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Summary 

Isoprene production comprises of one third of the total global hydrocarbon 

release, and influences atmospheric chemistry, including increasing global 

temperatures and raising ozone concentrations. Although isoprene production, 

and the chemical attenuation of isoprene have been well studied, microbial 

degradation of isoprene has had little attention. In this thesis, seasonal isoprene 

degradation rates of soil were measured, demonstrating an average isoprene 

consumption rate of 4.77 nmol m-2 h-1, which indicates that the effect of soil 

microbiota acting as a sink for atmospheric isoprene is lower than previously 

presumed. Neither the season, nor proximity to isoprene-producing trees 

affected the rate of isoprene degradation in soil, suggesting other isoprene 

sources in the soil. A series of isoprene enrichment experiments were 

performed with soil, using the sensitivity of high isoprene concentrations, the 

evidence of direct isoprene degradation using stable isotope probing, and the 

relatability to the natural environment using low isoprene concentrations. 

Different bacteria were enriched at different levels of isoprene, with genera 

such as Rhodococcus being enriched at high concentrations, and 

Methylobacterium being enriched at low concentrations, suggesting 

specialisation for different isoprene concentrations. Additionally, the clade TM7 

was shown to be highly enriched in some isoprene enrichments, although did 

not incorporate isoprene into its DNA. Changes in bacterial community structure 

analysis through isoprene enrichment suggested a replicable isoprene-

degrading community. An extensive collection of isoprene-degrading isolates 

was created. Isoprene-degrading genes were investigated at the amplicon and 

genomic levels. The isoprene-degrading operon displayed variable 



 
 

chromosomal positioning, appearing in either plasmids or on the main 

chromosome of closely related species. IsoA gene sequence diversity was 

larger than in previous studies, and the isoA gene sequences were not 

correlated to the 16S rRNA gene sequences, which could indicate horizontal 

gene transfer. Isoprene-degrading bacteria were present on a variety of leaves; 

and communities of bacteria derived from leaves degraded isoprene. 
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Atmospheric pollution is currently one of the major threats to human health and 

the environment (WHO, 2014). Due to this, it is important to gain a thorough 

understanding of the cycling of atmospheric pollutants. This research focusses 

on the degradation of one of the significant atmospheric pollutants, isoprene, 

which, compared to other similar compounds, has been markedly understudied.  

Our meagre knowledge of the biological degradation of isoprene creates 

difficulties in predicting future effects of isoprene production on the climate, and 

similarly the effects of climate on isoprene production. This research adds 

clarity to this situation, improving our understanding of isoprene flux, and 

identifying and characterising the key isoprene-degrading bacteria. 

This chapter reviews the main processes involved in: (i) The production of 

isoprene, (ii) the effects of isoprene on the climate and human health, (iii) the 

attenuation of isoprene, and (iv) the interaction between isoprene and 

microorganisms, as well as how this research expands our knowledge and 

abilities in the area. 

1.1 Isoprene production 

Plants emit more hydrocarbon into the atmosphere than human activity does 

directly, and significantly more when temperatures are elevated (Purves et al., 

2004; Sharkey et al., 2008). Around 1150 Tg of these hydrocarbons are 

Biogenic Volatile Organic Compounds (BVOC) (Atkinson & Arey, 2003; 

Guenther et al., 1995). Non-Methane Hydrocarbons (NMHC), short chain (<10 

carbon) volatile carbon based molecules, make up most of these BVOCs 

(Shaw, 2001), and Isoprene is one of these NMHCs (Rasmussen & Went, 

1965), and represents approximately one third of total global hydrocarbon 
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release. Although there is slight variation in estimates, isoprene production is in 

the region of 600 million tonnes of carbon per annum, on par with global 

methane production (Guenther et al., 2006). Terpenes, which are made up of 

isoprene subunits, are the other major category of NMHC, with annual global 

production of 480 Tg. 

Isoprene is also known as 2-methyl-1,3-butadiene (C5H8) and: i) has low water 

solubility, ii) is non polar, iii) has vapours more dense than air, iv) is volatile with 

a boiling point of 33°C, v) has a mass of 68.0626 g/mol, vi) is uncharged, and 

vii) is highly reactive due to its two carbon-carbon double bonds (Figure 1.1) 

(NCIB, n.d.; Seinfeld & Pandis, 2012). This reactivity means that it has 

important effects on atmospheric chemistry, and so a thorough understanding 

of its flux is required to inform climate models (Pacifico et al., 2009). 

 

Figure 1.1. The chemical structure of Isoprene. (CH2=C(CH2)CH=CH2). 
Dark grey circles represent carbon atoms, light grey circles represent 
hydrogen atoms. Modified from 
http://pubchem.ncbi.nlm.nih.gov/compound/isoprene. 

 

The vast majority of isoprene is produced by plants. Trees and shrubs are 

particularly represented, with broadleaf trees accounting for 51% of total 

production, and shrubs producing 46% (Figure 1.2) (Guenther et al., 2006). 
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Figure 1.2 Isoprene cycle by sources and sinks. No global data was 
available for soils, animals or bacteria, although it seems unlikely that 
these have a significant impact (Wagner et al., 1999; Guenther et al., 2006; 
Arnold et al., 2009). 

 

This isoprene production is not evenly distributed within each of the sources 

shown in Fig. 1.2, with a wide range of production rates, and with many species 

of trees and shrubs not producing isoprene (Sharkey et al., 2008). Taking oaks 

as an example, analysing the maximum reported production for the 60 oak 

species recorded in the Hewitt database on VOC emissions, which represents a 

sample of 10% of oak species (Hewitt, n.d.; Mabberley, 1987); 37% of oak 

species do not produce isoprene (<0.05 µg-1gdw-1h -1), and those that do are 

distributed over the complete range from 0.1 to 151 µg-1gdw-1h-1 (Average 44.6, 

SD 43.4). This lack of conformity between taxonomy and trait, together with the 

fact that species such as Poplar can have multiple isoprene synthase genes, 

suggest that the ability to synthesise isoprene has evolved separately many 
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times (Harley et al., 1999; Sharkey & Yeh, 2001), and it has even been 

postulated that isoprene may originally have been synthesised by the first land 

plants to better deal with the terrestrial environment (Hanson et al., 1999). 

The global distribution of isoprene emitting plants is unequal, with the majority 

(80%) of isoprene being produced in tropical forests, mid level emissions from 

temperate forests, and low emissions from boreal forests (Arneth et al., 2011; 

Pacifico et al., 2009). These emissions are diurnal, peaking around mid-day, 

mainly due to light dependency (Monson & Fall, 1989), with little night time 

production (Geron et al., 2012). Isoprene production is also temperature 

dependant, starting after leaves (the main site of isoprene release) are exposed 

to around 20°C and increasing until 40-42°C (Rasulov et al., 2010). On a global 

scale, this leads to seasonal changes in isoprene emissions (Geron et al., 

2012; Guenther et al., 2006), and can result in up to ten times more isoprene 

being produced in the summer than in winter months, likely due to the loss of 

leaves from broadleaf trees in winter  (Rasmussen & Went, 1965). 

Plants produce isoprene at a cost, with 0.3 to 5% of carbon fixation going to 

isoprene production in most isoprene-producing plants – reaching 8% in some, 

and up to 50% under drought conditions (Baldocchi et al., 1995; Dani et al., 

2014; Pegoraro et al., 2005), as well as requiring 20 molecules of ATP and 14 

molecules of NADPH per isoprene molecule (Sharkey & Yeh, 2001). This 

metabolic burden suggests that isoprene production must yield significant 

advantages for the plants that produce it. 

The most likely reason for isoprene production is as a response to transient 

heat stress (Sharkey & Yeh, 2001). This is supported by: (i) Isoprene addition 
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restoring heat stress recovery to plants with artificially inhibited isoprene 

production (Sharkey et al., 2001), (ii) Poplar, engineered to suppress isoprene 

production, showing poor recovery after heat stress (Behnke et al., 2007), (iii) 

The correlation between leaf height, and therefore lack of shading, and 

isoprene production (Sharkey et al., 1996), (iv) The correlation between 

isoprene-producing species and tropical environments (Guenther et al., 2006), 

(v) The increased isoprene production when leaves are exposed to light or heat 

(Sasaki et al., 2005), and (vi) Inhibition of isoprene production reducing heat 

shock recovery of leaves, and exogenous application of isoprene restoring the 

ability of plants to recover from heat shock (Sharkey et al., 2001). Isoprene only 

protects against short term heat stress as demonstrated by the lack of 

protective effect after long term heat stress (Sharkey et al., 2001; Sharkey et 

al., 2008).  

The temperature of plant leaves can fluctuate rapidly, often to over 10°C above 

ambient temperatures, potentially more than a hundred times a day (Sharkey & 

Yeh, 2001). These fluctuations could be severely detrimental to plant health, for 

example with the temperatures reached being potentially damaging to 

photosystems by inducing thylakoid membrane leakage, and even dissociation 

above 45°C (Gounaris et al., 1984; Schrader et al., 2004; Sharkey & Yeh, 

2001). 

Isoprene reduces the damaging effects of temperature. Due to its 

hydrophobicity, it can intercalate into the middle of the phospholipid bilayer of 

the thylakoid membranes, increasing their stability and therefore decreasing the 

likelihood of leaks or separation (Sharkey et al., 1996; Siwko et al., 2007; 

Species et al., 1997; Velikova et al., 2011). The intercalation of isoprene into 
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these membranes causes an increase in stability which is equivalent to that of 

the leaf being 10°C cooler according to the model of Siwko et al. (2007). 

 

It is thought that the reason that isoprene production is more common in the 

tropics, is due to limits on transpiration rates, caused by the relative humidity 

outside the plant. As water loss is one of the other primary mechanisms for 

plants to reduce their temperatures, isoprene production becomes more 

important (Sharkey & Yeh, 2001). 

Isoprene production acting as a mechanism to protect leaves against transient 

heat stress has become the commonly accepted theory. However,  other 

factors may be involved, for example: (i) Isoprene helps to quench reactive 

oxygen species in the leaves, which otherwise oxidise and damage the plant 

cells; although it is now thought that, as ozone (a ROS) decreases isoprene 

production, any effect is likely to be co incidental (Loreto et al., 2001; Vickers et 

al., 2009), (ii) Isoprene could play a role in moderating insect herbivory 

(Laothawornkitkul et al., 2008; Loivamäki et al., 2008), and (iii) Isoprene 

production could function as a disposal method for excess Dimethylallyl 

pyrophosphate (DMAPP) (Logan et al., 2000), although this is unlikely to be 

significant due to the tight regulation of DMAPP production (Banerjee & 

Sharkey, 2014; Cordoba et al., 2009). 

Isoprene is produced through either the methyl D-erythritol 4-phosphate (MEP) 

pathway or the mevalonate (non-MEP) pathway. The MEP pathway is also 

called the non-melavonate pathway. The MEP pathway, which converts 

Pyruvate and Glyceraldehyde-3-phosphate to DMAPP/IPP, is present in the 
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plant cytosol, archaea, animals, fungi, and some bacteria. The mevalonate 

pathway, which begins with Acetyl-CoA, is present in cyanobacteria, bacteria 

and chloroplasts (Loreto et al., 2004; Sanadze, 2004; Sharkey et al., 1991; 

Pulido et al., 2012; Schnitzler et al., 2004; Trowbridge et al., 2012). In both 

pathways, the product IPP can be converted to DMAPP by IPP Isomerase, and 

DMAPP can be converted into isoprene by Isoprene synthase (Figure 1.3). 
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Figure 1.3, MEP and Mevalonate pathways to isoprene synthesis, 

based on Cordoba et al. (2009); Kuzuyama, 2002; Silver & Fall, 1995) 
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In plants, and unlike other terpenoids, isoprene is not stored in the leaves 

(Sharkey & Yeh, 2001), so is produced on demand, which is dependant on the 

contributing factors (e.g. temperature fluctuations). However, isoprene 

production levels and isoprene synthase concentrations are not correlated 

beyond presence/absence, with stress increasing isoprene production, but not 

isoprene synthase levels in Poplar (Fall & Monson, 1992; Vickers et al., 2010). 

On the contrary, isoprene synthesis is regulated through enzyme kinetics and 

substrate supply (Vickers et al., 2009). The high Km of isoprene synthase 

suggests that the substrate (DMAPP) concentration is the main regulator (Silver 

& Fall, 1995; Wiberley et al., 2009). DMAPP production is, at least in the MEP 

pathway, heavily regulated at the transcription and expression levels 

(Rosenstiel et al., 2002; Sharkey & Yeh, 2001; Vickers et al., 2010; Wildermuth 

& Fall, 1996; Wolfertz et al., 2004). The rate of isoprene synthase activity is 

altered by: (i) light, which generally increases synthesis, (ii) temperature, which 

generally increases synthesis (to a point), and (iii) CO2, which increases or 

decreases isoprene synthase activity dependant on tree species (Arneth et al., 

2007; Heald et al., 2009; Logan et al., 2000; Loreto & Sharkey, 1993; Monson & 

Fall, 1989; Singsaas & Sharkey, 2000; Tingey et al., 1981).  

Isoprene is also produced in many bacteria, especially Bacillus species (Kuzma 

et al., 1995). Additionally, many animals produce isoprene, with humans 

producing 17 mg day-1 on average. 

Human activity is changing isoprene production. Changes in land use due to 

increasing demand for biofuel crops, where fast growing high-isoprene-emitting 
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trees like poplar are grown, or demand for palm oil, where oil palm are grown. 

Where high isoprene emitting oil palm trees are grown, there is an increase in 

isoprene emissions. In 2009, Malaysia comprised of 13% oil palm plantations 

(from 1% in 1974), which increased to approximately 16% of land mass in 2014 

at 5.2 million hectares (Armstrong, 2013; Hardacre et al., 2013; Hewitt et al., 

2009, MPOB 2014). This human generated increase, combined with the 

warming climate’s effect on isoprene production, leads to models of a likely 

substantial increase in isoprene emissions in the future (Guenther et al., 2006; 

Sanderson et al., 2003a). Biofuel crops generating isoprene provide a quandary 

between growing trees for renewables to reduce carbon, at the expense of 

producing isoprene; however new isoprene emission free biofuels are being 

developed (Behnke et al., 2012). 

Atmospheric isoprene concentrations vary between the low parts per trillion up 

to 10 ppb, mainly depending on the tree species and tree coverage in the area, 

and the air temperature at the time of sampling (Wagnera and Kuttler, 2014). 

Higher isoprene concentrations are found in tropical rainforests, and around 

deciduous forests, for example in Amazonia in 1998 isoprene concentrations 

ranged from 4 to 10 ppb, and in a forest in Tennessee (USA), isoprene 

concentrations ranged from 3 to 10 ppb (Baldocchi et al., 1995; Kesselmeier et 

al., 2000). In urban environments in more temperate climates the atmospheric 

isoprene concentration is in the region of 0.1 ppb, for example in Essen, 

Germany daytime isoprene concentrations of isoprene are typically between 

0.13 and 0.17 ppb, and around 0.01 ppb at night time (Wagnera and Kuttler, 

2014). In Shanghai (China), a warmer urban environment near large forests, 

isoprene concentrations ranged from 1 to 6 ppb, and in Venezuela isoprene 
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concentrations reached 3 ppb in a number of locations (Donoso et al., 1996). 

Low isoprene concentrations can be found near marine environments, between 

0.001 and 0.01 ppb (Lewis et al., 1997). 

 

1.2 Effects of isoprene 

As isoprene is highly reactive, produced in significant quantities and mostly 

attenuated in the atmosphere, it is regarded in atmospheric chemistry as a very 

important biogenic hydrocarbon (Seinfeld & Pandis, 2012).  

Isoprene reacts in the atmosphere in a multitude of ways that will be expanded 

on later; however the main routes are through reactions with hydroxyl radicals 

(OH) and nitrogen oxides (NOx).One of the major problems with isoprene is 

that its reactivity with Nitrogen Oxides produces tropospheric (low level) ozone. 

In the upper atmosphere (stratosphere), ozone provides protection from UV 

light; but in the lower atmosphere (troposphere), ozone is undesirable as it 

harms human and plant health and is a greenhouse gas (IPCC, 2001; 

Sanderson et al., 2003b). 

 The safe limit of ozone published by the World Health Organisation (WHO) is 

60 ppb (WHO 2000), a figure that is sometimes exceeded, particularly in 

eastern USA and China (Sanderson et al., 2003b). This limit for ozone 

represents the concentration where there is noticeable lung tissue damage and 

where asthma can become agitated (Sanderson et al., 2003b). At 80 ppb there 

is a significant decrease in pulmonary function and increase in respiratory 

problems, including inflammation and changes in responsiveness, leading to an 

increase in respiratory related hospitalisations (WHO, 2000). To give an 
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indication of the size of the effect, an increase of 12.5 ppb of current 

background ozone levels in Europe has been estimated to increase 

hospitalisation for respiratory conditions by 5%, and a 20% increase could be 

caused by a 50 ppb increase in ozone. Longer term exposure to ozone levels 

between 120 and 250 ppb has been shown to cause changes in the epithelium 

cells in the airways and connective tissues in the lung, often resulting in fibrotic 

changes (WHO, 2000).  In addition to effects on human, ozone can cause 

significant damage to ecological systems, with a critical level for vegetation of 

200 – 1000 ppb for an hour (WHO, 2000). At current estimates, by 2020 in 

Europe, yields of wheat could be reduced by 3.5% and maize by 1% (Ashworth 

et al., 2013). Healthcare and crop losses would amount to $7.1 billion, and the 

detrimental effect on human mortality may make biofuel plantations an ethical 

issue (Ashworth et al., 2013). In 1999 and 2000, in China, ozone levels present 

in the Yantze delta valley, a key agricultural area, were estimated to be 

responsible for a 20-30 % decrease in winter wheat production (Huixiang et al., 

2005). Ozone concentrations of 1000 ppb have been shown to kill a large 

proportion of microbes exposed, and are likely to have effects at lower levels, 

causing unknown ecological damage (Dyas et al., 1983). To contextualise all 

this information, in Europe, there is a background level of isoprene of between 

20 and 25 ppb, which sometimes increases to 180 ppb for up to an hour, or 145 

ppb for up to 12 hours and is mainly anthropogenic (WHO, 2000). 

In addition to the current background levels, Europe is aiming to have 10% of 

crude oil based fuels replaced by biofuels by 2020; however, due to the types of 

trees grown for biofuel production, including poplar and eucalyptus, an 

estimated 1365 deaths could be caused by ozone formed from increased 
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isoprene reacting with NOx (Ashworth et al., 2013). Ozone is already blamed 

for 22000 premature deaths per year in Europe (Ashworth et al., 2013). 

Furthermore, models have shown that isoprene production could increase by 

148 -187 Tg per annum in a hundred year time span, depending on vegetation 

changes, leading to a 10-20 ppb increase of ozone over most continents, and 

30-50 ppb increase over China, Korea and Japan (Sanderson et al., 2003b). 

The reaction of isoprene with free.radicals has an indirect effect of increasing 

global warming. As isoprene reacts with free radicals they are removed from 

the atmospheric pool, preventing them from reacting with other compounds, 

including methane, which is much less reactive than isoprene (Pacifico et al., 

2009). To gain a measure of the scope of this issue, an approximate 9% 

decrease in isoprene concentration, following the eruption of Mt Pinatubo, was 

calculated to have increased the hydroxyl radical sink for methane by 5 Tg(CH4) 

y-1 (Telford et al., 2010). As isoprene can lead to increased global warming, and 

higher temperatures increase isoprene production, it is possible that positive-

feedback loops could be occurring (Duane et al., 2002). 

Isoprene also causes the formation of secondary organic aerosols, although 

there is some discussion as to the climatic effects resulting from the aerosols. 

Hydrocarbons, in particular isoprene and other terpenes, can be oxidised to 

compounds with a lower volatility and condense to form particulate matter 

(aerosols). The aerosols can absorb or scatter solar radiation, changing the 

distribution of energy in the atmosphere and reflecting radiation from the planet, 

which causes a cooling effect. Secondary organic aerosols can also change 

cloud precipitation characteristics and can lead to health complaints (Olcese et 

al., 2007; Remer et al., 2008; Sharkey et al., 2008). 
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It has been thought that the secondary organic aerosols from isoprene lead to 

cloud condensation nuclei and have a cooling effect on the earth (Sharkey et al. 

2008; Olcese et al. 2007). However, in more recent studies this has been put 

under scrutiny; plant chambers containing plants which emit isoprene at a low 

level were spiked with between 2 and 30 ppb isoprene. The concentration and 

volume of particles greater than 5 nm (nucleating particles) increased after the 

removal of isoprene from the system, which suggests that isoprene actually 

inhibits particle formation and therefore cloud condensation (Kiendler-Scharr et 

al., 2009), with a resultant warming effect. Adding isoprene also reduces 

particle number and volume concentration - instead, the nucleation rate seems 

to be linked to the concentration of OH radicals (Kiendler-Scharr et al., 2009). 

This is backed up by studies done between large forests, which have shown 

more new particle formation over forests with low isoprene levels than forests 

with high isoprene levels, and the new particle formation in the high isoprene 

forests to be lower than that which is normally expected in the atmosphere, 

despite normal levels of H2SO4. It is thought that 22% of SOAs are the direct 

result of isoprene (Kanawade et al., 2011). 

Although aerosols in the form of polyols, which are created by a reaction 

between isoprene and OH radicals, have been found around Amazonian 

rainforests, it is thought that they make up 2 million of the 8-40 million tonne 

estimate for total global biogenic secondary organic aerosols (Claeys et al., 

2004).  

1.3 Fate of isoprene 

Isoprene production is a somewhat hidden global predicament, with mixed and 

often undesirable effects coupled with rising production. The reactivity of 
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isoprene means that it is largely attenuated in the atmosphere, however some 

of it seems to be biologically degraded. 

1.3.1 Chemical removal 

Isoprene reacts in the atmosphere in a multitude of ways, as described by Fan 

& Zhang (2004). Isoprene has an atmospheric lifespan averaging one hour 

which is medium-to-short in atmospheric terms, and much shorter than the 

atmospheric lifespan of methane which is over ten years (Figure 1.4); leading it 

to largely have local initial reactions, within around 100 metres of its source, 

depending on the prevailing conditions. 

The lifetime of isoprene is largely sensitive to the concentrations of OH, O3 and 

NO3
-, and when incubated with typical concentrations of OH, O3, or NO3

-, 

isoprene has a lifetime of 1.7, 31 and 0.8 hours respectively (Seinfeld & Pandis, 

2012). 
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Figure 1.4 Lifespan of atmospheric compounds. Isoprene is indicated by 
C5H8. From Seinfeld & Pandis (2012). 

The main attenuation of isoprene is through reactions with hydroxyl (OH) 

radicals, which are responsible for removal of 85% of the isoprene molecules. 

Isoprene reacts with hydroxyl radicals in the atmosphere almost entirely by 

addition reactions, leading to the formation of formaldehyde, including 

methacrolein and methyl vinyl ketone which are major products alongside 

carbonyls (Müller et al., 2014; Trapp et al., 2001). As mentioned briefly above, 

this removal of OH radicals from the atmosphere decreases the concentration 

of OH radicals, decreasing the rate of the OH-radical-methane reaction. 
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Much of the rest of the atmospheric sink is through nitrous oxides. Isoprene can 

react with NO2 molecules. Through this reaction, outlined in Figure 1.5, 

isoprene converts NO2 to NO. The NO is then susceptible to photolysis, leading 

to the formation of ozone (Fan & Zhang, 2004) (Figure 1.5). That said, it is also 

possible for isoprene to decrease ozone concentrations in the night time 

(although isoprene production at night is low) (Fehsenfeld et al., 1992). 

 

Additionally, with nitrous oxides, NO3 radicals react with isoprene through 

addition reactions targeting the isoprene carbon-carbon double bond. The 

resulting addition of O3 leads to the formation of ozonoids, which decompose to 

carbonyl and biradical products, generating 1,2 epooxymethyl, fomaldehyde, 

methacrolein and methyl vinyl ketone (Atkinson & Arey, 2003; Paulson & 

Seinfeld, 1992). 
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Figure 1.5 The indirect mechanism by which isoprene causes increased 
ozone concentrations. Loss of one H from an Isoprene molecule, forming 
two more NO2 from NO. The net effect is that many molecules of ozone 
can be formed by one molecule of Isoprene. Image based on information 
from Sharkey et al. (2008). 

 

1.3.2 Biological removal 

Compared to other Volatile Organic Compounds (VOCs), such as methane, 

little is known about the biological degradation of isoprene. 

Notable among the existing studies is Cleveland and Yavitt (1997, 1998), who 

demonstrated the ability of soils to degrade isoprene, both  in situ, and ex situ 

from a variety of locations, and noted that soil moisture and organic matter were 

key influencers of high rates of degradation, as well as that isoprene 
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degradation rates in the soil are highest in the top 3 cm (585 pmol gdw-1 day-1), 

but soil retains the ability to degrade isoprene rapidly down to 9-12 cm (378.81 

pmol gdw-1 day-1). The key experiment utilised soil chambers spiked with 385 

ppb isoprene in a temperate forest. They found that isoprene degradation 

happened rapidly, often consuming the isoprene to below (their) detection limits 

(10 ppb) within an hour, and that consumption rates were linear. They also 

used soil cores with headspace additions of 100 to 700 ppb that were subjected 

to a variety of temperatures and soil moistures. Isoprene loss in deeper soils 

(15-18 cm) was much slower than the slowest soils from above that level, with 

the 12 cm soils being 35% slower than the top layer of soils. Their suggestion 

was that this could have been due to the decreased organic matter, moisture 

content, decreased bacterial numbers, and the increased pH associated with 

depth, or could have been influenced more by isoprene mainly being produced 

in plants and entering to the soil from the top where the soil contacts the 

atmosphere. 

Cleveland and Yavitt (1998) showed that temperature affected the rates of 

consumption for the first 7.6 cm of soil, but with no difference between 25 and 

30°C. For deeper soils, it had no effect, apart from bringing consumption to 

around that of the controls at 50°C. The optimum temperature for a degradation 

rate was indicative of a biological process (c. 30°C). In 24 hours, sterile 

samples had only consumed 5% of the isoprene, and similarly 5% of the 

isoprene with no soil was lost, indicating that isoprene consumption was 

biologically mediated. 

Cleveland and Yavitt (1998) also showed that with low O2 concentrations, 

consumption rates were significantly diminished (by 80%) and a declining rate 
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of consumption was observed, providing evidence for the idea that isoprene-

degrading micro-organisms are mostly aerobic. They also demonstrated that 

pretreatment with isoprene enriched the isoprene consuming abilities of soil, 

evidencing the idea that the consumption of isoprene by soils had a significant 

microbial contribution. 

Soil moisture affected isoprene consumption significantly for upper (0-3 cm) 

layer soil samples, with 40% and 25% soil moisture content giving the fastest 

rates, and 100% giving near zero degradation with 6% being the next slowest. 

This can be explained by the low amount of isoprene that partitions into water 

making it harder to reach microbes, and the negative effect low moisture 

content has on microbial activity generally (Cleveland & Yavitt, 1998). 

Cleveland and Yavitt (1997) used chambers spiked with 385 ppb isoprene to 

give an initial estimate of the total global annual isoprene consumption, based 

on seasonal sampling in the USA, and ex situ sampling in the Americas (USA, 

Puerto Rico). They also demonstrated rates of 25 pmol g-1 h-1 at 10 ppb in soils, 

and through  in situ experiments, that higher soil moisture and organic matter 

lead to increased rates of isoprene degradation, and that the process was 

biologically mediate. 

It was estimated through this work that up to 20.4 million tonnes of isoprene is 

taken up by the soil, meaning that consumption of isoprene by soil is 

responsible for around 4% of isoprene emissions (Cleveland & Yavitt 1997). 

However in this analysis temperate coniferous forest soils were estimated to 

take up over half of the 20.4 Tg estimate (although with a standard error of 92% 

of the measurement). This measurement did not take account of the fact that 
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coniferous trees do not produce much isoprene, instead producing other 

terpenoids. Cleveland & Yavitt also suggest that isoprene uptake in tropical 

rainforests was among the lowest of the forest types, despite tropical rainforests 

being responsible for around 80% of isoprene emissions, suggesting a large 

scope for error in this value.  

It is still unclear, however, whether soil is a net source or sink for isoprene, due 

to lack of conclusive evidence, as some analyses have shown minimal 

consumption or low consumption, with night time decreases attributed to 

chemical reactions and surface deposition (Goldstein et al. 1998; Goldan et al. 

1995; Fall & Copley 2000).  

Pegoraro (2004 has shown that isoprene consumption of soil is decreased   

when there is low moisture content, and is not affected by CO2. Pegoraro’s 

work on CO2 effects on soil emissions was not designed to determine a rate for 

isoprene degradation in soils in situ. The (artificially inflated) concentrations of 

isoprene fluctuate between midday peaks of around 400 ppb, and nearly no 

isoprene at night, which is far higher than expected in reality, and due to the 

deliberately, substantially reduced atmospheric reactions in the experimental 

setup. It is likely that these concentrations would enrich for isoprene-degrading 

soil microbes. Additionally, the isoprene flux reported for the 430 ppm CO2, and 

the lowest tested isoprene concentration (around 100 ppb), yielded an 

approximate rate of 3600 nmol m-2 h-1,  although the work was looking at 

interactions rather than trying to extrapolate rates. Pegoraro’s work in this 

respect does show the insufficiency of using above normal concentrations of 

isoprene to determine isoprene degradation rates, with rates over five times 

Cleveland & Yavitt’s (1997) value, with both 500 (wet) and 1500 ppb (dry) soil. 
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Seemingly, extrapolation of Pegoraro’s work onto the global soil consumption 

upper limit suggested by Cleveland and Yavitt, would mean that the soils 

consume most isoprene produced. However, extrapolating Pegaroro’s data 

back, although it is hard to tell exactly where 15ppb is, on the left of the 50 ppb 

line added in Figure 1.6 gives an estimate closer to no isoprene uptake, and 

possibly even little effect of moisture. Confirming this, Gray et al., 2014 shown 

an isoprene uptake of 2.0 nmol m-2 h-1 when measuring changes in BVOC 

concentrations present in the atmosphere at the time of sampling. 

 

Figure 1.6 The effect of isoprene concentration on isoprene uptake. 
Edited from Pegoraro et al. (2005) (a: 430 ppm CO2, b: 800 ppm CO2, c: 
1200 ppm CO2, d: rainforest mesocosm, black circles = wet, white circles 
= dry) 
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1.4 Isoprene-degrading bacteria 

The soil layer (< 8 m deep) is the home to 2.6 × 1029  bacterial cells, and is an 

important part of matter transformation and atmospheric gas exchange 

(Whitman et al., 1998). One gram of soil can contain up to 1010 bacteria, and 

between 6400 and 38000 species, with a functional and genetic potential which 

could be more than the cumulative potential of higher organisms (more gene 

functions), most of which have not been currently cultured in the laboratory, but 

are metabolically active; for this reason, it is important to gain an understanding 

of soil microbiology (Torsvik et al. 1996; Curtis et al. 2002). 

Due to the high numbers of soil bacteria, and the relevance of soil microbiota in 

cycling other BVOCs (Ramirez et al., 2009), isoprene-degrading bacteria have 

so far been assumed to live in the soil ; however as isoprene is largely emitted 

from leaves, this project has included  the investigating of the potential of the 

leaf surface as a habitat for isoprene-degrading bacteria. 

The phyllosphere generally represents a hostile environment for micro-

organisms; leaves are subject to rapid fluctuations in temperature, humidity, 

moisture and levels of ultra-violet light alongside limited nutrients. Diversity and 

abundance of bacteria depends on the species of plant, the environmental 

conditions and the age of the leaves (Lindow & Brandl 2003).  Despite this, 

bacteria are present on leaves in concentrations of between 106 bacteria cm3 

and 108 bacteria cm3 (109 bacteria g-1), alongside lower numbers of archaea 

and fungi (Beattie &  Lindow 1999). The 6.4x108 km2 of leaf surface globally is 

host to 1026 bacteria (Lindow & Brandl 2003). 
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Due to the range of conditions, generally versatile bacteria inhabit leaves, with 

a tendency for pigmented bacteria to thrive better on leaves exposed to more 

UV light (Jacobs and Sundin, 2001). Some bacteria, such as Pseudomonas 

syringae and Erwinia spp., are near ubiquitous in the phyllosphere. Diversity of 

bacteria on leaves tends to decrease with increased temperature, decreased 

moisture and leaf age. However, the most important factor in the bacterial 

community on plants is - carbon sources, with glucose, sucrose and fructose 

being the most common nutrients originating from the plants. Possibly due to 

the difficulties in succeeding in colonising leaves, bacteria are found in the 

highest densities at stomata, joins in the epidermal cell wall, around the veins, 

and in other plant specific structures and depressions, with significantly more 

bacteria on the lower surface of the leaf than the upper, where there are more 

stable conditions (Beattie & Lindow 1999; Lindow & Brandl 2003). 

Much of what we know so far about the ability of microbes to degrade isoprene 

is from culture dependant methods. Following the discovery of Nocardia strains 

that degrade isoprene (van Ginkel et al., 1987), many other species of bacteria 

have been shown to degrade isoprene in pure cultures, Alcaligenes denitrifcans 

and Rhodococcus erythropolis species have been shown to co-degrade 

isoprene (Ewers et al., 1990). Some Methanotrophs and a Xanthobacter sp. 

isolate have also been shown to epoxidise isoprene, but not use isoprene as a 

sole carbon source (Hou et al. 1981 as cited in Cleveland & Yavitt 2000). 

Rhodococcus AD45 was isolated from fresh water isoprene enrichment cultures 

and like some of the Nocardia strains, can use isoprene as a sole carbon 

source (Vlieg et al. 2000). 



26 
 

Since then, isoprene degradation has been demonstrated in cultures of 

Actinobacteria: Gordonia, Leifsonia, Rhodanobacter, Dyadobacter and Shinella 

like Alphaproteobacteria, showing that isoprene-degradation is, phylogenetically 

speaking, widespread (Acuña Alvarez et al., 2009; Johnston., 2014; El 

Khawand, 2016), and a recent bioreactor study has shown Pseudomonas, 

Alcaligenes and Klebsiella to have high efficiency in isoprene degradation 

(Srivastva et al., 2015). 

Table 1.1, Summary of previously isolated isoprene degrading bacteria 

Class Genus 

Actinobacteria Nocardia 

Actinobacteria Rhodococcus 

Betaproteobacteria Alcaligenes 

Actinobacteria Gordonia 

Actinobacteria Mycobacterium   

Actinobacteria Leifsonia 

Gammaproteobacteria Pseudomonas 

Gammaproteobacteria Klebsiella 

Alphaproteobacteria Xanthobacter* 

* epoxidises isoprene, not used as a carbon source 
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Figure 1.7. Proposed Rhodococcus isoprene degradation pathway, with 
the proposed 2-glutathionyl-2-methyl-3-butenoic acid (GMBA) metabolism 
pathway in the box. From: Vlieg et al. (2000). 

 

The method by which isoprene is thought to be degraded was elicidated in 

Rhodococcus AD45. It is thought that Isoprene is converted to 1,2-epoxy-2-

methyl-3-butene by monooxygenase encoded by IsoABCDEF, converted to 1-

hydrocy-2-glutathionyl-2-methyl-3-butene (a glutathione conjugate) by a 

glutathione-S-transferase encoded by isoI (prevents epoxide alkylating DNA, 

proteins etc.) oxidised twice to 2-glutationyl-2-methyl-3-butenioic acid by isoH 

(a unique dehydrogenase, requiring NAD+) through unknown reactions. This 

may be undertaken by a glutathione conjugate encoded by isoJ. isoG product 

could then convert this into 2-methyl-3-butenyl which can be used through 

central metabolic pathways (Fall & Copley. 2000). 

 

Figure 1.8: 8456bp DNA region of Rhodococcus AD45, showing the layout 
of the isoA-J genes, the open reading frame and the rho-independent 
terminator. From: Van Hylckama Vlieg et al. (2000). 

 

The genes encoding the isoprene-degrading enzyme (IsoMO, a soluble di-iron 

centre isoprene monooxygenase) in Rhodococcus AD45, isoA-J (Figure 1.8), 

are found in a plasmid-encoded isoprene-degrading operon, closely related to a 

number of the monooxygenases involved in alkene and aromatic oxidation, 

both in sequence and gene order in clusters (Van Hylckama Vlieg et al., 2000; 
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Crombie et al., 2015). Expression of the genes encoding IsoMO expression are 

strongly inducable by one of the products of isoprene degradation, 

epoxyisoprene, and when induced contribute to 25% of the transcriptome 

(Crombie et al., 2015). 

The isoprene-degrading isolates and the mechanisms and genetics of isoprene 

degradation are explored further in Chapter 3. 

 

1.5 Isoprene degradation in the terrestrial environment 

 

Isoprene is a reactive, health and climate active gas, and therefore a thorough 

understanding of isoprene cycling is important - however due to the relative lack 

of investigation into biological isoprene degradation, there are large areas of 

knowledge which we lack or which require refining. For example: (1) the 

isoprene-degradation capacity of soil is largely unknown with current estimates 

based on an anomaly derived maximum value, (2) the investigations into 

isoprene-degrading organisms, although useful, have been limited in scope and 

reproducibility, (3) there has been no previous work (identifiable) on the 

interaction between isoprene-degrading bacteria and the main source of 

isoprene, leaves, (4) we know that isoprene-degraders in soil exist, but that 

they are using the atmosphere as a main source of isoprene has been so far 

assumed, and (5) the information on the DNA sequences and structures related 

to isoprene-degradation is deep, but lacks breadth. This work aimed to bring 

new information, and clarity to these issues, has contributed to building a better 

picture of the world isoprene degraders live in. 
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This project (1) refines our knowledge on isoprene degrading rates through  in 

situ chambers with environmentally relevant concentrations of isoprene;, 

pushing current global estimates of isoprene degradation towards the lower 

values obtained to date, (2) identifies further isoprene degrading organisms by 

enrichment, isoprene carbon to DNA incorporation and isolation based 

methods; expanding our knowledge of isoprene degrading bacterial diversity, 

creating rich resources for future work, and contextualising previous work, (3) 

extracts the effect of isoprene-producing tree proximity on soil isoprene 

degradation rates; indicating that any correlation is unlikely strong enough to 

have an effect, and that other sources than trees (the main source of 

atmospheric isoprene) sustain soil isoprene-degrading bacteria, (4) 

demonstrates the phylogenetic dislinkage between isoA genes and 16s rRNA 

genes; showing that isoprene degrading ability is either frequently evolved, or 

(more likely) frequently horizontally transferred, (5) indicates the interactions 

between plants and isoprene-degraders using transgenic isoprene-producing 

tobacco; showing either little, or sporadic effects on bacterial community 

composition, (6) investigates the genomic structure of isoprene degraders in 

closely related bacteria, showing significant differences in isoprene-degrading 

cluster placement with genomic integration and plasmid placement, indicating 

non-permanence in the region, (7) draws out potential bacterial interactions 

through metagenomic analysis; lending understanding to isoprene-degrading 

community structuring, and is beginning to explain some unusual enrichments 

identified in this project. Additionally, this work generated new methods of 

bacterial isolation, metagenomic investigation; and produced in situ 
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measurement chambers, a multi-functional gas concentration device, and the 

associated methodologies. 

 

 

 

1.5.1 Aims of the project 

This projects aim was to give a wide-ranging overview of isoprene-degradation 

in the terrestrial environment, in particular to identify and investigate isoprene-

degrading bacteria in soils and on leaves, to investigate if isoprene-degrading 

bacteria were active in the phyllosphere and to add clarity to the effect of soils 

on the atmospheric isoprene flux.  This project was split into three related 

sections, here as Chapter 2; which looks at isoprene degradation in the soils, 

and the isoprene-degrading bacteria in the soils, Chapter 3, which investigates 

isoprene degradation in more depth at the bacterial level, and Chapter 4 which 

investigates isoprene degradation by bacteria on leaves and the effect of 

isoprene on the leaf bacterial community. 

 

Chapter 2 was a series of studies designed to elucidate the relevant and active 

isoprene degrading bacteria in soil and determine the rate of isoprene 

degradation in soils. 

Chapter 2 aimed to: 

- Add clarity to the rate of degradation of atmospheric isoprene by soils, and 

test for seasonal differences. This was investigated by designing and testing 

chambers and gas concentration systems, deploying the chambers at four 

points throughout one year, spiking the chambers with an environmentally 
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relevant concentration of isoprene and measuring the change in concentration 

over time. 

- Test if the mean rate of isoprene degradative capacity was higher in soils from 

near isoprene producing trees than form soils near non-producing trees. This 

was investigated by collecting soils from near isoprene-producing trees, and 

non-producing trees and incubating with isoprene to compare degradation 

rates. 

- Explore the community of isoprene degrading bacteria in the soil through 

culture-independent methods. This was performed in a three-pronged approach 

to combine the high sensitivity of high-isoprene concentration serial enrichment 

of soil, the strong evidence of direct isoprene usage provided by DNA Stable 

Isotope probing, and the environmental relevance by enrichment of soil with no 

nutrient enhancement at low isoprene concentrations, all of which was followed 

by next-generation sequencing and analysis at both the community and OTU 

level. 

- Generate soil derived isoprene-degrading isolates for Chapter 3. 

 

Chapter 3 aimed to investigate isoprene degrading bacteria at the bacteria 

level. Bacteria, largely derived from Chapters 2 and 4, were isolated and 

subject to a higher level of analysis of their isoprene-degrading genes, their 

phylogenetic relationship, ability to degrade other compounds and genomic 

structures, along with metagenomic analysis of an interesting bacterial 

community derived from Chapter 2. 

Chapter 3 set out to: 
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- Investigate the diversity of the isoA gene, which is key in isoprene degrading 

bacteria. This was investigated by the isolation of numerous bacteria using 

isoprene as a sole carbon source through a wide range of isolation techniques. 

Following isolation, the bacteria's 16S rRNA and isoA regions were sequenced 

and analysed for their relationship to other bacteria, and for the relationship 

between the isoA and 16S sequence pairs to determine if isoA sequences were 

phylogentically linked. 

- Investigate the diversity of the genetic structure of the isoprene degrading 

operon. This was done through genomic sequencing and analysis of the operon 

structure and chromosomal position, comparing between bacteria. 

- Test the other carbons sources that isoprene-degrading bacteria are capable 

of using; this was performed through carbon source testing for a number of 

bacteria, as well as using genomic sequencing and analysis tools for function 

prediction. 

- Investigate the role of TM7 in an isoprene-degrading bacterial community. 

This was done by metagenomic analysis, function prediction and differential 

analysis. 

 

Chapter 4 aimed to investigate the isoprene-degrading community present on 

leaves, and set the foundations of our knowledge on isoprene-degradation 

occurring in the phyllosphere. 

Chapter 4 set out to: 

- Test whether bacteria on leaves had any effect on atmospheric isoprene 

concentrations. This was performed by designing and testing leaf chambers, 

and incubating leaves in the dark, spiking with isoprene and monitoring the 
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changes in isoprene concentration, as well as incubation of leaves from 

isoprene-producing and non-producing trees with isoprene, monitoring and 

comparing the degradation rates. 

- Examine the effect of isoprene production on leaf microbiota. Bacterial cells 

from the leaves of transgenic tobacco either azygous or heterozygous isoprene 

production insertions were collected, and had their 16S rDNA regions subjected 

to next-generation sequencing and analysis. 

- Test whether isoprene-degrading bacteria could be used to decrease the net 

flux of isoprene from the phyllosphere. This was tested by inoculating leaves of 

isoprene-producing trees with isoprene-degrading bacteria, allowing time for 

stabilisation and environmental effects, and then testing of isoprene 

degradation rates. 

- Generate leaf-derived isoprene-degrading isolates for Chapter 3. 
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Chapter 2. Soil as a sink for isoprene: the effects 

of season, location, isoprene concentration, and 

identification of active isoprene-degrading 

bacteria. 
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2.1 Abstract 

One third of global hydrocarbon release is in the form of isoprene, a highly 

volatile, reactive compound with wide ranging environmental effects. Although 

most isoprene is attenuated through atmospheric reactions, a significant portion 

is thought to be degraded by biological processes in soil. In order to investigate 

the soil isoprene consumption,  in situ seasonal measurements of isoprene 

degradation were performed with atmospherically relevant concentrations. 

