
1Scientific RepoRts | 7: 2253  | DOI:10.1038/s41598-017-02475-9

www.nature.com/scientificreports

The Variable Influence of 
Dispersant on Degradation of 
Oil Hydrocarbons in Subarctic 
Deep-Sea Sediments at Low 
Temperatures (0–5 °C)
Robert M. W. Ferguson  1,3, Evangelia Gontikaki1, James A. Anderson2 & Ursula Witte1

The microbial degradation of petroleum hydrocarbons at low temperatures was investigated in 
subarctic deep-sea sediments in the Faroe Shetland Channel (FSC). The effect of the marine oil 
dispersant, Superdispersant 25 on hydrocarbon degradation was also examined. Sediments collected 
at 500 and 1000 m depth were spiked with a model oil containing 20 hydrocarbons and incubated at 
ambient temperature (5 and 0 °C, respectively) with and without marine dispersant. Treatment of 
sediments with hydrocarbons resulted in the enrichment of Gammaproteobacteria, and specifically 
the genera Pseudoalteromonas, Pseudomonas, Halomonas, and Cobetia. Hydrocarbon degradation 
was faster at 5 °C (500 m) with 65–89% of each component degraded after 50 days compared to 
0–47% degradation at 0 °C (1000 m), where the aromatic hydrocarbons fluoranthene, anthracene, and 
Dibenzothiophene showed no degradation. Dispersant significantly increased the rate of degradation 
at 1000 m, but had no effect at 500 m. There was no statistically significant effect of Superdispersant 25 
on the bacterial community structure at either station. These results show that the indigenous bacterial 
community in the FSC has the capacity to mitigate some of the effects of a potential oil spill, however, 
the effect of dispersant is ambiguous and further research is needed to understand the implications of 
its use.

The depletion of oil reserves onshore and in shallow waters has forced the industry to explore progressively 
deeper waters for as yet unexploited petroleum reserves. In addition, global warming has led to a dramatic 
shrinking of the sea ice in the Arctic, and hitherto inaccessible arctic oil reserves are now considered for explora-
tion. Understanding the environmental implications of an oil spill in the cold and deep ocean is therefore urgent 
in order to improve oil contamination monitoring and optimise mitigation measures1. Most of our recent knowl-
edge on the fate of hydrocarbons in the deep ocean stems from research following the catastrophic Deepwater 
Horizon (DWH) blowout in the Gulf of Mexico which occurred at a depth of 1500 m and resulted in the largest 
single marine oil spill to date. During DWH, approximately 4.9 million barrels of crude oil were released at depth 
and it has been estimated that between 2–15% of this oil was deposited onto deep-sea sediments by sedimentation 
of oil-contaminated marine snow2, 3. Once in contact with the sediment, hydrocarbons can become entrapped for 
long periods via absorption into sediment organics4–7 and impact sediment ecosystem function services8–13. The 
persistence in sediments of hydrocarbons recalcitrant to degradation may also have negative impacts on sediment 
communities biodiversity and pose significant health risks as accumulated hydrocarbons slowly enter the food 
web14.

Microbial biodegradation is a key process for the removal of oil from the marine environment15–18. 
Hydrocarbon-degrading microbes exist as part of the rare biosphere in the ocean, forming “seed populations” 
that can respond rapidly to hydrocarbon exposure19. In the case of DWH, a succession of hydrocarbon-degrading 
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bacteria (HDB) including Colwellia, Cycloclasticus, Marinobacter and Pseudomonas, contributed an important 
ecosystem service via biodegradation of hydrocarbons in the sediments and water column20–26. Oil-polluted 
deep sea sediments, in particular, also became enriched in sulfate-reducing, anaerobic bacterial families 
Desulfobacteraceae and Desulfobulbaceae as a result of oil-derived marine snow sedimentation and the occurrence 
of anaerobic microniches24. In an attempt to mitigate the effects of the DWH oil spill to coastal areas and enhance 
biodegradation rates, the dispersant COREXIT (9500 A and EC9527A) was applied to surface waters as well as 
directly into the wellhead at 1500 m below surface level. The effect and persistence of COREXIT in the envi-
ronment, including its impact on the indigenous microbial communities in the Gulf remain unclear9, 27–29. The 
application of dispersants may result in enhanced transport of oil hydrocarbons deeper into the sediment, where 
anoxic conditions reduce degradation rates30. On the other hand, dispersants may result in faster bacterial deg-
radation by increasing the surface area of the oil droplets31. There is, however, no consensus in the literature with 
some studies reporting faster, slower or no change in degradation rates in the presence of a dispersant9, 27, 28, 32.  
Deep water oil and gas exploration in the Faroe-Shetland Channel (FSC) currently occurs down to 1100 m depth 
(Rosebank oil field). In keeping with many deep-water and arctic oil reservoirs, the FSC remains underdevel-
oped due to technical challenges associated with oil extraction, including its remoteness, depth, geology and 
rough weather33, 34 but maturing North Sea oilfields and improving technology for extracting oil in deep water 
will likely lead to increased exploitation in the future. The FSC is characterised by a complex hydrography with 
northward-flowing warm North Atlantic waters overlying cold water masses of Arctic origin flowing southwards. 
As a result, water temperature varies dramatically within only a few hundred meters, from ~8 °C in the top 200 m 
to sub-zero temperatures below 600 m35. In addition, strong near-bottom current velocities and low sediment 
deposition have created generally coarse-grained seafloor sediments in the FSC in contrast to typically muddy 
sediments prevailing in most deep-sea environments at a similar depth. The subzero temperatures, complex 
hydrography and unusual sedimentary environment, as well as rough weather conditions and remoteness of the 
FSC, suggest that in the event of a large oil spill, mitigation measures typically used in the event of a large oil spill 
may prove inadequate, and compromised further by delays caused by rough weather conditions and remoteness 
of the FSC36. It is thus necessary to obtain system-specific data on the ecosystem response to current remediation 
techniques as well as an assessment of its natural capacity for biologically-mediated hydrocarbon degradation 
in order to appraise the ecological impact of a potential oil spill and assess suitable oil spill response strategies.

