050 0.089 

36. IMPROVNEI 0.151 0.224 0.144 0.142 0.116 0.169 0.234 0.170 0.158 0.117 0.052 0.091 0.033 0.121 0.122 0.174 0.113 0.219 

37. PLANSTAY 
0.067 0.131 0.192 0.115 

-
0.007 

0.070 0.128 0.163 0.104 
-

0.017 
0.115 0.055 0.015 0.119 0.101 0.030 0.093 0.195 

38. SIMILNEI 
0.030 0.053 0.167 0.073 0.004 0.034 0.066 0.147 0.058 

-
0.002 

0.144 0.063 
-

0.015 
0.093 0.077 

-
0.012 

0.098 0.178 

39. TALKNEI 0.056 0.160 0.221 0.124 0.003 0.090 0.180 0.216 0.123 0.015 0.113 0.060 0.021 0.084 0.078 0.037 0.092 0.172 

40. CLOSEFR 
0.131 0.167 0.135 0.130 0.161 0.140 0.175 0.141 0.125 0.148 0.016 0.041 

-
0.027 

0.068 0.068 0.107 0.014 0.088 

41. SOCNET_CHAT 
-

0.041 
-

0.057 
-

0.147 
-

0.136 
0.109 

-
0.051 

-
0.034 

-
0.089 

-
0.111 

0.116 
-

0.185 
-

0.109 
-

0.100 
-

0.174 
-

0.150 
-

0.095 
-

0.099 
-

0.273 

42. MOBILE 
0.142 0.163 0.179 0.080 0.247 0.141 0.131 0.195 0.085 0.235 

-
0.023 

0.024 
-

0.057 
0.026 0.036 0.073 0.050 0.063 

43. GOOUT 
0.197 0.133 0.005 

-
0.038 

0.271 0.095 0.132 0.009 
-

0.018 
0.266 

-
0.189 

-
0.087 

-
0.104 

-
0.125 

-
0.084 

0.073 
-

0.048 
-

0.075 

44. FEARCRIME 
-

0.048 
-

0.010 
-

0.014 
0.001 0.006 

-
0.037 

-
0.015 

0.002 
-

0.023 
-

0.002 
-

0.047 
-

0.018 
-

0.021 
-

0.013 
-

0.015 
-

0.048 
-

0.022 
-

0.022 

45. SAFEDARK 
0.191 0.090 0.053 

-
0.036 

0.262 0.103 0.077 0.068 
-

0.026 
0.258 

-
0.163 

-
0.054 

-
0.102 

0.026 0.038 0.131 0.005 0.016 

 

 

  19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

20. PEOPVOTE 
-

0.025 
                                  

21. PERSBENEF 0.114 0.106                                 

22. WILLVOTE 0.156 0.207 0.649                               

23. PREPARPOL 
0.298 

-
0.010 

0.300 0.363                             

24. INFORMPOL 
0.203 

-
0.030 

0.321 0.380 0.688                           

25. PUBOFIC 0.242 0.057 0.166 0.190 0.172 0.107                         
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26. GOVNOCARE 0.277 0.031 0.235 0.270 0.255 0.173 0.676                       

27. SOURCES_N 
0.201 

-
0.012 

0.140 0.227 0.264 0.232 0.153 0.203                     

28. KNITNEIGH 
-

0.016 
0.227 0.078 0.045 0.003 

-
0.004 

0.047 0.024 
-

0.029 
                  

29. HELPNEIGH 0.007 0.244 0.147 0.184 0.071 0.055 0.116 0.103 0.043 0.645                 

30. TRUSTNEIGH 
-

0.002 
0.292 0.199 0.255 0.119 0.104 0.119 0.114 0.025 0.504 0.671               

31. NEIGHARGUE 0.072 0.186 0.139 0.224 0.080 0.048 0.131 0.135 0.124 0.381 0.569 0.590             

32. BELONGNE 
-

0.032 
0.243 0.168 0.186 0.020 0.023 0.077 0.069 

-
0.017 

0.554 0.564 0.534 0.422           

33. LOCALFR 
-

0.028 
0.203 0.164 0.155 

-
0.002 

0.007 0.029 0.016 
-

0.016 
0.511 0.510 0.447 0.330 0.719         

34. ADVICELOC 
-

0.032 
0.190 0.126 0.113 

-
0.025 

-
0.020 

0.030 0.030 
-

0.011 
0.466 0.505 0.418 0.297 0.609 0.724       

35. BORROWNEI 0.024 0.121 0.075 0.086 0.066 0.059 0.070 0.080 0.068 0.387 0.491 0.355 0.281 0.469 0.544 0.627     

36. IMPROVNEI 0.094 0.117 0.176 0.225 0.140 0.114 0.104 0.125 0.140 0.254 0.369 0.329 0.288 0.400 0.422 0.394 0.442   

37. PLANSTAY 
-

0.088 
0.158 0.162 0.155 

-
0.011 

0.010 
-

0.013 
-

0.021 
-

0.066 
0.322 0.361 0.398 0.285 0.572 0.489 0.425 0.322 0.348 

38. SIMILNEI 
-

0.097 
0.208 0.166 0.135 

-
0.042 

-
0.029 

0.003 
-

0.006 
-

0.055 
0.377 0.423 0.457 0.337 0.613 0.553 0.502 0.372 0.380 

39. TALKNEI 
-

0.035 
0.175 0.152 0.138 

-
0.009 

0.016 
-

0.001 
-

0.002 
0.008 0.478 0.506 0.415 0.336 0.614 0.638 0.596 0.539 0.438 

40. CLOSEFR 0.076 0.055 0.076 0.110 0.079 0.070 0.082 0.090 0.161 0.098 0.146 0.134 0.157 0.136 0.157 0.155 0.142 0.129 

41. SOCNET_CHAT 
0.131 

-
0.055 

-
0.234 

-
0.186 

0.019 
-

0.057 
0.071 0.058 0.146 

-
0.073 

-
0.113 

-
0.206 

-
0.089 

-
0.192 

-
0.177 

-
0.151 

-
0.034 

-
0.049 

42. MOBILE 0.070 0.075 0.037 0.097 0.081 0.049 0.091 0.114 0.183 0.061 0.143 0.121 0.167 0.146 0.151 0.117 0.143 0.184 

43. GOOUT 
0.129 

-
0.057 

-
0.109 

-
0.043 

0.130 0.061 0.099 0.120 0.310 
-

0.123 
-

0.032 
-

0.093 
0.069 

-
0.138 

-
0.138 

-
0.124 

0.070 0.133 

44. FEARCRIME 
-

0.001 
0.078 

-
0.024 

-
0.010 

-
0.006 

-
0.009 

0.066 0.038 
-

0.069 
0.159 0.186 0.265 0.168 0.182 0.109 0.102 0.065 0.025 

45. SAFEDARK 0.108 0.057 0.003 0.069 0.182 0.143 0.146 0.164 0.186 0.116 0.191 0.215 0.213 0.159 0.067 0.064 0.191 0.201 
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37 38 39 40 41 42 43 44 

38. SIMILNEI 0.611               

39. TALKNEI 0.476 0.544             

40. CLOSEFR 0.061 0.088 0.120           

41. SOCNET_CHAT -0.301 -0.245 -0.209 0.065         

42. MOBILE 0.028 0.113 0.143 0.269 0.145       

43. GOOUT -0.203 -0.138 -0.064 0.154 0.504 0.360     

44. FEARCRIME 0.143 0.137 0.103 0.015 -0.034 0.068 -0.074   

45. SAFEDARK 0.070 0.083 0.100 0.109 0.138 0.298 0.349 0.326 
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Supplementary Material  

Missing data analysis 

As anticipated at paragraph 2.2.2, in this section I am going to check the Missing At 

Random (MAR) assumption for 2001 sample, given the difference in the observations 

between the full sample and the sample of the estimated model with listwise deletion 

(18,867 versus 15,586). The first step was to run Independent Sample T-Tests to 

compare means of several variables between the two groups: full sample and sample 

with missing data from the estimates of the models. The hypothesis is that there is no 

difference between the means, meaning that missing data are random and they do 

not bias results.  

 

I used variables about sex, age and educational attainment from the original dataset10
. 

I choose them because they do not have missing data at all and they can give 

information about the full sample. The hypothesis of no differences between the 

means of the groups has been rejected. 

 

I then run logistic regressions to investigate it further. Dependent variable is a coded 

1 for observations with at least a missing value and 0 otherwise. It then identifies the 

two samples. 

Results are reported in the following table: 

 

 

                                                           
10 Age is a continuous variable; Sex is a dummy variable with 1 for Female, Education level is a 
categorical variable with 6 values: No qualifications, other qualifications, GSCE, A-level, Degree, Other 
higher degree. 
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Table SM.1.1: Logistic regression results 
 Results 

Constant 
-2.881*** 

(0.119) 

Age 
0.020*** 
(0.001) 

Sex 
0.237*** 
(0.048) 

Educational level 
-0.190*** 

(0.019) 

 

Without focusing on the sign of the relation, we can see that all the variable are 

significant, leading to the rejection of MAR assumption (indeed, they should have 

resulted not significant). 

 

To check if differences between these means are significantly greater than zero I then 

finally check descriptive statistics of the two samples respect to the variables used in 

the logistic regression and also respect to the original variables used for the Factor 

Analysis. As we can see from the following table, the differences are small. It seems 

big differences between the two samples are not relevant, therefore this adjust for 

MAR assumption (or MCR).  

Table SM.1.2: Descriptive statistics 
 Full sample Sample without missing 

Variable Observations Mean Std. dev. Observations Mean Std. dev. 

age 18867 45.348 18.575 15860 44.417 17.835 

sex 18867 1.542 0.498 15860 1.540 0.498 

educational level 18867 2.584 1.273 15860 2.634 1.253 

       

member1 17908 0.264 0.519 15860 0.276 0.530 

member2 17908 0.195 0.491 15860 0.196 0.491 

member3 17908 0.123 0.343 15860 0.127 0.348 

member4 17908 0.130 0.336 15860 0.128 0.334 

member5 17908 0.177 0.390 15860 0.185 0.397 

active1 18056 0.088 0.309 15860 0.089 0.311 

active2 18056 0.189 0.466 15860 0.191 0.468 

active3 18056 0.099 0.306 15860 0.103 0.311 

active4 18056 0.126 0.331 15860 0.125 0.331 
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active5 18056 0.189 0.403 15860 0.200 0.412 

relig 18867 0.230 0.421 15860 0.233 0.423 

govern1 18063 0.282 0.450 15860 0.288 0.453 

govern2 18062 0.214 0.410 15860 0.219 0.414 

govern3 18061 0.169 0.374 15860 0.170 0.376 

vote1 18061 0.387 0.487 15860 0.390 0.488 

vote2 18061 0.250 0.433 15860 0.251 0.434 

vote3 18061 0.389 0.488 15860 0.400 0.490 

vote4 18061 0.671 0.470 15860 0.678 0.467 

neigh 18061 0.774 0.418 15860 0.775 0.417 

meet 18059 0.880 0.325 15860 0.881 0.324 

carenr 18059 0.113 0.317 15860 0.116 0.320 

help1ext 18056 0.788 0.408 15860 0.813 0.390 

help2ext 18051 0.561 0.496 15860 0.592 0.492 

help3ext 18003 0.687 0.464 15860 0.717 0.451 

help1net 17988 0.887 0.317 15860 0.911 0.284 

help2net 17481 0.893 0.310 15860 0.900 0.300 

help3net 17477 0.899 0.302 15860 0.905 0.294 

help4net 17373 0.875 0.331 15860 0.880 0.324 

help5net 17316 0.894 0.307 15860 0.898 0.303 

likenbrd 17191 0.921 0.269 15860 0.927 0.261 

lkmoven 17188 0.678 0.467 15860 0.684 0.465 

  

Mplus syntax for Model 2001    

INPUT INSTRUCTIONS 

TITLE: CFA with Categorical Outcome Variables; 

listwise=on; 

variable: names are member1 member2 

member3 member4 member5 active1 

active2 active3 active4 active5 relig 

govern1 govern2 govern3 vote1 vote2 

vote3 vote4 neigh meet carenr help1ext 

help2ext help3ext help1net help2net help3net 

help4net help5net likenbrd move; 

categorical are member1 member2 

member3 member4 member5 active1 

active2 active3 active4 active5 relig 

govern1 govern2 govern3 vote1 vote2 

vote3 vote4 neigh meet carenr help1ext 

help2ext help3ext help1net help2net help3net 

help4net help5net likenbrd move; 

missing are all (-9999); 

analysis: type is general; 

iterations=1000; 
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convergence=0.00005; 

difftest; 

model: F1 by member1 active1 member3 active3 

govern1 govern2 govern3  

vote1 vote2 vote3 vote4; 

F2 by member2 member4 member5 

relig active2 active4 active5; 

F3 by neigh meet carenr  

help1ext help2ext help3ext  

help1net help2net help3net help4net  

help5net likenbrd move; 

member1 with active1; 

member2 with active2; 

member5 with active5; 

member1 with active5; 

member1 with member2; 

member1 with member5; 

member2 with member5; 

member1 with active2; 

active1 with active2; 

active1 with member2; 

member3 with active3; 

active1 with active3; 

member1 with active3; 

member1 with member3; 

member2 with member3; 

govern1 with govern2; 

govern1 with govern3; 

govern3 with govern2; 

vote1 with vote2; 

vote2 with vote3; 

vote3 with member2; 

vote4 with member2; 

vote4 with active2; 

help2ext with help3ext; 

help2ext with member5; 

help2ext with active5; 

help2net with help3ext; 

help1net with help2net; 

help1net with help3net; 

likenbrd with move; 

move with member2; 

move with active2; 

move with relig; 

move with vote4; 

F1 with F2; 

F1 with F3; 

output: sampstat modindices stdyx standardized; 

tech4; 
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Mplus syntax for Model 2011 

INPUT INSTRUCTIONS 

Title: CFA with Categorical Outcome Variables; 

listwise=on; 

Variable: names are member1 member2 member3 member4  

member5 active1 active2 active3 active4 active5 relig  

att_relig imp_relig clospar strongsup interpol polinf  

civduty engpol peopvote persbenef willvote preparpol  

informpol pubofic govnocare sources_n knitneigh  

helpneigh trustneigh neighargue belongne localfr  

adviceloc borrownei improvnei planstay similnei  

talknei closefr socnet_chat mobile gout fearcrime 

safedark lkhere moved moved_yr moved_3yr  

moved_3_5yr moved_5_10yr moved_10yr jobsat satisheal  

satisinc satisleis satislif happyrel likenei  

internetfr hrstv health illness carehome careout  

careout_n careout_par careout_net carehrs caresome  

concenslee useful decis stress diffic enjoy problem  

unhappy confid worthless happy healthsum moth_see  

moth_con moth_cont fath_see fath _con fath_cont 

chil_see chil_con child_cont help_par help_child  

help_fr child visit_fam; 

Missing are all (-9999); 

categorical are 

member1 member2 member3 member4 

member5 active1 active2 active3 active4 active5 

relig att_relig imp_relig clospar strongsup interpol  

polinf civduty engpol peopvote persbenef willvote  

preparpol informpol pubofic govnocare sources_n  

knitneigh helpneigh trustneigh neighargue belongne  

localfr adviceloc borrownei improvnei planstay similnei  

talknei closefr socnet_chat mobile goout fearcrime 

safedark; 

usevariables are member1 member2 member3 member4 

member5 active1 active2 active3 active4 active5 

relig att_relig imp_relig clospar strongsup interpol  

polinf civduty engpol peopvote persbenef willvote  

preparpol informpol pubofic govnocare sources_n  

knitneigh helpneigh trustneigh neighargue belongne  

localfr adviceloc borrownei improvnei planstay similnei  

talknei closefr socnet_chat mobile goout fearcrime 

safedark; 

Analysis: 

Type = general missing; 

coverage=.06; 

iterations=10000; 

convergence=0.00005; 

difftest; 

estimator=WLSMV; 

model:F1 by member1 member2 member3 member4 
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member5 active1 active2 active3 active4 active5 

relig att_relig imp_relig; 

F2 by clospar strongsup interpol polinf 

civduty engpol peopvote persbenef willvote  

preparpol informpol pubofic govnocare sources_n; 

F3 by knitneigh helpneigh trustneigh 

neighargue belongne localfr adviceloc borrownei 

improvnei planstay similnei talknei 

closefr socnet_chat mobile goout fearcrime 

safedark; 

member1 with active1; 

member2 with active2; 

member3 with active3; 

member5 with active5; 

strongsup with clospar; 

F2 by member1; 

F2 by member2; 

F2 by active1; 

F2 by active2; 

F2 by att_relig; 

F2 by trustneigh; 

F2 by improvnei; 

F3 by member3; 

att_relig with relig; 

persbenef with civduty; 

informpol with preparpol; 

preparpol with interpol; 

informpol with preparpol; 

govnocare with pubofic; 

safedark with fearcrime; 

safedark with goout; 

goout with socnet_chat; 

output: sampstat modindices stdyx standardized; 

tech4; 

tech10; 
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CHAPTER 3 – SOCIAL CAPITAL AND LOCAL AREA EFFECTS: A 

MULTILEVEL MODEL ANALYSIS 

 

3. 1 Introduction 

The previous chapters have highlighted widely how SC is a complex and 

multidimensional concept. However, especially, how it is deeply related to several 

personal and individual life dimensions: from membership to crime, from 

neighbourliness to voting behaviours, from use of social media to trust towards the 

Institution, particularly Government. Based on these evidences, a natural question 

arises: how much do other personal characteristics influence it? What might be the 

other aspects affecting its development? 

 

In order to address these questions, I turn my view to a particular modelling approach 

that has increasingly been used over the last few years: Multilevel Models. These 

kinds of models have been developed to take into account the hierarchical and 

clustered nature of particular kinds of data. The cluster dimension can be referred to 

different levels: human (individuals, households), organisations (firms, schools, 

hospitals, etc.) or geographical (local area, regions, country). 

As will be described later in the chapter, it is possible to identify an increasing interest 

on this last level. Indeed, the geographical level, especially at local and restricted 

areas, can catch all the aspects related to living in communities that naturally affects 

individual’s networks, acquaintances and possibilities to modify them. 
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Having made clear that SC is an asset dependent both on individual aspects and local 

dimensions, I will try to identify, using a Multilevel Model (MM hereafter), which 

personal characteristics are correlated with SC (in a positive and negative way) and at 

which geographical level we can start explaining its differentials. The three factors of 

SC developed previously with Confirmatory Factor Analysis will be our dependent 

variables. The MM will be developed from a Null Model, in order to see the level of 

variance that can be explained from differences at local area without any covariates 

involved until the more complex Random Slope Models, where SC varies between all 

the individuals and are contemporary to all of the areas involved in the analysis.  

 

3.2 Multilevel Models: The theoretical assumptions and empirical 

implications 

Multilevel Models - also called Random Effect Models, Hierarchical Linear Models or 

Mixed Models just to cite some titles – are models that, as Goldstein (2010) widely 

described, catch the clustered and hierarchical structure of observational data 

collected in biological and human sciences.  From experimental collections of data to 

the national survey data, many data show a hierarchy consisting of units grouped at 

different levels. This particular structure can be represented graphically like a 

diagram, as in Figure 3.1, where each colour represents a different level (in this case, 

up to 3 levels). 
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Figure 3.1: Diagram representation of clustered data 
 

 

 

One basic example occurs when same individuals and units are measured on more 

than one occasion. These examples are frequent in clinical trials and laboratory 

experiments or weather collection data. In this case, the lowest level 1 are the 

measurements occasions nested at level 2 represented by individuals. 

 

Longitudinal studies can be also applied to analyse, in this case, changes over the time 

of an individual and differences between individuals (growth studies). With 

observational data, the possible hierarchies may depend on the topic. In a study about 

school performances, the lowest level can be represented by students or pupils and 

their test scores, level 2 can be the classes and the last level can be the schools. 

 

In organizational and management studies, level 1 can be the employers nested in 

Departments, and at the highest third level, in Companies. At a more geographical 

level, as frequently occurs within survey data, the level 1 of the observations can be 

individuals (or households) nested in Areas further clustered in Regions. Whichever 
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the topics and the levels identified, MM have been increasingly used, due to the fact 

that they take into account this aspect, making it the central idea of the model. The 

statistical implications of these procedures are evident. While the standard statistical 

analysis is based on the assumptions that observations are independent between 

themselves, in MM the clustering process of observations in larger analytic units 

results in: 

• a higher correlation between observations in the same units than the average. 

It is also called the within effect and it is analysed in the fixed part of the model 

at level 1;  

• the lower similarities between observations from different clusters than the 

average. It is called between effect and it is analysed in the random part of the 

model, corresponding to all the other levels hypothesized (level 2 and 3 and 

so on). 

These factors can be caused from selective factors involved in the grouping of 

individuals or joint patterns of variances with respect to similar influences or mutual 

interactions (Kish, 1967:163).  

 

The underestimation of this aspect can lead to underestimated standard errors and 

missed identification of the influences of higher levels. Moreover, MM helps to take 

also into account another important interdependence between observations: the 

interdependence originating from the survey design. Important and large surveys, 

such as the Understanding Society survey that I intend to use for this purpose, use 

methods that on the one hand try to produce correct and representative estimates 

and on the other hand decrease the impressive costs. One of the methods for the 
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latter aspects is the choice, during the sampling procedure, of observations reducing 

the distance that the interviewer should cover. Therefore, frequently we can have 

individuals and/or households quite close each other.  

 

It is quite evident in this case how some kind of territorial dependency and similarity 

may be present between observations. All the surveys present some statistical 

adjustment and weights to account for non-independence of observations from the 

same cluster. Instead of simple post-hoc corrections, MM allows us to consider it and 

even insert it in the analysis as a valid aspect in itself, deserving the status of a further 

source of variation (Brunton-Smith and Sturgis, 2011 and Goldstein 2010).  

 

Further, it is the statistical structure of a MM in itself that helps to take in account all 

these aspects. In this study, a two-level model grouping individual within local areas 

will include residuals both at first and at second level. Therefore, the residual variance 

will be partitioned into a between-areas (level 2) component (variance of the area-

level residuals) and a within-areas (level 1) component (variance of the individual-

level residuals). The area-level residuals of level 2 – also called ‘area effect’ – will 

represent all the unobserved area characteristics that may affect the individual 

outcomes identifying correlations between outcomes for individual of the same area 

(elaboration on University of Bristol, Centre for Multilevel Modelling online 

material)11. 

 

                                                           
11  http://www.bristol.ac.uk/cmm/learning/multilevel-models/what-why.html. Accessed on October 
2015.  

http://www.bristol.ac.uk/cmm/learning/multilevel-models/what-why.html
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3.2.1 Theoretical assumptions and types of Multilevel Models 

Before showing how MM are built according to an even higher level of complexity, it 

is important to indicate the main assumptions of these kind of models, this will be 

important also for some goodness of fit check. 

As summarized by Dedrick et al. (2009) and Snijders T. A. B. and Berkhof J. (2007), MM 

holds the same assumptions of linear regression but they are modified to fit the 

hierarchical nature of data design. Furthermore, some of these assumptions that I am 

going to list, are also important for the post estimation process. The main assumptions 

are:   

• linearity: function forms are linear at each level; 

• normality of level 1 residuals. They are assumed to be independently and 

normally distributed with covariance Σ. Lack of normality can bias the standard 

errors at all the levels, leading to a question about the validity of the statistical 

tests and the accuracy of the confidence intervals identified. The check of the 

normality of distribution of the residuals at this level is considered a good 

check of the goodness of fit. Where this assumption does not hold because of 

the type of the outcome variable (binary, ordinary or multinomial), other 

models are appropriate, like the Hierarchical Generalized Linear Model 

(Dedrick et al., 2009). 

Therefore, level 2 random effects have a multivariate normal distribution;  

• homoscedasticity: level 1 residual variance is constant; 

• independence. Level 1 residuals and level 2 residuals are uncorrelated. 

Besides, independence is also considered between observations: at a higher 
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level, they are independent of each other (Rabe-Hesketh S., Skrondal A., 

2012). 

 

After pointing out the main theoretical assumptions behind MM, as briefly suggested 

in the introduction, it is possible to see how they can be built going from a simple 

model up to more complex ones (Snijders and Bosker, 1999; Rabe-Hesketh S., 

Skrondal A., 2012). An important precondition is that, as suggested previously, MM 

are composed of a fixed part and a random part. Intuitively, the fixed part corresponds 

to the level 1, where observations are analysed in respect to a variable or more 

(covariates) referred to the observations in themselves. The clustered and hierarchical 

nature of the data and its effects on level 1 observations is mainly investigated in the 

random part of the model, corresponding to the level 2 of the model (and further 

higher levels where considered). At this level, therefore, different hypotheses can be 

made in respect of the intercept component, as well as the slope component of the 

model (Hayes, 2006).  

 

Therefore, the unexplained residual variance is partitioned into two parts: higher-

level variance between higher level entities and lower-level variance within these 

entities and between observations. Each level has a residual term and it is the residual 

at a higher level which is the so-called random effect (Bell and Jones, 2015).  

 

Starting from the simplest case, the first model is called Null Model (or Baseline 

Model, Intercept-only Model or Unconditional Model) and is used to calculate the 

Intra Class Correlation Index (ICC hereafter) that indicates the degree of similarities 
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between observations within the same cluster. Called also Variance Partition 

Coefficient (VPC hereafter), statistically it indicates the proportion of variance in our 

outcome variable that is accounted for by the clustering. It gives us mainly the 

percentage of the total residual variance after controlling for all the covariates. It is 

also useful to understand if data are really clustered or not, therefore indicating if MM 

are required with respect to a classical OLS regression. If it is close to 0, it means that 

there is no variation and that the clusters’ means will not differ from the mean of 

normal regression. If it approaches to 1, it means that there is no variance to explain 

at the individual level, meaning that all the individuals are the same. 

Formally, the equation of a Null Model is: 

 
𝑦𝑖𝑗 =  𝛽0 +  𝑢0𝑗 + 𝑒𝑖𝑗                                                                                                         [3.1] 

 

With 

𝑒𝑖𝑗 ~ 𝑁(0, 𝜎𝑒
2) and                                                                                                           [3.1 b] 

𝑢0𝑗  ~ 𝑁(0, 𝜎𝑢
2) 

 

where 𝑖 is for the observations, in this case individuals, and 𝑗 is for the cluster, in this 

case geographical areas. 𝛽0 is the overall mean across areas – the intercept constant 

across areas, 𝑢0𝑗 is the area effect of area  𝑗  on the outcome 𝑦 and it identifies the 

between-area variance (level 2) in the random part of the model and 𝑒𝑖𝑗 is the within-

area between-individual (level 1) variance residual that identify the within-area 

variance.       
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The Null Model, by definition, does not include a fixed part with explanatory variables 

and this explains the subscript 0 for the individual observations in the term 𝑢0𝑗. For 

the following formulation of the ICC, we can call it 𝜎𝑢
2 . Contemporarily, 𝑒𝑖𝑗  is the 

within estimated variances of the residuals at area-level in the random part of the 

model and it varies between areas12. We can call it 𝜎𝑒
2.  

The formula of the ICC allows us to understand better the calculus of the variance 

explained only at cluster level: 

 

𝐼𝐶𝐶 =  
𝜎𝑢

2

𝜎𝑢
2+ 𝜎𝑒

2                                                                                                                       [3.2] 

 

To test if there is a significant area effect, the Null Model can be compared with a 

Single-level Model (carrying out a likelihood ratio test). The Single-level Model is a 

model without the random area effect: 

 

𝑦𝑖𝑗 =  𝛽0 +  𝑒𝑖𝑗                                                                                                                     [3.3] 

 

After the illustration of these basic MM used to identify the necessity or not of a 

clustered model, the further step in building a MM is the Random Intercept Model 

(RIM hereafter). Assuming that most of the phenomena under investigation in the 

social sciences depend on different variables at the same time, the RIM includes 

different predictors at level 1 that are assumed to vary and affect the outcome.  

                                                           
12 If we would like to calculate the magnitude of the variation among clusters in their mean individuals’ 
levels, we could calculate the plausible values range for these means based on the between variance 
we obtain from the model and this calculus would include also the intercept from the fixed part of the 
model.  
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The model is so composed by two components: an observational level and a cluster 

level with residuals terms for each level. Respectively, as previously described, they 

identify a between effect of variation at observation level (level 1) and a within effect 

of variation at cluster level (level 2). In my specific case, I identify an effect of 

portioning variance between-area effect and a within-area effect with individuals at 

level 1 and geographical area at level 2 (this is the reason why RIM is also called the 

Variance Component Model). In this first case, intercepts are allowed to change 

according to the hypothesis that there is random variation between individuals in 

different areas but that the effects of explanatory variables are assumed to be the 

same for each area. A plot of the predicted area regression lines would show a series 

of parallel lines next to each other, one for each area13. A simple example of univariate 

Random Intercept Model is showed below: 

 

 

 

 

 

 

 

 

 

 

                                                           
13  http://www.bristol.ac.uk/cmm/learning/multilevel-models/what-why.html. Accessed on October 
2015. 

http://www.bristol.ac.uk/cmm/learning/multilevel-models/what-why.html
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Figure 3.2 : Example of a plot of regression lines of a general univariate Random Intercept 
Model 

 

 
Source: Centre for Multilevel Modelling, University of Bristol, online training material 

Formally the RIM presents this notation: 

 

𝑦𝑖𝑗 =  𝛽0 +  𝛽1𝑥𝑖𝑗 + 𝑢𝑗 +  𝑒𝑖𝑗                                                                                                 [3.4] 

 

where 𝛽0 is the intercept, 𝛽1𝑥𝑖𝑗
14 is the explanatory variable of the model. The fitted 

line for the explanatory variable at level 1 identified will differ from its average line in 

its intercept by an amount of the level 2 residuals 𝑢̂.0𝑗for area 𝑗. Finally, 𝑒𝑖𝑗  is the 

within-area residual that identify the within-area variance (at level 1). Here, we can 

                                                           
14  In a Multivariate Random Intercept Model, we can just add other explanatory variables in the 
formula (𝛽2𝑥𝑖𝑗  + …), more generally identified with 𝛽𝑛𝑥𝑖𝑗  according to the number of explanatory 

variables of the model.  
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still see how the slope of the area lines is assumed to be fixed at 𝛽1for the respecting 

variable 𝑥1.  

 

Looking deeper at the image above, we can interpret it relating to the formula just 

explained. The overall average line 𝛽0  corresponds to the single level regression 

model intercept and it is considered the fixed part of the model. The difference with 

a classical single level regression model is the random part of the model, which in the 

figure corresponds to the parallel and multi coloured lines. In this random part, the 

overall intercept line is still 𝛽0 but each area line has an intercept of 𝛽𝑜 +  𝑢𝑗  that 

identifies each line parallel to the overall average line. Including the parameter 𝑢𝑗  

from the random part of the model, we are allowing it to vary determining the 

‘random intercepts’. Interpreting the parameters, in the random part we finally 

estimate 𝜎𝑢
2 and 𝜎𝑒

2 that, according to [3.1 b] are the variance of area effect 𝑢𝑗  term 

(between-area variance at level 2) and the variance residual at area-level term 

𝑒𝑗(within-area between-individual variance at level 1).      

 

RIM can be built in a more and more complex way. The first option consists of adding 

more explanatory variables, as for a single level regression model. We can also add 

interactions between them. This affects variation at level 2 (may increase, decrease 

or stay the same) but level 1 variation and total residual variation will either decrease 

or stay at the same.   

 

A second option is adding explanatory variables defined only at level 2. They are 

actually called contextual effects. These variables frequently can be or aggregated at 
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a higher level with respect to the level of the explanatory variables used in the model 

or different variables at a different level of aggregation not yet included. They are also 

called ecological variables when they are inserted in the model to see which ‘external’ 

variables regarding the nature of the cluster can ‘indirectly’ affect the outcome.  

These group-level variables are used to see if the dependent variable may be 

influenced by other unmeasured group factors. The difference with the between 

effect measured lies not only in the possibility that different data can be used but 

mainly because they do not vary from observations to observations within the level 2 

group.   

 

Assuming that changes in the outcome are the same for all the areas can reduce one 

of the principal advantages implicit in MM. Because of this consideration, frequently, 

especially in the social sciences, RIMs are increasingly made more complex, allowing 

different slopes at clusters’ levels. We obtain the so-called Random Slope Model or 

Random Coefficient Model (RSM and RCM hereafter), where changes in the outcomes 

are different not only within the areas but also between them. They indeed allow all 

individual level coefficients to vary across areas, not just the intercept term 

(Goldstein, 2010).  