Isoprene spiked microcosms were used to determine the effects of isoprene 

concentration and the proximity of soils to trees with differential isoprene 

production on the isoprene-degrading capacity of soil bacterial communities. 

Bacteria that incorporated carbon from isoprene into their biomass were 

identified using DNA stable isotope probing (DNA-SIP), enriching bacterial 

communities on 13C isoprene. Changes in bacterial community composition 

were analysed in all microcosms, enrichments and DNA-SIP fractions by high 

throughput sequencing of amplified 16S rRNA genes. The seasonally averaged  

in situ rate of isoprene degradation was 4.77 nmol m-2 h-1, which is lower than 

previously reported values, with no significant seasonal differences. Also, in 

microcosms, the isoprene-degradation rate was the same irrespective of the 

tree species present where the soil sample was taken. There was no significant 

change in isoprene degradation rate between communities dependant on 

proximity to natural isoprene sources, and numerous organisms involved in 

isoprene degradation were identified; with Rhodococcus species being the 

primary degraders at high concentrations of isoprene, but potentially less 

relevant in the environment than previously assumed, and Methylobacterium 

potentially having a role in isoprene degradation in the terrestrial environment. 
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2.2 Introduction 

Isoprene (C5H8) is makes up 1/3 of the global VOC release into the 

atmosphere. Approximately 600 million tonnes of isoprene are produced each 

year, with the vast majority coming from plants (Guenther et al., 2006). In 

leaves, isoprene is proposed to stabilise the thylakoid membrane, allowing 

plants to better resist thermal shock (Sharkey et al., 2008). It also has a role in 

protection against oxidative stress (Vickers et al. 2009). However when highly 

reactive isoprene reaches the atmosphere it has numerous fates, with most of 

the isoprene attenuation taking place through reactions with atmospheric 

gasses (Fan & Zhang, 2004); one of which is to combine with nitrogen oxides 

resulting in the production of tropospheric ozone, which can have significant 

adverse effects on the health of plants and animals (Ashworth et al., 2013; 

Jenkin & Clemitshaw, 2002). Isoprene can also react with hydroxyl radicals, 

resulting in fewer radicals that would otherwise react with methane, extending 

its residence time, thus enhancing global warming (Collins et al., 2002). 

Isoprene can also lead to the formation of secondary organic aerosols (SOA) 

(c. 1.6 Tg SOA yr-1), which can potentially increase radiative forcing by acting 

as cloud seed nuclei through cloud processing (although this can be considered 

condition dependant, as inhibition of aerosol nucleation events by isoprene has 

also been observed), leading to cooling effects,. SOAs can also exasperate 

respiratory disease in humans (Kiendler-Scharr, et al., 2009; Turpin et al., 

2005). Due to the reactivity of isoprene, despite the high production, isoprene 

concentrations in the atmopshere tend to be in the low parts per billion, going 

down to the low parts per trillion (e.g. above marine environments) and 

maximums of 10 ppb (e.g. above tropical rainforests (Baldocchi et al., 1995; 
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Kesselmeier et al., 2000; Lewis et al., 1997). Most isoprene is attenuated by a 

suite of atmospheric reactions, however it is theorised, and there is some 

evidence to suggest that, similarly to most other volatiles, a proportion of 

atmospheric isoprene ends up degraded biologically in soils (Tyler et al., 1991; 

Pegoraro et al., 2005, Cleveland & Yavitt, 1997,1998; Trudgill et al., 1994),. A 

number of isoprene-degrading bacteria have been identified and isolated, 

including Nocardia, Rhodococcus, Alcaligenes, Gordonia, and Mycobacterium 

species, and initial work into Rhodoccocus AD45 has elucidated an isoprene 

degradation pathway (El Khawand et al., 2016; Crombie et al., 2016; Vlieg et 

al., 1998; van Ginkel et al., 1987; Ewers et al., 1990). 

Although some work on biological isoprene degradation in the environment has 

already been done, it is understudied compared with the degradation of other 

hydrocabons, such as methane. Research into isoprene degradation has so far 

mainly centred on a few small scale studies (Acuña Alvarez et al., 2009; 

Cleveland & Yavitt, 1998; Cleveland & Yavitt, 1997; Pegoraro et al., 2005). 

The initial attempts to characterise biological isoprene degradation rates led to 

a global estimate of 20.4 MT y-1, or around 3 to 4% of isoprene production 

being degraded by biological processes in soils (Cleveland & Yavitt, 1997), 

indicating that soils represent a small but potentially important sink of isoprene. 

This estimate was based mainly on ex situ rates on soils from a number of 

locations in the USA and its incorporated territories, with isoprene added at 508 

ppbv, as well as in situ evidence using 385 ppbv in static field chambers, giving 

an isoprene degradation rate of 1428 nmol m-2 h-1 (Cleveland & Yavitt, 1997; 

1998). Other work using increased concentrations of isoprene (100-1000 ppb) 

indirectly hinted at much higher estimates (14500 to 61200 nmol m-2 h-1); 



38 
 

(Pegoraro et al., 2005). However, these isoprene concentrations greatly exceed 

measured values of isoprene in the atmosphere, which are generally less than 

10 ppb (for example: Alves et al., 2014; Kanawade et al., 2011; Kesselmeier & 

Staudt, 1999; Sharkey & Yeh, 2001). The estimates so far for global isoprene 

biological degradation has been based on rates determined at these 

comparatively high concentrations compared with more realistic atmospheric 

concentrations (i.e. 3 ppbv) (Cleveland and Yavitt, 1997). Since then, an  in situ 

test, using the atmospheric isoprene present at the time of sampling has 

demonstrated an isoprene-degradation rate of 2.0 nmol m-2 h-1 (Gray et al., 

2014), which is significantly lower than previous estimates. It is notable that the 

isoprene-degradation rates of soils increase as the concentration of isoprene 

increase, and are higher in studies where the atmospheric reactions, 

temperature, or moisture content are controlled, (as they were in the 

experiments leading to the original estimate of a c. 20 Tg global isoprene sink) 

(Gray 2015, Pegoraro, 2005, Cleveland and Yavitt, 1998, 1997). This ability of 

soil microbiota to degrade isoprene at higher rates than they would be exposed 

to atmospherically may reflect the fact that isoprene is produced in soil as well 

as from vegetation. Although there is no direct measure of soils producing 

isoprene (although partially heat sterilised soil produces low concentrations of 

isoprene, probably due to Bacillus survival and growth (data not shown)), 

isoprene is produced from household waste/compost (Mayerhofer et al., 2006). 

Also, soil dwelling bacteria (Kuzma et al., 1995) and fungi (Back et al., 2010) 

produce isoprene. However, those few plants tested, including poplar, don’t 

produce isoprene in their roots (Cinege et al., 2009) (at least naturally, inserting 

isoprene synthase and inducing plant wide overexpression is an exception 



39 
 

(Loivamaki et al., 2007)). A microbial source for isoprene in the soil could lead 

to degrading microbes adapted to locally high concentrations. 

Due to the difference between experimental and actual conditions, it is likely 

that the original estimates for isoprene consumption are overestimated; 

however with only one study indicating a lower estimate, there is still 

uncertainty as to how important soils are to global isoprene flux. 

As with most biological processes, there are expected to be a multitude of 

factors influencing isoprene degradation rates in soils. So far, work on these 

have been focussed on those factors required to service models and forecasts 

of global isoprene degradation rates; pH, forest type, moisture content, depth, 

and CO2 (Cleveland & Yavitt, 1998; Cleveland & Yavitt, 1997; Pegoraro et al., 

2005). Although this gives a coherent, if low resolution, understanding of the 

effects on these factors on isoprene-degradation rates, and has been applied to 

the observable atmospheric levels of isoprene to inform our soil isoprene flux 

estimates, seasonal effects have not been explicitly studied (Cleveland & Yavitt, 

1998; Cleveland & Yavitt, 1997; Pegoraro et al., 2005). The seasonal 

differences in isoprene production from the main source, broadleaf trees, 

results from leaf loss and differences in temperature and insolation (Guenther 

et al., 2006; Monson & Fall, 1989), as well as the isoprene emissions being 

related to season (low in spring and autumn, compared to summer) and 

temperature (Harley et al., 1996; Monson et al., 1994), and therefore you would 

expect soil communities to be better adapted to degrading isoprene in summer 

months, both because there is potentially more isoprene available, and 

because their metabolic activity should be higher in warmer soils. However, 

isoprene is still present in the atmosphere in autumn (Li & Wang, 2012), and 
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the atmospheric factors also change. For example, there is a noticeable 

decrease in hydroxyl (OH) radicals in autumn (Atkinson, 1990), which could 

conceivably lead to longer residence times for isoprene. Therefore, it would be 

useful to understand seasonal effects on isoprene degradation rates, to better 

understand isoprene flux, and the potential future impacts of a biological sink. 

Additionally, it would be useful to understand seasonal effects from the 

perspective of isoprene degradation; as temperature and soil water content 

affects isoprene degradation rate, there could be a seasonal effect (Cleveland 

& Yavitt 1998, Pegoraro et al., 2005).  Likewise, with the effect of production 

source on soil degradative capacity; as the foliage of some trees is expected to 

be the main source of isoprene to soils, with roots not producing any isoprene, 

and containing very little isoprene synthase (although soil isoprene production 

levels are unknown) (Cinege et al., 2009), and as isoprene has a very short 

atmospheric lifespan (Atkinson & Arey, 2003), we could reasonably expect that 

soils near to isoprene-producing trees would contain bacterial communities able 

to degrade isoprene more readily. Should there be significant effect on the 

ability of soils to degrade isoprene from the production capacity of nearby tree 

species, then this should be factored into future models of isoprene 

degradation. If there is not a significant effect of proximity to isoprene-producing 

trees and no noticeable seasonal effects on isoprene degradation rates of soil 

microbiota, then this would raise questions about why soil communities, which 

are highly competitive environments (Hibbing et al., 2010), are primed for 

isoprene degradation, when the known sources are absent. 

The study of the effects of isoprene on soil communities is important in 

understanding the global isoprene cycle because: (i) soil microbiota, with an 
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estimated 2.6 × 1029 soil bacteria globally, and up to 1010 bacteria (across up to 

38,000 species) per gram of soil, are an important part of atmospheric gas 

transfer (Whitman et al., 1998); (ii) how the communities change can be used to 

inform models of isoprene flux from a bottom up approach (i.e. calculating 

global changes in biological isoprene degradation rates based on microbial 

community changes under the changing conditions); and (iii) currently most of 

the mechanistic understanding we have of isoprene degradation is based on a 

few culturable organism, yet most microbes have not been cultivated (Rappé & 

Giovannoni, 2003). The identification of isoprene degraders is the first step in 

building upon this knowledge base to develop a clear understanding isoprene 

degradation. 

Our current knowledge of the bacterial species involved in isoprene degradation 

is limited, with the following genera having been linked to isoprene degradation: 

Rhodococcus, Nocardia, Arthrobacter, Gordonia, Mycobacterium, Leifsonia, 

Alcaligenes and Alcanivorax, Pseudomonas, Alcaligenes, Klebsiella (van 

Hylckama Vlieg et al., 1999; Acuña Alvarez 2009; Ewers et al., 1990; Srivastva 

et al., 2015; van Ginkel et al., (1987). In soils, Gray et al. (2015) also suggested 

an increase in the relative abundance of the actinobacterial genus Sporichthya 

up to 40-fold with isoprene over 8 days at 200 ppb, compared to incubation with 

no added isoprene, which looks like it could be significant, as well as small 

changes at the phyla and Proteobacteria class level, for which significance is 

claimed (although 1/3 of those have too low correlation coefficients for averages 

against concentrations for P to be <0.05). 

Recent work conducted by our project partners at UEA has also indicated that 

direct incorporation of isoprene derived carbons into DNA may occur in marine 
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environments in Rhodococcus and Mycobacterium (Johnston, 2014). In soil 

environments, low resolution family level experiments identified a number of 

families involved, suggesting isoprene degradative ability in a diverse range of 

groups, and further supporting the Rhodococcus genus containing isoprene 

degraders  (El Khawand, 2014). However, in many of these analyses, there is 

often limited statistical analysis between conditions (Gray et al., 2015; 

Johnston, 2014; El Khawand, 2014), largely due to the available technology at 

the time, however limiting confidence in the results. 

When the low level of statistical proof is combined with the fact that most of 

these experiments were performed at significantly higher than environmentally 

relevant isoprene concentrations, although high concentrations are 

advantageous in some ways, it is evident that there remains a lot to learn about 

isoprene-degrading bacteria in the environment. 

In this study, a multi layered approach was adopted to investigate soil isoprene 

degradation;  in situ measurements to determine degradation rates, serial 

enrichments to investigate isoprene degraders with high sensitivity, DNA Stable 

Isotope Probing (DNA SIP) to demonstrate incorporation of isoprene into DNA, 

low or realistic concentration experiments to more closely mimic  in situ 

conditions, (in addition to cultivation approaches, which are the subject of 

Chapter 3). 
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2.3 Materials and Methods  

 

2.3.1 In situ sampling 

 In situ degradation rates were investigated in Wivenhoe Park, Essex, U.K. A 

sample site was chosen in an area with no nearby tree cover. The soil was 

loamy, undisturbed, and covered year round in a grass moss blend, with few 

other plants present. The area was flat, and at the top of gently sloped ground, 

ensuring no excessive water logging. The soil had a year average pH of 4.9, 

which was representative of the area, when compared with the other sites 

measured (i.e. not an outlier). As part of the park land, the foliage was subject 

to regular mowing, and the ground cover had evidence of fowl and rabbit 

presence. The location details are shown in Table 2.1. 

The in situ isoprene degradation rate of soil at each location was measured at 

four points dispersed throughout 2015 (24/3/15, 18/6/2015, 

29/9/2015,10/12/2015). 

 In situ gas chambers were designed, refined and deployed. Chambers 

consisted of 2 litre clear polycarbonate bottles (Nalgene validation flasks 

(Nalgene)), with a diameter of 12.3 cm, and a polycarbonate lid containing a 

thermoplastic elastomer sealing ring. Through each lid a 25 mm computer fan 

(Ebmpapst 252 (R.S. components)) was suspended using Dekabon, PTFE 

coated aluminium tubing (S.P.A. Design), with the wires internalised and 

powered by an external 12 V battery (R.S. components). Also, through the lid, a 

sampling port made from a Swagelok 1/4” to 1/8” reducing union (Swagelok) 

containing a Polytetrafluoroethylene (PTFE) covered silicon septa (Sigma-
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Aldrich) was inserted. Joints between the Dekabon tubing and the fan, and lid 

were sealed with araldite, and allowed to set and stabilise (Figure 2.AX.8). 

Three locations, approx. 5 m apart, were selected (and represent the unit of 

replication). At each location there were two test chambers placed into the soil, 

one open control (no isoprene addition) and a closed control chamber (with the 

base not removed). Chambers were prepared with a sharp edge, allowing 

rotational movement to cut into the soil with minimal disturbance of the central 

section. A three centimetre insertion was enough to create a sufficiently gas 

tight seal, and the isoprene addition volumes were adjusted accordingly (due to 

the small chamber space loss). Chambers were allowed to settle for at least 15 

minutes before sealing and addition of isoprene and the inert tracer. 

Stabilised isoprene (99%, Sigma) was added from a diluted isoprene stock of 

known concentration to given an isoprene concentration in the chamber of ~15 

ppb, and ~60% 1,1,1,2,3,4,4,5,5,5-Decafluoropentane (DFP) (Sigma) was 

added to give twice the isoprene volume, as an inert, non-biologically 

degradable tracer, using gas tight syringes. 

Samples were taken immediately after volatile addition, and then at 7.5 and 15 

minutes; 50 cm3 of gaseous chamber content was removed from the chamber 

using a 100 ml gas tight syringe, and injected into one 500 ml Tedlar bag per 

sample. The pressure of the chamber was allowed to equilibrate for a few 

seconds immediately after each sample removal to reduce negative pressure 

drawing isoprene from the soil. Post sampling, soil was collected from the 

location of each chamber set, and a bulb thermometer was inserted 3 cm into 

the ground, and an average temperature taken. 
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In order to measure the volatile addition below the linear response threshold of 

the chromatography equipment, it was necessary for volatile concentration 

equipment and methodologies to be created. The iterative design and testing 

process is described in Appendix 2.AX.1). In brief, a system was designed 

where gasses from the Tedlar bags could be drawn through a loop of fine 316 

stainless steel tubing using negative pressure. This loop was suspended above 

liquid nitrogen, with a thermocouple controlled boiler (produced by the 

University of East Anglia, School of Environmental Sciences ) maintaining the 

temperature of the loop at -170°C. The sample was drawn through at 1 cm3 s-1, 

allowing the volatiles to condense on the cold metal. Following this, the tubing 

was placed under a weak vacuum and sealed. The loop was then heated to 

>80°C using hot water, and the re-volatilised compounds were withdrawn using 

a 250 µl gas tight syringe, propelled into the syringe by the negative pressure, 

and allowing the air movement to proceed from the input side to carry them 

through. These volatiles were then added directly to a Gas Chromatograph with 

a Flame Ionisation Detector and the volatile concentrations were measured. 

This cryotrap normally resulted in over 100× concentration, and the ratio of the 

inert tracer to the isoprene concentration was used to determine the 

degradation rates, with each rate being compared with the in group sealed 

control to remove the effect of in chamber non-biological reactions (without 

reducing the overall variance), and the starting ratio to remove effects of 

differing initial concentrations. Rates were determined by the linear regression 

of time against concentration. Soil pH, was calculated in in a 1:5 dilution of 0.1 

mol l-1 CaCl2, as described in Cools et al. (2010). Dry weight was calculated by 
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the difference in weight between a few g of soil before, and after drying at 80°C 

for at least 24 hours when a stable weight was reached. 

Porosity was determined by adding a few grams (weighed before and after) to a 

50 ml volumetric flask, filling to the line, and weighing, then heating at 80°C in a 

water bath for three hours, before allowing to cool, refilling and reweighing, with 

the difference in weight being equivalent of the space of the soil previously 

taken up by gas for the amount of soil added (Tan, 2005). Soil characteristics 

and weather data can for the dates of sampling can be seen in Table 2.SI.1. 

 

2.3.2 Ex situ sampling 

2.3.2.1 Sequential enrichments with isoprene 

Soil was obtained from underneath the canopies of mature trees, which were 

arranged in small stands of the same species, in Wivenhoe Park UK.  Three 

sites were chosen that had isoprene-producing species Poplar (Populus 

canadensis), Willow (Salix babylonica) and Oak (Quercus robur), two with non 

isoprene producers, Birch (Betula pendula) and Ash (Fraxinus excelsior), and 

one area of open ground with no tree cover (Table 2.1). For each site, samples 

were taken between 1 and 2 m from the trunk of a selected tree, and triplicate 

samples were equidistant from each other around the base of the tree. Leaf 

litter and other debris were removed. Any short vegetation was removed with 

care to displace as little topsoil as possible. In the autumn of 2012, 

approximately 2 x 30 cm3 of soil was collected aseptically from the top 2 cm, for 

each triplicate from each site. One sample was used to investigate the physical 

chemical parameters as in Section 2.3.1, and the other to investigate the 



48 
 

isoprene-degradation potential and bacterial composition. The degradation 

experiments were set up within 6 hours of sampling. 

 

Table 2.1 Location, Tree type and basic characteristics of isoprene-
enrichment soil sample origins. 

Site Species Location 
isoprene 
producer 

Dry 
mass 
(%) 

pH 

Willow Salix babylonica 51.87772   °N, 0.948709  °E ✓ 68.45 5.43 

Poplar 
Populus 
canadensis 

51.87799   °N, 0.949446  °E 
✓ 

70.14 6.23 

Oak Quercus robur 51.878151 °N, 0.948988  °E ✓ 58.76 4.41 

Ash Fraxinus excelsior 51.878569 °N, 0.948132  °E ✗ 72.85 6.09 

Birch Betula pendula 51.87828    °N, 0.950293 °E ✗ 50.75 3.78 

No 
Trees N/A 

51.878659  °N, 0.947761 °E 
✗ 

51.87 4.90 

pH, Dry mass of soil as mean %, n=3 for Dry mass and pH measurements 

 

Each soil sample was homogenised using a spatula, and 1 g of soil for each 

replicate for each site was added to three 125 cm3 glass serum bottles. The 

serum bottles had been soaked in 5% Decon  90 in distilled water overnight, 

rinsed thrice with distilled water and baked in an oven at 110°C for three hours. 

The baked glassware was then rinsed thrice with analytical grade acetone that 

was allowed to volatize; following which the openings were covered in foil and 

autoclaved. Autoclaving was at 121°C, 15 psi for at least 15 minutes. 

To each serum bottle 9 ml of minimal medium was added, with an additional set 

of six no soil controls with just 10 ml of medium. The minimal medium 

comprised of: 0.5 g NaCl, 0.5 g MgSO4
.7H2O, 0.1 g CaCl2.2H2O, 1 g NH4NO3, 

1.1 g Na2HPO4, 0.25 g KH2PO4, 50 mg Cycloheximide, 10 mg FeSO4.7H2O, 

0.64 mg Na2EDTA.3H2O, 0.1 mg ZnCl2, 0.015 mg H3BO3, 0.175 mg 

CoCl2.6H2O, 0.15 mg Na2MoO4
.2H2O, 0.02 mg MnCl2.4H2O, 0.01 mg 
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NiCl2.6H2O, 0.05 mg p-Aminobenzoic acid, 0.02 mg Folic acid, 0.02 mg Biotin, 

0.05 mg Nicotinic acid, 0.05 mg Calcium pantothenate, 0.05 mg Riboflavin, 0.05 

mg Thiamine HCl, 0.1 mg Pyridoxine HCl, 0.001 mg Cyanocobalamin, and 0.05 

mg Thioctic acid (phosphates and salts were autoclaved separately, and 

vitamins were filter sterilised) per litre Milli-Q filtered water (a modification of 

Fahy et al., (2006)). 

Isoprene was added at two different concentrations for each site; to one batch 1 

cm3 of isoprene stock headspace was added, yielding 7.2 ×106 ppbv final 

concentration; to the other batch 0.1 cm3 isoprene stock headspace was added, 

yielding 7.2 ×105 ppbv final concentration. Additionally, in order to distinguish 

the effects of isoprene on bacterial community composition from bottle effects, 

each site/replicate had no isoprene addition (no isoprene controls). Three no 

soil controls had 0.1 and 1 cm3 isoprene addition in order to ensure that 

isoprene degradation was biological. Incubations were performed at 20°C in the 

dark. 

The isoprene stock was made in a similar manner to that of Acuña Alverez et 

al. (2009), with10 ml isoprene (Sigma >99%, 464953) in a 125 cm3 washed and 

sterilised serum bottle, crimp sealed with a Si/PTFE septum, and warmed to 

30°C for at least 15 min before use. Isoprene aliquots were taken from the 

headspace.  

Isoprene was measured daily using a 100 µl headspace sample taken through 

the septa with a glass gas tight syringe with a steel side port needle and 

injected into the sample port of a Unicam 610 series GC-FID equipped with a 

10% Apiezon L CW column, with injector and detector temperatures of 160°C 
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and a column temperature of 100°C. The GC-FID was calibrated daily by fresh 

dilutions of isoprene stock, as well as a 100 ppm isoprene standard (Scientific 

and Technical Gases Ltd.), and had a linear response / concentration 

relationship through dilutions from 0.1 ppm to 100 ppm (which represents the 

usable range), and detection, but with a non linear and error prone response 

under ~70 ppb, and no detection at all under ~5 ppb. 

After isoprene concentrations were reduced to less than 20% of no soil control 

concentrations, 1 ml of the of the soil suspension was added to fresh media, 

with isoprene added at the same concentration as used in the original 

microcosm, and 0.5 ml samples were frozen for genetic analysis. This 

sequential addition was performed two more times, for a total of three 

enrichments per sample. 

Isoprene degradation was reported as the time taken to achieve 80% 

degradation, with estimation by regression and interpolation of nearby points 

displaying a trend, where the threshold was passed between testing points. 

Significance testing was performed using a nested ANOVA in R (R 

Development Core Team, 2008) (nested tree species within isoprene 

production status). 

For bacterial 16S rRNA gene sequence analysis, DNA was extracted from the 

soil enrichments using the Griffiths’ method (Griffiths et al., 2000),  which in 

brief involves bead beating the sample in Cetyl trimethylammonium bromide 

(CTAB), phenol chloroform isoamyl alcohol, followed by PEG precipitation), and 

amplified by PCR using a subset of the methods described by Illumina (Illumina 

Inc., 2013). Specifically, amplification was carried out on the V3 and V4 region 
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of the 16S rRNA gene, with the default primer with adapter sequences 

described by Illumina (Illumina Inc., 2013) (bacterial primer pair S-D-Bact-0341-

b-S-17 and S-D-Bact-0785-a-A-21 from Klindworth et al., 2013 with adapter 

sequences). The first round of PCR was carried out as described by Illumina 

inc., 2013, except that RedTaq (Sigma Aldrich) was used instead of Kapa Hifi 

because it increased specificity. In addition, plate spinning in a custom 96 well 

plate adapted OXO spinner (1351580UK) was performed prior to the PCR. A 

Bioanalyzer chip was not used at this point, however PCR clean up was 

performed as described by Illumina inc., 2013 (without MIDI plate shaking), and 

the second round of PCR was performed as described by Illumina inc., 2013, 

using the horizontal Illumina indices: N701, N702, N703, N704, N705, N706, 

N707, N708, N709, N710, N711, and N712, and vertical indices: N517, N502, 

N503, N504, N505, N506, N507, N508. The second round PCR cleanup was 

performed as described by Illumina inc., 2013, without shaking. Following this, 

5 µl of DNA from each reaction was run on a 2% agarose gel, alongside a pool 

of the first round products, to ensure the expected sizes and size shifts were 

present. 

Library quantification was performed by diluting the library 1:10, adding an 

equal volume of Quant-iT PicoGreen dsDNA Assay kit (Invitrogen) preparation, 

and using a 384 well optical plate, with samples in duplicate, six blank samples, 

and a standard curve of known concentrations of DNA. The plate was read by a 

(Biotek Synergy) plate reader set to 485 nm excitation and 520 nm emission 

fluorescence intensity, and pooling volumes were calculated to maximise DNA 

(the minimum concentration created with the total volume). The pooled library 

was analysed in triplicate using a Bioanalyzer 1000 (Agilent) chip and a 
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LabChip caliper Bioanalyzer (G2938C), following the default DNA 1000 Assay 

protocols, alongside the initial pool to ensure sufficient quality. DNA was 

concentrated by collecting the DNA using a PCR purification kit (Sigma; 

GenElute), running multiple aliquots of DNA binding buffer solution through the 

same column prior to elution, and DNA quantification was performed using an 

optical nanodrop, and diluted to 20 ng-1 µl. 

Sequencing was performed with MiSeq 300 bp paired end reads by the NBAF 

facility at the Liverpool Centre for Genomic Research. Due to on going issues 

causing decreased MiSeq read quality, raw reads were obtained for analysis. 

In order to analyse these data, a custom pipeline was created. Samples were 

downloaded pre-separated into sample folders according to the sample 

list/primer sequences given. Unix based analysis was performed using BioLinux 

8 (Field et al., 2006). As suggested in Schirmer et al. (2015), reads were 

subjected to Bayes Hammer error correction in SPAdes, which can remove 

93% of Miseq read errors by hamming and quality adjusted Bayesian 

subclustering (Bankevich et al., 2012). This approach was used here as a pre-

processing step due to an increased error rate (at the time Illumina had a 

reagent issue, producing poorer quality reads). To ensure that this approach did 

not adversely affect the analyses, three samples were also ran using the same 

pipeline but with the original Schirmer et al. (2015) approach, and shown little 

observable change (a comparison is available in Figure 2.SI.158). Following 

this, reads were trimmed using Sickle (Joshi et al., 2011), with a quality value 

limit of 18, to increase data retention from the largely error corrected (from the 

previous step) reads which were initially carrying lower than desirable quality 

scores from the initial reads. Following this, paired-end reads were paired using 
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PANDAseq (Masella et al., 2012), which retains the best bases from the 

overlapping reads. Sequences were then stripped of extraneous data in the 

name, and renamed after the sample number, read number (for identification), 

and with a count identifier set to 1 using GNU sed and awk, pre-emptively 

solving compatibility issues. These reads were then de-replicated using FastX 

collapser from the FASTX-Toolkit (Hannon Lab), and concatenated (GNU cat) 

to the other reads into one file, so that the OTUs would be directly comparable 

between sites. Clustering was performed de novo using Swarm (Mahé et al., 

2014) on the University of Essex Unix-based Genomic Cluster, with d=1, 

allowing for natural OTU sizing within a fine threshold of stress, and stress 

central centroid picking, mimicking more closely actual OTU and similarity 

dispersion than arbitrary fixed threshold methods, which mostly use the first, 

most, or random methods of centroid picking, and which are not responsive to 

the underlying phylogenetic community structures when clustering. Chimera 

checking was performed within vsearch (Rognes et al., 2015) against the Gold 

database (Pagani et al., 2012). In every case, putative chimeras were below 

0.5% of the sequences analysed. Clustered sequence files were converted for 

DOS compatibility using sed. Classification was performed using the Ribosomal 

Database Project sequence classifier (Wang et al., 2001), and fix rank level 

grouping and addition was performed using excel. Bespoke VBA programs 

within excel were generated, validated and used to:  (1) parse the clustered 

sequence files and generate OTU tables from the Swarm output, (2) draw the 

applicable centroid sequences from the non chimera list, rarefy against real 

random number lists to group minima (Haar, 2008), (3) convert to relative 

abundance, (4) perform unadjusted ANOVAs (using the standard equation 
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((n∑(Xj- x̄..))/(K-1))/ ((∑((Xij - x̄j)2))/(N-K))), where: x̄.. is the grand mean, x̄ is 

the group mean, K is the number of groups, N is the total sample size, I is the 

indexed variable, j is the group variable, and significance attributed when the F 

statistic passes the threshold for the sample sizes), (5) generate QQ statistics 

(using the inverse of the cumulative standardised normal distribution, linear 

regression and calculating the correlation coefficient), (6) perform unadjusted 

Kruskal-Wallis tests (Using the standard equation; H=(12/(n(n+1)))× 

∑[ki=1](Ri
2/ni)-s(n+1), where R is the rank sum for sample i to k and the p value 

estimated using the excel chi-distribution function), as appropriate, and to (7) 

generate graphs, for every OTU in every test and condition, as well as with the 

RDP fix rank grouped data, in addition to performing automated data subsetting 

and R code generation for between source permanovas performed in using 

Adonis within the Vegan package (Oksanen et al., 2015) in R (R Development 

Core Team, 2008), and analysed in excel.  

Multivariate tests were preformed using the manyglm function in the mvabund 

package in R to fit negative binomial models with the P-values calculated using 

1000 resampling iterations via PIT trap resampling, and testing of models by 

anova. Plots of Dunn and Smyth residuals and plots of the mean variance of 

the model were used to confirm model assumptions  (Wang et al. 2012). 

Species level identification was performed using Blast (Altschul et al., 1990), for 

similar strain name identification, followed by looking up type strains on LPSN 

(Parte, 2014), and closest type strain identification by phylogenetic tree 

generation using MEGA 6, MUSCLE, and the Jukes and Cantor and Neighbour 

Joining methods with 1000 times bootstrap statistics, for analysis at the OTU 

level (Jukes and Cantor, 1969; Saitou and Nei, 1987; Felsenstein, 1985). At the 
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site level, analysis was performed using the Non Metric Multidimensional 

Scaling (NMDS) wrapper in R vegan (metaMDS), with custom graph 

generation, point identification and analysis in Excel, using VBA. 

2.3.2.2 DNA Stable Isotope Probing of soil with isoprene. 

Soil was taken from different points in the same Willow and Birch locations as 

used in the previously described enrichments. Soil was sampled in Summer 

2015 (2 June 2015), and soil microcosms were set up in the same manner as 

described in 2.3.2.1, but the experimental setup and isoprene addition differed. 

Willow and Birch soils were incubated in minimal media, with either 1.0 ml from 

stock headspace of 12C isoprene or 13C isoprene (Fully labelled 13C isoprene 

kindly provided by DuPont Industrial Biosciences: California, USA), resulting in 

an initital headspace isoprene concentration of 7.2 ×106 ppb (0.1 M), or no 

isoprene. The 12C stock was made as in section 2.3.2.1, whereas the 13C stock 

was made by just exceeding the minimum quantity of isoprene required to 

saturate the headspace (~175 µl) of the 125 ml bottle, owing to the limited 

quantity of isoprene available. All samples were confirmed to have the required 

concentration at the time zero GC-FID measurement. Isoprene degradation 

was monitored by GC-FID, and samples were destructively sampled for DNA 

extraction (as described in Section 2.3.2.1) after one and four days. Caesium 

Chloride (CsCl) ultracentrifugation (Sorvall Discovery 90SE with vertical rotor, 

44100 rpm, under vacuum, with acceleration and deceleration program 1) was 

performed on DNA from the 13C and 12C isoprene incubations from the day 4 

samples from the Willow soil enrichment.  

DNA was added to 6 ml CsCl tubes (Sorvall 79273 6.0 ml polyallomer 

ultracrimp), for DNA-SIP according to Neufeld et al. (2007), without ethidium 
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bromide and increased spin times of 48 hours. The DNA containing CsCl was 

fractioned into 12 × 0.5 ml fractions (to the nearest drop), in the same manner 

as described by Neufeld et al. (2007) except that a peristaltic pump with sterile 

water was used to control the gradient exit. Gradient formation was confirmed 

using an optical refractometer to measure the refractive index, which was 

checked against a standard curve of CsCl, created by measuring densities by 

weighing defined volumes and measuring with an optical refractometer.  

End point PCR amplification using the Illumina first round primers and 

conditions, with agarose gel separation (1.5%, 1 hour, 110 V, Fermentas SM 

0333 ladder), followed by ethidium bromide staining and UV visualisation, were 

performed to ensure an increased spread of DNA towards the heavy fractions 

was present in the 13C fractions compared to the 12C fractions. 

Next generation sequencing was performed in the same way as in Section 

2.3.2.1, on the fractions 1 (heaviest) to 10 (near-lightest) of the 12C and 13C 

isoprene incubations, as well as the pre-incubation soil community. 

Bioinformatics analysis was performed in the same way as in Section 2.3.2.1, in 

a separate batch, alongside the low concentration experiments, however with 

an additional detrended correspondence analysis performed due to the gradient 

nature of the density gradient allowing for improved point separation by this 

method. To see the difference in relative abundance caused directly by 

isoprene degradation, and leading to DNA incorporation, statistics were applied 

to, and graphics were produced from 13C relative abundance, net of the 12C 

relative abundance for each fraction (i.e. the difference between the same 

fraction in each carbon weight set). 
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2.3.2.3 Low concentration experiments 

The same Willow and Birch soil samples used in Section 2.3.2.2 were used in 

the low concentration experiments. Soil (0.5 g) was added to 125 cm3 serum 

bottles without any media addition. Isoprene was added daily (except for 

weekends) at 0, 15 and 150 ppb concentrations for 23 days, resulting in 16 

separate applications. GC-FID was used to confirm degradation of the isoprene 

in the samples, however, under 100 ppb, the response of the GC-FID has high 

internal error, meaning that isoprene concentrations at the 15 ppb level are 

unlikely to be accurate. Moisture levels in the soil were kept constant by 

saturating the headspace after every isoprene replenishment. Approximate 

calculation of saturated vapour density using the <40°C approximation curve: 

VD = 5.018 + 0.32321 TC + 8.1847×10-3 TC
2 + 3.1243×10-4 TC

3 (Relhum), 

calculated using the estimated temperature and humidity from the BBC 

weather, gave the volume required for addition of sterile water to the side of the 

vessel to bring the internal air to the point of water saturation. Incubation was at 

20°C in the dark. After the incubation period, DNA was extracted, sequenced 

and analysed as in Section 2.3.2.1. 

2.3.2.4 Amalgamated analysis 

In order to make sense of the data produced by the different experiments, a 

funnel was applied to the results. 

First, in order to reduce the chances that significance isn’t being noted due to 

random chance, amongst a high number of statistical tests; inclusion criteria 

were applied requiring multiple significant enrichments at a relative abundance 

where starting points of that (or other) OTU fix rank groups exist (i.e.; a species 

cut off dependant on the lowest relative abundance of an identified genus level 
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OTU within the experimental data set). Groups were also included for analysis 

where isoprene-degrading isolates were identified in Chapter 3 of this thesis. 

These OTU groups were investigated for OTUs which showed enrichment 

within them. These isoprene related OTUs and groups were then individually 

scrutinised for evidence of isoprene degradation ability, direct usage of 

isoprene through SIP, and if any environmentally relevant effects through media 

free low concentration experiments, and related to current knowledge. The 

representative sequences from each OTU level group were added to a 

phylogenetic tree, as in 2.3.2.1, with grouping of very similar, independently 

generated OTUs evidencing the robustness of the analysis approach. 
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2.4 Results: 

 

2.4.1 The rate of isoprene degradation by microbes within soils is at the 

lower end of previous estimates, with negligible seasonal effects 

Gas chambers were placed on soil from a treeless area of Wivenhoe Park, UK, 

and spiked with isoprene and decaflouropentane on four days, each in a 

different season in 2015. Volatile concentrations were measured, and used to 

estimate a rate of isoprene degradation. The average isoprene-degradation rate 

was 4.77 nmol m-1 h-1, and although there was a small effect of season on 

isoprene degradation rates, with rates lowest in December and highest in June, 

this was not significant (F3,17 = 0.715 P = 0.56, Anova) (Figure 2.1). 
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Figure 2.1 Isoprene degradation rates for soil at Wivenhoe Park, UK, 
(51.878659  °N, 0.947761 °E) at four points throughout 2015. Three groups 
of four transparent polycarbonate chambers with air circulating fans 
suspended on Teflon coated aluminium, with Si/PTFE septa mounted in 
stainless steel, were deployed in the field approximately 5 m apart, 
between 9 and 12 am. In each group, two test chambers and a sealed 
control was spiked with 15 ppb isoprene and Decafluoropentane, and one 
was left without. Chamber air was sampled immediately and every 7.5 
minutes, cryo concentrated and analysed by GC-FID. Ratios of isoprene 
to decafluouropentate were expressed as a fraction of the starting ratio, 
net of in group control, and extrapolated to m2. The rate was determined 
by using the average rate, or linear regression where final time point had 
no isoprene. n=6,4,6,5 (for 24/3/15, 18/6/2015, 29/9/2015, 10/12/2015 
respectively) “2015” is year average for successful tests. Error bars are 
±SE.  
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2.4.2 Microbes within soil degrade isoprene rapidly, but rates are not 

significantly affected by proximity to isoprene producing trees. 

 

Soil from under isoprene-producing Poplar, Willow and Oak trees, from under 

non-isoprene-producing Birch and Ash trees, and from a treeless area, were 

incubated with isoprene to determine the isoprene-degradation rate, and the 

effect of location on it. 

Isoprene was degraded rapidly in the first enrichments, with 80% degradation 

within 80 h (average of about 55 h) at the lower isoprene concentration (7.2 

×105 ppb; Figure 2.2), and 160 h for the higher isoprene concentration (7.2 ×106 

ppb; Figure 2.3) (note that in Figure 2.2 and Figure 2.3, due to the sampling 

regime, times taken for degradation are to within one day (depending on exact 

sampling time), therefore where no error bars were present this was due to 

degradation of all replicates between testing).  

However, there was no significant difference between isoprene producing and 

non-producing groups (F6,63 =0.57 P= 0.75), nor between the different samples 

locations (F24,63 =1.33 P= 0.18), nor between enrichment levels (F2,63 =0.48 P= 

0.65), and there was significant difference between concentrations  (F3,63 =36.7 

P= >0.001) for the time taken for 80% degradation (nested ANOVA).  

 



62 
 

Figure 2.2, Time for 80% isoprene degradation for microcosms containing 
1 g of soil from under Poplar, Willow, Oak, Ash, and Birch trees, and an 
area with no trees, incubated with 0.1 ml of saturated isoprene 

headspace, at 30°C (final conc. 7.2 ×105 ppb), and daily sampling, n = 3, 

error bars are SE. 
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Figure 2.3, Time for 80% isoprene degradation for microcosms containing 
1 g of soil from under the canopy of Poplar, Willow, Oak, Ash, and Birch 
trees, and an area with no trees, incubated with 1.0 ml of saturated 

isoprene headspace, at 30°C (final con. 7.2 ×106 ppb), and daily sampling, 
n = 3 (n=2 for Birch enrichment 3), error bars are SE. 

 

In general the rates were more higher in the later enrichments, especially for 

the higher concentrations of isoprene (p<0.05 for 0.1 (7.2 ×105 ppb isoprene) 

with Birch, and 1.0 (7.2 ×106 ppb isoprene) with all samples (comparing first to 

third enrichment) by ANOVA), demonstrating increasing isoprene-degrading 

capability of the enrichments. Graphs portraying raw data, showing change in 

isoprene concentration in individual triplicates as a percentage of the no soil 

control are in supplementary information (Figure 2.SI.2). 

 

2.4.3 Sequential isoprene enrichment causes significant changes in 

bacterial community composition 

Metagenetic amplicon sequencing was performed on DNA extracted from soil 

enrichments sequentially enriched by isoprene to investigate the effect of 

isoprene on bacterial community composition. Non metric multidimensional 

scaling (NMDS) was applied to the OTUs, with 2D plotting to visualise 

community changes. 
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Figure 2.3 Soil enrichment NMDS stress 0.1478054. Soil = Pre-enrichment 
communities, E1 = First enrichment and E3 = third enrichment. 0.1 = 
addition of 0.1 ml saturated isoprene headspace (7.2 ×105 ppb), 1.0 = 
addition of 1.0 ml saturated isoprene headspace. n=3 (n=2 for Birch E3 
1.0). Figure 2.SI.3 contains the distribution of significances between the 
enrichments. Significant effects of tree type (F5,65 = 1.82 P= 0.021), 
concentration (F2,68 = 18.2 P= >0.001) and enrichment level (F2,68 = 21.7 P= 
>0.001) were observed (permanova). 

 

The original samples varied in the degree of heterogeneity between triplicates. 

For example, bacterial communities from soil beneath ash, poplar, willow and 

no trees were comparatively homogeneous, whereas oak and birch were more 

heterogeneous. The 0.1 E1 enrichments showed a similar pattern, but there is a 

general shift in bacterial community composition between the original 

communities and the 0.1 E1 enrichments (significant for ash, willow, and no 

trees; Figure 2.SI.3) and the degree of heterogeneity is less than in the original 

samples. Isoprene addition led to clear formation of clusters based on 

enrichment level (Figure 2.3). Notable is the higher the level of enrichment, the 
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more the communities move to the bottom right of the NMDS plot, showing that 

enrichment level affects community composition. Seemingly the communities 

from different original sources do not cluster as densely as communities from 

different enrichments, suggesting that isoprene, as a factor, is more important 

in the make up of the community structure.  

The pre-enriched soil and the 7.2 ×105 ppb enrichments (Soil, E1) seem to 

group, and the late (E3, H3) enrichments also form a group, suggesting that the 

number of sequential enrichments is more important in determining the final 

community than the level of isoprene the communities are exposed to.  

 

2.4.4 Isoprene use causes demonstrable shifts in bacterial community 

structure     

The direct effect of isoprene on bacterial community structure was investigated 

through DNA SIP, effectively repeating the willow 1.0 E1 enrichment in the 

previous study. Carbon from heavy, 13C-labelled isoprene incorporated into 

bacterial DNA allowed the separation of DNA of isoprene users from other 

bacterial DNA, with identification through amplicon sequencing. 