The aim of this study was to quantify hydrocarbon degradation in the deep-sea sediments of the FSC, to 
characterise the indigenous HDB community, and investigate the effect of a marine oil dispersant on degradation 
rates. This was done by incubating sediments collected from the FSC at 500 and 1000 m (subsequently referred 
to as stations FSC500 and FSC1000 respectively, Supplementary information 1) with a model oil comprising a 
mixture of 20 hydrocarbons (Supplementary Fig. 1) for 50 days, with and without marine dispersant in aerobic 
conditions (Supersidpersant 25, Oil Technics Ltd., Aberdeen, UK). A hydrocarbon mixture was used as it is more 
representative than using single hydrocarbons, which may miss synergistic effects of components, but in con-
trast to a crude oil, gives a consistent mixture that can be compared between experiments. Degradation of the 
model oil components was quantified by GC-FID and the microbial community was characterised with shotgun 
sequencing of the 16S rRNA gene. To our knowledge, this is the first study to provide a baseline description of the 
naturally occurring HDB community at a sub-arctic deep-sea site exposed to subzero temperatures and its intrin-
sic capability to degrade hydrocarbons. Lack of such baseline data has been repeatedly highlighted as an obstacle 
in assessing the environmental effects of oil spills in post-DWH studies19, 37, 38. Our results are of relevance to oil 
degradation in the Arctic due to the particularly low bottom water temperatures and the arctic origin of the water 
masses in our study area.

Results
Degradation of aliphatic hydrocarbons. At 5 °C (FSC500), the concentration of all aliphatic hydrocar-
bon groups declined by 65–82% after 50 days of incubation (Fig. 1, Table 1). The degradation of aliphatics pro-
ceeded slower at 0 °C (FSC1000) with just 26–38% decrease in concentration by the end of the incubation period 
(Fig. 2, Table 1). The effect of dispersant was not consistent between stations. Dispersant had no effect on the final 
proportion of aliphatic hydrocarbons degraded after 50 days at 5 °C, however, it did eliminate the lag time before 
the onset of degradation in Groups 2, 3, and 4 (Table 1 and Fig. 1). In contrast to 5 °C the total amount of aliphatic 
hydrocarbons degraded after 50 days at 0 °C was significantly higher with dispersant for all groups (Fig. 2, Table 1) 
and ranged between 62–75% (compared to 26–38% without dispersant).

Degradation of PAHs. The degradation of total PAHs after 50 days at 5 °C (FSC500) was considerable (up to 
90% removal) independent of the presence of dispersant (Table 1, Fig. 3). PAH degradation at 0 °C after 50 days 
ranged between 69–85% with dispersant while little (naphthalene, fluorene and phenanthrene) or no (anthracene, 
fluoranthene, and dibenzothiophene) degradation was observed in the absence of dispersant (Table 1, Fig. 4).

Background FSC sediment community. The natural background bacterial communities from both sta-
tions were dominated by Proteobacteria (81% of all reads) of which the class Gammaproteobacteria was the most 
dominant (63% of all reads). Only 15% of the OTUs were shared between the two stations and permutational 
multivariate analysis of variance (PerMANOVA) revealed that the stations were significantly different to each 
other (p = 0.008, R2 = 0.26, n = 5) (Supplementary Fig. 2).