 

Graphically, the regression lines of a RSM are15: 

 

 

                                                           
15  http://www.bristol.ac.uk/cmm/learning/multilevel-models/what-why.html. Accessed on October 
2015. 
 

http://www.bristol.ac.uk/cmm/learning/multilevel-models/what-why.html
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Figure 3.3: Example of a plot of regression lines of a univariate Random Slope Model 
 

  
Source: Centre for Multilevel Modelling, University of Bristol, online training material 

 

The formal notation is the following:  

 

𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑗𝑥1𝑖𝑗 + 𝑢0𝑗 + 𝑢1𝑗𝑥1𝑖𝑗 + 𝑒0𝑖𝑗                                                                                    [3.5]                 

 

where the difference with the previous model is the added term 𝑢1𝑗𝑥1𝑖𝑗. Indeed, the 

different slopes for all the areas are given exactly by these slope residuals (the 

subscript of u indeed changes). In this way, the coefficient for the explanatory variable 

𝑥1, for example, will be  𝛽1𝑗 =  𝛽1 +  𝑢1𝑗 , with 𝛽1𝑗 varying between all the areas 𝑗. 

This coefficient is composed of the average effect across all areas, 𝛽1, and the residual 

difference from the average effect in each area 𝑢1𝑗. 
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The residual term has a variance 𝜎𝑢1
2 with the usual assumptions and it is the term 

representing the unexplained variation. So, at the area-level, the model fits the 

average intercept and the difference from the average intercept, but also the average 

coefficient and the residual difference from the average coefficient in each area.  

Besides, because now there are two error terms at the area-level, there is an 

additional covariance term between the unexplained intercept and the coefficient 

variance. We can represent the complex area-level variation with the following 

variance matrix  𝛺𝑢: 

 

[
𝑢0𝑗

𝑢1𝑗
] ~ N (0, 𝛺𝑢), 𝛺𝑢 =[

𝜎𝑢0
2 .

𝜎𝑢01 𝜎𝑢1
2 ]                                                                                             [3.6] 

 

The difference between figure 3.2 and 3.3 is clear: we have different intercepts and 

different slopes. Explanatory variable has a different effect for each area, meaning 

that each area line has a different slope. While 𝛽0 can be interpreted in the same way 

of RIM, the difference is about𝛽1, the slope of the average line: its average increases 

(or decreases) across all the areas in y for a one unit of change in 𝑥1  differently. 

Consequently, we have three variances parameters: 𝜎𝑢0
2  is the variance in intercepts 

between areas, 𝜎𝑢1
2  is the variance in slopes between areas while 𝜎𝑢01  is the 

covariance between intercepts and slopes.  

 

As for the previous case of RIM, also for RSM we can add more explanatory variables, 

interactions and corresponding random slopes. We can add random slopes on one 

predictor, several or all of them. Number of units at level 2 in the datasets may affect 

the decision on which explanatory variables it is possible to test the random slope.  A 
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final option applicable to the MM is the test of cross-level interactions. In this case, 

RSM allow us to see if there is an effect on the outcome variable produced by the 

interaction of a level 1 variable and a level 2 variable.  

 

Generally, we can then easily state that MM can be applied to complex phenomena 

and sometimes it can be difficult to select the variables of interests and even the levels 

of study. By the way, some general guidelines can help in preventing mistakes that 

can make the model biased or wrong. 

The first suggestion is about considering or not random coefficients for variables that 

do not vary at a lower level. If a covariate is not significant at level 1, is it advisable to 

add it like a random slope in the model? Unfortunately, there is no a general 

agreement about this aspect in the literature. Theoretical reasons and empirical 

evidence can only drive and inspect this aspect, considering other problems like over 

identification (Douglas, 2004; Rabe-Hesketh and Skrondal, 2012).    

 

Besides, it may be tempting to allow different covariates to have random slope. 

However, the number of the parameters increases rapidly with the number of random 

slopes. Indeed, for each random effect (intercept or slope), we should consider that 

we have a variance parameter and a covariance parameter for each pair of random 

effects. This procedure can bias the identification of the model (frequently with over 

specification) and lead to difficult and long computational timing. It is recommended 

to be more flexible in the fixed part of the model than in the random part. (Rabe-

Hesketh, Skrondal, 2012). 
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3.2.2 Other theoretical issues 

After describing the theoretical models and the types of MM and before beginning 

the empirical part, it is important to underline an aspect that is becoming central in 

the debate about MM. Several authors are focusing on solving this issue that can also 

have an impact at the empirical level. One of the first steps in building MM is 

concerned with checking the real necessity of using them. Indeed, even we can 

assume a hierarchical and clustered nature of the data, in reality, for several reasons, 

this cannot be always valid. We can summarize this problem as the choice between 

the Random Effects (RE) model and the Fixed Effects (FE) model, where FE can be 

identified by using a normal OLS regression.  

 

Following a primary paper by Fielding (2004) where doubts were raised about the 

Hausman Test as a crucial test to determine if FE or RE should be used, Bell and Jones 

(2015) have recently published an important paper where they show several 

important proofs and considerations concerning this problem.  

They begin by identifying why RE are not widely used yet: the exogeneity assumptions 

of RE, that is, that the residuals are independent of the covariates - 𝐶𝑜𝑣 (𝑥𝑖𝑗 , 𝑢𝑗 ) =

0 and 𝐶𝑜𝑣 (𝑥𝑖𝑗 , 𝑒𝑖𝑗) = 0 - often do not hold in RE. Therefore, they investigate why, 

frequently, RE has been abandoned in favour of FE estimation. Alternatively, this 

endogeneity is composed of the two different ‘between’ and ‘within’ effects. But FE 

reduces it, using a procedure that, according to the two authors, causes an omitted 

variable bias: all higher-level variance (and corresponding ‘between’ effect) is 

controlled out using higher-level entities included in the model as dummies. They end 

up estimating only the ‘within’ effect.  
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In order to test if this type of form of bias exists in the RE, the Hausman Test is 

frequently carried out. However, according the author, it is problematic when it is 

used to address if FE or RE have to be used: 

 …it is simply a diagnostic of one particular assumption behind the 
estimation procedure usually associated with the random effects 
model…it does not address the decision framework for a wider class 
of problem…’ (Fielding in Bell and Jones, 2015). ‘...to reiterate: the 
Hausman test is not a test of FE versus RE; it is a test of the similarity 
of within and between effects. A RE model that properly specifies the 
within and between effects will provide identical results to FE… (Bell 
and Jones, 2015).  

 

Without focusing excessively on this aspect, after addressing all the principal 

objections along with simulations, their main points which are important for this work 

are: 

• that understanding the difference between the within-effect and between-

effect is crucial when choosing modelling strategies; 

• that the drawback of RE – correlated lower-level covariates and higher-level 

residuals – is omitted-variable and can be solved with a Mundlak’s formulation 

(1978)16 or following simplification (not yet widely used, by the way). In this 

way, FE and RE are identical because the only difference disappears: the 

incorrect specification which ignores the correlation between the effects and 

the explanatory variables; 

• once this problem is solved, RE is much better than FE because they are also 

readily extendable with random coefficients, cross-level interactions and 

                                                           
16 Mundlak’s proposes a partition of the effect of lower-level covariates into two parts and he simply 
adds one additional term in the model for each varying covariates that accounting for the between 
effect: that is, the higher-level mean and it is treated in the same way as any higher-level variable. The 
Raudenbush method in Bell and Jones (2015) rearranges Mundlak’s formulation in a simpler way, using 
group-mean centering. 
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complex variance functions and they are flexible and generalizable. 

Disregarding these aspects would lead to a poor model and misleading results; 

• RE is explicit in relation to context and heterogeneity, rather than controlling 

out (as explicit models do) and this aspect is more interesting and real for 

researchers and policy makers; 

• endogeneity is treated as a substantive phenomenon and not ignored; 

• once the above aspects have been proved, FE remains only a special and 

restrict case of RE that results therefore more appropriate; 

• in cross-sectional cases such as this study, heterogeneity at the individual level 

can also be explicitly modelled by including additional random coefficients and 

cross-level interactions, using RCM.  

 

Finally, the authors underline how this problem is as much philosophical as it is 

statistical. RE are not perfect, especially when higher-level units are few. But the 

choice depends on the intelligence of the researchers and on their research questions. 

Where context and ecological outcomes are as important as the individual 

characteristics in shaping the phenomena in the research questions, then RE are 

definitively more appropriate.  

 

3.3 Social Capital Factors: Multilevel Models and first empirical issues 

3.3.1 Introduction and empirical use of MM in Social Capital literature 

In this paragraph, after the theoretical introduction to MM and before presenting the 

models I intend to examine, I will briefly outline the empirical literature concerning 

the application of MM on SC topics. As we have seen from the previous chapter, the 
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literature relating to singular aspects and dimensions of SC is impressive and wide 

ranging. It seems that the increasing popularity of MM goes simultaneously with its 

applications on this topic and all the dimensions previously described and tested: from 

membership to trust, from voting attitudes to caring, from use of media to fear of 

crime. 

 

Not only that, in this introduction I am going to list some of the studies where MM 

has also been applied to those individual characteristics that, according to my 

hypothesis, affect levels of SC. Such dimensions, that this work will use MM as 

explanatory variables at the individual level, are mainly age, sex, ethnicity, marital 

status, educational attainment, socio-economic classification, employment status, 

religion and so on. Further references will also be present in the final sections with 

the interpretation of the results.  

 

We can then see how MM has been applied to study the role of ethno-cultural 

diversity and SC in fostering national cohesion across European Societies (Reesken 

and Wright, 2013) finding that nationalism is related to lower levels of SC. MM has 

been also used in a study on self-rated health, welfare regimes and trust in Europe 

(Rostila, 2007). The author finds how contexts with low trust are detrimental for the 

health of distrustful individuals. Subramanian et al. (2006) confirms the same results 

for an American case whereas Carpiano (2007) on the same topic finds more 

ambiguous results, using data from Los Angeles survey on Family and Census data. In 

addition, neighbourhood mortality rates seem to be affected from SC through health 

(Lochner et al., 2003).  
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The studies linking SC and health with applications of MM are numerous. This is also 

due to the fact that Health Studies have originally been one of the first topics where 

MM have been applied and widely used. In addition, it is mainly in this field of studies 

that MM are applied to research questions about SC, health (and different issues: 

obesity, smoking, drinking, diseases and so on) and geographical dimension, leading 

to further estimations at the small area level. SC, its sociodemographic characteristics, 

health and small area analysis for England has been carried out beginning with the 

use of MM by Mohan et al. (2005). Important previous references for this study are 

Wing et al. (1992) which develops an analysis on American State Economic Areas and 

Morris et al. (1996), which applies the analysis at the Local Education Authority level 

in England. Many other studies can be reported since even as recently as the 90s, 

when MM began to be used more widely.   

 

In relation to neighbourliness, MM has been applied to understand differentials of SC. 

Subramanian et al. (2003) attempted to discover if individual, socioeconomic and 

demographic attributes may eventually affect SC levels. The results suggest that even 

controlling for many of these variables (age, sex, race, marital status, income, 

education) significant neighbourhood differences remain linked to personal trust. This 

confirms the idea that SC is a true contextual construct.  

 

Snelgrove et al. (2009), using BHPS in a longitudinal study and applying classical 

concepts of SC (generalized trust, civic participation and mutual reciprocity), attempt 

to examine the association between area SC indicators and individual poor self-rated 

health. They find positive association between higher self-rated health in areas where 



183 
 

Page 183 of 332 

social trust is higher, after controlling for individual characteristics. After adjustment, 

they do not find evidence for an association between area civic participation and self-

rated health. 

 

Another study sees the application of MM to the topic of SC and demographic 

characteristics. Perna and Titus (2005) study the relationship between ethnicity and 

parental involvement as SC in the college enrolment in the USA, finding a lower share 

of actual enrolment for African Americans and Hispanic Americans than White. Many 

further studies can be listed here, showing that this topic is highly interesting and 

important, although there is not the within the confines of this study to discuss this 

further. 

 

3.3.2 Empirical specifications 

After showing the applications of MM in SC studies, I am going to present the model 

concerning the three factors of SC for 2011 that I have previously created with CFA 

(see Chapter 2): 

• Factor 1: Membership 

• Factor 2: Citizenships and Politics 

• Factor 3: Neighbourliness  

The choice to focus only on 2011 Factors has been mainly for two reasons: 

• the entire PhD project referred to the ONS Project ‘Beyond 2011’, aiming to 

find an alternative way of estimation to the use of Census covariates. Indeed, 

the next chapter will see the estimation of Small Area Estimates of SC levels 

for England and Wales based on the MM presented in this chapter; 
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• as described widely in the previous chapter, the CFA for 2011 presents a higher 

level of generalizability. Therefore, I consider it to be more appropriate to 

begin with such a model in order to allow for the further estimations at the 

small area-level. 

 

I will use the Understanding Society survey17 in a cross-sectional study. The year upon 

which I focus is 2011 (the last Census year). I consider all the respondents interviewed 

in 2011, wave 3, because questions about SC on which Factors of SC were created are 

presented only within this wave. This is despite the fact that their observations 

interviewed in 2011 are also in the year 2, wave 2 (following the new scheme of timing 

of data collection). The MM proposed in this chapter will use variables about 

individual characteristics from all the waves of UKHLS and from the previous BHPS and 

its 18 waves. The final sample, useful for this analysis, contains 37,932 observations.  

 

The geographical level I choose as a cluster unit for level 2 is the Middle Super Output 

Area (MSOA). This choice is justified by several reasons: 

• lower levels, like Lower Super Output Area (LSOA) or the smallest Output Area 

(OA) would have been an interesting level of analysis but the number of units 

and the number of observations per unit available in the survey is too low in 

relation to the total number of areas. Besides, OAs are not available in the 

Secure Data Access for this survey; a special licence is required in order to 

access them; 

                                                           
17 For further description of the surveys please see paragraphs 2.1 and 2.3.2, Chapter 2.  
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• MSOA seems to be the first geographical level with a high enough number of 

units available in the survey for a proper MM and for the following step of 

estimation at small area level; 

• other classifications are available. While the current one is a Census 

classification, administrative Geography, Electoral Geography, Health 

Geography and Postcodes are available. Between the several Census 

classifications (Built-Up area/sub-division, Enumeration District, Output Area, 

Statistical Wards/CAS Ward and ST Ward, Super Output Area and Workplace 

Zone), the choice of the Super Output Area is also constrained by its more 

easily corresponding availability in the UKHLS. The geographical merge 

required between Census and survey for MM and the further analysis at the 

small area can then be carried out; 

• theoretically, beyond the statistical reasons, MSOA seems to be the right level 

of analysis for a phenomenon such as SC, one that is strong locally. Higher 

levels of analysis, like Local Authority Districts or Government Offices Regions 

(GOR) are probably much too wide and large for such a type of capital analysis.  

 

The analysis is carried out only for England and Wales due to the difficult comparison 

of data and geographies with Scotland and Northern Ireland. The number of MSOA 

for England in 2011 are 6,791 and for Wales are 410. Other principal information 

about MSOA 2011 are: 
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Table 3.1: Information about MSOA 2011 for England and Wales 
 

 
Minimum 

Population 
Maximum 
Population 

Minimum 
number of 

Households 

Maximum 
number of 

Households 

MSOA 5,000 15,000 2,000 6,000 

 

The sample of MSOA for this study consists in 5255 different areas with 426 MSOA 

that have only one observation in the survey. All the residual areas have therefore at 

least two observations. In the following table I show the frequencies of the areas: 

Table 3.2: Frequencies table for MSOA in the survey 
 

Number of repeated 
observations for MSOA 

Frequencies Percentage 
Cumulative 
percentage 

0 426 1.12 1.12 

1 4,829 12.73 13.85 

2 4,829 12.73 26.58 

3 4,141 10.92 37.50 

4 3,654 9.63 47.13 

5 3,173 8.36 55.50 

6 2,763 7.28 62.78 

7 2,383 6.28 69.07 

8 2,009 5.30 74.36 

9 1,703 4.49 78.85 

10 1,435 3.78 82.63 

11 1,186 3.13 85.76 

12 995 2.62 88.38 

13 821 2.16 90.55 

14 665 1.75 92.30 

15 559 1.47 93.78 

16 460 1.21 94.99 

17 372 0.98 95.97 

18 302 0.80 96.77 

19 234 0.62 97.38 

20 181 0.48 97.86 

21 143 0.38 98.24 

22 113 0.30 98.53 

23-62 556 1.53 100 

 

One last specification regards the choice about the cluster units to be analysed. SC is 

an individual resource but strictly linked and dependent on the individual’s networks. 

The primary and natural network for a person is the family; therefore, my first idea 
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was to structure the MM with 3 levels: individuals nested in households (HH) nested 

in MSOAs. 

The number of households in this sample is 20,971 and, according to the number of 

members, we have the following frequencies: 

Table 3.3: Households by number of members 
 

Numbers of members in 
the HH 

Frequencies Percentage 
Cumulative 
percentage 

1 8,170 21.54 21.54 

2 19,834 52.29 73.83 

3 5,835 15.38 89.21 

4 2,816 7.42 96.63 

5 840 2.21 98.85 

6 252 0.66 99.51 

7 105 0.28 99.79 

8 40 0.11 99.89 

9 9 0.02 99.92 

 

Slightly more than the half of the sample is composed by single individuals or by HH 

with only two members, so I considered that, even if being in a couple can have a 

strong effect on the level of SC, I may not be able to identify a ‘familial’ effect 

according to a wider definition. Besides, there are some notable statistical reasons 

supporting the choice to do not include the HH level.  

As eloquently described by Twigg et al. (2000), they are the following: the proportion 

of one person HHs in the sample, the violation of the normality assumptions and the 

difficulty in separating out the between-HH and within-HH effect, because of the 

confounding across levels.  

 

With regard to this particularly study, the choice of a two-level model rather than 

three-level model has been leaded mainly by the predictive goal of this research. 



188 
 

Page 188 of 332 

The following use of models for Small Area Estimates mainly suggests keeping the 

models as simpler as possible. The main risk may be the attribution of HH level 

variation to MSOA level, as the following table show:  

Table 3.4: ICC for Null Models by type of MM for each factor 
ICC for type of MM Factor 1 Factor 2 Factor 3 

MM – 2 levels 
MSOA 0.130 0.120 0.130 

MM – 3 levels 
MSOA 

HH | MSOA 
0.070 
0.500 

0.064 
0.370 

0.085 
0.470 

 

From the table above where first tests on the Baseline Models hypothesizing 3 levels 

are reported, we can see how important the HH effect is, and also how much it 

reduces the variation explained at MSOA level in the Null Models. I estimate that HH 

and MSOA random effects compose approximately the 50 percent, 37 percent and 47 

percent of the total residual variance for Factor 1, Factor 2 and Factor 3. However, 

these 3 levels MM reduce considerably the variance explained at MSOA level. While 

it is about 6-8 percent for the 3 levels MM, it increases by more or less 5 percent in 2 

levels MM.  

Therefore, this preliminary analysis opens definitively other possibilities of 

investigations that, for the reason explained, cannot be conducted herein18.    

 

Other empirical specifications are valid for all of the three factors:  all individual 

covariates have been selected from the survey based on existing research on the 

individual correlates of SC. Besides, possible interactions have been tested with the 

                                                           
18 Other practical aspects can be considered to support this choice: availability of Census covariates at 
HH level and their cross-interactions for the Small Area Estimates, geographical details’ availability for 
these covariates and lastly, especially for RCM, the intensive computational needs of a three-level 
model with contextual effects and cross-level interactions.  
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usual analysis, especially in the case of unexpected insignificance variables (according 

to hypothesis and literature). One last important specification concerns the case of 

Random Coefficient Models. For completeness of presentation, I described them in 

the previous paragraph about the theoretical and empirical applications of all the 

types of MM. RCM have been tested using all the individual predictors for all the three 

factors but they did not show any particular or interesting result. I chose therefore to 

do not present them. Further considerations on this aspect will be outlined in the 

Conclusions.  

 

Following on empirical specification, as for Chapter 2, I check also if the change in the 

number of observations in all the models is due to at least Missing At Random data 

(MAR) (see par. 2.2.2, Ch. 2 for further explanations). The software I use in this study, 

Stata, and the command I decided to use for these models – xtmixed – the listwise 

deletion is the default option for handling missing data: observations with at least one 

missing data on the variables of interest are dropped out automatically. As we saw in 

the previous chapter (par. 2.2.2, Ch. 2), it reduces the availability of data but it seems 

a better option for studies where full information about variance of the phenomena 

is needed for less biased results. I also thought that in any case the number of 

observations retained in all the models would have been enough for defining a good 

sample size. Therefore, at the end of the Appendix of this chapter, I present a 

Supplementary Material section, where results and relative interpretations are shown 

in order to see if the main, strict assumption of listwise deletion, the Missing At 

Random Data or Missing Completely At Random, hold in my models.  
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Finally, for all the RIMs and CEM the main reference is the formula 3.4 while formula 

3.2 is the reference for ICC. 

 

3.3.3 Creation of the contextual variables: a Principal Component Analysis  

One further empirical aspect is the creation of the contextual variables. In the 

description of the types of MM, I briefly outline that one specification of RIM can 

present contextual effects that are mainly area-level covariates. As Brunton-Smith and 

Sturgis (2011) and Brunton-Smith (2011), to identify such ecological variables I use a 

Factor Analysis. Therefore, I will retain the richness and completeness of the Census’ 

information with a smaller number of variables (Components of Factors) that are 

linear combinations of the originals. I choose as method the Principal Component 

Analysis to create Components (PCA) with Census variables at MSOA level according 

to the same definition of the variables in the survey. This method, different from the 

CFA, does not assume any a priori or theoretical assumptions about the factor and it 

is a more exploratory analysis. Oblimin rotation (with Kaiser normalization when 

rotating factors – for an easier interpretation) is assumed. I chose this oblique type of 

rotation with respect to the more famous Varimax because it assumes correlated 

factors, an assumption that I consider more realistic. 

 

Furthermore, beyond the Census variables, I include variables from the 

Neighbourhood Statistics about: benefits and tax credits, rates of crimes, density per 

area and distance travelled to work. These variables have been standardized in order 

to allow the comparison of effect size between variables of different scales. 

Definitions are available in Appendix B. Generally, all the variables chosen from the 
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Census can be referred to characteristics that, according to my hypothesis, identify 

more heterogeneous areas in term of compositions.  

 

Finally, before showing the results, I indicate the formula I use to build an Ethnicity 

Index. I assume, indeed, that there is an important ethnicity effect that would not 

result in significance in the Factor analysis because of the low counts of some 

ethnicities in the areas. So instead of keeping the original variables divided by all the 

ethnicities used in the Census (White, Black, Asian, Mixed and Other ethnicities (Arab 

and other ethnic groups), I build a kind of index measuring the degree of ethnical 

homogeneity of an area with a range from 0 to 1 where 1 is an area with the highest 

level of ethnic diversity, following the more famous Herfindhal Index structure. 

According to Brunton-Smith (2011) this formula gives us the probability of two 

randomly selected individuals from the same locality being of different ethnic origin. 

The ethnic fractionalisation index has been regularly used to identify differences of 

ethnic heterogeneity.  

The formula is: 

 

1 − ∑ 𝑠𝑖
2𝑛

𝑖=1                                                                                                                                                    [3.7] 

 

Specifically, in this case: 

1 – [  (
𝑊ℎ𝑖𝑡𝑒

𝑇𝑜𝑡 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡
)

2

+ (
𝑀𝑖𝑥𝑒𝑑

𝑇𝑜𝑡 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡
)

2

+  (
𝐵𝑙𝑎𝑐𝑘

𝑇𝑜𝑡 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡
)

2

+  (
𝐴𝑠𝑖𝑎𝑛

𝑇𝑜𝑡 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡
)

2

+

 (
𝑂𝑡ℎ𝑒𝑟

𝑇𝑜𝑡 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡
)

2

]                        [3.8] 

 



192 
 

Page 192 of 332 

The steps to choose the variables are: 

• reference to the Communalities results for the choice about which variables 

to retain 19 . Communality is the total amount of variance that an original 

variable shares with all the other variables included in the analysis. A threshold 

of 0.5-0.6 is recommended. Some of the variables show a low communality 

but, according to the literature, it is also possible to retain variables that are 

important theoretically. Sex, crime rates and commuting variables are 

important to SC theory. Besides, despite the low communality, the final model 

maintains really good level of goodness of fit;  

Table 3.5: Communalities of PCA 
 

 

                                                           
19 Instead of reporting the huge correlation matrix between all the variables, Communalities results are 
another kind of indicator of variance and covariance. This indeed indicates the amount of the variance 
shared between the variables and it gives easier readable indications. Indirectly, Communalities 
suggest the correlation between variables.   

Variable Extraction 

Male .006 

Crime_propert .147 

WTA_less10km .176 

Crime_violen .195 

Muslim .458 

Emplo .501 

Age30_44 .567 

Single .606 

Tax_credit .612 

Christ .628 

Qual_lev2 .629 

Born_EU .632 

Density .635 

No_care .653 

House_terrac_flat .710 

Resid_5more .741 

House_owned .759 

Sick_benef .763 

Rooms_2 .773 

Health_good .777 

Qual_lev3 .807 

Born_UK .828 

Indu_terz .846 

Nssec_prof .891 

 Income_benef .892 
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• reference to the main goodness of fit of model’s indicators: 

o Kaiser-Meyer-Olkin’s measure of sampling-adequacy. It varies 

between 0 and 1. A value of 0 indicates that the sum of partial 

correlations is large relative to the sum of correlations, indicating 

diffusion in the pattern of correlations. In this case, factor analysis is 

inappropriate. 1, on the other side, a value close to 1 indicates that 

patterns of correlations are compact, so factor analysis is appropriate. 

Values greater than 0.5 are appropriate but ranges that are more 

specific have been indicated: 0.5-0.7 is mediocre, 0.7-0.8 is good, 0.8-

0.9 is great and higher than 0.9 is superb. The PCA analysis presents a 

KMO of 0.850. 

o Bartlett’s Test of Sphericity: this test has a null hypothesis stating that 

the original correlation matrix is an identity matrix (meaning that all 

the correlations between variables would be zero). In this case, a factor 

analysis would be useless, because we need variables that are 

correlated between them, showing a kind of relationship. The P-Value 

for this analysis is 0.000, so it is highly significant: we reject the null 

hypothesis. PCA is appropriate.   

Before showing the Components, in the following tables we can see the eigenvalues 

associated with each factor representing the variance explained by that particular 

linear component: 

Table 3.6: Eigenvalues and variance explained 
 

 Initial eigenvalues 

Component Total % of Variance Cumulative % 

1 8.583 34.333 34.333 

2 6.649 26.597 60.930 
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3 1.884 7.535 68.465 

4 1.717 6.869 75.334 

5 1.293 5.173 80.507 

6 1.079 4.317 84.824 

7 .643 2.573 87.396 

8 .590 2.359 89.756 

9 .545 2.181 91.937 

10 .374 1.498 93.435 

11 .315 1.259 94..694 

12 .218 .873 95.567 

13 .183 .732 96.299 

14 .164 .657 96.955 

15 .149 .595 97.550 

16 .117 .467 98.017 

17 .096 .384 98.401 

18 .077 .309 98.710 

19 .075 .302 99.012 

20 .067 .268 99.280 

21 .052 .209 99.489 

22 .050 .200 99.689 

23 .034 .135 99.824 

24 .028 .110 99.934 

25 .017 .066 100.00 

 

As we can see, the first two factors already explain about the 60 percent of the 

variance. And, indeed, the analysis presents two main factors. According to the 

twenty-five variables used and the results that I am going to interpret, I name the two 

factors: 

• Factor 1: Heterogeneity. It reflects the level of heterogeneity of the areas with 

respect to structural variables of population (personal characteristics), crime 

rates of the areas and housing profile. 

• Factor 2: Economic profile. It reflects more closely the aspects of the areas 

relating to Employment status and related characteristics and economic 

conditions, strictly dependent on economic status too.   

These two factors are composed in this way: 
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Table 3.7: Component Matrix  
 

Covariates measures Heterogeneity Economic profile 

1 or 2 rooms house .877 -.061 

Born in UK -.866 -.277 

House owned -.843 .219 

Terraced or flat house .842 .009 

Resident since 5 year or more .819 .265 

Christian -.789 -.070 

Population density .784 .142 

Single .755 -.189 

Born in Europe .746 .274 

Do not provide care .723 .360 

Muslim .668 -.109 

Age 30-44 .625 .420 

Violence against the person .431 -.099 

Criminal damage .356 -.145 

Male .078 .008 

High and Low Managerial, Administrative and 
Professional and 

Intermediate, Small Employers, Own Account  
(NS-SEC classif.) 

-.277 .902 

Tertiary sector worker .194 .899 

Good health .025 .881 

Degree and higher qualifications .217 .872 

Benefits for disability .321 -.813 

A levels .119 .784 

Benefits for economic disadvantages .598 -.731 

Employed -.194 .680 

Tax credit .453 -.638 

Distance travelled to work: less than 10 km (WTA 
classif.) 

.220 .357 

 

The final results show some interesting considerations and one main limitation.  

The first, big factor explaining the 35 percent of the variance is composed by all the 

individual characteristics that we consider, for the most part, natural: place of birth, 

sex and age. Other characteristics are still personal but, in some way, referring to long 

lasting dimensions of an individuals’ life that can change slightly easier than the 

previous listed dimensions: religion, caring and marital status. Finally, the other 

variables sharing most of the variance with these variables are those ones regarding 

the housing aspect. Examining more closely the composition of the factor, we can see 

that areas that have higher proportions of people between thirty and forty-four, 
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single, Muslim, resident for a relevant time, Europeans and not involved in the 

important activities of caring and (not strongly important with a really low score 

loading) males with an average size of house, terraced house or flat, in populated and 

dense areas, will have higher degree of heterogeneity. This aspect can also justify the 

higher counts of crime for these areas (keeping in mind that these variables are at 

Local Authority District level, a higher level than MSOA, leading maybe to a loss of 

details and disaggregation). Areas with a lower degree of heterogeneity will have 

lower scores than English born proportions, house owners and Christians20.  

 

The second factor explains around about 25 percent of the total variance. It is 

composed of characteristics that are acquired at some point in the life, that can be 

also changeable (in a less disruptive way) and that can be improved during the 

lifetime: qualification levels, employment status, socio-economic classification and 

industrial characterization of the job. These characteristics are obviously linked to the 

other variables about economic status: the claim of benefits and credits. 

 

According to the structure of this second factor, areas that will have a high score on 

Economic profile have also high proportions of employed people, in the professional 

socio-economic class, with good health and quite educated (high school and higher 

levels – graduate and postgraduate) and not commuting in an important way. On the 

other side, these areas will have minor proportions of people claiming different kinds 

of benefits and credits.  

                                                           
20 Given the low counts of the other religions at small area level, I use only Muslim as a main ‘other 
religion’ than Christian.  
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The only main limitation is about some minimal cross-loadings between the two 

factors. The overall goodness of the model validates to maintain the final structure 

presented.   

 

Finally, the final factors have been tested in the MM after being standardized. 

Standardization facilitates the interpretation of the estimated coefficients when the 

variables have different units of measurement, exactly as in this case. 

 

3.3.4 Main hypothesis 

Before starting to present the results for the three dimensions of SC, I would need to 

specify some theoretical hypothesis. As anticipated in the Introduction to this work, I 

am carrying out a work that I would define as ‘exploratory and descriptive’. The aim 

here is to identify which aspects influence SC in order to be able to estimate it.  There 

is a main, strong, theoretical assumption that holds behind all of the empirical 

hypotheses: SC like a ‘multidimensional’ concept’, will probably bring us different 

results for the three factors (CIS 15, 2015). It will show higher levels by some measures 

and low on others.  

 

Specifying empirical assumptions and hypothesis, for the purpose of this study, I will 

then build up the MM testing individual covariates and area-level covariates. All the 

individual covariates are personal characteristics that, according to the literature, 

have been found to be significantly linked to SC. I will also indicate my main 

expectations about the sign and the strength of the relations, trying to report 

references. These references will help to try to understand the results or, at least, to 
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give an idea about the possible reasons behind it, keeping the question and the debate 

open.  