The willow soil enrichments degraded more than 80% of the isoprene within 4 

days (Supplementary information Figure 2.SI.4). Stable isotope probing was 

successful with clear linear relationships between fraction and density for both 

12C and 13C isoprene (Supplementary information: Figure 2.SI.5), and increased 

PCR product in the high density fractions enriched with 13C compared to 12C 

isoprene (Supplementary information: Figure 2.SI.6). The initial community was 

diverse, with around 50% of OTUs under 0.5% relative abundance, with none 
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above 10% (the original birch soil community is shown for comparison; 

Supplementary information Figure 2.SI.7). 

Detrended correspondence analyses of DNA SIP fraction communities showed: 

(i) starting communities were very similar, clustering tightly with many mid-low 

density fractions, (ii) the communities showing the greatest dissimilarity were a 

mixture of 12C and 13C samples (Figure 2.4), and (iii) the community 

composition causes increased dissimilarity between the 13C and the 12C 

labelled DNA as density increases (Figure 2.6), demonstrating that the addition 

of 13C isoprene lead to incorporation of the heavy carbon into the DNA of a 

subset of the community which degraded the isoprene. Although the detrended 

correspondence analysis plot has increased central DCA2 axis variability, this 

was shown to not be due to third axis distortion (a common issue with DCA, 

causing a diamond shape), because NMDS of the same dataset created the 

same overall shape, and similar (but less precise) clustering (and a clear 

directional heavy/light split outside the initial groupings; Figure 2.SI.8). Graphics 

depicting the significant differences between and among the different 12C and 

13C fractions, pre-enriched soil, and pre-SIP enrichments as determined 

through permutational manovas are in supplementary information Figure 2.SI.9, 

with notable significant differences between equivalent density 13C and 12C 

fractions. 
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Figure 2.4 Detrended Correspondence Analysis of DNA SIP of soil data 
showing changes in bacterial community structure for different densities 
of DNA after enrichment with 12C and 13C isoprene. Points represent 
fractions from ultracentrifugation. Fill colours yellow to red represent low 
to high CsCl fraction density with 13C, colours turquoise to blue represent 
low to high CsCl fraction density with 12C, and Grey represents the 
starting communities. The data in the box are shown in Figure 2.5. 
Significant changes in community structure were observed through the 
CsCl density gradient (a proxy for incorporation of 13C from the 13C 
isorpene into the DNA) (F10,58=2.32 P = >0.001) and with carbon type 
(F1,67=2.48 P = 0.03). 
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Figure 2.5; Zoomed in section of Figure 2.4 - a Detrended Correspondence 
Analysis of DNA SIP of isoprene-enriched soil. Points represent sites. Fill 
colours yellow to red represent low to high CsCl fraction density with 13C, 
colours turquoise to blue represent low to high CsCl fraction density with 
12C, and Grey represents the communities before density gradient 
centrifugation. 

 

 

2.4.5 At realistic concentrations of isoprene exposure, enrichment leads 

to visible but insignificant shifts of bacterial community structure. 

Soil from under birch and willow trees was subjected to multiple rounds of 

isoprene addition at concentrations that are more representative of those found 

in the environment. NMDS was used to visualise differences in bacterial 

community structure. 

The 150 ppb isoprene concentrations decreased to less than 10% of the 

starting concentration within 24 hours consistently, and occasionally isoprene 

was visible in all microcosms (including no isoprene-addition), but under the 
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linear detection limit (an example, showing the degradation of isoprene with 

different starting concentrations is shown in Supplementary information Figure 

2.SI.10). 

Pre-enrichment soils and 0 ppb enrichment soils clustered closely, indicating 

that any differences in bacterial community structure due to differences in 

experimental conditions and the original environment were irrelevant compared 

to those caused by soil location or enrichment level (Figure 2.7). Presence of 

isoprene seems to cause negative movement on the NMDS2 axis, although 

insignificantly, and with no signs of convergence of enrichments, and 

seemingly, a larger effect on the Birch than on the Willow samples. There is a 

notable increase in heterogeneity in the birch soil enrichment with 150 ppb 

isoprene. The most obvious differences were along the NMDS1 axis, 

separating Willow from Birch. However few groups shown significant 

enrichment with low concentrations of isoprene. 
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Figure 2.6 Non metric multidimensional scaling plot of bacterial 
communities of willow and birch soil incubated with 0, 15 and 150 ppb 
isoprene. B = Birch, W=Willow, X= before incubation, 0 = incubated with 0 
ppb isoprene, 15 = incubated with 15 ppb isoprene, 150 = incubated with 
150 ppb isoprene. Samples had humidity and isoprene readjustment 16 
times in a 23 day incubation prior to sampling. Stress = 0.08987834. No 
significant effects of isoprene concentration (F3,20 = 0.98 P= 0.47), 
significant effects of tree type (F1,22 = 13.8 P= >0.001)  (permanova), n=3.  

 

2.4.6 Bacterial OTUs potentially involved in isoprene degradation in soils 

To investigate the bacteria enriched in the presence of isoprene, and thus 

potentially involved in isoprene degradation or probably involved in isoprene 
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degradation (in the case of SIP experiments), bacterial OTUs were identified 

with: significant enrichment with isoprene, increased abundances of heavy DNA 

in isoprene DNA SIP enrichments, and indications of enrichment in low 

isoprene concentration experiments. 

OTUs with centroid sequences classified as Rhodococcus were significantly 

enriched in 11 of 18 enrichments, across the six soil origins (Figure 2.7). At the 

highest level of enrichment (E3), with the highest isoprene concentration (7.2 

×106) Rhodococcus often made up over 80% of the bacterial community, 

reaching over 95% in the third high concentration enrichment of willow soil. 

Differences between the 13C and 12C relative abundances in Rhodococcus in 

the DNA SIP (Figure 2.8) show a large, and significant differences between the 

13C and 12C fractions towards the heavier fractions, indicating that Rhodococcus 

spp. were incorporating carbon from isoprene into its DNA. However, when 

realistic levels of isoprene were added, differences in Rhodococcus relative 

abundance were small and insignificant (Figure 2.9).  
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Figure 2.7 Rhodococcus relative abundances in sequential enrichment of 
soil with isoprene. Soil was obtained from under the canopy of trees W = 
Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = No-Trees. Enrichment 
was at two levels 1 ml (0.8%) 30°C saturated isoprene headspace addition 
= 1.0, 0.1 ml (0.08%; 7.2 ×105 ppb) 30°C saturated isoprene headspace 
addition = 0.1. Pre-enriched soil abundance = soil, first enrichment = E1, 
Second enrichment = E2, Third enrichment = E3.A multi-variable model 
fitted to the data set using manyglm (with a negative bionomial 
distribution assumption) within the R package mvabund shown  that the 
abundance was not affected by sample location (F8,62 = 0.78 P=0.63), was 
affected by concentration (F8,62 = 34.2 P= < 0.001), and was affected by the 
level of enrichment (F8,62 = 16.23 P= < 0.001), * = significance at p<0.05 (in 
univariate unadjusted Kruskal-Wallis tests, for display purposes only), n = 
3, Error bars = SE, Rhodococcus defined by RDP classification at deepest 
assignment. 
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Figure 2.8 Rhodococcus relative abundances in 13C fractions net of 
Rhodococcus relative abundances in correspondent 12C fractions, after 

separate enrichment with 1 ml 30°C saturated isoprene headspace for 4 

days, 13C and 12C isoprene and density gradient centrifugation, n = 3, 
Error bars = SE, A multi-variable model fitted to the data set using 
manyglm (with a negative bionomial distribution assumption) within the R 
package mvabund shown  that the abundance was not affected by the 
carbon type (F3,65 = 0.73 P=0.54), and was not affected by the density (F3,65 
= 2.52 P=0.07), * = significance at p<0.05 (in univariate unadjusted 
Kruskal-Wallis tests, for display purposes only), n = 3, Error bars = SE, 
Rhodococcus defined by RDP classification at deepest assignment. 
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Figure 2.9 Rhodococcus relative abundances after incubation with 0, 15, 
and 150 ppb isoprene, replenished 16 out of 22 days, n=3 , Error bars = 
SE, Rhodococcus defined by RDP classification at deepest assignment. A 
multi-variable model fitted to the data set using manyglm (with a negative 
bionomial distribution assumption) within the R package mvabund shown 
that Rhodococcus was not affected by the isoprene concentration (F8,15 = 
1.17 P=0.38) nor tree type (F8,15 = 0.53 P=0.82) 

 

OTUs classified as Saccharibacteria (incertae sedis - of uncertain placement), 

previously known as candidate division TM7 show increased relative 

abundances following sequential isoprene enrichment, with significance in 9 of 

18 enrichments, including a mean of over 60% in the E3 7.2 ×105 ppb isoprene 

enrichment (Figure 2.10). However, DNA SIP (Figure 2.11) demonstrated that 

TM7 bacteria did not incorporate carbon from isoprene into their DNA, with an 

increase in the proportion of 13C compared to 12C 16S rDNA abundance in the 

lighter fractions, and, no change or decreased heavier fractions. In addition to 

this, in the low concentration experiments (Figure 2.12), there was no 

noticeable change on isoprene enrichment.  
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Figure 2.10 Saccharibacteria (aka TM7) relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3.A multi-
variable model fitted to the data set using manyglm (with a negative 
bionomial distribution assumption) within the R package mvabund shown  
that the abundance was not affected by sample location (F8,62 = 1.08 
P=0.4), was affected by isoprene concentration (F8,62 = 3.85 P= < 0.001) 
and was affected by the enrichment level (F8,62 = 1.46 P=0.19), * = 
significance at p<0.05 (in univariate unadjusted Kruskal-Wallis tests, for 
display purposes only), n = 3, Error bars = SE, Saccharibacteria defined 
by RDP classification at deepest assignment. 



76 
 

 

Figure 2.11 Saccharibacteria (aka TM7) relative abundances in 13C 
fractions net of Saccharibacteria relative abundances in correspondent 
12C fractions, after separate enrichment with 1 ml 30°C saturated isoprene 
headspace for 4 days, 13C and 12C isoprene and density gradient 
centrifugation, n = 3, Error bars = SE, Saccharibacteria defined by RDP 
classification at deepest assignment. A multi-variable model fitted to the 
data set using manyglm (with a negative bionomial distribution 
assumption) within the R package mvabund shown  that the abundance 
was not affected by the carbon type (F3,65 = 1.35 P=0.27), and was not 
affected by the density (F3,65 = 2.43 P=0.07), * = significance at p<0.05 (in 
univariate unadjusted Kruskal-Wallis tests, for display purposes only), n = 
3, Error bars = SE, Saccharibacteria defined by RDP classification at 
deepest assignment. 
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Figure 2.12 Saccharibacteria (aka TM7) relative abundances after 
incubation with 0, 15, and 150 ppb isoprene, replenished daily for three 
weeks, n=3 , Error bars = SE, Saccharibacteria defined by RDP 
classification at deepest assignment. A multi-variable model fitted to the 
data set using manyglm (with a negative bionomial distribution 
assumption) within the R package mvabund shown that abundance was 
not affected by the isoprene concentration (F8,15 = 0.76 P=0.64) nor tree 
type (F8,15 = 0.84 P=0.59). 
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Table 2.2 Summary of OTUs showing enrichment in multiple experimental 
arms, with at least one significant result by sequential enrichment, DNA 
SIP or low concentration enrichments.  

Classification 

 
Enrichment SIP Low Concentration 
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Supplementary 
information 
Figure 

Rhodococcus ✓ ✓ 16/18 11 ✗ ✓ ✗ 5 2/4 0 N/A 

TM7 ✓ ✗ 13/18 8 ✗ ✗ ✗ (-5) 1/4 0 N/A 

Aeromicrobium ✓ ✓ 15/18 10 ✗ ✗ ✗ (-1) 0/4 0 (2.SI.)14,15,16 

Nocardioides ✓ ✗ 11/18 1 (-1) ✗ ✗ ✗ (-1) 1/4 0 (2.SI.)17,18,19 

Fluviicola ✓ ✓ 14/18 11 ✓ ✗ ✓ (-1) 2/4 0 (2.SI.)20,21,22 

Rhodanobacter ✗ ✓   5/18 3 (-1) ✓ NP ✗ NP 0/4 (-1) (2.SI.)23,24 

Flavobacterium ✓ ✗ 13/18 4 ✗ ✗ ✗ (-2) 0/4 0 (2.SI.)25,26,27 

Acidovorax ✓ ✓ 18/18 13 ✓ ? ✗ 0 1/4 0 (2.SI.)28,29,30 

Streptomyces ✗ ✓   4/18 2 (-9) ✗ ✗ ✗ (-1) 2/4 (-1) (2.SI.)31,32,33 

Sporolituus ✗ ✗ 11/18 7 ✓ ✗ ✗ (-1) 0/4 0 (2.SI.)34,35,36 

Pseudomonas ✗ ✗ 10/18 7 ✗ ? ✗ 0 2/4 (-1) (2.SI.)37,38,39 

Lysobacter ✗ ✗   9/18 4 (-6) ✗ ✗ ✗ (-1) 3/4 1 (2.SI.)40,41,42 

Variovorax ✗ ✗ 11/18 2 (-2) ✗ ? ✗ 1ǂ(-1) 1/4 0 (2.SI.)43,44,45 

Pedobacter ✓ ✓ 15/18 9 ✗ ✗ ✗ 0 2/4 0 (2.SI.)46,47,48 

Ramlibacter ✓ ✗ 14/18 6 ✗ NP ✗ NP 0/4  (2.SI.)49,50 

Mucilaginibacter ✗ ✓   6/18 2(-1) ✗ NP ✗ NP 0/4 (-1) (2.SI.)51,52 

Aeromonas ✗ ✗   7/18 3 ✗ NP ✗ NP NP NP (2.SI.)53 

Shinella ✓ ✗ 13/18 9 ✗ ✗ ✗ (-1) 2/4 0 (2.SI.)54,55,56 

Bosea ✓ ✗ 11/18 5(-3) ✓ NP ✗ NP 1/4 0 (2.SI.)56,57 

Acetonema ✗ ✗ 11/18 3 ✗ NP ✓ NP 0/4 0 (2.SI.)58,59 

Polaromonas ✓ ✗ 13/18 3 ✗ NP ✗ NP 0/4 0 (2.SI.)60,61 

Caenimonas ✗ ✗ 12/18 3 ✗ NP ✗ NP 1/4 0 (2.SI.)62,63 

Acinetobacter ✗ ✗   6/18 1 ✓ ? ✗ 0 2/4 (-1) (2.SI.)64,65,66 

Methylobacterium ✗ ✗   1/18 0 ✓ ? ✗ 0 3/4 1 (2.SI.)67,68,69 

Nakamurella ✓ ✗   1/18 (-10) ✓ ✗ ✓ 0 2/4 1 (2.SI.)70,71,72 

Number of p values < 0.05 is by Kruskall-Wallis, with number of p values 
in opposite direction as negative. ǂ indicates where light fraction is 
significantly decreased, NP indicates not present (below the detection 
limit. Sorted by number of significant enrichments (all experiments). x̄E > 
x̄0 values are the number of samples where the isoprene-enriched relative 
abundance is significantly greater than the control relative abundance, 
out of the maximum possible. Effect of concentration shows if there was a 
significant interaction between concentration and abundance in the 
enrichment experiments, enrichment level shows if there was a significant 
interaction between the enrichment level and abundance in the 
enrichment experiments, effect of fraction shows if there was an 
interaction between the density and the abundance in the SIP 
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experiments and low concentration shows if there was a significant effect 
of isoprene on abundance in the low concentration experiments. Tests of 
interaction performed by multi-variable modelling using manyglm within 
the R package mvabund (details in methods, statistics in graphs). 

 

 

 

 

 

 

 

 

 

 

 

Other groups showing multiple significant enrichments are shown in the Table 

2.2. Methylobacterium was also included due to: i) an isolate degrading 

isoprene (Chapter 3), ii) it being one of the few enriched genera at low 

concentration (although no significant interaction was observed between 

Methylobacterium and concentration in the multi-variable model), and iii) due to 

a possible heavy shift in DNA density in the DNA SIP experiments. Most groups 

show significant enrichment on multiple enrichments at the higher isoprene 

concentrations (Table 2.2), with significance in DNA SIP and low concentration 

enrichments more rare. 

Sporichthya, which are the only genus which may be significantly enriched in 

isoprene in the study of Gray et al. (2015), did not show any signs of 

enrichment in the serial enrichment (2.SI.77) experiments, and no significant 

change in low concentration experiments (2.SI.78). 
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Recent work from UEA (Crombie et al., 2016) has identified several genera of 

the Comamonadaceae, and Xanthomonas, Devosia, Mycoplasma, Luteimonas, 

Mycobacterium in leaf SIP enrichments with isoprene. In this set of 

experiments, several species of Comamonadaceae show signs of enrichment, 

although with highly sporadic presence in enrichments – including up to 1% in 

one enrichment, and 0.3% in one fraction of SIP, with very low starting 

abundances (<0.005%), however seemingly only with one replicate each time, 

and no significance. However, the genera Xanthomonas and Mycoplasma were 

not detected in the experiments in this thesis. In this chapter Devosia paints an 

interesting picture, with some OTUs (e.g. OTU 138, 97, 103) significantly 

enriched at least once, although at very low relative abundance (and could be 

by chance), and others significantly decreasing and many more having no 

change. Although, as a genus, Devosia shows a significant decrease in the 

heavy fraction of SIP. Taken together these studies do not provide convincing 

evidence of Devosia being a major player in isoprene-degradation in the soils 

tested in this thesis, but it remains a possibility. With the genera Luteimonas, 

although shown to enrich significantly a couple of times, the abundance is low, 

and crucially, it is shown to significantly decrease in low concentration 

experiments. Therefore, in soils, it is unlikely that it is involved in isoprene 

degradation, and if it is, it is even more unlikely to be involved at relevant 

concentrations.  

2.4.7 OTUs of bacterial groups enriched by isoprene addition 

Investigating the OTUs of groups meeting the inclusion criteria from the stable 

isotope probing, sequential enrichment, and low concentration experiments for 

OTU level change yielded a number of OTUs potentially involved in isoprene 
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degradation including: Acetonema OTU 4 (Figure 2.SI.82), Acetonema OTU 6 

(Figure 2.SI.83), Acidovorax OTU 30 (Figure 2.SI.84), Acidovorax OTU 4 

(Figure 2.SI.85), Acidovorax OTU 46 (Figure 2.SI.86), Aeromicrobium OTU 240 

(Figure 2.SI.87), Aeromonas OTU 35 (Figure 2.SI.88), Aeromonas OTU 47 

(Figure 2.SI.89), Bosea OTU 2 (Figure 2.SI.90), Bosea OTU 44 (Figure 

2.SI.91), Caenimonas OTU 9 (Figure 2.SI.92), Flavobacterium OTU 162 (Figure 

2.SI.93), Fluviicola OTU 190 (Figure 2.SI.94), Fluviicola OTU 50 (Figure 

2.SI.95), Methylobacterium OTU l1 (Figure 2.SI.96), Mucilaginibacter OTU 268 

(Figure 2.SI.97), Nocardia OTU 11 (Figure 2.SI.98), Nocardioides OTU 194 

(Figure 2.SI.99), Nocardioides OTU 84 (Figure 2.SI.100), Pedobacter OTU 105 

(Figure 2.SI.101), Pedobacter OTU 44 (Figure 2.SI.102), Pedobacter OTU 47 

(Figure 2.SI.103), Pedobacter OTU 97 (Figure 2.SI.104), Pelomonas OTU l1 

(Figure 2.SI.105), Pseudomonas OTU 27 (Figure 2.SI.106), Pseudomonas 

OTU 34 (Figure 2.SI.107), Pseudomonas OTU 35 (Figure 2.SI.108), 

Pseudomonas OTU 64 (Figure 2.SI.109), Ramlibacter OTU 19 (Figure 

2.SI.140), Rhodanobacter OTU 24 (Figure 2.SI.141), Rhodococcus OTU 1473 

(Figure 2.SI.142), Rhodococcus OTU 1908 ( Figure 2.SI.143), Rhodococcus 

OTU 59 ( Figure 2.SI.144), Rhodococcus OTU 879 ( Figure 2.SI.145), 

Rhodococcus OTU s2 ( Figure 2.SI.146), Rhodococcus OTU s3 (Figure 

2.SI.147), Rhodococcus OTU s4 (Figure 2.SI.148), Rhodococcus OTU s5 

(Figure 2.SI.149), Shinella OTU 1 (Figure 2.SI.14Figure 2.SI.150), Sporolituus 

OTU 37 (Figure 2.SI.15Figure 2.SI.153), Sporolituus OTU 51 (Figure 

2.SI.15Figure 2.SI.154), TM7 OTU 850 (Figure 2.SI.14Figure 2.SI.151), TM7 

OTU 851 (Figure 2.SI.152), Variovorax OTU 58 ( Figure 2.SI.153), Variovorax 

OTU 62 ( Figure 2.SI.154), and Variovorax OTU 72 ( Figure 2.SI.155).  
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Investigating the predicted evolutionary relationships between these groups, 

and their respective type strains shows a wide range of diversity (Figure 2.14). 

The isoprene-enriched OTUs included Actinobacteria (mainly 

Corynebacterineae) (top left), Bacteroidetes (right), Betaproteobacteria (mainly 

Comamonadaceae) (top right), Gammaproteobacteria (bottom), 

Alphaproteobacteria (Bottom, slight right), Firmicutes (left of 

Gammaproterobacteria), as well as the representatives from the Candidate 

division TM7 (below Actinobacteria). The type strain sequences from the List of 

prokaryotic names with standing in nomenclature (LPSN) identified using 

BLASTn hits usually grouped near where they are expected to from the RDP 

alignment. 
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Figure 2.13 Evolutionary relationship between OTUs enriched by isoprene 
addition, and their nearest type strains, as determined from near BLASTn 
hits, with type strain sequences obtained from LPSN and refined 
iteratively. Alignment using MUSCLE (Mega 6), Relationship predicted 
using Jukes and Cantors model of Neighbour Joining with 1000 Bootstrap 
tests (values inset in grey) (Jukes and Cantor, 1969; Saitou and Nei, 1987; 
Felsenstein, 1985). OTU names from RDP classifier deepest assignment, 
“OTU l” and “OTU s” OTUs are from low concentration experiments and 
SIP experiments respectively, Evolutionary analysis performed in MEGA 6 
(Tamura et al., 2013). Scale is nucleotide substitutions per site. 

 

The OTU centroids derived from the SIP experiments, which were generated 

independently, group very closely to some of the groups from the sequential 

enrichments, including the SIP OTU Rhodococcus OTU s2 clustering closely 

with Rhodococcus OTU 1908, Rhodococcus OTU s3 grouping closely with 
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Rhodococcus OTU 59, and Rhodococcus OTU s4 very closely to Rhodococcus 

OTU 1473. 

TM7, being a candidate division, has no type strains, however the OTU centroid 

sequences were similar to genome sequenced TM7 sequences. TM7 OTU 850 

had 98% identity to “GW2011_GWC2_44_17”, from Brown et al. (2015), and 

TM7 OTU 851 had 97% identity to “RAAC3_TM7_1” from Kantor et al. (2013). 
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2.5 Discussion 

2.5.1  In situ rates of isoprene degradation in soils were near the lower 

measurements, suggesting overestimation of the size of the global soil 

sink. 

Rate testing for  in situ soil isoprene degradation throughout the year yielded no 

significant differences between the days tested across different seasons, with 

an average consumption rate of 4.77 nmol m-2 h-1. This is notably similar to the  

in situ rates reported by Gray et al. (2014), with an average of 2.0 nmol m-2 h-1 

with a max of 7.4 nmol m-2 h-1. However, this is much lower than the rate of 

1428 nmol m-2 h-1reported by Cleveland and Yavitt ( 1997). Aside from the 

location and sampling method, the starting isoprene concentration is probably 

the key factor that led to such between study differences. Cleveland and Yavitt 

(1997) added 385 ppb, Gray added no isoprene, and looked at the natural flux, 

and in this study, only 15 ppb was added. As Pegoraro (2005) demonstrated, 

there are clear, positive, relationships between isoprene concentration and 

isoprene-degradation rates, with the exact effect depending on other factors 

(e.g. temperature and soil water activity). Cleveland and Yavitt (1997) likely 

overestimated the natural isoprene flux by far exceeding  realistic isoprene 

concentrations, and so their estimation of the global soil isoprene sink of ~20.4 

Tg yr-1, is likely significantly too high. Cleveland and Yavitt (1997) suggested as 

much themselves, putting it forward as an upper bound, noting that actual 

levels of isoprene would be nearer to 3 ppb. It is probable that the isoprene 

consumption rates determined by Gray et al. (2015), which used unadjusted 

concentrations, are more realistic reflection of true rate. This finding is 

supported by the data in this thesis (Fig 7.2 ×106) and extrapolations from 
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Pegaroro et al. (2005), which near zero degradation when you trend to 

atmospherically relevant isoprene concentrations (Chapter 1). Based on the 

mean value determined in this thesis (4.77 nmol m-2 h-1) and that obtained by 

Gray et al. (2015) (mean of 2.0 nmol m-2 h-1, max of 7.4 nmol m-2 h-1), the mass 

of atmospheric isoprene degraded by soil would be in the region of 0.03 Tg yr-1 

(Here: 0.068 Gray mean: 0.029, Gray max: 0.11 Tg yr-1). This means that 

previous estimates of isoprene consumption in soil would have given an 

overestimate of soil as a sink, and soils may be near irrelevant as atmospheric 

isoprene sinks. It is likely that the effect of soil degradation in those models will 

require substantial revisions downwards; for example, the figure of 20.4 Tg 

isoprene degraded per year by soils, could be over 100 times the actual value 

(although as half the global flux determined from that work was from one forest 

soil type with high variance; this should not be too much of a surprise), although 

more research is needed to clarify this. 

However, firstly this is based on two small scale experiments, and so not 

representative at a global scale. Many more experiments would be required for 

an accurate global rate measurement; and secondly, as increasing the isoprene 

concentration does increase the rate by a large amount, there are likely to be 

some other factors involved as the soils are clearly primed for isoprene 

concentrations far exceeding those which they would be exposed to from the 

atmosphere. 
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2.5.2 No difference in degradation rates is observed between soils from 

beneath or remote from isoprene-producing trees.  

Using ex situ laboratory incubations with isoprene concentrations of 7.2 ×105 

ppb and 7.2 ×106 ppb, soils taken from under the canopies of isoprene-

producing trees have the same rates of isoprene degradation as those from 

areas with no trees, or non-isoprene-producing trees. However, isoprene 

degradation was very rapid, six times the rate found in microcosms of estuary 

water (Acuña Alvarez et al., 2009), and ten times the speed of lake water (not 

shown), suggesting the presence of microbiota able to quickly take advantage 

of the presence of isoprene. Transferring soil to a minimal medium and adding 

a high concentration of isoprene would be expected to cause a lag phase, the 

presence of which would effectively reduce the difference in degradation rate, 

so that the total rate difference is likely greater. This lack of significant 

difference in degradation rates between samples from near, and away from 

what we believed to be the key production sources, combined with the 

expectation that (discounting wind) the atmospheric isoprene concentration 

should follow an inverse squared effect from the source, along with rapid loss to 

atmospheric reactions generates the question: if the isoprene-degrading ability 

of bacteria isn’t significantly driven by nearby tree type, what is driving the 

ability to degrade isoprene? Some soil dwelling bacteria, particularly Bacillus 

species (Julsing et al., 2007), produce isoprene,  which raises the possibility of 

an in-soil microbial isoprene cycle. 

However, the stands in this experiment were small, and the isoprene 

concentration used in the incubations was high, so it is possible that in large 
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monoculture forests, with atmospheric levels of isoprene, there may be 

noticeable differences. 

2.5.3 Isoprene-degrading bacteria are numerous, varied, and possibly 

specialised for different isoprene concentrations 

A four-pronged experimental design was deployed to investigate the isoprene-

degrading microbiota: (i) sequential enrichment in minimal media with high 

concentrations of isoprene was used to enrich isoprene degraders, (ii) plating 

and isolation was used to cultivate isoprene degraders from these enrichments, 

(iii) stable isotope probing with 13C-isoprene was used to specifically detect 

bacteria that incorporated  isoprene into their biomass, and (iv) media free low 

isoprene concentration experiments were used to try and draw apart those 

bacteria that were likely to degrade isoprene at near atmospheric 

concentrations and so, were more likely to be involved in isoprene degradation  

in situ. 

The sequential enrichments with high concentrations of isoprene show a clear 

effect of isoprene on bacterial community composition, driven mainly by 

increasing the extent of enrichment, and secondly by isoprene concentration 

(Figure 2.3). Overlapping clustering of the third (E3) enrichments with both 

isoprene concentrations suggests common elements, likely one or more 

bacterial groups being enriched across the samples. Additionally, the highest  

level enrichments clustering more tightly than other enrichments suggests a 

further narrowing of the community structure there than at the lower high level 

enrichment. This convergence suggests a clear, concentration mediated, 

enrichment level specific enrichment, resulting in a somewhat replicable 

bacterial community composition. Thus, this sequential enrichment experiment 
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has sufficient power and resolution to identify species involved in isoprene 

degradation, which will be largely starting sample independent. As seen in 

Table 2.2 and Figure 2.7, it is likely that a large part of this effect is due to 

enrichment of Rhodococcus species. 

The detrended correspondence analysis from the DNA SIP experiment shows 

that upon isoprene enrichment, there is a clear effect distinguishing the 13C 

fractions from the 12C fractions with increasing fraction density, most easily 

visible in Figure 2.6, combined with a slight pull in the opposite direction for the 

lighter fractions (due to absence of heavy fraction community members), and 

that the initial communities cluster more with the 12C and lighter 13C fractions – 

demonstrating that the addition of 13C isoprene increases the density of a 

portion of the DNA, and therefore that isoprene is being directly incorporated by 

some species. In Figure 2.5, large community changes in some of the heavy 

fractions with both 12C and 13C isoprene are visible, possibly representing 

community change of GC rich bacteria, contamination in these fractions upon 

tube straightening, or possibly just the stochastic nature of community 

assembly.  

It is worth noting, that when analysing the DNA SIP data, the graphs should be 

interpreted with the following in mind: (i) the total DNA concentration is likely 

higher in the light than heavy fractions, (ii) different species of the same genus 

could act in different ways, (iii) data is grouped by fraction rather than density in 

the graphs, as a proxy for density, and points were coloured by density as 

approximated by the relative index of the fractions for the ordination plots. 



90 
 

With the low concentration experiments, isoprene has a visually noticeable 

effect, negatively on the NMDS2 axis, however this was insignificant compared 

to the no isoprene additions. Although this raises difficulties in terms of 

determining which bacteria are enriched – it also demonstrates that the 

isoprene concentrations provided to the soil are close to what they are used to; 

somewhat validating that soil isoprene concentrations are in the rough region of 

the experiment (and likely <15 ppb). The clear differences in orientation of 

communities from willow and birch soils, with clear separation on the NMDS1 

axis, and no obvious signs of convergence on enrichment is quite unlike the 

high concentrationenrichments (7.2 ×106 ppb) which became more similar when 

enriched, and is probably due to other factors (e.g. pH or nutrient differences), 

and suggests that the convergence seen in higher isoprene enrichments may 

be due to those experimental designs causing specific enrichment of a small 

subset of a more diverse isoprene-degrading community. There was also a 

clear difference in size of the effect between the willow and the birch samples, 

with the birch samples showing greater movement on isoprene enrichment (i.e. 

a larger difference in the position of points on ordination with different 

concentrations of isoprene), demonstrating that isoprene had a greater effect 

on the birch microbial community than the willow microbial community 

composition. This could be due to the willow sample being more used to 

isoprene, or possibly just an effect of the 2d visualisation.  

Isoprene degraders were initially grouped and screened at the RDP “Fix Rank” 

classification level, and if significant in multiple enrichments, then scrutinised at 

the OTU level. As demonstrated by the wide variety of bacterial classes present 

(Figure 2.13), the strains which are enriched by isoprene are diverse, whether 
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directly degrading isoprene, or not, in some measure the effects of isoprene are 

not localised to a small group of bacteria. 

The serial enrichments show an abundance of Rhodococcus, increasing 

through the sequential levels of enrichment, and especially in later and higher 

isoprene concentration enrichments. In addition, the dominance of 

Rhodococcus in the DNA SIP heavy fractions, with a significant decrease in the 

light fractions, clearly demonstrate the incorporation of carbon derived from 

heavy isoprene into Rhodococcus DNA. This affirms what we already knew 

about the genus Rhodococcus containing isoprene degraders (van Hylckama 

Vlieg et al., 2000). Additionally, numerous species of Rhodococcus were 

isolated with isoprene as a sole carbon source in attempts to build a collection 

of isoprene-degrading organisms as part of this project (Chapter 3). 

However the changes in abundance on enrichment with low concentrations of 

isoprene were unconvincing, with no significant dominance of enriched relative 

abundances, suggesting that Rhodococcus may not play a role in the uptake of 

isoprene at low concentrations, although clearly primed to take advantage of 

high levels of isoprene. 

Despite Gray et al. (2015) having issues due to the lack of significance shown 

(assuming present) and unclear inclusion criteria, the absence of Rhodococcus 

in their OTU level analysis is conspicuous, and backs up the idea that 

Rhodococcus is not important in isoprene degradation at low concentrations. 

Rhodococcus abundance changes with differing concentrations of isoprene 

were significant (F8,62 = 34.2 P= < 0.001) in the enrichment experiments, and 

Rhodococcus abundance changes with differing concentrations of isoprene 
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were not significant (F8,15 = 1.17 P=0.38) in the low concentration isoprene 

experiments. Rhodococcus abundances at different densities were not 

significant (F3,65 = 2.52 P=0.07), and with carbon types were not significant 

(F3,65 = 0.73 P=0.54) in the SIP isoprene experiments.  

 

At the OTU level, eight Rhodococcus OTUs seemed to be involved in isoprene 

degradation, four from enrichments (OTU 1908 ( Figure 2.SI.144), 1473 (Figure 

2.SI.143), 59 (Figure 2.SI.145), 879 ( Figure 2.SI.146), and four from stable 

isotope probing (OTU s2 (Figure 2.SI.149), s4 ( Figure 2.SI.151), s3 ( Figure 

2.SI.150), s1 ( Figure 2.SI.148)). Rhodococcus 1908 and s2 are very similar 

and are most closely related to the type strain Rhodococcus globerulus (Figure 

2.12). The SIP and low concentration experiments were performed separately 

(~ 2 years apart), and bioinformatically analysed separately; so this similarity 

suggests that the results are comparable and robust. Rhodococcus globerulus 

is one of the better known isoprene degraders. Rhodococcus AD45, the strain 

in which the isoprene degradation  pathway was discovered, is likely a member 

of the species Rhodococcus globerulus (Johan et al., 1998), and several R. 

globerulus strains have been shown to degrade isoprene (Johnston., 2014; El 

Khawand, 2014; van Hylckama Vlieg et al., 2000), so it is predictable that it is 

again shown to be involved in isoprene degradation. Rhodococcus OTU 59 and 

s3 are also closely related to each other and most similar in partial 16S rRNA 

gene sequence to Rhodococcus wratislaviensis; again a previously known 

isoprene degrading species (Crombie et al., 2015). Rhodococcus OTU s4 and 

Rhodococcus OTU 1473, likewise, are closely related to Rhodococcus 

erythropolis, which is another known isoprene degrader, and similar to R. 
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globerulus and AD45 (Crombie et al., 2015). Rhodococcus OTU 879 is likely a 

strain of Rhodococcus opacus, also known to be an isoprene degrader 

(Crombie et al., 2015). So whether or not Rhodococcus is involved in isoprene 

degradation in realistic atmospheric concentrations, the genus contains a 

number of species which directly degrade isoprene and are rapidly and 

significantly enriched from environmental samples, seemingly regardless of 

where the sample is derived from (including soils, fresh water and seawater 

(Johnston, 2014); although this does raise the additional question of whether 

Rhodococcus is an isoprene degrading lab weed). If Rhodococcus species are 

not involved in isoprene degradation with environmentally relevant 

concentrations, then this suggests that something else might be, and that there 

may be different bacteria primed for different concentrations of isoprene. 

Alternatively (but less likely), this difference in enrichment at different isoprene 

levels could suggest that in nature isoprene is not the main target of 

degradation by Rhodococcus spp., and the isoprene degrading capacity studied 

so far is a byproduct of a different reaction. The isoprene synthase active site is 

not highly specific, some isoprene-degrading bacteria co-metabolise 

trichloroethene, dichloroethenes, vinyl chloride, and Dichloroepoxyethane, 

potentially causing damage to the organism in the process (Ensign et al., 1992; 

Johan et al., 1998). However, it is also possible that, in the case of isoprene 

production in the soil, micro-environments rich in isoprene could lead to benefits 

for low affinity isoprene degraders. 

Candidate division TM7 (also known as Saccharibacteria) is enriched by 

isoprene in the sequential enrichments; in one enrichment reaching a mean of 

over 60%. However, these increases in abundance were highly stochastic, 
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generating large error bars and absences, and primarily present in the lower  

level (7.2 ×105 ppb) sequential enrichments. However; the DNA SIP clearly 

evidences that TM7 does not incorporate isoprene into its cellular 

macromolecules at this concentration, with multiple increases in the lighter 

fractions relative abundance (net of control), many of which were significant, 

and significant decreases in some of the heavier fractions is shown - 

demonstrating that although TM7 is enriched, it is only enriched in the 12C arm 

of the experiment. Although this could be due to a peculiarity of TM7 not being 

able to use 13C isoprene (in a similar way to some Methanotrophs having lower 

affinity for 13C methane (Bull et al., 2000)), it is much more likely that TM7 is not 

directly using isoprene, and the increased prevalence is due to indirect 

enrichment (TM7 is clearly gaining something from the isoprene addition). This 

is backed up by what we know about some TM7 species requiring other 

organisms to survive with the limited cultivation requiring presence of other 

organisms, and the lack of some TM7 species to synthesise key molecules, e.g. 

amino acids, and to be essentially parasitic (He et al., 2015). Additionally, TM7 

is not enriched in the low concentration experiments, suggesting irrelevance in 

real world isoprene removal, and the indirect effect of enrichment being unlikely  

in situ. Interestingly however, TM7 was shown to be present on 4/9 leaves from 

isoprene-producing tobacco, and 0/9 of non-producing tobacco (Chapter 4), 

although the significance of this is still unclear. TM7 abundance changes with 

differing concentrations of isoprene was significant (F8,62 = 3.85 P= < 0.001) in 

the enrichment experiments, and TM7 abundance changes with differing 

concentrations of isoprene were not significant (F8,15 = 0.76 P=0.64) in the low 

concentration isoprene experiments. TM7 abundances at different densities 
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were not significant (F3,65 = 2.43 P=0.07), and with carbon types were not 

significant (F3,65 = 1.35 P=0.27) in the SIP isoprene experiments.  

At the OTU level, TM7 falls into two groups, TM7 OTU 850 (Figure 2.SI.155) 

has high similarity to one of the TM7s genome sequenced by Brown et al. 

(2015), however little is known about it yet. TM7 OTU 851 (Figure 2.SI.156) 

was similar to the sediment derived TM7 sequenced by Kantor et al. (2013). 

This TM7 lacks the pentose phosphate pathway, most of the EMP pathway and 

no enolase, or method of converting pyruvate to acetyl-CoA, few genes 

involved in nucleotide biosynthesis, as well as some other usual metabolic 

pathways being missing. This suggests that TM7 may be reliant on metabolites 

from other bacteria to thrive, and possibly that these bacteria are being 

enriched. Linear regression was performed between TM7 relative abundance 

and the relative abundance of every other fix rank “genus” for each of these 

experiments, however relationships were only valid within experiments; 

meaning that any relationship to other bacteria is either unlikely, or complex 

without direct correlation, or with second species redundancy  (i.e. multiple 

species which it can grow in the presence of, where only one needs to be 

present). Similarly, this lack of clear dependence is supported by co-occurrence 

analysis; bacteria that co-occurred with TM7 were different in each experiment 

(supported further by the fact that TM7 reaches 89.8% in one enrichment, with 

no more than 3% relative abundance of any other genus level group; so any 

indirect effect would have to support at least 30 TM7 for each bacteria creating 

the effect). Despite the uncertainty of exactly what TM7 is doing to become 

enriched upon isoprene addition, certainly at high levels it is continuously 

enriched. This could be due to its growth depending on another bacterium 
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enriched by isoprene, or a factor of the experimental design/conditions, and 

further investigation would be required to try and explain its enrichment. The 

TM7 issue also demonstrates the reliability of the multi-faceted experimental 

approach; without SIP, we may have thought of it as an isoprene degrader; and 

without low concentration experiments, we may have further thought that it was 

involved in  in situ isoprene degradation. Interestingly, TM7 has been shown to 

degrade Benzene, and Toluene (somewhat similar compounds) through SIP 

(Luo et al., 2009, Xie et al., 2010) (Chapter 3 explores TM7 in greater depth). 

Aeromicrobium species increase with sequential enrichments, even reaching 

means of over 50% in two cases (Figure 2.SI.14), however Aeromicrobium was 

not shown to be directly involved in isoprene degradation by SIP, and showed 

no signs of being involved in isoprene degradation in the low concentration 

experiments. Additionally, an Aeromicrobium species (61[ba]) was isolated 

using isoprene as a sole carbon source, despite Aeromicrobium species often 

requiring precise nutritional profiles in the growth media to cultivate 

(Hernandez-Eugenio et al., 2015); however it failed to degrade isoprene in pure 

culture (Chapter 3), adding evidence that whatever factor is causing 

Aeromicrobium growth in the sequential enrichments is likely not directly related 

to either isoprene, and possibly not due to other bacteria using isoprene (as 

Aeromicrobium was able to be isolated without use of other bacterial input), and 

more likely due to the experimental conditions (e.g. the minimal media, 

temperate). The significant increase of Aeromicrobium in the enrichment was 

mainly contributed to by one OTU, OTU 240, which reaches a mean relative 

abundance of ~50% in the third “0.1” level isoprene enrichment (7.2 ×105 ppb) 

for Poplar and No Trees soil, and was similar to the Aeromicrobium erythraeum 
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type strain, and Aeromicrobium does not specifically appear in the literature as 

an isoprene degrader (although an Aeromicrobium does appear in Sample 6 

13C, and slightly more in 12C  in El Khawand (2014), and also Aeromicrobium is 

present at low level in the “Indonesia Water” isoprene enrichment by Acuña-

Alvarez et al., (2009), however no initial concentrations or significance was 

stated for these). Although it is probably not a direct isoprene degrader, 

Aeromicrobium does seem to become indirectly enriched, sometimes to over 

half of the population, meaning it is likely involved somewhere in subsequent 

steps in the metabolism of carbon from isoprene. Aeromicrobium abundance 

changes with differing concentrations of isoprene was significant (F8,62 = 3.19 

P=0.01) in the enrichment experiments, and Aeromicrobium abundance 

changes with differing concentrations of isoprene were not significant (F8,15 = 

1.43 P=0.26) in the low concentration isoprene experiments. Aeromicrobium 

abundances at different densities were not significant (F3,65 = 2.18 P=0.1), and 

with carbon types were not significant (F3,65 = 1.12 P=0.35) in the SIP isoprene 

experiments.  

 

Mycobacterium species, some of which have previously been shown to be 

involved in isoprene degradation, and has been isolated an tested as a 

degrader (El Khawand, 2014; Johnston, 2014), did not show any signs of 

isoprene degradation, and in fact shown significant suppression and light shifts 

(including decreases in relative abundance through enrichments which were 

statistically significant in eight samples, a significant decrease in the heavy 

fractions, and no change in relative abundance when incubated with 

environmentally relavent concentrations of isoprene) (Figure 2.SI.74, 2.SI.75, 
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2.SI.76), suggesting that isoprene degrading strains are not ubiquitous in these 

environments tested. 

However, Nocardia, identified previously as isoprene degraders (Hou et al., 

1981), showed enrichment in many of the serial enrichments (Figure 2.SI. 77, 

78, 79), mainly represented by OTU 11 (which does seem to degrade 

isoprene). However, Nocardia had indeterminate SIP results and low 

concentration experiments, with a significant decrease in birch soil exposed to 

150 ppb isoprene, potentially making their environmental relevance doubtful. 