Microbial dynamics during hydrocarbon degradation. There was a shift in bacterial OTUs in all treat-
ments during the incubation experiment (Fig. 5a), evidenced by the significant explanatory power of time in per-
MANOVA analysis (p = 0.001, R2 = 0.04, N = 77). The presence of model oil modified the shift of bacterial OTUs 
(p = 0.001, R2 = 0.2, perMANOVA, N = 77) and the mass of hydrocarbon degraded was significantly predicted by 
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ordisurf()(See Methods, Statistical Analysis) for position on the nMDS (p = 0.001, R2 = 0.4, N = 77) with a trajec-
tory from left to right corresponding to higher mass of hydrocarbon degraded (Fig. 5b). Superdispersant 25 did 
not have a significant effect on the bacterial community (p = 0.08, R2 = 0.01, perMANOVA, N = 77) but sampling 
location did (p = 0.002, R2 = 0.06, perMANOVA, N = 77) reflecting the differing natural communities used as 
starting points (Supplementary Fig. 2). The station effect persists through the experiment, despite the similarity 
in the dominant OTUs in the model oil treated incubations and is visualised as a separation between the stations 
in the y-axis of the nMSDS plot (Fig. 5b).

In FSC1000 the natural background community was still present at the start of the incubations (day 0 and 
2) however, in FSC500 there was a notable shift in the bacterial community structure between the natural back-
ground and at the start of the incubations (Fig. 5a). Subsequently to this, the bacterial OTUs shifted in a similar 
fashion for both stations, indicating that the natural oil degraders were not lost from FSC500 during transport 
and storage.

The control incubations in both stations were initially dominated by Colwellia psychrerythraea. This OTU 
remained dominant in FSC1000 until the end of the study whereas in FSC500 it was largely replaced by OTUs 
from the orders Marinicellales and Thiohalorhabdales. OTUs related to Colwellia aestuarii and Pseudoalteromonas 
were also predominant in FSC1000 controls from day 30 onwards but did not replace Colwellia psychreryth-
raea. In the model oil-treated incubations, Colwellia psychrerythraea was also initially dominant. However, 
bacterial communities in oil treatments diverged from those in controls with time and OTUs from the genera 
Pseudoalteromonas, Cobetia, and Halomonas predominated as hydrocabons were degraded. This shift was delayed 
in the FSC1000 model oil only treatment reflecting the later start in oil degradation (Figs 1–4). There were no spe-
cific OTUs related significantly to the presence of Superdispersant however, by causing the degradation process to 
proceed faster, the presence of dispersant affected the timing of bacterial succession.

Figure 1. Mass of each aliphatic hydrocarbon group degraded during slurry incubations in FSC500 at 5 °C. 
Error bars are standard deviation, n = 3. Black lines are model oil and grey are model oil + dis.
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Links between bacterial taxa and hydrocarbon degradation. LEfSe analysis (See Methods, 
Statistical Analysis) was carried out to identify which taxa were significant biomarkers of hydrocabon degra-
dation (Fig. 5c,d)39. This revealed general shifts at the class level with Gammaproteobacteria associated with the 
model oil treatments and Beta/Deltaproteobacteria associated with the control. At a lower taxon level, the Beta/
Deltaproteobacteria in controls was Nitrosomonas and Myxococcales. LEfSe also revealed differences between the 
control and model oil groups at lower taxonomic groups within Gammaproteobacteria. The order Alteromonas 
(specifically the genera ZD011, Moritella, and Colwellia) was dominant in controls while Oceanospirillales was 
associated with the hydrocabon treatments. Within the Oceanospirillales order, the genera Cobetia and Halomonas 
were associated with model oil while Marinomonas and Amphritea were associated with the control. The genera 
Pseudomonas and Pseudoalteromonas were also associated with model oil.

Discussion
Despite the wealth of information on the biotic response and environmental consequences of oil release and dis-
persant use in the deep sea following DWH, our knowledge on the environmental factors that regulate microbial 
hydrocarbon degradation and bioremediation efficiency remains incomplete19. Here, the first data is presented on 
the structure and function of HDB communities in the deep FSC, an area of active exploration and exploitation 
of oil reservoirs in deep waters and of particular oceanographic importance due to its role in the global thermo-
haline circulation. Furthermore, we investigated the effect on hydrocarbon degradation of the marine dispersant, 
Superdispersant 25, which is approved by the UK Food and Environment Research Agency and the most likely 
to be employed in the event of an oil spill in UK waters. Results showed that, without dispersant, the degradation 
of all hydrocarbons was considerably higher at 500 m (5 °C) compared to that at 1000 m (0 °C). Lower biodeg-
radation of alkanes and PAHs at 0 °C compared to 5 °C has also been observed in seawater incubations from a 
Norwegian fjord40. It is not possible from results here to determine whether higher biodegradation at 500 m is 
purely due to the higher temperature or if differences in the bacterial community and sediment characteristics 
also contributed. However, basin-wide investigations have recently identified temperature as the main factor 
determining the oil biodegradation potential of bacterial communities in geographically separated oil-polluted 
sediments in the Mediterranean41. Regardless, our results demonstrate that oil will persist longer in the deeper 
sediments of the FSC and suggest that the impact of oil release in the deep FSC or contamination of deep-water 
sediments as a result of water mass circulation would be higher due to the sub-zero temperatures prevailing below 
600 m.

