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Abstract

Topic models are known to suffer from sparsity when applied to short

text data. The problem is caused by a reduced number of observations

available for a reliable inference (i.e.: the words in a document).

A popular heuristic utilized to overcome this problem is to perform be-

fore training some form of document aggregation by context (e.g.: au-

thor, hashtag). We dedicated one part of this dissertation to modeling

explicitly the implicit assumptions of the document aggregation heuristic

and applying it to two well known model architectures: a mixture and an

admixture. Our findings indicate that an admixture model benefits more

from aggregation compared to a mixture model which rarely improved

over its baseline (the standard mixture). We also find that the state of

the art in short text data can be surpassed as long as every context is

shared by a small number of documents.

In the second part of the dissertation we develop a more general purpose

topic model which can also be used when contextual information is not

available. The proposed model is formulated around the observation

that in normal text data, a classic topic model like an admixture works

well because patterns of word co-occurrences arise across the documents.

However, the possibility of such patterns to arise in a short text dataset

is reduced. The model assumes every document is a bag of word co-

occurrences, where each co-occurrence belongs to a latent topic. The

documents are enhanced a priori with related co-occurrences from the

other documents, such that the collection will have a greater chance of

exhibiting word patterns. The proposed model performs well managing

to surpass the state of the art and popular topic model baselines.
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Chapter 1

Introduction

A great number of text collections are already available or being produced with

high velocity and in large volumes, having the potential to offer value to people.

Examples of such collections include digital libraries of scientific publications, news

articles, books, blogs, web pages or social media posts. However, extracting useful

information from large unstructured datasets remains challenging and automatic

methods for doing so are essential. Topic models are a very promising way of struc-

turing the data in an automatic fashion to make it available to end users in a more

easily digestible format.

A topic model, at its core, is a probabilistic method for extracting the main

themes from an unstructured collection of text. It offers end users the opportunity

to search and explore data in ways beyond the traditional keyword-based queries.

For example, a digital library may contain millions of documents from heterogeneous

topics such as literature, biology or mathematics. A topic model could automatically

detect the existence of such themes, and much more. It can allow a user to focus only

on the documents part of the literature theme. It can go further and identify finer

grained topics of this theme like fiction, comedy or drama. In a standard framework

(e.g.: a mixed membership model like Latent Dirichlet Allocation [9]) a topic model

offers two kinds of information: 1) the identified topics represented by a probability

distribution over the vocabulary space where the descriptive words are those with

high probabilities; and 2) the coverage of each topic in the documents.

Topic models have been shown to have wide applicability [5, 6, 8]. A few examples
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1. INTRODUCTION

include analyzing the evolution of topics over time in digital library data [7], the

identification of correlated topics [4, 25], modeling authors and their publications [40]

or capturing spatial and temporal patterns from blog posts [33]. Topic models can

also be utilized to get a low dimensional semantic representation of the documents.

This can be useful in document clustering or classification tasks [27].

In this dissertation we are concerned with topic models for short text data, an

emergent area of research [26, 39, 56, 61]. This type of data where text items are

short compared to traditional documents like a published paper or a news article,

is present in many environments; examples include tweets, titles of scientific pub-

lications, of blogs, of news, forum conversations or short product reviews. In this

text environment traditional topic models like LDA under-perform. The problem is

caused by a reduced number of observations available for a reliable inference (i.e.:

the words in a document). This causes topic models to suffer from sparsity.

Researchers have addressed sparsity from multiple angles: 1) context has been

leveraged to aggregate documents before training the models [22, 31]; 2) general

purpose models have been built which can be used when contextual information is

not available [39, 56, 61]; and 3) the short text documents are enhanced a priori to

the learning phase with external information [49, 50]. In this dissertation we touch

on all three aspects: we introduce two models that account for context; and we build

a general purpose model which enhances the documents with extra information, but

the information is generated internally, from the input collection. The remainder of

this chapter is dedicated to guiding the thesis.

We cover the related literature in Chapter 2. We begin with some basic theory

about a mixture and an admixture model. This is followed by a review of a broad

range of topic models to showcase their wide applicability. We then discuss models

developed for short text data, the research focus of this dissertation. The final

parts of the chapter cover a review of parameter estimation techniques, with a focus

towards variational inference, the technique employed in this thesis. We conclude

the chapter with a discussion on common evaluation methods.

After introducing the chapter on related literature, we now formulate the research

questions which stand at the core of this dissertation. Each question is introduced

2



below, starting from appropriate observations, and is followed by the chapter in

which it is addressed.

It is known that document aggregation by context helps LDA (the admixture) to

alleviate sparsity in short text data [22, 31]. At the same time, Mixture of Unigrams

(the mixture) has become a popular baseline in this area [26, 36, 56, 61]; its one

topic per document assumption making it attractive for short text items [59]. More

than that, the mixture and the admixture are standard classes of models found at

the core of a wide variety of topic models developed over the years (Chapter 2 covers

an in-depth review). With these observations in mind, we formulate the following

research questions:

Which class of models benefits more from aggregation in short text data, a mixture

or an admixture? Can document aggregation lead to state of the art performance?

We address these questions in Chapter 3 where we explicitly model the implicit

assumptions of document aggregation, and apply it to the two standard model ar-

chitectures. We evaluate the enhanced models on both very short (i.e.: titles of

publications) and medium (i.e.: abstracts) text items, with different opportunities

for aggregation (a smaller vs. a larger number of documents per context). The

evaluation targets multiple tasks such as topic coherence, document clustering and

document classification. Our findings indicate that an admixture model benefits

more from aggregation compared to a mixture model which rarely improved over

its baseline (i.e.: the standard mixture). We also find that the state of the art in

short text data can be surpassed as long as every context contains a small number

of documents.

Contextual information is not always available or it does not help (i.e.: it is

shared by documents which have little or no topical relationship). In these cases, a

general purpose topic model is desirable. In normal text data, a classic model like

LDA works well because patterns of word co-occurrences arise across the documents.

However, the possibility of such patterns to arise in a short text dataset is reduced.

Based on this observation we formulate the following research question:

Can short text collections be enhanced such that repeating word co-occurrences

have a better chance to arise across the documents more consistently and facilitate

3



1. INTRODUCTION

a better topic discovery?

We address this question in Chapter 4 where we introduce a new topic model

for short text items. The model assumes every document is a bag of word co-

occurrences, where each co-occurrence belongs to a latent topic. The documents are

enhanced a priori with related co-occurrences from the other documents, such that

the collection will have a greater chance of exhibiting word patterns. We evaluate the

model on two labeled datasets of tweets and one of titles of scientific publications.

The latter is a dataset which we also utilized in Chapter 3 and has contextual

information available. We target in the evaluation multiple tasks such as topic

coherence, document clustering and document classification. The model we propose

performs well managing to surpass the state of the art and popular topic model

baselines. The best performing contextual model introduced in Chapter 3 managed

to get the best results in this evaluation as well, further strengthening the argument

that contextual information is indeed useful when available.

In the previous chapters, the approaches taken to alleviate sparsity were oriented

towards increasing the number of observations (i.e.: the words) available for the

inference of the K-dimensional vectors governing the topic proportions (where K is

the total number of topics). Considering these vectors are known to be the main

reason behind LDA’s poor performance in short text data (point also raised by Yan

et al. [56]), a different approach is worth investigating:

Can topic models be improved by assuming a more appropriate number of topics

for every document?

We address this question in Chapter 5, where we experiment with a topic model

which assumes documents are mixtures of only a subset of the entire topic space.

This complements existing work which assumes documents contain either a single

topic or a mixture of the entire topic space. The main motivation behind this chapter

is that neither of the aforementioned assumptions are entirely plausible. Even if the

“one topic per document” assumption performs reasonably well on a short text

dataset such as a Twitter collection, there can be many tweets which cover more

than one topic. At the same time, even though longer documents tend to cover

multiple topics, it is implausible they cover the whole topic space. The evaluation

4



assesses coherence, a measure of topic interpretability, and is performed in varying

text environments from very short to medium and longer text. The experiments

indicate a connection between the size of the documents and the performance of the

models with respect to the number of topics assumed for every document.

We conclude the dissertation with Chapter 6. A summary of the key points is

given reiterating the novelty brought by this work and its applicability.
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Chapter 2

Related Work

2.1 Topic Models

Text data is being generated at a rapid pace and is available in a variety of en-

vironments such as social platforms, digital libraries or the media. For end users

to be able to interact with the large amounts of available data, some form of data

organization is needed. Topic models offer one way of structuring the data in an

automatic fashion to make it available to people in a more easily digestible format.

The organization is done based on themes identified at different levels of granularity.

Such generative models of text have been developed over the years for a wide variety

of applications [5, 6, 8, 25, 32, 41]. The literature on topic models is so extensive

that only a partial discussion is possible.

We begin with some basic theory about topic models. This is followed by a

review of a broad range of models to showcase their wide applicability. We then

discuss topic models for short text data, the research focus of this dissertation. The

final parts of the chapter cover a review of parameter estimation techniques, followed

by a discussion on common evaluation methods employed in the literature.

2.1.1 Core Models

In this section we describe two core models used for discovering latent topics from

text collections: a mixture and an admixture model. The latter is also known as

a mixed membership model. The difference between the two models is that in an

7



2. RELATED WORK

Figure 2.1: Graphical Model of MoU

admixture a document can exhibit multiple topics, whereas in a mixture documents

are assumed to be generated from only one topic. These basic architectures have

laid the foundation for a variety of models over the years (see Sections 2.1.2, 2.1.3

and 2.1.4 for an in-depth review).

The models take as input a collection of documents indexed by d ∈ {1, 2, ...,M}.

Every document d is a collection of words indexed by n ∈ {1, 2, ..., Nd}. The words

form a vocabulary space indexed by j ∈ {1, 2, ..., V }.

2.1.1.1 The Mixture Model

In this section we describe Mixture of Unigrams (MoU) [37], a basic but popular

model for latent topic identification. The model is known for its “one topic per

document” assumption which makes it a strong baseline in short text data [36, 56].

The graphical model of MoU is presented in Figure 2.1. The generative process

is given below:

• For every topic i ∈ {1, 2, ...,K}:

– Draw a word distribution βi ∼ Dir(η)

• Draw global topic proportions θ ∼ Dir(α)

• For every document d ∈ {1, 2, ...,M}:

– Draw a topic zd ∼ Cat(θ)

– For every word position n ∈ {1, 2, ..., Nd}:

∗ Draw word wd,n ∼ Cat(βzd)

8



2.1 Topic Models

Figure 2.2: Graphical Model of LDA

2.1.1.2 The Admixture Model

In this section we describe Latent Dirichlet Allocation (LDA) [9], a well known topic

model where a mixture of topics is responsible for generating the words in a docu-

ment. LDA can be considered a more general Bayesian extension of the Probabilistic

Latent Semantic Analysis (PLSA) model published previously by Hofmann [21]. In

PLSA, there is no assumption that guides the generative process of the document

specific topic proportions. Blei et al. [9] makes the observation that PLSA is unsuit-

able for prediction tasks on unseen documents and that it is prone to overfitting.

LDA has become the backbone of a wide variety of topic models over the years

(see Section 2.1.2). Supporting material can be found in numerous previous studies

[8, 16, 44]. Compared to MoU, LDA relaxes the one topic per document assumption.

The graphical model of LDA is presented in Figure 2.2. The generative process

is given below:

• For every topic i ∈ {1, 2, ...,K}:

– Draw a word distribution βi ∼ Dir(η)

• For every document d ∈ {1, 2, ...,M}:

– Draw document-level topic proportions θd ∼ Dir(α)

– For every word position n ∈ {1, 2, ..., Nd}:

∗ Draw a topic zd,n ∼ Cat(θd)

∗ Draw word wd,n ∼ Cat(βzd,n)

2.1.2 Topic Models: A Broad Survey of the Literature

The wide applicability of topic models is known and has been reviewed extensively

in previous work [5, 6, 8]. Nevertheless, for completeness, we will discuss a selection

9



2. RELATED WORK

of papers to show how topic models have been adapted over the years.

The set of assumptions that form the core of an admixutre model like LDA

have been adapted in various ways as richer models have been developed. One such

example is the Bigram Topic Model proposed by Wallach [51], where documents

are not viewed any more as simple bags of words: a bigram language model now

guides the generative process of the words given the topics. Another example is

the Dynamic Topic Model proposed by Blei & Lafferty [7] where the order of the

documents in the collection is taken into account (this is in contrast with LDA where

the order does not matter). The model aims to analyze the evolution of topics over

time in a large collection of documents. In the generative process, the topics are

assumed to evolve from one time slice to another with Gaussian noise. Hierarchical

priors shared by the topic proportions of the documents part of the same time slice,

evolve as well with Gaussian noise. A further example of modeling outside the

standard assumptions of LDA, is to allow the complexity of the data to determine

the number of topics in a collection. The Hierarchical Dirichlet Process is one such

model example [20, 53].