The results from Johnston (2014), are contradictory, suggesting a Nocardia 

increase in the light fraction of 13C SIP to >11%, with absence in the heavy 

fraction, although with only low presence in the 12C fractions. In summary, 

although an isoprene degrading Nocardia isolate exists, the isoprene degrading 

species of this genus are unlikely to be widespread - as species which degrade 

isoprene are not consistently present in experiments, and species which do not 

are often present. 

Nocardioides seems to be enriched in 7.2 ×105 ppb isoprene sequential 

enrichments, and seems to decrease in abundance with higher isoprene 

additions, and some of the later 7.2 ×105 ppb isoprene additions. This could be 

due to it being outcompeted, however the lack of trend in low-concentration 

enrichments, and the lack of incorporation of 13C into DNA in the DNA SIP 

experiments means that its direct involvement in isoprene degradation in the 

environment is unlikely. On another note, Nocardioides was slightly enriched in 

heavy compared to light fractions of SIP in El Khawand (2014), however no 

significance was stated, and also, a Nocardioides species was isolated in this 

project (bA1a), on minimal media plates with isoprene (Chapter 3); so there is 
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good circumstantial evidence of involvement. Nocarioides OTUs included two 

similar to N. caeni (OTU 194; OTU 84), which follow the Genus’ trend. 

Nocardioides abundance changes with differing concentrations of isoprene was 

significant (F8,62 = 3.19 P=0.04) in the enrichment experiments, and 

Nocardioides abundance changes with differing concentrations of isoprene 

were not significant (F8,15 = 0.3 P=0.96) in the low concentration isoprene 

experiments. Nocardioides abundances at different densities were not 

significant (F3,65 = 1.49 P=0.23), and with carbon types were not significant 

(F3,65 = 0.89 P=0.45) in the SIP isoprene experiments.  

 

Fluviicola showed frequent, often modest but occasionally large, significant 

enrichment through serial enrichment of isoprene, suggesting, along with non-

significant increases in low concentration enrichments of Willow soil, and a 

sinusoidal DNA SIP plot (forming a wave of multiple peaks and troughs along 

the density gradient – which on further investigation was caused by two 

different (but dominant) Fluviicola OTUs, with one being responsible for the 

heavy shift). This suggests possible involvement of Fluviicola in isoprene 

degradation. I would suggest that although the SIP and low concentration 

results do not have statistical significance, in combination with the consistent 

enrichment in the serial enrichments, some Fluviicola species are likely 

isoprene degraders, and may be relevant at real world levels of isoprene 

exposure. Fluviicola OTU 190 and 50 were significantly enriched in the serial 

enrichments, and were both similar to F. taffensis. There is no indication of 

either F. taffensis, nor any member of the Fluviicola genus, degrading isoprene 

in the literature, making it a candidature for further investigation. Fluviicola 
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abundance changes with differing concentrations of isoprene was significant 

(F8,62 = 3.81 P= < 0.001) in the enrichment experiments, and Fluviicola 

abundance changes with differing concentrations of isoprene were not 

significant (F8,15 = 0.01 P=1) in the low concentration isoprene experiments. 

Fluviicola abundances at different densities were significant (F3,65 = 4.4 

P=0.01), and with carbon types were significant (F3,65 = 0.75 P=0.53) in the SIP 

isoprene experiments.  

 

The sporadic occurrence of Rhodanobacter in serial enrichments combined 

with absence in the DNA SIP experiments and no enrichment in the low 

concentration experiments suggest that the significant enrichments shown in 

some of the serial enrichment were not directly driven by the presence of 

isoprene. Rhodanobacter OTU 24 was responsible for the changes noted 

(Figure 2.SI.142), and was identified as being similar to R thiooxidans, and like 

the genus as a whole, is unlikely to be involved in isoprene degradation. 

Rhodanobacter abundance changes with differing concentrations of isoprene 

were not significant (F8,62 = 0.32 P=0.96) in the enrichment experiments, and 

Rhodanobacter abundance changes with differing concentrations of isoprene 

were not significant (F8,15 = 1.3 P=0.32) in the low concentration isoprene 

experiments. Rhodanobacter abundances at different densities were significant 

(F3,65 = 2.74 P=0.05), and with carbon types were significant (F3,65 = 0.39 

P=0.77) in the SIP isoprene experiments.  
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Flavobacterium showing consistent, and occasionally significant enrichment 

across sequential enrichments is, in a manner similar to TM7, probably unlikely 

to be directly driven by the presence of isoprene due to the DNA SIP 

experiments clearly demonstrating a decrease in the heavier fractions 

alongside a possible increase in the lighter fractions. This suggests that 

Flavobacterium enrichment is indirect, and the lack of enrichment in low 

concentrations of isoprene, suggests that it is environmentally irrelevant in the 

degradation of isoprene. Although it is interesting to note that some 

Flavobacterium species have a Glutathione S-transferase, which may be similar 

to that involved in isoprene degradation ( van Hylckama Vlieg et al., 1999; Xun 

et al., 1992), although this is of limited applicability without further information. 

Flavobacterium are also present in the work done by El Khawand (2014), with 

presence in the initial time periods at low abundance, followed by variable 

enrichment or suppression (although no significance stated), likewise they are 

present in Johnston (2014) as a dominant member (1/3) of Hythe samples, 

going down to a few percent in the light isoprene, and are absent in the heavy 

isoprene samples (although with no replication or statistics). Considering the 

lack of enrichment, lack of 13C incorporation, and the high abundance in which 

they can be found in water, it is possible that Flavobacterium are just better 

suited to the minimal media environment i.e. successful oligotrophs that 

scavange trace carbon sources, and are able to thrive in a liquid environment. 

Flavobacterium abundance changes with differing concentrations of isoprene 

was significant (F8,62 = 2.14 P=0.05) in the enrichment experiments, and 

Flavobacterium abundance changes with differing concentrations of isoprene 

were not significant (F8,15 = 0.56 P=0.8) in the low concentration isoprene 
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experiments. Flavobacterium abundances at different densities were not 

significant (F3,65 = 0.66 P=0.59), and with carbon types were not significant 

(F3,65 = 0.45 P=0.72) in the SIP isoprene experiments.  

 

The interaction between Acidovorax species and isoprene is unclear. The 

sequential enrichment shows a ubiquitously higher mean upon enrichment, 

however with no clear picture from DNA SIP or low concentrations (and no 

more clarity at the OTU level (with different Acidovorax OTUs seemingly 

enriched in different enrichments)), it is hard to tell if the enrichment is directly 

or indirectly driven by isoprene, however being enriched significantly 13 times, 

and markedly increasing from the first to the third 7.2 ×105 ppb isoprene 

addition enrichments, it is likely that there is some effect of isoprene driving the 

structure, diversity and abundance of OTUs in the population. In addition to this, 

although it may represent different Acidovorax species, a isoprene DNA SIP 

experiment with marine bacteria shows a visually greater relative abundance of 

Acidovorax in the light 12C, compared to heavy 13C fractions, although further 

complicated by an absence in the second 12C duplicate, and an absence of 

statistical analysis (Johnston., 2014). This, in some way supports the notion 

that the enrichment of different Acidovroax species by isoprene is replicable, 

affecting a number of Acidovorax species, and that this enrichment is indirect. 

Acidovorax abundance changes with differing concentrations of isoprene was 

significant (F8,62 = 9.26 P= < 0.001) in the enrichment experiments, and 

Acidovorax abundance changes with differing concentrations of isoprene were 

not significant (F8,15 = 0.01 P=1) in the low concentration isoprene experiments. 

Acidovorax abundances at different densities were significant (F3,65 = 3.7 
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P=0.02), and with carbon types were significant (F3,65 = 0.59 P=0.63) in the SIP 

isoprene experiments.  

 

Streptomyces, despite increasing in abundance in every first level enrichment 

with 0.1 ml isoprene headspace (7.2 ×105 ppb), with significance twice, is 

unlikely to contain isoprene degrading species, as by the third enrichment of 

both isoprene levels Streptomyces is reduced to little or none of the relative 

abundance, and is significantly decreased in the heavy fractions of DNA SIP 

and possibly increased in the light fractions, and has no change and one 

significant decrease in the low concentration experiments. It should be noted 

however that Streptomyces is present at 1.5 % in Acuña-Alvarez’s (2009) High 

isoprene Etang De Berre enrichment (although without initial abundances, 

replication or stats). However, it is likely that the enrichment of Streptomyces in 

the sequential enrichment (and the other studies) was likely an artefact of early 

experimental conditions (e.g. presence of surfaces, or liquid media 

environment). Streptomyces abundance changes with differing concentrations 

of isoprene were not significant (F8,62 = 0.52 P=0.84) in the enrichment 

experiments, and Streptomyces abundance changes with differing 

concentrations of isoprene were not significant (F8,15 = 1.27 P=0.33) in the low 

concentration isoprene experiments. Streptomyces abundances at different 

densities were not significant (F3,65 = 1.1 P=0.36), and with carbon types were 

not significant (F3,65 = 0.71 P=0.55) in the SIP isoprene experiments.  
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Sporolituus and Sporolituus OTUs, despite going from next to no abundance in 

the soil to low presence (Most means 0.5-1.5%, with one over 7%) in most 

enrichments for most soil types is unlikely to be involved directly in isoprene 

degradation, showing a significant decrease in one of the heavier fractions, and 

no change in the low concentration experiments, suggesting any effect of 

isoprene is indirect. Sporolituus abundance changes with differing 

concentrations of isoprene were not significant (F8,62 = 1.03 P=0.43) in the 

enrichment experiments, and Sporolituus abundance changes with differing 

concentrations of isoprene were not significant (F8,15 = 0.01 P=1) in the low 

concentration isoprene experiments. Sporolituus abundances at different 

densities were significant (F3,65 = 3.65 P=0.02), and with carbon types were 

significant (F3,65 = 1.02 P=0.39) in the SIP isoprene experiments.  

 

The effect of isoprene on the relative abundance of Pseudomonas is debatable, 

in sequential enrichments showing enrichment on many of the 0.1 ml isoprene 

headspace (7.2 ×105 ppb) enrichments, but no presence in the 1.0 ml isoprene 

(7.2 ×106 ppb) enrichments. The DNA SIP experiments are  inconclusive, with a 

unclear (and sinusoidal) pattern, at the OTU level, however, it seems that at 

least one OTU is enriched but is again probably not directly involved, and at 

least one OTU may be – although with no significance it is hard to be sure. 

Combined with the low concentration experiments being equally unclear, it is 

hard to tell if Pseudomonas is directly involved in isoprene degradation from 

these experiments. However, two different species of Psuedomonas were 

isolated on isoprene as a sole obvious carbon source (3.88, P1) as part of this 

project (Chapter 3). Additionally, Pseudomonas was shown to degrade 
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isoprene at very high concentrations in Srivastva et al., 2015, and  Acuña-

Alvarez et al., 2009 noted Pseudomonas in two isoprene enrichments, and 

noted Pseudomonas as a dominant last stage DGGE band (although lacking 

change, replication and statistics). Pseudomonas is also known to degrade 

other small hydrocarbons, including phenol and toluene, and has 

monooxygenases similar in sequence to that of isoprene monooxygenase 

(Leahy et al., 2003; Crombie and Murrell, 2014). Pseudomonas clearly has 

isoprene degrading species, although it’s enrichment may be condition 

dependant. Pseudomonas abundance changes with differing concentrations of 

isoprene were not significant (F8,62 = 1.92 P=0.07) in the enrichment 

experiments, and Pseudomonas abundance changes with differing 

concentrations of isoprene were not significant (F8,15 = 0.5 P=0.84) in the low 

concentration isoprene experiments. Pseudomonas abundances at different 

densities were not significant (F3,65 = 0.4 P=0.76), and with carbon types were 

not significant (F3,65 = 0.81 P=0.49) in the SIP isoprene experiments.  

 

From this study it is hard to confirm the role of Lysobacter in isoprene 

degradation. Lysobacter is significantly increased in many of the serial 

enrichment microcosms, has a variable SIP profile, with significance in one 

heavy fraction indicating any interaction being indirect, and a low concentration 

experiment result significant enrichment of birch soil, but at such a low level it 

could be just barely present in the test replicates only, alongside increasing 

means in the willow set. Unfortunately apart from sporadic enrichment resulting 

somehow from high isoprene, there is nothing concrete that can be derived 

from these data. Summporting this; Lysobacter abundance changes with 
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differing concentrations of isoprene were not significant (F8,62 = 1.39 P=0.22) in 

the enrichment experiments, and Lysobacter abundance changes with differing 

concentrations of isoprene were not significant (F8,15 = 0.11 P=1) in the low 

concentration isoprene experiments. Lysobacter abundances at different 

densities were not significant (F3,65 = 1.68 P=0.18), and with carbon types were 

not significant (F3,65 = 0.85 P=0.47) in the SIP isoprene experiments.  

 

Variovorax species seem to be enriched mainly in the 7.2 ×105 ppb third level 

enrichment of the serial enrichments (with seemingly three OTUs involved), 

with little presence at 7.2 ×106 ppb, however they are significantly decreased in 

the heavy fractions of DNA SIP, and show no significant changes in the low 

concentration experiments. Taken together this information indicates the 

likelihood that whatever effect causes the enrichment of Variovorax with 

isoprene, is firstly dependant on isoprene concentration with inhibition at high 

concentrations, and secondly is not Variovorax metabolising isoprene. 

Variovorax however, was isolated on minimal media with isoprene as a sole 

added carbon source (Chapter 3), so any factor causing this unusual 

enrichment profile may not be biological. This is in stark contrast to the El 

Khawand (2014) study, which found Variocorax only in the heavy fractions of 

isoprene SIP, although this lacked replication, statistics, and could have been a 

different species. Without replication, and with Variovorax having GC content of 

66.5%, in a bacterial GC content range of 16 to 75%, the DNA is comparatively 

dense, so it’s presence in the heavy fraction could have been entirely stochastic 

(Han et al., 2013; Lightfield et al., 2011). The varying DNA density between 

bacteria, and therefore fraction location is an inherent problem in using just two 
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fractions for DNA SIP; and is why testing for a heavy shift throughout a range of 

fraction densities for each OTU is superior. Variovorax abundance changes 

with differing concentrations of isoprene were not significant (F8,62 = 1.17 

P=0.33) in the enrichment experiments, and Variovorax abundance changes 

with differing concentrations of isoprene were not significant (F8,15 = 1.08 

P=0.43) in the low concentration isoprene experiments. Variovorax abundances 

at different densities were not significant (F3,65 = 0.86 P=0.47), and with carbon 

types were not significant (F3,65 = 0.82 P=0.49) in the SIP isoprene 

experiments.  

 

Pedobacter has been isolated on minimal media with isoprene as the sole 

added carbon source, is significantly enriched in 9 of the sequential 

enrichments across 5 of the soil types, with four OTUs, and increases, although 

insignificantly, in the low concentration experiments, and although nothing can 

be garnered from the DNA SIP, which is has no clear pattern or any 

significance, for these reasons it is possible that it is involved in isoprene 

degradation, certainly at high concentrations, possibly at low, but it is cannot be 

determined from these data if it is direct or indirect. Pedobacter abundance 

changes with differing concentrations of isoprene was significant (F8,62 = 3.55 

P= < 0.001) in the enrichment experiments, and Pedobacter abundance 

changes with differing concentrations of isoprene were not significant (F8,15 = 

0.01 P=1) in the low concentration isoprene experiments. Pedobacter 

abundances at different densities were not significant (F3,65 = 0.29 P=0.84), and 

with carbon types were not significant (F3,65 = 0.59 P=0.63) in the SIP isoprene 

experiments.  
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Ramlibacter species were enriched in the sequential enrichments, particularly in 

the 7.2 ×105 ppb third level enrichments, suggesting a potential interaction with 

isoprene, however the lack of presence in the DNA SIP experiments and the 

lack of change in the low concentration experiments suggest that any effect, 

even if direct, is unlikely to be biologically relevant. Ramlibacter abundance 

changes with differing concentrations of isoprene was significant (F8,62 = 5.46 

P= < 0.001) in the enrichment experiments, and Ramlibacter abundance 

changes with differing concentrations of isoprene were not significant (F8,15 = 

0.73 P=0.67) in the low concentration isoprene experiments. Ramlibacter 

abundances at different densities were not significant (F3,65 = 1.09 P=0.36), and 

with carbon types were not significant (F3,65 = 0.57 P=0.64) in the SIP isoprene 

experiments.  

 

Mucilaginibacter, despite meeting the inclusion threshold of two statistical 

significances on enrichment, is almost certainly not involved in isoprene 

degradation, with as much significance of suppression through enrichment, as 

well as a significant decrease at low concentration (not shown). It is likely that 

the enrichment is due to highly stochastic processes, even if only occasionally 

replicable and sometimes affected by isoprene. Mucilaginibacter abundance 

changes with differing concentrations of isoprene were not significant (F8,62 = 

0.88 P=0.54) in the enrichment experiments, and Mucilaginibacter abundances 

at different densities were not significant (F3,65 = 2.45 P=0.07), and with carbon 
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types were not significant (F3,65 = 1.66 P=0.19) in the SIP isoprene 

experiments.  

 

Aeromonas species do not have strong evidence of isoprene degradation, with 

some significance in early enrichments, only one of which has a triplicate mean 

above 4%, and no presence in DNA SIP or the low concentration experiments. 

However, adding these modest increases to the presence and (also modest, 

with no significance stated) increase shown in the heavy fraction of isoprene 

DNA SIP in marine systems (Johnston., 2014), it is circumstantially plausible, 

that some Aeromonas species may be involved in isoprene degradation. 

Aeromonas abundance changes with differing concentrations of isoprene were 

not significant (F8,62 = 0.39 P=0.93) in the enrichment experiments, and 

Aeromonas abundances at different densities were not significant (F3,65 = 1.87 

P=0.14), and with carbon types were not significant (F3,65 = 2.31 P=0.09) in the 

SIP isoprene experiments.  

 

Shinella species are unlikely to be involved in isoprene degradation in these 

soils, at least directly, although enriched in some serial enrichments, DNA SIP 

evidences their lack of a role in direct isoprene metabolism, however a 

“Shinella-like” organism was described as being involved in isoprene 

degradation in marine systems (Acuña Alvarez et al., 2009), although this could 

be a different species, it could have also been enriched by whatever indirect 

mechanism caused the enrichment of Shinella in these experiments. Shinella 

abundance changes with differing concentrations of isoprene was significant 
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(F8,62 = 4.23 P= < 0.001) in the enrichment experiments, and Shinella 

abundance changes with differing concentrations of isoprene were not 

significant (F8,15 = 0.01 P=1) in the low concentration isoprene experiments. 

Shinella abundances at different densities were not significant (F3,65 = 1.13 

P=0.35), and with carbon types were not significant (F3,65 = 0.31 P=0.82) in the 

SIP isoprene experiments.  

 

Bosea species, despite being significantly enriched in some serial enrichments, 

and having a species isolated as part of this work (Chapter 3), are also 

suppressed in others, not present in DNA SIP and have no enrichment in low 

concentration experiments, indicating they are unlikely to be involved in 

isoprene degradation. Bosea abundance changes with differing concentrations 

of isoprene was significant (F8,62 = 3.19 P=0.01) in the enrichment experiments, 

and Bosea abundance changes with differing concentrations of isoprene were 

not significant (F8,15 = 0.01 P=1) in the low concentration isoprene experiments. 

Bosea abundances at different densities were significant (F3,65 = 5.08 P= < 

0.001), and with carbon types were significant (F3,65 = 0.32 P=0.82) in the SIP 

isoprene experiments.  

 

Acetonema seem to be enriched in many of the 0.1 ml 30°C isoprene 

headspace serial enrichments (7.2 ×105 ppb), however in none of the 7.2 ×106 

ppb, suggesting inhibition by, or out competition in high isoprene levels. 

Acetonema species are not present in DNA SIP experiments, and are not 

enriched in low concentration experiments. Acetonema abundance changes 
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with differing concentrations of isoprene were not significant (F8,62 = 1.41 

P=0.21) in the enrichment experiments, and Acetonema abundance changes 

with differing concentrations of isoprene was significant (F8,15 = 3.39 P=0.02) in 

the low concentration isoprene experiments. Acetonema abundances at 

different densities were not significant (F3,65 = 2.14 P=0.1), and with carbon 

types were not significant (F3,65 = 0.5 P=0.69) in the SIP isoprene experiments.  

 

Polaromonas, Caenimonas and Acinetobacter species are unlikely to be 

involved in isoprene degradation, despite some significant increases in 

sequential isoprene enrichments, these are generally sporadic, and the relative 

abundance is generally quite low (<0.15%), with no additional evidence of 

degradation from low  concentration experiments or from DNA SIP, it is hard to 

tell from these experiments. 

Methylobacterium showed no significant enrichment in the sequential 

enrichments, however the DNA SIP shows a heavy shift (although not 

significant), a Methylobacterium representative has been cultured on minimal 

media with isoprene as the only provided carbon source, and Methylobacterium 

shown an enrichment in the low concentration experiments (although not 

significant), from near zero to over 2% of sequences. This demonstrates that 

this Methylobacterium includes isoprene degraders. Although considering the 

lack of increase at high concentrations, it is likely that Methylobacterium is not 

important in degrading, or is inhibited by high concentrations of isoprene, it is 

capable of isoprene degradation in concentrations similar to environmental 

conditions, and is therefore likely important  in situ. Methylobacterium 
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abundance changes with differing concentrations of isoprene were not 

significant (F8,62 = 0.32 P=0.96) in the enrichment experiments, and 

Methylobacterium abundance changes with differing concentrations of isoprene 

were not significant (F8,15 = 1.07 P=0.43) in the low concentration isoprene 

experiments. Methylobacterium abundances at different densities were 

significant (F3,65 = 2.72 P=0.05), and with carbon types were significant (F3,65 = 

0.77 P=0.52) in the SIP isoprene experiments.  

 

Nakamurella, similarly did not show any significance in sequential enrichments, 

and had a significant enrichment in the low concentration experiments; however 

DNA SIP experiments show only a relative abundance shift towards the light 

fractions (with no significance), so it is unlikely to be involved in direct 

degradation, if it is involved in degradation at all. Nakamurella abundance 

changes with differing concentrations of isoprene were not significant (F8,62 = 

0.6 P=0.78) in the enrichment experiments, and Nakamurella abundance 

changes with differing concentrations of isoprene were not significant (F8,15 = 

0.63 P=0.74) in the low concentration isoprene experiments. Nakamurella 

abundances at different densities were significant (F3,65 = 3.8 P=0.01), and with 

carbon types were significant (F3,65 = 0.3 P=0.83) in the SIP isoprene 

experiments. 
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2.6 Conclusion 

Although the  in situ data from this project only represents a small area of 

Essex, and a few days across the year, two firm conclusions can be drawn. 

Firstly that if there is a seasonal effect, it is not a significant driver of rate, and 

secondly, that the current figure we have for global terrestrial isoprene 

degradation is incorrect, and the rates reported in Gray et al. (2015) are more 

representative of reality. 

The lack of seasonal trend (and the seasonal effects of leaf cover) also 

supports the lack of difference between the isoprene degradative capacity in 

soils away from or from near isoprene producing trees. In addition to the 

differential ability of some isoprene degraders to take advantage of high levels 

of isoprene, and the very rapid degradation of isoprene by soils communities, 

although it is possible that isoprene concentrations were insufficiently localised 

in an open park, it is likely that something other than nearby isoprene producing 

trees is supplying isoprene to the soil, possibly an internal soil isoprene cycle. 

This work has confirmed that Rhodococcus, particularly R. globerulus, 

wratislaviensis, erythropolis, opacus are key isoprene degraders at very high 

levels of isoprene and are clearly primed to take advantage of high isoprene 

concentrations, however has cast a shadow of doubt on their involvement at 

realistic concentrations of isoprene. However, it has also indicated some 

groups, like Methylobacterium and possibly Fluviicola which may be involved in 

isoprene degradation  in situ, and raised the possibility of a multi-tiered 

isoprene degradation situation, with different bacteria ranging widely in affinity 

for isoprene. It has also identified some groups which are enriched due to 

isoprene, but are unlikely to be direct degraders, with TM7, Aeromicrobium, 
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Nocardioides and Acidovorax being the most notable, and identified the OTUs 

affected, and their most similar species. 

Overall the approaches used to investigate the communities involved in 

isoprene degradation made up a quite robust set of experiments, with the 

sensitivity of sequential, media rich high isoprene enrichments, the direct 

evidence of SIP and the media free environmental isoprene levels in the low  

concentration experiments – across two different MiSeq and bioinformatics 

runs, across two years. Where evidence from these multiple sources suggests 

bacterial involvement it is strong. That said, in retrospect, the serial enrichments 

would have been better performed at lower concentrations, to reflect  in situ 

conditions, the earlier termination of the Stable Isotope Probing experiment may 

have been more sensitive, or a lower concentration (if possible with the DNA 

requirements) could have been advised, and the low concentration enrichments 

could have either been continued for longer, or could have done with a greater 

number of replicates in order to the increase sensitivity of statistical tests to 

small changes.  

Certainly from this work comes the conclusion that any further work on isoprene 

degradation in the environment should focus on low, environmentally relevant, 

concentrations of isoprene. 
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Many thanks to Toungphorn Uttarotai (visiting student) for her assistance with 

the DNA SIP lab work. 

 

NB: Samples were also taken, and serially enriched from the lakewater in 

Wivenhoe park, and some of the serial enrichments were 454 pyrosequenced, 

and all sequential enrichments were amplified and analysed by DGGE, and 

band sequencing (with similar, but lower resolution conclusions), however as 

these are tangential/ superseded to/in this project, they have not been included. 
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Chapter 3. Isolation of bacteria associated with 

isoprene degradation and investigation of the 

isoprene degradation pathway. 
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3.1 Abstract 

 

Isoprene is a climate altering, health affecting, volatile hydrocarbon. Bacteria 

that are involved in the biodegradation of isoprene have been identified 

previously, and the genetic regions involved in isoprene degradation have been 

characterised in a few species, with early forays into investigating the wider 

diversity of isoprene degrading genes in isolates and in the environment having 

been performed using primers based on this information. This chapter 

describes the isolation and characterisation of numerous bacterial strains 

associated with isoprene degradation, and the investigation of their phylogeny 

and putative isoprene monooxygenase genes. Comparing the isoA and 16S 

rRNA gene sequences of bacteria revealed that there was no correlation 

between isoA sequences and 16S rRNA sequences, and three distinct clusters 

of isoA-like genes were identified, only one of which was similar to previously 

studied sequences. Selected, strains, which were confirmed to degrade 

isoprene and grow on it as sole carbon source, were subjected to carbon  

source testing, and/or genomic sequencing, annotation and investigation, in 

order to increase the breadth and depth of our knowledge of the metabolic 

activity of isoprene degraders and the genetics associated with isoprene 

degradation, demonstrating that the isoprene degrading operon was present in 

different genomic locations, with different gene orientations, in closely related 

bacteria. The metagenome of a TM7 rich isoprene degrading community was 

also sequenced to elucidate the mechanisms behind its isoprene driven 

enrichment, revealing a possible metabolic interaction between TM7 and 

Aeromicrobium that merits further investigation.  
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3.2 Introduction 

 

One-third (600 TgC) of the world’s annual hydrocarbon production is the highly 

reactive 2-methyl-1,3-butadiene, commonly known as isoprene. Isoprene is 

mostly produced by trees and shrubs as a method of reducing damage by 

transient heat (Sharkey et al., 2008), and is mostly attenuated through 

atmospheric reactions – often producing health or climate affecting compounds 

(Fan & Zhang, 2004). For example, reactions with free radicals reduce their 

atmospheric concentration resulting in less capacity for free radicals to react 

with other hydrocarbons, which increases the retention time of the potent 

greenhouse gas, methane. Other reactions with nitrous oxides produce 

tropospheric ozone, which can cause respiratory problems (Ashworth et al., 

2013; Jenkin & Clemitshaw, 2002). Isoprene is highly reactive due to its carbon-

carbon double bonds, leading to an atmospheric lifetime of less than one hour, 

and a resulting atmospheric concentration between the low parts per trillion 

where production is low (for example, above marine environments), up to over 

10 ppb in tropical regions (Seinfeld & Pandis (2012); Baldocchi et al., 1995; 

Kesselmeier et al., 2000; Lewis et al., 1997). 

However, evidence is emerging that a minority of isoprene, possibly up to 5%, 

is degraded by soil dwelling microbes (Cleveland & Yavitt, 1997). It has already 

been established that representatives of genera, including Rhodococcus, 

Mycobacterium and Gordonia, are capable of degrading isoprene (Johnston., 

2014; El Khawand, 2016; Acuña Alvarez et al., 2009; van Hylckama Vlieg et al., 

2000); with evidence that some fungi are involved as well (Gray et al., 2015). 

Work by the group of Janssen (e.g. van Hylckama Vlieg et al., 2000) and the 
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group of Murrell (e.g. El Khawand, 2014); Johnston, 2014; Crombie et al., 2015) 

have given insight to the mechanisms of isoprene degradation in Rhodococcus, 

Mycobacterium, and Gordonia species, and resulted in primers and protocols 

designed for the investigation of the isoprene degradation pathways. 

 

Figure 3.1. Isoprene degradation pathway of Rhodococcus AD45 from van 
Hylckama Vlieg et al. (2000). 

 

Isoprene degradation is thought to take place through enzymes isoA to J, 

encoded on a megaplasmid by genes isoA to J. Isoprene degradation begins 

with a monooxygenases, isoABCDEF, where isoprene is converted into 

epoxyisoprene. A glutathione-S-transferase, IsoI, converts this into 1-hydroxy-

2-glutathionyl-2-methly-3-butene (HGMB). A dehydrogenase, IsoH, converts 

HGMB into 2-glutationyl-2-methyl-3-butenal and then through to 2-glutathionyl-

2-methyl-2-butenoic acid (GMBA) ((van Hylckama Vlieg et al., 2000) (Figure 

3.1).  
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Using ‘isoA primers’ targeting the isoA gene El Khawand (2016) and Johnston 

(2014) were able to characterise a number of isoA sequences from 

environmental samples, giving an initial insight into the diversity of isoA 

sequences in the environment. 

 

The aim of this chapter was to isolate a wide range of isoprene degrading 

bacteria in order to: (i) understand the phylogenetic and physiological breadth 

of microbes involved in the process, (ii) compare the sequences of the key 

phylogentic (16S rRNA) and key functional (isoA) genes to gain insights into the 

evolution of isoprene degradation, and (iii) Analyse the genomes of selected 

isoprene degrading strains to further understand the diversity of the isoprene 

degradation pathways. Having ascertained that TM7 was highly enriched 

isoprene fed soils, another aim was to isolate a representative of this phylum 

and failing that to investigate it by metagenomic analysis of an enrichment 

 

3.3 Materials and Methods 

3.3.1 Enrichment and isolation of isoprene degrading microorganisms 

Six soil, five leaf and one lake location were sampled from Wivenhoe Park (UK) 

in triplicate in early October 2012; each in triplicate. The leaves used in this 

study were from the following trees: Poplar (Populus canadensis), Willow (Salix 

babylonica), Oak (Quercus robur) Birch (Betula pendula) and Ash (Fraxinus 

excelsior), with the triplicates spread equally around the circumference of the 

same tree, and taken at head height (or nearest available height). Soil samples 

were taken within one meter of the tree trunk of each of these trees, and 

between one and two meters from the other replicates (see Section 2.3.1 for 
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details). Lake water was sampled from a lake near the Ash location 

(51°52'42.2"N, 0°56'53.8"E). Leaf samples consisted of entire leaves, which 

were encompassed by sterile whirlpack bags and cut off at the stem. Soil 

samples consisted of the un-sieved top two centimetres of vegetation free soil 

(See Section 2.3.1 for details), and lake water samples consisted of 50 ml from 

the top 10 cm of the lake, 0.3 m from the edge, sampled with Falcon tubes. 

Microbes living on the surface of the leaves were detached using a modified 

version of a protocol provided by Aslam (2012); a mixture of large and small 

whole leaves were suspended in 0.02 M Tris, 0.01 M EDTA, 0.024% v/v Triton 

X solution (final concentrations from a 50×, pH 7.5 stock) and shaken for 30 

min, and then sonicated for 10 min, and filtered through sterile glass wool. One 

ml of lake water, 1 ml of cell suspension washed from leaves or 1 g of soil (as 

applicable) of each sample was incubated in 9 ml minimal medium in a sterile 

125 cm3 serum bottle with a PTFE covered silicon septum, and isoprene added 

to final concentrations of 7.2×105 and 7.2×106 ppb, (as in Section 2.3.2.1). The 

isoprene concentration in the microcosms was measured by GC-FID, and after 

observing over 80% decreases in the isoprene concentration, 1 ml of the 

sample was set up in a new enrichment, with this sequential enrichment two 

times, as in (as in Section 2.3.2.1). 

 

The third enrichment for each triplicate was diluted 101, 102, 103 and 104 fold in 

the same minimal media, and 100 µl of each dilution was streaked onto minimal 

media plates containing 15 g l-1 agar, and incubated in glass desiccation jars 

containing approximately 0.5 ml of 99% isoprene per 1000 cm3 of air for 7 days. 

Unique looking colonies were picked, and serially re-plated and incubated for 
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isolation. Numerous strains were also isolated through a number of different 

methods, outlined in Appendix 3.AX.3. From these, 141 strains were chosen for 

partial sequencing of their 16S rRNA gene, and 95 for partial sequencing of 

their isoA gene, based on different colony morphologies and an ability to grow 

on isoprene as the sole added carbon source. A list of strains and descriptions 

is available in Appendix 3.AX.1. A small quantity of cells from a single colony 

was lifted using a 10 µl pipette tip, and suspended in 20 µl sterile DNAase free 

water. The DNA was extracted by freezing at -20°C, followed by 5 minutes of 

heating to 95°C in a thermocycler.  

Following DNA extraction, the 16S rRNA and the isoA genes  were amplified by 

PCR: 25 µl RedTaq mastermix, 2 µl DNA solution, 1 µl forward primer, 1 µl 

reverse primer and 21 µl water were added to each well of a 96 well plate, 

sealed, and spun briefly. For 16S rRNA amplification the primers used were 

27F (3-AGAGTTTGATCMTGGCTCAG-5) and 1492R (3-

CGGTTACCTTGTTACGACTT-5) (Weisburg et al., 1991), and PCR was 

performed with a 5 minute hold at 94°C, followed by 35 cycles of 94°C for 30 s, 

56°C for 30 s and 72°C for 90 s, with a 10 minute final 72°C extension. isoA 

gene amplification was performed using the isoA primers and protocol 

developed by UEA (Crombie et al., 2015), isoA-F (3- 

TGCATGGTCGARCAYATG-5) and isoA-R (3-

GRTCYTGYTCGAAGCACCACTT-5), with a hold of 94°C for 4 min, followed by 

19 cycles of; 94°C for 30 s, 72°C (decreasing by 1°C per cycle) for 45 s and 

72°C for 60 s, and 25 cycles of 94°C for 30 s, 54°C for 45 s and 72°C for 60 s, 

with a final 72°C hold of 5 minutes. PCR products were purified by addition of 

50 µl Ampure XP magnetic beads, incubating for 5 minutes, on a magnetic 
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stand (Agencourt SPRiPlate), removal of the supernatant, washing twice with 

190 µl of 80% v/v ethanol, air drying for 10 minutes, removal from the magnetic 

plate and suspension in EB (Elution Buffer: 10 mM Tris-Cl, pH 8.5) for two 

minutes, followed by incubation on the magnetic plate for 30 seconds and 

recovery of the EB containing purified DNA. Sanger sequencing was performed 

by GATC Life Sciences using the lightrun plate option and the forward primers. 

 

3.3.2 Analysis of the 16S rRNA and isoA gene sequences of isoprene 

degrading strains 

Sanger sequences were quality filtered and converted to FASTA format using 

Chromatogram Explorer v3.3 from Heracle Biosoft, with an end trimming quality 

value limit of 18, and a window length of 10 for 75% good bases. 

FASTA sequences were aligned using the MUSCLE algorithm (default 

parameters) in MEGA (6.06), and pairwise distance matrices were calculated 

using the distance function in MEGA with the Jukes and Cantor model (default 

parameters, nucleotide sequences). 

Pairwise distances were exported from MEGA into MS EXCEL (2013), and 

aligned, renamed, and sorted, to give an isoA and a 16S rRNA distance (base 

substitutions per site) for each pair of strains. Analysis was carried out by 

graphical representation in MS EXCEL (2013), and tests of normality (Shapiro-

wilk, linear regression, residual analysis), linear regression, and Spearmans 

rank correlation in R. 

The closest relatives to strains were identified by BLAST-n and type strains’ 

sequences were obtained from LPSN, and the type strains 16S rRNA gene 

sequences were aligned using the same methodology, and used to generate a 
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maximum likelihood phylogenetic tree in MEGA 6. Once identified by the 

equivalent 16S rRNA gene sequences the isoA sequences were aligned, and 

used to create a maximum likelihood phylogenetic tree. 

 

3.3.3 Carbon source testing 

Selected strains were incubated in Biolog plates PM1 and PM2 for 48 hours, 

according to the Biolog gram positive plate instructions, using the high growth 

dye for all strains apart from strain GM3 (slow growth dye). Growth was 

measured using a plate reader (labtech FLUOstar Omega) to measure the 

Tetrazolium based respiration indicative dye as a proxy for respiration at 590 

nm. Volatile hydrocarbon testing plates were set up in (empty) 96 well plates 

with the same biolog mix, the plates were sealed and incubated in desiccation 

jars with 0.2 ml isoprene per 1000 cm3 air, toluene, benzene, hexane, ethane, 

DMSO, or flushing with methane, propane or propane, or nothing, and 

respiration was measured in the same way (with Tetrazolium dye, and read on 

a plate reader) as the Biolog plates. 

 

3.3.4 Genome sequencing 

DNA from representative strains, which were confirmed to degrade isoprene, 

was extracted using the GenElute bacterial Genomic DNA Kit (Sigma), with no 

protocol modifications. DNA integrity was checked on a 0.5% agarose gel, and 

quantity was measured by spectrophotometry (Nanodrop 3300 

fluorospectrophotometer with PicoGreen dye). The genomic DNA was 

sequenced using PacBio technology at NBAF-L, and was kindly assembled into 

contigs by Xuan Liu at NBAF-L using PacBio’s SMRT-Analysis software 2.3.0 
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with a minimum subread length of 50, minimum polymerase quality of 75, and a 

minimum polymerase read length of 50. Bespoke VBA code was used to 

convert the assembled contigs into multiFASTA format, and the genomes were 

uploaded to RAST (Aziz et al., 2008; Brettin et al., 2015; Overbeek et al., 2014) 

for automatic annotation (default parameters) and manual investigation. 

 

Differential predicted metagenomic interaction analysis was performed on 

enrichment b22ck consisting of around 35% 16S rRNA gene sequences 

derived from TM7. The community was sequenced by PacBio, and assembled 

into contigs as above. Each contig was identified to the genus level by BLAST-n 

(Altschul et al., 1990). A bespoke algorithm was created to produce two 

separate multiFASTA files, one with and one without TM7. Both sets of 

sequences were uploaded to MGRAST (Meyer et al., 2008) for function 

prediction, and their predicted functions were overlaid on a KEGG pathway map 

(Kanehisa & Goto, 2000). Where TM7 biochemical pathways were present, but 

were absent in the rest of the community, it was assumed that this was likely a 

unique function of TM7 in the community. The proteins predicted to be involved 

in supplying or utilising these metabolites were deemed likely to belong to 

groups metabolically interacting with TM7, and the protein sequence was 

identified from the KEGG database (from E. coli). This protein sequence was 

searched against a local BLAST database constructed with the metagenomic 

community using tBLASTn (through the prfectBLAST frontend (Santiago-Sotelo 

& Ramirez-Prado, 2012)), and the matching metagenome contigs were 

identified. These contigs were related back to the original contig BLAST-n result 

to indicate which members of the microbial community theoretically interact with 



127 
 

TM7 through their metabolic activity. The functions predicted by MGRAST for 

the TM7 and non-TM7 metagenomic data were also investigated for any 

differences in antibiotic resistance, or virulence factors; however there =were no 

obvious differences. 

 

3.3.5 Attempts at isolating TM7 

Many additional approaches for isolating bacteria that have proven recalcitrant 

to cultivation, particularly TM7, were deployed for enrichments derived from one 

soil sample taken from beneath a willow tree. Techniques included using 

different surface types (e.g. agar replacements), carbon sources and 

antimicrobials, and providing direct or indirect access to metabolites from other 

bacteria. More details are available in the Appendix (3.AX.3). 

 

3.4 Results 

3.4.1 Numerous types of bacteria are able to grow on isoprene as the sole 

carbon source. 

In order to investigate the culturable isoprene-degrading microbiota, isoprene 

enriched communities were plated onto minimal media with isoprene as the 

sole carbon source. Colonies with distinct morphologies were picked and 

subcultured until the same morphology only was visible for over six 

generations. The partial 16S rRNA gene was sequenced for these isolates, and 

the closest species were identified by BLAST-n. 
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Table 3.1 Table categorising the number of isolates belonging to (or most 
close to) genera based on BLAST-n analysis of 16S rRNA gene sequences 
for the isolates used in the phylogenetic analyses. 

Genus Quantity Genus Quantity 

Aeromicrobium 1 Nocardia 1 
Arthrobacter 4 Nocardioides 1 
Bosea 1 Pedobacter 3 
Dietzia 1 Pseudomonas 2 
Ensifer 1 Rhodococcus 105 
Mezorhizobium 1 Stenotrophomonas 3 
Methylobacterium 2 Variovorax 2 
Nitrobacter 1   

Refer to Appendix 3.AX for detailed information on the isolates generated 
in this project 
 
The vast majority of isolates belong to the genus Rhodococcus, particularly R. 

erytheropolis, R. globerulus and R. opacus (Table 3.1). 

In order to accurately visualise the phylogenetic relationship of these isolates, 

type strains for each of the top three highest identity BLAST-n results stating 

the species level were obtained from the LPSN, and the type strains 16S rRNA 

gene sequence was used to make a maximum likelihood phylogenetic tree. 
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Figure 3.2 16S rRNA gene sequence maximum composite likelihood tree 
following MUSCLE alignment (50 iterations) and using the Tamura-Nei 
(1993) model and the highest log likelihood. Initial tree generation was 
through the Jukes and Cantor Neighbour Joining and BioNJ models 
(MEGA 6). (950 bp sequences). Bootstrap resampling (1000 replications) 
was used to test the validity of the branching order and values over 50% 
are reported (grey). Type strains were identified through searching LPSN 
for the names of nearest BLAST results. External circles mark the origin 
of the strain , green = leaves, brown = soil. External triangles on type 
strains indicate the phylum or sub-phylum: Black: Actinobacteria, Brown: 
Bacteroidetes, Dark blue: Alphaproteobacteria, Light blue: 
Betaproteobacteria, Purple: Gammaproteobacteria. The scale shows 
nucleotide substitutions per site for radial distance. 
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The phylogenetic tree broadly agrees with the blast-n results, and displayed a 

high diversity of organisms culturable with isoprene as the sole carbon source. 