In the building process, several variables have been tested with reference to the 

literature21, and some of them have not resulted significant at all: ownership of the 

house, type of house (flat, terraced, etc.), number of cars, heating, years of residence, 

size of the household, type of employment, number of hours worked per week, 

commuting and industrial sector of the employment. But some of these variables 

resulted significant in the components at Census area-level, as we have just seen. 

Interesting observations can be completed but, for obvious reasons, this is not the 

appropriate context and further research can be considered in the future.     

 

The use of area-level covariates is a further step done to fully understand how much 

the context affects this important capital. Also in this case, the choice of the variables 

used in the PCA has been done according to the classical hypothesis and studies. 

Regarding the factors of the main hypothesis, the three factors are positively 

correlated with an increasing trend of the age and with the male gender and the main 

ethnicity being British. I also expect positive correlation with a good state of health, a 

status of employed in professional and high qualified occupations and with higher 

educational attainment and with housing conditions where houses have more than 3 

rooms (signalling a certain level of good economic wellbeing).  

 

                                                           
21 The choice of the variables and their recoding has been done also according the availability in the 
Census for the SAE final work.  
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With regard to other characteristics, I expect different correlation related to the three 

factors: the number of hours spent caring may have a negative correlation with the 

factor about membership and citizenship and positive with neighbourliness, whereas 

providing care should present a positive sign with all of them, suggesting a natural 

propensity to relate to other people. Having dependent children can show a different 

sign respect to the three factors. I instead expect negative sign respect to the variable 

about moving.  

 

Finally, ethnicity and religious aspects can show different sign according to the factors. 

The literature, indeed, reports conflicting results about how much diversity and 

religions hamper or trigger SC. Overall, as I will specify later on, I expect slightly 

different results for the third factor about neighbourliness with respect to the first 

two factors about membership and citizenship.  

 

I will now present the building up of the MM and their results by factors. Descriptive 

statistics are available in Appendix B with the definitions of the survey variables used. 

I also report descriptive statistics of variables with respect to the geographical level, 

to see how much they vary within and between MSOAs (Table B2).  

 

3.4 Factor 1 – Membership: Results  

According to Table 3.4, the Null Model shows that 13 percent of the variance for this 

factor can be explained by differences between MSOA. In Social Sciences, there is no 

a general agreement about a threshold but we can consider this variability quite good 

given the type of phenomena and the very restricted area-level analysed.  
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With regard to the initial issue, if a Variance Component Model has to be used instead 

of a classical OLS, I can show graphical proofs supporting the use of MM. Indeed, as 

previously described, the Hausman test can be frequently misleading, taking the 

choice of a Fixed Effects Model. I report in Appendix B two graphs that are frequently 

used to show the real need of MM. Figure B1 shows the variation of Factor 1 between 

MSOA with the corresponding confidence interval whereas Figure B2 shows the 

MSOA effects in rank, together with their 95 percent confidence intervals. Both graphs 

support the idea that there is an actual geographical effect to take into consideration 

to explain the variation of levels of membership between individuals within different 

areas. Indeed, the variation between areas is quite high therefore, a Variance 

Component Model is feasible and probably better for a rich and more complete 

analysis.   

  

3.4.1 The Random Intercept Model 

Looking at the following table and according to equation 3.4, we can see the results 

for the RIM. As explained previously, the addition of individual covariates is included 

in the model to account for individual level variations in SC factors and also to control 

for selection bias. To obtain proper estimates of the impact of the area where 

individuals live, it is therefore necessary to control for potential differences in the 

individual composition of each area (Hox, 2010). Starting from the RIM, regarding 

Table 3.4 from this chapter, we can see that the ICC decreases from the 13 percent of 

the Null Model to the 8.1 percent: adding individual level covariates naturally reduces 

the unexplained variance because an important part of it is explained by individual 

covariates. The area contribution appears small when compared to the contribution 
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of differences between individuals within MSOA. However, further unexplained 

differences can be referred to the area-level, still accounting for the 8 percent of the 

total residual variance.  

 

If we look at the variance explained by the MSOA level, we can see that it is really low 

(0.03 percent) whereas is much higher the variance at individual level (0.4 percent).  

Table 3.8: Random Intercept Model results – Factor 1 

 

  
Model 1: Random 
Intercept Model (S.E.) 

FIXED EFFECTS   

Constant 
 

-0.056***  
(0.001)  

Gender  
(Ref: Female) 

Male -0.013*** 
(0.001) 

Age  
(Ref: Age 16-24) 

Age 25-34 0.005** 
(0.002)  

Age 35-45 0.018*** 
(0.002)  

Age 46-55 0.026*** 
(0.002)  

Age 56-65 0.040*** 
(0.002)  

Age 66 and more 0.065*** 
(0.002) 

Health  
(Ref: Poor health) 

Good health 0.015*** 
(0.002)  

Fair health 0.006*** 
(0.002) 

Marital Status  
(Ref: In a couple) 

Single -0.004*** 
(0.001) 

Religion  
(Ref: Christians) 

Muslim 0.027*** 
(0.002)  

Other religion 0.032*** 
(0.002) 

Caring  
(Ref: Care someone) 

Do not provide care -0.010*** 
(0.002) 

Caring 2  
(Ref: Less than 20 hrs per week) 

Care 20 hrs or more per 
week 

-0.006*** 
(0.002) 

Ethnicity 
(Ref: White) 

Not White 0.038*** 
(0.001) 

NS-SEC of Occupations  
(Ref: Lower Supervisory, Technical, 
Semi Routine and Routine, Never 
Worked and Long-Term 
Unemployed) 

High and Low Managerial, 
Administrative and 
Professional 

0.009*** 
(0.001) 
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Intermediate, Small 
Employers, Own Account 

0.001 
(0.001) 

Educational Level  
(Ref: No qualifications) 

GSCE level 0.019*** 
(0.001)  

A level 0.026*** 
(0.002)  

Degree and higher 0.042*** 
(0.001)  

Other qualifications 0.016*** 
(0.002) 

Employment Status  
(Ref: Unemployed) 

Employed -0.007*** 
(0.001) 

Interactions Employed * Male 0.006*** 
(0.002) 

RANDOM EFFECTS   

MSOA level  0.0003*** 
(0.000) 

Individual level  0.004*** 
(0.000) 

   

Number of cases  27,744 

ICC  0.081 

*** P-value <(0.001)   **P-value <(0.005)  *P-value <(0.010) 

 

Focusing on the covariates, all significant for the category22, we can see that Factor 1 

increases, as I expect, with the increase of the age, good health, higher educational 

attainment (as confirmed by CIS 15, 2015) and high socio-economic class of 

occupation, especially for non-White individuals. 

It can seem that coefficients are small even if significant. But it is important to keep in 

mind that, how showed in the previous chapter (see Table 2.7 and Figure 2.7, Ch. 2) 

the range of this factor is really small: the minimum is -0.146 while the maximum value 

it takes is 0.297.   

 

With regard to the age variable, older classes of ages show higher and higher 

coefficients with considerable changes of effects respect to their relative previous 

                                                           
22 Only one dummy variable about the NS-SEC classification of the occupation is not significant.  
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cohort: being aged between 56 and 65 increases the average score of Factor1 by 0.04 

point, showing the cumulative and long-term perspective dimension of SC.  

I can say that it mirrors partially the existing literature. Classical studies say that 

political involvement increases with age (Milbrath and Goel 1977; van Deth, 1990) 

while other studies show that SC usually rises and falls with age and only rises with 

occupations with greater returns to SC and who invest in human capital too (Glaeser 

et al., 2002) (van Deth, 2000) (CIS 8, 2015).  

 

About the education level, having a degree or higher attainments show the highest 

coefficient of the model: it increases the average level of Factor 1 by 0.04 point, 

almost half point in the score. All the other lower levels are significant too, showing 

decreasing but important coefficients too.  

 

Being religious, on average, has a positive and increasing effect on the level of Factor 

1 of SC. In this case, it is mandatory notice that this positive correlation is coherent 

with the hypothesis but that also may depend on the fact that the Factor created with 

the CFA includes few variables about the general attitudes and beliefs towards 

religion. These results confirm Putnam’s intuition on religious dimension and the 

findings of van Oorschot et al. (2006) about the strong correlation of SC accumulation 

and religious beliefs and attitudes. 

 

Referring to the ethnicity variables, generally the literature finds that membership is 

higher between non-White, showing in any case differences between the groups (CIS 

15, 2015). CIS 8 (2015) finds that active membership of White people is average with 
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respect to other ethnicities (higher than some groups and lower than others). 

Unfortunately, given the data, it was impossible to further disaggregate the analysis 

by groups (which seems to matter, given the different results for groups found in the 

cited study) but the overall effect for this factor is that general membership is higher 

than average in areas where diversity is higher too. In a following report (CIS 15, 2015) 

there are evidences about an increasing gap between the participation in voluntary 

organisations by ethnic background. Being a non-White British has a positive effect: 

increase the average score of Factor 1 by 0.038 point, one of the highest coefficients.  

 

Unexpectedly, the being male decreases the mean score of Factor 1 by 0.013 point.  

While I hypothesize that membership and especially active membership would have 

been higher between males (for several reasons: status, less time constraints than 

women, propensity to go out etc.), results are different. This can be justified by the 

types of organizations included. This hypothesis has been suggested by some of the 

current literature. There is controversial evidence about the relation between gender 

and SC, particularly about the membership dimension and related topics. In an 

interesting work about gender and social capital, several authors explain that since 

ever the lens of interpretation of SC phenomena, we suffer of a certain kind of ‘gender 

inequalities blindness’ that has two important consequences: 1) definitions of SC are 

more male oriented and 2) studies and evidence, consequently, do not report enough 

information on this relation. In this specific case, for example, membership has been 

frequently associated with the traditional political membership, typically more related 

to the male dimension. Instead, other organizations, here considered, show higher 

female membership: environmental, voluntary, caring, schooling, local, 
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neighbourliness and so on. Not only that, they also show that frequently women reach 

a position of leadership in these organizations, showing indeed a real, active 

membership (that is, accounted in the factor as a proper dimension, together with the 

number of associations to which the individuals take part) (O’Neill and Gidengil, 

2013). In another qualitative and comparative study about membership in groups for 

natural resource management, the authors find that overall collaboration, solidarity 

and conflict resolution increase within groups where women are present and, much 

more, these mixed groups foster norms of reciprocity (Westermann et al., 2005).  

A more recent study finds a negative, longitudinal trend between being male and SC 

accumulation (Helliwell, 2006). Stressing the different type of membership between 

men and women, Li (2015a) shows that women and older (middle-aged) are more 

involved in voluntary membership and less in ‘commercial activities’. The author 

refers to a famous study of Warde et al. in the 1990s that shows that men prefer 

‘associational activities’ like going to pubs, cinemas, night clubs, generally defined as 

‘going out’. In another study, he confirms that women are more willing to volunteer 

than men (Li et al, 2015). 

If these studies may help to explain this identified inverse relation, there is no chance 

to give a definitive answer. Other studies show indeed that ‘…women participate less 

in associational life because they can’t, because they won’t, or because nobody asked 

them…’ (Norris and Inglehart, 2003, p. 1), that political involvement shows higher 

levels for men than for women (Milbrath and Goel, 1977; van Deth, 1990) or that men 

have more power in the workplace (so contacts with men are more productive of good 

jobs) while women know more about health (so contacts with women have a greater 

positive effect on health) (Erickson, 2004), confirming again the gap between male 
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positions and female ones. Van Oorschot et al. (2006) confirm that SC is highly 

gendered and controversially correlated with gender dimensions: European women 

tend to be more involved in family networking and more trust-worthy but they are 

less engaged in political activities and voluntary organisations than men are. They also 

trust less people and they bond more than men but bridge do less than they do. 

 

In the same way, also being singles on average decreases the average level of SC for 

Factor 1. It can be fundamental, in this case, considering how it does affect the real 

personal network. According to the main hypothesis, I expect such a result because 

being single naturally decreases the size and the number of nodes of the network. 

Other studies, indeed, find a positive correlation between being married or living as 

married and negative correlation with the other forms of being alone (single, 

divorced, separated, widowed) (Helliwell, 2006). However, there are also studies, like 

Claibourn and Martin (2000) that find an inverse relation: being single may push 

individuals to look for higher involvement in associations and organizations or like 

Costa and Kahn (2001) that find that SC trends decline only among married women 

and not among single women. Therefore, as well as other variables, we can consider 

it an open question.  

 

The other negative correlation is between the employment status and being a 

member (active or not). In an interesting paper, Newton (2001) tries to see how social 

trust affects membership and citizenship. He states that: 

 …social trust does not correlate widely or strongly with the usual set of 
social, economic, and political variables (income, education, class, gender, 
age, race, left-right politics, employment status, membership of voluntary 
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organizations), but there is a slight tendency for it to be found in some 
social types. It is more frequently expressed by the ‘winners’ in society, 
rather than the ‘losers’ — that is, it correlates positively, if weakly and 
patchily, with high income, high education, and high social status, and is 
more likely to be found in men and the middle-aged, and in those who say 
they are happy, satisfied with their jobs, and proud of their nation. It is not 
surprising that those who are doing well in society are more likely to 
express social trust than those doing less well (Newton, 2001, p. 204).  

 

Therefore, a positive correlation between the employment status and membership, 

as well as citizenship and the so called ‘political capital’ (Newton, 2001) has been 

demonstrated. Glaeser et al. (2002) confirm that SC is positively linked with not only 

occupations but also higher level types of works. We can then state with a certain 

amount of confidence that there is a positive relation between being employed and 

SC, especially with regard to its membership dimension. CIS 8 (2015), shows that SC 

not only facilitates the access to (better) jobs but also that active membership is 

higher between employed people than unemployed or other inactive.  

 

I then decide to investigate furtherly this aspect and I find a significant and positive 

correlation for the interaction between gender and employment: with regard to the 

average population, employed males have higher average score of membership and 

active membership (by 0.006 point). This result in a better fit than the hypothesis 

reported above about definitions of membership and gender inequalities. The status 

composed jointly by male gender and employed make the correlation positive and 

significant.     

 

The last unexpected result is about the caring variables. If caring too many hours per 

week (the variable accounts for more than 20 hours per week) can be inversely related 
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to being a member and/or active member because of the amount of remaining free 

time, it seems that this hypothesis is not valid for the specular aspect: not providing 

care at all. Many studies, indeed, show that informal caring – and health conditions’ 

improvements - (typical of families, small communities and neighbours) depends 

positively on the level of SC of the reference group (Lomas, 1998; Hendryx et al., 2002; 

Kawachi et al., 1997; Perry et al., 2008). Probably, considerations about caring 

activities cannot be only reduced to the amount of time but also to a certain 

predisposition to spend time with other people. It may be the case that the types of 

organizations and associations considered load on different stock of SC (see par. 

2.3.1).     

 

To control the goodness of the model, graphical checks have been frequently 

recommended by the literature, particularly the plot of the level 1 residuals. Testing 

their Normality assumption is, indeed, one of the main steps. Therefore, graphs and 

plots of residuals of level are reported in Appendix B. 

 

From Figure B3 A & B, we can see that residuals’ distribution approximate to a normal 

distribution, confirming the goodness of the RIM. A further, less used graphical check 

is the plot of the residuals against the predicted values. According to Rabe-Hesketh 

and Skrondal (2012) and Dedrick at al. (2009), if it assumes a cloudy shape around the 

fitted line, then the model is well fitted. As we can see from Figure B4, it does have 

this shape.  
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3.4.2 The Contextual Effects Model 

The further step is the extension of the RIM to assess the validity of contextual 

explanations that focus on the impact of the areas in which people live. This model, 

as anticipated, is the further step is the Contextual Effects Model (CEM hereafter), 

where the two Components created with the PCA are tested. Results are the 

following: 

Table 3.9: Contextual Effects Model results – Factor 1 

  
Contextual 
Effects Model 
(S.E.) 

FIXED EFFECTS   

Constant 
 

-0.056*** 
(0.001) 

Gender  
(Ref: Female) 

Male -0.012*** 
(0.001) 

Age  
(Ref: Age 16-24) 

Age 25-34 0.006** 
(0.002)  

Age 35-45 0.018*** 
(0.002)  

Age 46-55 0.026*** 
(0.002)  

Age 56-65 0.040*** 
(0.002)  

Age 66 and more 0.065*** 
(0.002) 

Health  
(Ref: Poor health) 

Good health 0.014*** 
(0.002)  

Fair health 0.006*** 
(0.002) 

Marital Status  
(Ref: In a couple) 

Single -0.005*** 
(0.001) 

Religion  
(Ref: Christians) 

Muslim 0.026*** 
(0.002)  

Other religion 0.032*** 
(0.002) 

Caring  
(Ref: Care someone) 

Do not provide care -0.010*** 
(0.001) 

Caring 2  
(Ref: Less than 20 hrs per week) 

Care 20 hrs or more per week -0.006** 
(0.002) 

Ethnicity 
(Ref: White) 

Not White 0.037*** 
(0.002) 

NS-SEC of Occupations  
(Ref: Lower Supervisory, Technical, 
Semi Routine and Routine, Never 
Worked and Long-Term Unemployed) 

High and Low Managerial, 
Administrative and 
Professional 

0.008*** 
(0.001) 

 
Intermediate, Small 
Employers, Own Account 

0.001 
(0.001) 
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Educational Level  
(Ref: No qualifications) 

GSCE level 0.018*** 
(0.001)  

A level 0.025*** 
(0.002)  

Degree and higher 0.040*** 
(0.001)  

Other qualifications 0.015*** 
(0.002) 

Employment Status  
(Ref: Unemployed) 

Employed -0.007*** 
(0.001) 

Interactions Employed * Male 0.006*** 
(0.002) 

CONTEXTUAL EFFECTS (Level 2)   

 Heterogeneity -0.003*** 
(0.001) 

 Economic Profile 0.005*** 
(0.001) 

 Ethnicity Index 0.003*** 
(0.005) 

 Heterogeneity* Economic 
Profile 

-0.004*** 
(0.000) 

 Heterogeneity* Ethnicity 
Index  

0.056*** 
(0.000) 

RANDOM EFFECTS   

MSOA level  0.003*** 
(0.000) 

Individual level  0.040*** 
(0.000) 

   

Number of cases  27,744 

ICC  0.077 

*** P-value <(0.001)   **P-value <(0.005)  *P-value <(0.010) 

 

Looking at the Table 3.9 of results, we can do some considerations. While I do not 

register any important change with regard to the level 1 individual covariates 

(coefficients are more or less similar for all predictors and corresponding signs are 

confirmed), I have an ICC of 7.7 percent. Adding contextual effects helps explain the 

variance by less than 1 percent (0.4 percent). The fact that the variance explained by 

MSOA level and individual level are as the same as for the RIM confirms this 

hypothesis (0.03 percent and 0.4 percent). 

Despite this low improvement of the model in explaining the variance at area-level, 

all the three variables and almost all their interactions are strongly significant but with 
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really small coefficients. The highest one is the economic profile coefficient, 0.005 

whereas the other two coefficients are: 0.003 for the ethnicity index and even a 

negative coefficient for the degree of heterogeneity of the areas, -0.003.   

 

They suggest that people living in areas where professional and higher administrative 

occupations are more common as well as higher percentage of healthy and educated 

people and with a higher ethnic diversity, have a higher than average level of 

membership, net of all other covariates. But the negative sign for the degree of 

heterogeneity suggests also that a certain degree of homogeneity about 

characteristics like gender composition, marital status, religious belonging, and cohort 

of ages of inhabitants, is important too in order to have an higher than average level 

of membership SC.  

  

Interactions explored to further understand the effect of these contextual 

components show that heterogeneous profile of areas show stronger effects than 

their economic profile, keeping the sigh of the relations negative. However, together 

with a higher degree of ethnic diversity, it turns to have a positive effect on the 

increase of Factor 1 by 0.056 point respect to the average level (shortly less than the 

negative relation does).  

Interactions between the contextual effects and most significant variables have been 

tested but they were not found significant or even if significant, they showed really 

small coefficients.  
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Despite the estimated contextual model does not seem to add particular extra value 

to the investigation of the phenomena, the model seems to have a good fit. As for the 

RIM, graphs about the distribution of the residuals at level 1 are presented in the 

Appendix (Figure B5 A & B) together with the plot of the residuals versus the predicted 

values. Also in this case, the distribution is really close to a normal one, respecting the 

assumption for this kind of model and the plot shows a ‘cloudy’ shape, as from 

hypothesis.  

 

3.5 Factor 2 – Citizenship and Politics: Results 

Starting the analysis for this factor from the Null Model, the portion of variance for 

this factor that can be explained by differences between MSOAs is about 12 percent 

(Table 3.4). With the same procedure used for the previous factor, I investigate the 

effect of adding individual covariates then contextual effects and finally testing 

random coefficients to see how levels of Citizenship and Politics varies at MSOA levels. 

Figures B7 and B8 (in the Appendix B) once again, as for the first factor, confirm that 

Variance Component Models are more than suitable for this kind of analysis given the 

variance between MSOA of levels of citizenship and politics.   

 

3.5.1 The Random Intercept Model 

According to the following table of results, we can see that most of the results are 

quite similar to the Membership’s results and, therefore, to the literature: sense of 

citizenships, trust toward the Institutions, voting behaviours are positively and 

significant correlated with the increase of the age, a good state of health, being 

educated and a good socio-economic position.  
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Table 3.10: Random Intercept Model results – Factor 2 
 

  

Model 1: 
Random 
Intercept Model 
(S.E.) 

FIXED EFFECTS   

Constant 
 

- 0.603*** 
(0.025) 

Gender  
(Ref: Female) 

Male 0.088*** 
(0.008) 

Age  
(Ref: Age 16-24) 

Age 25-34 0.037 
(0.016)  

Age 35-45 0.132*** 
(0.016)  

Age 46-55 0.221*** 
(0.016)  

Age 56-65 0.391*** 
(0.016)  

Age 66 and more 0.543*** 
(0.016) 

Health  
(Ref: Poor health) 

Good health 0.127*** 
(0.015)  

Fair health 0.037 
(0.016) 

Marital Status  
(Ref: In a couple) 

Single -0.038** 
(0.008) 

Religion  
(Ref: Christians) 

Muslim 0.015 
(0.018)  

Other religion -0.070*** 
(0.016) 

Caring  
(Ref: Care someone) 

Do not provide care -0.056*** 
(0.010) 

Caring 2  
(Ref: Less than 20 hrs per week) 

Care 20 hrs or more per week -0.075*** 
(0.017) 

Ethnicity 
(Ref: White) 

Not White 0.002 
(0.015) 

NS-SEC of Occupations  
(Ref: Lower Supervisory, Technical, Semi 
Routine and Routine, Never Worked and 
Long-Term Unemployed) 

High and Low Managerial, 
Administrative and 
Professional 

0.205*** 
(0.010) 

 
Intermediate, Small Employers, 
Own Account 

0.063*** 
(0.011) 

Educational Level  
(Ref: No qualifications) 

GSCE level 0.167*** 
(0.012)  

A level 0.262*** 
(0.013)  

Degree and higher 0.434*** 
(0.012)  

Other qualifications 0.110*** 
(0.014) 

Employment Status  
(Ref: Unemployed) 

Employed -0.033*** 
(0.010) 

Number of Rooms in the House 
(Ref: 1 or 2 Rooms) 

3 or more rooms in the house 0.089*** 
(0.008) 

Interactions Single*Not White 0.067*** 
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(0.018) 

RANDOM EFFECTS   

MSOA level  0.025*** 
(0.001) 

Individual level  0.288*** 
(0.002) 

   

Number of cases  27,700 

ICC  0.080 

*** P-value <(0.001)   **P-value <(0.005)  *P-value <(0.010) 

 

We can also notice that, generally speaking, the coefficients are higher than the ones 

for the first factor, identifying then stronger average effects of the same variables for 

factor 2. This can be also explained by the wider range of score for this factor: 

minimum value of -2.129 and maximum value of 2.724 (see Table 2.7 and Figure 2.11, 

Ch. 2). 

 

Age cohorts, as for Factor 1, show an increasing trend with really high coefficients for 

the oldest ones: being aged between 56 and 55 increases the Factor 2 average score 

of almost 0.4 point and being oldest (66 and more) increase the same factor’s average 

score of even 0.54 point, the highest coefficient of the model. The only difference is 

that the first cohort, age 25 -34, is not significant in this case. This fact may be linked 

to the cumulative and long-term process of this type of SC.  

 

In the same way, having a degree or higher educational attainments increases the 

mean score by 0.43 point and the trend increases as well starting from the lowest 

levels to the highest attainments.  
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The state of health seems having even an amplified effect respect to the case of Factor 

1: being in a good state of health increase the average level of citizenship of an 

individual by 0.12 point.  

Also in this case, the correlation between the levels of this particular dimension of SC 

and caring is negative, confirming the previous hypothesis about the different kind of 

stock of SC on which the two aspects can differently rely on.  

 

Slightly different is the correlation about the religious aspect. If in the previous case, 

both being Muslim and belonging to religions other than Christianity and Islam were 

positively correlated with the average level of being a member or active member23, in 

this case belonging or not to the more common religions seems to matter. Being 

Muslim, indeed, results not significant.    

 

An unexpected result concerns ethnicity. While I show that the White cohort has low 

levels of membership, I supposed that for this factor the correlation would have been 

positive: political activities, institutional trust and voting attitudes and behaviours 

should depend more on being (White) British. This may be related to natural rights 

related to citizenship but also to a more formal type of involvement and capital – the 

political capital (Newton, 2001). We may assume that trust towards Institutions and 

the other variables related to it start to be higher between the other ethnicities. 

Immigrants from other countries or citizens not White (2nd Generation) can have 

higher trust because of different reasons related to this type of trust: social mobility, 

                                                           
23 It is fundamental here to remember that Factor 1 also includes variables about religious attitudes 
and beliefs and that this aspect could have been the reason for the positive correlation.   
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employment opportunities, easier acquisition of citizenship and related rights 

(Bauböck, 2005). Instead, the variable does not result significant at all.  

The ethnicity’s significance changes with the interaction with the marital status. As 

well as for Factor 1, being single has a negative correlation on the average level of 

citizenship and politics, probably due to the more limited networks, but being single 

and not White shows a significant and positive correlation with the level of this type 

of SC. It suggests that people living in areas where there are more single and not White 

people have a higher than average level of citizenship and politics, net of all other 

covariates, by 0.067 point.   

 

Following on in the analysis, as well as the first factor, the marital status shows a 

negative correlation but with a small coefficient: 0.038. As anticipated, it shows a 

positive correlation with the ethnicity. I also tested if interactions with the socio-

economic positions would have resulted significant but they did not.   

 

Concerning the employment status, as well for Factor 1, it shows a negative 

correlation with a small coefficient: 0.03, confirming the previous of idea that it may 

affect the real availability of time. I also tried to test this hypothesis focusing on the 

interaction between the employed status and the socio-economic classification of 

occupation, frequently depending on the educational level, but it does not result 

significant.  
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Definitively stronger than for Factor 1 is the effect of the socio-economic conditions: 

being a manager or high-classified professional increases the mean score of the Factor 

2 of 0.2 point.  

 

Finally, the two main differences with regard to the membership factor are due to 

gender and the number of rooms of the house. As expected, given the strong political 

trait of this factor, on average, being male increases the average level of citizenship 

and politics by almost 0.9 point. As well as gender, the new significant variable about 

number of rooms of the house higher than 3 – that can be interpreted like a kind of 

indicator of economic wellbeing – shows that people living in areas where the 

economic wellbeing is higher than the average have a higher than average level of 

citizenship and politics by 0.089.   

 

Regarding the overall model, checking the ICC index, the variance explained decreases 

by 4 percent with respect to the Null Model, suggesting how important the individual 

covariates are in explaining differences of levels of citizenship and politics within 

areas. The variance explained at MSOA level is about 2.5 percent, whereas what is 

much higher is the variance explained at the individual level: 28 percent. With respect 

to Factor 1, we can see that variance explained by the two levels is really higher than 

in the previous case. This may confirm that this type of model is even more 

appropriate in explaining differences in citizenship and politics SC.  

Besides, as shown in Figure B9 A & B and B10, residuals of level 1 approximate to a 

normal distribution and the plot of predicted values against residuals show the 

desirable cloudy shape for a good fitting of the model.  
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3.5.2 The Contextual Effects Model 

As previously discussed, the further step in the analysis sees the test of contextual 

effects with area-level covariates. In this case, I use the components created with the 

PCA.  

Table 3.11: Contextual Effects Model results – Factor 2 

 

  
Contextual Effects 
Model 
(S.E.) 

FIXED EFFECTS   

Constant 
 

0.574*** 
(0.025) 

Gender  
(Ref: Female) 

Male 0.090*** 
(0.008) 

Age  
(Ref: Age 16-24) 

Age 25-34 0.038 
(0.015)  

Age 35-45 0.131*** 
(0.016)  

Age 46-55 0.219*** 
(0.015)  

Age 56-65 0.387*** 
(0.016)  

Age 66 and more 0.536*** 
(0.016) 

Health  
(Ref: Poor health) 

Good health 0.120*** 
(0.015)  

Fair health 0.033 
(0.016) 

Marital Status  
(Ref: In a couple) 

Single -0.039** 
(0.008) 

Religion  
(Ref: Christians) 

Muslim 0.021 
(0.018)  

Other religion -0.073*** 
(0.017) 

Caring  
(Ref: Care someone) 

Do not provide care -0.058*** 
(0.010) 

Caring 2  
(Ref: Less than 20 hrs per week) 

Care 20 hrs or more per week -0.071*** 
(0.017) 

Ethnicity 
(Ref: White) 

Not White -0.025 
(0.016) 

NS-SEC of Occupations  
(Ref: Lower Supervisory, Technical, 
Semi Routine and Routine, Never 
Worked and Long-Term 
Unemployed) 

High and Low Managerial, 
Administrative and 
Professional 

0.193*** 
(0.010) 

 
Intermediate, Small 
Employers, Own Account 

0.057*** 
(0.011) 

Educational Level  
(Ref: No qualifications) 

GSCE level 0.162*** 
(0.012)  

A level 0.253*** 
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(0.013) 
 

Degree and higher 0.415*** 
(0.012)  

Other qualifications 0.105*** 
(0.014) 

Employment Status  
(Ref: Unemployed) 

Employed -0.034*** 
(0.010) 

Number of Rooms in the House 
(Ref: 1 or 2 Rooms) 

3 or more rooms in the house 0.087*** 
(0.009) 

Interactions Single*Not White 0.062*** 
(0.018) 

CONTEXTUAL EFFECTS (Level 2)   

 Heterogeneity 0.018 
(0.009) 

 Economic Profile 0.058*** 
(0.004) 

 Ethnicity Index 0.011 
(0.009) 

RANDOM EFFECTS   

MSOA level  0.022*** 
(0.001) 

Individual level  0.288*** 
(0.002) 

   

Number of cases  27,699 

ICC  0.071 

*** P-value < (0.001)   **P-value <(0.005)  *P-value <(0.010) 

 

The level 1 individual covariates confirm the same correlations with slightly different 

coefficients: the strongest effects on average level of Factor 2 come from age, 

education, economic condition (house with 3 rooms or more can be considered like a 

proxy variable), high socio-economic position and gender while religion and ethnicity 

are not significant or significant but with small coefficient. Health and caring have less 

important impact as well as the marital status.  

 

The contextual variables are not particularly significant. Only the variables about the 

economic profile are positively significant. This means that an individual living in areas 

with those economic conditions (tertiary services, highly educated, etc.) would be 
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expected to have a Citizenship and Politics SC score augmented of 0.058 point. The 

fact that the coefficient is 14 times its standard error confirms its strong significance.  

 

The ethnicity index does not result significant, as well as the individual covariate about 

being not White. And also, the component about the heterogeneity profile of the 

areas is not significant. This aspect can lead to the hypothesis that this type of SC is 

slightly higher in homogeneous areas by ethnicity and other social conditions.   

 

The inclusion of contextual effects reduces the ICC from 8 percent to 7.4 percent, 

similar to the first factor about membership where the decrease of the ICC was only 

of 0.4 percent between the RIM and the CEM. The decreasing variance explained at 

MSOA level (-0.6 percent) shows in any case that the addition of contextual effects is 

worthy for this factor (while variance explained at individual level is, as expected, still 

constant). The reduction in the area effect is around 2.2 percent.  

Finally, also in this case, figures B11 A & B and B12 in Appendix B confirms the good 

fit of the model.      