Biodegradation of the hydrocarbon mixture after 50 days in 0 °C incubations was lower than that measured 
in arctic seawater incubations with a medium grade crude oil at −1 °C over 60 days42; in the latter case 58–61% 
of total measurable oil was lost over the incubation period and specific components (heptadecane, octadecane, 

Station Group

% degraded after 50 days Rate comparisons with ANCOVA

Model Oil
Model 
Oil + Dis significance

Model Oil v Model Oil + Dis

R2 Significance

Aliphatic

FSC500

1 65.6 ± 16.3 68.3 ± 22.3 0.859 0.76 0.0585

2 81.0 ± 20.8 89.0 ± 3.2 0.543 0.69 0.0614

3 78.6 ± 13.5 85.7 ± 4.9 0.413 0.80 0.0189

4 82.3 ± 22.5 83.2 ± 13.0 0.966 0.69 0.0319

FSC1000

1 38.4 ± 6.8 62.2 ± 8.2 0.0449 0.69 0.0319

2 37.5 ± 12.3 72.6 ± 16.0 0.0429 0.61 0.0310

3 34.6 ± 11.6 66.5 ± 1.8 0.0134 0.56 0.1160

4 26.4 ± 11.2 75.4 ± 22.6 0.0486 0.53 0.0372

Aromatic

FSC500

Naphthalene 79.7 ± 7.4 85.1 ± 6.8 0.417 0.83 0.241

Fluorene 83.3 ± 17.1 75.3 ± 25.2 0.670 0.62 0.248

Phenanthrene 88.8 ± 13.0 90.2 ± 7.6 0.885 0.64 0.199

Anthracene 68.8 ± 27.3 79.6 ± 35.3 0.119 0.56 0.179

Fluoranthene 82.3 ± 18.6 89.8 ± 5.0 0.521 0.62 0.166

Dibenzothiophene 80.3 ± 21.7 74.4 ± 24.7 0.777 0.34 0.124

FSC1000

Naphthalene 20.4 ± 3.5 69.4 ± 3.4 0.0006 0.51 0.0226

Fluorene 28.7 ± 10.4 78.8 ± 13.3 0.0212 Not comparable

Phenanthrene 46.9 ± 1.3 85.3 ± 9.6 0.0115 0.59 0.141

Anthracene 15.7 ± 4.0 70.6 ± 28.5 0.0815 Not comparable 0.211

Fluoranthene 10.2 ± 5.4 85.6 ± 19.7 0.0151 Not comparable 0.0249

Dibenzothiophene −1.9 ± 3.3 74.0 ± 17.4 0.0105 Not comparable

Table 1. Summary of total hydrocarbon degradation for each group after 50 days and results of comparison 
between rates between model oil and model oil + dis treatments with ANCOVA. n = 15 with 3 per time point 
for ANCOVA and n = 3 for total degradation after 50 days.
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naphthalene, phenanthrene, dibenzothiophene) reached complete degradation42. In our study, the same com-
ponents showed less than 50% degradation after 50 days (Table 1) with the most extreme difference observed in 
dibenzothiophene degradation which was zero. It is, therefore, reasonable to suggest that PAHs, such as fluoran-
thene, anthracene, and Dibenzothiophene, may become entrapped in the subsurface sediments of the deep FSC 
and could be periodically released by bioturbation or incorporated into faunal biomass resulting in long term 
impacts. Hydrocarbon degradation without Superdispersant 25 at 5 °C after 50 days was >75% for both aliphatic 
and aromatic hydrocarbons (except anthracene, Table 1) with most activity observed after 30 days. This lag period 
in the onset of degradation may be the reason why Baelum et al.9 found merely 25% removal of total hydrocar-
bons in 5 °C incubations of Gulf of Mexico deep seawater with Macondo oil after 20 days. Higher biodegradation 
of alkanes and PAHs (~90%) at 5 °C were measured by Campo et al.32 in 42-day incubations with light crude 
but these experiments were performed in artificial seawater inoculated with an enriched oil-degrading bacterial 
culture which could have accelerated the degradation process43. The environmental lifetime of hydrocarbons 
in FSC sediments predicted by linear regression ranged between 2 and 5 months (at 5 °C and 0 °C respectively, 
Supplementary Table 4), at least for those components subject to bacterial degradation. It should be noted how-
ever that degradation rates from laboratory incubations (although a vital tool) cannot be extrapolated to natural 
ecosystems without caution8. Hydrocarbon degradation appears to progress much slower in situ; in comparison, 
Liu et al.44 found only light to moderate ( < 25%) weathering of oil in heavily contaminated sediments 1 year 
after the DWH spill and subsequent studies in the Gulf of Mexico have confirmed the presence of Macondo oil 
in deep-water sediments 4 years after the DWH spill although reduced in mass by 80–90% compared to levels 
immediately after contamination45. Migration of oil in deeper sediment layers where anaerobic conditions pre-
vail may partly explain slower biodegradation rates in the field30, 46. In the case of the Exxon Valdez and the West 
Falmouth oil spills, hydrocarbons have been shown to persist for decades after contamination in the subsurface 
layers of coastal sediments47, 48.