Strain G28, initially indicated to be Nitrobacter is equally close to 

Rhodopseudomonas, and strain 5A1A is not particularly close to the 

Pimelobacter which is the nearest type strain, potentially representing a new 

species. Likewise, on the far right, there are a number of strains which are 

related to, but divergent from Rhodococcus. Clear from Figure 3.2 is that there  

 

3.4.2 There is no correlation between isoA gene sequence and 16S rRNA 

sequence 

As little is known about the diversity of isoA gene sequences, nor how they are 

related to phylogeny, 93 isolates (selected due to having both isoA and 16S 

rRNA sequences meeting the quality cut offs in section 3.3.2) were investigated 

for isoA gene sequences, as well as their 16S rRNA gene sequences, which 

are predictive of phylogeny. isoA sequence diversity was investigated by 

creating a phylogenetic tree of these sequences, along with the isoA sequences 

from El Khawand (2016)  (Figure 3.3), which shows that most of the El 

Khawand (2016)  sequences clustered together, along with a minority of the 

sequences from this project, indicating that there is a greater diversity of isoA 

products than previously supposed.  
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Figure 3.3 Phylogenetic tree based on isoA nucleotide sequences (maximum 
composite likelihood tree using the Tamura-Nei (1993) model and the highest 
log likelihood). Initial tree generation was through the Jukes and Cantor 
Neighbour Joining and BioNJ models (MEGA 6). Strains are labelled with 
their nearest type strain based on 16S rRNA gene sequence analysis. At the 
branch termini: sequences from strains and environmental clone libraries 
from El Khawand (2016) are marked by white circles, strains used for further 
investigation are marked by internal black circles, and Rhodococcus AD45 is 
marked by black diamond. Circles at the end of the strain name indicate the 
origin of the strain: green = leaves, brown = soil, blue = (aqueous/semi) 
estuary/sediment. External triangles mark phylum or sub-phylum for strains 
from this thesis: Black = Actinobaceria, Brown = Bacteroidetes, Dark blue = 
Alphaproteobacteria, Light blue = Betaproteobacteria, Purple = 
Gammaproteobacteria. “R.” denotes Rhodococcus. 830 bp sequences was 
used. The main clusters are marked by dotted lines. The scale bar shows the 
number of nucleotide substitutions per site for radial distance. Bootstrap 
values (x1000 replicates) over 50 are displayed as gray numbers near branch 
nodes. 

Cluster 1 
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The diversity of isoA sequences from this thesis was much greater than the 

diversity previously reported (e.g. Cluster 2 with the strains from El Khawand et 

al. 2016), with only a little overlap with the isoA diversity previously reported. 

There was generally little correspondence between phylogeny based on 16S 

rRNA gene sequences and isoA gene sequences, for example, there are 

Rhodococcus representatives present in each cluster, and Arthrobacter and 

Stenotrophomonas both have strains in Cluster 2 and 3. Interestingly, 

Rhodococcus globerulus AD45 grouped with R. globerulus i29a2 from El 

Khawand (2016), and R. globerulus 104a from this project. Cluster 2 sequences 

had around 70% similarity to the Rhodococcus AD45 isoA sequence on 

BLASTn analysis (with no other results), however Cluster 3 had no results. As 

some isoA sequences seem to group according to their phylogeny (assuming 

here that 16S rRNA genes represent the true phylogenetic position), the 

hypothesis of a relationship between isoA gene sequence and phylogeny based 

on 16S rRNA gene sequences was tested. In order to test this, similarity 

matrices were calculated to generate distances for each of 92 isolates (which 

have sufficient quality sequence for 16S rRNA and isoA products) against each 

of the other isolates for both the 16S rRNA gene, a common proxy for 

phylogeny, and the isoA gene products. These 16S rRNA distance pairs were 

matched with the isoA distance pairs for the corresponding pairs, and the 16S 

rRNA distances were plotted against the isoA distances, allowing investigation 

of the relationship. 
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Figure 3.4 Pairwise distances for isoA gene sequences against 16S rRNA 
gene sequences sequence for 92 strains (4005 pairs) using MUSCLE 
alignment and the Jukes and Cantor model. The line of best fit is shown 
and R2 = 0.0184. 

 

The distribution of pairwise points (Fig. 3.4) supports the observations from the 

isoA gene tree (Fig. 3.3), that there is no correlation (R2 = 0.0184) between 16S 

rRNA and isoA gene sequences of the isolates.  

3.4.3 Isoprene degrading bacteria have a wide range of other metabolic 

capabilities 

In order to understand the metabolic context of isoprene degradation, six 

strains were chosen for carbon source testing. Isolates were screened for 

growth on a variety of carbon sources using Biolog plates, as well as custom 

plates incubated in environments containing different volatiles. 

The strains chosen were a Bosea TC13b (97% identity based on 16S rRNA 

gene sequence), Rhodococcus fascians W9 (99% identity), Methylobacterium 

GM3 (94% identity), Rhodococcus bl28a (96% identity), and two Rhodococcus 
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erythropolis strains 1(2b)b and bl28ba (98%, 99% identity), each of which had 

been demonstrated to degrade isoprene added to liquid culture as determined 

by GC-FID analysis. 

Each of the strains, apart from strain GM3, showed a wide range of metabolic 

potential, able to utilise numerous compounds, especially strain W9 (Table 

3.SI.2). Strain GM3 had a much lower metabolic potential, with significant 

increases in respiration activity only with ribose, xylose, and lyxose carbon 

sources in the Biolog plates (Table 3.SI.2). With volatiles as carbon sources, 

interestingly, all strains had increased respiration in the presence of hexane, 

compared to with no volatile addition. Two of the strains shown increased 

respiration with toluene as well, and one, Tc13b even had increased respiration 

with DMSO. No strains significantly increased respiration with the alkanes, or 

benzene, and two did not significantly increase respiration when incubated with 

isoprene (despite being shown to in other experiments), possibly indicating a 

potential for false negatives due to low sensitivity. 

 

Table 3.2 Significant increases in respiration for isolates with different 
carbon source additions. 

Strain 1(2b)b bl28a bl28ba GM3 Tc13b W9 

Species Rhodococcus 
erythropolis 

Rhodococcus 
sp. 

Rhodococccus 
erythropolis 

Methylobacterium 
sp. Bosea sp. Rhodococcus 

facians 

Isoprene 0 ** * * * 0 

Toluene 0 ** * 0 0 0 

Hexane * ** ** * * ** 
DMSO 0 0 0 0 * 0 

Propane 0 0 0 0 0 0 

Methane 0 0 0 0 0 0 

Ethane 0 0 0 0 0 0 

Benzene 0 0 0 0 0 0 

* = p< 0.05, ** = p<0.01, 0 = no significant difference. 
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3.4.4 Isoprene-degrading Rhodococcus have similar metabolic 

capabilities, but different genomic arrangements.  

To investigate the isoprene degradation operon, and the metabolic capabilities 

further, the Rhodococcus strains 1(2b)b, bl28a and bl28ba were genome 

sequenced using PacBio technology and assembled using SMRT-Analysis 

software 2.3.0 (at NBAF-L) for analyses (see section 3.3.4 Genome sequencing 

for details). The Rhodococcus AD45 genomic data (van Hylchkama Vlieg et al., 

2000) was also subjected to the same pipeline for comparison purposes. 

Strain 1(2b)b had a genome size of 6.545 Mbp with one 0.4 Mbp plasmid, one 

0.05 Mbp plasmid, and seven other contigs under 10 Kbp. The genome along 

with the large plasmid have high (99%, 98%) similarity to the respective 

genomic structures in Rhodococcus BG43 (plasmid pRLLBG43) (Ruckert et al., 

2015) (with 91% and 16% coverage), confirming that the assemblies were likely 

complete. The small 0.05 Mbp plasmid was identified as the R. erythropolis 

NS1 pNSL1 plasmid (Valero-Rello et al., 2015). Strain 1(2b)b had a total size of 

7.02 Mbp and a mol% GC content of 62.2%. RAST annotation of strain 1(2b)b 

lead to 442 subsystems (a biological process or pathway containing the 

predicted proteins), with subsystem coverage of 35%, where 2208 of 4407 

genes not in subsystems were hypothetical (Figure 3.SI.5). Full KEGG 

metabolic pathway analysis is available in Figure 3.SI.6. 

Strain bl28a had a genome size of 6.48 Mbp, a 0.45 Mbp plasmid, and 7 

contigs under 10 Kbp, with a total size of 6.9 Mbp, and a GC content of 62.2%. 

RAST annotation indicated 2277 proteins in subsystems (100 hypothetical), and 

4324 not in subsystems (2133 hypothetical) (Figure 3.SI.3). Full KEGG 

metabolic pathway analysis is available in Figure 3.SI.4. 
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Strain bl28ba had a total size of 6.9 Mbp and a GC content of 62.2% across 24 

contigs, and reduction in contig number could not be achieved by further contig 

assembly in CAP (Contig Assembly Program) Hang (1999). RAST annotation 

led to 2283 predicted proteins in subsystems, of which 99 were hypothetical, 

and 4345 not in subsystems (2141 hypothetical) (Figure 3.SI.1). Full KEGG 

metabolic pathway analysis can be found in Figure 3.SI.2. 

The genomes of the three strains were quite similar in terms of subsystem 

coverage and distribution of feature (defined DNA region, usually protein 

encoding, or RNA, prophage etc.) counts into subsystems, showing that these 

organisms have similar predicted metabolic capabilities. 

 

Table 3.3 Key characteristics of genome sequenced strains 

Strain GC content 
Total size 

(Mbp) 
Largest contig size 

(Mpb) 
Number of contigs 

>10Kbp 

1(2b)b 62.20% 7 6.545 3 

bl28a 62.00% 6.9 6.48 2 

bl28ba 62.20% 6.9 5.9 4 

 

3.4.5 The Rhodococcus AD45 isoprene degrading operon may be the 

exception 

In order to investigate the isoprene degradation operon, the proteins sequences 

for IsoA-J (contributing to the isoprene degradation pathway) from 

Rhodococcus AD45 (van Hylckama Vlieg et al., 2000) were used as a t-

BLASTn input, and searched against a custom BLAST database containing the 

genomes for each organism sequenced in this thesis. The location of the 

BLAST hits was used to identify and therefore allow for investigation of the 

isoprene degradation operon using RAST. 
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Once identified, the putative isoprene degrading operons from this thesis 

exhibited similar levels of dissimilarity to the isoprene degrading operon of 

Rhodococcus AD45 as each other, and a much more similar gene orientation 

between them than to Rhodococcus AD45: much more similar to that of alkB, 

and the Gordonia and Mycobacterium from Johnston (2014). However, despite 

the similarities between the isoprene degrading operons identified in this thesis 

and Rhodococcus AD45, in strains 1(2b)b and bl28a the operon is on the 

chromosome (~6.5 Mbp contig), whereas in Rhodococcus AD45, and strain 

bl28ba, the gene cluster is on a plasmid, suggesting that the plasmid  

association of the isoprene degrading operon is not ubiquitous (Figure 3.5, 3.6, 

3.7, 3.8). 

 
Figure 3.5 Genome representation of bl28ba cluster most similar to the 
Rhodococcus AD45 isoprene degrading cluster with above (anticlockwise 
turned) text representing the similarity to the equivalent AD45 protein, the 
below (clockwise turned) text displaying the RAST annotation, and the 
positional identifiers on either end. Colours are as with AD45. 
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Figure 3.6 Genome representation of bl28a cluster most similar to the 
Rhodococcus AD45 isoprene degrading cluster with above (anticlockwise 
turned) text representing the similarity to the equivalent AD45 protein, the 
below (clockwise turned) text displaying the RAST annotation, and the 
positional identifiers on either end. Colours are as with AD45. 
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Figure 3.7 Genome representation of 1(2b)b cluster most similar to the 
Rhodococcus AD45 isoprene degrading cluster with above (anticlockwise 
turned) text representing the similarity to the equivalent AD45 protein, the 
below (clockwise turned) text displaying the RAST annotation, and the 
positional identifiers on either end. Colours are as with AD45. 
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Figure 3.8 Genome representation of Rhodococcus AD45 cluster most 
similar to the Rhodococcus AD45 isoprene degrading cluster with above 
(anticlockwise turned) text representing the similarity to the equivalent 
AD45 protein, the below (clockwise turned) text displaying the RAST 
annotation, and the positional identifiers on either end. 

 

3.4.6 Isoprene degrading genes from the strains in this thesis were similar 

to those from known isoprene degraders. 

A t-Blastn analysis with isoA against a custom database containing the three 

genomes from this thesis and Rhodococcus AD45 showed that the putative 

isoprene degrading gene clusters the three strains in this thesis had around an 

80% identity to Rhodococcus AD45, with no gaps. Short sequences in other 

regions than the putative isoprene degrading operon from bl28ba (×4) and 

1(2b)b, as well as a short sequence from Rhodococcus AD45 also had partial 

matches (consistent with AD45 having a similar upstream region), suggesting 

similar motifs elsewhere. The strains also had a higher isoprene degrading 
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operon similarity to Rhodococcus PD630 than to Rhodococcus AD45 (not 

shown). 

 

Searching the same database with t-BLASTn of the toluene monooxygenase 

system protein A from Pseudomonas mendocina KR1, from Uniprot (The 

UniProt Consortium, 2014) shown that the isoprene operon in the strains from 

this thesis had a lower similarity toluene monooxygenase than to isoprene 

monooxygenase. The toluene monooxygenase search found the isoA region, 

with AD45 at 48% identity, 1% gaps, bl28ba having 48% identity, 1% gaps, 

bl28a with 48% identity, 1% gaps, and 1(2b)b showing 48% identity, 1% gaps. 

The Rhodococcus AD45 isoprene degrading operon was more similar to the 

toluene monooxygenase from Pseudomonas mendocina KR1 than the 

equivalent regions in the strains from this thesis were.  

 

 

As a control, propane monooxygenase/reductase mmoC (RHRU231_30052; 

A0A098BFN9_9NOCA) (Uniprot) from R. ruber gave less than 30% identity in 

all cases.  

As all strains degrade hexane, AlkB, a hexane monooxygenase protein 

previously shown to be used in hexane degradation (as well as Butane, Octane 

and Decane), but with multiple copies (Hamamura et al., 2001), was used as a 

search query against the local genomic blast database; however no results had 

more than a 56% identity (and scores below 1215). 
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3.4.7 TM7 may be interacting with Aeromicrobium 

In order to understand the reason why TM7 is enriched to a large extent in 

some isoprene enrichments, despite evidence for direct incorporation of carbon 

from isoprene not being found (Chapter 2), DNA from an enrichment containing 

70.9% 16S rRNA sequences belonging toTM7 was extracted and sequenced 

thrice using Pacbio technology.  

The metagenome resulted in 2.22 Mbp across 217 polished contigs, with a 

mean GC content of 59%, a mean sequence size of 10230, and a median of 

9407, with contigs ranging from 506 bp to 37 Kbp. Additionally, two more 

sequence files were generated from the metagenome, one with TM7 identifiable 

contigs (22 contigs; between 2342 and 37234 bp, 315 Kbp total) and another 

with the metagenomic community without TM7 (sans-TM7 community). Less 

than 4.3% of the contigs were unidentifiable by blast, and 14.7% of the DNA 

was identified as deriving from TM7, which is expected as previously 

sequenced TM7 species have small genomes (~0.7 Mbp (He et al., 2015; 

Kantor et al., 2013)), this comprised of 0.324 Mbp spread across 23 contigs, 

representing between 1/3 and ½ of the estimated genome size. 

The TM7 rich microbial community displayed a wide range of metabolic 

potential, and although the community as a whole lacked some of the metabolic 

functions of Rhodococcus alone (evidencing either the large metabolic diversity 

of Rhodococcus, or a limited diversity in the microcosm). Despite this, there 

were some metabolic pathways found in the community, but not in 

Rhodococcus (See Figure 3.SI.10 for full comparative KEGG metabolic 

analysis).  

The TM7 only sequences were uploaded to RAST for annotation. 
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Figure 3.9 Predicted metabolic functions of TM7. Obtained by RAST 
annotation of TM7 sequences generated by filtering a TM7 rich 
microcosm for sequences identified as TM7 by their blast results. 
Numbers in brackets represent the number of proteins encoded in the 
sequence which fall into the subsystem (biochemical pathway). 

 

Unfortunately, as TM7 has a small genome, the proportion of DNA returned as 

TM7 was much lower than that expected from its relative abundance as 

measured by amplicon sequencing. However, having an estimated 1/3 to 1/2 of 

the genetic information from non-overlapping contigs means that we should be 

able to get a reasonable idea of the metabolic capabilities. The annotation of 

the TM7 genome (Figure 3.9) showed predicted gene functions for: biotin 

biosynthesis, bile hydrolysis, beta-lactamase production,’ a Mycobacterium 

virulence operon (a Jag protein, YidC and YidD), potassium metabolism, two 

phage tail proteins, two magnesium cation transporters, nine proteins involved 

in RNA metabolism, 14 involved in protein metabolism, an orphan regulatory 

protein, a stringent response protein, UvrD and Ycfh for DNA metabolism, 14 

proteins for isoprenoid synthesis (six for carotenoids), one sporulation 

associated protein, a ROS protective protein, alanine, glycine and serine 

synthesis proteins, a phosphate metabolism protein, and 11 carbohydrate 



144 
 

metabolism proteins (one for pyruvate metabolism, five from the pentose 

phosphate pathway, two for trehalose synthesis, three for ribose utilisation).  

In order to compare the total metagenomic community with the sans-TM7 

metagenome, both were uploaded to MG-RAST, and annotated (Figures 3.SI.8, 

3.SI.9). There were no factors likely to give TM7 an advantage identifiable 

through analysis of the difference between these data sets (ignoring carbon 

metabolism as isoprene the only major source present), as they had similar 

antibiotic resistances, and virulence factors.   

Following this, the sans-TM7 community and the TM7 genomic data were 

compared in MG-RAST, and the areas where TM7 interacted with the metabolic 

capabilities of the rest of the metagenome were noted (Figure 3.SI.11). These 

enzymes at the terminal points were identified in E. coli and searched against a 

local BLAST database of the TM7 rich community. The results allowed 

identification of the contigs, and therefore the bacteria to which they belong 

could be identified through BLAST. TM7 gives to the community a number of 

capabilities including; the reversible reaction between Glycine + 5,10-

Methylene-THF and Serine, folate / dihydrofolate interconversion, 5,6,7,8-

Tetrahydrofolate (THF) production, an alternative route to make 5,10-

Methylene-THF, Glycerate-1,3P2 and Glycerone-P production, Glycerone-P to 

Glyceraldehyde-P. Glycerate-3P (and output of glyoxylate and dicarbonate 

metabolism) to 1,3-Bisphosphoglycerate (and after that becomes 5,10-

Methylene-THF), and the conversion of Glyceraldehyde-3P to Glycerone-P 

(Figure 3.10).  



145 
 

 
Figure 3.10 The proteins involved at the terminal and initial steps of TM7 
metabolism; and the proteins from other groups which provide or utilise 
the product. Protein function prediction of a TM7-rich community was 
compared to that of the same community with TM7 sequences removed; 
with the difference being contributed to the metabolic potential by TM7.  
Blue boxes are TM7 proteins, white is where no hits are in the local 
BLAST database, orange is where other bacterial enzymes are predicted 
to interact with the substrate/product from the metagenome. 

 

tBLASTn of the Kegg identified E. coli representative amino acid sequence for 

the proteins led to: 2.5.1.15 being identified as belonging to Clavibacter or 

Leifsonia, 1.5.3.1 as belonging to Rhodococcus or Dermacoccus, 4.1.2.5, as 

belonging to Aeromicrobium, 4.3.1.29 as belonging to Pedobacter, 4.3.1.19 as 

belonging to Amacolatopsis, 4.2.1.20 as belonging to Aeromicrobium, 5.4.2.1 

as belonging to Aeromicrobium, 1.1.1.49 as belonging to Aeromicrobium, 

2.1.1.45 (both) as belonging to Aeromicrobium, and 2.7.1.40 (both) as 

belonging to Aeromicrobium (4.2.3.1, 4.1.2.19  were not found). 

3.5 Discussion 
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3.5.1 No phylogenetic linkage observable between isoA gene sequence 

and 16S rRNA gene sequence 

From the analysis of 16S rRNA and isoA genes for the collection of bacteria 

isolated as part of this thesis, there is a greater diversity of isoprene-degrading 

bacteria than previously thought, including the first isolates/examples of Phyla 

such as Pimleobacter, Pedobacter, Bosea, Stenotrophomonas, Arthrobacter, 

Nitrobacter, Ensifer, Variovorax, Devosia, and Methylobacterium. This suggests 

that there is widespread capacity for isoprene degradation amoungst bacteria, 

and provides a resource for further study. 

A study based on n-hexadecane degradation has demonstrated that a number 

of those genera have representatives capable of degradeing other 

hydrocarbons, including Nitrobacter, Bosea, Variovorax, Stenotrophomonas, 

and Pedobacter, which the authors also note is likely based on the presense of 

the alkB gene, which is mobile, and has no link between phylogeny and alkB 

sequence (Giebler et al., 2013). 

Likewise, when (in this thesis) isoA gene sequences and 16S rRNA gene 

sequences from strains shown to degrade isoprene were compared to the other 

strains, there was no presence of isoA phylogenetic linkage, the isoA gene 

sequence similarity to other isoA sequences did not correlate with the 16S 

rRNA gene sequence similarity (of the same bacteria) to other 16S rRNA gene 

sequences). 

However, the increased isoA sequence dissimilarity visible in Figure 3.3 with 

the strains from this project (which are in clusters 1,2 and the (comparatively) 

highly diverse cluster 3, whereas strains from El Khawand (2014) are in cluster 

1, and the cluster 1-2 border, only) does raise the question of whether the 



147 
 

increased diversity is actually true isoA diversity, or if the primers were not 

being sufficiently specific to pick up isoA gene sequences only. It is possible 

that the touch-down PCR conditions with a high total number of cycles 

developed for these primers, with a large number of cycles annealing at (the 

quite low) 54°C, although within range for the primer predicted Tm, could 

increase chance of mis-priming and incorrect product, or even contamination 

thresholds. El Khawand (2014) when designing the primers did note a non-

specific product at 54°C annealing temperatures, and implemented the hot start 

protocol to reduce this (this does not eliminate this). El Khawand tested the 

primers against high isoprene enrichment cultures and against strains with a 

several monooxygenases (including a toluene monooxygenase with no visible 

product). The sequences from the enrichments were all greater than 96% 

similar to Rhodococcus AD45 (although from the isoA clones you cannot tell if 

they some were from extremely similar organisms), and although the isoA 

genes from the monooxygenase amplification were amplified to a higher 

concentration, there was a product of the right size with the methane 

monooxygenase sample from a Methylococcus capsulatus, and a shorter 

product from a Methylocella silvestris, containing a Methane monooxygenase 

and propane monooxygenase; showing that the primers were not entirely 

specific). 

Although, considering that the product was confirmed to be visible and was the 

correct size in each case, and considering that the isolates grow on isoprene, it 

is likely that we are looking at a diverse set of gene sequences involved in 

isoprene degradation (although possibly opportunistically given some of the 
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high concentrations of isoprene used in the enrichments), even if not 

necessarily isoprene specific monooxygenases.  

 

3.5.2 A different, more diverse operon involved in isoprene degradation 

exists 

The genomic data supports the idea of isoprene degradation not being strongly 

phylogenetically linked, with isoprene degrading operons being more similar in 

some diverse bacteria (e.g. the Gordonia, and Mycobacterium strains from 

Johnston 2014) to AD45, than others identified in this project. In two out of 

three genomes sequences from this thesis, the isoprene degrading genes are 

on the main chromosome, which, considering the likelihood of horizontal 

transfer (a likely cause of phylogenetic gene sequence dislinkage) and the 

presence of the isoprene degrading operon in the plasmid in some isolates, this 

suggests possible episomal behaviour of the isoprene degrading operon.  

It is worth noting when considering the results from this thesis, and other work 

that should horizontal gene transfer of the isoprene degrading operon be an 

important factor, strains able to grow on isoprene, may have gained that ability 

whilst in being enriched – and therefore are possibly not reflective of the 

isoprene degraders in the environment. 

 

3.5.3 TM7 may be interacting with Aeromicrobium 

The interaction between TM7 and the other bacterial strains is interesting, or it 

is potentially coincidental that most of the genes in TM7 which are also absent 

in the rest of the metagenome involve parts of the glycolysis/gluconeogenesis 
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pathways, or THF involving steps, hinting at interactions with folate and glucose 

metabolism. 

Considering that all of the non-redundant metabolic interactions with TM7 seem 

to be with Aeromicrobium, this indicates that Aeromicrobium may be the genus 

that contains what TM7 requires to thrive, potentially this being Glycerate-3P, 

and 3-phospho-D-Glycerate, Interestingly glyceraldehyde-3-phosphate normally 

is from photosynthesis, but here is being provided by Aeromicrobium, and is 

also present at the start of the MEP pathway of isoprenoid biosynthesis, 

suggesting at a more complex interaction. This could make Aeromicrobium an 

interesting candidate for attempting TM7 co-culture. Increased sequencing 

depth (to get the whole genome of both, and the community) would give much 

more strength to these results.  

 

3.6 Conclusion 

To conclude; it is certainly likely that the previously identified isoprene 

degrading operon is not the only operon involved in isoprene degradation. This 

is supported by (i) the phylogenetic dislinkage of isoA diversity, (ii) the 

comparatively large difference between the AD45-like isoA DNA sequences, 

and the bl28a-like isoA DNA sequences causing clear grouping into clusters, 

and (iii) the variable genomic location of the isoprene degrading operon. This 

may be an alternate system, or possibly the results here, previously, or both, 

are being affected by the high concentration. It is also worth noting that the 

orientation of the genes in the operon in R. AD45, with a slight double operon, 

when compared to the orientations of the genes in the isoprene degrading 
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operons in this study, and in Mycobacterium and Gordonia, and other 

monooxygenases clusters is likely the exception rather than the rule. 

Additionally, this work highlighted that TM7 may be metabolically interacting 

with Aeromicrobium species, with some other possible interactions, although as 

this is based on predicted functions on partial genomes from metagenomic 

data, it is only indicative. Although this is backed up by a high level of co-

occurrence of Aeromicrobium with TM7 from the sequential enrichment data in 

chapter 2, with co-occurrence in 13 of 19 low concentration microcosms, and 

70 out of 71 serial enrichments, the concentration is low (~2%) in the later serial 

enrichments of Willow soil, and partially negatively correlated, so the cause of 

TM7 enrichment there may be different, or may involve the death of 

Aeromicrobium. 

Future work on this topic should probably involve investigation of this alternative 

isoprene degradation operon, including using gene knockouts, should include 

alternative carbon source testing of Rhodococcus AD45-like strains, and should 

look at the TM7 interactions with more sequencing depth. Additionally, it may 

be interesting to combine isoA primers with SIP and next generation 

sequencing to increase depth, diversity and evidence isoprene degradation in 

bacteria which have the gene. 
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Chapter 4: isoprene degradation on the leaf 

surface 

4.1 Abstract: 

Isoprene is one of the major volatiles emitted from plants, which globally 

produce over 580 million tons per year. Most isoprene is attenuated by 

reactions in the atmosphere, however some microbes have been shown to be 

able to degrade isoprene in soil and in culture. As isoprene is released mainly 

from the leaves of plants, there is the likelihood that bacteria may be utilising 

this at the interface of the leaf surface and the atmosphere, reducing the net 

production and influencing the bacterial community. To investigate this, I 

investigated the effect of plant isoprene production on bacterial communities, 

and the effect of isoprene degrading bacterial communities on plant isoprene 

production, through: (i) incubating leaves in the presence of isoprene and 

measuring changes in isoprene concentration, (ii) investigating community 

changes by sequencing 16S rRNA genes of bacterial communities from 

heterozygous isoprene-producing and azygous non-producing tobacco, (iii) 

inoculating leaves with isoprene degrading bacteria to determine whether there 

was a decrease in net isoprene production, (iv) creating isoprene degrading 

enrichments to investigate isoprene degradation rates and to isolate isoprene 

degrading microorganisms. There were no significant differences in bacterial 

communities between the isoprene producing and non-producing tobacco, nor 

was there significant isoprene degradation by on-leaf bacteria, however TM7 

was on 4 out of 9 isoprene producing tobacco leaves, and was not detected on 

any non-producing tobacco leaves. Inoculation of tree leaves with isoprene 
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degrading bacteria generated no difference in net production. Isoprene 

degradation by leaf derived microbes in enrichments was observed in 31 out of 

48 enrichments, resulting in a wide range of isolates, but was highly stochastic. 

The lack of significant differences suggests that, although isoprene degrading 

bacteria do live on the leaf surface, it may not be a major carbon source, and 

therefore its presence does not reproducibly influence the bacterial community; 

nor does inoculation of isoprene producing leaves with non-native isoprene 

degrading bacteria alter the net production rate after six weeks. 

 

4.2 Introduction: 

Isoprene (2-methyl-1,3-butadiene) is a highly reactive hydrocarbon that  can 

have varying consequences depending on the prevailing atmospheric 

conditions. Isoprene can react with: (i) free radicals and indirectly increase the 

residence time of methane (Collins et al., 2002), (ii) nitrous oxides and create 

tropospheric ozone (Jenkin & Clemitshaw, 2002), and (iii) numerous other 

compounds creating various byproducts, including carbon monoxide (Pfister et 

al., 2008), organic aerosols (Paulot et al., 2009), and formaldehyde (Pfister et 

al., 2008). As methane contributes to global warming, and trophospheric ozone 

is harmful to plants and respiratory systems; isoprene can have negative effects 

on health, the climate and the economy (Ashworth et al., 2013). 

Global production of isoprene is approximately six hundred million tonnes 

annually, with broadleaf trees responsible for 51%, and most of the rest (46%) 

coming from shrubs (Guenther et al., 2006). It is believed that isoprene is 

produced as a response to transient heat stress, likely crossing and stabilising 
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thylakoid membranes in leaves as sunlight causes temperature fluctuations of 

up to 10°C higher than the surrounding air (Sharkey et al., 2008; Singsaas et 

al., 1999). 

Most atmospheric isoprene is attenuated through chemical reactions, which, 

due to the presence of two carbon-carbon double bonds, can be very rapid 

(Guenther et al., 1995), leading to an atmospheric lifespan of around 1.7 hours 

(Jenkin & Clemitshaw, 2002), and therefore a comparitively low atmospheric 

concentration, typically between 1 ppt and 10 ppb, depending on location 

(Baldocchi et al., 1995; Kesselmeier et al., 2000; Lewis et al., 1997). Despite 

this, there is evidence of biological isoprene degradation: isoprene has been 

shown to be biologically removed in soils, with an estimated global removal of 

20 Tg per year (Cleveland & Yavitt, 1997) and isoprene-degrading bacteria 

have been isolated, and a probable  pathway found ( Acuña Alvarez et al., 

2009; van Ginkel et al., 1987; van Hylckama Vlieg et al., 2000; Crombie et al., 

2015) 

 

In other hydrocarbon cycles, the hydrocarbon is often consumed proximate to 

its source; for example, low affinity Methanotrophs living in the oxic zone 

between the anoxic methane producing soil and the atmosphere degrade 90% 

of methane before it reaches the atmosphere (King, 1992; Conrad, 2009). For 

this reason, it is possible that a significant proportion of isoprene could be 

degraded by leaf dwelling microbiota before entering the atmosphere. 

Leaves are inhospitable to most bacteria due to having low nutrient availability, 

the threat of physical removal by rainwater or wind, exposure to harsh 
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conditions due to fluctuations in temperature, humidity, water activity and solar 

radiation, often coupled with a yearly habitat destruction and renewal due to 

leaf loss. However, despite this seemingly bleak outlook for phyllosphere 

dwelling microbes, there is an average of 106-107 bacteria per cm2 leaf surface, 

totalling 1026 bacteria globally (Lindow & Brandl, 2003), and the sometimes low 

level of available carbon sources on leaves drives epiphytic (and endophytic) 

bacterial coexistence (Wilson & Lindow, 1994), and could theoretically make 

isoprene a valuable carbon source. 

The phyllosphere is generally a hostile environment for microbiota, and 

although Sucrose, fructose and glucose are detectable on the leaf surface, it is 

thought that other carbon sources, such as VOCs are generally not available to 

epiphytic microbiota (unless leaching, wounding, excretion, exudation or 

infiltration occur) due to the waxy cuticle (Nadalig et al. 2011; Vorholt 2012). 

This waxy cuticle can have large effects on the community composition. For 

example, there are large differences in community structure between different 

Aribadopsis thialiana plants with different mutations involved in the wax 

biochemical pathways, likely due to the changes in cuticle structure (Bringel 

and Coulee 2015). 

Phyllosphere microbiota have been shown to degrade other hydrocarbon based 

products. Due to low levels of fungi and archea on the leaf surface, Bacteria are 

thought to be responsible for most of this degradation of hydrocarbons (Vorholt 

2012). Some of the potentially important hydrocarbon degrading phyllosphere 

dwelling bacteria include Phascolus vulgaris, which has been shown to have 

cph genes involved in 4-chlorophenol degradation induced on phyllosphere, 

numerous Methylotropic bacteria which are ubiquitous on plants, and can use 
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plant compounds in situ, such as methanol, formaldehyde and chloromethane. 

Additionally, presence of Candida biodinii presence reduces the net emissions 

of methanol from Nicotiana seedlings, suggesting some fungal involvement 

(Bringel and Coulee 2015). 

Of particular interest is microbiological degradation of chloromethane. 

Chloromethane is the most abundant VOC in the atmosphere (600 ppt). 

Chloromethane degrading bacteria have been shown to exist on the leaf 

surface of Aribadopsis thialiana plants, and have been isolated with 

chloromethane as a sole carbon source (on minimal media plates, following 

minimal media solution enrichment of A. thialiana leaves). This resulted in four 

Hyphomicrobium species isolated. The gene organisation for the 

chloromethane degrading pathway was similar in these organisms, as well as to 

previously characterised strains (Roseovarius, Rhodobacteraceae, 

Aminobacter, Hyphomicrobium, Methylobacterium and Pseudomonas species), 

with the exception of Metthylobacterium exotorquens CM4 (Nadalig et al. 2011). 

Through these, and other potentially methods, it has been suggested that 

phyllosphere based phylloremediation is possible. Pollutants could be removed 

from the atmosphere which are generated from external sources, such as 

nicotin, phenol, and polycyclic aromatic hydrocarbons, or from the plant, such 

as chloromethane and isoprene (Bringel and Coulee 2015). Potential 

candidates for this include species of Arthrobacter, which has been shown to 

degrade a number of aromatic hydrocarbons and are able to grow and remain 

in the phyllosphere.(Bringel and Coulee 2015). 
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The aim of this study is to determine whether isoprene degradation is 

happening on the leaf surface, and conversely, if isoprene production is 

capable of sustaining, or altering the communities of plant leaves; and if altering 

bacterial communities of isoprene-producing leaves by adding isoprene 

degrading microbes can reduce the net isoprene release of leaves, providing a 

biotechnological solution to isoprene emissions from isoprene producing 

biomass crops. To achieve these aims, the objectives were to incubate leaves 

with isoprene, measuring changes in the isoprene concentration, to grow 

isoprene producing and non-producing tobacco and investigate the bacterial 

community, and to perform isoprene enrichment of microbiota from leaves, 

obtain isolates and measure isoprene degradation rates. 
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4.3 Materials and Methods 

4.3.1 Experimental Design: Tobacco communities. 

Genetically modified Nicotiana tabacum (Tobacco) Line 32, both azygous 

isoprene-non-producing and heterozygous isoprene-producing, containing a 

Populus alba isoprene synthase gene (Vickers et al. 2009), were obtained from 

Claudia Vickers. Seeds were planted in Levington Seed & Modular Compost + 

Sand, watered with Hoagland's nutrient solution (Hoagland and Arnon, 1949), 

and incubated in the 20°C controlled greenhouse at the University of Essex. 

Two-week-old 2-3 cm seedlings were transplanted into discrete pots, nine 

recombinant isoprene-producing plants and nine control plants, and separated 

into trays of three with an alternating configuration (Figure 4.1). Row locations 

were switched at four weeks. At six weeks, when plants were about 20 cm tall, 

three leaves were sampled from each plant, maximising leaf distance and 

avoiding those either in direct contact or immediately neighbouring sampled 

leaves. Tobacco plants were healthy with no obvious differences between the 

groups. Leaves were cut into ~2 cm2 sections and suspended in 20 mM Tris, 10 

mM EDTA, 0.024% Triton X-100, sonicated for ten minutes and vortexed for 

one minute, before filtering through sterile glass wool to remove coarse plant 

material. 
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Figure 4.1 Initial isoprene-producing tobacco experimental layout; 
Tobacco plants were laid out in three blocks of three for each tobacco 
type, with alternating blocks .‘H’ indicates heterozygous isoprene-
producing tobacco; ‘A’ represents Azygous, tobacco. 

 

DNA was extracted from the cells derived from the tobacco leaf washings using 

the method described in Griffiths et al. (2000), and prepared for MiSeq by PCR 

as described in Chapter 2 (using the Illumina protocol (Illumina Inc., 2013), 

using RedTaq instead of Kapa HiFi, and adding one more cycle for the first 

round of PCR). MiSeq was performed, by the NBAF facility in the Centre of 

Genomic Research, Liverpool, UK.  

4.3.2 Bioinformatics: Tobacco bacterial communities 

Sequences were error corrected using the BayesHammer error correction 

implementation in SPAdes (Bankevich et al., 2012). Error corrected sequences 

were trimmed to a quality value limit of ‘18’ using Sickle (Joshi & Fass, 2011), 

and paired using PandaSeq (Masella et al., 2012), before concatenation of the 

different runs and barcoding. Paired sequences were then de-replicated using 

the FastX collapser from the FASTX-Toolkit. Additionally, OTU binning was 
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carried out using Swarm (Mahé et al., 2014). Chimera checking was performed 

using the chimera checking option of vsearch (Rognes et al., 2015) against the 

Gold database (Pagani et al., 2012). All bioinformatic analyses were carried out 

within Biolinux 8, using default parameters if not specified otherwise. Swarm 

(d=1) and vsearch were carried out on the University of Essex Genomic Cluster 

(Debian OS). OTU table formation, non-chimeric sequence fetching and 

rarefication using true random numbers (Haar, 2008) were performed using 

custom algorithms implemented in Microsoft Excel 2013 using VBA. OTUs were 

classified using the RDP OTU classifier with the training set ‘16S rRNA 14’ 

(Wang et al., 2001). Sequences classified as chloroplast sequences were 

removed and sequences which the RDP classifier assigned as 

“Rhodoligotrophos”, which after nblast-ing (Altschul et al., 1990) turned out to 

be tobacco mitrochondrial DNA, were also removed. Remaining sequences 

were converted to relative abundances. Significance testing was performed 

through multivariate analysis tools for abundance data within the package 

mvabund in R. The manyglm function was used to fit negative binomial models, 

with P values calculated using 1000 resampling iterations (PIT trap resampling) 

(Wang et al., 2012). 

4.3.3 Enrichment of leaf associated bacteria with isoprene. 

Leaves from willow, oak and poplar were sampled from Wivenhoe Park, UK 

(tree details are in Table 4.1). Several leaves of varying sizes were sampled 

from 1-2 m in height from all around each tree. Leaves were cut into 2 cm2 

sections (c. 150 cm2 leaf area per tube), sonicated for 10 minutes and vortexed 

for one minute whilst immersed in 30 ml 20 mM Tris, 10 mM EDTA, 0.024% 

Triton X-100 leaf wash solution, and filtered through sterile glass wool (Ikeda et 
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al., 2009). Leaf washings (0.1 ml) from willow, oak, poplar (or tobacco in a 

separate experiment)  or 0.1 ml sterile water (as a control), was added to 9.9 ml 

of minimal media with the composition; 0.5 g NaCl, 0.5 g MgSO4
.7H2O, 0.1 g 

CaCl2.H2O, 1 g NH4NO3, 1.1 g Na2HPO4, 0.25 g KH2PO4, 50 mg 

Cycloheximide, 10 mg FeSO4.7H2O, 0.64 mg Na2EDTA.3H2O, 0.1 mg ZnCl2, 

0.015 mg H3BO3, 0.175 mg CoCl2.6H2O, 0.15 mg Na2MoO4
.2H2O, 0.02 mg 

MnCl2.4H2O, 0.01 mg NiCl2.6H2O, 0.05 mg p-Aminobenzoic acid, 0.02 mg Folic 

acid, 0.02 mg Biotin, 0.05 mg Nicotinic acid, 0.05 mg Calcium pantothenate, 

0.05 mg Riboflavin, 0.05 mg Thiamine HCl, 0.1 mg Pyridoxine HCl, 0.001 mg 

Cyanocobalamin, and 0.05 mg Thioctic acid (phosphates and salts were 

autoclaved separately, and vitamins were filter sterilised) per litre Milli-Q filtered 

water (a modification of Fahy et al., 2006), in a 125 ml glass serum bottle 

sealed with a PTFE backed silicon septa. To each serum bottle, for each leaf 

type, either 0.01% yeast extract, 5 g of 2 mm diameter sterile glass beads, or a 

small leaf (from the same tree) were added in triplicates, along with a triplicate 

with no additional substrates or surfaces. To this, 0.1 cm3 saturated 30°C 

isoprene headspace was added, yielding a concentration of 7.2×105 ppb 

isoprene. The isoprene concentration in the enrichment was monitored daily 

using 100 µl headspace sampling onto a Unicam 610 Gas Chromatograph with 

a 10% Apiezon L CW column and a flame ionisation detector (GC-FID), with 

injector and detector temperatures of 160°C and a column temperature of 

100°C. Enrichments showing greater than 70% isoprene degradation after 15 

days were diluted 101 to 104 fold and samples were spread onto minimal media 

plates of the same composition with agar added to 1.5%. Representative 

colonies were picked and re-plated.  
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Table 4.1 Tree location for Wivenhoe Park samples 

Common name Species Location °N Location °E isoprene 
producing 

Willow Salix babylonica 51.877720 0.948709 + 

Birch Betula pendula 51.878280 0.950293 - 

Oak Quercus robur 51.877990 0.949446 + 

Poplar Populus canadensis 51.878151 0.948988 + 

 

4.3.4 Experiment to determine isoprene-degradation on detached oak 

leaves  

Eighteen oak leaves were collected on 1st June and 28th September 2015 from 

Wivenhoe Park UK, and three leaves were placed into each leaf chambers 

comprising of pouches constructed of 150 µm Polyethylene Terephthalate layer 

with an ethyene-vinyl acetate adhesive coating, cut to a size of 105 × 148 mm, 

containing small (25 mm) computer style fans powered by an external 12 V 

battery, and PTFE/Si septa held by Swagelok 316 stainless steel 1/16” 

bulkhead unions (Swagelok) (Figure 4.AX.1). Chambers were wrapped in 

aluminium foil to prevent light entry. Control  chambers without leaves were set 

up at the same time. 
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Figure 4.2 Photograph of leaf chambers, with leaves, without foil 
coverings 

 

Each leaf chamber was heat sealed on the opening tabs (ensuring no contact 

with the leaf) within 30 minutes of sampling, allowed to acclimatise for 15 

minutes, evacuated and refilled with 50 cm3 6 ppm isoprene and 6 ppm of an 

inert tracer, 1,1,1,2,3,4,4,5,5,5-Decafluoropentane (DFP), immediately prior to 

the time zero (T0) measurement of  isoprene and DFP concentration using the 

GC-FID. Further headspace GC-FID sampling was carried out after 20, 80 and 

320 minutes. Isoprene concentrations were adjusted for any leakage by using 

the isoprene to DFP ratio.   

 

4.3.5 Experiment to test the effect on net isoprene production by leaves 

after inoculation with isoprene-degrading bacteria 

The leaves of three small branches of willow, ash and birch trees were 

inoculated with isoprene-degrading bacteria. A culture containing a mix of 

bacteria capable of rapid isoprene degradation, was created by sequential 
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enrichment of soil that originated from within one metre of the base of the 

Willow tree in Table 4.1. One gram of sample was suspended in 9 ml of minimal 

medium, and incubated with 7.2×105 ppb isoprene in the same manner as the 

leaf microcosms. Following greater than 80% degradation, 1 ml of the 

enrichment was inoculated into new media, and repeated for eight further 

generations. The final enrichment was dominated by TM7 (30%) and 

Rhodococcus (23%), with the rest mainly consisting of Pelomonas, Leifsonia, 

Acinetobacter, Pseudomonas and Stenotrophomonas based on amplicon 

sequencing (see chapter 2). On the 13th August 2015 three test and three 

control branchlets, each between 0.5 and 2 m above the ground, and over 90° 

angle of each other around the trunk, on the willow, oak and birch trees 

(referenced in Table 4.1) were thoroughly sprayed with either the microcosm 

diluted to OD 0.45 (measured on a spectrophotometer) with minimal media, or 

with minimal media alone. On the 28th September 2015, leaves were collected 

into non-reactive leaf chambers with air agitation, sealed (dark, STP), and 

isoprene production was monitored by GC-FID. 
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4.4 Results 

4.4.1 Tobacco leaf community structure is not significantly driven by 

isoprene production 

Transgenic heterozygous isoprene-producing tobacco and azygous non-

producing tobacco were grown for six weeks in three alternating groups of 

three, followed by sampling of leaf microbiota and amplicon sequencing (as 

above). 