 

Enlarging our analysis, respect to Factor 1, we can note that for citizenship and politics 

SC the only contextual variable significant is the economic profile of the areas, 

whereas all the three variables were significant for Factor 1 but with a higher 

coefficient than the previous case: 0.003 versus the current 0.058.  
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3.6 Factor 3 – Neighbourliness: Results 

The last dimension under analysis is the neighbourliness one, explained by the third 

factor created with the CFA. This factor loads on variables about the relations with the 

neighbours defined like interactions, trust, help, sense of belonging, number of close 

friends, use of social media, going out and feeling of safeness and intentions to move. 

I already hypothesized that results for this factor might have been different. We are 

focusing, indeed, on a dimension more informal, personal and intimate. Besides, this 

factor tries to catch the variance about more ‘local’ and less structured aspects than 

the previous two factors. The hypothesis has been confirmed. Figure B13 and B14 

shows that also for this factor the use of a Variance Component Model may be 

appropriate given the difference between MSOAs. Therefore, also the ICC for the Null 

Model is around 13 percent as Table 3.4 reports.  

 

3.6.1 The Random Intercept Model 

Beginning to add the individual covariates as previously done for the other two 

factors, we can see from the following table the results of the RIM. As expected, it is 

quite clear that results are different with respect to the other two factors. Besides, 

given the particular structure of this factor, we can see that several ‘new’ variables 

have been resulted significant for this factor, whereas they were not considered for 

the other two factors because not significant at all, according to the hypothesis made 

at the beginning of the chapter (see par. 3.3.4).  
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Table 3.12: Random Intercept Model results – Factor 3 
 

  

Model 1: 
Random 
Intercept Model 
(S.E.) 

FIXED EFFECTS   

Constant 
 

-0.368*** 
(0.004) 

Gender  
(Ref: Female) 

Male -0.024 
(0.011) 

Age  
(Ref: Age 16-24) 

Age 25-34 0.119*** 
(0.016)  

Age 35-45 0.231*** 
(0.015)  

Age 46-55 0.270*** 
(0.015)  

Age 56-65 0.379*** 
(0.015)  

Age 66 and more 0.472*** 
(0.016) 

Health  
(Ref: Poor health) 

Good health 0.183*** 
(0.015)  

Fair health 0.079*** 
(0.016) 

Marital Status  
(Ref: In a couple) 

Single -0.061*** 
(0.013) 

Religion  
(Ref: Christians) 

Muslim 0.146*** 
(0.017)  

Other religion 0.025 
(0.016) 

Caring  
(Ref: Care someone) 

Do not provide care -0.039*** 
(0.009) 

Caring 2  
(Ref: Less than 20 hrs per week) 

Care 20 hrs or more per week -0.081*** 
(0.017) 

Ethnicity 
(Ref: White) 

Not White -0.073*** 
(0.014) 

Educational Level  
(Ref: No qualifications) 

GSCE level 0.001 
(0.012)  

A level -0.012 
(0.013)  

Degree and higher 0.036*** 
(0.009)  

Other qualifications -0.006 
(0.014) 

Employment Status  
(Ref: Unemployed) 

Employed 0.004 
(0.011) 

Local School Service 
(Ref: Poor) 

Intermediate 0.167*** 
(0.011) 

 Good 0.277*** 
(0.010) 

Other local Services 
(Ref: Poor) 

Intermediate 0.079*** 
(0.011) 

 Good 0.125*** 
(0.011) 

Moving Moved -0.053*** 
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(Ref: Never moved in life/change 
address) 

(0.012) 

Number of Rooms in the House 
(Ref: 1 or 2 Rooms) 

3 or more rooms in the house 0.061*** 
(0.008) 

Children 
(Ref: Has not 1 or more dependent 
children under age 18 ) 

Dependent children 0.049*** 
(0.010) 

Interactions Male * Single 0.057*** 
(0.015) 

   

 Male * GSCE level Not significant 

 Male * A level Not significant 

 Male * Degree and higher -0.045*** 
(0.014) 

 Male * Other qualifications Not significant 

 Male * Not White 0.044*** 
(0.017) 

 Employed * Single -0.053*** 
(0.015) 

RANDOM EFFECTS   

MSOA level  0.028*** 
(0.001) 

Individual level  0.228*** 
(0.002) 

   

Number of cases  23,228 

ICC  0.110 

*** P-value <(0.001)   **P-value <(0.005)  *P-value <(0.010) 

 

Expected positive and significant correlations have been resulted for age – according 

to an incremental way (confirmed also by Li et al, 2015 that find that older people give 

more), health conditions and belonging to one religion, economic wellbeing (detected 

by the number of rooms of the house). Like in the previous cases, the oldest cohorts 

of age show important coefficients, particularly the 56-65 class of age: it increases the 

average level of Factor 3 by 0.58 point.  

Remembering that Factor 3 range’s score goes from -2.02 to 1.283 (see Table 2.7 and 

Figure 2.9, Ch. 2), it is a notable result.  
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The religious aspect that was found latterly not important seems still to matter. 

Indeed, Li et al. (2015) find a weak correlation of religious belonging with respect to 

the strong effect of social class and income in the propensity to donate, an aspect that 

we can consider linked and dependent on neighbourliness SC. Investigating further 

the ‘religious effect’ on its own, they find instead that no religious people donate less, 

so the Putnam intuition that religious networks are significant holds. Finally, they also 

show that between the groups, Muslims are those one donating more. This result has 

been confirmed also in this study: being Muslim increases mean score of Factor 3 by 

0.14 point.  

 

With regard to new variables resulting significant in a positive way and tested 

according to the hypothesis of possible significance, we can see that variables about 

evaluation of the level of local services such as school (primary and secondary), 

medical, shopping and leisure services have important coefficients. Individuals that 

have a good or really good evaluation of the level of local school services have a higher 

level of neighbourliness than the average by almost 0.28 point.   

 

In addition, having dependent children is related to the average level of 

neighbourliness SC, reflecting its interaction with the local services and, probably, a 

higher level of commitment in the local dimension (even if for natural needs related 

to childhood). It increases the mean level of Factor 3 score by almost 0.05 point.  

Indeed, Li et al. (2015) find that partnered people and people with dependent children 

have a higher propensity to give to others.  
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Expected negative correlations have been confirmed for the marital status: being 

single probably reduces the network available also at the local level despite of more 

free time being available, decreasing the average level of this SC factor by about 0.07 

point. As already described, partnered people seem to be more willing also to donate 

and share (Li et al., 2015). With regard to new variables, negative expected correlation 

is confirmed for the variable about moving: changing place naturally decreases the 

average level of neighbourliness SC of an individual by 0.052 point.  

 

Other considerations can be made with respect to different variables taken into 

consideration. The first one is about gender. It seems that it does not affect the 

average level of SC on its own (it is not significant) but only if it interacts with the 

marital status, the ethnicity and the educational level (partially). This last interaction 

has been found especially significant in the report about the state of SC in Britain from 

CIS 15: while social support increases for some ethnic groups, it decreases for White 

men with no qualifications. Overall, women feel more supported than men (CIS 15, 

2015). On the other hand, I also find that women have a higher propensity on 

dimensions like giving to others (possible related to this type of SC) (Li et al., 2015). 

Therefore, unique and definitive explanations cannot be given to the gender issue.  

 

With respect to the first one, it is interesting to notice that this interaction reports a 

positive sign, inverting then the initial sign for the marital status on its own. It may be 

then that marital status affects relatively more women in their local networks. 

Regarding the interaction between gender and educational level, we can see from the 

results that education level in itself is not significant apart for having a degree or 
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higher educational attainments. According to CIS 8 (2015), there is not such a big 

difference in the availability of someone to talk with, whereas higher educational 

attainment seems to matter more for the level of generalized trust. Therefore, this 

result was partially expected: if on one side higher educational attainments make 

people more confident and satisfied and then sociable (according to the literature), 

on the other side this kind of factor - and variables considered - are more across-the 

board than the previous ones considered and it is not strongly related to all the 

dimensions (variables) upon which this factor loads. This may explain the weak 

significance. Finally, according to the results, the interaction suggests that people 

living in areas where graduated (and higher levels) are more common have lower than 

average level of neighbourliness by 0.045 point. This result can be explained by a 

possible lack of time available for profiles that may be probably intensively occupied. 

Indeed, the interaction between being single and employed shows a negative 

correlation, whereas we see that on its own, the employment status is not significant.  

 

Indeed, CIS 8 (2015) shows that employment status has a strong effect about active 

participation, whereas differences between employees and unemployed people or 

other inactive people do not have important differences between them on the 

availability of someone to talk with and the percentage of assertive answers is quite 

high between the three typologies. The employment status matters more than how 

much people trust others. The overall effect also in this case can be weaker if 

considered on its own. The last two considerations are about two ‘unexpected’ 

results.  
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The first one regards the variables about caring. Both of the two variables about caring 

or not and related intensity show negative signs. If we can hypothesize that higher 

levels of involvement in caring activities reduces the time available invested in ‘local’ 

relations, I would expect a positive sign for the variable about caring, indicating, as 

previously suggested, a kind of propensity to interpersonal relations. In this case, I 

may suppose that caring defines a very different dimension from that which identifies 

from the variables about relations with neighbours. Besides, literature previously 

reported highlights how neighbours where relations are good show also higher levels 

of health wellbeing by its members, reducing the need for these kinds of activities. 

Last, the variety on variables on which this factor loads (social media and crime) can 

make this correlation weaker.  

 

The second one is about ethnicity. I underline that according to CIS 8 and CIS 15 (2015) 

ethnicity has different effects, even ambiguous, on different dimensions of SC. If 

participation in voluntary organizations is slightly higher for the non-White, especially 

the active one (with differences between groups; CIS 8, 2015), trust towards 

neighbours is higher for White than for other ethnicities (CIS 8, 2015) and foreigners 

give less (Li et al., 2015). Other studies show how diversity can foster a higher level of 

SC but through complex processes. Cutts and Fieldhouse (2015), in a study comparing 

USA and UK using Structural Equation Modelling, find a negative direct relationship: 

as diversity increases, both community mindedness and community participation 

decrease, especially for the White majority group. However, if in more diverse 

communities, where they are more likely to have inter-ethnic friendships and engage 

in community participation, Whites have cross-groups friendships, then diversity 
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fosters SC. So, generally speaking, diversity is negatively related to SC especially for 

Whites. Moreover, this aspect persists even if they control for individual and 

neighbourhood characteristics but it decreases with cross-groups and inter-ethnic 

friendships that increase generalized trust.    

 

Therefore, keeping in mind that the relation about diversity and generalized trust and 

neighbourliness SC is still under analysis, for only this factor, people living in areas 

where diversity is higher seem to have lower than average levels of neighbourliness 

SC by 0.073 point. The sign of this correlation is totally inverted if interactions with 

the gender are taken into consideration. The estimated coefficient of 0.044 suggests 

that, again, being a non -White male increase the average level of SC in relation to the 

non-White women for the same area.    

 

Looking at indicators for the overall model, we see from Figure B15 A & B and Figure 

B16 in the Appendix that the model presents a good goodness of fit. Besides, the ICC 

for this model says that, after the addition of individual covariates, the area effect still 

explains 11 percent of the phenomena, decreasing by 2 percent respect to the Null 

Model.   

 

The variance explained at MSOA level is about 2.8 percent, the highest respect to the 

other two factors. Still higher but less than Factor 2 is the variance explained at 

individual level: 22.8 percent.  
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3.6.2 The Contextual Effects Model 

After controlling for all the individual covariates, trying to investigate further the area 

effects, I add the contextual components created with the PCA. With respect to the 

individual variables, ethnicity becomes not significant in this contextual model. The 

possible explanation may be related to the addition of the ecological variables, as we 

are going to see shortly.  

 

The ICC decreases from 11 percent to 9.3 percent, recording the highest improvement 

between the three CEMs from their RIMs. With it, also the variance explained at 

MSOA level decreases of 0.5 percent (while individual variance is constant at 22.8 

percent). The hypothesis that for this kind of factor, those local characteristics are 

more important than the other two factors seems to be confirmed. Generally, as 

usual, checks for normality of residuals and other assumptions are reported in 

Appendix B (B17 A & B and B18).  

Table 3.13: Contextual Effects Model results – Factor 3 
 

  
Contextual 
Effects Model 
(S.E.) 

FIXED EFFECTS   

Constant 
 

-0.403*** 
(0.004) 

Gender  
(Ref: Female) 

Male -0.021 
(0.011) 

Age  
(Ref: Age 16-24) 

Age 25-34 0.127*** 
(0.016)  

Age 35-45 0.231*** 
(0.015)  

Age 46-55 0.268*** 
(0.015)  

Age 56-65 0.371*** 
(0.015)  

Age 66 and more 0.454*** 
(0.016) 

Health  
(Ref: Poor health) 

Good health 0.169*** 
(0.015) 
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Fair health 0.073*** 

(0.016) 
Marital Status  
(Ref: In a couple) 

Single -0.049*** 
(0.013) 

Religion  
(Ref: Christians) 

Muslim 0.173*** 
(0.017)  

Other religion 0.037 
(0.016) 

Caring  
(Ref: Care someone) 

Do not provide care -0.040*** 
(0.009) 

Caring 2  
(Ref: Less than 20 hrs per week) 

Care 20 hrs or more per week -0.072*** 
(0.017) 

Ethnicity 
(Ref: White) 

Not White -0.022 
(0.015) 

Educational Level  
(Ref: No qualifications) 

GSCE level -0.012 
(0.013)  

A level 0.001 
(0.012)  

Degree and higher 0.028** 
(0.009)  

Other qualifications -0.006 
(0.014) 

Employment Status  
(Ref: Unemployed) 

Employed 0.017 
(0.010) 

Local School Service 
(Ref: Poor) 

Intermediate 0.167*** 
(0.011) 

 Good 0.277*** 
(0.011) 

Other local Services 
(Ref: Poor) 

Intermediate 0.079*** 
(0.011) 

 Good 0.125*** 
(0.011) 

Moving 
(Ref: Never moved in life/change 
address) 

Moved -0.053*** 
(0.012) 

Number of Rooms in the House 
(Ref: 1 or 2 Rooms) 

3 or more rooms in the house 0.037*** 
(0.008) 

Interactions Male * Single 0.057*** 
(0.015) 

 Male * GSCE level Not significant 

 Male * A level Not significant 

 Male * Degree and higher -0.045*** 
(0.014) 

 Male * Other qualifications Not significant 

 Male * Not White 0.044* 
(0.017) 

 Employed * Single -0.056*** 
(0.015) 

CONTEXTUAL EFFECTS (Level 2)   

 Heterogeneity -0.071*** 
(0.009) 

 Economic Profile 0.051*** 
(0.009) 

 Ethnicity Index -0.037*** 
(0.009) 
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Interactions Heterogeneity * Economic 
profile 

-0.021*** 
(0.004) 

 Heterogeneity * Ethnicity Index 0.047*** 
(0.005) 

RANDOM EFFECTS   

MSOA level  0.023*** 
(0.001) 

Individual level  0.228*** 
(0.002) 

   

Number of cases  23,227 

ICC  0.093 

*** P-value <(0.001)   **P-value <(0.005)  *P-value <(0.010) 

 

Ending the analysis with the comparison with the other two factors, we can see that 

the heterogeneity component is significant as well as for Factor 1 with a higher 

coefficient but the same negative sign of correlation. In addition, the ecological 

variable about the economic profile of the areas is significant, the same as for Factor 

1 and Factor 2. Its coefficient is much higher than for Factor 1 and almost close to 

Factor 2.  

 

The Ethnicity Index is significant with the smallest coefficient and a negative 

correlation: living in areas with high degree of ethnic diversity decreases the average 

level of Factor 3 by 0.037 point. However, its interaction with the degree of 

heterogeneity of the areas shows positive sign. Interestingly, it is also notable that the 

interaction between the degree of heterogeneity of areas and economic profile is 

negative (but with a small variance with respect to all the other ones). We can say 

that people living in homogeneous areas with a high economic profile (professional 

and tertiary) have a higher level of neighbourliness SC than the average.   
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3.7 Conclusions 

The complex building up of the models demonstrates interesting results about which 

individual characteristics and areas characteristics influences the three different SC 

factors.  

I try to summarize the wide amount of results from all the previous models for all the 

factors in the following tables.  

Table 3.14: Variance explained by the levels of analysis - summary 

 

 
Level of 
Variance 

explained % 

Factor 1 
Membership 

Factor 2 
Citizenship and 

Politics 

Factor 3 
Neighbourliness 

Random Intercept 
Model 

MSOA 0.03 2.5 2.8 

Individual 0.4 28.8 22.8 

Contextual Effects 
Model 

MSOA 0.03 2.2 2.3 

Individual 0.4 28.8 22.8 

 
Table 3.15: Models and factors by ICC – summary 

 

Model 
Factor 1 

Membership 

Factor 2 
Citizenship and 

Politics 

Factor 3 
Neighbourliness 

Baseline 13% 12% 13% 

Random Intercept Model 8.1% 8% 11% 

Contextual Effects Model 7.7% 7.1% 9.3% 

  

In the first Table 3.14, I show the variance explained by the two levels considered in 

the model while in Table 3.15 I summarize the ICC for the all models.  

About Factor 1, we can see that the level of variance explained at the two levels is 

really small: 0.03% at MSOA level and 0.4% at individual level. This last level explains 

variance 10 times more than the area effects. Adding contextual effects, besides, do 

not change the variance explained at all at both the levels. This means that the 

unmeasured processes generating the error terms in the random part of the model 

are catch already. Indeed, the variance of residuals estimated by the model is really 
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low. It may suggest that a single level model would have been more appropriate for 

this factor.   

But if we look at the ICC from Table 3.15, Factor 1 shows the highest change from the 

Baseline model to the RIM, about 5%, so it may suggest that this factor shows a mixed 

dependence on both individual and area effects. Indeed, in RIM the ICC is around 8%. 

It means that the total variance of Factor 1 is accounted by clustering. 

 

Completely different is the situation for the other two factors. As we can from Table 

3.14, the variance explained is higher than the previous factor, about 2%, at area level. 

Variance explained at individual level is still 10 times higher than the area effects. The 

change between the two models is small, 0.3% for Factor 2 and 0.5% for Factor 3, so 

it means that adding contextual effects do not help significantly the explanation of 

residual variance.    

 

Therefore, it is useful to look at the ICC to understand better if Mixed Models were 

useful. Factor 2 and Factor 3 shows more similar trends about the two levels 

considered. Factor 3, according to hypothesis, confirms to be the factor more related 

to local aspects: MSOAs differences explain the highest total variance and the changes 

between ICC from the RIMs between the main models, showing that higher variance 

is explained with area effects.  

 

Factor 2, as confirmed by the analysis and the almost null changes of ICC between 

models, confirms its high correlation with individual covariates, that explain most of 
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the differences in Citizenship and Politics SC levels, like the highest percentage of 

variance recorded for the individual level by itself.  

 

Focusing on the levels of analysis, I can start summarising results about individual 

covariates. Almost the totality of them is significant at 0.001, some at 0.005 or not 

significant at all. I report the final coefficient estimates at level 1 of RIMs. I can state 

indeed there I do not register big changes at this level during the building up of the 

models with contextual effects.  

Table 3.16: Individual covariates by correlation and its sign at level 1– summary 
 

Characteristic Membership Citizenship and Politics Neighbourliness 

Male - + Not significant 

Age + + + 

Good health + + + 

Fair health + Not significant + 

Single - - - 

Muslim + Not significant + 

Other religions + - Not significant 

Providing care - - - 

Caring more than 20 hrs per 
week 

- - - 

Not White  + Not significant - 

High and Low Managerial, 
Administrative and Professional 

+ + Not significant 

Intermediate, Small Employers, 
Own Account 

Not significant + Not significant 

GSCE level + + Not significant 

A level + + Not significant 

Degree and higher qualification + + + 

Other qualifications + + Not significant 

Employed - - Not significant 

Born out of UK Not significant Not significant Not significant 

Having dependent children Not significant Not significant + 

House with 3 or more rooms Not significant + + 

Moved in the life Not significant Not significant - 

Intermediate level of local 
school service 

Not significant Not significant + 

Good level of local school 
service 

Not significant Not significant + 
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Intermediate level of other local 
services 

Not significant Not significant + 

Good level of other local 
services 

Not significant Not significant + 

 

Interactions not reported in the table register a positive significant correlation 

between being male and employed and average level of Membership SC. Being single 

and not White is the only interaction positively correlated with average level of Factor 

2.  

 

Finally, given the unexpected not significance of the gender variable for Factor 3, 

interactions with the marital status, the ethnicity and the degree level make it 

significant. In addition, the employment status becomes significant in its interactions 

with the marital status.     

 

After checking the significance of the individual covariates, we can explore the results 

for contextual effects in the following table about contextual variables only.  

Factor 1 model has all contextual effect as significant as well as for Factor 3. The 

importance of these area effects for the factor more ‘local’ among all of them is 

confirmed also from the fact that Neighbourliness’ average levels increase also with 

interactions of contextual effects.  

Factor 2, on the other side, was already shown to be more related to individual 

covariates than the other two factors. This may explain the non-significance of two 

out of three components and relative interactions.   
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Table 3.17: Variance explained by the contextual variables in models considered 
 

Contextual effect 
Factor 1 

Membership 

Factor 2 
Citizenship and 

Politics 

Factor 3 
Neighbourliness 

Contextual Effects Models 

Heterogeneity -0.003 Not significant -0.071 

Economic profile +0.005 +0.058 +0.051 

Ethnicity Index +0.003 Not significant -0.037 

Heterogeneity*Ethnicity 
Index 

Not significant Not significant +0.047 

Heterogeneity*Economic 
profile 

Not significant Not significant -0.019 

 

All these results show the complexity but at the same time the richness resulting from 

all this building up of MM. Initial hypotheses are almost confirmed, both at individual 

level and at area-level. Contextual effects components show to be important in the 

analysis, especially the economic profile: an individual living in an area with more 

diffused tertiary sector jobs, educated people, high profile socio-economic 

classification positions and healthy are expected to have higher SC score than the 

average level of the area.  

 

A final thought should be done respect to the fact that Random Coefficient Models 

have not resulted significant in this study. It may be the case that despite MM is 

appropriate for studying SC and its differences due to geographical differences, 

individual covariates seem to be a stronger effect and they do not make SC differs 

between areas. Indeed, the main hypothesis of RCM is that slopes differ for all the 

areas. If RIM and CEM focus on the within-effects, RCM focus more on the between-

effects. Mainly, according to RCM, it is possible to state that an individual with a 

certain amount of SC related to a particular combination of individual characteristics 
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will have different SC from an individual with the same characteristics but in a totally 

different and geographically diverse area. 

This result may be due to the level of the analysis chosen (MSOA level) or related 

statistical issues (number of observations per area and number of areas available). 

Nevertheless, it may be also due to the nature of this kind of capital, at the boundary 

of two dimensions: individual and local, local and global.   

Indeed, MSOAs differences explain variance in average level of membership, 

citizenship, politics and neighbourliness. At the same time, SC remains related to 

personal characteristics: the right balance between a single person and their 

networks’ dimensions, both in a more formal way (for the first two factors) and in an 

informal and local way (as for the third factor).     
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Appendix B 

Table B1: Description of survey variables from UKHLS, year 2011 (reference category is not 

defined)24 
 

Category and Name of Variable Definition 
Type of 
variable 

Gender 
(Ref: Female) 

Male Gender Dummy 

Age 
(Ref: Age 16-24) 

25-34 

Classes of ages from the original continuous v. Dummy 

35-45 

46-55 

56-65 

66 and more 

Health 
(Ref: Poor 
health) 

Fair health Fair state of health from the original ordinal v. 
Dummy 

Good health 
Sum of excellent, very good and good state of 
health from the original ordinal v. 

Marital Status 
(Ref: Living in a 
couple) 

Single 

Sum of single, never married or in a legal civil 
partnership, divorced, widowed, separated, 
surviving partner, ex-civil partner from the original 
categorical v. 

Dummy 

Religion 
(Ref: Christians) 

Muslim Muslim from the original categorical v. 

Dummy Other 
religions 

Sum of Hindu, Jewish, Sikh, Buddhist and other 
religions from the original categorical v. 

Caring 
(Ref: Care 
someone) 

Do not 
provide care 

Sum of two original categorical vs.: looking after 
or giving special helps to someone who is sick, 
disabled or elderly living with OR not living with 

Dummy 

Caring 2 
(Ref: Less than 
20 hrs per week) 

Care 20 hrs or 
more per 
week 

Sum of 20-34/35-49/50-99/100 more hrs per 
week spent in unpaid caring someone from the 
original ordinal v. 

Dummy 

Ethnicity 
(Ref: White) 

Not White 

Sum of Black=Caribbean+ African+Any other Black 
background+ 
Asian=Indian+Pakistani+Bangladeshi+Chinese+Any 
other Asian background+ 
Mixed=White and Black Caribbean+White and 
Black African+White and Asian+Any other Mixed 
Background+ 
Any other ethnic group=Arabic+Any other ethnic 
group 

Dummy 

Educational 
Level 
(Ref: No 
qualifications) 

GSCE level 
Sum of GCE O Levels or Equivalent+CSE Grade 2-5 
from the original ordinal v. 
 

Dummy A level 
GCE A Levels from the original ordinal v. 
 

Degree and 
higher 

Sum of Higher Degree+First Degree+Other Higher 
QF from the original ordinal v. 
 

                                                           
24 Definitions of variables and answered available between UKHLS and BHPS are pretty similar. More 
completed information will be reported when they will be different or one will result more detailed 
respect to the others. In any case, the recoding have been done to reflect completely the Census 
definitions, used for PCA and for the following work of SAE.   
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Other 
qualifications 

Sum of Teaching QF+Nursing QF+Commercial 
QF+No O+Apprenticeship+Other QF from the 
original ordinal v. 

NS-SEC of 
Occupations 
(Ref: Lower 
Supervisory, 
Technical, Semi 
Routine and 
Routine, Never 
Worked and 
Long-Term 
Unemployed) 

High and Low 
Managerial, 
Administrative 
and 
Professional 

Sum of NS-SEC category 1-2: 1. Higher Managerial, 
Administrative and Professional Occupations and 
2. Lower Managerial, Administrative and 
Professional Occupations from the original ordinal 
v. 

Dummy 

Intermediate, 
Small 
Employers, 
Own Account 

Sum of NS-SEC category 3-4: 3. Intermediate 
Occupations and 4. Small Employers and Own 
Account Workers from the original ordinal v. 

Employment 
Status 
(Ref: 
Unemployed) 

Employed 
Sum of Paid Employed and Self Employed from 
the original categorical v. 

Dummy 

Number or 
Rooms in the 
House 
(Ref: 1 or 2 
Rooms) 

3 or more 
rooms in the 
house 

Sum of classes 3, 4, 5 or more rooms derived by 
the original continuous v. 

Dummy 

Local School 
Service 
(Ref: Poor) 

Intermediate 
Fair evaluation of local services from two original 
ordinal v.: standard of local services of primary 
school and secondary school. 

Dummy 

Good 
Excellent or Very good evaluation of local services 
from two original ordinal v.: standard of local 
services of primary school and secondary school. 

Other local 
Services 
(Ref: Poor) 

Intermediate 
Fair evaluation of local services from three original 
ordinal v.: standard of local medical, shopping and 
leisure services. 

Dummy 

Good 
Excellent or Very good evaluation of local services 
from three original ordinal v.: standard of local 
medical, shopping and leisure services. 

Moving 
(Ref: Never 
moved in 
life/change 
address) 

Moved 
Derived from the original dummy v. asking if ever 
moved in his/her life or ever changed address. 

Dummy 

Children 
(Ref: Has not 1 
or more 
dependent 
children under 
age 18 ) 

Dependent 
children 

Derived from the original continuous v. about the 
number of own dependent children in the HH 
crossed with the corresponding age. 

Dummy 
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Table B2: Descriptive statistic for variables UKHLS (within between) 

 

Variable  Mean St. dev. Min Max Observations 

Male 

overall 0.000 0.499 -0.462 0.538 N = 37932 

between  0.199 -0.462 0.538 n = 5255 

within  0.482 -0.857 0.889 T-bar = 7.21827 

Age 25-34 

overall 0.000 0.360 -0.153 0.847 N = 37932 

between  0.238 -0.153 0.847 n = 5255 

within  0.317 -0.900 0.968 T-bar = 7.21827 

Age 35-45 

overall 0.000 0.404 -0.205 0.795 N = 37932 

between  0.238 -0.205 0.795 n = 5255 

within  0.362 -0.889 0.964 T-bar = 7.21827 

Age 46-55 

overall 0.000 0.382 -0.177 0.823 N = 37932 

between  0.207 -0.177 0.823 n = 5255 

within  0.350 -0.857 0.968 T-bar = 7.21827 

Age 56-65 

overall 0.000 0.357 -0.150 0.850 N = 37932 

between  0.205 -0.150 0.850 n = 5255 

within  0.320 -0.857 0.968 T-bar = 7.21827 

Age 66 and more 

overall 0.000 0.383 -0.178 0.822 N = 37932 

between  0.246 -0.178 0.822 n = 5255 

within  0.335 -0.875 0.969 T-bar = 7.21827 

Not White 

overall 0.000 0.416 -0.223 0.777 N = 37448 

between  0.314 -0.223 0.777 n = 5255 

within  0.274 -0.967 0.973 T-bar = 7.12617 

Good health 

overall 0.000 0.408 -0.789 0.211 N = 37895 

between  0.231 -0.789 0.211 n = 5253 

within  0.371 -0.966 0.857 T-bar = 7.21397 

Fair health 

overall 0.000 0.355 -0.148 0.852 N = 37895 

between  0.196 -0.148 0.852 n = 5253 

within  0.326 -0.800 0.969 T-bar = 7.21397 

Muslim 

overall 0.000 0.282 -0.087 0.913 N = 32125 

between  0.188 -0.087 0.913 n = 5224 

within  0.178 -0.967 0.971 T-bar =  6.1495 

Other religions 

overall 0.000 0.240 -0.062 0.938 N = 32033 

between  0.168 -0.062 0.938 n = 5223 

within  0.191 -0.875 0.971 T-bar = 6.13307 

Single 

overall 0.000 0.481 -0.362 0.638 N = 37932 

between  0.305 -0.362 0.638 n = 5255 

within  0.427 -0.917 0.944 T-bar = 7.21827 

Employed 

overall 0.000 0.482 -0.633 0.367 N = 37912 

between  0.284 -0.633 0.367 n = 5254 

within  0.431 -0.950 0.923 T-bar = 7.21584 

GSCE level 
overall 0.000 0.405 -0.207 0.793 N = 34653 

between  0.225 -0.207 0.793 n = 5198 
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within  0.368 -0.833 0.955 T-bar =  6.6666 

A level 

overall 0.000 0.405 -0.207 0.793 N = 34653 

between  0.221 -0.207 0.793 n = 5198 

within  0.371 -0.889 0.955 T-bar =  6.6666 

Degree and higher 

overall 0.000 0.477 -0.350 0.650 N = 34653 

between  0.303 -0.350 0.650 n = 5198 

within  0.414 -0.917 0.955 T-bar =  6.6666 

Other qualifications 

overall 0.000 0.307 -0.106 0.894 N = 34653 

between  0.171 -0.106 0.894 n = 5198 

within  0.281 -0.800 0.983 T-bar =  6.6666 

High and Low 
Managerial, 

Administrative and 
Professional 

overall 0.000 0.429 -0.243 0.757 N = 37751 

between  0.260 -0.243 0.757 n = 5252 

within  0.381 -0.900 0.966 T-bar = 7.18793 

Intermediate, Small 
Employers, Own 

Account 

overall 0.000 0.350 -0.143 0.857 N = 37751 

between  0.183 -0.143 0.857 n = 5252 

within  0.322 -0.800 0.967 T-bar = 7.18793 

Do not provide care 

overall 0.000 0.391 -0.811 0.189 N = 34699 

between  0.222 -0.811 0.189 n = 5255 

within  0.351 -0.966 0.857 T-bar = 6.60304 

Care 20 hrs or more 
per week 

overall 0.000 0.219 -0.050 0.950 N = 34699 

between  0.119 -0.050 0.950 n = 5255 

within  0.200 -0.667 0.969 T-bar = 6.60304 

Dependent children 

overall 0.000 0.403 -0.205 0.795 N = 35454 

between  0.216 -0.205 0.795 n = 5255 

within  0.374 -0.800 0.958 T-bar = 6.74672 

3 or more rooms in 
the house 

overall 0.000 0.420 -0.228 0.772 N = 37846 

between  0.294 -0.228 0.772 n = 5250 

within  0.338 -0.923 0.967 T-bar = 7.20876 

Moved 

overall 0.000 0.295 -0.904 0.096 N = 37070 

between  0.171 -0.904 0.096 n = 5242 

within  0.252 -0.967 0.900 T-bar = 7.07173 

Local school service 
- Intermediate 

overall 0.000 0.459 -0.302 0.698 N = 29285 

between  0.293 -0.302 0.698 n = 5032 

within  0.400 -0.875 0.967 T-bar = 5.81975 

Local school service 
- Good 

overall 0.000 0.497 -0.559 0.441 N = 29285 

between  0.327 -0.559 0.441 n = 5032 

within  0.421 -0.967 0.933 T-bar = 5.81975 

Other local service - 
intermediate 

overall 0.000 0.498 -0.454 0.546 N = 29285 

between  0.316 -0.454 0.546 n = 5032 

within  0.433 -0.929 0.947 T-bar = 5.81975 

Other local service - 
Good 

overall 0.000 0.495 -0.430 0.570 N = 29285 

between  0.331 -0.430 0.570 n = 5032 

within  0.416 -0.947 0.955 T-bar = 5.81975 
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Table B3: Descriptions of variables used in PCA, year 2011 

 
Measures Definition  Source 

Born in UK 
Percentage of people born in UK (England, Wales, 
Scotland, Northern Ireland) per MSOA (over total 

residents) 
Census 

Born in Europe 
Percentage of people born in European countries 

per MSOA (over total residents) 
Census 

1 or 2 rooms house 
Percentage of HH living in a house with 1 or 2 
rooms per MSOA (over total number of HH) 

Census 

House owned 
Percentage of HH with ownership of house per 

MSOA (over total number of HH) 
Census 

Terraced or flat house 
Percentage of HH living in a terraced house, flat, 
maisonette or apartment per MSOA (over total 

number of HH) 
Census 

Resident since 5 year or 
more 

Percentage of people resident since more than 5 
years per MSOA (over total residents) 

Census 

Christian 
Percentage of Christian people per MSOA (over 

total residents) 
Census 

Muslim 
Percentage of Muslim people per MSOA (over total 

residents) 
Census 

Population density Number of Persons per Hectare per MSOA (rate) 
Neighbourhood 

Statistics 

Single 

Percentage of single, never married or in a legal 
civil partnership, divorced, widowed, separated, 

surviving partner, ex-civil partner people per MSOA 
(over total residents) 

Census 

Do not provide care 
Percentage of people not providing unpaid care per 

MSOA (over total residents) 
Census 

Age 30-44 
Percentage of people ageing 30 to 44 per MSOA 

(over total residents) 
Census 

Violence against the 
person 

Number of notifiable offences recorded by the 
Police of: Wounding or Other Act Endangering Life, 

Other Wounding,  
Harassment Including Penalty Notices for Disorder, 

Common Assault, Robbery or Theft from the 
Person per Local Authority Districts (LAD) 

Neighbourhood 
Statistics 

Criminal damage Number of notifiable offences recorded by the 
Police of: Criminal Damage Including Arson, 
Burglary in a Dwelling, Burglary Other than a 

Dwelling, Theft of a Motor Vehicle or Theft from a 
Motor Vehicle per Local Authority Districts (LAD) 

Neighbourhood 
Statistics 

Male Percentage of Male people per MSOA (over total 
residents) 

Census 

High and Low 
Managerial, 

Administrative and 
Professional and 

Intermediate, Small 
Employers, Own 

Account  
(NS-SEC classif.) 