Figure 2. Mass of each aliphatic hydrocarbon group degraded during slurry incubations in FSC1000 at 0 °C. 
Error bars are standard deviation, n = 3. Black lines are model oil and grey are model oil + dis.
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Hydrocabon contamination of FSC sediments here resulted in the enrichment of Gammaproteobacteria, spe-
cifically the order Oceanospirillales and the genera Pseudoalteromonas and Pseudomonas. Oceanospirillales and 
Pseudomonas taxa also became enriched in the DWH deep water plume and were most abundant during the 
initial, unmitigated flow phase of the spill when the concentration of hydrocarbons and the fraction of insoluble 
n-alkanes and cycloalkanes were highest20, 49, 50. The enriched Oceanospirillales taxon in the DWH plume was an 
unclassified and uncultivated OTU within the family Oceanospirillaceae20 whereas in our study the enriched taxa 
belonged to Halomonadaceae. Therefore, although at higher taxonomic levels, such as class and order, the main 
HDB may be similar between geographic locations; site-specific research is required for fine low taxon detail.

The LEfSe analysis identified two biomarker OTUs within the Halomonadaceae, Cobetia and Halomonas, 
which were associated with hydrocabon contamination in our incubations. The genus Cobetia has been previ-
ously isolated from oil-contaminated coastal waters of the Persian Gulf and is known to produce biosurfactants 
and degrade hydrocarbons including phenanthrene and dibenzothiophene which were present in the model oil 

Figure 3. Mass of each PAH degraded during slurry incubations in FSC500 at 5 °C. Error bars are standard 
deviation, n = 3. Black lines are model oil and grey are model oil + dis.
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mixture51, 52. However, Cobetia was not identified among HDB in the Gulf of Mexico. Halomonas was one of 
the dominant HDB in contaminated surface waters and, to a lesser extent, the deep water plume during the 
DWH spill as revealed by DNA stable isotope probing and cultivation-based methods53. The relative abundance of 
Pseudoalteromonas, which also became enriched in our model oil incubations, increased in the DWH deep water 
plume during partial capture as petroleum hydrocarbon concentrations decreased and the more dilute plume 
consisted of more BTEX relative to alkanes20. The decrease of ZD0117 in oil-enriched treatments in this study 
has also been observed in Antarctic seawater samples following contamination with oil54. The genus Colwellia 
is thought to play a predominant role hydrocarbon degradation in the deep sea. This is supported by the psy-
chrophilic lifestyle55 and the ability of members of Colwelliaceae to produce EPS under low temperature and 
high pressure56 along with the metabolic potential for hydrocarbon degradation50. Indeed, Colwellia was one 
of the major taxa that became enriched in the DWH deep water plume and was the dominant bacteria in flocs 
and contaminated deep water sediments in the Gulf 9, 10, 57. In this study, Colwellia was one of the most abundant 

Figure 4. Mass of each PAH degraded during slurry incubations in FSC1000 at 0 °C. Error bars are standard 
deviation, n = 3. Black lines are model oil and grey are model oil + dis.
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taxa in both control and hydrocabon-contaminated incubations. This is not surprising since Colwellia is a het-
erotrophic group that does not depend solely on external hydrocarbon supply for growth. Yang et al.24 reported 
the presence of Colwellia in both oily and non-oily Gulf sediments collected 5–7 months after the DWH spill 
(September, October and November 2010) and also concluded that Colwellia could be autochthonous to deep sur-
ficial sediments and cannot be unambiguously linked to oil contamination. The fact that Colwellia was abundant 
in control incubations here but not in the natural background samples may suggest that it is a strong competitor 
in enrichments/microcosms. There was a shift in the FSC500 bacterial community between background and day 
0 incubations, while this was not the case in FSC1000 (Fig. 5). The shift is mainly related to the genre Colwellia, 
further demonstrating its robustness during sampling and storage, and could be attributed to the longer inter-
val (one week) between sampling FSC500 and initiation of the incubation experiment compared to FSC1000. 
Nevertheless, the similar response of bacterial communities in FSC1000 and FSC500 to hydrocarbon contamina-
tion suggests that results are representative. It is however important to stress that though there are many benefits 
to the microcosm strategy employed in this study, not least statistical power gained from replication and destruc-
tive sampling, many questions remain as to how hydrocarbon degradation would proceed in the field. This study 
should be seen as a first step and further study in the field is required.