No significant differences in composition was found between the bacterial 

communities from the isoprene-producing and the non-producing tobacco either 

when the tobacco plants were treated as individual replicates, or as replicates 

in their blocks for any of the bacteria sequenced (Anova), nor were there 

differences at the community level between the groups (Permanova F1,16 

=1.327 P=0.208) (Figure 4.2). 

The bacterial communities from both the isoprene-producing and non-producing 

plants were dominated by Rhodococcus, contributing approximately 54% of the 

sequences. In the communities from isoprene-producing tobacco, there were 

increased Rhodococcus (from 34% r=to 48%) and Pelomonas (from 22% to 

26%) compared to the non-producing tobacco communities, and candidate 

division TM7 (9% average) was detected in four of nine replicates from 

isoprene-producing tobacco and not detected in any of the non-producing 

tobacco replicates, although none of these differences were significant 

(p>0.05). TM7 was not evenly distributed in the plants on which it was detected, 

with relative abundances of 70%, 7.4%, 2.0%, and 0.8% for the four leaves it 

was present on. 
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Figure 4.3 Bacterial leaf communities for isoprene-producing and non-
producing tobacco after six weeks plant growth. Test represents 
community from heterozygous isoprene-producing tobacco, Control is 
the azygous isoprene-non-producing tobacco community. Error bars are 
negative standard error. n = 3, n = 9 for Control 1-9 and Test 1-9. Strains 
with an all plant average less that 5% are grouped as “Other”. 
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4.4.2 Degradation of isoprene by on-leaf microbiota is undetectable 

Oak leaves were sampled in June and September 2015. Changes in isoprene 

concentration were recorded and compared to that of the control to determine 

potential isoprene degradation. 

Initially (from 0 to 20 min), the isoprene concentrations decreased significantly 

from oak leaves sampled in both June and September (Anova p<0.05), which 

equates to isoprene consumption of around 15.7 ppb min-1 cm-2 (leaf) cm3 air . 

However, from 80 min any decrease was overwhelmed by an increasing 

isoprene concentration (Figure 4.4). 

.

 

Figure 4.4 Changes in isoprene concentration on detached oak leaves 
adjusted for escape against decafluoropentane concentrations compared 
to no-leaf control. Control-adjusted values, Error bars are Standard Error. 
n=3. 

 

 

 

Time (min) 
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4.4.3 The addition of isoprene-degrading bacteria to tree leaves did not 

lead to a long term difference in net isoprene production 

A mixed culture, consisting of mainly TM7 and Rhodococcus species, was 

sprayed onto leaves of Oak, Willow and Birch, and compared with media only 

controls. Leaves remained attached to the trees and were sampled after 6 

weeks, when they were sealed into leaf chambers. There was no significant 

difference in isoprene production between the test and control groups (Figure 

4.5).  

 

Figure 4.5 Net production of isoprene with treated and un treated leaves 
following a six week settling period, after three hours of confinement in 50 
cm3 leaf chambers. n=3. 
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4.4.4 Leaf bacteria degraded isoprene, and isoprene degrading bacteria 

are present on a wide variety of leaves 

Leaf washings, from poplar, willow and oak trees and from heterozygous 

isoprene-producing and azygous non-producing tobacco, were incubated in 

minimal media with isoprene; and isoprene concentrations were monitored by 

GC-FID. 

Cells detached from tree leaves degraded isoprene, demonstrating microbial 

degradation of isoprene by leaf dwelling microbes. However, the isoprene 

degradation was highly variable, with only 25% of isoprene-enrichments 

degrading more than 60% of the isoprene after 15 days, and 35% of the 

isoprene-enrichments showing no or minimal (less than 30%) degradation 

(Table 4.2). 

Table 4.2 Isoprene enrichments of cells detached from tree leaves 

showing a decrease in isoprene after 15 days. 

% Degradation 

Total 
number of 
samples Willow Poplar Oak 

<30 17 6 5 6 

30 10 2 4 4 

40 5 3 0 2 

50 4 2 2 0 

60 4 2 0 2 

70 4 0 2 2 

80 2 0 2 0 

90 2 1 1 0 

Total: 48 16 16 16 

 

There was no degradation of isoprene after over 200 days in leaf wash 

enrichments from isoprene-producing and non-producing tobacco (Figure 4.6). 

One of the 3 replicate enrichments inoculated with microbial cells from 

isoprene-producing tobacco did show a decrease in isoprene. As the other 
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replicates remained very close to the control group, it was possibly a leak, and 

the difference between the means for each group was not significant. 

 

Figure 4.6 isoprene concentration over time for isoprene enrichments 
containing microbiota removed from isoprene-producing tobacco, 
compared to microcosms containing microbiota removed from isoprene-
non-producing tobacco. Iso+ from isoprene-producing tobacco, Iso- from 
non-isoprene-producing tobacco; Error bars are standard error. n=3. 
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4.5 Discussion 

Sequence analysis of leaf bacterial community data, for isoprene-producing and 

non-producing tobacco, revealed a lack of difference , and therefore any effect 

of isoprene on the leaf microbiota is not significant. The primary conclusion 

from this is that isoprene production is unlikely to be a major driving force for 

community composition on leaves. However, it is notable that some of the 

genera that increased, or appeared in the added isoprene experiment have 

been associated previously with isoprene production, including Rhodococcus 

and TM7, even though the mechanism by which TM7 is enriched on isoprene is 

largely unknown. This change, although not significant, suggests that it would 

be inappropriate to rule out any effect, only any significant effect, under these 

experimental conditions. That said, the appearance of Rhodococcus on the 

tobacco leaves is unsurprising, as Rhodococcus species have been shown 

previously to live on tobacco, where R. fascians can cause leafy gall disease 

(Goethals et al. 2001).  

Foremost in determining the outcome, I would suggest that possibly (i) the 

hostile environment normally present on leaves (Lindow & Brandl 2003) and (ii) 

the nicotine which has antimicrobial properties (Pavia et al. 2000), present in 

the sticky exudate that finely coats tobacco leaves, would have a large effect. 

Although in the experiment the wind and rain, as well as some of the solar 

radiation effects are removed by the greenhouse environment, and therefore 

the environment is possibly less hostile than the natural systems. It is also 

worth remembering that due to the recent production, and the controlled use of 

the transgenic tobacco system (Vickers et al. 2011); firstly, isoprene utilising 

bacteria may not have had time to adapt to the tobacco environment, and 
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secondly, any bacteria which may have had the capacity to consume isoprene 

and live on tobacco leaves may not have been able to colonise the leaves in 

the laboratory environment in which they were grown. Also, clouding any 

outcome is the tendency for leaves to have high bacterial community variability, 

and often distinct communities, in small spatial and time scales (Thompson et 

al. 1993). This leaf-to-leaf variation could explain why genera (e.g. 

Rhodococcus) with members known to degrade isoprene appeared on some 

replicates, yet were absent on others. One limitation of this study was that due 

to large amounts of chloroplast and mitrochondrial DNA from the tobacco there 

was low actual sequencing depth, and future work should be done with either a 

more gentle leaf wash protocol, or preferably a much higher sequencing depth. 

Considering the results of the tobacco community analysis, the lack of isoprene 

degradation in the tobacco leaf wash microcosms is hardly surprising, with no 

degradation over a 200 (probably 450) day period. Although the artificial (i.e. 10 

ml of liquid is quite different to a leaf) environment, including the media choice, 

could have affected the community. Although the genera found on the tobacco 

also include species found to degrade isoprene under the same conditions from 

soil (Chapter 2), so you could expect some of them would be able to grow 

under the conditions in this experiment. The lack of degradation, let alone faster 

degradation, in the enrichments from the isoprene-producing tobacco bacterial 

communities further evidences that isoprene is not a major driver of community 

structure. This is supported by the isoprene-degradation enrichments from 

Willow, Poplar and Birch leaves, where the trees were a long term system with 

natural inoculation, and still shows a high variation in degradation rate between 

microcosms and a lack of degradation in many, suggesting that although 
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present on isoprene-producing tree leaves, isoprene-degrading bacteria are not 

uniform in quantity or potentially presence. 

The decrease of isoprene in the tobacco leaf wash could have been due to a 

leak given to the length of time. However, due to what we know from the 

stochastic nature of the isoprene degradation of the tree leaf washings, it is 

possible it is the early signs of isoprene degradation, starting slowely due to the 

low biomass of the inoculum.  

The inability to measure any degradation of isoprene in chambers containing 

leaves was most likely due to the experimental difficulty in trying to monitor 

degradation in the background of production. Although it did demonstrate that 

even when leaves are at a stable temperature, in the dark (i.e. when isoprene 

production is expected to be down regulated to near zero (Alves et al., 2014) 

and in this case was less than 1 pmol (isoprene) m-2 (leaf) min-1), the isoprene 

production from the leaves still overwhelms any possible isoprene degradation 

by bacteria, supporting the idea that if isoprene degradation is happening, it is 

not significant. 

Considering the possibility that isoprene degradation is not an important 

process on leaves, it is hardly surprising that the experiment to see if net 

production of isoprene from leaf systems could be decreased with isoprene-

degrading bacteria failed to show any difference between treated and non-

treated leaves. And additionally not suprising if you consider that the isolates 

the leaves were inoculated with may not have had the other physiological 

adaptions required for leaf surface life, for example: pigmented bacteria are 

more common on leaves due to solar radiation pressures (Lindow & Brandl 
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2003), and some leaf bacteria have developed specific leaf attachment 

mechanisms (Sequeira et al. 1977), and therefore it is unlikely, or at least 

unclear whether the isoprene degraders added to the leaves were either active 

or present at the time of sampling. One possible explanation for the limited 

isoprene degradation (and isoprene degraders) on leaves could be due to the 

relative speed of isoprene movement through soil, where the isoprene must 

follow a tortuous path, compared to leaves, where it is directly released into air; 

giving bacteria little chance to capture it. 

4.6 Conclusion 

In summary, although it is clear that bacteria capable of degrading isoprene 

exist on isoprene-producing leaves (and can be isolated, such as the 27 leaf 

isolates identified in Chapter 3), it may be unlikely that (i) isoprene is used as a 

major carbon source or that (ii) any significant proportion of isoprene is 

degraded on the leaves, and it is probable that the leaf community structure is 

likely driven by other forces. 
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Final discussion 

This project set out to investigate isoprene degradation in the terrestrial 

environment, specifically to: i) determine the effect that soil  and leaf dwelling 

bacteria have on the consumption of isoprene, specifically at atmospherically 

relevant concentrations; ii) investigate and identify the isoprene-degrading 

bacteria in soils and on leaves; iii) determine the effect of isoprene on the leaf 

and soil bacterial communities; and iv) investigate isoprene-degrading isolates 

in depth. 

By measuring the changes in isoprene concentration in chambers spiked 

with15 ppb isoprene deployed  in situ, the isoprene degradation rate of soils 

was shown to be 4.77 nmol m-2 h-1 in this study, leading to an adjustment of the 

global estimate of isoprene uptake of soils from 20.4 to just 0.03 Tg C yr-1 . This 

is in contrast to some of the previous literature, including Cleveland and Yavitt 

(1997); however it supports the figures from Gray et al. (2014) of 2.0 nmol m-2 

h-1. This will have some impact on climate models which had been updated to 

include effects of the soil sink on isoprene concentrations and therefore global 

temperature, which would now need reducing appropriately (Cleveland & Yavitt, 

1998).  

Through seasonal testing, it was discovered that there was no significant 

differences in the rate of isoprene degradation by soils. An unusual aspect as 

isoprene is that it is largely produced by the leaves of trees, especially 

deciduous trees, thus leading to seasonally different levels of isoprene 

(Guenther etl al., 2006). As you would expect that there would be seasonal 

differences in the rate of isoprene degradation if isoprene-degrading bacteria 
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were enriched during the warmer months where broadleaf trees (the largest 

isoprene source) have leaves (the site of isoprene emission) and are subject to 

higher temperatures (which drive isoprene emission), the lack of a seasonal 

effect suggests that the ability of soils to degrade isoprene is not driven by 

atmospheric isoprene. 

Further, experiments in this study to investigate the effect of proximity to 

isoprene-producing trees on soil degradative capacity, using high levels of 

isoprene in serial enrichments support this conclusion. Firstly there was no 

significant difference in the isoprene degrading capacity between the location 

types, and secondly the soils displayed rapid degradation at high 

concentrations of isoprene (80% of 105 ppb in 80 hours), much faster than  in 

situ degradation rates. This adds to the evidence that the isoprene-degrading 

bacteria in these soil communities are not relying on isoprene derived from the 

atmosphere. Taken together, these findings suggest that much of the isoprene 

in the soil must be coming from a non-atmospheric source, the most likely of 

which would be isoprene production within the soil. As far as we know trees do 

not naturally produce isoprene from their roots (Cinege et al., 2009), and we 

know that bacteria in soils are capable of producing isoprene (Murphy, 2011), 

suggesting a microbial isoprene cycle within the soil. This potential in soil 

isoprene cycle, and the ability of soils to rapidly degrade isoprene at 

concentrations that are higher than those found in the atmosphere would also 

go some way to explain why, in experiments where isoprene degradation rates 

of soils were determined using above naturally occurring atmospheric isoprene 

levels, the isoprene degradation rates were much higher than those preformed 

at environmentally relevant concentrations. It is important to note the limitations 
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of this study. For example, the isoprene degradation rates reported here were 

in a small geographic area (although supported by the others’ work e.g. Gray et 

al. 2014), and therefore the adjustment of the global soil sink for isoprene is 

subject to those limitations, and is an initial estimate rather than an absolute 

value. Further valuable work on this topic would be to perform  in situ 

degradation experiments at environmentally relevant concentrations of 

isoprene, or with no isoprene (as with Gray et al., 2014). With the community 

analyses, future work could concentrate on low concentration isoprene 

enrichments, in a similar style to this project in different soil types, and possibly 

with SIP. In this thesis cyclohexamide was used to prevent fungal growth in the 

isoprene enrichments, however as fungal biomas can be 1.5 to 4.3 fold 

bacterial biomass in soils (Ananyeva et al., 2006), it is could be usefull to 

include these in future studies (even though fungi show little response to 

isoprene enrichment (Gray et al., 2015)). 

The various studies in this thesis demonstrated that the isoprene-degrading 

bacteria enriched depend on the isoprene concentration. At high isoprene 

concentrations genera such as Rhodococcus dominate, yet a low 

concentrations other bacteria like Methylobacterium are enriched. This points 

towards a two tiered system of high  and low affinity isoprene degraders in the 

environment, or more probably a spectrum of affinities. Isoprene may be 

scavenged by high affinity microbes as a trace gas, sustaining bacteria when 

nutrients are limited, like with CO2, H2 and CH4 (Greening et al., 2015; Quiza et 

al., 2014; Dunfield et al., 1999). These experiments also raised the question of 

the role of the deeply branching phylum, TM7, in isoprene consumption. TM7 

was enriched to high levels in most soils when isoprene was added at high 
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concentrations and was found in higher abundance (although not statistically 

significant) on isoprene-producing tobacco compared with non-producing 

tobacco, yet no isoprene uptake into the DNA was found in the SIP 

experiments. It is possible that TM7 is using isoprene as an energy source (i.e. 

like Gluconobacter oxydans does with D-lactate in Sheng et al. 2015), rather 

than a carbon source, instead using other trace compounds as carbon sources. 

Additionally, from the serial enrichment experiments it became evident that the 

bacterial communities derived from soils from different locations became more 

similar after isoprene enrichment, demonstrating that the community of 

isoprene-degrading bacteria in any location are somewhat similar. This 

observation is consistent with the analysis of isoprene-degrading bacteria from 

different locations; where, for the bacteria derived from this thesis, there were 

no clear splits in phylogeny, or isoA similarity based on location type suggesting 

a replicability of isoprene degrading communities upon enrichment. 

Through indepth investigation of bacteria it was shown that many isoprene-

degrading bacteria had a wide range of metabolites they were capable of using 

as sole carbon source. This lack of dependence on isoprene as a carbon 

source may suggest that isoprene is used mainly as an additional carbon 

source where available, and the lack of replicability of the genomic structure of 

the isoprene degrading operon and the lack of phylogenetic relationship 

between the isoA gene (important in isoprene degradation) and the 16S rRNA 

gene (phylogenetically linked) suggests that isoprene-degrading genes may be 

subject to lateral transfer. This project lead to the isolation of a number of 

isoprene-degrading strains, and future work could expand the genomic analysis 

to more than the few selected in this work, and potentially the potentially 
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interesting Stenotrophomonas and Bosea strains (unfortunately the time 

limitations of this work meant that these could not be done in this project). 

These experiments also began to answer the TM7 question, showing a 

potential metabolic interaction with Aeromicrobium, although this was based on 

low depth metagenomics with one sample, greater depth and statistical power 

would be important for detailing the TM7 story. 

Isoprene degradation by bacteria on leaves was studied due to leaves being 

the major site of isoprene release. The investigation of isoprene degradation by 

bacteria on, or from leaves demonstrated isoprene degradation by leaf bacteria, 

however the community analysis of the bacteria on isoprene-producing and 

non-producing tobbaco had limited results, with little statistical significance. 

Where bacteria were enriched from leaves, enrichment happened sporadically 

and was not correlated to the isoprene production status of the source leaves, 

therefore if there are differences in communities of isoprene degraders 

enrichable by these methods, isoprene is unlikely to be the driving force. The 

metagenetic analysis of the 16S rDNA amplicons gave no significant 

differences, although this may have been an issue with sequencing depth. They 

did however demonstrate higher concentrations of TM7 on some of the 

isoprene-producing tobacco leaves, which may indicate an interaction there. 

This also reiterates the question of how TM7 is interacting with isoprene.  

One clear output of this study was that if isoprene degraders are degrading 

isoprene on leaves, it is overwhelmed by the little isoprene the leaves produce 

in the dark, and therefore it is negligable in comparison to daytime rates of 

isoprene production, suggesting that there is little benefit in accurate 

quantification. 
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With the data from this thesis, a picture emerges that isoprene degradation on 

leaves is limited, with few isoprene-degrading bacteria on leaves, and the 

bacteria on leaves degrading little of the isoprene produced, with poor 

replicability between environments, and an inability to meaningfully support 

introduced isoprene-degraders. However this is a very tenuous argument due 

to having no statistical significance associated with it (of sameness), and 

therefore could be indicative only. Future work in this area should focus on 

using a non-tobacco model organism (as tobacco sap has antimicrobial 

properties (Pavia el al., 2009)), perhaps the aribadopsis from Loivamaki et al. 

2007 or better still the poplar with silenced isoprene synthase like in Müller et 

al. 2009 alongside much deeper sequencing (due to chloroplast and 

mitrochondria contamination), and enrichments of leaf microbiota should have 

larger innoculums, and measurements of isoprene degraders introduced to 

plants could be accompanied by measures of survival.  
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2.SI: Chapter 2 Supplementary Information 

 

 

Figure 2.SI.1 Isoprene concentration over time for 2 l chambers implanted 
into soil and spiked with ~15 ppb isoprene as well Decafluoropentane for 
different time-points in 2015 (24/3/15, 18/6/15, 29/9/15, 10/12/15). 
Concentration calculated as the change in Isoprene:DFP ratio, net of in-
group control ratio change, against a standard curve. Chambers in three 
groups, with two test chambers per group. n = 6 (failed data included).    
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Figure 2.SI.2 Isoprene concentration measurements against time, 
transformed as percentage of average abiotic controls for 1.0 cm3 (left) 
and 0.1 cm3 (right) 30°C saturated isoprene headspace addition, for six 
soil origins from under the canopy of Willow, Oak, Poplar, Birch, Ash, and 
No-Trees (top to bottom), for three sequential soil enrichments with 
isoprene, (enrichment 1 = black, enrichment 2 = grey, enrichment 3 = 
white) in minimal media. Third level of enrichment sometimes out of sync 
(starting late as second level finish times were different), initial n = 3, error 
bars ±SE. 

 

Figure 2.SI.3 Presence and level of significant differences. Significance 
levels measured by permutational manovas (R: Vegan: adonis) for Willow 
(W), Poplar (P), Birch (B), Oak (O), Ash (A) and No-Trees (N) for Soil, and 
Isoprene enrichments with 0.1 and 1.0 ml 30°C saturated isoprene 
headspace additions, at the first (E1) and third (E3) sequential 
enrichment, against each other condition. n=3 (B 1.0 E3 n=2), combined 
samples at different enrichment levels, and samples from combined 
isoprene producing trees against from non-producing trees. White 
represents no significant differences.  
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Figure 2.SI.4 Isoprene concentration for Willow soil enrichments with 13C 
and 12C isoprene for the initial isoprene level (Day 0, dark grey), Day 1 
(mid-grey) and Day 4 (white). n=3, error bars ±SE.  
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Figure 2.SI.5 Density for fractions from CsCl centrifugation after 
incubation of soil from near a Willow tree with 13C (white) and 12C DNA-SIP 
(black) isoprene. n=3 Error bars are ±SE.  

 

Figure 2.SI.6 Example replicate showing shift of visible presence of end-
point PCR product following PCR of the 16s region for DNA-SIP fractions 
1 (heaviest) to 12 (lighter) for 13C and 12C isoprene enrichments of soil. 
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Figure 2.SI.7 Initial soil communities at RDP fixrank resolution for low 
concentration and stable-isotope probing experiments after MiSeq 
amplicon sequencing of bacterial 16s rDNA genes. n=3, Error bars are 
±SE and included only for communities above 3% relative abundance.  
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Figure 2.SI.8 NMDS of Stable isotope probing of soil with heavy (13C) 
isoprene, normal isoprene (12C) and pre-enriched soil. 13C Red (high 
density) to Yellow (low density), n=30, 12C Blue (high density) to 
Turquoise (low density), n=30, Pre-enriched soil in grey, n=10. Soil from 
beneath Willow. Species n=30877 Performed using metaMDS 
implementation of isoMDS in Vegan package in R; run 2207, stress 
0.1401088. 
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Figure 2.SI.9 Significance distribution of 12C and 13C ultracentrifugation 
fractions 1 to 10 (12C F1 to 12C F10; 13C F1 to 13C F10)  from DNA-SIP of 
soil with isoprene and heavy isoprene, the pre-enriched soil (Soil), and 
the pre-centrifugation communities (pre-SIP) for 12C, 13C and no isoprene 
(C0) incubation communities measured by permutational manovas (R: 
Vegan: adonis), n=3. White represents no significant difference.  
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Figure 2.SI.10 example of daily isoprene decrease under low 
concentrations of isoprene, isoprene was added to cultures and tested 
(white bars), and retested after 1 day (grey bars) before refilling; with 
Birch soil (B), Willow soil (W), 0, 15 and 150 ppb isoprene, n=3, Error bars 
are ± SE, data = 2nd-3rd June. 
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Figure 2.SI.11 Serial enrichment experiments mvabund output: 
Distribution of abundaces for most abundant bacteria for (a) different 
concentrations of isoprene (C0 = no isoprene, C0.1 = 7.2*105 ppb 
isoprene, C01 = 7.2*106 ppb isoprene) (b) different tree types 
overshadowing the sample location and (c) different levels of enrichment 
(E1 is the first enrichment, E3 is the third sequential enrichment), with (d) 
a plot of the mean variance of the final model and (e) a plot of the Dunn-
Smyth Residuals against the linear predictor values. 
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Figure 2.SI.12 DNA-SIP experiments mvabund output: a) Distribution of 
abundaces for most abundant bacteria for (a) each fraction f1-f10 (f1 
being the heaviest) for the starting (pSIP), and final communities for the 
C12 and C13 experiments (b) different communities within the Carbon-12, 
Carbon-13 and untreated groups (c) different fractions following density 
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gradient centrifugation (f1 is the most dense, f10 the least) (d) a plot of the 
mean variance of the final model and (e) a plot of the Dunn-Smyth 
Residuals against the linear predictor values. 

 

 

Figure 2.SI.13 Low Concentration experiments mvabund output: 
Distribution of abundaces for most abundant bacteria for (a) different 
concentrations of isoprene N = starting community, 150=150 ppb 
isoprene, 15 = 15 ppb isoprene, 0 = no isoprene control (b) different tree 
types overshadowing the sample location, with (c) a plot of the mean 
variance of the final model and (d) a plot of the Dunn-Smyth Residuals 
against the linear predictor values. 

 

Figure 2.SI.14 Aeromicrobium relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3.A multi-
variable model fitted to the data set using manyglm (with a negative 
bionomial distribution assumption) within the R package mvabund shown  
that the abundance was not affected by sample location (F8,62 = 1.34 
P=0.24), was affected by the isoprene concentration (F8,62 = 3.19 P=0.01), 
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but was not affected by the level of enrichment (F8,62 = 1.44 P=0.2), * = 
significance at p<0.05 (in univariate unadjusted Kruskal-Wallis tests, for 
display purposes only), n = 3, Error bars = SE, Aeromicrobium defined by 
RDP classification at deepest assignment. 
 

Figure 2.SI.15 Aeromicrobium relative abundances in 13C fractions net of 
Aeromicrobium relative abundances in corresponding 12C fractions, after 
separate enrichment with 1 ml 30°C saturated isoprene headspace for 4 
days, 13C and 12C isoprene and density gradient centrifugation, n = 3, 
Error bars = SE, Aeromicrobium defined by RDP classification at deepest 
assignment. A multi-variable model fitted to the data set using manyglm 
(with a negative bionomial distribution assumption) within the R package 
mvabund shown  that the abundance was not affected by the carbon type 
(F3,65 = 2.18 P=0.1), and was not affected by the density (F3,65 = 1.12 
P=0.35), * = significance at p<0.05 (in univariate unadjusted Kruskal-Wallis 
tests, for display purposes only). 
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Figure 2.SI.16 Aeromicrobium relative abundances after incubation with 0, 
15, and 150 ppb isoprene, replenished daily for three weeks, n=3 , Error 
bars = SE, Aeromicrobium defined by RDP classification at deepest 
assignment. A multi-variable model fitted to the data set using manyglm 
(with a negative bionomial distribution assumption) within the R package 
mvabund shown that abundance was not affected by the isoprene 
concentration (F8,15 = 1.43 P=0.26) nor tree type (F8,15 = 1.09 P=0.42) 

 

 

 
 
Figure 2.SI.17 relative abundances in sequential enrichment of soil with 
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isoprene. Soil was obtained from under the canopy of trees W = Willow, P 
= Poplar, B = Birch, O = Oak, A = Ash, N = No-Trees. Enrichment was at 
two levels 1 ml (0.8%) 30°C saturated isoprene headspace addition = 1.0, 
0.1 ml (0.08%) 30°C saturated isoprene headspace addition = 0.1. Pre-
enriched soil abundance = soil, first enrichment = E1, Second enrichment 
= E2, Third enrichment = E3.A multi-variable model fitted to the data set 
using manyglm (with a negative bionomial distribution assumption) within 
the R package mvabund shown  that the abundance was affected by 
concentration (F8,62 = 3.19 P=0.04), but was not affected by sample 
location (F8,62 = 1.42 P=0.21), or by enrichment level  (F8,62 = 0.84 
P=0.58), * = significance at p<0.05 (in univariate unadjusted Kruskal-Wallis 
tests, for display purposes only), n = 3, Error bars = SE, Nocardioides 
defined by RDP classification at deepest assignment. 
 

Figure 2.SI.18 Nocardioides relative abundances in 13C fractions net of 
Nocardioides relative abundances in corresponding 12C fractions, after 
separate enrichment with 1 ml 30°C saturated isoprene headspace for 4 
days, 13C and 12C isoprene and density gradient centrifugation, n = 3, 
Error bars = SE, Nocardioides defined by RDP classification at deepest 
assignment. A multi-variable model fitted to the data set using manyglm 
(with a negative bionomial distribution assumption) within the R package 
mvabund shown  that the abundance was not significantly affected by the 
density (F3,65 = 1.49 P=0.23), and was not affected by the carbon type (F3,65 
= 0.89 P=0.45), * = significance at p<0.05 (in univariate unadjusted 
Kruskal-Wallis tests, for display purposes only) 
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Figure 2.SI.19 Nocardioides relative abundances after incubation with 0, 
15, and 150 ppb isoprene, replenished daily for three weeks, n=3 , Error 
bars = SE, Nocardioides defined by RDP classification at deepest 
assignment. A multi-variable model fitted to the data set using manyglm 
(with a negative bionomial distribution assumption) within the R package 
mvabund shown that abundance was not affected by the isoprene 
concentration (F8,15 = 0.3 P=0.96) and was affected by the tree type (F8,15 = 
3.37 P=0.02). 

 

Figure 2.SI.20 Fluviicola relative abundances in sequential enrichment of 
soil with isoprene. Soil was obtained from under the canopy of trees W = 
Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = No-Trees. Enrichment 
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was at two levels 1 ml (0.8%) 30°C saturated isoprene headspace addition 
= 1.0, 0.1 ml (0.08%) 30°C saturated isoprene headspace addition = 0.1. 
Pre-enriched soil abundance = soil, first enrichment = E1, Second 
enrichment = E2, Third enrichment = E3.A multi-variable model fitted to 
the data set using manyglm (with a negative bionomial distribution 
assumption) within the R package mvabund shown  that the abundance 
was affected by sample location (F8,62 = 2.1 P=0.05), was affected by 
concentration (F8,62 = 3.81 P= < 0.001) and was was affected by 
enrichment level (F8,62 = 3.19 P=0.03), * = significance at p<0.05 (in 
univariate unadjusted Kruskal-Wallis tests, for display purposes only), n = 
3, Error bars = SE, Fluviicola defined by RDP classification at deepest 
assignment.  

 
Figure 2.SI.21 Fluviicola relative abundances in 13C fractions net of 
Fluviicola relative abundances in corresponding 12C fractions, after 
separate enrichment with 1 ml 30°C saturated isoprene headspace for 4 
days, 13C and 12C isoprene and density gradient centrifugation, n = 3, 
Error bars = SE, Fluviicola defined by RDP classification at deepest 
assignment. A multi-variable model fitted to the data set using manyglm 
(with a negative bionomial distribution assumption) within the R package 
mvabund shown  that the abundance was not affected by the density (F3,65 
= 4.4 P=0.01), and was not affected by the carbon type (F3,65 = 0.75 
P=0.53), * = significance at p<0.05 (in univariate unadjusted Kruskal-Wallis 
tests, for display purposes only). 
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Figure 2.SI.22 Fluviicola relative abundances after incubation with 0, 15, 
and 150 ppb isoprene, replenished daily for three weeks, n=3 , Error bars 
= SE, Fluviicola defined by RDP classification at deepest assignment. A 
multi-variable model fitted to the data set using manyglm (with a negative 
bionomial distribution assumption) within the R package mvabund shown 
that abundance was not affected by the isoprene concentration (F8,15 = 
0.01 P=1) and was not affected by the tree type (F8,15 = 0.83 P=0.59). 
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Figure 2.SI.23 Rhodanobacter relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3.A multi-
variable model fitted to the data set using manyglm (with a negative 
bionomial distribution assumption) within the R package mvabund shown  
that the abundance was not affected by sample location (F8,62 = 0.82 
P=0.6), not affected by concentration (F8,62 = 0.32 P=0.96), and was 
affected by enrichment level (F8,62 = 3.19 P=0.01), * = significance at p<0.05 
(in univariate unadjusted Kruskal-Wallis tests, for display purposes only), 
n = 3, Error bars = SE, Rhodanobacter defined by RDP classification at 
deepest assignment. 

 

 
Figure 2.SI.24 Rhodanobacter relative abundances after incubation with 0, 
15, and 150 ppb isoprene, replenished daily for three weeks, n=3 , Error 
bars = SE, defined by RDP classification at deepest assignment. A multi-
variable model fitted to the data set using manyglm (with a negative 
bionomial distribution assumption) within the R package mvabund shown 
that abundance was not affected by the isoprene concentration (F8,15 = 1.3 
P=0.32) and was not affected by the tree type (F8,15 = 2.35 P=0.07). 
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Figure 2.SI.25 Flavobacterium relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3.A multi-
variable model fitted to the data set using manyglm (with a negative 
bionomial distribution assumption) within the R package mvabund shown  
that the abundance was not affected by sample location (F8,62 = 1.69 
P=0.12), was affected by concentration (F8,62 = 2.14 P=0.05), and was not 
affected by enrichment level (F8,62 = 0.93 P=0.51), * = significance at p<0.05 
(in univariate unadjusted Kruskal-Wallis tests, for display purposes only), 
n = 3, Error bars = SE, Flavobacterium defined by RDP classification at 
deepest assignment. 
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Figure 2.SI.26 Flavobacterium relative abundances in 13C fractions net of 
Flavobacterium relative abundances in corresponding 12C fractions, after 
separate enrichment with 1 ml 30°C saturated isoprene headspace for 4 
days, 13C and 12C isoprene and density gradient centrifugation, n = 3, 
Error bars = SE, Flavobacterium defined by RDP classification at deepest 
assignment. A multi-variable model fitted to the data set using manyglm 
(with a negative bionomial distribution assumption) within the R package 
mvabund shown  that the abundance was not significantly affected by the 
density (F3,65 = 0.66 P=0.59), and was not affected by the carbon type (F3,65 
= 0.45 P=0.72), * = significance at p<0.05 (in univariate unadjusted 
Kruskal-Wallis tests, for display purposes only). 
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Figure 2.SI.27 Flavobacterium relative abundances after incubation with 0, 
15, and 150 ppb isoprene, replenished daily for three weeks, n=3 , Error 
bars = SE, Flavobacterium defined by RDP classification at deepest 
assignment. A multi-variable model fitted to the data set using manyglm 
(with a negative bionomial distribution assumption) within the R package 
mvabund shown that abundance was not affected by the isoprene 
concentration (F8,15 = 0.56 P=0.8) and was not affected by the tree type 
(F8,15 = 2.21 P=0.09) . 
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Figure 2.SI.28 Acidovorax relative abundances in sequential enrichment 
of soil with isoprene. Soil was obtained from under the canopy of trees W 
= Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = No-Trees. 
Enrichment was at two levels 1 ml (0.8%) 30°C saturated isoprene 
headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3.A multi-
variable model fitted to the data set using manyglm (with a negative 
bionomial distribution assumption) within the R package mvabund shown  
that the abundance was not affected by sample location (F8,62 = 0.99 
P=0.46), was affected by concentration (F8,62 = 9.26 P= < 0.001), and was 
affected by enrichment level (F8,62 = 4.14 P= < 0.001), * = significance at 
p<0.05 (in univariate unadjusted Kruskal-Wallis tests, for display 
purposes only), n = 3, Error bars = SE, Acidovorax defined by RDP 
classification at deepest assignment. 

 
Figure 2.SI.29 Acidovorax relative abundances in 13C fractions net of 
Acidovorax relative abundances in corresponding 12C fractions, after 
separate enrichment with 1 ml 30°C saturated isoprene headspace for 4 
days, 13C and 12C isoprene and density gradient centrifugation, n = 3, 
Error bars = SE, Acidovorax defined by RDP classification at deepest 
assignment. A multi-variable model fitted to the data set using manyglm 
(with a negative bionomial distribution assumption) within the R package 
mvabund shown  that the abundance was significantly affected by the 
density (F3,65 = 3.7 P=0.02), and was not affected by the carbon type (F3,65 
= 0.59 P=0.63), * = significance at p<0.05 (in univariate unadjusted 
Kruskal-Wallis tests, for display purposes only). 
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Figure 2.SI.30 Acidovorax relative abundances after incubation with 0, 15, 
and 150 ppb isoprene, replenished daily for three weeks, n=3 , Error bars 
= SE, Acidovorax defined by RDP classification at deepest assignment. A 
multi-variable model fitted to the data set using manyglm (with a negative 
bionomial distribution assumption) within the R package mvabund shown 
that abundance was not affected by the isoprene concentration (F8,15 = 
0.01 P=1) and was not affected by the tree type (F8,15 = 1.37 P=0.29). 
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Figure 2.SI.31 Streptomyces relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3.A multi-
variable model fitted to the data set using manyglm (with a negative 
bionomial distribution assumption) within the R package mvabund shown  
that the abundance was not affected by sample location (F8,62 = 1.04 
P=0.42), not affected by concentration (F8,62 = 0.52 P=0.84), and was 
affected by enrichment level (F8,62 = 3.76 P= < 0.001), * = significance at 
p<0.05 (in univariate unadjusted Kruskal-Wallis tests, for display 
purposes only), n = 3, Error bars = SE, Streptomyces defined by RDP 
classification at deepest assignment. 
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Figure 2.SI.32 Streptomyces relative abundances in 13C fractions net of 
Streptomyces relative abundances in corresponding 12C fractions, after 
separate enrichment with 1 ml 30°C saturated isoprene headspace for 4 
days, 13C and 12C isoprene and density gradient centrifugation, n = 3, 
Error bars = SE, Streptomyces defined by RDP classification at deepest 
assignment. A multi-variable model fitted to the data set using manyglm 
(with a negative bionomial distribution assumption) within the R package 
mvabund shown  that the abundance was not significantly affected by the 
density (F3,65 = 1.1 P=0.36), and was not affected by the carbon type (F3,65 
= 0.71 P=0.55), * = significance at p<0.05 (in univariate unadjusted 
Kruskal-Wallis tests, for display purposes only). 
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Figure 2.SI.33 Streptomyces relative abundances after incubation with 0, 
15, and 150 ppb isoprene, replenished daily for three weeks, n=3 , Error 
bars = SE, defined by RDP classification at deepest assignment. A multi-
variable model fitted to the data set using manyglm (with a negative 
bionomial distribution assumption) within the R package mvabund shown 
that abundance was not affected by the isoprene concentration (F8,15 = 
1.27 P=0.33) and was not affected by the tree type (F8,15 = 1.13 P=0.4). 
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Figure 2.SI.34 Sporolituus relative abundances in sequential enrichment 
of soil with isoprene. Soil was obtained from under the canopy of trees W 
= Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = No-Trees. 
Enrichment was at two levels 1 ml (0.8%) 30°C saturated isoprene 
headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3.A multi-
variable model fitted to the data set using manyglm (with a negative 
bionomial distribution assumption) within the R package mvabund shown  
that the abundance was not affected by sample location (F8,62 = 0.72 
P=0.68), not affected by concentration (F8,62 = 1.03 P=0.43), and was not 
affected by enrichment level (F8,62 = 0.33 P=0.95), * = significance at p<0.05 
(in univariate unadjusted Kruskal-Wallis tests, for display purposes only), 
n = 3, Error bars = SE, Sporolituus defined by RDP classification at 
deepest assignment. 
 

Figure 2.SI.35 Sporolituus relative abundances in 13C fractions net of 
Sporolituus relative abundances in corresponding 12C fractions, after 
separate enrichment with 1 ml 30°C saturated isoprene headspace for 4 
days, 13C and 12C isoprene and density gradient centrifugation, n = 3, 
Error bars = SE, Sporolituus defined by RDP classification at deepest 
assignment. A multi-variable model fitted to the data set using manyglm 
(with a negative bionomial distribution assumption) within the R package 
mvabund shown  that the abundance was affected by the density (F3,65 = 
3.65 P=0.02), and was not affected by the carbon type (F3,65 = 1.02 P=0.39), 
* = significance at p<0.05 (in univariate unadjusted Kruskal-Wallis tests, 
for display purposes only). 
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Figure 2.SI.36 Sporolituus relative abundances after incubation with 0, 15, 
and 150 ppb isoprene, replenished daily for three weeks, n=3 , Error bars 
= SE, Sporolituus defined by RDP classification at deepest assignment. A 
multi-variable model fitted to the data set using manyglm (with a negative 
bionomial distribution assumption) within the R package mvabund shown 
that abundance was affected by the isoprene concentration (F8,15 = 0.01 
P=1) and was not affected by the tree type (F8,15 = 1.63 P=0.2). 
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Figure 2.SI.37 Pseudomonas relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3.A multi-
variable model fitted to the data set using manyglm (with a negative 
bionomial distribution assumption) within the R package mvabund shown  
that the abundance was not affected by sample location (F8,62 = 0.81 
P=0.6), not affected by concentration (F8,62 = 1.92 P=0.07), and was not 
affected by enrichment level (F8,62 = 1.73 P=0.11), * = significance at p<0.05 
(in univariate unadjusted Kruskal-Wallis tests, for display purposes only), 
n = 3, Error bars = SE, Pseudomonas defined by RDP classification at 
deepest assignment.  
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Figure 2.SI.38 Pseudomonas relative abundances in 13C fractions net of 
Pseudomonas relative abundances in corresponding 12C fractions, after 
separate enrichment with 1 ml 30°C saturated isoprene headspace for 4 
days, 13C and 12C isoprene and density gradient centrifugation, n = 3, 
Error bars = SE, Pseudomonas defined by RDP classification at deepest 
assignment. A multi-variable model fitted to the data set using manyglm 
(with a negative bionomial distribution assumption) within the R package 
mvabund shown  that the abundance was not significantly affected by the 
density (F3,65 = 0.4 P=0.76), and was not affected by the carbon type (F3,65 
= 0.81 P=0.49), * = significance at p<0.05 (in univariate unadjusted 
Kruskal-Wallis tests, for display purposes only). 
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Figure 2.SI.39 Pseudomonas relative abundances after incubation with 0, 
15, and 150 ppb isoprene, replenished daily for three weeks, n=3 , Error 
bars = SE, Pseudomonas defined by RDP classification at deepest 
assignment. A multi-variable model fitted to the data set using manyglm 
(with a negative bionomial distribution assumption) within the R package 
mvabund shown that abundance was not affected by the isoprene 
concentration (F8,15 = 0.5 P=0.84) and was not affected by the tree type 
(F8,15 = 0.53 P=0.82). 
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Figure 2.SI.40 Lysobacter relative abundances in sequential enrichment of 
soil with isoprene. Soil was obtained from under the canopy of trees W = 
Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = No-Trees. Enrichment 
was at two levels 1 ml (0.8%) 30°C saturated isoprene headspace addition 
= 1.0, 0.1 ml (0.08%) 30°C saturated isoprene headspace addition = 0.1. 
Pre-enriched soil abundance = soil, first enrichment = E1, Second 
enrichment = E2, Third enrichment = E3.A multi-variable model fitted to 
the data set using manyglm (with a negative bionomial distribution 
assumption) within the R package mvabund shown  that the abundance 
was not affected by sample location (F8,62 = 1.13 P=0.36), not affected by 
concentration (F8,62 = 1.39 P=0.22), and was not affected by enrichment 
level (F8,62 = 1.14 P=0.35), * = significance at p<0.05 (in univariate 
unadjusted Kruskal-Wallis tests, for display purposes only), n = 3, Error 
bars = SE, Lysobacter defined by RDP classification at deepest 
assignment.  
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Figure 2.SI.41 Lysobacter relative abundances in 13C fractions net of 
Lysobacter relative abundances in corresponding 12C fractions, after 
separate enrichment with 1 ml 30°C saturated isoprene headspace for 4 
days, 13C and 12C isoprene and density gradient centrifugation, n = 3, 
Error bars = SE, Lysobacter defined by RDP classification at deepest 
assignment. A multi-variable model fitted to the data set using manyglm 
(with a negative bionomial distribution assumption) within the R package 
mvabund shown  that the abundance was not significantly affected by the 
density (F3,65 = 1.68 P=0.18), and was not affected by the carbon type (F3,65 
= 0.85 P=0.47), * = significance at p<0.05 (in univariate unadjusted 
Kruskal-Wallis tests, for display purposes only). 
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Figure 2.SI.42 Lysobacter relative abundances after incubation with 0, 15, 
and 150 ppb isoprene, replenished daily for three weeks, n=3 , Error bars 
= SE, Lysobacter defined by RDP classification at deepest assignment. A 
multi-variable model fitted to the data set using manyglm (with a negative 
bionomial distribution assumption) within the R package mvabund shown 
that abundance was not affected by the isoprene concentration (F8,15 = 
0.11 P=1) and was not affected by the tree type (F8,15 = 1.42 P=0.27). 
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Figure 2.SI.43 Variovorax relative abundances in sequential enrichment of 
soil with isoprene. Soil was obtained from under the canopy of trees W = 
Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = No-Trees. Enrichment 
was at two levels 1 ml (0.8%) 30°C saturated isoprene headspace addition 
= 1.0, 0.1 ml (0.08%) 30°C saturated isoprene headspace addition = 0.1. 
Pre-enriched soil abundance = soil, first enrichment = E1, Second 
enrichment = E2, Third enrichment = E3.A multi-variable model fitted to 
the data set using manyglm (with a negative bionomial distribution 
assumption) within the R package mvabund shown  that the abundance 
was not affected by sample location (F8,62 = 0.77 P=0.63), not affected by 
concentration (F8,62 = 1.17 P=0.33), and was not affected by enrichment 
level (F8,62 = 1.17 P=0.33), * = significance at p<0.05 (in univariate 
unadjusted Kruskal-Wallis tests, for display purposes only), n = 3, Error 
bars = SE, Variovorax defined by RDP classification at deepest 
assignment.
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Figure 2.SI.44 Variovorax relative abundances in 13C fractions net of 
Variovorax relative abundances in corresponding 12C fractions, after 
separate enrichment with 1 ml 30°C saturated isoprene headspace for 4 
days, 13C and 12C isoprene and density gradient centrifugation, n = 3, 
Error bars = SE, Variovorax defined by RDP classification at deepest 
assignment. A multi-variable model fitted to the data set using manyglm 
(with a negative bionomial distribution assumption) within the R package 
mvabund shown  that the abundance was not significantly affected by the 
density (F3,65 = 0.86 P=0.47), and was not affected by the carbon type (F3,65 
= 0.82 P=0.49), * = significance at p<0.05 (in univariate unadjusted 
Kruskal-Wallis tests, for display purposes only). 
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Figure 2.SI.45 Variovorax relative abundances after incubation with 0, 15, 
and 150 ppb isoprene, replenished daily for three weeks, n=3 , Error bars 
= SE, Variovorax defined by RDP classification at deepest assignment. A 
multi-variable model fitted to the data set using manyglm (with a negative 
bionomial distribution assumption) within the R package mvabund shown 
that abundance was not affected by the isoprene concentration (F8,15 = 
1.08 P=0.43) and was not affected by the tree type (F8,15 = 1.41 P=0.27). 
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Figure 2.SI.46 Pedobacter relative abundances in sequential enrichment 
of soil with isoprene. Soil was obtained from under the canopy of trees W 
= Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = No-Trees. 
Enrichment was at two levels 1 ml (0.8%) 30°C saturated isoprene 
headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3.A multi-
variable model fitted to the data set using manyglm (with a negative 
bionomial distribution assumption) within the R package mvabund shown  
that the abundance was not affected by sample location (F8,62 = 0.91 
P=0.52), was affected by concentration (F8,62 = 3.55 P= < 0.001), and was 
affected by enrichment level (F8,62 = 2.12 P=0.05), * = significance at p<0.05 
(in univariate unadjusted Kruskal-Wallis tests, for display purposes only), 
n = 3, Error bars = SE, Pedobacter defined by RDP classification at 
deepest assignment. 