Researchers have also focused on modeling potential correlations between top-

ics, another limitation of LDA. For example, Blei & Lafferty [4] model document

specific topic proportions with the help of a logistic normal distribution. The co-

variance matrix of the just mentioned distribution is responsible for capturing the

correlations. An alternative to this model is the one developed by Li & McCallum

[25] where correlations can be captured with an arbitrary directed acyclic graph

(e.g.: structures where super topics have correlated sub-topics).

Topic models have also been developed to capture patterns beyond simple word

co-occurrences. For example, Wang & McCallum [54] proposed a generative model

which learns, in addition to the topics, beta distributions that capture their trends

over time. The model assumes that for every word position in a document a topic

is drawn, then the word is drawn from that topic, followed by the timestamp of

the document. This way, the topics from the documents are influenced by both the

words and their timestamps. In a different context, models have also been developed

to account for both short range syntactic and long range semantic dependencies [17].

10



2.1 Topic Models

Documents are broken down into function and content words. The function words

are captured by a Hidden Markov Model while the content words are handled with

the help of a topic model, all in a unified generative model that integrates topics

with syntax.

With the increasing popularity of word embeddings researchers have started

exploiting them in topic models as well. Nguyen et al. [36] propose two extensions

of the popular topic models MoU and LDA. The extensions include in the standard

models a latent feature component. The generative process assumes the words are

being draw either from the classic topic distributions or from this newly added

latent feature component. The component is a categorical distribution where the

probability of a word is proportional to the dot product between its embedding and a

latent vector representation of its assigned topic. The authors use word embeddings

pre-trained on large external corpora. Their findings indicate that the proposed

models have increased performance especially on small datasets or datasets that

consist of short text documents. Another model which utilizes word embeddings is

GaussianLDA [14]. The model replaces the categorical distributions used in LDA

to represent the topics with multivariate Gaussian distributions defined over the

embedding space. This particular choice of representing the topics is a way of

suggesting to the model to assign words that have similar embeddings (i.e.: vector

representations; spatial similarity) to the same topic.

2.1.3 Topic Models for Context-Accompanied Text Data

Context has been extensively exploited in topic models for text mining purposes.

Zhai et al. [58] developed a model for cross collection topical analysis. The model

identifies collection-specific topics but also general topics which arise across the

datasets. In another contextual model proposed by Mei et al. [33] the generative

process assumes time and location specific topic proportions which guide the per

word topic assignments of the documents. This allows the model to capture topical

trends with respect to time and location. Another research effort focuses on defining

a more general purpose topic model for contextual text mining [32]. The model

assumes context specific topic proportions and context specific views of the topics.

11
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The generative process also assumes that multiple contexts can be responsible for

selecting the per-word topic assignments. The described models [32, 33, 58] are built

as extensions of the popular PLSA [21] baseline.

The author topic models are another class of contextual models developed over

the years [29, 30, 40, 41]. Every document is accompanied by an observed set of

authors. The model proposed by McCallum [30] assumes that documents are gener-

ated from the word distributions that correspond to their authors (i.e.: one author

per word; word drawn from author-specific word distribution). Rosen-Zvi et al. [40]

proposed another model which takes into account word distributions associated with

the topics and topic proportions associated with the authors. For every word, an

author is selected, followed by a topic assigned based on the proportions that corre-

spond to the previously selected author; with the topic at hand, the word is drawn

afterwards from the appropriate topic distribution. McCallum et al. [29] extends the

author topic model of Rosen-Zvi et al. [41] by incorporating recipients. The model

is useful for an analysis of email data, for example. It assumes every document con-

tains an observed author and multiple recipients. For every word, a recipient is first

selected; then a topic is being drawn according to proportions that correspond to

the author of the message and the assigned recipient; finally the word is drawn from

the appropriate topic distribution. The described author models [29, 30, 40, 41] are

built as extensions of the popular LDA [9] baseline.

2.1.4 Topic Models for Short Text Data

Probabilistic topic models for short text data are the research focus of this disser-

tation. The poor performance of standard models like Latent Dirichlet Allocation

(LDA) on short text items is caused by sparsity [24, 36, 56, 61]. Because of the

reduced number of observations per documents (i.e.: the words) the inference of

the K-dimensional vectors governing the document-specific topic proportions can

be unreliable. In a study on the factors which affect the performance of LDA, Tang

et al. [45] conclude that poor performance is expected when the documents are too

short, even if you have a large collection.

One popular heuristic employed by researchers to overcome sparsity in short text
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data is to utilize various message aggregation strategies before training LDA. Hong &

Davison [22] find that aggregating tweets based on author gives better performance

over standard LDA. In a later published paper, Mehrotra et al. [31] found that

aggregating by hashtag brings even more benefits to LDA’s performance. Various

other researchers who do not study the benefits brought by aggregation to their

models but want to avoid sparsity in short text data employ this heuristic [49, 50, 55].

We also want to highlight here TwitterLDA [59], another frequently cited model on

aggregation, which combines a mixture model with user-specific topic proportions

and a background word distribution. In a more recent publication, Sasaki et al. [42]

introduced an improved version of TwitterLDA which models user-specific preference

for functional vs topical words (as opposed to the global preference from the original

paper).

More general purpose topic models built for short text data also exist and can

be applied when contextual information is not available. An example is Mixture of

Unigrams, which models global topic proportions (unlike document-specific ones like

in LDA), and is one of the first successful examples of alleviating sparsity, becoming

over the years a standard baseline in this area [26, 36, 56, 61]. Its “one topic per

document” assumption seems to fit reasonably well short text items. We use this

model ourselves as one of the baselines in the experiments. Another popular model

for short text is the Biterm Topic Model (BTM) [56]. The model has a preprocessing

step in which all the biterms (i.e.: word pairs) of every document are generated. The

biterms become then the input of a Mixture of Unigrams model. BTM alleviates

sparsity because, just like MoU, it assumes global topic proportions. Unlike MoU

which assumes one topic per document, BTM is more flexible as it assumes one

topic per biterm. Since documents contain multiple biterms, they can potentially

exhibit more topics. We often use this model to represent the state of the art in an

evaluation. BTM has been extended in various ways more recently. For example,

in one extention, Yan et al. [57] take into account background words in addition

to topical words in a model which aims to capture bursty topics from microblogs.

In another example, Chen et al. [13] introduce Twitter-BTM, which assumes user-

specific topic proportions and models as well functional words in addition to the topic
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distributions. These assumptions though, make the Twitter-BTM model applicable

to data where the required contextual information is available.

Going back to general purpose topic models for short text data, the Dual-Sparse

Topic Model of Lin et al. [26] is a great example of explicitly addressing sparsity. The

model keeps the usual assumptions of an admixture model, but with a twist: “Spike

and Slab” priors are used to control the sparsity that may arise in both the document

specific topic proportions and in the word distributions associated with the topics

(hence the dual-sparse terminology). The mathematics involve constructing the

Dirichlet distributions that model the just mentioned aspects in a way which allows

to control which components can receive probability mass. This is achieved with the

help of random Bernoulli indicators. Under this structure, the model can enforce

only a few words and topics to end up with most of the mass (the others having

negligible quantities). In a recent publication, Zuo et al. [61] propose a new general

purpose topic model for short text (Pseudo-document Topic Model) which alleviates

sparsity by modeling topic proportions specific to latent clusters of documents. In

the generative process, for every short document, you first select a cluster and then

its words are being generated according to the cluster’s topic proportions. The

model reduces sparsity since the topic proportions are now associated with each

cluster of documents instead of having one such vector for every short text item. In

the same paper, Zuo et al. [61] introduce another model which applies a “Spike and

Slab” prior to the cluster-specific topic proportions of PTM for an explicit control

of sparsity. Another model of latent document aggregation is the one proposed by

Quan et al. [39], but there are a few differences compared to PTM. The model has

a generative process which can be described as a two part mechanism: one in which

large latent documents are generated from an admixture model; and a second part

in which every observed short document is assumed to be generated from a latent

large document.

There are also models developed to capture richer patterns that go beyond simple

word co-occurrences. One such model is the Latent Event Model (LEM) proposed

by Zhou et al. [60]. LEM models an event with multiple distributions accounting

for non-location named entities, locations, time, and other descriptive words. To
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alleviate sparsity, the model, similar to MoU, assumes global event proportions and

one event per document. Similar models have been published for multi-faceted topic

discovery in Twitter [49, 50] - in this work though the authors assume document

specific topic proportions and alleviate sparsity by enhancing the short documents

with external information gathered from the URLs inside the posts. They also take

into consideration internal information and enhance the documents with high fre-

quency words that appear across the collection in the company of the same hashtags

[50]. Li et al. [24] published a new model recently which takes into account the

available structure of conversations in microblogs. They first use a leader detection

model to classify documents into leaders and followers. This information is used

as prior knowledge to a probabilistic topic model. The generative process of the

model assumes, for each message, first deciding whether it is a leader or a follower

(informed by the just described prior information). If the message is a leader, a

topic is drawn according to the proportions that correspond to leaders; otherwise,

a topic is drawn according to proportions that correspond to the topic of the fol-

lower’s leader. This separation of topic proportions indicates that leaders generate

new topics and followers generate correlations between these topics. With a topic

assigned to a message, its words are now generated either from a background word

distribution or from the appropriate topic distribution. Leaders and followers also

have their own preference for functional vs topical words. Exploiting the structure of

the conversations brings improvements over other competing models (e.g.: [39, 56])

in terms of topic coherence.

2.2 Inference in Topic Models

The posterior of a topic model is often intractable for exact inference. Both de-

terministic and non-deterministic methods can be followed to obtain a posterior

approximation.

Non-deterministic approaches include sampling techniques such as those from

the Markov Chain Monte Carlo (MCMC) family. Gibbs sampling (e.g.: standard,

blocked, collapsed) is one type of MCMC which is highly utilized in related work
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[36, 56]. A simple Gibbs Sampler involves getting samples in an iterative procedure

from the complete conditionals. The samples are then used to compute estimates

of interest (e.g.: parameter means). The first few samples are usually discarded

in order to move away from the random initialization to an area of high posterior

density (the burn-in period). Getting representative samples is nevertheless an open

problem; it is also not straightforward to assess the convergence of MCMC methods

[23].

Because of these problems, in recent years, a number of researchers [7, 9, 10,

19, 20] have adopted Variational Inference, a deterministic approach to posterior

approximation. This is also the parameter estimation technique employed in this

dissertation. The following subsections will detail the necessary theory.

We also note here collapsed variational inference [3, 43, 46, 47]. The method is

deterministic but inspired by Collapsed Gibbs Sampling - it provides a tighter bound

(i.e.: the variational objective function) when compared to standard variational

inference by marginalizing out some of the parameters.

2.2.1 Variational Inference

Variational Inference is a deterministic approach to posterior approximation. Let

M be a model of some data D with parameters θ. We are going to approximate

the intractable posterior p(θ|D) with a variational distribution q(θ) such that the

Kullback-Leibler (KL) divergence between the two distributions is minimized.

It can be easily proved that minimizing the KL divergence between q and p is

the same as maximizing the evidence lower bound (ELBO) L (see Equation 2.1).

DKL(q(θ)||p(θ|D)) = Eq[log q(θ)]− Eq[log p(θ|D)]

= Eq[log q(θ)]− Eq[log p(D, θ)] + Eq[log p(D)]

= −L + Eq[log p(D)]

(2.1)

For clarity, we express below the variational objective function:

L = Eq[log p(D, θ)]− Eq[log q(θ)] (2.2)

16



2.2 Inference in Topic Models

We need a variational distribution q(θ) that is tractable under expectations. In

this work, we follow the common practice [9, 10, 20], and choose q to be in the mean-

field variational family where each hidden variable is independent and governed by its

own parameter. We review below (i.e.: Sections 2.2.1.1 and 2.2.1.2) two approaches

to deriving the update formulas of the variational parameters.

2.2.1.1 Standard Variational Inference

The goal in variational inference is to maximize the objective function (i.e.: the

ELBO from Equation (2.2)). The steps involved are somewhat standard for such

tasks:

1. Fully expand the ELBO according to the model specification (i.e.: the appro-

priate full joint and variational distributions). To ease the mathematics, we

represent the Dirichlet distributions in their exponential family form. It is also

worth knowing that the first derivative of the log normalizer is equal to the

expected value of the sufficient statistics [9].

2. With the ELBO fully expanded, the next step is to compute the update for-

mulas of the variational parameters. The mathematics involve taking partial

derivatives with respect to each parameter in question and solving the resulting

equations. Note that in some cases we are dealing with constrained maximiza-

tions (e.g.: the parameters of categorical distributions) which require the usage

of Lagrange multipliers.

3. With the update formulas of the variational parameters at hand, the algorithm

is straightforward. The parameters are updated iteratively until the lower

bound converges.

4. Monitoring the value of the ELBO is useful for assessing algorithm termination,

but also for sanity checks (e.g.: the ELBO is guaranteed to increase with every

iteration).