Studies on dispersants have generated confounding results, most likely because of the non-specific metrics 
used to define biodegradation (e.g. mineralisation to CO2, chemical disappearance quantified by GC-MS) and 
differences in the state and concentration of oil, as well as concentration and perhaps most significantly type of 
dispersant used in laboratory incubations28, 29. Previous studies about microbial dispersant impacts have generally 
focused on Corexit, the dispersant used after DWH. In this study we used Superdispersant 25, as it is approved 
for used in the FSC by the EU and UK and very little is known about its environmental effects. We do not know to 
what extent the effects of Corexit can be compared with Superdispersant 25, and to our knowledge this is the first 
study to investigate its effects on the degradation of hydrocarbons. It is known that Superdispersant 25 is toxic to a 
range of marine animals, both with and without the presence of hydrocarbons58, 59, although its toxicity is less than 

Figure 5. Summary of bacterial communities in slurry incubations: Panel A) Relative abundance of top 
50 OTUs (No sample collected for T0 FSC1000 model oil treatments as they did not differ from control 
T0). Panel B) nMDS based on Jaccard index; red = FSC1000 and green = FSC500; square points = control, 
triangles = oil + dis, and circles = oil only; contours show total mass of hydrocarbon degraded, predicted by 
ordisurf(). Panel C) Cladogram output from LefSe analysis showing consistently differing taxonomic groups 
between oil treated and control slurry incubations. Panel D) LDA effect scores for output from LefSe analysis. 
For panels C and D red = control and green = model oil.
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that of Corexit 952759, In the case of Corexit 9500, hydrocarbon degradation by deep water bacterial communities 
in the Gulf of Mexico (~5 °C) was either unaffected32, enhanced60 or even inhibited27. In the latter case, suppressed 
degradation of certain classes of hydrocarbons, particularly alkanes, was associated with lower bacterial protein 
synthesis and exoenzyme activities in dispersant treatments. Arctic seawater microorganisms from the Chukchi 
Sea degraded similar amounts of oil at −1 °C with and without the dispersant Corexit 950042. In this study with 
Superdispersant 25, we observed both no difference (5 °C) and significantly increased (0 °C) amount of hydro-
carbons degraded by day 50. The presence of dispersant diminished the effect of temperature on the relative rates 
of hydrocarbon degradation, i.e. the amount of aliphatic and aromatic hydrocarbons degraded after 50 days was 
comparable between 0 °C and 5 °C when dispersant was present whereas degradation was significantly depressed 
at 0 °C without dispersant. Despite the apparent lack of impact of dispersant on the final amount of hydrocarbons 
degraded at 5 °C, the onset of degradation of several less soluble compounds was initiated earlier when dispersant 
was present (hydrocarbon groups 2, 3, and 4). In contrast, more soluble hydrocarbons (n-decane and 1-decene, 
Group 1) exhibited similar degradation patterns with and without dispersant suggesting that only the less water 
soluble hydrocarbons have their bioavailability increased by Superdispersant 25. Nevertheless, it seems that the 
effect of dispersant on degradation is specific for individual hydrocarbons25, 61 and depends on the characteristics 
of the dispersant to be used61. These observations highlight the challenge of predicting the consequences of dis-
persant use to mitigate oil spills in the natural environment where a number of physicochemical and biological 
factors may also contribute to hydrocarbon biodegradation43, 62. Differences in hydrocarbon degradation pat-
terns between treatments here were not accompanied by shifts in the bacterial community structure that could 
be specifically linked to dispersant application, although there could have been differences at species, strain or 
genome level not detected with our sequencing strategy. Previous studies have demonstrated taxa-specific and 
concentration-dependent effects of dispersants on microorganisms; certain Colwellia and Alcanivorax taxa, for 
example, responded to dispersants or oil-dispersant mixtures9, 27, 63, 64 whereas Marinobacter27 and Acinetobacter63 
were suppressed by dispersants. In contrast to most studies, however, relatively low concentrations of hydrocar-
bons and Superdispersant 25 were applied in our incubations to simulate marine biodegradation of chemically 
dispersed oil at the low end of the range of dispersant concentrations found after a spill, which could explain the 
lack of effect of Superdispersant 25 on the bacterial community composition65.