 
Figure 2.SI.47 Pedobacter relative abundances in 13C fractions net of 
Pedobacter relative abundances in corresponding 12C fractions, after 
separate enrichment with 1 ml 30°C saturated isoprene headspace for 4 
days, 13C and 12C isoprene and density gradient centrifugation, n = 3, 
Error bars = SE, Pedobacter defined by RDP classification at deepest 
assignment. A multi-variable model fitted to the data set using manyglm 
(with a negative bionomial distribution assumption) within the R package 
mvabund shown  that the abundance was not significantly affected by the 
density (F3,65 = 0.29 P=0.84), and was not affected by the carbon type (F3,65 
= 0.59 P=0.63), * = significance at p<0.05 (in univariate unadjusted 
Kruskal-Wallis tests, for display purposes only). 
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Figure 2.SI.48 Pedobacter relative abundances after incubation with 0, 15, 
and 150 ppb isoprene, replenished daily for three weeks, n=3 , Error bars 
= SE, Pedobacter defined by RDP classification at deepest assignment. A 
multi-variable model fitted to the data set using manyglm (with a negative 
bionomial distribution assumption) within the R package mvabund shown 
that abundance was not affected by the isoprene concentration (F8,15 = 
0.01 P=1) and was not affected by the tree type (F8,15 = 0.54 P=0.81). 
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Figure 2.SI.49 Ramlibacter relative abundances in sequential enrichment 
of soil with isoprene. Soil was obtained from under the canopy of trees W 
= Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = No-Trees. 
Enrichment was at two levels 1 ml (0.8%) 30°C saturated isoprene 
headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3.A multi-
variable model fitted to the data set using manyglm (with a negative 
bionomial distribution assumption) within the R package mvabund shown  
that the abundance was affected by sample location (F8,62 = 3.19 P=0.04), 
was affected by concentration (F8,62 = 5.46 P= < 0.001), and was not 
affected by enrichment level (F8,62 = 1.25 P=0.29), * = significance at p<0.05 
(in univariate unadjusted Kruskal-Wallis tests, for display purposes only), 
n = 3, Error bars = SE, Ramlibacter defined by RDP classification at 
deepest assignment.  
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Figure 2.SI.51 Ramlibacter relative abundances after incubation with 0, 15, 
and 150 ppb isoprene, replenished daily for three weeks, n=3 , Error bars 
= SE, Ramlibacter defined by RDP classification at deepest assignment. A 
multi-variable model fitted to the data set using manyglm (with a negative 
bionomial distribution assumption) within the R package mvabund shown  
that the abundance was was significantly affected by the density (F3,65 = 
0.41 P=0.36), and was was affected by the carbon type (F3,65 = 0.57 P= < 
0.001), * = significance at p<0.05 (in univariate unadjusted Kruskal-Wallis 
tests, for display purposes only). 
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Figure 2.SI.52 Mucilaginibacter relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3.A multi-
variable model fitted to the data set using manyglm (with a negative 
bionomial distribution assumption) within the R package mvabund shown  
that the abundance was not affected by sample location (F8,62 = 1.02 
P=0.44), was affected by concentration (F8,62 = 0.88 P=0.54), and was 
affected by enrichment level (F8,62 = 3.19 P=0.03), * = significance at p<0.05 
(in univariate unadjusted Kruskal-Wallis tests, for display purposes only), 
n = 3, Error bars = SE, Mucilaginibacter defined by RDP classification at 
deepest assignment. 
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Figure 2.SI.53 Aeromonas relative abundances in sequential enrichment 
of soil with isoprene. Soil was obtained from under the canopy of trees W 
= Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = No-Trees. 
Enrichment was at two levels 1 ml (0.8%) 30°C saturated isoprene 
headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3.A multi-
variable model fitted to the data set using manyglm (with a negative 
bionomial distribution assumption) within the R package mvabund shown  
that the abundance was not affected by sample location (F8,62 = 1.92 
P=0.07), not affected by concentration (), and was not affected by 
enrichment level (F8,62 = 0.27 P=0.98), * = significance at p<0.05 (in 
univariate unadjusted Kruskal-Wallis tests, for display purposes only), n = 
3, Error bars = SE, Aeromonas defined by RDP classification at deepest 
assignment. 
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Figure 2.SI.54 Shinella relative abundances in sequential enrichment of 
soil with isoprene. Soil was obtained from under the canopy of trees W = 
Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = No-Trees. Enrichment 
was at two levels 1 ml (0.8%) 30°C saturated isoprene headspace addition 
= 1.0, 0.1 ml (0.08%) 30°C saturated isoprene headspace addition = 0.1. 
Pre-enriched soil abundance = soil, first enrichment = E1, Second 
enrichment = E2, Third enrichment = E3.A multi-variable model fitted to 
the data set using manyglm (with a negative bionomial distribution 
assumption) within the R package mvabund shown  that the abundance 
was not affected by sample location (F8,62 = 1.08 P=0.39), was affected by 
concentration (F8,62 = 4.23 P= < 0.001), and was not affected by enrichment 
level (F8,62 = 1.14 P=0.35), * = significance at p<0.05 (in univariate 
unadjusted Kruskal-Wallis tests, for display purposes only), n = 3, Error 
bars = SE, Shinella defined by RDP classification at deepest assignment.
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Figure 2.SI.55 Shinella relative abundances in 13C fractions net of Shinella 
relative abundances in corresponding 12C fractions, after separate 
enrichment with 1 ml 30°C saturated isoprene headspace for 4 days, 13C 
and 12C isoprene and density gradient centrifugation, n = 3, Error bars = 
SE, Shinella defined by RDP classification at deepest assignment. A 
multi-variable model fitted to the data set using manyglm (with a negative 
bionomial distribution assumption) within the R package mvabund shown  
that the abundance was not significantly affected by the density (F3,65 = 
1.09 P=0.36), and was not affected by the carbon type (F3,65 = 0.57 P=0.64), 
* = significance at p<0.05 (in univariate unadjusted Kruskal-Wallis tests, 
for display purposes only). 
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Figure 2.SI.56 Shinella relative abundances after incubation with 0, 15, 
and 150 ppb isoprene, replenished daily for three weeks, n=3 , Error bars 
= SE, Shinella defined by RDP classification at deepest assignment. A 
multi-variable model fitted to the data set using manyglm (with a negative 
bionomial distribution assumption) within the R package mvabund shown 
that abundance was not affected by the isoprene concentration (F8,15 = 
0.01 P=1) and was not affected by the tree type (F8,15 = 1.3 P=0.32). 
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Figure 2.SI.57 Bosea relative abundances in sequential enrichment of soil 
with isoprene. Soil was obtained from under the canopy of trees W = 
Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = No-Trees. Enrichment 
was at two levels 1 ml (0.8%) 30°C saturated isoprene headspace addition 
= 1.0, 0.1 ml (0.08%) 30°C saturated isoprene headspace addition = 0.1. 
Pre-enriched soil abundance = soil, first enrichment = E1, Second 
enrichment = E2, Third enrichment = E3.A multi-variable model fitted to 
the data set using manyglm (with a negative bionomial distribution 
assumption) within the R package mvabund shown  that the abundance 
was not affected by sample location (F8,62 = 1.38 P=0.22), was affected by 
concentration (F8,62 = 3.19 P=0.01), and was not affected by enrichment 
level (F8,62 = 2.03 P=0.06), * = significance at p<0.05 (in univariate 
unadjusted Kruskal-Wallis tests, for display purposes only), n = 3, Error 
bars = SE, Bosea defined by RDP classification at deepest assignment. 
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Figure 2.SI.58 Bosea relative abundances after incubation with 0, 15, and 
150 ppb isoprene, replenished daily for three weeks, n=3 , Error bars = SE, 
Bosea defined by RDP classification at deepest assignment. A multi-
variable model fitted to the data set using manyglm (with a negative 
bionomial distribution assumption) within the R package mvabund shown 
that abundance was not affected by the isoprene concentration (F8,15 = 
0.01 P=1) and was not affected by the tree type (F8,15 = 1.87 P=0.14). 
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Figure 2.SI.59 Acetonema relative abundances in sequential enrichment 
of soil with isoprene. Soil was obtained from under the canopy of trees W 
= Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = No-Trees. 
Enrichment was at two levels 1 ml (0.8%) 30°C saturated isoprene 
headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3.A multi-
variable model fitted to the data set using manyglm (with a negative 
bionomial distribution assumption) within the R package mvabund shown  
that the abundance was not affected by sample location (F8,62 = 1.04 
P=0.42), not affected by concentration (F8,62 = 1.41 P=0.21), and was not 
affected by enrichment level (F8,62 = 1.74 P=0.11), * = significance at p<0.05 
(in univariate unadjusted Kruskal-Wallis tests, for display purposes only), 
n = 3, Error bars = SE, Acetonema defined by RDP classification at 
deepest assignment. 
 

 
 
Figure 2.SI.60 Acetonema relative abundances after incubation with 0, 15, 
and 150 ppb isoprene, replenished daily for three weeks, n=3 , Error bars 
= SE, Acetonema defined by RDP classification at deepest assignment. A 
multi-variable model fitted to the data set using manyglm (with a negative 
bionomial distribution assumption) within the R package mvabund shown 
that abundance was affected by the isoprene concentration (F8,15 = 3.39 
P=0.02) and was affected by the tree type (F8,15 = 3.94 P=0.01). 
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Figure 2.SI.61 Polaromonas relative abundances in sequential enrichment 
of soil with isoprene. Soil was obtained from under the canopy of trees W 
= Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = No-Trees. 
Enrichment was at two levels 1 ml (0.8%) 30°C saturated isoprene 
headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3.A multi-
variable model fitted to the data set using manyglm (with a negative 
bionomial distribution assumption) within the R package mvabund shown  
that the abundance was not affected by sample location (F8,62 = 1.04 
P=0.42), was affected by concentration (F8,62 = 3.95 P= < 0.001), and was 
not affected by enrichment level (F8,62 = 1.92 P=0.07), * = significance at 
p<0.05 (in univariate unadjusted Kruskal-Wallis tests, for display 
purposes only), n = 3, Error bars = SE, Polaromonas defined by RDP 
classification at deepest assignment.  
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Figure 2.SI.62 Polaromonas relative abundances after incubation with 0, 
15, and 150 ppb isoprene, replenished daily for three weeks, n=3 , Error 
bars = SE, Polaromonas defined by RDP classification at deepest 
assignment. A multi-variable model fitted to the data set using manyglm 
(with a negative bionomial distribution assumption) within the R package 
mvabund shown that abundance was not affected by the isoprene 
concentration (F8,15 = 0.01 P=1) and was not affected by the tree type (F8,15 
= 2.25 P=0.08). 
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Figure 2.SI.63 Caenimonas relative abundances in sequential enrichment 
of soil with isoprene. Soil was obtained from under the canopy of trees W 
= Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = No-Trees. 
Enrichment was at two levels 1 ml (0.8%) 30°C saturated isoprene 
headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3.A multi-
variable model fitted to the data set using manyglm (with a negative 
bionomial distribution assumption) within the R package mvabund shown  
that the abundance was not affected by sample location  (F8,62 = 0.9 
P=0.53), not affected by concentration (F8,62 = 1.02 P=0.44), and was not 
affected by enrichment level (F8,62 = 1.48 P=0.18), * = significance at p<0.05 
(in univariate unadjusted Kruskal-Wallis tests, for display purposes only), 
n = 3, Error bars = SE, Caenimonas defined by RDP classification at 
deepest assignment.

 
 
 
Figure 2.SI.64 Caenimonas relative abundances after incubation with 0, 
15, and 150 ppb isoprene, replenished daily for three weeks, n=3 , Error 
bars = SE, Caenimonas defined by RDP classification at deepest 
assignment. A multi-variable model fitted to the data set using manyglm 
(with a negative bionomial distribution assumption) within the R package 
mvabund shown that abundance was not affected by the isoprene 
concentration (F8,15 = 0.66 P=0.73) and was not affected by the tree type 
(F8,15 = 1.89 P=0.14). 
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Figure 2.SI.65 Acinetobacter relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3.A multi-
variable model fitted to the data set using manyglm (with a negative 
bionomial distribution assumption) within the R package mvabund shown  
that the abundance was affected by sample location (F8,62 = 2.1 P=0.05), 
not affected by concentration (F8,62 = 1.49 P=0.18), and was not affected by 
enrichment level (F8,62 = 0.56 P=0.81), * = significance at p<0.05 (in 
univariate unadjusted Kruskal-Wallis tests, for display purposes only), n = 
3, Error bars = SE, Acinetobacter defined by RDP classification at deepest 
assignment. 
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Figure 2.SI.66 Acinetobacter relative abundances in 13C fractions net of 
Acinetobacter relative abundances in corresponding 12C fractions, after 
separate enrichment with 1 ml 30°C saturated isoprene headspace for 4 
days, 13C and 12C isoprene and density gradient centrifugation, n = 3, 
Error bars = SE, Acinetobacter defined by RDP classification at deepest 
assignment. A multi-variable model fitted to the data set using manyglm 
(with a negative bionomial distribution assumption) within the R package 
mvabund shown  that the abundance was significantly affected by the 
density (F3,65 = 4.31 P=0.01), and was not affected by the carbon type (F3,65 
= 1.11 P=0.36), * = significance at p<0.05 (in univariate unadjusted 
Kruskal-Wallis tests, for display purposes only). 
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Figure 2.SI.67 Acinetobacter relative abundances after incubation with 0, 
15, and 150 ppb isoprene, replenished daily for three weeks, n=3 , Error 
bars = SE, Acinetobacter defined by RDP classification at deepest 
assignment.  
 

 
 

Figure 2.SI.68 Methylobacterium relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
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isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3.A multi-
variable model fitted to the data set using manyglm (with a negative 
bionomial distribution assumption) within the R package mvabund shown  
that the abundance was not affected by sample location (F8,62 = 0.91 
P=0.52), not affected by concentration (F8,62 = 0.32 P=0.96), and was not 
affected by enrichment level (F8,62 = 1.9 P=0.08), * = significance at p<0.05 
(in univariate unadjusted Kruskal-Wallis tests, for display purposes only), 
n = 3, Error bars = SE, Methylobacterium defined by RDP classification at 
deepest assignment. 

 
Figure 2.SI.69 Methylobacterium relative abundances in 13C fractions net 
of Methylobacterium relative abundances in corresponding 12C fractions, 
after separate enrichment with 1 ml 30°C saturated isoprene headspace 
for 4 days, 13C and 12C isoprene and density gradient centrifugation, n = 3, 
Error bars = SE, Methylobacterium defined by RDP classification at 
deepest assignment. A multi-variable model fitted to the data set using 
manyglm (with a negative bionomial distribution assumption) within the R 
package mvabund shown  that the abundance was significantly affected 
by the density (F3,65 = 2.72 P=0.05), and was not affected by the carbon 
type (F3,65 = 0.77 P=0.52), * = significance at p<0.05 (in univariate 
unadjusted Kruskal-Wallis tests, for display purposes only). 
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Figure 2.SI.70 Methylobacterium relative abundances after incubation with 
0, 15, and 150 ppb isoprene, replenished daily for three weeks, n=3 , Error 
bars = SE, Methylobacterium defined by RDP classification at deepest 
assignment. A multi-variable model fitted to the data set using manyglm 
(with a negative bionomial distribution assumption) within the R package 
mvabund shown that abundance was not affected by the isoprene 
concentration (F8,15 = 1.07 P=0.43) and was not affected by the tree type 
(F8,15 = 0.27 P=0.97). 
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Figure 2.SI.71 Nakamurella relative abundances in sequential enrichment 
of soil with isoprene. Soil was obtained from under the canopy of trees W 
= Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = No-Trees. 
Enrichment was at two levels 1 ml (0.8%) 30°C saturated isoprene 
headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3.A multi-
variable model fitted to the data set using manyglm (with a negative 
bionomial distribution assumption) within the R package mvabund shown  
that the abundance was not affected by sample location (F8,62 = 1.55 
P=0.16), not affected by concentration (F8,62 = 0.6 P=0.78), and was 
affected by enrichment level (F8,62 = 2.08 P=0.05), * = significance at p<0.05 
(in univariate unadjusted Kruskal-Wallis tests, for display purposes only), 
n = 3, Error bars = SE, Nakamurella defined by RDP classification at 
deepest assignment. 

 
Figure 2.SI.72 Nakamurella relative abundances in 13C fractions net of 
Nakamurella relative abundances in corresponding 12C fractions, after 
separate enrichment with 1 ml 30°C saturated isoprene headspace for 4 
days, 13C and 12C isoprene and density gradient centrifugation, n = 3, 
Error bars = SE, Nakamurella defined by RDP classification at deepest 
assignment. A multi-variable model fitted to the data set using manyglm 
(with a negative bionomial distribution assumption) within the R package 
mvabund shown  that the abundance was significantly affected by the 
density (F3,65 = 3.8 P=0.01), and was not affected by the carbon type (F3,65 
= 0.3 P=0.83), * = significance at p<0.05 (in univariate unadjusted Kruskal-
Wallis tests, for display purposes only). 



272 
 

 

 
Figure 2.SI.73 Nakamurella relative abundances after incubation with 0, 
15, and 150 ppb isoprene, replenished daily for three weeks, n=3 , Error 
bars = SE, Nakamurella defined by RDP classification at deepest 
assignment. A multi-variable model fitted to the data set using manyglm 
(with a negative bionomial distribution assumption) within the R package 
mvabund shown that abundance was not affected by the isoprene 
concentration (F8,15 = 0.63 P=0.74) and was affected by the tree type (F8,15 
= 2.72 P=0.05). 
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Figure 2.SI.74 Mycobacterium relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, 
Mycobacterium defined by RDP classification at deepest assignment. 

 

Figure 2.SI.75 Mycobacterium relative abundances in 13C fractions net of 
Mycobacterium relative abundances in corresponding 12C fractions, after 
separate enrichment with 1 ml 30°C saturated isoprene headspace for 4 
days, 13C and 12C isoprene and density gradient centrifugation, n = 3, 
Error bars = SE, Mycobacterium defined by RDP classification at deepest 
assignment.  
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Figure 2.SI.76 Mycobacterium relative abundances after incubation with 0, 
15, and 150 ppb isoprene, replenished daily for three weeks, n=3 , Error 
bars = SE, Mycobacterium defined by RDP classification at deepest 
assignment. 

 

Figure 2.SI.77 Nocardia relative abundances in sequential enrichment of 
soil with isoprene. Soil was obtained from under the canopy of trees W = 
Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = No-Trees. Enrichment 
was at two levels 1 ml (0.8%) 30°C saturated isoprene headspace addition 
= 1.0, 0.1 ml (0.08%) 30°C saturated isoprene headspace addition = 0.1. 
Pre-enriched soil abundance = soil, first enrichment = E1, Second 
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enrichment = E2, Third enrichment = E3. * = significance at p<0.05 
(Kruskal-Wallis), n = 3, Error bars = SE, Nocardia defined by RDP 
classification at deepest assignment. 

 

Figure 2.SI75 Nocardia relative abundances in 13C fractions net of 
Nocardia relative abundances in corresponding 12C fractions, after 
separate enrichment with 1 ml 30°C saturated isoprene headspace for 4 
days, 13C and 12C isoprene and density gradient centrifugation, n = 3, 
Error bars = SE, Nocardia defined by RDP classification at deepest 
assignment.  
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Figure 2.SI.79 Nocardia relative abundances after incubation with 0, 15, 
and 150 ppb isoprene, replenished daily for three weeks, n=3 , Error bars 
= SE, Nocardia defined by RDP classification at deepest assignment. 

 

Figure 2.SI.80 Sporichthya relative abundances in sequential enrichment 
of soil with isoprene. Soil was obtained from under the canopy of trees W 
= Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = No-Trees. 
Enrichment was at two levels 1 ml (0.8%) 30°C saturated isoprene 
headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, Sporichthya 
defined by RDP classification at deepest assignment. 
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Figure 2.SI.81 Sporichthya relative abundances after incubation with 0, 15, 
and 150 ppb isoprene, replenished daily for three weeks, n=3 , Error bars 
= SE, Sporichthya defined by RDP classification at deepest assignment. 

 

Figure 2.SI79 Fluviicola OTU s1 relative abundances in 13C fractions net of 
Fluviicola OUT s1 relative abundances in corresponding 12C fractions, 
after separate enrichment with 1 ml 30°C saturated isoprene headspace 
for 4 days, 13C and 12C isoprene and density gradient centrifugation, n = 3, 
Error bars = SE, Fluviicola defined by RDP classification at deepest 
assignment. 
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Figure 2.SI.82 Acetonema OTU 4 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, Acetonema 
OTU 4 defined by Swarm clustering (d=1) and RDP classification at 
deepest assignment.  
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Figure 2.SI.83 Acetonema OTU 6 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, Acetonema 
OTU 6 defined by Swarm clustering (d=1) and RDP classification at 
deepest assignment.  
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Figure 2.SI.84 Acidovorax OTU 30 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, Acidovorax 
OTU 30 defined by Swarm clustering (d=1) and RDP classification at 
deepest assignment.  
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Figure 2.SI.85 Acidovorax OTU 4 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, Acidovorax 
OTU 4 defined by Swarm clustering (d=1) and RDP classification at 
deepest assignment.  
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Figure 2.SI.86 Acidovorax OTU 46 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, Acidovorax 
OTU 46 defined by Swarm clustering (d=1) and RDP classification at 
deepest assignment.  
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Figure 2.SI.87 Aeromicrobium OTU 240 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, 
Aeromicrobium OTU 240 defined by Swarm clustering (d=1) and RDP 
classification at deepest assignment.  
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Figure 2.SI.88 Aeromonas OTU 35 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, Aeromonas 
OTU 35 defined by Swarm clustering (d=1) and RDP classification at 
deepest assignment.  
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Figure 2.SI.89 Aeromonas OTU 47 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, Aeromonas 
OTU 47 defined by Swarm clustering (d=1) and RDP classification at 
deepest assignment.  
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Figure 2.SI.90 Bosea OTU 2 relative abundances in sequential enrichment 
of soil with isoprene. Soil was obtained from under the canopy of trees W 
= Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = No-Trees. 
Enrichment was at two levels 1 ml (0.8%) 30°C saturated isoprene 
headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, Bosea OTU 
2 defined by Swarm clustering (d=1) and RDP classification at deepest 
assignment.  
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Figure 2.SI.91 Bosea OTU 44 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, Bosea OTU 
44 defined by Swarm clustering (d=1) and RDP classification at deepest 
assignment.  
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Figure 2.SI.92 Caenimonas OTU 9 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, 
Caenimonas OTU 9 defined by Swarm clustering (d=1) and RDP 
classification at deepest assignment.  
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Figure 2.SI.93 Flavobacterium OTU 162 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, 
Flavobacterium OTU 162 defined by Swarm clustering (d=1) and RDP 
classification at deepest assignment.  
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Figure 2.SI.94 Fluviicola OTU 190 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, Fluviicola 
OTU 190 defined by Swarm clustering (d=1) and RDP classification at 
deepest assignment.  
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Figure 2.SI.95 Fluviicola OTU 50 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, Fluviicola 
OTU 50 defined by Swarm clustering (d=1) and RDP classification at 
deepest assignment.  
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Figure 2.SI.96 Methylobacterium OTU l1 relative abundances after 
incubation with 0, 15, and 150 ppb isoprene, replenished daily for three 
weeks, n=3 , Error bars = SE, Methylobacterium OTU l1 defined by Swarm 
clustering (d=1) and RDP classification at deepest assignment.  

 

Figure 2.SI.97 Mucilaginibacter OTU 268 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
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enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, 
Mucilaginibacter OTU 268 defined by Swarm clustering (d=1) and RDP 
classification at deepest assignment.  

 

 

 

Figure 2.SI.98 Nocardia OTU 11 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, Nocardia 
OTU 11 defined by Swarm clustering (d=1) and RDP classification at 
deepest assignment.  

 

 

 

 



294 
 

 

 

Figure 2.SI.99 Nocardioides OTU 194 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, 
Nocardioides OTU 194 defined by Swarm clustering (d=1) and RDP 
classification at deepest assignment.  
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Figure 2.SI.100 Nocardioides OTU 84 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, 
Nocardioides OTU 84 defined by Swarm clustering (d=1) and RDP 
classification at deepest assignment.  
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Figure 2.SI.101 Pedobacter OTU 105 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, Pedobacter 
OTU 105 defined by Swarm clustering (d=1) and RDP classification at 
deepest assignment.  
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Figure 2.SI.102 Pedobacter OTU 44 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, Pedobacter 
OTU 44 defined by Swarm clustering (d=1) and RDP classification at 
deepest assignment.  
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Figure 2.SI.103 Pedobacter OTU 47 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, Pedobacter 
OTU 47 defined by Swarm clustering (d=1) and RDP classification at 
deepest assignment.  
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Figure 2.SI.104 Pedobacter OTU 97 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, Pedobacter 
OTU 97 defined by Swarm clustering (d=1) and RDP classification at 
deepest assignment.  
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Figure 2.SI.105 Pelomonas OTU l1 relative abundances after incubation 
with 0, 15, and 150 ppb isoprene, replenished daily for three weeks, n=3 , 
Error bars = SE, Pelomonas OTU l1 defined by Swarm clustering (d=1) 
and RDP classification at deepest assignment.  
 

 
 

Figure 2.SI.106 Pseudomonas OTU 27 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
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isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, 
Pseudomonas OTU 27 defined by Swarm clustering (d=1) and RDP 
classification at deepest assignment.  

 

 

Figure 2.SI.107 Pseudomonas OTU 34 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, 
Pseudomonas OTU 34 defined by Swarm clustering (d=1) and RDP 
classification at deepest assignment.  
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Figure 2.SI.108 Pseudomonas OTU 35 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, 
Pseudomonas OTU 35 defined by Swarm clustering (d=1) and RDP 
classification at deepest assignment.  
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Figure 2.SI.109 Pseudomonas OTU 64 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, 
Pseudomonas OTU 64 defined by Swarm clustering (d=1) and RDP 
classification at deepest assignment.  
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Figure 2.SI.140 Ramlibacter OTU 19 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, Ramlibacter 
OTU 19 defined by Swarm clustering (d=1) and RDP classification at 
deepest assignment.  
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Figure 2.SI.141 Rhodanobacter OTU 24 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, 
Rhodanobacter OTU 24 defined by Swarm clustering (d=1) and RDP 
classification at deepest assignment.  
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Figure 2.SI.142 Rhodococcus OTU 1473 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, 
Rhodococcus OTU 1473 defined by Swarm clustering (d=1) and RDP 
classification at deepest assignment.  
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Figure 2.SI.143 Rhodococcus OTU 1908 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, 
Rhodococcus OTU 1908 defined by Swarm clustering (d=1) and RDP 
classification at deepest assignment.  
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4Figure 2.SI.144 Rhodococcus OTU 59 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, 
Rhodococcus OTU 59 defined by Swarm clustering (d=1) and RDP 
classification at deepest assignment.  
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Figure 2.SI.145 Rhodococcus OTU 879 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, 
Rhodococcus OTU 879 defined by Swarm clustering (d=1) and RDP 
classification at deepest assignment.  
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 4Figure 2.SI.146 Rhodococcus OTU s2 relative abundances in 13C 
fractions net of Rhodococcus OTU s1 relative abundances in 
corresponding 12C fractions, after separate enrichment with 1 ml 30°C 
saturated isoprene headspace for 4 days, 13C and 12C isoprene and 
density gradient centrifugation, n = 3, Error bars = SE, Rhodococcus OTU 
s1 defined by Swarm clustering (d=1) and RDP classification at deepest 
assignment. 

 



311 
 

 Figure 2.SI.147 Rhodococcus OTU s3 relative abundances in 13C 
fractions net of Rhodococcus OTU s2 relative abundances in 
corresponding 12C fractions, after separate enrichment with 1 ml 30°C 
saturated isoprene headspace for 4 days, 13C and 12C isoprene and 
density gradient centrifugation, n = 3, Error bars = SE, Rhodococcus OTU 
s2 defined by Swarm clustering (d=1) and RDP classification at deepest 
assignment. 

 

 Figure 2.SI.148 Rhodococcus OTU s4 relative abundances in 13C 
fractions net of Rhodococcus OTU s3 relative abundances in 
corresponding 12C fractions, after separate enrichment with 1 ml 30°C 
saturated isoprene headspace for 4 days, 13C and 12C isoprene and 
density gradient centrifugation, n = 3, Error bars = SE, Rhodococcus OTU 
s3 defined by Swarm clustering (d=1) and RDP classification at deepest 
assignment. 
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 Figure 2.SI.149 Rhodococcus OTU s5 relative abundances in 13C 
fractions net of Rhodococcus OTU s4 relative abundances in 
corresponding 12C fractions, after separate enrichment with 1 ml 30°C 
saturated isoprene headspace for 4 days, 13C and 12C isoprene and 
density gradient centrifugation, n = 3, Error bars = SE, Rhodococcus OTU 
s4 defined by Swarm clustering (d=1) and RDP classification at deepest 
assignment. 
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 Figure 2.SI.150 Shinella OTU 1 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, Shinella 
OTU 1 defined by Swarm clustering (d=1) and RDP classification at 
deepest assignment.  

 

 

 Figure 2.SI.151 Sporolituus OTU 37 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, Sporolituus 
OTU 37 defined by Swarm clustering (d=1) and RDP classification at 
deepest assignment.  
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Figure 2.SI.152 Sporolituus OTU 51 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, Sporolituus 
OTU 51 defined by Swarm clustering (d=1) and RDP classification at 
deepest assignment.  
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 15Figure 2.SI.153 TM7 OTU 850 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, TM7 OTU 
850 defined by Swarm clustering (d=1) and RDP classification at deepest 
assignment.  
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 Figure 2.SI.154 TM7 OTU 851 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, TM7 OTU 
851 defined by Swarm clustering (d=1) and RDP classification at deepest 
assignment.  
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 Figure 2.SI.155 Variovorax OTU 58 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, Variovorax 
OTU 58 defined by Swarm clustering (d=1) and RDP classification at 
deepest assignment.  
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Figure 2.SI.156 Variovorax OTU 62 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, Variovorax 
OTU 62 defined by Swarm clustering (d=1) and RDP classification at 
deepest assignment.  
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Figure 2.SI.157 Variovorax OTU 72 relative abundances in sequential 
enrichment of soil with isoprene. Soil was obtained from under the 
canopy of trees W = Willow, P = Poplar, B = Birch, O = Oak, A = Ash, N = 
No-Trees. Enrichment was at two levels 1 ml (0.8%) 30°C saturated 
isoprene headspace addition = 1.0, 0.1 ml (0.08%) 30°C saturated isoprene 
headspace addition = 0.1. Pre-enriched soil abundance = soil, first 
enrichment = E1, Second enrichment = E2, Third enrichment = E3. * = 
significance at p<0.05 (Kruskal-Wallis), n = 3, Error bars = SE, Variovorax 
OTU 72 defined by Swarm clustering (d=1) and RDP classification at 
deepest assignment.  
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Table 2.SI.1 Soil charecteristics for no-trees sampling area on the four 

dates of sampling throughout 2015, and the weather data for the sampling 

date and preceeding ten days 
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Measurement of pH was performed in CaCl2 solution. Weather data was obtained from 

historical weather data based on data obtained from the closest weather station (Wattisham, 13 

miles north of sampling location) 
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Figure 2.SI.158 Changes to the protcol for in this thesis from that 

suggested by Schirmer et al., (2015), namely the use of Bayes Hammer as 

a pre-processing step before Sickle (instead of after Sickle), did not have 

any observable effect on community structure (Original = approach taken 

in this thesis, Standard = Schirmer approach).  
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3.SI: Chapter 3 Supplementary Information 

 
Table 3.SI.2 Carbon source utilisation by selected isolates. Isolates were 
incubated with a range of carbon sources using Biolog carbon-source 
testing plates PM1 and PM2. 

Substrate 1(2b)b bl28a bl28ba GM3 W9 Tc13b 

Capric Acid ** ** **  ** ** 
2-Hydroxy Benzoic Acid * ** **  ** ** 
2-Deoxy Adenosine **  **  ** ** 
2-Deoxy-DRibose * * *   ** 
Sorbic Acid *  *  * ** 
2,3-Butanone *  **  * ** 
D-Galactonic Acid-g-Lactone **    ** * 
D-Ribose    * ** * 
Tween 80   *  * * 
m-Hydroxy Phenyl Acetic Acid  * *  **  
Dihydroxy Acetone *  **   * 
L-Arabinose     ** * 
D-Trehalose   *  **  
D-Xylose    * **  
Tween 20     ** * 
D-Fructose  * **    

L-Malic Acid  * *    

L-Lyxose    * **  
b-Cyclodextrin  * *    

Pectin   *   * 
3-0-b-D-Galactopyranosyl-
DArabinose 

    * ** 
D-Glucosamine *     * 
L-Aspartic Acid     **  
L-Proline   *    

D-Alanine     *  
D-Mannose   *    

D-Serine     **  
Glycerol      ** 
D-Gluconic Acid   *    

D,L-a-GlycerolPhosphate     *  
Formic Acid     **  
D-Mannitol   *    

L-Glutamic Acid     *  
DL-Malic Acid   *    

Acetic Acid      * 
a-D-Glucose   *    

Maltose     *  
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Substrate 1(2b)b bl28a bl28ba GM3 W9 Tc13b 

Tween 40      ** 
Lactulose     *  
Sucrose   *    

D-Fructose-6- Phosphate     *  
a-Hydroxy Butyric Acid     *  
D-Threonine     **  
Fumaric Acid   *    

Bromo Succinic Acid   *    

Glyoxylic Acid     **  
Acetoacetic Acid     **  
Mono Methyl Succinate   *    

Methyl Pyruvate     **  
Tyramine     **  
D-Galacturonic Acid     **  
Phenylethylamine     **  
g-Cyclodextrin     *  
Laminarin      * 
N-Acetyl-DGalactosamine     *  
Gentiobiose     **  
Lactitol     *  
D-Melezitose  *     

Maltitol     *  
D-Raffinose     *  
Xylitol     *  
Citramalic Acid  *     

b-Hydroxy Butyric Acid     *  
Malonic Acid     *  
D-Ribono-1,4- Lactone   *    

Sebacic Acid  *     

Putrescine     *  
* = p <0.05, ** = p < 0.01, *** = p < 0.001 compared to no carbon-source controls. 
Based on tetrazolium dye as an indicator of respiration. A complete list of 
carbon sources the selected isolates were screened on is available in the 
Appendix 3.AX.2. 
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Figure 3.SI.1 RAST annotated protein predicted subsystem coverage, 
distribution and feature counts for bl28ba. 
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Figure 3.SI.3 RAST annotated protein predicted subsystem coverage, 
distribution and feature counts for bl28a. 
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Figure 3.5 RAST annotated protein predicted subsystem coverage, distribution 
and feature counts for 1(2b)b. 
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Figure 3.SI.7 RAST annotated protein predicted subsystem coverage, 
distribution and feature counts for TM7 stripped out of a TM7-rich microcosm. 

 
 

 

Figure 3.SI.8 MG RAST Krona high-level view of TM7-rich metagenome metabolic 
potential. Sequences were submitted to MGRAST with default sequence artefact 
removal, quality filtering and ambiguity filtering turned off (as already done). 
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Figure 3.SI.9 MG RAST Krona high-level view of the metabolic potential of 
the TM7-rich metagenome after TM7 removal. Sequences were submitted 
to MGRAST with default sequence artefact removal, quality filtering and 
ambiguity filtering turned off (as already done). 
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Figure 3.SI.10 Comparison between the TM7 containing metagenomic 
community predicted functions (red) and bl28ba (blue), with overlapping data 
(purple):  

 

 
Figure 3.SI.11 Comparison between the TM7 (blue), and the non TM7 (red) 
sequence function predictions from the TM7 containing microcosm (purple = 
overlapping) 
TM7 only adds functionality to the community in the one-carbon-pool, and 
activity with carbon-nitrogen bonds (other than peptide), possible role in carbon 
fixation 
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2.AX: Chapter 2 Appendix 

2.AX.1 Development of a concentration device for volatile hydrocarbons. 

In order to analyse low-concentration volatiles by Gas Chromatography with a 

Flame-Ionisation Detector, a concentrating device was required. The production 

of a device suitable for the requirements required several iterations of method 

development and testing. 

For the trap specifications used in the 2015  in situ sampling, see Design 3. 

Design 1. 

The initial design consisted of a system where a sample stored in a previously 

evacuated serum vial with a silicon septum can be connected to a stream of 

nitrogen by a needle inserted through the septum. This causes flushing of the 

vial through a second needle through the septum, and into the first valve. In the 

“trap” position, this directs the flow of nitrogen containing the sample through a 

loop, held at -170°C with liquid nitrogen. At -170°C the volatiles, including 

isoprene, condense onto the loop, and are immobilised. The stream then flows 

through the second valve to the exhaust, where the flow rate can be monitored. 

In the trap position the third valve directs the input from the sampling loop of the 

gas chromatograph back into the gas chromatograph (Figure 2.AX.1). 

Once the desired flow-through is achieved, to analyse the sample, the valves 

are switched to the release position (bottom to top, to prevent flow cut-off). In 

the release position, the liquid nitrogen is removed, and replaced with boiling 

water, causing volatilisation of the volatiles and flow through to the GC column 

in the reverse direction to trapping in the loop, increasing peak sharpness. 
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Figure 2.AX.1: Trap Design 1: left showing trap state, right showing 
release state. 

The triple-valve system was chosen over the traditional 6-port valve system due 

to substantial cost savings. 

 

Figure 2.AX.2 Photograph of Design 1 cryotrap. 

Design 1 (Figure 2.AX.2) performed well on individual samples, however the in-

line nature of the trap, without substantial moisture trapping capabilities caused 

a slow partial loop blockage on repeated trapping, causing pressure spikes, and 
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errors, in addition to which, the changing sampling design called for a more 

mobile solution. 

 

Design 2. 

The second phase of design consisted of a mobile-trapping system, where 

samples, typically of 20 cm3, can be taken from the field, and passed through a 

loop cooled by liquid nitrogen, using negative pressure from suction generated 

from a second syringe, preventing leaks. Due to potential of nitrogen 

condensation, the loop was encased in an aluminium casing, allowing the high 

thermal conductivity of the aluminium to equilibrate the temperature between 

the temperature of the liquid nitrogen and the atmospheric temperature, with 

temperature adjustments made by altering the immersion depth, and 

temperature monitoring using a RS components APPA 5511 615-8212 Digital 

thermometer, with K-Type probes terminating above and below the loop internal 

to the casing and manufacturer calibrated down to -200°C. 

Once the sample had passed through the loop, the “suction” syringe was re-

routed to the output, and the line, as well as the output vessel (a small vial or 

syringe) was evacuated. Following this, the loop was sealed, and moved to hot 

water to re-volatise the volatiles, and then released into the evacuated output 

vial. The “suction” syringe could then be removed, allowing air follow-through to 

complete the trapping process (Figure 2.AX.3 for schematic, Figure 2.AX.4 for 

image). 
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Figure 2.AX.3: Schematic of Trap design 2, showing A) Passing sample 
through loop using negative pressure, B) Evacuation of the Output line, C) 
removal from the liquid Nitrogen, D) Re-volatilisation and sample removal.  

 

Figure 2.AX.4: Trap Design 2, showing trap and temperature probe. 

 

Design 2 was able to trap up to 50 × initial concentration, based on 20 cm3 gas 

samples, concentrated into 0.25 cm3 with a flow rate of ~1 cm3s-1. However, 

trapping was not always entirely successful, necessitating a requirement for 
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analysis of the data in reference to an inert, volatile with similar properties. 

Despite this success, the changing requirements due to speed of degradation 

preventing sufficient sample numbers due to a long trapping time combined 

along with the relative complexity of operation, meant that a non-mobile based 

system again became preferable. 

Design 3. 

The cryotrap used for analysis of field experimental samples for concentration 

of gases comprised of a system in which the contents of a Tedlar bag could be 

moved through a loop, using negative pressure (suction). The loop was held at 

-160 using liquid nitrogen and a custom thermostatically controlled liquid 

nitrogen boiler (Built by UEA), causing condensation of volatile hydrocarbons. 

The Tedlars bags were kept on-ice during the evacuation stages, limiting water 

vapour. Once the volatiles were trapped in the loop, the line, and a small (0.250 

cm3) gas-tight syringe (attached to sample out, Figure 2.AX.5) were evacuated. 

Sealing of the line, and heating of the loop allowed re-volatilisation of the 

trapped gasses, and opening the line to the sample out allowed the 

hydrocarbons to enter the syringe. Opening of the ‘Suction’ port (Figure 2.AX.5) 

resulted in air being pulled through into the syringe, carrying more volatiles with 

it. A small movement in of the ‘suction’ syringe at this point would confirm 

successful evacuation of volatiles. The syringe, in this case, a SGE Gastight 

locking leur-lock syringe, could be used for directly injecting into a GC-FID. 
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Figure 2.AX.5: Schematic of Trap design 2, showing A) Volatile trapping, 
B) Application of vacuum to line, C) Volatisation of volatiles, D) Removal 
of volatiles. 