Percentage of people employed according to NS-
SEC 1, 2, 3 or 4 classification per MSOA (over total 

residents) 
Census 

Tertiary sector worker 
(SIC 2007 classif.) 

Percentage of people employed in the Tertiary 
Sectors I, J, K, L, M, N, O, P, Q, R, S, T or U according 

Census 
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to the SIC 2007 classification per MSOA (over total 
residents) 

Good health 
Percentage of people with very good and good 

health per MSOA (over total residents) 
Census 

A levels 

Percentage of people with 2+ A Levels/VCEs, 4+ As 
Levels, Higher School Certificate, 

Progression/Advanced Diploma or Welsh 
Baccalaureate Advanced Diploma per MSOA (over 

total residents) 

Census 

Degree and higher 
qualifications 

Percentage of people with  
Degree (For Example BA, BSc), Higher Degree (For 

Example MA, PhD, PGCE) 
NVQ Level 4-5, HNC, HND, RSA Higher Diploma or 
BTEC Higher Level per MSOA (over total residents) 

Census 

Employed 
Percentage of paid employed and self-employed 

people per MSOA (over total residents) 
Census 

Benefits for disability 
Percentage of Disability Living Allowance or 

Incapacity Benefit/Severe Disablement Allowance 
claimants per MSOA (over total residents)  

Neighbourhood 
Statistics 

Benefits for economic 
disadvantages 

Percentage of Income Support, Jobseekers 
Allowance or Pension Credit claimants per MSOA 

(over total residents) 

Neighbourhood 
Statistics 

Tax credit 
Percentage of Families receiving tax credit 

and Lone parent families in work receiving tax 
credit per MSOA (over total residents) 

Neighbourhood 
Statistics 

Distance travelled to 
work: less than 10 km 

(WTA classif.) 

Percentage of people travelling daily to work less 
than 10 km per MSOA (over total residents) 

Census 
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Table B4: Descriptive statistics of Census and Neighbourhood Statistics variables  

 

Measures Mean (%) Minimum (%) Maximum (%) 
Standard 
Deviation 

Born in UK 87.31 13.10 30.77 98.91 

Born in Europe 6.80 7.45 0.45 62.18 

1 or 2 rooms house 4.52 4.48 0.33 36.47 

House owned 64.28 17.14 7.28 96.49 

Terraced or flat 
house 

44.22 24.38 1.75 99.00 

Resident since 5 
year or more 

9.10 9.14 0.88 52.72 

Christian 59.86 11.47 6.32 85.21 

Muslim 4.42 9.39 0.00 83.37 

Population density 32.18 34.31 0.10 247.20 

Single 52.80 10.12 30.17 94.93 

Do not provide care 89.55 1.96 83.63 97.49 

Age 30-44 20.38 3.83 5.17 38.26 

Violence against the 
person 

64.60 43.72 6.17 377.33 

Criminal damage 94.75 72.10 4.21 547.13 

Male 49.12 1.52 44.23 61.28 

High and Low 
Managerial, 

Administrative and 
Professional and 

Intermediate, Small 
Employers, Own 

Account  
(NS-SEC classif.) 

39.61 10.62 7.04 76.79 

Tertiary sector 
worker 

34.93 7.50 15.36 68.44 

Good health 81.08 4.48 61.06 95.39 

A levels 18.03 10.14 2.68 72.17 

Degree and higher 
qualifications 

21.30 10.69 3.41 68.16 

Employed 56.02 7.31 9.77 80.91 

Benefits for 
disability 

20.21 9.86 1.57 72.88 

Benefits for 
economic 

disadvantages 
22.85 11.63 2.06 94.13 

Tax credit 26.36 10.52 1.79 97.68 

Distance travelled to 
work (WTA classif.) 

29.56 6.05 11.07 60.38 
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Figure B1: Variation of Factor 1 between MSOA  

 

 
 

Figure B2: MSOA effects in rank for Factor 1, Null Model  
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Figure B3 A & B: Factor 1 – Diagnostic plots: Residuals distributions of Level 1 for Random 

Intercept Model 
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Figure B4: Factor 1 – Diagnostic plot: Residual plot of Level 1 for Random Intercept Model 

 

 
 

Figure B5 A & B: Factor 1 – Diagnostic plots: Residuals distributions of Level 1 for 
Contextual Effects Model 
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Figure B6: Factor 1 – Diagnostic plot: Residual plot of Level 1 for Contextual Effects Model 
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Figure B7: Variation of Factor 2 between MSOA 

 

 
 
 

Figure B8: MSOA effects in rank for Factor 2, Null Model 
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Figure B9 A & B: Factor 2 – Diagnostic plots: Residuals distributions of Level 1 for Random 
Intercept Model 
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Figure B10: Factor 2 – Diagnostic plot: Residual plot of Level 1 for Random Intercept Model 

 

 
 
 

Figure B11 A & B: Factor 2 – Diagnostic plots: Residuals distributions of Level 1 for 
Contextual Effects Model 
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Figure B12: Factor 2 – Diagnostic plot: Residual plot of Level 1 for Contextual Effects 
Model 
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Figure B13: Variation of Factor 3 between MSOA 

 

 
 

Figure B14: MSOA effects in rank for Factor 3, Null Model 
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Figure B15 A & B: Factor 3 – Diagnostic plots: Residuals distributions of Level 1 for Random 
Intercept Model 
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Figure B16: Factor 3 – Diagnostic plot: Residual plot of Level 1 for Random Intercept Model 
 

 
 

Figure B17 A & B: Factor 3 – Diagnostic plots: Residuals distributions of Level 1 for 
Contextual Effects Model 

 

 
 



257 
 

Page 257 of 332 

 
 

Figure B18: Factor 3 – Diagnostic plot: Residual plot of Level 1 for Contextual Effects 
Model 
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Supplementary Material 

In this section I report results and relative interpretation to check that missing data 

are random and they do not bias results. As we saw in the previous sections, all the 

tables reporting results for the factors show that the number of observations of the 

models is lower than the full sample 37,932. More or less all the models for Factor 1 

and 2 have about 10,000 observations less than the full sample available whereas 

models of Factor 3 have even more missing data – around 14,000 less observations 

than the total. Therefore, a check on the nature of these missing data is necessary 

(see par. 3.3.2 for further references).  

 

SM.1 Factor 1 - Membership  

The first step was to run Independent Sample T-Tests to compare means of several 

variables between the two groups: full sample and sample with missing data from the 

estimates of the models. The hypothesis is that there is no difference between the 

means, meaning that missing data are random and they do not bias results.  

I used variables about sex, age, marital status and educational attainment from the 

original dataset25. I choose them because they do not have missing data at all and they 

can give information about the full sample. The hypothesis of no differences between 

the means of the groups has been rejected both for RIM and for RCM. 

                                                           
25 Age is a continuous variable; Sex is a dummy variable with 1 for Female, Education level is a 
categorical variable with 6 values: No qualifications, other qualifications, GSCE, A-level, Degree, Other 
higher degree; Marital status is a dummy variable with 1 for Married/Cohabiting/Civil 
partnership/Same sex partnership.  
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I then run logistic regressions to investigate it further. Dependent variable is a coded 

1 for observations with at least a missing value and 0 otherwise. It then identifies the 

two samples. 

Results are reported in the following table: 

Table SM.1.1: Logistic regression results 
 

 
Random 

Intercept Model 
Contextual 

Effects Model 

Constant 
-1.139*** 

(0.049) 
-1.138*** 

(0.049) 

Age 
0.028*** 
(0.000) 

0.028*** 
(0.000) 

Sex 
0.478*** 
(0.024) 

0.478*** 
(0.024) 

Educational level 
0.005 

(0.004) 
0.006 

(0.004) 

Marital status 
0.216*** 
(0.025) 

0.216*** 
(0.025) 

 

As we can see, apart for the educational level, all the variables are significant whereas 

to support the hypothesis of non-biased results due to missing data they should not 

result significant. 

I then checked if means of variables used in the models are so different according to 

descriptive statistics. 

In the following table, we can see the descriptive statistics for the two samples and 

noticing that they are not particularly different and, if any, differences are 

infinitesimal. This allows adjusting for MAR assumption: 

Table SM.1.2: Descriptive statistics for Random Intercept Model26 
 

 Full sample Model’s sample (no missing) 

Variable Obs. Mean Std. Dev. Obs. Mean Std. Dev. 

Factor 1 10,188 0.0032 0.0597 27,744 0.0070 0.0730 

Male 10,188 0.5428 0.4982 27,744 0.4326 0.4954 

                                                           
26 Reference dummy for each category of models is not reported.  
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Age 25-34 10,188 0.1778 0.3823 27,744 0.1438 0.3509 

Age 35-45 10,188 0.1743 0.3794 27,744 0.2160 0.4115 

Age 46-55 10,188 0.1356 0.3423 27,744 0.1922 0.3940 

Age 56-65 10,188 0.0979 0.2971 27,744 0.1686 0.3744 

Age 66 and more 10,188 0.1243 0.3299 27,744 0.1983 0.3987 

Good health 10,151 0.7980 0.4015 27,744 0.7852 0.4107 

Fair health 10,151 0.1312 0.3377 27,744 0.1540 0.3610 

Single 10,188 0.4357 0.4959 27,744 0.3349 0.4720 

Do not provide care 6,955 0.8479 0.3592 27,744 0.8020 0.3985 

Care 20 hrs or more 
per week 

6,955 0.0449 0.2070 27,744 0.0519 0.2218 

Not White 9,704 0.3458 0.4757 27,744 0.1794 0.3837 

High and Low 
Managerial, 

Administrative and 
Professional 

10,007 0.1994 0.3995 27,744 0.2583 0.4377 

Intermediate, Small 
Employers, Own 

Account 
10,007 0.1340 0.3407 27,744 0.1462 0.3533 

GSCE level 6,909 0.2327 0.4226 27,744 0.2011 0.4008 

A level 6,909 0.2873 0.4525 27,744 0.1869 0.3898 

Degree and higher 6,909 0.3018 0.4591 27,744 0.3620 0.4806 

Other qualifications 6,909 0.0753 0.2638 27,744 0.1131 0.3168 

Muslim 4,381 0.1719 0.3773 27,744 0.0740 0.2618 

Other religion 4,289 0.0814 0.2734 27,744 0.0585 0.2347 

 

Table SM.1.3: Descriptive statistics for Contextual Effects Model 
 

 Full sample Model’s sample (no missing) 

Variable Obs. Mean Std. Dev. Obs. Mean Std. Dev. 

Factor 1 10,188 0.0032 0.0597 27,744 0.0070 0.0730 

Male 10,188 0.5428 0.4982 27,744 0.4326 0.4954 

Age 25-34 10,188 0.1778 0.3823 27,744 0.1438 0.3509 

Age 35-45 10,188 0.1743 0.3794 27,744 0.2160 0.4115 

Age 46-55 10,188 0.1356 0.3423 27,744 0.1922 0.3940 

Age 56-65 10,188 0.0979 0.2971 27,744 0.1686 0.3744 

Age 66 and more 10,188 0.1243 0.3299 27,744 0.1983 0.3987 

Good health 10,151 0.7980 0.4015 27,744 0.7852 0.4107 

Fair health 10,151 0.1312 0.3377 27,744 0.1540 0.3610 

Single 10,188 0.4357 0.4959 27,744 0.3349 0.4720 

Do not provide care 6,955 0.8479 0.3592 27,744 0.8020 0.3985 

Care 20 hrs or more per 
week 

6,955 0.0449 0.2070 27,744 0.0519 0.2218 

Not White 9,704 0.3458 0.4757 27,744 0.1794 0.3837 
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High and Low 
Managerial, 

Administrative and 
Professional 

10,007 0.1994 0.3995 27,744 0.2583 0.4377 

Intermediate, Small 
Employers, Own 

Account 
10,007 0.1340 0.3407 27,744 0.1462 0.3533 

GSCE level 6,909 0.2327 0.4226 27,744 0.2011 0.4008 

A level 6,909 0.2873 0.4525 27,744 0.1869 0.3898 

Degree and higher 6,909 0.3018 0.4591 27,744 0.3620 0.4806 

Other qualifications 6,909 0.0753 0.2638 27,744 0.1131 0.3168 

Muslim 4,381 0.1719 0.3773 27,744 0.0740 0.2618 

Other religion 4,289 0.0814 0.2734 27,744 0.0585 0.2347 

Heterogeneity 10,188 0.0952 1.0280 27,744 -0.0350 0.9872 

Economic Profile 10,188 -0.0238 1.0330 27,744 0.0087 0.9875 

Ethnicity Index 10,188 0.0799 1.0251 27,744 -0.0293 0.9890 

 

SM.2 Factor 2 – Citizenship and Politics  

The same procedure has been applied also for Factor 2. After T-tests have shown that 

differences between samples are different from zero both for RIM and for CEM, I 

investigated furtherly running logistic regressions on a similar dependent variable 

coded 1 for observations with at least a missing value and 0 otherwise and same 

predictors of the previous case: age, sex, educational level and marital status. Results 

are shown in the following table: 

Table SM.2.1: Logistic regression results 
 

 
Random 

Intercept Model 
Contextual 

Effects Model 

Constant 
-1.146*** 

(0.049) 
-1.146*** 

(0.049) 

Age 
0.028*** 
(0.000) 

0.028*** 
(0.000) 

Sex 
0.476*** 
(0.024) 

0.475*** 
(0.024) 

Educational level 
0.006 

(0.004) 
0.006 

(0.004) 

Marital status 
0.221*** 
(0.025) 

0.221*** 
(0.025) 
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As we can see, they do not differ and, as for Factor 1, all variables are significant apart 

for the educational level. To see if differences in the means are important and MAR 

assumption consequently cannot hold I checked those using descriptive statistics in 

both the samples, as in the previous case:  

Table SM.2.2: Descriptive statistics for Random Intercept Model 

 Full sample Model’s sample (no missing) 

Variable Obs. Mean Std. Dev. Obs. Mean Std. Dev. 

Factor 2 10,232 0.0223 0.6101 27,700 0.0407 0.6193 

Male 10,232 0.5422 0.4982 27,700 0.4326 0.4955 

Age 25-34 10,232 0.1775 0.3821 27,700 0.1439 0.3510 

Age 35-45 10,232 0.1746 0.3797 27,700 0.2159 0.4115 

Age 46-55 10,232 0.1361 0.3430 27,700 0.1921 0.3939 

Age 56-65 10,232 0.0976 0.2968 27,700 0.1688 0.3746 

Age 66 and more 10,232 0.1239 0.3295 27,700 0.1985 0.3989 

Good health 10,195 0.7981 0.4014 27,700 0.7851 0.4107 

Fair health 10,195 0.1312 0.3377 27,700 0.1540 0.3610 

Single 10,232 0.4364 0.4960 27,700 0.3345 0.4718 

Employed 10,212 0.6112 0.4875 27,700 0.6417 0.4795 

GSCE level 6,953 0.2327 0.4226 27,700 0.2011 0.4008 

A level 6,953 0.2865 0.4522 27,700 0.1869 0.3898 

Degree and higher 6,953 0.3026 0.4594 27,700 0.3618 0.4805 

Other qualifications 6,953 0.0755 0.2642 27,700 0.1131 0.3168 

Do not provide care 6,999 0.8475 0.3595 27,700 0.8021 0.3985 

Care 20 hrs or more per 
week 

6,999 0.0449 0.2070 27,700 0.0519 0.2219 

Not White 9,748 0.3457 0.4756 27,700 0.1792 0.3835 

Muslim 4,425 0.1715 0.3770 27,700 0.0739 0.2616 

Other religion 4,333 0.0812 0.2732 27,700 0.0585 0.2347 

High and Low Managerial, 
Administrative and 

Professional 
10,051 0.1998 0.3999 27,700 0.2582 0.4376 

Intermediate, Small 
Employers, Own Account 

10,051 0.1339 0.3406 27,700 0.1463 0.3534 

3 or more rooms in the 
house 

10,146 0.2246 0.4174 27,700 0.2295 0.4205 

 
Table SM.2.3: Descriptive statistic for Contextual Effects Model 

 

  Full sample Model’s sample (no missing) 

Variable Obs. Mean Std. Dev. Obs. Mean Std. Dev. 

Factor 2 10,233 0.0224 0.6102 27,699 0.0407 0.6193 

Male  10,233 0.5422 0.4982 27,699 0.4327 0.4955 
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Age 25-34 10,233 0.1775 0.3821 27,699 0.1439 0.3510 

Age 35-45 10,233 0.1746 0.3797 27,699 0.2159 0.4115 

Age 46-55 10,233 0.1361 0.3429 27,699 0.1921 0.3939 

Age 56-65 10,233 0.0976 0.2968 27,699 0.1688 0.3746 

Age 66 and more 10,233 0.1240 0.3296 27,699 0.1985 0.3989 

Good health 10,196 0.7982 0.4014 27,699 0.7851 0.4107 

Fair health 10,196 0.1312 0.3377 27,699 0.1540 0.3610 

Single 10,233 0.4364 0.4960 27,699 0.3345 0.4718 

Employed 10,213 0.6113 0.4875 27,699 0.6417 0.4795 

GSCE level 6,954 0.2327 0.4226 27,699 0.2011 0.4008 

A level  6,954 0.2865 0.4521 27,699 0.1869 0.3898 

Degree and higher 6,954 0.3027 0.4595 27,699 0.3618 0.4805 

Other qualifications 6,954 0.0755 0.2642 27,699 0.1131 0.3168 

Do not provide care 7,000 0.8476 0.3595 27,699 0.8021 0.3985 

Care 20 hrs or more per 
week 

7,000 0.0449 0.2070 27,699 0.0519 0.2219 

Not White 9,749 0.3457 0.4756 27,699 0.1792 0.3835 

Muslim  4,426 0.1715 0.3770 27,699 0.0739 0.2616 

Other religion 4,334 0.0812 0.2732 27,699 0.0585 0.2347 

High and Low 
Managerial, 

Administrative and 
Professional 

10,052 0.1998 0.3998 27,699 0.2582 0.4377 

Intermediate, Small 
Employers, Own Account 

10,052 0.1339 0.3406 27,699 0.1463 0.3534 

3 or more rooms in the 
house 

10,147 0.2246 0.4173 27,699 0.2295 0.4205 

Heterogeneity 10,232 0.0963 1.0283 27,699 -0.0356 0.9870 

Economic Profile 10,232 -0.0251 1.0334 27,699 0.0093 0.9872 

Ethnicity Index 10,233 0.0813 1.0254 27,699 -0.0300 0.9888 

 

In addition, in this case, the differences in means between the two samples for most 

of variables used are small. 

 

SM.3 Factor 3 – Neighbourliness 

Finally, the same check of missing data has been done also for the last factor about 

Neighbourliness. 

Independent T-tests have been carried out and, as for previous factors; for all the 

tested variables, the hypothesis of no differences between means have been rejected. 
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Progressively, logistic regressions have been run, with the usual dummy dependent 

variable about the two samples and the predictors about sample: age, sex, marital 

status and educational level. 

In the following table, we can see the results for both the RIM and the CEM models of 

this factor: 

Table SM.3.1: Logistic regression results 
 

 
Random 

Intercept Model 
Contextual 

Effects Model 

Constant 
-1.025*** 

(0.045) 
-1.024*** 

(0.000) 

Age 
0.010*** 
(0.000) 

0.010*** 
(0.000) 

Sex 
0.472*** 
(0.021) 

0.472*** 
(0.021) 

Educational level 
-0.002 
(0.003) 

-0.002 
(0.003) 

Marital status 
0.435*** 
(0.022) 

0.436*** 
(0.022) 

 

As for the first two factors, all variables, except for the ordinal about educational level, 

are significant. 

Therefore, to check if differences in means are so important to reject the MAR 

assumptions, I used descriptive statistics. Summarized in the following tables, we can 

see than also in this case differences are minimal, so MAR assumption can hold for all 

the models: 

Table SM.3.2: Descriptive statistics for Random Intercept Model 
 

  Full sample Model’s sample (no missing) 

Variable Obs. Mean Std. Dev. Obs. Mean Std. Dev. 

Factor 3 14,704 -0.1027 0.5050 23,228 0.0017 0.5481 

Male  14,704 0.5280 0.4992 23,228 0.4205 0.4937 

Age 25-34 14,704 0.1706 0.3762 23,228 0.1417 0.3488 

Age 35-45 14,704 0.1616 0.3681 23,228 0.2321 0.4222 

Age 46-55 14,704 0.1453 0.3524 23,228 0.1970 0.3978 

Age 56-65 14,704 0.1284 0.3345 23,228 0.1630 0.3694 
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Age 66 and more 14,704 0.1761 0.3809 23,228 0.1799 0.3841 

Not White 14,220 0.2802 0.4491 23,228 0.1872 0.3901 

Good health 14,667 0.7795 0.4146 23,228 0.7944 0.4042 

Fair health 14,667 0.1452 0.3523 23,228 0.1496 0.3567 

Muslim 8,897 0.1007 0.3010 23,228 0.0822 0.2747 

Other religion 8,805 0.0705 0.2560 23,228 0.0582 0.2341 

Single 14,704 0.4298 0.4951 23,228 0.3191 0.4661 

Dependent children 12,226 0.1179 0.3225 23,228 0.2502 0.4331 

3 or more rooms in the 
house 

14,618 0.2110 0.4081 23,228 0.2390 0.4265 

Do not provide care 11,471 0.8422 0.3646 23,228 0.7959 0.4030 

Care 20 hrs or more per 
week 

11,471 0.0470 0.2116 23,228 0.0522 0.2225 

Intermediate local school 
services 

6,112 0.3109 0.4629 23,228 0.2994 0.4580 

Good local school services 6,112 0.5299 0.4991 23,228 0.5663 0.4956 

Intermediate other local 
services 

11,325 0.4852 0.4998 23,228 0.4547 0.4980 

Good other local services 11,325 0.4047 0.4909 23,228 0.4319 0.4954 

Moved 13,842 0.8985 0.3020 23,228 0.9070 0.2905 

 

Table SM.3.3: Descriptive statistic for Contextual Effects Model 
 

  Full sample Model’s sample (no missing) 

Variable Obs. Mean Std. Dev. Obs. Mean Std. Dev. 

Factor 3 14,705 -0.1027 0.5050 23,227 0.0017 0.5481 

Male  14,705 0.5280 0.4992 23,227 0.4205 0.4937 

Age 25-34 14,705 0.1706 0.3762 23,227 0.1417 0.3488 

Age 35-45 14,705 0.1616 0.3681 23,227 0.2321 0.4222 

Age 46-55 14,705 0.1453 0.3524 23,227 0.1971 0.3978 

Age 56-65 14,705 0.1284 0.3345 23,227 0.1630 0.3694 

Age 66 and more 14,705 0.1761 0.3809 23,227 0.1798 0.3841 

Not White 14,221 0.2801 0.4491 23,227 0.1872 0.3901 

Good health 14,668 0.7795 0.4146 23,227 0.7944 0.4042 

Fair health 14,668 0.1452 0.3523 23,227 0.1496 0.3567 

Muslim 8,898 0.1007 0.3009 23,227 0.0822 0.2747 

Other religion 8,806 0.0705 0.2560 23,227 0.0582 0.2341 

Single 14,705 0.4299 0.4951 23,227 0.3190 0.4661 

Dependent children 12,227 0.1179 0.3224 23,227 0.2502 0.4331 

3 or more rooms in the 
house 

14,619 0.2110 0.4081 23,227 0.2390 0.4265 

Do not provide care 11,472 0.8422 0.3645 23,227 0.7959 0.4030 

Care 20 hrs or more per 
week 

11,472 0.0470 0.2116 23,227 0.0522 0.2225 
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Intermediate local school 
services 

6,113 0.3108 0.4629 23,227 0.2994 0.4580 

Good local school 
services 

6,113 0.5300 0.4991 23,227 0.5663 0.4956 

Intermediate other local 
services 

11,326 0.4852 0.4998 23,227 0.4547 0.4980 

Good other local services 11,326 0.4047 0.4909 23,227 0.4319 0.4953 

Moved 13,843 0.8985 0.3020 23,227 0.9070 0.2905 

Heterogeneity 14,704 0.0770 1.0131 23,227 -0.0488 0.9886 

Economic Profile 14,704 -0.0050 1.0236 23,227 0.0032 0.9848 

Ethnicity Index 14,705 0.0536 1.0085 23,227 -0.0340 0.9931 
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CHAPTER 4 – SMALL AREA ESTIMATES OF SOCIAL CAPITAL 

 

4.1 Introduction 

As claimed from the outset of this work, SC is a complex concept. Several problems 

have been identified in measuring it one of the main being the lack of indicators, 

especially the at small area level. Being a type of capital strongly dependent on an 

individual’s networks and on local communities may affect the search for indicators. 

Indeed, we can notice a propensity to find indicators at regional or national levels (for 

example the European Social Survey) or to keep the analysis at survey level (therefore 

at sample level). However, due to the development of all Small Area Estimates (SAE 

hereafter) methods, it is possible to start thinking about estimating SC at an 

intermediate level between the individual and the regional. Estimating this, 

geographically speaking, at areas wide as LSOA or MSOA could help to capture the 

right dimension for its study. Therefore, after the development of the three factors 

with CFA (chapter 2) and the test of these factors with MM to see which individual 

and area effects influence it (chapter 3), I lastly estimate it for all the MSOA in England 

and Wales.        

 

4.2 Small Area Estimates methods: an introduction 

We can trace the first studies using SAE in two famous studies from Fay and Herriot 

(1979) and Battese et al. (1988). In these seminal studies, the authors estimate their 

dependent variable for all areas of interest using other data able to fill the lack of 

information. The main idea of SAE is, indeed, to use other sources of data to obtain 
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synthetic estimation for the areas where we do not have information. This procedure 

overcomes the classical problem of using surveys: under a certain level, not all the 

areas are covered (no observations) and some of them have really low number of 

observations. 

 

The choice of these complementary data is based on precise theoretical assumptions: 

they should be correlated to the dependent variable as well as the survey covariates. 

Empirical assumptions further specify that they should have observations for all areas 

and be recoded in the same way as the survey covariates. From these two studies, 

two main kinds of SAE methods have been identified: unit-level studies and area-level 

study. According to Namazi-Rad and Steel (2015) statistical models for SAE can be 

structured at individual or aggregate levels. If we have sufficient information about 

the geographical indicators for target areas available for all individuals in the sample 

then we can estimate a unit-level model. It is also possible to aggregate the data to 

area-level and estimate these parameters based on model for the area means. 

 

If the unit-level model is properly specified, we can expect less variance. However, the 

use of different levels of data analysis often differs because of some model 

misspecifications. If our targets of inference are the area-level, we should ask 

ourselves when it is preferable to use an area-level analysis and under which 

conditions it may be better. Therefore, if we include contextual effects of the area-

level means, the area-level analysis should produce less biased estimates of the 

regression coefficients. Indirect techniques for SAE rely on statistical models that, as 

just described, borrow strength from other auxiliary data resources. These data are 
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used to include random effects to explain better variations between target areas 

within the population as well as several covariates for available auxiliary variables 

(Chambers and Tzavidis, 2006; Tzavidis et al., 2008).  

 

After this main and important distinction, even more complex models have been 

studied (see Rao 2003 for a full and proper revision of all SAE methods). We can 

summarize them in this useful scheme (NatCen, 2004b) and give brief details of how 

they work and their main limitations: 

1) Simple (non-modelled) methods using indirect standardization 

2) Models using individual level covariates only 

3) Models combining individual and area-level covariates 

4) Models using areal level covariates only 

5) Other approaches for larger areas of geography 

 

The procedure of these models is almost the same: they use two datasets: a first 

dataset with individual level data (usually from survey) and a second dataset with 

population information per areas (usually Census or other administrative datasets). 

Differences lie in the choice of variables and covariates, as we will see in the brief 

description following. 

 

1) Indirect standardization 

This method applies national estimates derived from survey data to area-level 

population counts to generate expected area estimates. It mainly needs two datasets: 

a first dataset containing data at individual level, usually a survey, and a second 
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dataset, usually Census or very detailed administrative dataset, containing population 

information. The second dataset must contain full information for all the areas. On 

the base of a common variable, the two datasets are merged. 

From the first dataset, we would estimate proportions at national level for classes or 

band or cohorts (according to variables) and then these national estimates would 

have been applying to the census counts of the same class or band, obtaining the 

estimates of the number with those characteristic for each area. Dividing by the total 

census count in the area finally would give us the proportion by ward. Essentially is 

like obtaining the national prevalence rates for sub-groups weighted by the 

proportions of sub-groups of persons in the small area.  