We use standard variational inference in Chapter 5. A full proof can be found

in the supplemental material in Appendix C.
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2.2.1.2 Variational Inference with Exponential Families

The derivations involved in obtaining the update formulas for the variational param-

eters can be reduced if the model in question satisfies some properties. Concretely,

the model needs to have the complete conditionals in the exponential family. If

this necessary condition is satisfied, getting the update formulas of the variational

parameters is more straightforward because it has been proved that the natural

parameters of the variational distributions are equal to the expected value of the

natural parameters of the corresponding complete conditionals [20].

The steps involved can be summarized as follows:

1. Derive the complete conditional of every latent variable given the other latent

variables and the observations. Show these are in the exponential family.

2. Define the variational distributions to have the same form as the corresponding

complete conditionals.

3. Derive the update formulas of the variational parameters using the fact that the

natural parameters of the variational distributions are equal to the expected

value of the natural parameters of the corresponding complete conditionals.

4. With the update formulas of the variational parameters at hand, the algorithm

is straightforward. The parameters are updated iteratively until convergence.

5. Monitoring the value of the ELBO is useful for assessing algorithm termination,

but also for sanity checks (e.g.: the ELBO is guaranteed to increase with every

iteration).

We make use of variational inference for exponential families in Chapters 3 and

4. Full proofs can be found in the supplemental material in Appendices A and B.

We note that further theory is available for this class of models. For example,

Hoffman et al. [20] showed how to apply stochastic optimization to the variational

objective function, allowing high dimensional Bayesian models to be applied at scale.

Concretly, the models must have, besides complete conditionals in the exponential

family, local and global parameters. In traditional batch variational inference, the
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global parameters receive mass from all the local parameters (e.g.: in LDA, the

“global” topics are updated using the sufficient statistics from all the “local” doc-

uments). In stochastic variational inference though, the global parameters are up-

dated using batches of randomly selected local parameters. This way, in order to

improve once the global parameters you do not have to do a full data pass. The

stochastic optimization also facilitates online learning for topic models [19].

2.3 Evaluating Topic Models

The methods used to evaluate topic models differ greatly from paper to paper.

Nevertheless, patterns in the choices of evaluation tasks do arise across the literature.

This section reviews the tasks most utilized by researchers.

In this dissertation we evaluate the models using Topic Coherence, Document

Clustering and Document Classification. These tasks enjoy wide popularity in the

literature [9, 22, 25, 26, 31, 35, 56]. We dedicate a subsection for each mentioned

task where we discuss in more detail the metrics used to assess it.

Besides the above mentioned methods we note there are also other ways to

evaluate topic models. For example, to asses model fitness some researchers have

utilized held-out perplexity [2, 9, 19]. The idea is to split the collection into train and

test datasets, infer the parameters using the training data, and compute perplexity

on the test set. However, computing the perplexity is intractable for topic models

(because of the test set probability). To overcome this, people make use of, for

example, Jensen’s inequality to get a lower bound; the bound is then used as a

proxy to perplexity [19]. In other cases, like in the work of Hoffman et al. [20],

the researchers use for assessing the fitness of the model a predictive distribution

in which they avoid computing such bounds. Chang et al. [12] found though that

such methods do not correlate well with human judgment on topic interpretability.

Further assessments of evaluating topic models based on the probability of held-out

documents can be found in the work of Wallach et al. [52].
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2.3.1 Topic Coherence Evaluation

One task we evaluate the models on is Topic Coherence, a measure of topic quality

largely utilized in the topic models community [24, 26, 31, 56] . Newman et al.

[35] and Mimno et al. [34] proposed two popular metrics utilized in the literature

to measure coherence. Both metrics aim to capture the human interpretability of

topics in an automatic fashion (i.e.: no human annotators). The former relies on an

external corpora to compute the scores and it less correlated than the latter with

human judgments [34]. The latter is also superior to word intrusion [34], another

known technique to detect semantically coherent topics [12].

For the reasons explained above, we choose to utilize the topic coherence metric

proposed by Mimno et al. [34]. Equation (2.3) lists the formula for computing the

coherence score of a topic i, where Wi = {wi,1, wi,2, ...wi,X} is a collection of the X

most probable words of that topic (in descending order) and D() is a function which

returns the number of documents in which the words taken as argument appear.

C(i,Wi) =
X∑
x=2

x−1∑
y=1

log
D(wi,x, wi,y) + 1

D(wi,y)
(2.3)

In this dissertation, for the models we evaluate, we report the average coherence

score of the inferred topics 1
K

∑K
i=1C(i,Wi). In terms of selecting the number of

top words, we vary X ∈ {5, 10, 20} such that the reported coherence scores capture

different granularities (i.e.: from a very focused set of words to a more relaxed

one). The models which obtain bigger scores are assumed to have more semantically

coherent topics.

2.3.2 Document Clustering Evaluation

Document clustering is another form of evaluation for topic models frequently used

in the literature [22, 31, 36, 49, 50, 56]. To form the clusters, after the inference

procedure, one groups together the documents that have the same topic as the most

probable topic in their vector of topic proportions. For example, for a topic model

that produces K topics, there are K topic-clusters that can be formed. Say every

document has its own topic proportions θd. We assign a document d to the topic-
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cluster i, when i is the index of max
i∈1,2,...,K

θd,i.

Given a collection of topic-clusters Ω = {ω1, ω2, ..., ωK}, where K is the number

of topics produced by a model, and a collection of class-clusters C = {c1, c2, ..., cZ},

where Z is the number of ground truth classes and by a class-cluster we understand

a group of all the documents which have the same class label, we measure document

clustering using standard metrics such as Purity, Normalized Mutual Information

and Adjusted Rand Index [28]. These metrics produce scores in the [0, 1] interval,

where a higher value means a better performance.

Equation (2.4) lists the formula used to compute purity. The idea is to count for

each cluster the number of documents in the majority class; then simply divide by

the total number of documents M to get a measure of how pure the clusters are.

Purity(Ω,C) =
1

M

K∑
i=1

max
j
|ωi ∩ cj | (2.4)

The Normalized Mutual Information metric from Equation (2.5) measures the

amount of information we obtain about the classes given the clusters and vice-versa,

normalized by the entropies of the clusters and classes. The normalization penalizes

models which produce a large number of clusters.

NMI(Ω,C) =
I(Ω,C)

H(Ω)+H(C)
2

I(Ω,C) =

K,Z∑
i,j

|ωi ∩ cj |
M

log
M |ωi ∩ cj |
|ωi||cj |

H(Ω) = −
K∑
i=1

|ωi|
M

log
|ωi|
M

H(C) = −
Z∑
j=1

|cj |
M

log
|cj |
M

(2.5)

The Adjusted Rand Index from Equation (2.6), as its name suggests, is a version

of Rand Index whose expected value is 0 (i.e.: corrected for chance). The Rand

Index measures clustering in terms of the accuracy of pair-wise decisions - a decision

is considered correct if two documents with the same class label are in the same
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cluster or if two documents with distinct class labels are in distinct clusters.

ARI(Ω,C) =

∑K,Z
i,j

(|ωi∩cj |
2

)
− [
∑K

i=1

(|ωi|
2

)∑Z
j=1

(|cj |
2

)
]/
(
M
2

)
1
2 [
∑K

i=1

(|ωi|
2

)
+
∑Z

j=1

(|cj |
2

)
]− [

∑K
i=1

(|ωi|
2

)∑Z
j=1

(|cj |
2

)
]/
(
M
2

) (2.6)

2.3.3 Document Classification Evaluation

Document classification is another extrinsic evaluation task highly utilized in the

topic models community. The idea is to use the document-specific topic proportions

as the features of the corresponding documents in a classification task. We follow

a similar procedure to other researchers [56] and use the Liblinear library [15] from

the Weka software [18] with 5-fold cross-validation and the default parameters. We

evaluate the document classification performance of the models using Accuracy [28],

a metric preferred in many papers from the topic models literature [9, 13, 26, 39, 56].

Let {1, 2, ...,M} be a collection of documents where every document d has a true

class cd and a class predicted by the classification algorithm pd. Accuracy - Equation

(2.7) - is defined as the proportion of correct predictions.

Accuracy =
1

M

M∑
d=1

I(cd = pd) (2.7)
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Chapter 3

Topic Models for Single-Context

Short Text Data

In short text data topic models are known to suffer from sparsity. The problem is

caused by a reduced number of observations available for a reliable inference (i.e.:

the words in a document). A popular heuristic utilized to overcome this problem is

to perform before training some form of document aggregation by context (e.g.: au-

thor, hashtag). The aggregation can alleviate sparsity as the models will be trained

on documents with more observations which will also have the potential of being

topically related. For example, the publications written by an author will be cover-

ing, in most cases, a few if not only one topic (depending on granularity). In this

chapter we model explicitly the implicit assumptions of the document aggregation

heuristic and apply it to two standard model architectures: a mixture and an admix-

ture. We evaluate the enhanced models in different text environments (i.e.: short

and medium) which have different opportunities for aggregation (i.e.: a smaller vs.

a bigger number of documents per context). The evaluation targets multiple tasks

from topic coherence to document clustering and document classification. Our find-

ings indicate that an admixture model benefits more from aggregation compared to

a mixture which rarely improves, and that the state of the art in short text data

can be surpassed as long as every context contains a small number of documents.
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3.1 Motivation

We know from previous work that in a short text environment, the “one topic per

document” assumption of Mixture of Unigrams (MoU) proves to be a good fit to

the data, while Latent Dirichlet Allocation (LDA) suffers strongly from sparsity

[36, 56]. MoU models global topic proportions whose inference rely on the topics

assigned to the documents while LDA assumes document-level topic proportions

whose sufficient statistics are the per-word topic assignments. Because short text

data items are characterized by a small number of words, the inference of the K-

dimensional vector of LDA governing the per-document topic proportions is less

reliable (small number of observations).

More than often short text data is accompanied by contextual information such

as the date and time of the headline of a news article, the location of a micro-post

or the author of the title of a published paper. One popular heuristic employed

by researchers to overcome sparsity in short text data is to utilize various message

aggregation strategies before training LDA. Hong & Davison [22] find that aggregat-

ing tweets based on author gives better performance over standard LDA. In a later

paper, Mehrotra et al. [31] concludes that aggregating by hashtag brings even more

benefits to LDA’s performance. These aggregation strategies have also been utilized

outside LDA by various researchers who want to avoid sparsity when training their

own models on short text data [49, 50, 55].

Motivated by the initial success of document aggregation, in this chapter, we

formalize the implicit assumptions the heuristic brings to a topic model and apply

it to two standard model architectures: a mixture and an admixture. Concretely,

we use context-dependent topic proportions to control the assignment of topics into

documents. Documents which share the same context will have their topics drawn

according to the same vector of topic proportions. We then extend both LDA (i.e.:

the admixture) and MoU (i.e.: the mixture) to accommodate context accompanied

text data.

By modelling the implicit assumptions of document aggregation we introduce

new building blocks for future and more complex developments. The evaluation aims
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to assess whether an admixture model benefits more from aggregation than a mixture

model, and how these contextual extensions compare with the state of the art in

different text environments (from very short to medium text) and with different

amounts of data per context (from a smaller to a bigger opportunity for aggregation).

The evaluation targets multiple tasks such as topic coherence, document clustering

and document classification.

We want to highlight here TwitterLDA [59] which combines a mixture model with

user-specific topic proportions and a background word distribution. TwitterLDA,

without the distribution for functional words, becomes an instance of one the models

we introduce in this chapter. We argue though, in TwitterLDA, it is unclear whether

the performance comes from the fact that a mixture model works good in aggregated

short text items or because it models the separation of functional words from content

words (the latter point was also made by Vosecky et al. [50]). There is also no

comparison with the state of the art. In the experiments from this chapter we clearly

show that a mixture model trained on aggregated documents does not improve

much over its standard version (i.e.: MoU). We can conclude though the reported

performance of TwitterLDA is most likely caused by modeling background words in

addition to the topic distributions.

We also want to mention that a wide range of topic models has been developed for

context accompanied text data. We review a couple of such models in Chapter 2.1.3.

These context models vary, but have in common, as the models proposed in this

chapter, context-specific topic proportions. The overall difference is that our models

have a simpler structure, being built for documents with a single context. Hence, we

do not model document-specific preference over contexts as the multi-context topic

models do. The purpose behind the models is also distinct: where the multi-context

models where defined to capture spatial or temporal topical patterns or to take into

account the preferences of the authors for certain topics, our models were defined to

formalize the aggregation heuristic utilized in short text data to alleviate sparsity,

and to assess whether an admixture benefits more from aggregation compared to

a mixture. A further distinction regards the choice of inference. The parameters

of the models reviewed in Chapter 2.1.3 are estimated using either EM or Gibbs
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Figure 3.1: Graphical Model of SC-LDA

sampling. In the inference section, we show the models proposed in this chapter are

part of a special class of models whose complete conditionals are in the exponential

family - this allows both batch and stochastic variational inference to be employed

[20], flexibility which can be exploited in both offline and online settings.