 

The piping consisted of 1/16” SS316 Stainless steel Swagelok tubing, with a 

0.02 mm wall, giving a low reactivity, cost and internal diameter. Although a low 

volume is advantageous for evacuation, in order to increase trapping efficiency, 

and condensation site specific volume, the loop was tightly wound with around 

0.5 m of tubing incorporated. 

Attachment to the 3/16 Tedlar bag outlet was completed by a 1/16” to 3/16” 

union, with the 3/16” union tightened around the ferrule to give a close seal to 

the interchanging 3/16” bag outlets. Steel 1/16” to female-leur-lock adapters 

were purchased from ColeParmer for the suction terminal, and VICI Valco for 

the sample-out terminal (due to low dead-volume). All other unions and joints 

were purchased in SS316 stainless steel from Swagelok. Valves were 

Swagelok Stainless steel 1-piece ball valves from the 40G s3 series.  
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The case was constructed using clear polycarbonate sheeting, with easy 

access panels to the top 2/3 of the back, and the bottom third of the front, for 

easy visibility, construction and leak testing. The case was designed to be as 

small as possible, whilst being stable and durable (Figure 2.AX.6). The case 

also contained adaptors for headspace flushing, if required, through the Alt-in 

(Figure 2.AX.5), and an additional Nitrogen valve. 

 

 Figure 2.AX.6: Cryotrap case dimensions (mm) 
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Figure 2.AX.7: Cryotrap preparing for stage D, hot water volatilisation 
(Figure 2.AX.5). 

The trap was showing to be effective at concentrating hydrocarbons, with often 

over 200 × initial concentration of isoprene (based on 50 cm3 samples at 60 

cm3 min-1, maximum theoretical efficiency 400 ×), with a linear relationship 

between Isoprene and the Decaflouropentane standards on different trapping 

efficiencies, demonstrating that the occasional poorly-trapped sample does not 

affect ratio-based analysis. 
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2.AX.2 Images of soil volatile chambers 

  

Figure 2.AX.8 Image of soil chambers for measuring changes in isoprene 
flux. Left: Chambers, Middle: Chambers deployed (open), Right: 
Schematic of soil chamber. 
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3.AX: Chapter 3 Appendix  

 
Table 3.AX.1 description of isoprene degrading strains.  
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 R. 
wratislaviensis 

✓ ✓  1.5 mm, Circular,   Cream, Raised, Smooth, 
Mucoid, Filiform.  

     
L 

104b
ca 

 R. globerulus ✓ ✓  3.5 mm, Circular,   Transparent, Umbonate, 
Shiny, Moist, Lobate.  

    S 

bW1  R. globerulus ✓ ✓  3 mm, Circular, Cloudy Dark Orange, Convex, 
Smooth, Moist, Entire.  

    S 

TC25
ba 

 P. panaciterrae ✓ ✓  4 mm, Irregular, Cloudy Pale White, Convex, 
Glistening, Moist, Entire.  

    L 

W1a  R. 
wratislaviensis 

✓ ✓  3 mm, Circular, Opaque  Orange, Raised, 
Smooth, Moist, Entire. Insperable from a fungi 

    L 

2(11
b) 

 Rhodococcus 
erythropolis 

✓ ✓  2.5 mm, Circular,   Transparent, Flat, Veined, 
Dry, Undulate.  

    S 

U8b  R. erythropolis ✓ ✓  7 mm, Circular, Opaque Pale Yellow, Raised, 
Shiny, Dry, Lobate.  

    S 

Tc27
b 

 P. panaciterrae ✓ ✓  6 mm, Irregular, Cloudy  Cream, Convex, 
Smooth, Moist, Entire.  

    S 

52q  Devosia 
riboflavin 

✓ ✓  4 mm, Irregular, Opaque  White, Flat, Dull, 
Moist, Entire.  

    L 

W9  R. fascians ✓ ✓  1 mm, Circular, Opaque  Orange, Raised, 
Smooth, Butyrous, Entire.  

✓ ✓ L 

P10d
c 

 R. 
wratislaviensis 

✓ ✓  1 mm, Circular,   Cream, Raised, Smooth, 
Moist, Entire.  

    S 

6(1b)  Aeromicrobium 
ginsengisoli 

✓ ✓  4 mm, Irregular,  Pale Cream, Umbonate, Dull, 
Moist, Lobate.  

✓ ✓ L 

O6  R. 
wratislaviensis 

✓ ✓  1 mm, Circular, Opaque  Yellow, Raised, 
Smooth, Butyrous, Entire.  

    L 

GW7  Pseudomonas 
mohnii 

✓ ✓  1 mm, Circular,   Transparent, Raised, Shiny, 
Moist, Entire.  

    L 

P1  Pseudomonas 
fragi 

✓ ✓  1 mm, Circular, Opaque Pale Yellow, 
Umbonate, Smooth, Dry, Lobate.  

    L 

GM3  
Methylobacteriu
m 
mesophilicum 

✓ ✓  1 mm, Circular,  Pale Pink, Raised, Shiny, 
Moist, Entire.  

✓ ✓ S 

5(2a)
b 

 R. erythropolis ✓ ✓  3 mm, Irregular,   Transparent, Flat, Dull, Moist, 
Lobate.  

    S 

32d-
2 

 R. erythropolis ✓ ✓  3 mm, Circular, Opaque Pale Cream, Raised, 
Shiny, Butyrous, Curled. Kanamycin resistant. 

    S 

W2  
Methylobacteriu
m bullatum 

✓ ✓  1 mm, Circular,  Pale Pink, Raised, Smooth, 
Moist, Entire.  

    L 

12.88  Nocardia 
takedensis 

✓ ✓  1 mm, Circular, Opaque  White, Raised, Rough, 
Dry, Lobate.  

    S 

P12  A. 
nitroguajacolicu
s 

✓ ✓  6 mm, Circular,  Pale Yellow, Crateriform, 
Shiny, Moist, Curled.  

✓   L 

bA2c  R. globerulus ✓ ✓  3 mm, Circular,  Pale Orange, Flat, Dull, Dry, 
Curled.  

    S 
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8c1c  Rhodococcus 
globerulus 

✓ ✓  2 mm, Circular, Opaque Pale Cream, Raised, 
Rough, Dry, Curled.  

    S 

b22P
25 

  ✓    1 mm, Circular, Translucent Pale White, Flat, 
Rough, Moist, Lobate.   

✓ ✓ S 

bE1  R. globerulus ✓ ✓  4 mm, Circular, Cloudy Dark Orange, Raised, 
Smooth, Moist, Lobate.  

✓   S 

32d-
3c 

 R. erythropolis ✓ ✓  2.5 mm, Circular, Translucent  White, 
Umbonate, Dull, Dry, Lobate.  

✓ ✓ S 

1(2b)
b 

 R. erythropolis ✓ ✓  7 mm, Circular,   Transparent, Flat, Veined, 
Moist, Filiform. Kanamycin resistant. 

    S 

W7  S. rhizophila ✓ ✓  1 mm, Circular,   Yellow, Raised, Shiny, Moist, 
Entire.  

    L 

U7b  R. erythropolis ✓ ✓  1 mm, Circular, Opaque  Cream, Raised, Shiny, 
Moist, Entire.  

✓ ✓ S 

2(11a
) 

 Rhodococcus 
sp. 

✓ ✓  2 mm, Circular,  Pale White, Raised, Smooth, 
Moist, Entire.  

    S 

5(2a)
e 

 R. erythropolis ✓ ✓  3.5 mm, Rhizoid, Cloudy Dark White, Raised, 
Rough, Mucoid, Entire.  

    S 

4(2c)  R. erythropolis ✓ ✓  3 mm, Circular, Cloudy Pale Orange, Convex, 
Shiny, Butyrous, Curled. Kanamycin resistant 

    S 

TC4e
2 

 R. 
wratislaviensis 

✓ ✓       S 

Tc4j
b2 

 R. 
wratislaviensis 

✓ ✓  2 mm, Circular, Opaque  Cream, Convex, 
Smooth, Moist, Entire.  

    S 

b22c  R. erythropolis ✓ ✓  11 mm, Irregular, Translucent Pale White, Flat, 
Veined, Viscous, Entire.  

    S 

B1  R. erythropolis ✓ ✓  10 mm, Circular,  Pale White, Flat, Rough, Dry, 
Entire.  

✓   L 

32d-
1 

 R. erythropolis ✓ ✓       S 

P10a  R. cercidiphylli ✓ ✓  3 mm, Circular, Translucent Pale Yellow, 
Raised, Smooth, Moist, Entire.  

    L 

b22T
6G24
b 

 R. erythropolis ✓ ✓  14 mm, Irregular, Opaque  Orange, Convex, 
Wrinkled, Viscous, Lobate.  

    S 

bL28
a 

 R. erythropolis ✓ ✓  3.5 mm, Circular, Opaque Pale Orange, 
Raised, Smooth, Viscous, Curled.  

✓   S 

1(2b)
bb 

 R. erythropolis ✓ ✓  1.5 mm, Circular, Translucent Pale White, Flat, 
Dull, Dry, Filiform.  

    S 

bl28
b 

 R. erythropolis ✓ ✓  2.5 mm, Circular, Translucent Light Grey, 
Umbonate, Dull, Moist, Curled.  

✓ ✓ S 

32d-
3b 

 R. erythropolis ✓ ✓  3.5 mm, Irregular, Cloudy  White, Flat, Dull, 
Dry, Filiform.  

    S 

P8  R. fascians ✓ ✓  2 mm, Circular,  Pale Yellow, Convex, Shiny, 
Moist, Entire.  

    L 

U6ba  Mezorhizobium ✓ ✓  2 mm, Circular,  Pale Orange, Raised, Dull, 
Dry, Entire.  

    S 

TC4c
b2 

 R. 
wratislaviensis 

✓ ✓       S 

U8  R. erythropolis ✓ ✓  1.2 mm, Circular, Opaque  Orange, Pulvinate, 
Shiny, Moist, Entire.  

    S 

W1a
ba 

 R. 
wratislaviensis 

✓ ✓  3 mm, Rhizoid, Opaque  White, Flat, Rough, 
Dry, Filiform.  

    L 
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b228
b 

 R. erythropolis ✓ ✓  6 mm, Irregular, Iridescent  White, Flat, 
Wrinkled, Moist, Entire. 

    S 

bE1b  Rhodococcus 
sp. 

✓ ✓  3.5 mm, Circular, Translucent Pale White, Flat, 
Dull, Moist, Entire.  

✓   S 

A,Ag
A 

 Variovorax 
boronicumulans 

✓ ✓  Punctiform mm, Circular,   Transparent, 
Umbonate, Dull, Dry, Lobate.  

    S 

Tc25
b 

 Pedobacter 
panaciterrae 

✓ ✓  3 mm, Circular, Cloudy Dark Yellow, Convex, 
Glistening, Moist, Entire.  

    S 

B22c
h3 

 Ensifer 
adhaerens 

✓ ✓  2.5 mm, Circular,   Transparent, Convex, 
Glistening, Moist, Entire.  

    S 

P7  A. 
nitroguajacolicu
s 

✓ ✓  2 mm, Circular,   Transparent, Raised, Shiny, 
Moist, Entire.  

    L 

T82E
G2 

 R. globerulus ✓ ✓  1 mm, Circular, Cloudy Pale White, Raised, 
Smooth, Moist, Entire.  

    S 

BE15
6b 

 Rhodococcus 
sp. 

✓ ✓  1.5 mm, Circular,   White, Umbonate, Rough, 
Moist, Lobate.  

    S 

3.88  R. globerulus ✓ ✓  2 mm, Circular, Opaque Pale White, Raised, 
Rough, Dry, Filiform.  

    S 

S2s  Rhodococcus 
sp. 

✓ ✓  4 mm, Circular,   Transparent, Umbonate, 
Veined, Moist, Filiform. Grows as well without 
isoprene. 

✗   S 

bA1
A 

 Pimelobacter 
simplex 

✓ ✓  0.5 mm, Circular,   White, Raised, Smooth, 
Moist, Entire.  

  ✓ S 

5b2a  Rhodococcus 
sp. 

✓ ✓  3 mm, Irregular, Cloudy Pale Orange, Convex, 
Shiny, Butyrous, Curled. Kanamycin resistant. 

    S 

bl3b
b 

 R. erythropolis ✓ ✓  1.5 mm, Circular, Opaque  White, Flat, Smooth, 
Moist, Entire.  

✓ ✓ S 

R2A1
04a 

 Rhodococcus 
sp. 

✓ ✓  6 mm, Circular, Translucent Pale White, 
Raised, Shiny, Moist, Lobate.  

    S 

bl3a  R. erythropolis ✓ ✓  2 mm, Circular, Translucent Dark Cream, 
Convex, Shiny, Mucoid, Lobate.  

✓ ✓ S 

bl3b  R. erythropolis ✓ ✓  4 mm, Circular, Cloudy Pale Cream, Raised, 
Shiny, Moist, Entire.  

    S 

5c(2a
) 

 R. erythropolis ✓ ✓  3 mm, Circular, Opaque Light Orange, Umbonate, 
Smooth, Moist, Lobate. Kanamycin resistant. 

  S 

T3E
G15a 

 R. erythropolis ✓ ✓  4 mm, Circular, Opaque Pale White, Flat, 
Smooth, Dry, Lobate.  

    S 

5b(2
a) 

 R. erythropolis ✓ ✓  3 mm, Irregular, Cloudy  Cream, Convex, 
Shiny, Moist, Curled.  

    S 

G28  Nitrobacter 
vulgaris 

✓ ✓  Punctiform mm, Circular,   Transparent, 
Pulvinate, Shiny, Moist, Entire.  

    S 

P13  Arthrobacter 
nitroguajacolicu
s 

✓ ✓  1 mm, Circular, Translucent Pale Yellow, 
Raised, Smooth, Moist, Entire.  

    L 

104b
c 

 R. globerulus ✓ ✓  4 mm, Circular,   Transparent, Umbonate, 
Shiny, Moist, Lobate.  

    S 

bl28
ba 

 R. erythropolis ✓ ✓  5 mm, Circular,  Pale Cream, Raised, Shiny, 
Moist, Lobate.  

✓ ✓ S 

C:IT   ✓ ✓  1.5 mm, Irregular, Translucent Light White, 
Raised, Glistening, Moist, Entire.  

✓ ✓ S 

GM7  R. fascians ✓ ✓  8 mm, Circular, Opaque  Yellow, Umbonate, 
Shiny, Moist, Entire.  

    L 

104b
cab 

 R. globerulus ✓ ✓  6 mm, Circular, Translucent Pale White, 
Raised, Shiny, Moist, Lobate.  

    S 



347 
 

N
a
m

e
 Closest 

is
o
A

 

1
6

S
 rR

N
A

 Description 

D
e
g

ra
d

a
tio

n
 

d
e

m
o

n
s
tra

ted
 

G
ro

w
th

 

d
e

m
o

n
s
tra

ted
 

S
o

il /L
e

a
f 

1(2b)
b2 

 R. erythropolis ✓         S 

P3  A. 
nitroguajacolicu
s 

✓ ✓  2.5 mm, Circular, Translucent Dark Orange, 
Raised, Smooth, Moist, Lobate.  

    L 

TC13
b 

 Bosea robiniae ✓ ✓  3.5 mm, Circular,  Dark Cream, Umbonate, 
Smooth, Moist, Curled.  

✓ ✓ S 

P1a  Rhodococcus 
fascians 

✓ ✓  2 mm, Circular, Opaque  Orange, Raised, 
Smooth, Butyrous, Entire.  

    L 

GM3
b 

 Rhodococcus 
sp. 

✓ ✓  Punctiform mm, Circular, Translucent Pale 
Pink, Raised, Shiny, Moist, Entire.  

    L 

b222
P1 

 R. globerulus ✓ ✓  4 mm, Circular,   White, Raised, Wrinkled, 
Moist, Entire.  

    S 

bl3b
a 

 
Stenotrophomo
nas rhizophila 

✓ ✓  2.5 mm, Circular, Cloudy Dark White, Convex, 
Glistening, Moist, Entire.  

✓ ✓ S 

bW2
b 

 Rhodococcus 
sp. 

✓ ✓  2 mm, Irregular,  Dark Orange, Umbonate, 
Smooth, Moist, Entire.  

    S 

P10c
-A 

 R. 
wratislaviensis 

✓ ✓  4 mm, Irregular, Opaque  Orange, Umbonate, 
Dull, Moist, Filiform.  

    L 

P102
-Ab 

 R. 
wratislaviensis 

✓ ✓  1.5 mm, Circular,   White, Raised, Smooth, 
Viscous, Entire.  

    L 

P6  Rhodococcus 
sp. 

✓ ✓  0.5 mm, Circular,   Transparent, Raised, Shiny, 
Moist, Entire.  

    L 
 

7.88        4 mm, Irregular, Opaque Pale Orange, 
Umbonate, Smooth, Moist, Curled.  

    S 

1041
02A 

       2 mm, Irregular, Cloudy  White, Convex, Shiny, 
Moist, Entire.  

✓ ✓ S 

104b
caa 

 R. globerulus           S 

104b
cac 

 R. globerulus           S 

104b
cd 

       3 mm, Circular, Translucent Pale Cream, 
Crateriform, Shiny, Moist, Lobate.  

    S 

104c        3 mm, Circular, Cloudy Pale Orange, Convex, 
Smooth, Moist, Filiform.  

    S 

104c
a 

       3 mm, Circular, Cloudy Pale Orange, Convex, 
Smooth, Moist, Filiform.  

    S 

104c
c 

       4 mm, Circular, Translucent Pale White, 
Umbonate, Rough, Dry, Lobate.   

✓ ✓ S 

104c
d 

       4 mm, Circular, Translucent  White, Flat, 
Rough, Dry, Lobate.  

✓ ✓ S 

104N
o2 

       1 mm, Circular, Translucent Pale White, Flat, 
Rough, Moist, Lobate.   

✓ ✓ S 

211a
a 

       20 mm, Irregular,   Transparent, Flat, Dull, 
Moist, Entire.   

✓ ✓ S 

211a
b 

       3 mm, Circular, Opaque  Cream, Raised, Dull, 
Dry, Filiform.  

    S 

24C1
a 

       3.5 mm, Circular, Translucent Pale White, 
Umbonate, Wrinkled, Dry, Entire. kanamycin 
resistant 

  S 

24C2
a 

       3 mm, Irregular,   Transparent, Flat, Dull, Moist, 
Lobate.  

    S 

25bU
3c 

       1 mm, Circular, Translucent Pale Yellow, 
Raised, Glistening, Moist, Entire.  

    S 
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32d  R. erythropolis           S 

32d-
1b 

       2 mm, Circular, Opaque  Orange, Raised, 
Smooth, Moist, Lobate.  

    S 

32d-
3 

 R. erythropolis      3 mm, Irregular, Translucent Pale Grey, Flat, 
Rough, Dry, Filiform.  

    S 

52ab        3 mm, Circular, Opaque Pale Cream, 
Umbonate, Shiny, Moist, Curled.   

✓ ✓ S 

5b(2
a)2 

 R. erythropolis           S 

8C1a        2 mm, Circular, Opaque Light Orange, Convex, 
Shiny, Mucoid, Entire.  

    S 

8c1b        2 mm, Circular, Opaque Pale Orange, Convex, 
Smooth, Moist, Entire.  

    S 

8C2a        2 mm, Circular, Translucent Pale Yellow, 
Umbonate, Veined, Moist, Lobate.  

    S 

B2_2
8ba 

       0.5 mm, Circular,  Pale Orange, Pulvinate, Dull, 
Dry, Entire.  

✓ ✓ L 

b2_3
a 

       2 mm, Circular,   White, Convex, Smooth, 
Moist, Entire.  

    S 

b22b        1.5 mm, Filamentous, Translucent Pale White, 
Pulvinate, Rough, Dry, Entire.  

✓ ✓ S 

b22
m 

       8 mm, Irregular, Cloudy Dark White, 
Crateriform, Wrinkled, Viscous, Curled.  

✓ ✓ S 

b22p
116 

       3 mm, Circular, Translucent Pale Cream, 
Umbonate, Smooth, Moist, Undulate.  

✓ ✓ S 

b22P
16 

       2 mm, Circular, Opaque  White, Convex, 
Smooth, Moist, Entire.  

✓ ✓ S 

b22p
5 

       4 mm, Circular, Translucent  White, Umbonate, 
Smooth, Dry, Lobate.  

✓ ✓ S 

b22T3G9b      1 mm, Circular, Translucent Pale White, Flat, 
Rough, Dry, Filiform.   

✓ ✓ S 

b22T4EG19      1.5 mm, Circular, Opaque Pale Orange, 
Raised, Smooth, Moist, Entire.  

    S 

b22T
8G20 

       2 mm, Circular, Translucent Pale White, 
Raised, Smooth, Moist, Undulate.  

    S 

b22T8G2Ob      2 mm, Circular, Opaque Light Orange, Convex, 
Smooth, Moist, Entire.  

    S 

b23b        5 mm, Irregular,   Transparent, Flat, Dull, Dry, 
Entire.  

    S 

b310        3 mm, Irregular, Cloudy Pale Cream, 
Crateriform, Shiny, Butyrous, Entire.  

    S 

bd28
b 

       4 mm, Circular, Cloudy Light Cream, 
Umbonate, Rough, Dry, Filiform.  

    S 

bE15
6 

       18 mm, Circular, Cloudy Pale White, Flat, 
Rough, Dry, Entire.  

    S 

bl3b
c 

       3 mm, Circular, Cloudy  Cream, Raised, 
Glistening, Mucoid, Entire.  

✓ ✓ S 

bl3b
d 

       4 mm, Circular, Translucent  White, Umbonate, 
Rough, Dry, Lobate.  

✓ ✓ S 

bp11
0 

       2 mm, Circular, Translucent Pale White, 
Umbonate, Rough, Moist, Lobate.   

✓ ✓ S 

bp31
6 

       3.5 mm, Circular, Translucent  White, Raised, 
Shiny, Moist, Entire.  

✓ ✓ S 
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BW2        3 mm, Circular, Cloudy Pale White, Raised, 
Shiny, Moist, Entire.  

    S 

DoT6        5 mm, Circular, Opaque Pale Yellow, 
Umbonate, Rough, Viscous, Entire.  

    L 

DoT7        10 mm, Circular, Opaque Pale Cream, Convex, 
Rough, Viscous, Lobate.  

    S 

G28b        1 mm, Circular,   Transparent, Flat, Dull, Dry, 
Lobate.  

✓ ✓ S 

GM6        0 mm, Circular, Translucent Pale Orange, 
Raised, Shiny, Moist, Entire.  

    L 

GM8        Punctiform mm, Circular,  Pale Yellow, Raised, 
Shiny, Moist, Entire.  

    L 

L1        1 mm, Circular,  Pale Cream, Raised, Smooth, 
Moist, Entire.  

    P 

L2        0.5 mm, Circular,  Pale Yellow, Raised, 
Glistening, Moist, Entire.  

    P 

LI9b        20 mm, Irregular,   Transparent, Flat, Dull, 
Moist, Entire.  

✓ ✓ S 

LI9        20 mm, Irregular,   Transparent, Flat, Dull, 
Moist, Entire.  

✓ ✓ S 

O2        1 mm, Circular, Opaque Pale Orange, Raised, 
Smooth, Moist, Entire.  

✓   L 

O4        0.5 mm, Circular,  Pale Orange, Raised, 
Smooth, Moist, Entire.  

✓   L 

P102
Aa 

       2.5 mm, Rhizoid, Opaque Light Cream, Raised, 
Rough, Dry, Entire.  

✓ ✓ L 

P10b        1.5 mm, Circular,   Cream, Raised, Smooth, 
Moist, Entire.  

    L 

P10c
b 

       2 mm, Circular, Opaque Pale Orange, Convex, 
Smooth, Moist, Entire.  

    L 

P10c
-ba 

       4 mm, Rhizoid, Opaque Pale Cream, Raised, 
Dull, Dry, Entire.  

✓ ✓ L 

P10d
-c 

       0.4 mm, Circular,  Pale Yellow, Raised, Shiny, 
Moist, Entire.  

    L 

P2        0.5 mm, Circular,   Yellow, Raised, Smooth, 
Moist, Entire.  

✓   L 

P2-b        6 mm, Irregular,   Transparent, Flat, Dull, Dry, 
Entire.  

✓ ✓ L 

T3E
G15b 

       2 mm, Filamentous,   Transparent, Raised, 
Shiny, Brittle, Entire.  

    S 

T42C
G21a 

       2 mm, Circular,  Pale White, Convex, Smooth, 
Moist, Entire.  

    S 

T42E
G21b 

       1.5 mm, Circular,   Transparent, Flat, Dull, Dry, 
Undulate.   

✓ ✓ S 

T42E
G26b 

       3 mm, Circular,   Transparent, Flat, Dull, Dry, 
Lobate.  

✓ ✓ S 

TC27
cd 

       0.5 mm, Circular, Translucent Pale White, Flat, 
Rough, Moist, Filiform.  

✓ ✓ S 

TC4        3 mm, Circular,   Transparent, Raised, Shiny, 
Mucoid, Entire.  

    S 

Tc4c
2 

       3 mm, Circular, Cloudy  Cream, Convex, Shiny, 
Moist, Entire.  

    S 

TC4f
b2 

       1.5 mm, Circular, Translucent Pale Cream, 
Raised, Shiny, Moist, Entire.  

    S 
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U31        1 mm, Circular, Cloudy  Cream, Convex, Shiny, 
Moist, Entire.  

    S 

U3b        8 mm, Circular, Translucent Pale White, Flat, 
Rough, Moist, Lobate.  

✓ ✓ S 

U6bb        1 mm, Circular,   Transparent, Flat, Smooth, 
Moist, Entire.  

✓ ✓ S 

U7a        3.5 mm, Circular,  Pale White, Raised, Smooth, 
Moist, Curled.  

    S 

W1a
ba2 

 R. 
wratislaviensis 

     1 mm, Circular, Opaque  Cream, Convex, 
Smooth, Moist, Filiform.  

    L 

W5        2.5 mm, Circular,   White, Raised, Smooth, 
Moist, Undulate.  

✓ ✓ L 

W6        3 mm, Circular, Cloudy  Cream, Raised, Shiny, 
Moist, Entire.  

    L 

Note: list is incomplete as not all strains were described. S = Soil, L = Leaf, P = lake 
water. Tick marks in the growth and degradation columns are present where tested and 
positive, crosses are present where tested and negative, no marks indicate that the 
strain was not tested in that manner. Tick marks in the 16S rRNA and IsoA columns 
denote that the strain was sequenced for the gene and used in the core analysis which 
forms part of this chapter. Closest relative information was added where 16s rRNA 
sequences were obtained and over 97% similar in blast results. Degradation was tested 
in liquid culture, demonstrating a decrease in the isoprene concentration, growth was 
tested by comparing colony presence/size on minimal media plates in and out of 
isoprene. All isolates were cultured for at least seven rounds on minimal media washed 
agar plates with isoprene as the sole added carbon source.  

 
3.AX.2 List of carbon sources representative strains were tested on: 

Compounds representative strains were screened for utilisation of consisted of: 

Custom plates with; Isoprene, Toluene, DMSO, Hexane, Ethane, Benzene, 

Propane, and Methane. 

Biolog plates with:  L-Arabinose, N-Acetyl-DGlucosamine, D-Saccharic Acid, 

Succinic Acid, D-Galactose, L-Aspartic Acid, L-Proline, D-Alanine, D-Trehalose, 

D-Mannose, Dulcitol, D-Serine, D-Sorbitol, Glycerol, L-Fucose, D-Glucuronic 

Acid, D-Gluconic Acid, D,L-a-GlycerolPhosphate, D-Xylose, L-Lactic Acid, 

Formic Acid, D-Mannitol, L-Glutamic Acid, D-Glucose-6- Phosphate, D-

Galactonic Acid-g-Lactone, DL-Malic Acid, D-Ribose, Tween 20, L-Rhamnose, 

D-Fructose, Acetic Acid, a-D-Glucose, Maltose, D-Melibiose, Thymidine , L-

Asparagine, D-Aspartic Acid, D-Glucosaminic Acid, 1,2-Propanediol, Tween 40, 
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a-Keto-Glutaric Acid, a-Keto-Butyric Acid, a-Methyl-DGalactoside, a-D-Lactose, 

Lactulose, Sucrose, Uridine, L-Glutamine, m-Tartaric Acid, D-Glucose-1- 

Phosphate, D-Fructose-6- Phosphate, Tween 80, a-Hydroxy Glutaric Acid-g- 

Lactone, a-Hydroxy Butyric Acid, b-Methyl-DGlucoside, Adonitol, Maltotriose, 2-

Deoxy Adenosine, Adenosine, Glycyl-L-Aspartic Acid, Citric Acid, m-Inositol, D-

Threonine, Fumaric Acid, Bromo Succinic Acid, Propionic Acid, Mucic Acid, 

Glycolic Acid, Glyoxylic Acid, D-Cellobiose, Inosine, Glycyl-LGlutamic Acid, 

Tricarballylic Acid, L-Serine, L-Threonine, L-Alanine, L-Alanyl-Glycine, 

Acetoacetic Acid, N-Acetyl-b-DMannosamine, Mono Methyl Succinate, Methyl 

Pyruvate, D-Malic Acid, L-Malic Acid, Glycyl-L-Proline, p-Hydroxy Phenyl Acetic 

Acid, m-Hydroxy Phenyl Acetic Acid, Tyramine, D-Psicose, L-Lyxose, 

Glucuronamide, Pyruvic Acid, L-Galactonic Acid-g-Lactone, D-Galacturonic 

Acid, Phenylethylamine, 2-Aminoethanol, Chondroitin Sulfate C, a-Cyclodextrin, 

b-Cyclodextrin, g-Cyclodextrin, Dextrin, Gelatin, Glycogen, Inulin, Laminarin, 

Mannan, Pectin, N-Acetyl-DGalactosamine, N-AcetylNeuraminic Acid, b-D-

Allose, Amygdalin, D-Arabinose, D-Arabitol, L-Arabitol, Arbutin, 2-Deoxy-

DRibose, i-Erythritol, D-Fucose, 3-0-b-D-Galactopyranosyl-DArabinose, 

Gentiobiose, L-Glucose, Lactitol, D-Melezitose, Maltitol, a-Methyl-DGlucoside, 

b-Methyl-DGalactoside, 3-Methyl Glucose, b-Methyl-DGlucuronic Acid, a-

Methyl-DMannoside, b-Methyl-DXyloside, Palatinose, D-Raffinose, Salicin , 

Sedoheptulosan, L-Sorbose, Stachyose, D-Tagatose, Turanose, Xylitol, N-

Acetyl-DGlucosaminitol, g-Amino Butyric Acid, d-Amino Valeric Acid, Butyric 

Acid, Capric Acid, Caproic Acid, Citraconic Acid, Citramalic Acid, D-

Glucosamine, 2-Hydroxy Benzoic Acid,  4-Hydroxy Benzoic Acid, b-Hydroxy 

Butyric Acid, g-Hydroxy Butyric Acid, a-Keto-Valeric Acid, Itaconic Acid, 5-Keto-
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DGluconic Acid, D-Lactic Acid Methyl Ester, Malonic Acid, Melibionic Acid, 

Oxalic Acid, Oxalomalic Acid, Quinic Acid, D-Ribono-1,4- Lactone, Sebacic 

Acid, Sorbic Acid, Succinamic Acid, D-Tartaric Acid, L-Tartaric Acid, Acetamide, 

L-Alaninamide, N-Acetyl-LGlutamic Acid, L-Arginine, Glycine, L-Histidine, L-

Homoserine, Hydroxy-LProline, L-Isoleucine, L-Leucine, L-Lysine, L-

Methionine, L-Ornithine, L-Phenylalanine, L-Pyroglutamic Acid, L-Valine, D,L-

Carnitine, Sec-Butylamine, D.L-Octopamine, Putrescine, Dihydroxy Acetone, 

2,3-Butanediol, 2,3-Butanone, and 3-Hydroxy 2- Butanone.  

 

3.AX.3 Numerous ways not to isolate TM7. 

Initial results from 454 pyrosequencing (not shown) of the third 7.2 ×106 ppb 

isoprene sequential isoprene enrichment of willow soil yielded over 80% TM7 

sequences. DGGE analysis (not shown) shown that the final communities were 

similar in each enrichment. As TM7 has also been enriched by stable isotope 

probing of soils with heavy benzene and toluene (Xie et al., 2011), this was 

interpreted at the time as an indication that TM7 may be involved in isoprene 

degradation. Following work, outlined in Chapter 2 shown this belief to be false, 

however by that time a multitude of techniques had been deployed to try an 

isolate isoprene-degrading TM7.  

This section briefly describes the methods used in these unsuccessful attempts, 

as the mixture of tested and innovative methods lead to the isolation of a 

number of bacteria which may not have been isolated otherwise, and may help 

others in their attempts at isolating hard-to-culture species. 

 

3.AX.3.1 Screening methods: 
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Two methods were used for screening for TM7 presence. The sequences from 

the two TM7 phylotypes acquired by 454 pyrosequencing were used to 

generate primer sequences specific to those isoprene-involved TM7. 

 

 

  

 

 

 

 

 

Figure 3.AX.3.1.1 Primer sequences with their target sequences of TM7 at 
the target area, alongside the same region for the 17 next abundant 
species in a TM7-rich isoprene enrichment of Willow soil. 

 

Primer sequences were tested by BLASTn and both were specific. 

Oligonucleotide analysis was preformed using the Multiple primer analyzer by 

Thermo Scientific 

(http://www.thermoscientificbio.com/webtools/multipleprimer/), and found to be 

acceptable. A TM7 rich microcosm (104 dilution of the third generation of Willow 

soil ) was amplified using these primers and gave the correct product size 

(175bp) and Sanger sequencing (Source Bioscience) yielded a product which 

when blasted was shown to be TM7, with negligible background noise (identical 

sequence to the TM7b from the pyrosequence data).  
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Thermocycling conditions were: 95˚C for 5 m, followed by 8 cycles of: 95˚C for 

30 s, 60˚C, decreasing by 0.5˚C each time, for 30 s and 72˚C for 45 s. This was 

followed by 32 cycles of 95˚C for 30 s, 56˚C for 30 s, 72˚C for 45 s and ending 

with 72˚C for 10 m. 

Products were ran on a 2% agarose gel in TAE buffer for 30 min at 110 V, 

stained with ethidium bromide and viewed under UV. 

Colonies which were shown by PCR to contain TM7 were investigated for purity 

by Denaturing Gradient Gel Electrophoresis (DGGE). 

DGGE was performed by mixing stock solutions of 0 % denaturant (20 ml 

Acrylamide, 2 ml of 50× TAE (242 g Tris, 57.1 ml glacial acetic acid and 100 ml 

of 500 mM EDTA per litre) and 78 ml dH2O), 100 % denaturant (20 ml 

Acrylamide, 40 ml formamide, 2 ml of 50 × TAE, 42 g Urea) and 1% APS (0.1 g 

ammonium persulfate in 1 ml dH2O). 

A gradient gel was created between 60% denaturant (13.8 ml of 0% denaturant, 

9.2 ml of 100 % denaturant) and 100% denaturant (9.2 ml 0% denaturant, 13.8 

ml 100% denaturant) each with 90 µl APS and 9 µl TEMED 

(Tetramethylethylenediamine). 

The gel was loaded and immersed in TAE and raised to 60°C and ran at 100 V 

for 1 hour and then 60 V overnight. 

The gel was stained by fixing in fixing solution (100 ml ethanol, 5 ml acetic acid) 

for 30 min, stained in staining solution (0.2 g silver nitrate, 200 ml dH2O, 1.6 ml 

formaldehyde) for 20 min, and developing solution (3 g NaOH, 200 ml dH2O) 5-

10 min, then fixing solution for 10 to 15 min. 
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The microcosms with the highest purity determined by visual inspection of 

DGGEs were used for the next stage of isolation in each method. 

3.AX.3.2 Isolation methods 

Based on the high level of TM7 in these cultures, the first methods attempted 

were through traditional cultivation on rich media (LB) agar plates, on minimal 

media (as in Chapter 2) agar plates, and through serial dilution of microcosms 

which were hoped to reduce diversity. 

Following this, and the failure to isolate TM7, it was hypothesised that TM7, like 

some other recalcitrant bacteria (Vartoukian et al., 2010) may require a factor 

provided by another bacteria in order to survive. Cultivation attempts using this 

hypothesis were performed in several ways; Firstly, As we know Rhodococcus 

is also enriched, isoprene-degrading Rhodococcus isolates were grown up en-

mass on agar plates, suspended in minimal media and lysed through bead 

beating. This lysate was then filter sterilised and applied either within the setting 

agar, or added to the agar surface. Secondly, as we know that the microcosm 

the TM7 is abundant in would have the dependencies of TM7, daughter 

microcosms were set up, lysed and the lysate was applied to isolation attempts. 

Thirdly as the soil the TM7 originated from was assumed to contain the 

requirements for TM7 growth, the soil was lysed, filtered and applied, and 

fourthly filters (<.22 µm, various materials) were superglued over circular 

incisions on foil, autoclaved, had a mixture of soil and minimal media applied to 

one side, and sealed, with the other side of the filter used as a cultivation 

surface (a budget approach based on Ferrari et al., (2005), who managed to 

achieve micro colonies of TM7 in a theoretically similar method). Fifthly, TM7 
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rich cultures were added to small, sterilised, 2 cm3, GC-MS vials, with the 

centre of the rubber seal punched out, and a filter added in its place (sealed by 

compression), and were added to liquid microcosms in which TM7 rich 

microcosms were serially diluted. Sixthly, the TM7 rich microcosms was spread 

thinly onto minimal media plates, and then covered with two thin layers of 

minimal media with 3% washed agarose, which was then used as a cultivation 

surface (creating a barrier between the rich, and diluted microcosm). Seventhly, 

in an approach based on Stewart (2012), after spreading plates of TM7 rich 

microcosm, other isoprene-degrading isolates were dotted (live) onto the plate, 

which could have allowed for growth factor and other compound diffusion. 

After no particular success through those methodologies, a number of 

competition inhibition based approaches were used to try and manipulate the 

diversity of the culture in a pro-TM7 way. In particular cultures with 

Streptomycin (10, 50, 100, 150 µg l-1), Kanamycin (10, 50, 100, 150 µg l-1) and 

EDTA (µg l-1) additions were set up. Streptomycin resistance at the ribosome 

level is thought to be caused by a mutation (C to U at E. Coli 16S rRNA position 

912) found in Archea and in TM7, but not in most other bacteria (Hugenholtz et 

al., 2001). This means that addition of streptomycin to TM7 containing 

microcosms, was hypothesised to increase the proportion of TM7, by inhibiting 

most other bacteria. Kanamycin targets primarily gram negative bacteria, and 

TM7 is believed to be gram positive (Hugenholtz et al., 2001), additionally 

EDTA has been shown to inhibit gram negative bacteria by removing Ca+ and 

Mg+ ions from phospholipids, causing them to repel each other, hence 

weakening the cell membrane, as well as inhibiting protazoa and decreasing 
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bacterial aggregation (Madden et al., 2004; Belfiore et al., 2007; Rupp et al., 

1995). 

Following this, as some phylotypes of TM7 have been shown by DNA-SIP 

experiments to degrade Toluene and Benzene (Luo et al., 2009; Xie et al., 

2011), it was plausible that the TM7 phylotypes attempted to be isolated in this 

study had similar metabolic capabilities. Therefore microcosms with Toluene 

and Benzene additions (7.2 × 105 ppb), with and without Isoprene were set up, 

to try and increase abundance based on differential abilities to degrade other 

hydrocarbons. 

Although TM7 is enriched significantly in minimal media microcosms with 

isoprene, it is unable to grow on minimal media agar with isoprene. The two 

obvious differences between the environments are the presence of agar, and 

the liquidity of the media. It was therefore speculated that TM7 required a liquid 

environment to thrive, or may be inhibited by agar, which could be due to either 

issues with attachment, inhibitory compounds or inability for dispersal of 

metabolic waste. As TM7 is able to grow in liquid minimal media, but not agar, 

the addition of liquid minimal media to plates would cause conditions to be 

more similar to those in liquid cultures, and may allow TM7 to grow, and also 

attach to the solid media, therefore liquid plates were set up with addition of 7 

ml minimal media. 

As growth is rich in minimal media, where it does not contact agar, solidifying 

agents other than agar, or non-agar attachment surfaces which allow nutrient 

diffusion will allow cultivation, therefore gelatin plates (5%), polyacrylamide 

plates (made with 4 ml acrylamide, 16 ml water, 3 µl APS and 3 µl TEMED. The 
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plate was soaked in distilled water overnight, drained, soaked in distilled water 

for 4 hours, drained, UV sterilised for 5 × 20 s (UVP CL-1000 Ultraviolet 

Crosslinker, max power), soaked in minimal media overnight, excess fluid was 

removed and the plate was inoculated and incubated in isoprene) and filter 

plates (made with PTFE, Cellulose Nitrate, Polycarbonate, RA, Cellulose 

Acetate, Nickel(II) oxide, Nylon, and Polycarbonate filters, of pore size <0.22 

µm, which were laid onto cooling washed agarose minimal media) were created 

and analysed. 

As the other possible difference between agar plates and media microcosms is 

the presence of glass, adding glass exposed beads may promote TM7 growth, 

or attachment to the glass. Due to this, beaded plates (beads (1.5 - 2 mm 

diameter) were dropped onto thin (~1 mm) washed agarose minimal media 

plates (3 per cm2), with 5 mm minimal media layered on top, inoculated and 

incubated in isoprene overnight, drained and incubated with isoprene) were set 

up and analysed. 

During testing using liquid plates, the other agar plates in the desiccation jars 

were found to have taken water aboard. This did not contaminate plates with 

low biomass (high dilutions) or blank controls, however the plates with growth 

exhibited higher growth than plates which were not incubated in the moist 

environment. As this accidently increased moisture led to increased growth 

from TM7 rich microcosms on minimal media agar plates, it was hypothesised 

that TM7 may require a more moist environment to grow, therefore artificially 

moist plates were created (with 1 ml minimal media additions to the lid). 
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TM7 rich microcosm floc formation and biofilm formation suggested the ability 

of TM7 to form flocs. These flocs are likely to be rich in EPS. TM7 may require 

EPS for growth, so addition of EPS to plates may allow colony growth. As EPS 

extraction methods destroy the structure of the EPS layers, the utilisation of 

EPS naturally produced by TM7 rich microcosms onto agar plates could be 

used instead. Therefore Biofilm plates were created (Liquid plates were 

inoculated and allowed to grow for two days, following which they were allowed 

to volatise for three hours, and drained. The agar plates had by that point 

created a light biofilm. The biofilm plates were UV sterilised for 7 × 20 seconds, 

inoculated with 102 and 104 dilutions of TM7 rich microcosms and incubated 

with isoprene alongside an un-inoculated control. 

Unfortunately, all these methods were ultimately unsuccessful. From the SIP 

experiments (Chapter 2) we can now see why; TM7 is not growing on isoprene. 

Additionally from the metagenomic experiments, we can now generate a new 

hypothesis; that Aeromicrobium may be the species which TM7 requires to 

survive. 

At the time Candidate division TM7 was un-isolated, and therefore isolation 

would have lead to an exciting insight into this large, ubiquitous, diverse and 

hard-to-study group, however since then a representative has been cultured 

(He et al., 2015), unfortunately the culture was not sustainable and has since 

been lost; and so there is still a lot to investigate about this group. 

 

3.AX.3.3 Example image of gel showing PCR products: 
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Figure 3.AX.3.4.1 Example PCR products for amplification of isolates using (M) Muyzer primers, 
(IsoA) IsoA primers, and (16S) 16S rRNA primers, with a 16S blank (B) ran on 1.5% agarose gel 
(80V 40 min), stained with ethidium bromide and displayed using UV light  
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