Overall, this study is the first to demonstrate the capability of deep water, subarctic sediment microbial com-
munities to degrade hydrocabons at temperatures of 0 and 5 °C. Hydrocarbon degradation was dependent on 
temperature with significantly slower degradation of both aliphatic and aromatic hydrocarbons at 0 °C compared 
to 5 °C. Certain PAHs, such as fluoranthene, anthracene and dibenzothiophene did not show detectable levels 
of degradation at 0 °C suggesting long-term impacts of oil contamination at near zero or subzero temperatures. 
The bacterial community response was consistent between 500 and 1000 m with the class Gammaproteobacteria, 
orders Oceanospirillales and Pseudomonadales, and genera Pseudoalteromonas, Pseudomonas, Halomonas and 
Cobetia predominating in model oil-contaminated treatments. The high degree of consistency between stations in 
terms of bacterial response to the model oil provides encouragement that oil contamination could be monitored 
by proxy of bacterial changes in the FSC. Robust and highly portable routine molecular methods, such as qPCR, 
could be developed to detect such changes. Due to the Arctic origin of bottom water masses in our study area, 
results here are relevant to oil biodegradation efficiency and bioremediation potential of bacterial communities 
in Arctic ecosystems where the ongoing exploration for oil and gas in offshore areas and a growing interest in 
developing the Northern Sea Route (NSR) as an alternative transportation route increase the risk of hydrocarbon 
pollution.

Methods
Sediment collection. Sediment was collected from two stations at 538 and 994 m (subsequently referred 
to as stations FSC500 and FSC1000, respectively) in the FSC using a day grab (Supplementary information 1). 
Sampling was conducted on the FRV Scotia (cruise number Sc201405) between 24/04/14–08/05/14. Sediment 
from five grabs collected at each station was pooled and stored at 1 °C under approximately 10 cm of ambient 
seawater. The overlying water was constantly aerated with an aquarium air pump (Airvolution AV2, Interpet, UK) 
and air stones until slurry incubations were initiated. Additionally, approximately 10 g of sediment from each grab 
were immediately stored at −80 °C for molecular analysis. Experiments were initiated after returning from the 
cruse, so were stored for 14–21 days before the start of the experiment, control incubations were run so we could 
account for any changes in the community due to storage and transport.

Preparation of Model oil. A model oil containing 20 hydrocarbons was formulated with a mixture of ali-
phatic, aromatic, polyaromatic (PAH), and resin components proportions are shown in Supplementary Fig. 1. 
The density of the model oil was 880 kg/m3, equivalent to a medium crude oil. The model oil was based on hydro-
carbon molecules containing more than 8 carbon atoms as it is thought that these components are more likely 
to be deposited on the seabed2, 66. Although olefins/alkenes are present in crude oil (see ref. 67) these are usually 
present at lower concentrations than employed in the model oil prepared here. Our model was loosely based on 
the composition of a North sea crude (Schiehallion) however, this had to be manipulated in such a manner as to 
ensure mutual solubility of all components.

Experimental procedure. Sediment from each station was incubated with either model oil alone or model 
oil and marine dispersant, Superdispersant 25 (Oil Technics Ltd., Aberdeen, UK) (Supplementary Table 1). The 
treatments are hereafter referred to as model oil (model oil only) and model oil + dis (model oil and dispersant). 
Each treatment was run in triplicate for each time point with a live control (sediment and seawater only) and 
sterile control (autoclaved sediment with model oil or model oil + dis) run in parallel. To prepare the incubations, 
15 ml of ambient seawater was added to the vials which were then sterilised by autoclaving at 121 °C and 100 kPa 
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for 15 min. After autoclaving, 5 ml of sediment was added to each vial and, depending on treatment, was spiked 
with 0.44 g of model oil and 0.015 g Superdispersant 25 (ratio of 30:1 oil: dispersant to mimic application at 
blowout location in accordance with manufacturer’s instructions). The vials were then incubated in the dark on a 
shaker table at 150 rpm at 5 °C or 0 °C for FSC500 and FSC1000, respectively (reflecting the in situ temperature at 
each station). On days 10 and 30, the headspace in each vial was replenished with sterile air through the septa to 
ensure the conditions remained aerobic. Destructive sampling was carried out on days 0, 2, 10, 20, 30, and 50 for 
all treatments. Approximately 2 ml of the sediment were collected aseptically and stored at −80 °C until molecular 
analysis. The remainder was stored in the glass incubation vial at −20 °C until GC analysis.