3.2 Model Specification

In this section we model explicitly the implicit assumptions of the document aggre-

gation heuristic commonly used to alleviate the sparsity of topic models in short

text data. We extend both LDA and MoU to accommodate context accompanied

text data. We chose these two models for their set of assumptions (mixture vs.

admixture), which make them the standard building blocks for most topic model

developments in the literature (see Chapter 2 for a review). We will refer in our

discussions to the enhanced models as SC-LDA and SC-MoU.

The models take as input a collection of documents indexed by d ∈ {1, 2, ...,M}.

Every document d is a collection of words indexed by n ∈ {1, 2, ..., Nd}. Every doc-

ument d is also accompanied by a context cd. Both models have context-dependent

topic proportions which control the assignment of topics into documents. The topic

assignments are model-specific: one topic per word for SC-LDA, and one topic per

document for SC-MoU.

3.2.1 The SC-LDA Model

The graphical model of SC-LDA is presented in Figure 3.1. The generative process

is given below:

• For every topic i ∈ {1, 2, ...,K}:

– Draw a word distribution βi ∼ Dir(η)
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• For every context x ∈ {1, 2, ..., C}:

– Draw per-context topic proportions θx ∼ Dir(α)

• For every document d ∈ {1, 2, ...,M}:

– For every word position n ∈ {1, 2, ..., Nd}:

∗ Draw a topic zd,n ∼ Cat(θcd)

∗ Draw word wd,n ∼ Cat(βzd,n)

SC-LDA extends LDA by accommodating contextual information. LDA assumes

vectors of document specific topic proportions and one topic per word drawn accord-

ing to the document level proportions. By defining the context of every document

with a unique label the SC-LDA model will degenerate into LDA.

3.2.2 The SC-MoU Model

The graphical model of SC-MoU is presented in Figure 3.2. The generative process

is given below:

• For every topic i ∈ {1, 2, ...,K}:

– Draw a word distribution βi ∼ Dir(η)

• For every context x ∈ {1, 2, ..., C}:

– Draw per-context topic proportions θx ∼ Dir(α)

• For every document d ∈ {1, 2, ...,M}:

– Draw a topic zd ∼ Cat(θcd)

– For every word position n ∈ {1, 2, ..., Nd}:

∗ Draw word wd,n ∼ Cat(βzd)

SC-MoU extends MoU by accommodating contextual information. MoU assumes

a vector of global topic proportions and one topic per document drawn according to

the global proportions. By defining the context of every document to be the same

(call it “global”), the SC-MoU model will degenerate into MoU.
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Figure 3.2: Graphical Model of SC-MoU

3.3 Model Inference

To infer the latent parameters of the introduced models, we use the techniques of

variational inference for models whose complete conditionals are in the exponential

family. Please consult Chapter 2.2.1 for a review. To keep things focused, we give

here only an overview of the steps and derivations involved in the inference process

- complementing material can be found in Appendix A.

3.3.1 Parameter Inference for SC-LDA

In this section we start by listing the complete conditional of every latent variable

of the model given the other latent variables and the observations. Making the

observation that each such complete conditional is in the exponential family, we

further define the corresponding variational distributions to have the same functional

form.

In Equation (3.1) we compute the complete conditional associated with the per-

context topic proportions.

p(θx|θ−, z, β, w) = Dir(a), ai = αi +

M,Nd∑
d,n

I(cd = x)I(zd,n = i) (3.1)

Because the complete conditional of the per-context topic proportions is a Dirich-

let, the corresponding variational distribution is going to be a Dirichlet as well

q(θx|γx) = Dir(γx).

In Equation (3.2) we compute the complete conditional associated with the top-

ics.

p(βi|β−, z, θ, w) = Dir(b), bj = ηj +

M,Nd∑
d,n

I(wd,n = j)I(zd,n = i) (3.2)

Because the complete conditional of a topic is a Dirichlet, the corresponding
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Figure 3.3: The graphical model of the variational distribution used to approximate
the posterior of SC-LDA

variational distribution is going to be a Dirichlet as well q(βi|λi) = Dir(λi).

In Equation (3.3) we compute the complete conditional associated with the per

word topic assignments.

p(zd,n = i|z−, θ, β, w) ∝ exp{log θcd,i + log βi,wd,n
} (3.3)

Because the complete conditional of the per-word topic assignment is a Categor-

ical, the corresponding variational distribution is going to be a Categorical as well

q(zd,n|φd,n) = Cat(φd,n).

We have now fully specified the form of the variational distribution used to ap-

proximate the posterior of SC-LDA - Figure 3.3 presents its graphical model. Having

also specified the complete conditionals, we can derive next the update formulas of

the variational parameters. The derivations are made based on the observation that

the natural parameters of the variational distributions are equal to the expected

value of the natural parameters of the corresponding complete conditionals.

In Equation (3.4) we derive the update formula of the variational parameter

associated with the topics.

λi,j = ηj +

M,Nd∑
d,n

I(wd,n = j)φd,n,i (3.4)

In Equation (3.5) we derive the update formula of the variational parameter
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associated with the per-context topic proportions.

γx,i = αi +

M,Nd∑
d,n

I(cd = x)φd,n,i (3.5)

In Equation (3.6) we derive the update formula of the variational parameter

associated with the per-word topic assignments.

φd,n,i ∝ exp{
C∑
x=1

I(cd = x)(Ψ(γx,i)−Ψ(γx,0)) +
V∑
j=1

I(wd,n = j)(Ψ(λi,j)−Ψ(λi,0))}

(3.6)

With the update formulas of the variational parameters at hand, the algorithm

is straightforward. The variational parameters are updated iteratively until con-

vergence. This type of algorithm is known in the literature as Coordinate Ascent

Mean-Field Variational Inference (CAVI) [10]. Algorithm 1 summarizes one iteration

of CAVI.

Algorithm 1 One iteration of Mean Field Variational Inference for SC-LDA.

1: for d = 1 to M do
2: for n = 1 to Nd do
3: for i = 1 to K do
4: Update φd,n,i using Equation (3.6)
5: end for
6: Normalize φd,n,∗ to sum to 1
7: end for
8: end for
9: for x = 1 to C do

10: for i = 1 to K do
11: Update γx,i using Equation (3.5)
12: end for
13: end for
14: for i = 1 to K do
15: for j = 1 to V do
16: Update λi,j using Equation (3.4)
17: end for
18: end for

3.3.2 Parameter Inference for SC-MoU

The inference steps are similar to the ones taken in Section 3.3.1 for SC-LDA. Since

the vector of per-context topic proportions is a particularity for both SC-LDA and
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Figure 3.4: The graphical model of the variational distribution used to approximate
the posterior of SC-MoU

SC-MoU, the associated complete conditional (also its corresponding variational

distribution) is the same as in Equation (3.1).

In Equation (3.7) we compute the complete conditional associated with the top-

ics.

p(βi|β−, z, θ, w) = Dir(b), bj = ηj +

M,Nd∑
d,n

I(wd,n = j)I(zd = i) (3.7)

Because the complete conditional of a topic is a Dirichlet, the corresponding

variational distribution is going to be a Dirichlet as well q(βi|λi) = Dir(λi).

In Equation (3.8) we compute the complete conditional associated with the per-

document topic assignments.

p(zd = i|z−, θ, β, w) ∝ exp{log θcd,i +

Nd∑
n=1

log βi,wd,n
} (3.8)

Because the complete conditional of the per-document topic assignment is a

Categorical, the corresponding variational distribution is going to be a Categorical

as well q(zd|φd) = Cat(φd).

Figure 3.4 presents the graphical model of the variational distribution used to

approximate the posterior of SC-MoU.

Having computed the complete conditionals and having defined the form of the

corresponding variational distributions, we can now derive the update formulas of

the variational parameters.

In Equation (3.9) we derive the update formula of the variational parameter
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associated with the topics.

λi,j = ηj +

M,Nd∑
d,n

I(wd,n = j)φd,i (3.9)

In Equation (3.10) we derive the update formula of the variational parameter

associated with the context topic proportions.

γx,i = αi +
M∑
d=1

I(cd = x)φd,i (3.10)

In Equation (3.11) we derive the update formula of the variational parameter

associated with the per-document topic assignments.

φd,i ∝ exp{
C∑
x=1

I(cd = x)(Ψ(γx,i)−Ψ(γx,0)) +

Nd,V∑
n,j

I(wd,n = j)(Ψ(λi,j)−Ψ(λi,0))}

(3.11)

With the update formulas of the variational parameters at hand, the algorithm

used for inference is similar to the one already introduced in Algorithm 1.

3.3.3 Document-level Topic Proportions

The introduced topic models do not model directly document-level topic proportions.

In fact, we specifically avoid doing that in order to alleviate sparsity. Having a

topical representation of a document is nevertheless useful for both summarizing

the document and as a feature in many tasks such as clustering and classification.

We compute the document-level topic proportions of the models using the avail-

able sufficient statistics: the per-word topic assignments in case of SC-LDA - Equa-

tion (3.12) - and the per-document topic assignments for SC-MoU - Equation (3.13).

p(topic = i|d) ∝ αi +

Nd∑
n=1

φd,n,i (3.12)

p(topic = i|d) ∝ αi + φd,i (3.13)

The topical representation of the documents is somewhat ill-defined in work
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which uses the document-aggregation heuristic applied to LDA - for simplicity, re-

searchers use the topic proportions associated with the macro-document to represent

the documents part of it [22, 31]. Translated into the formalism included in this

chapter, it would mean documents part of the same context have the same topical

representation. One can clearly understand why this is not the case. The topic

proportions of a context give an overall information for all the documents part of it

- so individual documents should have their own topical representation (which can

happen to be different).

3.4 Evaluation

We evaluate the model on four labeled datasets of scientific publications. The

datasets cover multiple text environments (short and medium) and have different

opportunities for aggregation (a smaller vs. a larger number of documents per con-

texts). The evaluation targets multiple tasks such as topic coherence, document

clustering and document classification. Please consult Chapter 2.3 for details about

the metrics utilized to assess these tasks.

The following models are used in the evaluation for comparison:

• Latent Dirichlet Allocation (LDA) This baseline corresponds to the SC-

LDA model where every document has its own context. We use the prior

values recommended in previous work [36, 56] (α = 0.1; η = 0.01). For a

review of this model please consult Chapter 2.1.1.2.

• SC-LDA-FA This is the SC-LDA model with first author as context. Com-

mon values for sparse priors are used (α = 0.1; η = 0.01).

• Mixture of Unigrams (MoU) This baseline corresponds to the SC-MoU

model where all documents share the same context. We use the prior values

recommended in previous work [56] (α = 50/K; η = 0.01). For a review of

this model please consult Chapter 2.1.1.1.

• SC-MoU-FA This is the SC-MoU model with first author as context. Com-

mon values for sparse priors are used (α = 0.1; η = 0.01).
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• Biterm Topic Model (BTM) This model proposed by Yan et al. [56] has

been selected to represent the state of the art in short text data. The model

has a preprocessing step in which all the biterms (i.e.: word pairs) of every

document are generated. Then the biterms become the input of a Mixture

of Unigrams model (i.e.: global topic proportions and one topic per biterm).

For a fair comparison, we reimplemented the model with Variational Inference

(original implementation is done using Gibbs Sampling). We use the same

priors as in the original paper (α = 50/K; η = 0.01).

The models are initialized according to standard practices from the literature.

Blei & Lafferty [8] find that a good way to initialize the topics is to use a random

sample of N documents from the corpus and compute a smoothed word distribution

over the vocabulary space from the word counts of the random sample. We choose

N to be 10.

We perform the evaluation with 3 levels of K (i.e.: the number of topics): K = Z,

K = 2Z and K = 3Z, where Z is the number of ground truth classes of a dataset.

For each setting of a model we do 10 runs and report the result that has the maximum

ELBO - the bigger the ELBO the closer the variational approximation is to the true

posterior.

3.4.1 Dataset Selection

We use in the evaluation four datasets of scientific publications downloaded from

arXiv (www.arxiv.org), a well known digital library. Two of the datasets contain

titles of publications and represent the short text environment; while the other two

contain the abstracts from almost (due to preprocessing) the same set of publications

- the medium text environment. For both the short and medium text environments

we have one dataset with a small number of documents per context (average of 8)

and another with a larger number (average of 28). We refer to the created datasets

as “Short Text Small Contexts”, “Short Text Larger Contexts”, “Medium Text

Small Contexts” and “Medium Text Larger Contexts”. The datasets were created

to facilitate an assessment of how different opportunities for aggregation affect the
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Dataset Classes Documents
Unique
words

All
words

Average words
per document

Short Text
Small Contexts

10 20000 6696 139702 6.986

Short Text
Larger Contexts

10 14587 2833 92518 6.342

Medium Text
Small Contexts

10 20005 11991 1463973 73.180

Medium Text
Larger Contexts

10 16501 5276 1074094 65.093

Table 3.1: Statistics for the datasets used in the evaluation

performance of the models in different text environments.