 

It has been considered appealing because in an intuitive way it seems likely that the 

mean level of many variables in a population is related to the distribution in the 

population of such kinds of demographic variables. It is also easy to implement 

because the cell proportions for all the areas are available from the Census and 

estimates from national surveys. The major drawback is the assumption that all the 

national rates for each sub-group apply uniformly across all areas. So, even if 

theoretically we can assume that differences are due to demographic composition 

and therefore different areas with the same characteristics should expect similar 

rates, several studies have shown that even within the same social groups there are 

differences due to ‘contextual effects’ operating at area level. Just to cite some 

examples, Macintyre et al (2002) find that both material infrastructure and collective 

social functioning may affect health. On the path of ecological analysis for health 

studies, Duncan et al. (1993) used aggregate levels of deprivation in the area of 
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residence to see how it can influence health-related behaviours and psychiatric 

mobility. Even when area effects resulted not significant, like in the study of Sloggett 

and Joshi (1998) on adverse fertility events, they highlighted that some observed area 

or regional variations are not explained only by individual deprivation. In some way, 

population characteristics and area-level effects should be taken into account.      

 

2) Models using individual level covariates only   

We can consider this as an extension of the previous model: the relationship is 

modelled between measures obtained from the survey against predictor variables 

acquired from the same survey for the same individuals. All these data belong then to 

the same dataset, the survey dataset. Only in a second stage, covariates from a second 

dataset (e.g. counts for all small areas from the Census) are chosen and used.  

The models estimate the probability that a person has the characteristic of the 

dependent variables with specific known characteristics. The model-based estimates 

probabilities are then converted into estimated proportions in each sub-group 

defined by the covariates who fall into the relevant category. These proportions are 

finally applied to covariate counts available from the Census to derive estimates for 

all areas. Some studies use also covariates from the Sample of Anonymised Records 

(SAR) from the Census. Respect to the previous model, here the first probability 

estimates are done using individual level covariates from survey and only in a second 

step ‘weighted’ by Census information.   

 

The main limitation related to data requirements: the exact correspondence between 

covariates used in the model and covariates from the Census. Besides, the cross-
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tabulations available from the Census are limited (because of sensitiveness of 

information) and, therefore, reduce the choice of predictors in these models.  

 

3) Models combining individual and area level covariates 

This model is the first of an alternative set to the first two models presented, the 

multilevel models, used in the previous chapter. Indeed, until now, we examined two 

type of models mainly focused on estimates (of proportions) at individual level that 

are then ‘weighted’ by population counts. Multilevel models instead incorporate area 

effects already in the first step of estimation with individual data, as widely described 

in the previous chapter. These area effects are the random effects. Their importance 

lies in the fact that they explain the significant systematic variation between small 

areas after the part accounted for from the covariates in the model, that are 

considered as fixed effects. Other main advantages are the higher suitability to the 

clustered nature of social survey, use of covariates at different levels that can allow 

exploration of the degree to which differences between geographical areas are 

associated with individual or household or area characteristics. In this case, one of the 

first seminal studies is Moura and Holt’s (1999) paper Small area estimation using 

multilevel models.   

 

Despite the use of both individual and area level covariates, the previous limitations 

remain valid: necessity of exact correspondence between individual and area 

covariates from the Census and limited cross-tabulations available from the Census at 

small area. Finally, as NatCen (2004b) suggests, the estimation of standard errors for 

the synthetic estimates based on MM is really complex. 
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4) Models using area level covariates only  

These are case of more restricted multilevel models than the previous version. Using 

only area-level covariates, the regression estimates relate to between-area variation. 

It gives a constant predicted value for all individuals within an area that can be 

interpreted as a predicted mean for that small area. Then coefficient estimates are 

attached to the known means or proportion of the covariates for all areas, taken from 

the Census and other administrative sources, to obtain synthetic estimates. In this 

case, therefore, we still use two datasets: a first dataset with individual data. It is used 

to obtain coefficient estimates from a model where dependent variable comes from 

the survey and covariates from the population dataset with full information for all the 

areas (e.g. Census).  

 

While advantages can be identified in less stringent data requirements about 

covariates and the decrease of potential redundancy of information from individual 

level covariates27, the main drawback is the possibility of disaggregation of estimates 

for sub-groups within each small area. 

 

5) Other approaches for larger geographical areas   

There are three main methods for this class: 

- Generalised Regression Synthetic Estimator (GREG): this adjusts the survey 

predictions by taking into account any numerical differences between the 

                                                           
27 According to several studies, it is reasonable to assume that if individual characteristics affect the 
dependent variable, in the same way the average level of the dependent in all the areas will differ only 
if there will be differences in these characteristics. So controlling for these variables at area level is 
considered enough.  
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survey and the Census area means. Its main drawback is that it cannot be used 

for those areas which do not contain any survey respondents. Therefore, it 

cannot be used for producing area-level estimates at small level but it may be 

suitable for larger areas; 

- Composite estimators: these combine estimators from direct survey-based 

estimates (that are design-unbiased meaning that the expected value 

estimated for a small area is equal to its true value) and model-based 

estimates. It naturally balances the potential bias of a model based estimator 

against the large variability of an unbiased direct estimator, taking a weighted 

average of the two and obtaining an estimator that may be more accurate 

than either of its components. In practice, however, it requires at least one 

survey respondent in each estimation area of interest. Therefore, it is better 

to be used for larger areas estimates; 

- Fay-Herriot estimator: already described, can be classified as an area-level 

model that relates the area means of the dependent variable from survey to 

area-specific covariates values and to random effects. Rao (2003) describes 

that the best predictor can be expressed as a weighted average of the survey-

based estimator and a regression-synthetic estimator that uses the fixed 

effects only.  

 

Other more recent approaches have been tested and continuously revised and 

improved: spatial microsimulation approaches, Iterative Proportional Fitting, 

Generalised Regression Reweighting, Combinatorial Optimisation, Agent-Based 

approaches, Bayesian Models and so on. An interesting and complete revision of the 
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state of the art has been carried out by the National Centre for Research Methods 

(2013) under the supervision of Whitworth but including many authors involved in 

SAE following a conference held in order to build a network and a multi-method 

project for SAE.    

 

I will now focus on the third type of SAE that are the models combining individual and 

area level covariates starting from multilevel models. I chose this way to reach the 

estimates of SC at small area and MM in the previous chapters have been set, as 

already declared, to this purpose.  

 

4.2.1 Small area estimates and Multilevel Models 

In the last year, this approach has been used increasingly in different fields of study; 

the most common and more developed being applications of SAE to health topics 

(Tranmer et al., 2005). All the studies originate from MM using a range of national 

surveys on health condition and Census information to estimate at small area 28 

several critical aspects (from diseases, to obesity, drinking, smoking, health risk, 

mental illness, heart problems and so on): Hindmarsh (2013), Li and Zaslavsky (2010), 

Zhang et al (2014), Zhang et al. (2013), Twigg and Moon (2002), Twigg et al. (2000), 

Allaga and Muhuri (1994), Twigg et al. (2004).   

Chambers and Tzavidis (2005) used MM and the Labour Force Survey to estimate 

unemployment and inactive force at British Local Authority District level and Unitary 

Districts.  

                                                           
28 Some of them use other levels of clustering such as households or schools but the main trend is the 
estimation at small geographical levels in order also to support policies.  
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However, other topics also see the application of this method. Nguyen et al. (2010) 

use this method to estimate living standards starting from household information on 

income and other characteristics at small area level in Vietnam. Reder (1994) applies 

the methodology to produce synthetic estimates of literacy proficiency at small 

Census areas. Whitworth (2012) estimates the fear of crime at MSOA level using the 

British Crime Survey in a MM framework and then, adding area level covariates of 

different types, produces synthetic estimates of it. In the same way, Haughton and 

Nguyen (2010) estimate inequality in Vietnam.   

 

4.2.2 Small Area Estimation using Multilevel Models and social capital studies 

Concerning the SAE of Social Capital, there are few studies that actually analyse it. 

They mainly do so using SC variables more as explanatory rather than a dependent 

variable in itself. Sampson et al. (1999) collect survey data in Chicago and clustering 

by neighbourhoods in the MM completing the information with Census data, they 

focus on how spatial interdependence produces collective efficacy for children. They 

define the spatial interdependence according to neighbourliness SC: 

intergenerational closure, reciprocal local exchange and shared expectations for 

informal social control. They find several results. First, residential stability and 

concentrated affluence predict intergenerational closure and reciprocal exchange 

more than poverty and ethnic composition. Second, concentrated disadvantages are 

associated with sharply lower expectations for shared child control. Third, spatial 

dynamics (proximity to areas high in closure, exchange and control), generally, affect 

collective efficacy for children even more than neighbourhoods’ characteristics. 
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Lastly, spatial advantages are naturally higher in white neighbourhoods more than 

black ones.  

Mohan et al. (2005) want to test how much SC influences health outcomes. Using this 

method in order to overcome the classical problem of a lack of indicators for small 

areas, they produce ‘synthetic estimates’ of aspects of SC linking coefficients from 

MM in the national survey to Census data. They use the Health and Lifestyle Survey 

of England for data on health and the General Household Survey (GHS), BHPS and 

English Housing Survey (EHS) for data about SC. They incorporate individual 

attributes, health-related behaviours, area measures of deprivation, and area 

measures of SC. They find little support, at this small level, for the hypothesis that SC 

exerts a beneficial effect on health outcomes. I have suggested that few studies report 

proper small area estimates of SC and its dimensions. I will now explain how I attempt 

to carry out this synthetic estimation. 

 

4.3 Multilevel Models and synthetic Small Area Estimation 

There are several main empirical works to which I refer for this stage in terms of 

quantity and topics involved, as we can see from the literature discussed so far. 

Indeed, many use the applications of the chosen methodology – models combining 

individual and area level covariates, starting from multilevel models. These works are 

also useful as sources about the choice of the area level covariates. Beyond those 

listed in the previous section, given the involvement of this thesis in the ONS project, 

I naturally look at two of the first works produced by their Small Area Estimation 

Project Report: Heady et al. (2003) and Goldring et al. (2005). In this project, several 

ranges of measures are estimated using a method based only on area level covariates. 
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One of the most widely used and important is the estimation of average gross weekly 

HH income at Ward level. This work has been updated through the years and its 

completeness, due to a wide use of area covariates at different geographical levels, 

makes it an important example to look at.     

 

4.3.1 Description of the method used 

One of the main studies, applied since then in many works and mainly also in this 

study, is Twigg et al. (2000). They estimate smoking and drinking indicators at ward 

level for England. Starting with survey data nested in a 3 levels MM, they produce the 

synthetic estimates using Census data. Their method has been used subsequently in 

a wider project from the National Centre for Social Research for the Department of 

Health (NatCen 2004a, 2004b, 2004c, 2004d), that is the main reference for this study. 

They produced four reports: a user guide plus three reports 29  on the work of 

estimation at small area of healthy lifestyle indicators: smoking, obesity in adults, fruit 

and vegetable consumption by children and adults and binge drinking. They start by 

fitting a MM using survey data from the Health Survey for England on health 

information at individual level and area-level covariates from the Census, several 

administrative data, Office of the Deputy Minister data, and Neighbourhood Statistics 

at different geographical levels according to the necessity. They then compare the 

results of synthetic estimates at Wards level via three methods: indirect 

standardisation, model combining individual and area-level covariates (Twigg 

estimator), model using area-level covariates only (ONS estimator).    

                                                           
29 Each report addresses a stage of the empirical work. The first discusses the literature, the scoping, 
the setting up of the datasets and the test of the software. The second is about the estimation process, 
the results, the internal and external validation and the last is a summary of all whole process.  
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I will focus only on the model combining individual and area-level covariates, which is 

the method I chose to apply. I indeed consider it the most complete model given the 

availability of the data I have. 

 

Taking like example the estimation of synthetic area-level predictors that mostly 

increased the odds of smoking, according to this method, they firstly run a multilevel 

logistic regression where dependent variable is about whether or not adults in the 

2002 to 2002 Health Survey for England (HSfE) data. The MM has like predictors 

individual-level data from the survey: 56 categories defined by sex, age and marital 

status and predictors at area-level from the different data sources listed above. The 

geographical level chosen was the ward, for an easier match between the two 

datasets and the relative availability of data. Only covariates that were significantly 

associated with smoking were retained in the model. The resulting model is the 

optima model.  

 

The parameter estimates from the multilevel model were applied to corresponding 

measures for each ward. Within each ward, the estimates of smoking prevalence for 

each of the 56 sub-group ere multiplied by the corresponding census counts to 

estimate the total number of smokers in each sub-group. Summing up the categories 

by group estimates gave the total number of smokers in each ward. Dividing the 

estimated total number of smokers by the total population of the ward finally give the 

synthetic estimates of smoking prevalence for each ward.    

Following these works, especially this last procedure, I develop the following 

procedure. 
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I start the small area estimation process fitting MM. 

The previous MM estimated in Chapter 3 has been useful in showing the most 

significant individual covariates for each of the three factors. Respect to these 

variables and their cross-tabulations, I check the same availability for the Census 2011 

data (usually not more than three variables together) and the necessary geographical 

level available (MSOA). I decide to opt for these cross-tabulations, trying to combine 

the most significant individual covariates: 

• Factor 1 – Membership: Age – Ethnicity – Educational level 

• Factor 2 – Citizenship and Politics: Age – Gender – Educational level 

• Factor 3 – Neighbourliness: Age – Health – Hours spent caring someone  

 

Given the necessary condition that survey covariates and Census covariates have to 

be defined in the same way, I recode all with exactly the same combinations of sub-

groups. In Appendix C, Table C1, it is possible to see all the covariates. One particular 

specification has to be done: unfortunately, given the availability of the Census data, 

the estimations at small areas for Neighbourliness - Factor 3 of SC - have been reduced 

for the over twenty-five population whereas the remaining two factors have been 

carried out on population over sixteen, according to the survey sample. Besides, with 

regard to the same problem of availability, the cohorts of age are wider than the other 

two cases.   

 

I then rerun a MM with survey and Census covariates hypothesising only a Random 

Intercept Model form at MSOA level. According to Twigg et al. (2000), simple random 

intercept models are preferable. More sophisticated full-random models would have 
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introduced terms that would not have helped the final generation of predictions ‘the 

net result of this modelling strategy is that the models are fitted for purpose but in 

other senses limited’ (Twigg et al., 2000, pg.1118). Besides, in light of how the MM in 

the previous chapter tested, none of the individual covariates shows to have 

significant random coefficients which indeed have been not taken into consideration. 

Contextual effects, instead, show to have important random coefficients. I test then 

for the ecological variables found significant at level 2 but they are found to be not 

significant. Finally, the procedure in itself, as we can see from the following table, 

guarantees in some way to take into account for between-areas differences with the 

use of all the Census cross-tabulations. Consequently, random coefficients are not 

necessary.      

 

Following these specifications, individual level covariates and area-level covariates 

have been tested and retained only if significant in the model. Results are showed in 

Appendix C, Table C2, C3 and C4 30 . Once MM have been fitted, the synthetic 

procedure of small area estimates of three SC factors have been done according to 

Twigg et al. (2000), Mohan et al. (2005) and based on the ‘Twigg estimator’, as it has 

been named by the National Centre for Social Research (NatCen, 2004c).  

 

After fitting the MM with individual survey data covariates (by sub-groups) and area-

level covariates from different sources (retained only if significant) for each SC factor, 

I use the model parameters to estimate the average scores of factors for each of the 

                                                           
30 I standardized area-level covariates in order to make the results readable and more comparable, 
given the different measurements.  
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sub-groups in each MSOA. After the merge with the Census dataset by MSOA codes, 

I multiply the average score of factor for each sub-group of survey data by the 

corresponding count of all MSOA for each sub-group of Census cross-tabulated 

variables. Following, I add them over the groups to obtain the overall estimates of the 

number of individuals that, for each MSOA, has the average score of SC factor. 

Dividing this number by the population of the MSOA give me the final estimates 

average score of the factor for each MSOA.  

 

The procedure is summarized in the following scheme with reference to NatCen 

(2004c): 
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Figure 4.1: Predicting process for synthetic estimates generated by a model combining 
individual and area-level covariates for the three SC factors 

 

Modelling stage – UKHLS survey data 

Group the respondents 
according to 

age/ethnicity/educational level 
(60 groups) for Factor 1 

Membership 

Group the respondents 
according to 

age/gender/educational level 
(50 groups) for Factor 2 
Citizenship and Politics 

Group the respondents 
according to 

age/health/hours spent 
caring someone (27 groups) 
for Factor 3 Neighbourliness 

 

Fit model of individual 
Membership SC level using 
area-level variables and a 

dummy variable representing 
the 60 

age/ethnicity/educational level 
groups 

Fit model of individual 
Citizenship and Politics SC level 
using area-level variables and a 
dummy variable representing 

the 50 
age/gender/educational level 

groups 

Fit model of individual 
Neighbourliness SC level 

using area-level variables and 
a dummy variable 

representing the 27 
age/health/hours spent 
caring someone groups 

 

Implementation stage (external data for 7,201 MSOAs) 

Use MM model parameters to 
estimate average scores of 

Membership SC in each of the 
60 sub-groups in each MSOA 

Use MM model parameters to 
estimate average scores of 

Citizenship and Politics SC in 
each of the 50 sub-groups in 

each MSOA 

Use MM model parameters 
to estimate average scores of 
Neighbourliness SC in each of 

the 27 sub-groups in each 
MSOA 

 

Multiply the appropriate sub-group average score by the corresponding MSOA count to estimate 
the total number of individual with that average score in each sub-group 

 

Add these over the 
age/ethnicity/educational level 

groups to obtain an overall 
estimate of the number of 

individuals with average score 
of Membership SC in the MSOA 

Add these over the 
age/gender/educational level 

groups to obtain an overall 
estimate of the number of 

individuals with average score 
of Citizenship and Politics SC in 

the MSOA 

Add these over the 
age/health/hours spent 

caring someone groups to 
obtain an overall estimate of 

the number of individuals 
with average score of 

Neighbourliness SC in the 
MSOA 

 

To estimate the average score 
of Membership SC in the MSOA 
divide the estimated number in 
the MSOA by the corresponding 

MSOA population count 

To estimate the average score 
of Citizenship and Politics SC in 
the MSOA divide the estimated 

number in the MSOA by the 
corresponding MSOA 

population count 

To estimate the average 
score of Neighbourliness SC 

in the MSOA divide the 
estimated number in the 

MSOA by the corresponding 
MSOA population count 

Source: personal elaboration on NatCen (2004c) 
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4.3.2 Factor 1 – Membership: final synthetic small area estimates 

Once the procedure described in the previous section has been followed, synthetic 

estimates of average Membership SC factor for each MSOA have been obtained. In 

Appendix C, Table C2, estimates of the first stage with survey data are reported. As 

we can see, a general trend is a negative correlation with the lowest levels of 

qualifications and the White ethnicity and youngest cohorts of age, similar to the 

results found for the MM tested in the previous chapter. Original individual covariates 

from the survey still resulting significant are only Not White and Being religious with 

the same sign found in the MM models.   

 

Census area-level covariates referred to the same categories used in the MM (defined 

according to the Table B4, Appendix B) have been tested as well but not one of them 

resulted significant. Other area-level covariates have been added and the main 

resulted significant is the general Index of Deprivation Score and some of its sub-

dimensions. Despite a general positive sign but with a very low coefficient of the 

general Index as well as the Environmental attitudes sub-dimension, the other sub-

dimensions show expected results: people living in areas with higher scores on 

deprivation in dimensions like Income, Employment and Education have a lower level 

of Membership SC than the average.   

 

The ICC for this model is 7 percent (similar to the ICC for the final Random Coefficient 

Model for this factor). According to the model, the variance explained at individual 

level is around 0.3 percent whereas the variance explained at MSOA level is around 

0.02 percent. 
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For a fast check of the goodness of the model, histogram of residuals of level 1 is 

reported in the Appendix C, Figure C1. As was the case for the MM, the distribution 

approximates to a normal one but, as expected, the skewness is more noticeable. This 

may be caused by the complexity of the model.  

 

After having described the results and having carried out the procedure, it is possible 

to obtain a map of the predicted synthetic estimates of average levels of Membership 

SC factor per MSOAs for England and Wales. These are shown in the following maps 

– Figure 4.2 and 4.3. For a better visualisation, the second map is a zoom on Greater 

London’s MSOAs, given its importance and its complexity.  

 

Some specifications necessary to interpret them are due and are valid for all the three 

factors. The original final average scores show a distribution that goes from negative 

to positive values. This does not mean that MSOAs showing negative scores have 

negative levels of Membership SC. In the same way, MSOAs showing scores 

approaching 0 do not have almost null SC. The scores indicate that there are MSOAs 

with lower levels of SC factor than others.  

 

Second, to make the maps more readable I normalize the three factors, reporting 

quintiles31. 

Given that these estimates are synthetic and, as I will specify later, validity controls 

have still to be done, this is not an attempt to in some way order the MSOAs. Besides, 

                                                           
31 As we can see, the range of classes of quantiles for normalized results differs because of the different 
final distributions.  
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I also present a rank of the fifty areas highest and lowest in SC average for the three 

factors. It is not an official rank but is simply an easier way of interpreting the final 

small area estimates produced. Rank has to be interpreted in the same way that the 

maps are. Therefore, areas in the first positions will be those with the lowest levels of 

Membership SC until the last that are the areas with highest average levels. They are 

presented in Appendix C, Table C5 and C6.  

     

Figure 4.2: MSOA synthetic estimates of Membership SC for England and Wales 
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As we can see, the highest average levels of Membership SC are found in the South of 

England (East and West) and in the region of West Midlands (especially around 

Birmingham) and are more dispersed. The other areas higher in the ranks are 

concentrated around the big cities of the northern areas: Manchester and Liverpool 

(North West region) and Leeds (Yorkshire and the Humber region). Looking at the map 

for Greater London, we can see that higher levels are concentrated around the central 

and western boroughs: Harrow, Brent, Camden, Richmond, Wandsworth, Lambeth 

and, exceptionally, the more peripheral and suburban boroughs of Hillingdon and part 

of Ealing.   

Figure 4.3: MSOA synthetic estimates of Membership SC for Greater London 
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4.3.3 Factor 2 – Citizenship and Politics: final synthetic small area estimates  

With the same procedure described, I obtain the estimates at small areas of average 

levels of Citizenship and Politics of SC. From MM, the most significant individual 

covariates are age, gender and qualification. The results of the MM with individual 

and area covariates showed in Table C3 in the Appendix highlight a general positive 

correlation with the increase of age and educational levels together with a higher 

coefficient for females. Other survey covariates still significant are: being employed, 

caring intensively and being not white. The change that are notable with regard to the 

previous MM are being not white, that turns out to be significant in this case, and 

being employed, which is now positively correlated.   

 

Between the area level covariates, only one result is significant and it is the sub-

dimension of the Index of Deprivation regarding Housing, positively correlated but 

with a small coefficient. Again, Census area-level covariates referred to the same 

categories used in the MM have been tested too but not one of them resulted 

significant. Looking at the general model, the ICC for this model is around 7.5 percent, 

on average with the ICC of the MM of previous chapter. In the same way, the variance 

explained at the two levels considered is also considerably higher than Factor 1: the 

individual level explains the 29.5 percent while the variance explained at MSOA level 

is around 2 percent. Focusing on the maps of the estimates we can see that the first 

about England and Wales shows a different trend in relation to the previous case.   
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Figure 4.4: MSOA synthetic estimates of Citizenship and Politics SC for England and Wales 

 

 

 

The areas with higher levels of SC are more concentrated in the East Midlands and 

East of England on one side and in Wales and the West Midlands. A few are also 

registered in the Somerset area, in the South West region. Looking at the Greater 

London map, in the following figure we can also see a different trend in this case, 

almost specular to the previous case: the central and western boroughs are those 

showing lower levels of SC than the average whereas suburban areas around the 
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centre seem to have higher levels: parts of Hillingdon, Enfield and Waltham Forest, 

Redbridge and Havering, Bexley and Greenwich and few areas in the boroughs of 

Croydon, Sutton, Hounslow and the more central Brent.  

 
Figure 4.5: MSOA synthetic estimates of Citizenship and politics SC for Greater London 

   

 

 

4.3.4 Factor 3 – Neighbourliness: final synthetic small area estimates 

For the last factor, as expected, the trend is strongly different from the other two, as 

we can see from the following Figure 4.6: 
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Figure 4.6: MSOA synthetic estimates of Neighbourliness SC for England and Wales 

 

 

 

This can be due to several aspects: the slightly different reference age population (due 

to Census availability, age cohorts start from twenty-five instead from sixteen as in 

the other two factors) or, more probably, the different types of SC’s dimensions 

involved. As previously described, this SC factor loads on variables regarding more 

informal, private, common and spread aspects of an individual’s daily life. Being a 

member, active or not, or being involved or interested in politics can become 
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secondary or even optional aspects for an individual (therefore less spread or even 

absent). However, Neighbourliness SC refers to relations with neighbours, generalized 

trust, caring, fear of crime and use of social media and we can consider these aspects 

common dimensions of daily life, with a certain amount of it taken for granted by all 

individuals.  

 

From Table C4 in the Appendix, we can see that it depends positively on the increase 

of the age and negatively with a poor state of health and hours spent per week caring. 

The only exception is for the last cohorts of age, after sixty-five, that constantly shows 

positive correlations and the highest coefficients no matter the intensity of caring and 

the state of general health.  

Confirming the idea and the previous MM results that suggest that this SC factor is 

more linked with local aspects, more survey and area-level covariates result 

significant than for the previous factors. Neighbourliness SC seems to be negatively 

correlated with areas showing higher ethnic diversity. The contextual variable, 

indeed, turns to be significant in this model.   

Gender is significant and in a positive way whereas negative correlation is confirmed 

with the single status and being employed. The correlations are various with area-

level covariates from other statistics than the Census, for which covariates are again 

not significant on their own. While Factor 3 SC is positively correlated for extended 

areas but negatively with their residential density, it is negative correlated, as 

expected, with two covariates suggesting poorest household conditions: families with 

tax credits and claiming income support.  
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Covariates for consumption patterns show that SC is positively linked with the more 

‘environmental’ or ‘cheaper’ type of consumption. Therefore, we cannot assume 

safely that it can be considered as an environmentally friendly attitude, usually linked 

with higher levels of SC. Last, only two sub-dimensions of the general Index of 

Deprivation result significant: Education, with an unexpected negative sign, and 

Income with a positive sign and a coefficient almost double than Education.   

 

Focusing on the general model, the ICC for this factor is the highest: 8.2 percent. The 

variance explained at the two levels of analysis mirror the previous evidence: despite 

the deeper link with an area’s aspects, the individual level explains the 24.5 percent 

of the variance whereas MSOA level the 2.2 percent. The overall fit of the model, 

checkable with the graph for the distribution of level 1 residuals, is the best between 

the three (Figure C3 in the Appendix).  

 

Returning to the map, we can see that on average this SC is overall higher in England 

and more spread. Indeed, many areas are in the highest quintile of the distribution. 

On the other side, the lowest levels are registered in Wales and the MSOAs on the 

boundaries between East Midlands and East of England. Looking at the map of Greater 

London, the trend is less uniform than in the rest of England. We can see that there is 

difference between boroughs. It is more similar to the Citizenship and Politics SC 

factor: higher levels are registered in the suburban areas than in the centre. More 

specifically, Factor 3 SC is higher for boroughs in the North-West: Enfield, Barnet, 

Harrow and north Hillingdon. Then we have Redbridge and the North-East Borough of 
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Havering. Southern boroughs with higher levels than the average are Bexley, Bromley, 

parts of Croydon, Sutton, north of Kingston and Richmond.    

Figure 4.7: MSOA synthetic estimates of Neighbourliness SC for Greater London 
 

 

 

 

4.4 Conclusions 

The small area estimates just presented are the final results of a complex process of 

modelling. In the current state of art, works on small area estimates of SC for England 

and Wales cannot be found. As Twigg et al. (2000) state, the feasibility of the approach 

of MM from national survey data calibrated with Census and area-level covariates has 

been confirmed. The three factors show differentials between them – in the trends 

and the correlations with the individual-level and area-level covariates – and between 

areas. While Membership and Citizenship and Politics SC factors behave differently 
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throughout England and Wales with a various range, Neighbourliness SC factor seems 

to be higher on average between the MSOAs of the two countries and more spread.  

Once more, the factors are confirmed as complementary and deeply linked but they 

show peculiar and autonomous characteristics by themselves. Other considerations 

can be made about the many improvements and further research that has to be 

carried out. The first issue is about the prediction of the confidence intervals of these 

estimates and the check for validity.  Goldring et al. (2005) report diagnostic checks 

using a plot of residuals against estimates. This kind of check has been used in the 

previous chapter for the MM with survey variables from which I derive these 

estimates. In this chapter I also used a plot of residuals of level 1, one of the basic 

ways to check the goodness of MM. NatCen (2004b) states that any calculus of 

standard errors for such complex models can be considered as a proper work to be 

completed. Besides, different methods of calculation of confidence intervals can be 

chosen, derived from the estimates or by simulation. One of the most used is by 

Markov Chain Monte Carlo simulation.  

 

Other ways may be linked to the use of additional significant area-level covariates 

according to the availability of their cross-tabulations in the Census or other 

administrative sources. To check the validity, and besides, to pursue internal and 

external validation, other survey data with availability of information about SC are 

necessary. There are many surveys available including some measurement of SC (ONS, 

2001): the Cultural Capital and Social Exclusion Survey, Home Office Citizenship 

Survey, Community Life Survey, Taking Part Survey, General Household Survey, 

English Housing Survey, British Crime Survey, Health Education Monitoring Survey, 
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British Election Study, Health and Lifestyle Survey, Health Survey for England, British 

Social Attitudes Survey, Home Office Citizenship Survey, Citizen Audit Questionnaire, 

National Adult Learning Survey, English Longitudinal Study of Ageing, English Housing 

Condition Survey, Poverty and Social Exclusion Survey, and the UK Time Use Survey  

but there is a common problem underpinning their use. In contrast to other topics, 

given its complexity and multidimensionality, SC is measured in these surveys in 

different ways and definitions, for samples and years that cannot always be 

compared. Consequently, it can be difficult identifying alternative comparable 

sources. In any case, all the modelling work on validation and confidence of intervals 

calculus can be an interesting open question for further works. 
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Appendix C  

Table C1: Description of individual-level covariates and area-level covariates 
 

Variable Definition Level Source 

Being religious Defined like belonging to a religion from 
the original categorical v. 

Individual UKHLS 2011 

Care 50 hrs and more 
per week 

Sum of 20-34/35-49/50-99/100 more 
hrs per week spent in unpaid caring 
someone from the original ordinal v. 

Individual UKHLS 2011 

Male Gender Individual UKHLS 2011 

Not White Sum of Black=Caribbean+ African+Any 
other Black background+ 
Asian=Indian+Pakistani+Bangladeshi+Ch
inese+Any other Asian background+ 
Mixed=White and Black 
Caribbean+White and Black 
African+White and Asian+Any other 
Mixed Background+ 
Any other ethnic group=Arabic+Any 
other ethnic group 

Individual UKHLS 2011 

Single Sum of single, never married or in a 
legal civil partnership, divorced, 
widowed, separated, surviving partner, 
ex-civil partner from the original 
categorical v. 

Individual UKHLS 2011 

Employed Sum of Paid Employed and Self 
Employed from the original categorical 
v. 