Hydrocarbon extraction and analysis. To determine the extent of hydrocarbon loss due to evaporation, 
1 g of model oil was incubated in glass vials (n = 3) at room temperature. A decrease in mass of less than 1% was 
detected after 50 days. Hydrocarbons were extracted from the slurries by liquid-liquid extraction with 3 × 10 ml 
dichloromethane (DCM) (VWR, UK). 1 µl of the DCM fraction was then subjected to GC analysis using toluene 
as an internal standard to correct for injector error (20 µl/ml toluene). Samples were analysed on a Varian CP3800 
fitted with 30 m Zebron ZB-50 column and FID detector. The hydrocarbons were quantified against an external 
standard containing known amounts of the model oil components. The conditions for the analysis were as fol-
lows; injector and detector temperature was 330 °C and the injection split ratio was 80:1, initial oven temperature 
was 50 °C with a 3 min hold and then increased at 10 °C min−1 to 110 °C, followed by an increase to 200 °C at 5 °C 
min−1 with at 12 min hold, and finally ramping to 300 °C at 20 °C min−1. All components showed recovery rates 
90–95% after 50 days in the sterile controls (Supplementary Table 2). The exception to this was ethylbenzene and 
xylenes which showed recovery levels of < 75%. The partial loss of these specific components cannot be accounted 
for at this stage but probably reflect the greater relative volatility of these components and have been excluded 
from further analysis.

Microbial community analysis. Total DNA was extracted using the FastDNA™ SPIN Kit for 
Soil (MP biomedicals, Cambridge, UK) from 0.4 g of sediment according to the manufacturer’s instruc-
tions. Pair ended (300 × 2) amplicon sequencing across the V3–V4 variable region of the 16 S rRNA 
gene was carried out on the Illumina MiSeq platform using the following primers: Forward Primer = 5′ 
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG, Reverse Primer = 5′ 
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC. Approximately 
13 M reads were obtained with a read depth 30–110 K per sample (88 samples total). Bioinformatics analysis was 
carried out on the Maxwell high performance computing cluster at the University of Aberdeen, using Mothur 
v 1.36.168, 69 and associated resources (PandaSeq70, Precluster71, SILVA72, Greengenes73, 74, RDP Naive Bayesian 
classifier75, and UCHIME76) as outlined in Drumbell et al.77 see Supplementary Information 2. Sequences from 
this study are available through the European Nucleotide Archive under project PRJEB15950 (ERP017791).

Statistical analysis. Statistical analysis was carried out in R78 and the package Vegan79.
To simplify results, hydrocarbons that had similar degradation profiles were grouped by principal compo-

nent analysis. The raw data for individual components is given in Supplementary Data 1. Group 1 comprised 
the two shortest chain aliphatics, the alkane n-decane and the alkene 1-decene. Group 2 comprised the medium 
length aliphatic hydrocarbons tetradecane, pentadecane, hexadecane, heptadecane, icosane, and docosane. 
Group 3 comprised the aliphatic alkane dodecane, and the alkene octadecene. Group 4 contained tetracosane 
(Supplementary Table 3). To test whether degradation rates were significantly different between conditions, anal-
ysis of covariance (ANCOVA) was used to compare the slopes of the linear regressions of hydrocarbons degraded 
over time with the formula “hydrocarbon mass ~ day * treatment”. Significantly different degradation rates were 
accepted at p < 0.05, or if slopes were incomparable (i.e. did not follow the same x, y relationship) comparison for 
sterile versus live incubations is given in Supplementary Table 4.

To correct for variation in sequencing depth between samples, rarefaction was carried out using the r func-
tion “rrarefy()”. For beta diversity a distance matrix was created with the function “vegdist()” using the Jaccard 
index. This was visualised with non-metric multidimensional (nMDS) scaling using the function “metaMDS()”. 
To test for differences between sampling groups, permutational multivariate analysis of variance (perMANOVA) 
using distance matrices was carried out using the function “adonis()” with 1000 restarts. To check if hydrocarbon 
concentrations were correlated with the nMDS, ordisurf()was used to fit vectors to the surface ordination plot 
with generalized additive models. Significance was accepted at p < 0.05. Linear Discriminant Effect Size analy-
sis (LEfSe) was used to identify bacterial shifts associated with different treatment conditions using the Galaxy 
pipeline (available at https://huttenhower.sph.harvard.edu/galaxy/)39. First LEfSe identifies features (e.g. clades or 
OTUs) that are significantly differently abundant between groups with non-parametric factorial Kruskal-Wallis 
sum-rank tests; it then interrogates these features for biological consistency and relative importance with 
Wilcoxon rank-sum tests among subclasses and Linear Discriminant Analysis to determine the effect sizes.

Data Availability. Sequences from this study are available through the European Nucleotide Archive under 
project PRJEB15950 (ERP017791). All other data generated or analysed during this study are included in the 
Supplementary Information file and tables.
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