To avoid any bias we selected the publications from a single big subject (i.e.:

physics). The type of bias we wanted to avoid is to have mixed subjects (e.g.:

physics + biology + literature) where it is almost guaranteed that authors would

not cross-publish. This type of bias arises especially in papers that target tweets,

where ground truth labels are usually not available. For example, in the work of

Mehrotra et al. [31], the input collections are constructed by making queries to

a large sample of tweets, and labeling the documents with the query terms that

retrieved them (e.g.: “music”, “food”, “sport”). Another relevant example is the

work of Hong & Davison [22], where the researchers use the categories assigned to

the users as the ground truth labels for their messages. They explicitly specify there

is no overlap between the categories. We gave these two specific examples because

they are the ones in which various document aggregation techniques are evaluated

for LDA and were part of the motivation behind this chapter. When the authors do

not cross-publish, the contexts become clear ground truth discriminators. Datasets

in which contexts contain documents from more than one ground truth class should

increase the difficulty of the evaluation.

Another reason for selecting this type of data (i.e.: titles and abstracts of sci-

entific publications) is the reduced noise; so any topic model which will be trained

on it will be able to bring out the performance of its generative process without

being overloaded by high frequency, non-topical words (as it happens for example

in a dataset of tweets).
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Dataset First Authors Average documents per first author

Short Text
Small Contexts

2477 8.074

Short Text
Larger Contexts

523 27.891

Medium Text
Small Contexts

2462 8.126

Medium Text
Larger Contexts

585 28.207

Table 3.2: First Author statistics for the datasets

Table 3.1 summarizes useful dataset statistics after preprocessing (basic stop and

rare word removal). The datasets constructed to represent the short text environ-

ments have an average of 7 words per document, while the ones for medium text have

65 and 73, respectively. Another useful statistic is that there are 10 ground truth

classes. The labels correspond to different areas from physics (e.g.: “Condensed

Matter”, “Nuclear Theory”). In Table 3.2 one can find the statistics associated with

the “First Author” context for every dataset. In the datasets with small contexts

(characterized by an average of 8 documents) there is a much larger number of first

authors (2400+ vs. 500+) compared to the larger contexts datasets (characterized

by an average of 28 documents). In Figure 3.6 we show how many authors pub-

lished in one or more ground truth categories. We can see that the larger context

datasets enjoy a larger spread. This can be explained by the fact that these datasets

have an increased number of documents per context (hence a bigger opportunity to

cross-publish). For completeness, Figure 3.5 shows the distribution of the number

of documents per first authors for every dataset.

We will now give some details which facilitate the replicability of the experimental

setup. First, we list all the ground truth categories in Table 3.3. The arXiv contains

13 categories from physics, but 3 of them had a small number of documents and

ended up being discarded. As a general rule, we considered only the documents

which belong to a single category. In order to build the datasets with small contexts,

we chose only those documents which belong to authors that have between 5 and

20 publications (see the distributions in the first column of Figure 3.5). Because

the size of the resulted datasets was too large for batch variational inference, we
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(a) “Short Text Small Contexts” dataset (b) “Short Text Larger Contexts” dataset

(c) “Medium Text Small Contexts” dataset (d) “Medium Text Larger Contexts” dataset

Figure 3.5: The distribution of the number of documents per first authors. The
vertical axis shows the number of authors; the horizontal axis lists intervals of numbers
of documents.
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Unique arXiv identifier Description

physics:gr-qc General Relativity and Quantum Cosmology

physics:astro-ph Astrophysics

physics:quant-ph Quantum Physics

physics:hep-lat High Energy Physics - Lattice

physics:cond-mat Condensed Matter

physics:nucl-th Nuclear Theory

physics:nlin Nonlinear Sciences

physics:hep-th High Energy Physics - Theory

physics:hep-ph High Energy Physics - Phenomenology

physics:physics Physics (other)

Table 3.3: The arXiv categories utilized to construct the datasets

sampled randomly approximately 20,000 documents. To build the datasets with

larger contexts, we considered only the documents which belong to authors that

have more than 20 publications (see the distributions in the second column of Figure

3.5). Since the resulting datasets had reasonable sizes, we kept them as they were.

In terms of preprocessing, we removed stop words, words with a length smaller than

3, words with a global frequency smaller than 5 for the title datasets and smaller

than 20 for the abstract datasets. We also discarded the documents which had less

than 3 words inside and those which belong to authors with ambiguous names (e.g.:

only letters given; we discarded authors that had the surname or the forenames

smaller than 3 letters).
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(a) “Short Text Small Contexts” dataset (b) “Short Text Larger Contexts” dataset

(c) “Medium Text Small Contexts” dataset (d) “Medium Text Larger Contexts” dataset

Figure 3.6: The number of first authors (vertical axis) that published documents in
one or more ground truth classes (horizontal axis).
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Dataset Model Top 5 words Top 10 words Top 20 words

Short Text
Small Contexts

LDA -22.866 -140.049 -684.379
SC-LDA-FA -19.155 -128.452 -647.265

MoU -19.719 -126.775 -640.453
SC-MoU-FA -19.935 -124.843 -636.639

BTM -17.304 -119.244 -623.205

Short Text
Larger Contexts

LDA -21.803 -131.204 -680.870
SC-LDA-FA -17.628 -118.817 -618.784

MoU -19.035 -125.617 -627.604
SC-MoU-FA -18.214 -120.702 -624.448

BTM -18.206 -119.148 -606.940

Medium Text
Small Contexts

LDA -10.259 -69.486 -361.202
SC-LDA-FA -10.457 -67.579 -355.795

MoU -13.604 -86.382 -408.539
SC-MoU-FA -15.099 -93.633 -443.087

Medium Text
Larger Contexts

LDA -10.403 -68.001 -352.820
SC-LDA-FA -10.058 -65.566 -353.535

MoU -11.573 -72.316 -414.466
SC-MoU-FA -11.573 -72.916 -414.039

Table 3.4: Topic Coherence results with K set to the number of ground truth classes
(K=10).

3.4.2 Topic Coherence Evaluation

In this section we present and discuss the results for topic coherence, a measure

of topic quality which aims to capture the human interpretability of topics in an

automatic fashion (i.e.: no human annotators). Please consult Chapter 2.3.1 for a

review of the task and details about the utilized metric.

In Table 3.4 we list the topic coherence results when K is set to the number of

ground truth classes, whereas in Table 3.5 we show the trends when K varies. On

the short text datasets, LDA is the worst performing model across all levels of K

and number of top words, confirming that sparsity drastically affects this model (see

the first two rows of Table 3.5). On short text data with small contexts (first row of

Table 3.5), SC-LDA-FA is second to last, managing to outperform overall only its

non-context baseline (i.e.: LDA) - note though that there is a clear improvement in

performance brought by the context, but still, the model does not shine compared

to the top performers. When the contexts contain more opportunity for aggregation

and K is set to the number of ground truth classes (see second row of Table 3.4),

SC-LDA-FA is overall the best model. However, as K is increasing, sparsity starts
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Dataset Top 5 words Top 10 words Top 20 words

Short
Text

Small
Contexts

Short
Text

Larger
Contexts

Medium
Text

Small
Contexts

Medium
Text

Larger
Contexts

Table 3.5: Topic Coherence results when K varies

to reappear, and the performance of SC-LDA-FA drops again to the penultimate

place (second row of Table 3.5). In general, on the short text datasets (first 2 rows

of Table 3.5), MoU is the better model; its context-extended counterpart, SC-MoU-

FA, fails to register stable improvements. BTM, our choice for the state of the art,

outperforms the other models only when K is set to the number of ground truth

classes (first 2 rows of Table 3.4). As K starts to increase, BTM’s performance drops

below those of “one topic per document” models (best seen in the first row of Table

3.5).

On medium-sized text, the worst performing models are MoU and SC-MoU-FA

(last 2 rows of Tables 3.4 and 3.5) - this is in accordance with the expectation
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Dataset Model Purity NMI ARI

Short Text
Small Contexts

LDA 0.550 0.190 0.113
SC-LDA-FA 0.784 0.499 0.361

MoU 0.658 0.339 0.325
SC-MoU-FA 0.664 0.354 0.342

BTM 0.769 0.455 0.361

Short Text
Larger Contexts

LDA 0.578 0.233 0.195
SC-LDA-FA 0.820 0.584 0.462

MoU 0.752 0.489 0.546
SC-MoU-FA 0.789 0.543 0.579

BTM 0.805 0.533 0.448

Medium Text
Small Contexts

LDA 0.770 0.502 0.348
SC-LDA-FA 0.824 0.587 0.400

MoU 0.588 0.370 0.365
SC-MoU-FA 0.589 0.374 0.370

Medium Text
Larger Contexts

LDA 0.819 0.551 0.408
SC-LDA-FA 0.886 0.686 0.592

MoU 0.730 0.590 0.566
SC-MoU-FA 0.734 0.605 0.577

Table 3.6: Document Clustering results with K set to the number of ground truth
classes (K=10).

that the “one topic per document” assumption of these models is unsuitable for

any piece of text that is not short. LDA becomes competitive now since there are

more observations per documents available, while SC-LDA-FA is overall the best

performing model.

3.4.3 Document Clustering Evaluation

In this section we present and discuss the results for document clustering. We asses

this task with three common metrics: Purity, Normalized Mutual Information and

Adjusted Rand Index. Please consult Chapter 2.3.2 for a review of the task and

details about the utilized metrics.

When the performance of the document clustering task is measured in terms

of Purity and NMI, SC-LDA-FA is clearly the best performing model across all

evaluated text environments and levels of K (Tables 3.6 and 3.7). Sticking with

the same metrics, BTM, our choice for the state of the art, comes second place

(first 2 rows of Tables 3.6 and 3.7). LDA is the worst performer across all metrics,

reconfirming the drastic impact sparsity has on this model - result more pronounced
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Dataset Purity NMI ARI

Short
Text

Small
Contexts

Short
Text

Larger
Contexts

Medium
Text

Small
Contexts

Medium
Text

Larger
Contexts

Table 3.7: Document Clustering results when K varies

on the short text datasets but present also in the medium text datasets. The “one

topic per document” models, MoU and SC-MoU-FA, are performing in most cases

on par suggesting that context is not helpful in this evaluation setting. Another

observation about the mixture models is that they perform overall better in terms

of ARI than all the other models - a possible explanation might be that their hard

constraint helps them reduce the false positive and false negative clustering decisions

penalized by the metric.
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3.4.4 Document Classification Evaluation

In this section we present and discuss the results for document classification. We

asses this task in terms of Accuracy. Please consult Chapter 2.3.3 for a review of

the task and details about the utilized metric.

For the document classification task the results indicate clear and consistent

rankings across all levels of K. On the short text datasets (first row of Table 3.8),

SC-LDA-FA is the best performing model. The second best model is BTM. The

ranking is completed by SC-MoU-FA, MoU and LDA. LDA is by far the worst

performer, making the gains obtained by SC-LDA-FA reach very large values (e.g.

from Table 3.8: 0.55 vs 0.82; 0.58 vs. 0.84). This is another reconfirmation of the

drastic effect sparsity has on LDA. We make the observation that for a classification

task, a model like LDA, which assumes one topic per word, can produce more

features for document representation (a maximum of K) than MoU or SC-MoU-FA

(which produce only one feature with high mass). Nevertheless, LDA, because of

sparsity, ranks below these “one topic per document” models. We further point out

that the context extension of MoU, SC-MoU-FA obtained a good performance boost

over the standard mixture model.

On the medium text datasets, SC-LDA-FA is again the best model. Since the

length of documents is far bigger now than in the previous datasets (see Table 3.1

for the statistics), LDA becomes the second best model, surpassing both MoU and

SC-MoU-FA which seem to be performing on par.

3.5 Discussion

In this chapter we explicitly modelled the implicit assumptions of document aggrega-

tion, a popular heuristic employed to alleviate the sparsity suffered by topic models

in short text environments, and applied it to two standard model architectures: a

mixture and an admixture. We evaluated the enhanced models on both very short

(i.e.: titles of publications) and medium (i.e.: abstracts) text items, with different

opportunities for aggregation (a smaller vs. a larger number of documents per con-

text). Since the target was short text data, we included for comparison a state of
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Dataset Model Accuracy

Short Text
Small Contexts

LDA 0.555
SC-LDA-FA 0.822

MoU 0.655
SC-MoU-FA 0.664

BTM 0.790

Short Text
Larger Contexts

LDA 0.583
SC-LDA-FA 0.840

MoU 0.732
SC-MoU-FA 0.790

BTM 0.818

Medium Text
Small Contexts

LDA 0.812
SC-LDA-FA 0.863

MoU 0.638
SC-MoU-FA 0.639

Medium Text
Larger Contexts

LDA 0.845
SC-LDA-FA 0.915

MoU 0.721
SC-MoU-FA 0.734

Table 3.8: Document Classification results with K set to the number of ground truth
classes (K=10).