Individual UKHLS 2011 

Ethnicity Index Built according to literature - see par. 
3.3.4, chapter 3 

MSOA Census 2011 

Consumption 
Domestic 
Electricity_Economy 7 

Average Consumption of Economy 7 
Domestic Electricity 

MSOA Office for the 
Deputy Prime 

Minister 

Consumption 
Domestic 
Electricity_ordinary 

Average Consumption of Ordinary 
Domestic Electricity 

MSOA Office for the 
Deputy Prime 

Minister 

Density Density (Number of Persons per 
Hectare) 

 
Office for the 
Deputy Prime 

Minister 

Family with tax 
credits 

Families Receiving; Tax Credit MSOA Office for the 
Deputy Prime 

Minister 

Income support 
claimed 

Income support claimants MSOA Office for the 
Deputy Prime 

Minister 

IoD Education Education skills and training score MSOA Office for the 
Deputy Prime 

Minister 

IoD Employment Employment Score MSOA Office for the 
Deputy Prime 

Minister 

IoD Environmental Living Environment Score MSOA Office for the 
Deputy Prime 

Minister 
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IoD General Index of Multiple Deprivation Score MSOA Office for the 
Deputy Prime 

Minister 

IoD Housing Barriers to Housing and Services Score MSOA Office for the 
Deputy Prime 

Minister 

IoD Income Income Score MSOA Office for the 
Deputy Prime 

Minister 

Area – hectars Area (Hectares) MSOA Office for the 
Deputy Prime 

Minister 

 
 

Table C2: Factor 1 – Membership parameter estimates 
 

Variable Estimate Std. Err. P-Value 

Constant -0.031 0.002 0.000 

16-24 White No qualifications -0.030 0.010 0.002 

25-34 White No qualifications -0.025 0.006 0.000 

35-49 White No qualifications -0.030 0.004 0.000 

50-64 White No qualifications -0.024 0.002 0.000 

65-74 White No qualifications -0.016 0.002 0.000 

75more White No qualifications -0.005 0.002 0.024 

16-24 White GSCE level -0.023 0.003 0.000 

25-34 White GSCE level -0.014 0.002 0.000 

35-49 White GSCE level -0.012 0.002 0.000 

50-64 White GSCE level -0.007 0.002 0.000 

65-74 White GSCE level 0.020 0.003 0.000 

75more White GSCE level 0.025 0.004 0.000 

16-24 White A level -0.010 0.002 0.000 

25-34 White A level -0.008 0.002 0.001 

35-49 White A level -0.002 0.002 0.284 

50-64 White A level -0.002 0.002 0.242 

65-74 White A level 0.015 0.003 0.000 

75more White A level 0.005 0.004 0.206 

16-24 White Degree and higher -0.005 0.003 0.129 

25-34 White Degree and higher 0.004 0.002 0.021 

35-49 White Degree and higher 0.017 0.002 0.000 

50-64 White Degree and higher 0.025 0.002 0.000 

65-74 White Degree and higher 0.039 0.002 0.000 

75more White Degree and higher 0.047 0.003 0.000 

16-24 White Other qualifications -0.005 0.008 0.510 

25-34 White Other qualifications -0.005 0.006 0.365 

35-49 White Other qualifications -0.018 0.003 0.000 

50-64 White Other qualifications -0.011 0.002 0.000 

65-74 White Other qualifications -0.003 0.003 0.348 

75more White Other qualifications 0.012 0.003 0.000 

16-24 not White No qualifications -0.023 0.010 0.024 
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25-34 not White No qualifications -0.027 0.007 0.000 

35-49 not White No qualifications -0.008 0.004 0.054 

50-64 not White No qualifications -0.010 0.004 0.024 

65-74 not White No qualifications 0.002 0.006 0.797 

75more not White No qualifications 0.011 0.007 0.118 

16-24 not White GSCE level -0.024 0.004 0.000 

25-34 not White GSCE level -0.026 0.005 0.000 

35-49 not White GSCE level -0.011 0.004 0.004 

50-64 not White GSCE level 0.009 0.005 0.096 

65-74 not White GSCE level 0.010 0.010 0.302 

75more not White GSCE level 0.008 0.018 0.661 

16-24 not White A level -0.016 0.003 0.000 

25-34 not White A level -0.010 0.005 0.034 

35-49 not White A level -0.006 0.004 0.149 

50-64 not White A level 0.009 0.006 0.105 

65-74 not White A level -0.015 0.012 0.203 

75more not White A level 0.027 0.018 0.135 

16-24 not White Degree and higher -0.013 0.004 0.002 

25-34 not White Degree and higher -0.009 0.003 0.005 

35-49 not White Degree and higher 0.007 0.003 0.009 

50-64 not White Degree and higher 0.010 0.004 0.008 

65-74 not White Degree and higher 0.010 0.006 0.109 

75more not White Degree and higher 0.034 0.011 0.001 

16-24 not White Other qualifications -0.023 0.010 0.017 

25-34 not White Other qualifications -0.009 0.007 0.205 

35-49 not White Other qualifications -0.007 0.005 0.118 

50-64 not White Other qualifications 0.000 0.006 0.950 

65-74 not White Other qualifications 0.007 0.009 0.442 

75more not White Other qualifications 0.026 0.014 0.061 

Not White 0.028 0.002 0.000 

Being religious 0.073 0.001 0.000 

IoD General 0.017 0.003 0.000 

IoD Income -0.007 0.002 0.000 

IoD Employment -0.247 0.048 0.000 

IoD Education -0.005 0.000 0.000 

IoD Environmental 0.002 0.000 0.010 
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Figure C1: Factor 1 – Diagnostics plots: Residuals distributions of Level 1 for Random 

Intercept Model 
 

 

 
Table C3: Factor 2 – Citizenship and Politics parameter estimates 

 

Variable Estimate Std. Err. P-Value 

Constant -0.439 0.228 0.054 

16-24 No qualifications Male 0.389 0.235 0.098 

25-34 No qualifications Male 0.354 0.231 0.124 

35-49 No qualifications Male 0.456 0.228 0.045 

50-64 No qualifications Male 0.542 0.229 0.018 

65more No qualifications Male 0.727 0.228 0.001 

16-24 GSCE level Male 0.369 0.229 0.106 

25-34 GSCE level Male 0.487 0.228 0.033 

35-49 GSCE level Male 0.554 0.228 0.015 

50-64 GSCE level Male 0.722 0.229 0.002 

65more GSCE level Male 0.897 0.229 0.000 

16-24 A level Male 0.519 0.228 0.023 

25-34 A level Male 0.581 0.229 0.011 

35-49 A level Male 0.669 0.228 0.003 

50-64 A level Male 0.775 0.228 0.001 

65more A level Male 0.880 0.229 0.000 

16-24 Degree and higher Male 0.684 0.229 0.003 

25-34 Degree and higher Male 0.761 0.228 0.001 

35-49 Degree and higher Male 0.872 0.228 0.000 
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50-64 Degree and higher Male 0.971 0.228 0.000 

65more Degree and higher Male 1.085 0.228 0.000 

16-24 Other qualifications Male 0.292 0.236 0.216 

25-34 Other qualifications Male 0.239 0.233 0.306 

35-49 Other qualifications Male 0.437 0.229 0.056 

50-64 Other qualifications Male 0.636 0.229 0.005 

65more Other qualifications Male 0.876 0.229 0.000 

16-24 No qualifications Female 0.315 0.238 0.185 

25-34 No qualifications Female 0.227 0.232 0.327 

35-49 No qualifications Female 0.304 0.229 0.184 

50-64 No qualifications Female 0.377 0.229 0.099 

65more No qualifications Female 0.627 0.228 0.006 

16-24 GSCE level Female 0.147 0.229 0.520 

25-34 GSCE level Female 0.241 0.229 0.293 

35-49 GSCE level Female 0.418 0.228 0.067 

50-64 GSCE level Female 0.580 0.228 0.011 

65more GSCE level Female 0.893 0.229 0.000 

16-24 A level Female 0.428 0.228 0.061 

25-34 A level Female 0.410 0.229 0.073 

35-49 A level Female 0.516 0.228 0.024 

50-64 A level Female 0.691 0.229 0.003 

65more A level Female 0.836 0.231 0.000 

16-24 Degree and higher Female 0.533 0.229 0.020 

25-34 Degree and higher Female 0.642 0.228 0.005 

35-49 Degree and higher Female 0.748 0.228 0.001 

50-64 Degree and higher Female 0.912 0.228 0.000 

65more Degree and higher Female 0.980 0.229 0.000 

16-24 Other qualifications Female 0.080 0.237 0.735 

25-34 Other qualifications Female 0.231 0.233 0.321 

35-49 Other qualifications Female 0.268 0.229 0.241 

50-64 Other qualifications Female 0.550 0.229 0.016 

65more Other qualifications Female 0.779 0.229 0.001 

Employed 0.040 0.008 0.000 

Care 50 hrs and more per week -0.001 0.000 0.000 

Not White 0.121 0.008 0.000 

IoD Housing 0.026 0.006 0.000 
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Figure C2: Factor 2 – Diagnostics plots: Residuals distributions of Level 1 for Random 

Intercept Model 

 

 

 
Table C4: Factor 3 – Neighbouring parameter estimates 

 
Variable Estimate Std. Err. P-Value 

Constant -0.062 0.013 0.000 

25-49 Good health 1-19 hrs per week 0.026 0.014 0.057 

50-64 Good health 1-19 hrs per week 0.137 0.014 0.000 

65more Good health 1-19 hrs per week 0.270 0.019 0.000 

25-49 Fair health 1-19 hrs per week -0.076 0.033 0.020 

50-64 Fair health 1-19 hrs per week 0.049 0.032 0.125 

65more Fair health 1-19 hrs per week 0.178 0.036 0.000 

25-49 Poor health 1-19 hrs per week -0.131 0.064 0.041 

50-64 Poor health 1-19 hrs per week -0.076 0.057 0.179 

65more Poor health 1-19 hrs per week -0.040 0.070 0.566 

25-49 Good health 20-49 hrs per week -0.067 0.032 0.034 

50-64 Good health 20-49 hrs per week 0.092 0.033 0.005 

65more Good health 20-49 hrs per week 0.219 0.040 0.000 

25-49 Fair health 20-49 hrs per week -0.060 0.064 0.352 

50-64 Fair health 20-49 hrs per week 0.030 0.061 0.626 

65more Fair health 20-49 hrs per week 0.024 0.065 0.711 

25-49 Poor health 20-49 hrs per week -0.426 0.116 0.000 

50-64 Poor health 20-49 hrs per week -0.040 0.093 0.668 
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65more Poor health 20-49 hrs per week -0.130 0.102 0.202 

25-49 Good health 50 more hrs per week -0.096 0.037 0.010 

50-64 Good health 50 more hrs per week 0.080 0.051 0.112 

65more Good health 50 more hrs per week 0.185 0.043 0.000 

25-49 Fair health 50 more hrs per week -0.169 0.060 0.005 

50-64 Fair health 50 more hrs per week 0.076 0.066 0.253 

65more Fair health 50 more hrs per week 0.061 0.060 0.309 

25-49 Poor health 50 more hrs per week -0.206 0.081 0.011 

50-64 Poor health 50 more hrs per week -0.094 0.082 0.252 

65more Poor health 50 more hrs per week 0.160 0.113 0.157 

Ethnicity Index -0.120 0.026 0.000 

Male 0.108 0.009 0.000 

Single -0.094 0.008 0.000 

Employed -0.026 0.006 0.000 

Area – hectares 0.020 0.004 0.000 

Density -0.018 0.006 0.003 

Family with tax credits -0.051 0.009 0.000 

Income support claimed -0.036 0.009 0.000 

Consumption Domestic Electricity_ordinary -0.031 0.006 0.000 

Consumption Domestic Electricity_Economy 
7 

0.025 0.005 0.000 

IoD Income 0.043 0.107 0.000 

IoD Education -0.027 0.001 0.000 
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Figure C3: Factor 3 – Diagnostics plots: Residuals distributions of Level 1 for Random 
Intercept Model 

 

 

Table C5: MSOAs’ Rank – 50 areas with highest levels of SC by factors 
 

Rank Factor 1 - Membership 
Factor 2 - Citizenship and 

Politics 
Factor 3 - Neighbouring 

1 North Somerset 002 Canterbury 013 East Dorset 011 

2 Cheltenham 014 Bristol 032 South Lakeland 010 

3 Three Rivers 004 Sheffield 073 Arun 018 

4 Derby 002 Coventry 042 West Dorset 004 

5 Guildford 003 Nottingham 028 New Forest 001 

6 Bournemouth 020 Manchester 022 Cotswold 004 

7 Hart 007 York 023 Chichester 013 

8 Harrow 016 Cardiff 025 Horsham 012 

9 Merton 002 Canterbury 012 Cheshire West and Chester 
015 

10 Three Rivers 011 Sheffield 028 Wakefield 034 

11 Cheshire East 010 Brighton and Hove 002 Havant 013 

12 Bradford 001 Sheffield 038 Suffolk Coastal 002 

13 Isle of Wight 010 Plymouth 023 Derbyshire Dales 002 

14 Bristol 006 Exeter 004 Sedgemoor 012 

15 Waverley 004 Swansea 026 South Cambridgeshire 016 

16 Eastleigh 001 Sheffield 042 East Dorset 012 

17 South Hams 012 Leicester 040 Bradford 002 

18 Sefton 009 Birmingham 079 Chiltern 001 

19 North Tyneside 001 Manchester 026 Solihull 026 
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20 Woking 002 Charnwood 003 New Forest 017 

21 Worthing 013 Lincoln 005 Wychavon 019 

22 Cheshire East 003 Newcastle upon Tyne 017 Wrexham 020 

23 Stroud 002 Birmingham 050 York 024 

24 Kensington and Chelsea 
018 

Lancaster 019 Wirral 023 

25 Bristol 011 Nottingham 026 Bath and North East 
Somerset 016 

26 Darlington 011 Nottingham 022 Pendle 008 

27 Cheshire East 012 Sheffield 074 Stroud 002 

28 Cardiff 004 Cambridge 005 Cheshire East 020 

29 Sefton 012 Newcastle upon Tyne 023 Darlington 011 

30 Arun 018 Sheffield 036 Sheffield 041 

31 Shepway 008 Sheffield 030 Bath and North East 
Somerset 010 

32 Wirral 040 Liverpool 038 South Staffordshire 013 

33 Bristol 009 Manchester 036 East Hampshire 011 

34 Swansea 031 Gwynedd 001 Rochford 003 

35 Christchurch 007 Liverpool 060 Poole 003 

36 Horsham 012 Cardiff 028 Rother 009 

37 Harrow 001 Cambridge 007 Lewes 002 

38 Mid Sussex 008 Nottingham 032 Guildford 003 

39 North Somerset 005 Ceredigion 002 New Forest 023 

40 Arun 008 Charnwood 007 Chesterfield 011 

41 Rother 010 Leeds 063 Suffolk Coastal 013 

42 Swansea 028 Nottingham 031 Lichfield 005 

43 East Devon 017 Newcastle upon Tyne 013 East Hampshire 007 

44 Eastbourne 012 Leeds 054 Sunderland 022 

45 Rother 009 Leeds 044 Herefordshire 023 

46 East Devon 012 Cardiff 032 Sheffield 068 

47 Christchurch 003 Leeds 110 Hambleton 002 

48 New Forest 023 Manchester 032 Solihull 028 

49 New Forest 022 Oxford 008 Sheffield 055 

50 Poole 018 County Durham 030 Stafford 014 

 
 

Table C6: MSOAs’ Rank – 50 areas with lowest levels of SC by factors 

 

Rank Factor 1 - Membership 
Factor 2 - Citizenship and 

Politics 
Factor 3 - Neighbouring 

1 County Durham 030 Camden 011 Birmingham 051 

2 Birmingham 096 Haringey 035 Birmingham 070 

3 Leeds 110 Tower Hamlets 027 Oldham 016 

4 Manchester 032 Tower Hamlets 033 Birmingham 139 

5 Oxford 008 Camden 016 Leicester 018 

6 Cardiff 032 Richmond upon Thames 008 Birmingham 082 

7 Leeds 044 Lambeth 019 Nottingham 011 

8 Leeds 054 Haringey 033 Bradford 051 
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9 Newcastle upon Tyne 013 Richmond upon Thames 007 Birmingham 077 

10 Ceredigion 002 Wandsworth 009 Middlesbrough 001 

11 Leeds 063 City of London 001 Sheffield 022 

12 Gwynedd 001 Camden 002 Leicester 026 

13 Nottingham 031 Wandsworth 015 Birmingham 054 

14 Cardiff 028 Camden 008 Birmingham 083 

15 Liverpool 038 Richmond upon Thames 006 Bradford 044 

16 Newcastle upon Tyne 023 Haringey 022 Coventry 015 

17 Sheffield 036 Oxford 002 Birmingham 063 

18 Lincoln 005 Merton 004 Bradford 042 

19 Charnwood 007 Wandsworth 017 Hyndburn 006 

20 Manchester 036 Haringey 021 Birmingham 055 

21 Sheffield 030 Richmond upon Thames 009 Bradford 048 

22 Newcastle upon Tyne 017 Hammersmith and Fulham 022 Leicester 035 

23 Liverpool 060 Hammersmith and Fulham 024 Newham 019 

24 Lancaster 019 Wandsworth 006 
Redcar and Cleveland 

009 

25 Cambridge 007 Wandsworth 021 Birmingham 052 

26 Nottingham 032 Haringey 034 Birmingham 048 

27 Nottingham 022 Lambeth 013 Luton 015 

28 Swansea 026 Southwark 031 Birmingham 037 

29 Exeter 004 Haringey 036 Leeds 048 

30 Charnwood 003 Oxford 012 Manchester 012 

31 Sheffield 042 Ealing 034 Bradford 038 

32 Plymouth 023 Oxford 001 Wirral 011 

33 Birmingham 079 Wandsworth 010 Birmingham 040 

34 Sheffield 074 Merton 009 Manchester 058 

35 Sheffield 038 Greenwich 021 Medway 022 

36 Sheffield 028 Camden 014 Bradford 039 

37 Cardiff 025 Guildford 016 Wigan 010 

38 Cambridge 005 Hammersmith and Fulham 014 
Newcastle upon Tyne 

028 

39 Plymouth 027 St Albans 011 Manchester 015 

40 Brighton and Hove 002 Ealing 013 Bradford 041 

41 Nottingham 028 Merton 003 Rochdale 015 

42 York 023 Haringey 009 Calderdale 012 

43 
Cheshire West and Chester 

034 
Wandsworth 029 Coventry 009 

44 Manchester 026 Merton 002 Manchester 018 

45 Southampton 023 Haringey 030 Rushmoor 008 

46 Canterbury 013 Westminster 016 Bradford 034 

47 Southampton 017 Hammersmith and Fulham 011 Swansea 011 

48 Nottingham 026 Lewisham 009 Southwark 019 

49 Bristol 032 Wandsworth 030 Salford 017 

50 Richmondshire 004 Westminster 008 Newham 030 
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CONCLUSIONS 

 
In recent years, opposing trends have been registered about SC in Britain. The famous 

and controversial study of Hall (1999) addressing the state of SC in Britain argues that 

the apparent decline in social trust sees equivalent erosion of social participation. 

Trying to take a counter-example to Putnam’s version of declining SC in USA, the 

author refers to other aspects as possible explanations: change of values, 

governmental policies, changes in social integration and so on. A subsequent study by 

Grenier and Wright (2003) attempts to update the results with new data and further 

check Hall’s results. They find similar trends to the past but also state that other 

aspects now have to be considered to explain differences in SC levels: rise in income 

inequality, distributional issues and class divisions.   

 

CIS 8 (2015) find that supportive informal relationships and social support have not in 

fact declined over the last two decades but that having ‘someone to discuss personal 

matters with’ is much less likely among the over seventy-fives, those with less 

education, and those outside the labour market. Besides, activity in voluntary 

organizations seems to slowly decline in the long-term and the activity related 

specifically to the local community or neighbourhood is declining as well (about 3.7 

percent, from 11.5 percent to 7.8 percent over the last decade).  

 

Looking at civic participation, the ethnic gap may be widening while the age gap has 

remained the same over time. Gaps related to education and economic activity are 

still confirmed as contributing to a socially unequal distribution of SC. The related 
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social trust, not in decline, seems to be weakest in London and among some ethnic 

minorities and less educated people.  

 

CIS 15 (2015) confirm that SC is ‘multidimensional’ and comes in different types and 

combinations according to which individuals can show higher levels on some and 

lower on others. Isolation seems to be rare, confirming the idea that a certain amount 

of SC has been accumulated in Britain. The attention to SC therefore is remains high 

and has been increasing since the beginning of this century when we saw the main 

governmental bodies at national and international level starting to focus on it: the 

World Bank, OECD, European Commission and ONS. In November 2015, in London, I 

attended a conference on the State of Social Capital in Britain. Speakers and 

participants from academia but also from the private and public sectors, the 

government and the third sector took part. The general final agreement on the topic 

after a day of discussion sounded more like a programmatic intent: SC is one of the 

most important resources that must be fed and continuously pursued in an integrated 

approach from all the agents at different levels. It is, indeed, one of the answers to 

local development and all related (and listed) benefits especially during times of 

scarce resources (Wilding, 2015).  

 

Deeply linked to the centrality of SC is the issue of its measurement and the necessity 

for more precise and local estimates. The small area estimates methodology 

overcomes classical problems of having disaggregated estimates. This level of 

analysis, indeed, seems to allow more precise analysis in relation to previous studies 

where the highest levels of analysis (regional or national) might have not allowed for 
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the capture of differentials. Just to cite an example, Van Oorschot et al. (2006) state 

that SC is highly accumulated between European countries as well as physical and 

human capital but that there are no substantial differences between countries and 

regions (except for Northern Europe and Scandinavia where it is higher) and between 

categories of European citizens. However, there is no detail on lower levels of 

aggregation.  

Inference about aspects and problems for which we do not have the adequate data 

or coverage is probably the main strength and advantage of these methods. 

Moreover, the variety of approaches and methodologies available easily 

accommodate different types of data, increase precision, allow the derivation of 

‘optimal’ estimates and associated measures of variability under the assumed model, 

and the validation of models from the sample data (Rao, 2003). 

Mohan and Mohan (2002) explore the necessity of a geographical, more 

disaggregated, analysis of SC. In a critical study, they begin to address criticism of the 

concept as defined in the classical way (Putnam’s definitions and so on). They then 

report on studies that attempt to estimate different SC dimensions at different 

geographical levels. They notice how these studies focus on one dimension per time 

and how it is difficult to find disaggregated data on SC. They then conclude that 

overcoming these problems would help in a practical way to structure better policies 

on development, poverty alleviation, social cohesion, industrial policies, educational 

development, health, housing, social security at different levels. They then confirm in 

this way, the importance of SC as real tool for governments and not only as a 

theoretical concept.  
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The many important advantages just highlighted about the application of small area 

estimates to SC have to be balanced with the weaknesses of these methodologies. As 

widely described in the last chapter of this thesis, the main problems are: the 

reliability and validity of such approaches, the risks around confidentiality, anonymity 

and disclosure, the use of different outcomes produced and the linkages between 

different datasets and different type of data. Indeed, on the one hand, the validation 

process, both internal and external, can be eased by the use of sample data, on the 

other hand the availability of these data and the degree of comparability between 

them and the synthetic estimates obtained is one of the main limitations. A weak 

validation could make these estimates less reliable, and less generalizable, with 

respect to other methods of estimation.   

 

After all these considerations, I can state that this PhD work has been an attempt to 

merge and deal with all these aspects. Theoretically, the complexity and 

multidimensionality of this concept finds fulfilment in the several methodologies used 

and the factors built with the Factorial Analysis. The three factors identified perfectly 

fit together in a model but maintain an independent and clear structure by 

themselves, becoming proper variables. All the original variables representing 

membership and active membership to different types of organizations, institutional 

trust, voting attitude and behaviours, interest in politics, relations with neighbours, 

generalised and social trust and caring have resulted significant. The three SC 

dimensions identified – Membership, Citizenship and Politics and Neighbouring – 

perfectly load on them, therefore demonstrating a common pattern of variance 
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between dimensions for individuals. Other variables resulted significant as well for 

use of social media and fear of crime.   

 

Once identified, they resulted as correlated with all the main individual 

characteristics, showing interesting and, sometimes, different trends between the 

three factors. Age, gender, ethnicity, religion and education are the variables resulting 

more frequently significant, both in a positive and in a negative way. Variables 

representing caring, state of health, marital status, employment and its socio-

economic classification, dependent children, moving and housing conditions have 

resulted significant in a weaker way.  

Multilevel models, tested in their main forms of Random Intercept and Random 

Coefficient Models with Contextual Effect, also showed that the SC factors are related 

to area characteristics regarding mainly the ethnicity diversity and the economic 

profile. This last aspect has been identified by higher levels of employment, a more 

developed service sector and higher levels of educational attainments.  

 

Comparing the factors, we saw how the factors of Membership and Citizenship and 

Politics seem to be more related (even in a contrasting way) and to have higher 

differentials between MSOAs in England and Wales. The third factor about 

Neighbouring, that I intend to be more informal and private, seems to have a different 

trend and to be, in any case, spread more uniformly around the countries and, on 

average, higher than the other two. 

The analysis carried out is wide and deep but of course, there are limitations and 

improvements that can be achieved. Alternative data can be used as well as 
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alternative methodologies and alternative cross-tabulations from the Census. Even 

the cross-sectional approach constrained by the Census availability can be revised for 

a longitudinal study. Validity control of estimates have still to be carried out and 

compared with other possible estimates. Besides, we can imagine that further 

dimensions of SC can still be investigated and integrated to the current study. 

 

The aim of ‘Beyond 2011’ has been reached: it is possible to produce estimates at 

small area from multivariate and model-based approaches. I used Census covariates 

as well as other administrative sources. The statistical significance reached by the 

covariates confirms that we can use other sources than the Census for the same 

information. An interesting attempt would be the use of the Sample Anonymised 

Records (SAR) from the Census that can be easily and more frequently updated, 

allowing a more longitudinal perspective. This last aspect especially deserves further 

investigation to confirm or not the general idea that SC is long-term capital: it needs 

time to accumulate and even more time to change because of the dimensions 

included.  

 

Expanding the analysis, SC factors and estimates can then be used as predictors on 

variables representing all the dimensions we saw as related to SC, from the more 

economic to those that are distinctly social. Also, a more qualitative or mixed 

approach can be used to investigate it.  

 

I can conclude then by asserting one more time that social capital proves to be an 

interesting and useful concept both as an analytical tool and for understanding social 
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trends. More than twenty years after the initial conceptualizations, it is still actual and 

central to the debate both at scientific and political levels. It is deeply related to a 

wide range of other topics across the various fields of social sciences and therefore, it 

is to still be considered as a fundamental asset for policies aiming to foster better local 

and global worlds. 

 
 
 
 
   
 
 
   
   
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



316 
 

Page 316 of 332 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



317 
 

Page 317 of 332 

BIBLIOGRAPHY 

  
 Adler P. S., Kwon S. W., (2002), Social capital: prospects for a new concept, 
Academy of Management Review, 27, [1], 17-40. 
 
 Akçomak I. S., (2009), Bridges in social capital: a review of the definitions and 
the social capital of social capital researchers, UNU-MERIT Working Series, 002. 
 
 Akçomak I. S., ter Weel B., (2012), The impact of social capital on crime: 
Evidence from the Netherlands, Regional Science and Urban Economics, 42 [1-2], 323-
340. 
 

Akçomak, I. S., ter Weel, B., (2009), Social capital, innovation and growth: 
Evidence from Europe, European Economic Review, 53 (5), 544-567.  

 
 Akçomak, I. S., ter Weel, B., (2005), How do social capital and government 
support affect innovation and growth? Evidence from the EU regional support 
programs, UNU-MERIT Working Paper Series, 2007-009.  
 

Allaga A., Muhuri P. K., (1994), Methods of Estimating Contraceptive 
Prevalence Rates for Small Areas: Applications in The Dominican Republic and Kenya, 
Demographic and Health Surveys – Methodological Report N. 3.   

 
Allison P. D., (2005), Imputation of Categorical Variables with PROC MI, Sugi 

30 – Focus Session, Paper 113-30, 1-14.  
 
Allison P. D., (2000), Multiple Imputation for Missing Data – A Cautionary Tale, 

Sociological Methods & Research, 28 (3), 301-309. 
 
Australian Bureau of Statistics, (2002), Social Capital and Social Wellbeing, 

Discussion Paper.  
 
Baron R. A., Markman G. D., (2003), Beyond social capital: the role of 

entrepreneur’s social competence in their financial success, Journal of Business 
Venturing, 18 (1), 41-60.  

 
Barrett P., Hale B., Butler M., (2014), Family care and Social Capital: Transitions 

in Informal Care, Springer Eds. 
 
Battese G. E.,  Harter R. M., Fuller H. W., (1988), An Error-Components Model 

for Prediction of Country Crop Areas Using Survey and Satellite Data, Journal of the 
American Statistical Association, 83 [401], 28-36. 

 
  Bauböck R., (2005), Expansive Citizenship – Voting beyond Territory and 
Membership, Political Science and Politics, 38 [4], 683-687. 
 



318 
 

Page 318 of 332 

Bell A., Jones K., (2015), Explaining Fixed Effects: Random Effects Modeling of 
Time-Series Cross-Sectional and Panel Data, Political Science Research and Methods, 
3 [01], 133-153.  

 
Bentler P. M., Chou C-P., (1987), Practical issues in structural modelling, 

Sociological Methods & Research, 16, 78-117. 
 
Beugelsdijk S., van Schaik T., (2005), Social capital and growth in European 

regions: an empirical test, European Journal of Political Economy, 21 (2), 301-324. 
 
Bourdieu P., (1986), The forms of capital in Richardson J., Handbook of theory 

and research for the sociology of education, Greenwood, 241-258. 
 
Bourdieu P., (1979), La distinction: critique sociale du jugement, Paperback.  
 
Brehm J, Rahn W, (1997), Individual – Level Evidence for the Causes and 

Consequences of Social Capital, American Journal of Political Science, 41 (3), 999-
1023. 

 
Brunton-Smith I., (2011), Untangling the Relationship Between Fear of Crime 

and Perceptions of Disorder – Evidence from a Longitudinal Study of Young People in 
England and Wales, The British Journal of Criminology, 51 [6], 885-899. 

 
Brunton-Smith I., Sturgis P., (2011), Do neighbourhoods generate fear of 

crime? An empirical test using the British Crime Survey, Criminology, 49 [2], 331-369. 
 
Buonanno P., Montolio D., Vanin P., (2009), Does Social Capital Reduce Crime?, 

Journal of Law and Economics, 52 (1), 145-170.  
 
Burke M., Kraut R., Marlow C., (2011), Social capital on Facebook: 

Differentiating users and users, Proceedings of the 2010 Annual Conference on Human 
Factors in Computing Systems, 1909-1921, New York. 

 
  Burt R. S., (2000), The network structure in social capital, Research in 
Organizational Behavior.  
 
  Burt R. S., (1992), Structural holes: the social structure of competition, Harvard 
University Press. 
 
  Byrne B. M., (2012), Structural Equation Modeling With Mplus, Routledge 
Press.  
 

Caplan S. E., (2003), Preference for Online Social Interaction - A Theory of 
Problematic Internet Use and Psychosocial Well-Being, Communication Research, 30 
(6), 625-648.  

 



319 
 

Page 319 of 332 

Carpiano R. M., Kimbro R. T., (2012), Neighbourhood Social Capital, Parenting 
Strain, and Personal Mastery among Female Primary Caregivers of Children, Journal 
of Health and Social Behaviour, 53 (2), 232-247.  

 
Carpiano R. M., (2007), Neighborhood social capital and adult health: An 

empirical test of a Bourdieu-based model, Health & Place, 13, 639-655.  
 

  Castiglione D., Van Deth J. W., Wolleb G., (2008), The Handbook of Social 
Capital, Oxford University Press.  
 

Cattell V., (2001), Poor people, poor places, and poor health: the mediating 
role of social networks and social capital, Social Science & Medicine, 52 (10), 1501-
1516.  

 
Chambers R., Tzavidis N., (2006), M-quantile models for small area estimation, 

Biometrika, 93, 255-268. 
 
Chambers R., Tzavidi N., (2005), Using Multilevel Models for Small Area 

Estimation, NCRM Summer School.  
 

  Chou Y. K., (2003), Modelling the impact of network social capital on business 
and technological innovations, University of Melbourne – Department of Economics, 
Research Paper n. 890. 
 
  Claibourn M. P., Martin P. S., (2000), Trusting and Joining? An empirical test of 
the reciprocal nature of social capital, Political Behaviour, 22 [4], 267-291.  
 
 Coleman J. S. (1990), Foundations of social theory, Belknap Press of Harvard 
University. 
 

Coleman J. S., (1988), Social capital in the creation of human-capital, American 
Journal of Sociology, n. 94, S95-S120.  

 
 Costa D. L., Kahn M. E., (2001), Understanding the decline in social capital, 
1952-1998, NBER Working Paper, 8295. 
 
  Criscuolo C., Haskel J. E., Slaughter M. J., (2010), Global engagement and the 
innovation activities of the firm, International Journal of Industrial Organization, 28, 
[2], 191-202.  
 
 CSI 15, (2015), The uneven distribution and decline of social capital in Britain, 
Centre for Social Investigation Nuffield College Report, Oxford. 
 
 CSI 8, (2015), Social Capital – Are we becoming lonelier and less civic?, Centre 
for Social Investigation Nuffield College Report, Oxford. 
 