Dataset Accuracy Dataset Accuracy

Short
Text

Small
Contexts

Short
Text

Larger
Contexts

Medium
Text

Small
Contexts

Medium
Text

Larger
Contexts

Table 3.9: Document Classification results when K varies
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the art model from this area of topic modelling [56]. The evaluation assessed topic

coherence, document clustering and document classification. We list below the main

findings:

• Clustering The context extension of LDA is the best performing model across

the evaluated datasets (short and medium text; smaller and larger contexts),

surpassing the state of the art in short text data. The context extension of

MoU brings little to no benefits over the standard mixture model.

• Classification We find that the context enhanced version of LDA outper-

formed the state of art on short text (in both cases of smaller and larger

contexts). The context extension of MoU brings good improvements over its

standard version only on short text data with larger contexts; even so, the

model is far inferior to the context extension of LDA, also ranking below the

state of the art. The context extension of LDA is, at the same time, the best

performer on the medium text datasets.

• Topic Coherence We find there is no clear generic pattern that favours one

model to the other here. Please consult Section 3.4.2 for more fine grained

patterns.

Based on the assessments made in this chapter, we can conclude that the context

extension of LDA is overall the best performing model, capable of surpassing the

state of the art in short text data when there is at least a small amount of aggregation

available for each context. The model assumptions of LDA are also the ones most

probable to benefit from aggregation. We find that the context extension of MoU

rarely improves over the standard mixture model. “Statistically” this makes sense.

In both cases (the context extension of LDA and MoU) one has to infer context

specific topic proportions. In case of LDA, the “one topic per word” assumption

produces many more sufficient statistics compared with MoU and its “one topic per

document” assumption. This means, for an admixture, we have more confidence in

the inference of the K-dimensional vector of context topic proportions.

We would also like to discuss some limitations behind the work from this chap-

ter. First of all, we did not intend to identify which context is most suitable for
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aggregation (performance-wise). Previous studies, which were also the motivation

behind this chapter, already showed, for example, that author or hashtag are useful

context choices [22, 31]. Instead, in this chapter, we gave a formal treatment to the

document aggregation heuristic applied to topic models and built an experimental

set up that allowed us to determine which class of models - a mixture vs. an admix-

ture - benefits more from aggregation. A secondary objective was to assess whether

document aggregation can lead to state of the art performance. Nevertheless, we

note that we also experimented with other choices of context which provided results

below the ones reported in this chapter. We noticed that contextual information

is not useful when it is shared by documents that are not topically related. For

example, utilizing “month” as context, would not be suitable, as papers from all the

ground truth classes can be published in a certain month. This observation applies

to our datasets, but can be quite inadequate for others where the “month” context

can happen to be a good topical discriminator. This warrants further future work

to show how this will generalize beyond the chosen datasets and context.
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Chapter 4

A Co-occurrence-based Topic

Model for Short Text Data

In normal text data, the availability of repeating word co-occurrences across the

documents is known as a core contributor to the discovery of latent topics. However,

the possibility of such patterns to arise in a short text dataset is reduced. With this

observation in mind, we propose a new model for short text data which assumes

every document is a bag of word co-occurrences, where each co-occurrence belongs

to a latent topic. The documents are enhanced a priori with related co-occurrences

from the other documents, such that the collection will have a greater chance than

before to exhibit word patterns. We evaluate the model on two labeled datasets of

tweets and one of titles of scientific publications. The evaluation targets multiple

tasks such as topic coherence, document clustering and document classification. The

proposed model performs well managing to surpass the state of the art and popular

topic model baselines.

4.1 Motivation

We have previously addressed in detail (i.e.: Chapter 3) the reasons why models

like Latent Dirichlet Allocation (LDA) fail on short text data, and how simpler

models like Mixture of Unigrams (MoU) manage to obtain a better performance.

The approach we took to alleviate sparsity was to exploit the available context which
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accompanies certain types of short text data items (e.g.: the author in a dataset

of titles of scientific publications). However, contextual information is not always

available or it does not help (i.e.: it is shared by documents which have little or no

topical relationship). For these types of situations a general purpose model for short

text data is desirable.

Admixture models like LDA work well on normal text collections because word

co-occurrence patterns arise across the documents. Because of the small number

of words per document that characterizes short text collections, the opportunity

for such patterns to arise consistently in this environment is reduced. With this

observation in mind, we propose a new model for short text data which assumes

that every document is a bag of word co-occurrences, where each co-occurrence

belongs to a latent topic. The documents are enhanced a priori with related co-

occurrences from the other documents, such that the collection will have increased

chances of exhibiting word patterns.

We evaluate the proposed model on two labeled datasets of tweets and one of

titles of scientific publications. The latter is a dataset we previously used in the

evaluation from Chapter 3, where the context extension of LDA (i.e.: SC-LDA-FA)

was, overall, the best performer. We introduce this dataset in the evaluation because,

in addition to comparing the model with popular topic baselines and the state of the

art, we want to assess its performance relative to a model like SC-LDA-FA which

leverages contextual information. This allows us to assess whether utilizing context

(when available) still leads to better results. The evaluation targets multiple tasks

such as topic coherence, document clustering and document classification.

In the inference process, we show the model is part of a special class of models

whose complete conditionals are in the exponential family - this allows both batch

and stochastic variational inference to be employed [20], flexibility which can be

exploited in both offline and online settings.

We want to highlight here the Biterm Topic Model (BTM) of Yan et al. [56].

The model makes use of co-occurrences in the form of biterms (i.e.: a pair of words).

It builds a collection of all the biterms which can be generated from the documents

taken as input. BTM assumes global topic proportions to alleviate sparsity and
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one topic per biterm which leads to a richer model compared to MoU (as documents

have more than one biterm; hence the possibility to exhibit more topics). The model

proposed in this chapter will also use “biterms” as a choice for word co-occurrences

due to their simplicity, but the work is quite different: our model assumes document

specific topic proportions and reduces sparsity by enhancing each document with

relevant “biterms” from the collection. We note that BTM does not have a parameter

which directly captures the topical representation of the documents. The authors

do provide though a way of indirectly calculating this vector of probabilities with

the parameters of the model. In the evaluation we find our model to outperform

BTM.

4.2 Model Specification

In this section we describe a new topic model for short text data which is based

on word co-occurrences. We will refer in our discussions to the proposed model as

CTM (Co-occurrence Topic Model).

The model takes as input a collection of documents indexed by d ∈ {1, 2, ...,M}.

Every document d is a collection of word co-occurrences indexed by p ∈ {1, 2, ..., Nd}.

Every co-occurrence p is a collection of words indexed by n ∈ {1, 2, ..., Nd,p}.

The graphical model of CTM is presented in Figure 4.1. The generative process

is given below:

• For every topic i ∈ {1, 2, ...,K}:

– Draw a word distribution βi ∼ Dir(η)

• For every document d ∈ {1, 2, ...,M}:

– Draw document-level topic proportions θd ∼ Dir(α)

– For every word co-occurrence p ∈ {1, 2, ..., Nd}:

∗ Draw a topic zd,p ∼ Cat(θd)

∗ For every word position n ∈ {1, 2, ..., Nd,p}:

· Draw word wd,p,n ∼ Cat(βzd,p)
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Figure 4.1: Graphical Model of CTM

The model requires the collections associated with the word co-occurrences from

every document to be defined before the learning phase. The generative process

expressed above gives a formal description of the model in a generic scenario. In

our experiments we focus on one special case of word co-occurrences, those formed

of two words only. For every document we compute all the word pairs. We then

build a global pair co-occurrence matrix (where each entry tells the frequency of

co-occurrence between two word pairs). Finally, for each pair that belongs to a

document we extract from the global matrix the top T pairs. Now every document

will have the original word pairs plus the ones we just selected. Because of the large

overlap of pair co-occurrences and noise, we choose to simply represent the document

as the set of the pairs that result from the described selection process. Future work

can look into better ways of selecting word co-occurrences that are related to a

document (e.g.: taking into consideration, besides frequency, the coverage across

the documents; or utilizing n-gram co-occurrences). The idea was to simply enhance

the documents with related co-occurring words such that patterns arise across the

collection - this is similar to what happens in a normal text environment in the case

of a admixture model like LDA.

We note that CTM can be viewed as a general extension of LDA. When every

word from a document is placed into a single-element co-occurrence collection, the

model degenerates into LDA.

4.3 Model Inference

To infer the latent parameters of the introduced model, we use the techniques of

variational inference for models whose complete conditionals are in the exponential

family. Please consult Chapter 2.2.1 for a review. To keep things focused, we give
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here only an overview of the steps and derivations involved in the inference process

- complementing material can be found in Appendix B.

We start by listing the complete conditional of every latent variable of the model

given the other latent variables and the observations. Making the observation that

each such complete conditional is in the exponential family, we further define the

corresponding variational distributions to have the same functional form.

In Equation (4.1) we compute the complete conditional associated with the per-

document topic proportions.

p(θd|θ−, z, β, w) = Dir(a), ai = αi +

Nd∑
p=1

I(zd,p = i) (4.1)

Because the complete conditional of the per-document topic proportions is a

Dirichlet, the corresponding variational distribution is going to be a Dirichlet as

well q(θd|γd) = Dir(γd).

In Equation (4.2) we compute the complete conditional associated with the top-

ics.

p(βi|β−, z, θ, w) = Dir(b), bj = ηj +

M,Nd,Nd,p∑
d,p,n

I(wd,p,n = j)I(zd,p = i) (4.2)

Because the complete conditional of the topics is a Dirichlet, the corresponding

variational distribution is going to be a Dirichlet as well q(βi|λi) = Dir(λi).

In Equation (4.3) we compute the complete conditional associated with the per

word co-occurrence topic assignments.

p(zd,p = i|z−, θ, β, w) ∝ exp{log θd,i +

Nd,p∑
n=1

log βi,wd,p,n
} (4.3)

Because the complete conditional of the per word co-occurrence topic assign-

ment is a Categorical, the corresponding variational distribution is going to be a

Categorical as well q(zd,p|φd,p) = Cat(φd,p).

We have now fully specified the form of the variational distribution used to

approximate the posterior of CTM - Figure 4.2 presents its graphical model. Having

53
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Figure 4.2: The graphical model of the variational distribution used to approximate
the posterior of CTM

also specified the complete conditionals, we can derive next the update formulas of

the variational parameters. The derivations are made based on the observation that

the natural parameters of the variational distributions are equal to the expected

value of the natural parameters of the corresponding complete conditionals.

In Equation (4.4) we derive the update formula of the variational parameter

associated with the topics.

λi,j = ηj +

M,Nd,Nd,p∑
d,p,n

I(wd,p,n = j)φd,p,i (4.4)

In Equation (4.5) we derive the update formula of the variational parameter

associated with the per-document topic proportions.

γd,i = αi +

Nd∑
p=1

φd,p,i (4.5)

In Equation (4.6) we derive the update formula of the variational parameter

associated with the per word co-occurrence topic assignments.

φd,p,i ∝ exp{Ψ(γd,i)−Ψ(γd,0) +

Nd,p,V∑
n,j

I(wd,p,n = j)(Ψ(λi,j)−Ψ(λi,0))} (4.6)

With the update formulas of the variational parameters at hand, the algorithm

is straightforward. The variational parameters are updated iteratively until conver-

gence. This type of algorithm is known in the literature as Variational EM [9]. The

pseudo-code can be found in Algorithm 2.
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Algorithm 2 Variational EM for CTM

1: Initialize λ
2: while no global convergence do
3: for d = 1 to M do
4: Initialize γd
5: while no local convergence do
6: for p = 1 to Nd do
7: for i = 1 to K do
8: Update φd,p,i using Equation (4.6)
9: end for

10: Normalize φd,p,∗ to sum to 1
11: end for
12: for i = 1 to K do
13: Update γd,i using Equation (4.5)
14: end for
15: end while
16: end for
17: for i = 1 to K do
18: for j = 1 to V do
19: Update λi,j using Equation (4.4)
20: end for
21: end for
22: end while

4.4 Evaluation

We evaluate the model on two labeled datasets of tweets and one of titles of scientific

publications. The evaluation targets multiple tasks such as topic coherence, docu-

ment clustering and document classification. Please consult Chapter 2.3 for details

about the metrics utilized to assess these tasks.

The following models are used in the evaluation for comparison:

• Co-occurrence Topic Model (CTM) This is the model proposed in this

chapter. Common values for sparse priors are used (α = 0.1; η = 0.01). We

also use T=30 (i.e.: the number of additional co-occurring pairs we bring

into the document for each existing pair; remember though that we use the

set of the resulting collection to reduce noise and repetition). We found this

setting to provide a good performance across the datasets. Nevertheless, we

reiterate that identifying better ways to add related word co-occurrences to

the documents is desirable. We leave this out to future work.
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• Latent Dirichlet Allocation (LDA) We use the prior values recommended

in previous work [36, 56] (α = 0.1; η = 0.01). For a review of this model please

consult Chapter 2.1.1.2.

• Mixture of Unigrams (MoU) We use the prior values recommended in

previous work [56] (α = 50/K; η = 0.01). For a review of this model please

consult Chapter 2.1.1.1.

• Biterm Topic Model (BTM) This model proposed by Yan et al. [56] has

been selected to represent the state of the art in short text data. The model

has a preprocessing step in which all the biterms (i.e.: word pairs) of every

document are generated. Then the biterms become the input of a Mixture

of Unigrams model (i.e.: global topic proportions and one topic per biterm).

For a fair comparison, we reimplemented the model with Variational Inference

(original implementation is done using Gibbs Sampling). We use the same

priors as in the original paper (α = 50/K; η = 0.01).

• SC-LDA FA This is the SC-LDA model described in Chapter 3 with first

author as context. This particular instance was the best performer from that

chapter. We use it to assess whether utilizing context (when available) still

leads to better results. Common values for sparse priors are used (α = 0.1;

η = 0.01).

The models are initialized according to standard practices from the literature.

Blei & Lafferty [8] find that a good way to initialize the topics is to use a random

sample of N documents from the corpus and compute a smoothed word distribution

over the vocabulary space from the word counts of the random sample. We choose

N to be 10.

We perform the evaluation with 3 levels of K (i.e.: the number of topics): K = Z,

K = 2Z and K = 3Z, where Z is the number of ground truth classes of a dataset.

For each setting of a model we do 10 runs and report the result that has the maximum

ELBO - the bigger the ELBO the closer the variational approximation is to the true

posterior.
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Dataset Classes Documents
Unique
words

All
words

Average words
per document

FSD 21 2108 742 14457 6.858

Sanders 4 2073 1210 10366 5.000

arXiv 10 14587 2833 92518 6.342

Table 4.1: Statistics of the datasets used in the evaluation

4.4.1 Dataset Selection

We use in the evaluation three datasets of short text data. Two of the datasets

contain tweets: First Story Detection (FSD) [38] and Sanders1. The other dataset

consists of titles of scientific publications downloaded from arXiV.org, a dataset

we also used in Chapter 3. Table 4.1 summarizes useful dataset statistics after

preprocessing (basic stop and rare word removal). The ground truth classes of FSD

correspond to events such as “Death of Amy Winehouse” or “Terrorist attack in

Delhi”; the Sanders corpus contains hand classified tweets into 4 distinct categories

(e.g.: “google”, “microsoft”); while the arXiv dataset has labels which correspond

to different areas from physics (e.g.: “Condensed Matter”, “Nuclear Theory”).

To facilitate the replicability of the experimental setup we note that the original

FSD dataset contains 27 classes. We discarded 6 of them because they contain a

small number of tweets (less than 10). The discarded classes are: “Topic 3: Betty

Ford dies”, “Topic 5: Flight Noar Linhas Aereas 4896 crashes, all 16 passengers

dead”, “Topic 11: Goran Hadzic, Yugoslavian war criminal, arrested”, “Topic 12:

India and Bangladesh sign a peace pact”, “Topic 23: South Sudan becomes a UN

member state”, and ”Topic 26: Rebels capture Tripoli international airport, Libya”.

In terms of preprocessing, on the Sanders and FSD datasets the following actions

were taken: removed stop words, words with a length smaller than 3 characters,

words with a global frequency smaller than 3 and discarded documents with less

than 3 words. In addition to that, for the Sanders dataset we also had to remove

the non-English tweets. For details about the arXiv dataset please consult Chapter

3.4.1 (where it is labeled as “Short Text Larger Contexts”).

1Available at http://www.sananalytics.com/lab/twitter-sentiment/
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Dataset Method Top 5 words Top 10 words Top 20 words

FSD

LDA -8.834 -73.397 -434.231
MoU -10.354 -78.253 -436.299
BMT -7.513 -64.275 -409.479
CTM -6.700 -58.522 -396.275

Sanders

LDA -14.723 -110.759 -552.352
MoU -13.666 -103.420 -552.043
BTM -14.076 -108.101 -545.227
CTM -12.356 -94.394 -524.661

arXiv

LDA -21.803 -131.204 -680.870
MoU -19.035 -125.617 -627.604
BTM -18.206 -119.148 -606.940
CTM -17.771 -116.640 -602.169

SC-LDA FA -17.628 -118.817 -618.784

Table 4.2: Topic Coherence results with K set to the number of ground truth classes:
K=21 for FSD, K=4 for Sanders and K=10 for arXiv.

4.4.2 Topic Coherence Evaluation

In this section we present and discuss the results for topic coherence, a measure

of topic quality which aims to capture the human interpretability of topics in an

automatic fashion (i.e.: no human annotators). Please consult Chapter 2.3.1 for a

review of the task and details about the utilized metric.

In Table 4.2 we list the topic coherence results when K is set to the number of

ground truth classes, whereas in Table 4.3 we show the trends as K varies. On the

datasets that consist of tweets (i.e.: FSD and Sanders) CTM manages to clearly

outperform all the other models across all levels of K (see both Tables 4.2 and

4.3). On the FSD dataset, the state of the art, BTM, comes second best, while on

the Sanders dataset it falls behind MoU, occupying the third place. On the arXiv

dataset, BTM and CTM tend to perform on par; MoU manages here to get the best

results on the top 10 and 20 words for larger values of K (see Table 4.3). LDA is

clearly the worst performing model on Sanders and arXiv datasets, reconfirming the

negative effect sparsity has on this model (see Tables 4.2 and 4.3).

4.4.3 Document Clustering Evaluation

In this section we present and discuss the results for document clustering. We asses

this task with three common metrics: Purity, Normalized Mutual Information and
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Dataset Top 5 words Top 10 words Top 20 words

FSD

Sanders

arXiv

Table 4.3: Topic Coherence results when K varies
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Dataset Method Purity NMI ARI

FSD

LDA 0.857 0.801 0.726
MoU 0.799 0.725 0.575
BMT 0.894 0.815 0.597
CTM 0.915 0.849 0.604

Sanders

LDA 0.481 0.108 0.097
MoU 0.484 0.104 0.111
BTM 0.523 0.143 0.136
CTM 0.537 0.140 0.134

arXiv

LDA 0.578 0.233 0.195
MoU 0.752 0.489 0.546
BTM 0.805 0.533 0.448
CTM 0.809 0.546 0.607

SC-LDA FA 0.820 0.584 0.462

Table 4.4: Document Clustering results with K set to the number of ground truth
classes: K=21 for FSD, K=4 for Sanders and K=10 for arXiv.

Adjusted Rand Index. Please consult Chapter 2.3.2 for a review of the task and

details about the utilized metrics. Table 4.4 lists the results when K is set to the

number of ground truth classes, while Table 4.5 shows the trends as K varies.

CTM manages to outperform, overall, the baselines (i.e.: MoU, LDA) and the

state of the art (i.e.: BTM), on all the datasets, across all metrics, and levels of

K (see Table 4.5). On the arXiv dataset, SC-LDA FA, with the help of contextual

information, outperforms all the other models (see Purity and NMI from Table 4.5).

LDA is overall the worst performer, while MoU comes second to last (best seen

on the Sanders and arXiv datasets from Table 4.5). The state of the art, BTM,

consistently ranks below our proposed model CTM, but on top of the baselines.

4.4.4 Document Classification Evaluation

In this section we present and discuss the results for document classification. We

asses this task in terms of Accuracy. Please consult Chapter 2.3.3 for a review of

the task and details about the utilized metric. Table 4.6 lists the results when K is

set to the number of ground truth classes, while Table 4.7 shows the trends as K

varies.

CTM outperforms all the other models on the datasets of tweets (see FSD and

Sanders columns from Table 4.7). On the arXiv dataset, SC-LDA FA, with the
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Dataset Purity NMI ARI

FSD

Sanders

arXiv

Table 4.5: Document Clustering results when K varies

Dataset Method Accuracy

FSD

LDA 0.873
MoU 0.794
BMT 0.917
CTM 0.940

Sanders

LDA 0.498
MoU 0.480
BTM 0.531
CTM 0.530

arXiv

LDA 0.583
MoU 0.732
BTM 0.818
CTM 0.815

SC-LDA FA 0.840

Table 4.6: Document Classification results with K set to the number of ground truth
classes: K=21 for FSD, K=4 for Sanders and K=10 for arXiv.
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FSD Sanders arXiv

Accuracy

Table 4.7: Document Classification results when K varies

help of contextual information, has the best results across all levels of K (see last

column of Table 4.7). On the same dataset, CTM and BTM perform on par. On the

Sanders and arXiv datasets, the mixture model performs better than the admixture

model (i.e.: MoU vs. LDA), the latter being drastically affected by sparsity (best

seen on the arXiv dataset). This last result is more pronounced since MoU has

the disadvantage brought by its “one topic per document” assumption which, in a

classification task, produces only one feature to represent a document. The state of

the art, BTM, consistently performs better than the baselines.

4.5 Discussion

As a follow-up to the discussion from Chapter 3 that topic models like LDA fail on

short text data because of the lack of enough observations for a reliable inference,

in this chapter we proposed a new topic model, which in contrast to our previous

approach to alleviate sparsity, it can be used when contextual information is not

available or it does not help. The introduced model was formulated around the

observation that in normal text data, a classic model like LDA works well because

patterns of word co-occurrences arise across the documents. In the generative pro-

cess every document was modelled as a bag of word co-occurrences, where each

co-occurrence belongs to a latent topic. The documents were enhanced a priori with

related co-occurrences from the other documents, such that the collection had a

greater chance of exhibiting word patterns.

We evaluated the model on two labeled datasets of tweets and one of titles of sci-
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entific publications. The evaluation targeted multiple tasks such as topic coherence,

document clustering and document classification. We list below the main findings:

• We find that, overall, our model surpasses the state of the art and the other

baselines in terms of Topic Coherence, Document Clustering and Classification.

• The best performing contextual model from Chapter 3 (i.e.: SC-LDA FA)

manages to get the best results in this evaluation as well in terms of Docu-

ment Clustering and Classification, further strengthening the argument that

contextual information is indeed useful when available.

Based on the assessments made in this chapter we can conclude that, overall, the

proposed model brings an increase in performance when compared with the state

of the art. We believe there is room for improvement, especially in the way related

word co-occurrences are added to the documents, which we leave out to future work.

It is also worth investigating the effect the enhancement has on the original topical

representation of the documents. The added co-occurrences can lead to a concept

drift (i.e.: an unforeseen change in the topical representations). Nevertheless, in

our evaluation set up the model performed well. The results indicate that novel

approaches which focus on modeling word co-occurrences are a promising direction

towards a new class of models for short text data.
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Chapter 5

Experimenting with a Subset

Topic Model

Traditional topic models assume either a single topic per document, or a mixture of

topics, where the number of mixture components is the same as the total number

of topics the model aims to extract from the whole collection. However, neither of

the aforementioned assumptions are entirely plausible. Even if the “one topic per

document” assumption performs reasonably well on a short text dataset such as

a Twitter collection, there can be many tweets which cover more than one topic.

At the same time, even though longer documents tend to cover multiple topics,

it is implausible they cover the whole topic space. In this chapter we experiment

with a new topic model architecture which models documents using only a subset

of the total number of topics. We compare the introduced model with the best

known topic models that follow the aforementioned assumptions. The evaluation

assesses coherence, a measure of topic interpretability, and is performed in varying

text environments from very short to medium and longer text. The experiments

indicate a connection between the size of the documents and the performance of the

models with respect to the number of topics assumed for every document.
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5.1 Motivation

Traditional topic model architectures such as Latent Dirichlet Allocation (LDA)

and Mixture of Unigrams (MoU) aim to extract K topics from a data collection.

While MoU assumes a document exhibits only one topic, at the other extreme, LDA

models a document as a mixture of all the K topics. These distinct assumptions

make the former more suitable in short text environments, and the latter a bet-

ter fit in normal text data. [36, 56]. Yan et al. [56] mention in their work that

LDA’s poor performance in short text data is caused by the K-dimensional vector

governing the per-document topic proportions - sparsity arises as its inference relies

on a small number of observations (i.e.: the words in the document). In a study

on the factors which affect the performance of LDA, Tang et al. [45] conclude that

poor performance is expected when the documents are too short, even if you have

a large collection. Another important conclusion of the study (with respect to the

motivation behind this chapter) is that LDA is expected to perform better when the

documents are associated with small subsets of topics.

In this chapter we argue that neither of the aforementioned assumptions of MoU

and LDA are entirely plausible. Even if the “one topic per document” assumption

performs reasonably well on a short text dataset such as a Twitter collection, there

can be many tweets which cover more than one topic. At the same time, even

though longer documents tend to cover multiple topics, it is implausible they cover

the whole topic space. With these observations in mind, we propose a new topic

model architecture which maintains the generic goal of discovering K topics in a

corpus, but models documents as a mixture of only a subset of the topic space.

The model aims to provide a generative process that is closer to a natural topical

interpretation of the documents: if there are K topics in a corpus, then a document

exhibits only a small subset of them.