320 
 

Page 320 of 332 

 Cutts D., Fieldhouse E., (2015), Diversity and social capital in the US and UK: 
the role of bridging friendships, in Li Y., (2015), Handbook of Research Methods and 
Applications in Social Capital, Elgar Edition, chapter 7. 
 
 Dakhli, M., De Clercq D., (2004), Human capital, social capital, and innovation: 
a multicountry study, Entrepreneurship & Regional Development, 16, 107-128. 
 
 Dasgupta P. (2005), Economics of social capital, Economic Record, 81, S2-S21. 

 
David Q., Janiak A., Wasmer E., (2010), Local social capital and geographical 

mobility, Journal of Urban Economics, 68 (2), 191-204.  
 
De Souza Briggs X., (1998), Brown Kids in White Suburbs: Housing Mobility and 

the Many Faces of Social Capital, Housing Policy Debate - U.S. Department of Housing 
and Urban Development and Harvard University, 9 (1), 177-221. 

 
Dedrick R. F., Ferron J. M., Hess M. R., Hogarty K. Y., Kromrey J. D., Lang T. R., 

Niles J. D., Lee R. S., (2009), Multilevel Modelling: A Review of Methodological Issues 
and Applications, Review of Educational Research, 79 [1], 69-102.  

 
Di Stefano C., Hess B., (2005), Using Confirmatory Factor Analysis for Construct 

Validation: An Empirical Review, Journal of Psychological Assessment, 23, 225-241.  
 
Di Stefano C., Zhu M., Mîndrilă D, (2009), Understanding and Using Factor 

Scores: Considerations for the Applied Researchers, Practical Assessment, Research 
and Evaluation, 14 (20). 

 
Douglas A., (2004), Chapter 2 in Multilevel Modeling, Sage. 
 
Duke N. N., Skay C. L., Pettingell S. L., Borowsky I. W., (2009), From Adolescent 

Connections to Social Capital: Predictors of Civic Engagement in Young Adulthood, 
Journal of Adolescent Health, 44 (2), 161-168. 

 
Duncan C., Jones K., Moon G., (1993), Health related behaviour in context – a 

multi level modelling approach, Social Science and Medicine, 42 (6), 817-830.  
 
Ebstyne King P., Furrow J. L., (2004), Religion as a Resource for Positive Youth 

Development: Religion, Social Capital and Moral Outcomes, Developmental 
Psychology, 40 (5), 703-713. 

 
Ellison N. B., Steinfield C., Lampe C., (2007), The benefits of Facebook friends: 

Social Capital and college students’ use of online social network sites, Journal of 
Computer – Mediated Communication, 12, 1143–1168.  

 
Ellison N. B., Vitak J., Gray R., Lampe C., (2014), Cultivating Social Resources on 

Social Network Sites: Facebook Relationship Maintenance Behaviours and Their Role 



321 
 

Page 321 of 332 

in Social Capital Processes, Journal of Computer – Mediated Communication, 19 (4), 
855-870.  

 
  Erickson B. H., (2004), The distribution of gendered social capital in Canada, in 
Creation and Returns of Social Capital – A new research program, edited by Flap H. 
and Vӧlker B, Routledge.  
 

Fay R. E., Herriot R. A., (1979), Estimates of income for small places: an 
application of James-Stein procedure to Census data, Journal of the American 
Statistical Association, 74 [366a], 269-277. 

 
Fielding A., (2004), The Role of the Hausman Test and wheter Higher Level 

Effects should be treated as Random or Fixed, Multilevel Modelling Newsletter, 16 [2], 
3-9. 

 
  Fine B. (2010), Theories of Social Capital: Researchers Behaving Badly, Pluto 
Press.  

 
Geiser C. (2013), Data Analysis with Mplus, The Guildford Press, London.  
 

  Glaeser E. L., Laibson D., Sacerdote B., (2002), An Economic Approach to Social 
Capital, The Economic Journal, 112, F437-F458.  
 
  Goldin C., Katz L. F., (1999), Human capital and social capital: the rise of 
secondary schooling in America, Journal of Interdisciplinary History, 29, [4], 683-723.  
 

Goldring S., Longhurst J., Cruddas M., (2005), Model-Based Estimates of 
Income for Wards, 2001/02 – Technical Report, Office for National Statistics.    

 
Goldstein H., (2010), Multilevel Statistical Models - 4th Edition, Wiley Series in 

Probability and Statistics, London.      
 

  Grafton R. Q., Kompas T., Owen P. D., (2007), Bridging the barriers: knowledge 
connections, productivity and capital accumulation, Journal of Productivity Analysis, 
8, [3], 219-231.  
 
  Granovetter M., (1973), The strength of weak ties, American Journal of 
Sociology, 78, 1360-1380.  
 

Green S. B., Akey T. M., Fleming K. K. Hershberger S. L., Marquis J. G., (1997), 
Effect of the number of scale points on chi-square fit indices in confirmatory factor 
analysis, Structural Equation Modeling, 4, 108-120. 

 
Grenier P., Wright K., (2003), Social capital in Britain: an update and critique 

of Hall’s analysis, International Working Paper Series, 14, Centre for Civil Society, 
London School of Economics and Political Science, London.   

 



322 
 

Page 322 of 332 

  Grootaert C., van Bastelaer T., (2001), Understanding and measuring social 
capital. A synthesis of findings and recommendations from the social capital initiative, 
World Bank Social Capital Initiative Working Paper, n. 24.  
 

Hall P., (1999), Social Capital in Britain, British Journal of Politics, 29, 417-461. 
 
Harper R., Kelly M., (2003), Measuring Social Capital in the United Kingdom, 

Office for National Statistics Report.  
 
Harrington D., (2009), Confirmatory factor analysis, Oxford University Press.  
 
Haughton D., Nguyen P., (2010), Multilevel Models and Inequality in Vietnam, 

Journal of Data Science, 8, 289-306. 
 

  Hauser C., Tappeneir G., Walde J., (2007), The learning region: the impact of 
social capital and weak ties on innovation, Regional Studies, 41, 75-88.  
 

Hayes A. F., (2006), A Primer on Multilevel Modeling, Human Communication 
Research, 32 [4], 385-410. 

 
Heady P., Clarke P., Brown G., Ellis K., Heasman D., Hennell S., Longhurst J., 

Mitchell B., (2003), Model-based small area estimation series No. 2, Small Area 
Estimation Project Report: Office for National Statistics.  

 
  Helliwell J. F., (2006), Well-Being, Social Capital and Public Policy: What’s New? 
The Economic Journal, 116 [510], C34-C45. 
 
 Hendryx M. S., Ahern M. M., Lovrich N. P., Mc Curdy A. H., (2002), Access to 
Health Care and Community Social Capital, Health Services Research, 37 [1], 85-101.  
 

Hindmarsh D. M., (2013), Small area estimation for health surveys, University 
of Wollongong Research Online.  

 
  Hofstede G. (1980), Culture's Consequences: International Differences in Work 
Related Values, Sage Publications.  
 

Hox J. J., Moerbeek M., van de Schoot R., (2010), Multilevel Analysis: 
Techniques and Applications, Quantitative Methodology Series – Second Edition.  

 
Hu L-T., Bentler P. M., (1999), Cutoof criteria for fit indexes in covariances 

structure analysis: Conventional criteria versus new alternatives, Phsycological 
Methods, 3, 424-453.  

 
Hu L-T., Bentler P. M., (1995), Evaluation model fit in R. H. Hoyle (Eds), 

Structural equation modelling: Concepts, issues and applications, 76-99, Thousand 
Oaks, Sage.   

 



323 
 

Page 323 of 332 

Jacobs J., (1961), The life and death of great American cities, Random House.  
 

  Kaasa A., Vadi M. (2010), How does culture contribute to innovation? Evidence 
from European countries, Economics of Innovation and New Technology, 19 [7], 583-
604. 
 
  Kaasa, A., Kaldaru, H., Parts, E. (2007), Social capital and institutional quality 
as factors of innovation: evidence from Europe, Tartu University Press, Order n. 292.  
 

Kaufmann V., Bergman M. M., Joye D., (2004), Motility: Mobility as Capital, 
International Journal of Urban and Regional Research, 28.4, 745-756.  

 
Kawachi I., Berkman L. F., (2003), Neighborhoods and Health, Oxford 

University Press, Chapter 4.  
 

  Kawachi I., Kennedy B. P., Lochner K., Prothrow-Stith D., (1997), Social Capital, 
income inequality, and mortality, American Journal of Public Health, 87 [9], 1491-
1498. 
 

Kish L., (1967), Survey Sampling – 2nd Edition, Wiley and Sons, London.  
 
Knack S., Keefer P., (1997), Does social capital have an economic payoff? A 

crosscountry investigation, The Quarterly Journal of Economics, 21, 1251-1288.  
 
La Due Lake R. and Huckfeldt R, (1998), Social Capital, Social Networks, and 

Political Participation, Political Phsycology, 19 (3), 567-584. 
 

  Laursen K., Masciarelli F., (2008), The effect of regional social capital and 
external knowledge acquisition on process and product innovation, ROCK Working 
Paper.  
 

Leckie G., (2010), Module 5: Introducing to Multilevel Modelling – Stata 
Practical, Centre for Multilevel Modelling, adapted from the corresponding MLwiN 
practical: Steele, F. (2008) Module 5: Introduction to Multilevel Modelling. LEMMA 
VLE, Centre for Multilevel Modelling. Accessed at 
http://www.cmm.bris.ac.uk/lemma/course/view.php?id=13. 

 
Li F., Zaslavsky A. M., (2010), Using a Short Screening Scale for Small-Area 

Estimation of Mental Illness Prevalence for Schools, Journal of the American Statistical 
Association, 105 [492], 1323-1332.  

 
Li Y., (2015), Social capital in sociological research: conceptual rigour and 

empirical application in Li Y., (2015), Handbook of Research Methods and Applications 
in Social Capital, Elgar Edition, chapter 1.   

 

http://www.cmm.bris.ac.uk/lemma/course/view.php?id=13


324 
 

Page 324 of 332 

Li Y., (2015b), The flow of soul: a sociological study of generosity in England 
and Wales (2001-2011), in Li Y., (2015), Handbook of Research Methods and 
Applications in Social Capital, Elgar Edition, chapter 3.  

 
  Li Y., Pickles A., Savage M., (2005), Social capital and social trust in Britain, 
European Sociological Review, 21, [2], 109-123.  
 
  Li Y., Savage M., Warde A., (2015), Social stratification, social capital  and 
cultural practices in the UK, in Li Y., (2015), Handbook of Research Methods and 
Applications in Social Capital, Elgar Edition, chapter 2.  
 
  Lin N., (2001), Social capital: a theory of social structure and action, Cambridge 
University Press.  
 

Lochner K. A., Kawachi I., Brennan R. T., Buka S. L., (2003), Social capital and 
neighborhood mortality rates in Chicago, Social Science & Medicine, 56 [8], 1797-
1805.  

 
 Lomas J., (1998), Social capital and health implications for public health and 
epidemiology, Social Science and Medicine,47 [9], 1181-1188. 
 

Lorenc T., Petticrew M., Whitehead M., Neary D., Clayton S., Wright K., 
Thomson H., Cummins S., Sowden A., Renton A., (2013), Fear of crime and the 
environment: systematic review of UK qualitative evidence, BMC Public Health, 
13:496. 

 
  Loury G., (1977), A dynamic theory of racial income difference in Women, 
Minorities and Employment Discrimination, by Wallace P. A., La Mond A. M., Lexington 
Books, 153-186.  
 

Luthans F., Avolio B. J., Avey J. B., Norman S. M., (2007), Positive Psychological 
Capital: Measurement and Relationship with Performance and Satisfaction, Personnel 
Psychology, 60, 541-572.  

 
Macintyre S., Ellaway A., Cummins S., (2002), Place effects on health: how can 

we conceptualise, operationalise and measure them?, Social Science and Medicine, 
55 (2002), 125-139.  

 
Matsumoto D., Van De Vijver F. J. R., (2010), Cross-Cultural Research Methods 

in Psychology, Cambridge Edition.  
 

  Milbrath L.W., Goel M.L., (1977), Political participation: How and why do 
people get involved in politics, Chicago: Rand McNally. 
 
 Modena F., (2009), Under the social capital umbrella: definition and 
measurement, Openloc Working Paper Series, 11.  
 



325 
 

Page 325 of 332 

Mohan G., Mohan J., (2002), Placing Social Capital, Progess in Human 
Geography, 26 [2], 191-210. 

 
Mohan J., Twigg L., Barnard S., Jones K., (2005), Social capital, geography and 

health: a small-area analysis for England, Social Science & Medicine, 60 [6], 1267-1283.  
 
Mohnen S. M., Völker B., Flap H., Groenewegen P. P., (2011), Neighbourhood 

social capital and individual health, Social Science & Medicine, 72 (5), 660-667. 
 
Morrin N. J., Blane D. B., White I. R., (1996), Levels of mortality, education, and 

social conditions in the 107 local education authority areas of England, Journal of 
Epidemiology and Community Health, 50 [1], 15-7.  

 
Moura F. A. S., Holt D., (1999), Small area estimation using multilevel models, 

Survey Methodology.  
 

  Murray, C. (2005), Social capital and cooperation in Central and Eastern 
Europe– A theoretical perspective, ICAR Discussion Paper, n. 9.  
 

Muthén L. & Muthén B., (1998), MPlus (Version 2.01) [Computer Software], 
Los Angeles: Muthén & Muthén. 

 
Nahapiet J., Ghoshal S., (1998), Social capital, intellectual capital and the 

organizational advantage, Academy of Management Review, [23], 242-266.  
 
Namazi-Rad M.-R., Steel D. G., (2015), What Level of Statistical Model Should 

We Use in Small Domain Estimation, Australian and New Zealand Journal of Statistics, 
57 [2], 275-298.  

 
Narayan D., Cassidy M. F., (2001), A Dimensional Approach to Measuring Social 

Capital: Development and Validation of a Social Capital Inventory, Current Sociology, 
49(2), 59–102 SAGE Publications. 

 
NatCen, (2004a), Synthetic estimation of healthy lifestyle indicators: User 

guide, Edited by Scholes S., Bajekal M., Pickering K., National Centre for Social 
Research.     

  
NatCen, (2004b), Synthetic estimation of healthy lifestyle indicators: Stage 1 

report, Edited by Bajekal M., Scholes S., Pickering K., Purdon S., National Centre for 
Social Research. 

 
NatCen, (2004c), Synthetic estimation of healthy lifestyle indicators: Stage 2 

report, Edited by Pickering K., Scholes S., Bajekal M., National Centre for Social 
Research. 

 



326 
 

Page 326 of 332 

NatCen, (2004d), Synthetic estimation of healthy lifestyle indicators: Stage 3 
report, Edited by Pickering K., Scholes S., Bajekal M., National Centre for Social 
Research. 

 
  Newton K., (2001), Trust, Social Capital, Civil Society, and Democracy, 
International Political Science Review, 22 [2], 201-2014. 
 
 Nguyen P., Haughton D., Hudson I., Boland J., (2010), Multilevel models and 
small area estimation in the context of Vietnam living standards surveys, 42èmes 
Journées de Statistique – Conference Papers.  
 

Nie N. H., Hillygus D. S., Erbring L., (2002), Internet Use, Interpersonal 
Relations, and Sociability in B. Wellman and C. Haythorntwaite, The Internet in 
everyday life - A Time Diary Study, 215-244, Blackwell Publishing.   

 
  Norris P., Inglehart R., (2003), Gendering Social Capital: Bowling in Women’s 
Leagues?, Harvard University Paper.  
 

O’Neill B., Gidengil E., (2013), Gender and Social Capital, Routledge. 
 

  OECD (2013), The OECD measurement of social capital project and question 
databank, http://www.oecd.org/std/social-capital-project-and-question-
databank.htm, accessed from January 2013.  
 

OECD, (2001), The OECD measurement of social capital project and question 
databank, http://www.oecd.org/std/social-capital-project-and-question-
databank.htm, accessed from January 2011.  

 
Olson M., (1982), The Rise and Decline of Nations: Economic Growth, 

Stagflation, and Social Rigidities, New Haven, CT: Yale University Press.  
 
ONS, (2011), Beyond 2011 – PhD Specifications, 

http://www.ons.gov.uk/ons/about-ons/who-ons-are/programmes-and-
projects/beyond-2011/index.html, accessed from January 2011.  

 
  ONS (2003), The Social Capital Project, http://www.ons.gov.uk/ons/guide-
method/user-guidance/social-capital-guide/index.html, accessed from January 2012.  
 

ONS, (2001), Social Capital A review of the literature, Social Analysis and 
Reporting Division Office for National Statistics.  

 
  Onyx J., Bullen P., (2000), Measuring social capital in five communities, The 
Journal of Applied Behavioral Science, n. 36, 23-42.   
 
  Paldam M., (2000), Social capital: one or many? Definition and measurement, 
Journal of Economic Survey, 14, (5), 629-653.  
 

http://www.oecd.org/std/social-capital-project-and-question-databank.htm
http://www.oecd.org/std/social-capital-project-and-question-databank.htm
http://www.oecd.org/std/social-capital-project-and-question-databank.htm
http://www.oecd.org/std/social-capital-project-and-question-databank.htm
http://www.ons.gov.uk/ons/about-ons/who-ons-are/programmes-and-projects/beyond-2011/index.html
http://www.ons.gov.uk/ons/about-ons/who-ons-are/programmes-and-projects/beyond-2011/index.html
http://www.ons.gov.uk/ons/guide-method/user-guidance/social-capital-guide/index.html
http://www.ons.gov.uk/ons/guide-method/user-guidance/social-capital-guide/index.html


327 
 

Page 327 of 332 

Paxton P., (2000), Social Capital and Democracy: An Interdependent 
Relationship, American Sociological Review, 67 (2), 254-277.  

 
Paxton P., (1999), Is Social Capital Declining in the United States? A Multiple 

Indicator Assessment, American Sociological Review, 105 (1), 88-127.  
 
Perna L. W., Titus M. A., (2005), The Relationship between Parental 

Involvement as Social Capital and College Enrolment: An Examination of Racial/Ethnic 
Group Differences, The Journal of Higher Education, 76 [5], 485-518.  

 
  Perry M., Williams R. L., Wallerstein N., Waitzkin H., (2008), Social Capital and 
Health Care Experiences Among Low-Income Individuals, American Journal of Public 
Health, 98 [2], 330-336.   
 

Phongsavan P., Chey T., Bauman A., Brooks R., Silove D., (2006), Social capital, 
socio-economic status and psychological distress among Australian adults, Social 
Science and Medicine, 63 (10), 2546-2561.  

 
Pohlmann J. T., (2004), Use and interpretation of factor analysis, The Journal 

of Educational Research, 98, 14-23.  
 
Portes A., (1998), Social Capital: Its Origins and Applications in Modern 

Sociology, Annual Review of Sociology, 24, 1-24. 
 

  Portes A., (1995), The economic sociology of immigration: essays on networks, 
ethnicity and entrepreneurship, Russel Sage Foundation.  
 

 Putnam R. D., (2001), Bowling alone: The collapse and revival of American 
community, S&S Paperbacks.  

 
 Putnam R. D., (1995), Bowling alone: America’s declining social capital, Journal 
of Democracy, 6 (1), 5-78.  
 
 Putnam R. D., Leonardi R., Nanetti R. Y., (1993), Making democracy work: civic 
traditions in modern Italy, Princeton University Press.  
 

Rabe-Hesketh S., Skrondal A., (2012), Multilevel and Longitudinal Modeling 
Using Stata, Third Edition – Volume I: Continuous Responses, Stata Press.  

 
Rao J. N. K., (2003), Small Area Estimation, Wiley New York. 
 
Rasbash, J., Browne, W. J., Goldstein, H., Yang, M., Plewis, I., Healy, M. et al. 

(2002). A User's Guide to Mlwin. (2 ed.), London: Centre for Multlevel Modelling: 
Institute of Education. 

 



328 
 

Page 328 of 332 

Reder S., (1997), Synthetic estimates of literacy proficiency for Small Census 
Areas, report prepared for Division of Adult Education and Literacy - Office of 
Vocational and Adult Education, U.S. Department of Education. 

 
Reesken T., Wright M., (2013), Cohesive Society: A Multilevel Analysis of the 

Interplay Among Diversity, National Identity, and Social Capital Across 27 European 
Societies, Comparative Political Studies, 46 [2], 153-181.  

 
Rose R., (2000), How much does social capital add to individual health? A 

survey study of Russians, Social Science & Medicine, 51 (9), 1421-1435.  
 
Rostila M., (2007), Social capital and health in European welfare regimes: a 

multilevel approach, Journal of European Social Policy, 17 [3], 223-239. 
 

  Rousseau D. M., Sitkin S. B., Burt R. S., Camerer C., (1998), Not so Different 
After All: A Cross-Discipline View of Trust, Academy of Management, 23 [3], 393-404.  
 

Rubin A. M., Perse E. M., Powell R. A., (1985), Loneliness, Parasocial 
Interaction, and Local Televison News Viewing, Human Communication Research, 12 
(2), 155-180.  

 
Ruston D., Akinrodoye L., (2002), Social Capital Question Bank June 2002 – 

Questions from Social Capital surveys included in the Social Capital Survey Matrix 
2002, Social Analysis and Reporting Division – ONS Statistics. 

 
  Sabatini F., (2008), Does social capital create trust? Empirical analysis of a 
community of entrepreneurs, MPRA Paper, 6781.  
 
  Sampson R. J., Morenoff J. D., Earls F., (1999), Beyond Social Capital: Spatial 
dynamics of collective efficacy for children, American Sociological Review, 64 [5], 633-
660. 
 

Schreiber J. B., Nora A., Stage F. K., Barlow E. A., King J., (2006), Reporting 
Structural Equation Modeling and Confirmatory Factor Analysis Results: A Review, 
Journal of Educational Research, 99 (6), 323-338. 

 
Scrivens K., Smith C., (2013), Four Interpretations of Social Capital: An Agenda 

for Measurement, OECD Statistics Working Papers, 2013/06. 
 

  Shane S., (1995), Uncertainty Avoidance and the Preference for Innovation 
Championing Roles, Journal of International Business Studies, 26 [1], 47-68. 
 
 Shane S. (1992), Why do some societies invent more than others?, Journal of 
Business Venturing, n. 7, 29-46.  
 



329 
 

Page 329 of 332 

 Sloggett A., Joshi H., (1998), Deprivation indicators as predictors of life events 
1981-1992 based on the UK ONS Longitudinal Study, Journal of Epidemiology and 
Community Health, 52, 228-233.   
 
  Snelgrove J. W., Pikhart H., Stafford M., (2009), A multilevel analysis of social 
capital and self-rated health: Evidence from the British Household Panel Survey, Social 
Science and Medicine, 68 [11], 1993-2001. 

 
Snijders T. A. B., Berkhof J., (2007), Diagnostic Checks for Multilevel Models in 

Handbook of Multilevel Model edited by De Leeuw J. and Meijer E., Springer Edition.  
 
Snijders T. A. B., Bosker R. J., (1999), Multilevel Analysis: An Introduction to 

Basic and Advanced Multilevel Modeling, London etc: Sage Publisher. 
 
Southerton D., (2003), ‘Squeezing Time’ Allocating Practices, Coordinating 

Networks and Scheduling Society, Time Society, 12 [1], 5-25.  
 
Sturgis P., Patulny R., Allum N., Buscha F., (2012), Social Connectedness and 

Generalized Trust: A Longitudinal Perspective, ISER Paper, 2012-19.  
 
Subramanian S. V., Kim D. J., Kawachi I., (2006), Bonding versus bridging social 

capital and their associations with self-rated health: a multilevel analysis of 40 US 
communities, Journal of Epidemiology and Community Health, 60, 116-122.  

 
Subramanian S. V., Lochner K. A., Kawachi I., (2003), Neighborhood differences 

in social capital: a compositional artefact or a contextual construct?, Health & Place, 
9, 33-44.  

 
  Svendsen T. G., Svendsen G. L. H., (2009), Handbook of social capital: the troika 
of sociology, political science, and economics, Edward Elgar Edition.   
 

Swales K., (2015), Variations in community participation by neighbourhoods, 
The State of Social Capital in Britain – Insights, opportunities and challenges, 
Understanding Society, ESRC, National Council for Voluntary Organisations and 
Cooperative Councils Innovation Network, London, 11st November 2015. 

 
Teachman J. D., Paasch K, Carver K, (1996), Social Capital and Dropping Out of 

School Early, Journal of Marriage and Family, 58 (3), 773-783.  
 

  The World Bank, (1998), Social Capital Initiative Working Paper Series, 
http://web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTSOCIALDEVELOPMENT/EX
TTSOCIALCAPITAL/0,,contentMDK:20194767~menuPK:418848~pagePK:148956~piPK
:216618~theSitePK:401015,00.html, Accessed from January 2012.  
 

Tong S., Walther J. B., (2011), Relational maintenance and CMC. In K. B. Bright 
and L. M. Webb (Eds.), Computer – mediated communication in personal relationships, 
98-118, New York: Peter Lang Publishing.  

http://web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTSOCIALDEVELOPMENT/EXTTSOCIALCAPITAL/0,,contentMDK:20194767~menuPK:418848~pagePK:148956~piPK:216618~theSitePK:401015,00.html
http://web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTSOCIALDEVELOPMENT/EXTTSOCIALCAPITAL/0,,contentMDK:20194767~menuPK:418848~pagePK:148956~piPK:216618~theSitePK:401015,00.html
http://web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTSOCIALDEVELOPMENT/EXTTSOCIALCAPITAL/0,,contentMDK:20194767~menuPK:418848~pagePK:148956~piPK:216618~theSitePK:401015,00.html


330 
 

Page 330 of 332 

 
Tranmer M., Pickles A., Fieldhouse E., Elliot M., Dale A., Brown M., Martin D., 

Steel D., Gardiner C., (2005), The case for small area microdata, Journal of Royal 
Statistical Society, 168 [1], 29-49.   

 
Tsai W., Ghoshal S., (1998), Social Capital and Value Creation: The Role of 

Intrafirm Networks, Academy of Management Journal, 41 (4), 464-476. 
 
Twigg L., Moon G., (2002), Predicting small area health-related behaviour: a 

comparison of multilevel synthetic estimation and local survey data, Social Science 
and Medicine, 54, 931-937.  

 
Twigg L., Moon G., Jones K., (2000), Predicting small-area health-related 

behaviour: a comparison of smoking and drinking indicators, Social Science & 
Medicine, 50, 7 [8], 1109-1120.  

 
Twigg L., Moon G., Walker S., (2004), The smoking epidemic in England, Health 

Development Agency Report. 
 
Tzavidis N., Salvati N., Pratesi M., Chamber R., (2008), M-quantile models with 

applications to poverty mapping, Statistical Methods and Applications, 17 [3], 393-
411.  

 
University of Essex. Institute for Social and Economic Research and NatCen 

Social Research, Understanding Society: Waves 1-4, 2009-2013 [computer file]. 6th 
Edition. Colchester, Essex: UK Data Archive [distributor], November 2014. SN: 6614, 
http://dx.doi.org/10.5255/UKDA-SN-6614-6.  

 
University of Essex. Institute for Social and Economic Research, British 

Household Panel Survey: Waves 1-18, 1991-2009 [computer file]. 7th Edition. 
Colchester, Essex: UK Data Archive [distributor], July 2010. SN: 5151, 
http://dx.doi.org/10.5255/UKDA-SN-5151-1. 

 
University of Essex. Institute for Social and Economic Research, NatCen Social 

Research. (2015). Understanding Society: Waves 1-5, 2009-2014: Special Licence 
Access, Census 2011 Middle Layer Super Output Areas. [data collection]. 4th 
Edition. UK Data Service. SN: 7249. 

 
University of Essex. Institute for Social and Economic Research, NatCen Social 

Research. (2015). Understanding Society: Waves 1-5, 2009-2014. [data collection]. 4th 
Edition. UK Data Service. SN: 6614. 

 
University of Essex. Institute for Social and Economic Research. (2010). British 

Household Panel Survey: Waves 1-18, 1991-2009. [data collection]. 7th Edition. UK 
Data Service. SN: 5151. 

 

http://dx.doi.org/10.5255/UKDA-SN-6614-6
http://dx.doi.org/10.5255/UKDA-SN-5151-1


331 
 

Page 331 of 332 

University of Essex. Institute for Social and Economic Research. (2014). British 
Household Panel Survey, Waves 1-18, 1991-2009: Special Licence Access, Census 2001 
Middle Layer Super Output Area. [data collection]. UK Data Service. SN: 7446.  

 
Uslaner E. M., (2015), The roots of trust, in Li Y., (2015), Handbook of Research 

Methods and Applications in Social Capital, Elgar Edition, chapter 4. 
 
Uslaner E. M., (2002), The moral foundations of trust, Cambridge University 

Press.  
 

  Van Deth J. W., (2000), Interesting but irrelevant: Social Capital and the 
saliency of politics in Western Europe, European Journal of Political Research, 37, 115-
147. 
   
 Van Deth J.W. (1990), Interest in politics in Jennings M.K., van Deth J.W., 
Continuities in political action: A longitudinal study of political orientations in three 
western democracies, Berlin/New York: De Gruyter and Aldine. 
 

Van Oorschot W, Arts W., Gelissen J., (2006), Social Capital in Europe: 
Measurement and Social and Regional Distribution of a Multifaceted Phenomenon, 
Acta Sociologica, 49 (2), 149-167. 

 
Wang J., Staver J. R., Examining relationships between factors of science 

education and student career aspiration, The Journal of Educational Research, 94, 
312-319.  

 
  Westermann O., Ashby J., Pretty J., (2005), Gender and social capital: The 
importance of gender differences for the maturity and the effectiveness of natural 
resource management groups, World Development, 33 [11], 1783-1799. 
 

Whitworth A., edited by, (2013), Evaluations and improvements in small area 
estimation technologies, National Centre for Research Methods – Methodological 
Review Paper.  

 
Whitworth A., (2012), Sustaining evidence-based policing in an era of cuts: 

Estimating fear of crime at small area level in England, Crime Prevention and 
Community Safety, 14, 48-68.  

 
Wilding K., (2015), Concluding remarks, The State of Social Capital in Britain – 

Insights, opportunities and challenges, Understanding Society, ESRC, National Council 
for Voluntary Organisations and Cooperative Councils Innovation Network, London, 
11st November 2015. 

 
Wing S., Barnett E., Casper M., Tyroler H. A., Geographic and socioeconomic 

variation in the onset of decline of coronary heart disease mortality in white women, 
American Journal of Public Health, 82 [2], 204-209.  

 



332 
 

Page 332 of 332 

Wollerbᴂk D., Selle P., (2003), Participation and Social Capital Formation: 
Norway in a Comparative Perspective, Scandinavian Political Studies, 26 (1). 

 
  Woolcock M., (2001), The place of social capital in understanding social and 
economic outcomes, ISUMA Canadian Journal of Policy Research, 2, (1), 11-17. 
 
 Woolcock M., (1998), Social capital and economic development: Toward a 
theoretical synthesis and policy framework, Theory and Society, 27 (2), 151-208. 
 

Wuthnow R., (2002), Religious Involvement and Status-Bridging Social Capital, 
Journal for the Scientific Study of Religion, 41 (4), 669-684. 

 
Yli-Renko H., Autio E., Sapienza H. J., (2001), Social capital, knowledge 

acquisition, and knowledge exploitation in young technology-based firms, Strategic 
Management Journal, 22 (6-7), 587-613. 

 
Zhang X., Holt J. B., Lu H., Wheaton A. G., Ford E. S., Greenlund K. J., Croft J. B., 

(2014) Multilevel Regression and Poststratification for Small-Area Estimation of 
Population Health Outcomes: A Case Study of Chronic Obstructive Pulmonary Disease 
Prevalence Using the Behavioural Risk Factor Surveillance System, American Journal 
of Epidemiology, 179 [8], 1025-1033. 

 
Zhang X., Onufrak S., Holt J. B., Croft J. B., (2013), A Multilevel Approach to 

Estimating Small Area Childhood Obesity Prevalence at the Census Block-Group Level, 
Preventing Chronic Disease, 10 [E68]. 

 
  Zheng W. (2010), A Social Capital Perspective of Innovation from Individuals to 
Nations: Where is Empirical Literature Directing Us?, International Journal of 
Management Reviews, 12 [2], 151-183.  
 

 

 

 

 

 

 