In the evaluation we assess the performance of multiple instances of the model

with different subset sizes. We also include MoU and LDA, the models with the

extreme assumptions (one topic only vs. all topical space). The evaluation is per-

formed in different text environments, covering very short, medium and longer text.
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The characteristics of the datasets allow us to assess whether a smaller number of

topics is sufficient in short text documents compared to collections of longer text

where a slightly bigger number might be better suited. The evaluation targets topic

coherence, a measure of topic quality which aims to capture the human interpretabil-

ity of topics in an automatic fashion (i.e.: no human annotators).

5.2 Model Specification

In this section we describe a new topic model architecture based on subsets of topics.

We will refer in our discussions to the proposed model as STM (Subset Topic Model).

The model takes as input a collection of documents indexed by d ∈ {1, 2, ...,M}.

Every document d is a collection of words indexed by n ∈ {1, 2, ..., Nd}. The model

uses a predefined collection of topic subsets indexed by x ∈ {1, 2, ..., S}. The length

of each subset x is a fixed constant T . The elements of a subset are indexed by

p ∈ {1, 2, ..., T}. The p’s element of a subset x is one of the K topics - and can be

accessed via the following operation x.p = i, where i ∈ {1, 2, ...,K} is a topic.

The graphical model of STM is presented in Figure 5.1. The generative process

is given below:

1. Draw proportions over the subsets π ∼ DirS(δ)

2. For every topic i ∈ {1, 2, ...,K}:

(a) Draw a word distribution βi ∼ DirV (η)

3. For every document d ∈ {1, 2, ...,M}:

(a) Draw a subset td ∼ CatS(π)

(b) Draw proportions over the indexes of a subset’s elements θd ∼ DirT (α)

(c) For every word position n ∈ {1, 2, ..., Nd}:

i. Draw an index of a subset’s element zd,n ∼ CatT (θd)

ii. Draw word wd,n ∼ CatV (βtd.zd,n)
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Figure 5.1: Graphical model of STM

5.2.1 Choosing the Subset Space

The model uses a predefined collection of topic subsets indexed by x ∈ {1, 2, ..., S}

where the length of each subset x is a fixed constant T . A natural choice for the

subset space is to use all combinations of the K topics taken T at a time. In this

case, S =
(
K
T

)
, can be too large for standard computation.

In this section we propose a way of generating a more manageable number S

of subsets of length T formed with the K topics. Concretely, we are going to cut

down some of the subsets generated by the combinations. We make the observation

that in the space of combinations S =
(
K
T

)
every topic i appears in the company

of other topics
(
K−1
T−1

)
times. We reduce S by constraining every topic i to appear

in a smaller number of subsets. From a modeling perspective, this should not be a

hard constraint, as it is unlikely the documents from a collection require a topic to

appear in all the possible combinations with the other topics.

For completeness we introduce in Algorithm 3 the process by which all the com-

binations of the K topics taken T at a time are generated. At every level, you take

into consideration all the smaller levels.

Algorithm 3 Generating combinations of K taken T

1: for i1 = 1 to K do
2: for i2 = 1 to i1 − 1 do
3: ...
4: for iT = 1 to iT−1 − 1 do
5: Generate (i1, i2, ..., iT )
6: end for
7: end for
8: end for

Algorithm 4 outlines the process by which only some of the combinations of the
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Figure 5.2: The number of subsets in which each topic appears as J varies.

K topics taken T at a time are generated. At every level, you take into consideration

only the first J smaller levels, where J is a fixed constant. Note that when J = K−1

you generate the full space of combinations as in Algorithm 3.

Algorithm 4 Generating only some of the combinations of K taken T

1: for i1 = 1 to K do

2: for i2 =

{
1, i1 ≤ J
i1 − J, i1 > J

to i1 − 1 do

3: ...

4: for iT =

{
1, iT−1 ≤ J
iT−1 − J, iT−1 > J

to iT − 1 do

5: Generate (i1, i2, ..., iT )
6: end for
7: end for
8: end for

The constant J controls the level of approximation with respect to the entire

combinatorial space. Figure 5.2 illustrates an example of the behavior of Algorithm

4 when the combinatorial space is
(
K=50
T=2

)
.

In our experiments, we found the setting J = 2 to produce enough subsets for

the STM model to perform well. Due to the lack of an obvious closed-form solution

to the number of subsets produced by Algorithm 4, we list in Table 5.1 the number

of subsets produced by the computer for different settings of K and T - this is to

show we are dealing with a much smaller combinatorial space.
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T=2 T=3 T=4 T=5

J=2 J=K-1 J=2 J=K-1 J=2 J=K-1 J=2 J=K-1

K=10 17 45 28 120 44 210 64 252

K=20 37 190 68 1140 124 4845 224 15504

K=30 57 435 108 4060 204 27405 384 142506

K=40 77 780 148 9880 284 91390 544 658008

K=50 97 1225 188 19600 364 230300 704 2118760

K=60 117 1770 228 34220 444 487635 864 5461512

K=70 137 2415 268 54740 524 916895 1024 12103014

K=80 157 3160 308 82160 604 1581580 1184 24040016

K=90 177 4005 348 117480 684 2555190 1344 43949268

K=100 197 4950 388 161700 764 3921225 1504 75287520

Table 5.1: The number of subsets produced by Algorithm 4 with different values of
K and T , keeping J = 2 fixed. For comparison purposes (with the entire combinatorial
space), we also include the J = K − 1 setting.

5.3 Model Inference

To infer the latent parameters of the introduced model, we use standard variational

inference, a deterministic technique for parameter estimation. Please consult Chap-

ter 2.2.1 for a review. To keep things focused, we give here only an overview of the

steps and derivations involved in the inference process - complementing material can

be found in Appendix C.

The posterior of STM is presented in Equation (5.1) and factorizes according to

the conditional dependencies from the graphical model presented in Figure 5.1. For

simplicity we use symmetric priors on θ, β and π.

p(θ, β, π, t, z|w,α, η, δ) ∝ p(θ|α)p(β|η)p(π|δ)p(t|π)p(z|θ)p(w|z, t, β) (5.1)

The variational distribution q used to approximate the STM posterior is pre-

sented in Equation (5.2) and factorizes according to the conditional dependencies

from the graphical model presented in Figure 5.3.

q(π, θ, β, t, z|µ, γ, λ, ζ, φ) = q(π|µ)q(θ|γ)q(β|λ)q(t|ζ)q(z|φ) (5.2)

With the posterior and the variational distribution at hand, we can define the
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Figure 5.3: Graphical model of the variational distribution used to approximate the
STM posterior

variational objective function. Equation (5.3) presents the ELBO in a compact form.

L = Eq[log p(θ, β, π, w, z, t|α, η, δ)]− Eq[log q(θ, β, π, z, t|γ, λ, µ, φ, ζ)]

= Eq[log p(π|δ)] + Eq[log p(θ|α)] + Eq[log p(β|η)] + Eq[log p(z|θ)]+

+ Eq[log p(t|π)] + Eq[log p(w|z, t, β)]− Eq[log q(θ|γ)]−

− Eq[log q(β|λ)]− Eq[log q(π|µ)]− Eq[log q(z|φ)]− Eq[log q(t|ζ)]

(5.3)

Maximizing the lower bound with respect to the variational parameters leads to

the desired update formulas.

In Equation (5.4) we provide the update formula of the variational parameter

associated with the subset proportions.

µx = δx +
M∑
d=1

ζd,x (5.4)

In Equation (5.5) we provide the update formula of the variational parameter

associated with the document-level proportions over the indexes of a subset.

γd,p = αp +

Nd∑
n=1

φd,n,p (5.5)

In Equation (5.6) we provide the update formula of the variational parameter
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associated with the subset assignment to a document.

ζd,x ∝ exp{Ψ(µx)−Ψ(µ0)+

Nd,T,K,V∑
n,p,i,j

φd,n,p(Ψ(λi,j)−Ψ(λi,0))I(wd,n = j)I(x.p = i)}
(5.6)

In Equation (5.7) we provide the update formula of the variational parameter

associated with the assignment of an index of a subset’s element to a word.

φd,n,p ∝ exp{Ψ(γd,p)−Ψ(γd,0)+

S,K,V∑
x,i,j

ζd,x(Ψ(λi,j)−Ψ(λi,0))I(wd,n = j)I(x.p = i)}
(5.7)

In Equation (5.8) we provide the update formula of the variational parameter

associated with a topic.

λi,j = ηj +

M,Nd,S,T∑
d,n,x,p

I(wd,n = j)I(x.p = i)ζd,xφd,n,p (5.8)

With the update formulas of the variational parameters at hand, the algorithm

is straightforward. The variational parameters are updated iteratively until the

lower bound from Equation (5.3) converges. This type of algorithm is known in

the literature as Coordinate Ascent Mean-Field Variational Inference (CAVI) [10].

Algorithm 5 summarizes one iteration of CAVI.

5.3.1 Document-level Topic Proportions

STM does not model directly document-level topic proportions like, for example,

LDA does. In this section we present a formula to generate this information using

the estimated variational parameters.

Equation (5.9) gives the probability of topic i in document d. The formula is

intuitive: the mass topic i receives in document d is based on the mass in document d

of the subsets which contain topic i and the proportion of the topic in the document.

Summing Equation (5.9) over i from 1 to K will give a result of one - an easy proof to

show that we have indeed a probability distribution representing the document-level
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Algorithm 5 One iteration of Mean Field Variational Inference for STM.

1: for d = 1 to M do
2: for n = 1 to Nd do
3: for p = 1 to T do
4: Update φd,n,p using Equation (5.7)
5: end for
6: Normalize φd,n,∗ to sum to 1
7: end for
8: for x = 1 to S do
9: Update ζd,x using Equation (5.6)

10: end for
11: Normalize ζd,∗ to sum to 1
12: for p = 1 to T do
13: Update γd,p using Equation (5.5)
14: end for
15: end for
16: for x = 1 to S do
17: Update µx using Equation (5.4)
18: end for
19: for i = 1 to K do
20: for j = 1 to V do
21: Update λi,j using Equation (5.8)
22: end for
23: end for

topic proportions.

p(topic = i|d) =

S∑
x=1

(ζd,x

T∑
p=1

I(x.p = i)
γd,p∑T
p=1 γd,p

) (5.9)

5.4 Evaluation

The evaluation aims to assess the effect of constraining the number of topics a

document can exhibit on the performance of the model given the characteristics

of the input collection. The evaluation is done with respect to topic coherence, a

measure of topic quality, in datasets showcasing different text environments, from

very short, to medium and longer text.

The following models are used in the evaluation for comparison:

• Latent Dirichlet Allocation (LDA) This is a model in which documents

are mixtures of K topics (the size of the entire topic space). We use the prior

values recommended in previous work [36, 56] (α = 0.1; η = 0.01). For a
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5. EXPERIMENTING WITH A SUBSET TOPIC MODEL

review of this model please consult Chapter 2.1.1.2.

• Mixture of Unigrams (MoU) This is a model in which documents exhibit

only one topic. We use the prior values recommended in previous work [56]

(α = 50/K; η = 0.01). For a review of this model please consult Chapter

2.1.1.1.

• Subset Topic Model (STM) We evaluate four instances of STM in which

we fix the size of the subsets (number of maximum topics per document) to

constants ranging from T = 2 to T = 5. The range of the per-document

topics is selected to be plausible for short, medium and longer text collections.

We use the approximation technique for the combinatorial space described in

Section 5.2.1 with J=2. In terms of prior selection, we use common sparse

priors for the word distribution of a topic (η = 0.01) and for the proportions

over the subsets (δ = 0.1). For the per-document proportions over the indexes

of a subset’s elements we use a uniform, non-informative prior (α = 1.0).

The models are initialized according to standard practices from the literature.

Blei & Lafferty [8] find that a good way to initialize the topics is to use a random

sample of N documents from the corpus and compute a smoothed word distribution

over the vocabulary space from the word counts of the random sample. We choose

N to be 10.

We perform the evaluation with 3 levels of K (i.e.: number of topics): K = Z,

K = 2Z and K = 3Z, where Z is the number of ground truth classes of a dataset.

For each setting of a model we do 10 runs and report the result that has the maximum

ELBO - the bigger the ELBO the closer the variational approximation is to the true

posterior.

5.4.1 Dataset Selection

The evaluation is performed on four datasets, covering multiple text environments

from very short, to medium and longer text. The datasets used are 20 Newsgroup

(20NG) [11], Reuters 8 (R8) [11], Tag My News (TMN) [48] and a titles-only version

of Tag My News (TMN-T). Table 5.2 summarizes useful dataset statistics after
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Dataset Classes Documents
Unique
words

All
words

Average words
per document

20 Newsgroup
(20NG)

20 18780 9899 1798945 95.79

Reuters 8
(R8)

8 9863 5252 511255 51.84

Tag My News
(TMN)

7 32600 8621 557101 17.09

Titles of Tag My News
(TMN-T)

7 30130 6303 152689 5.07

Table 5.2: Statistics of the datasets used in the evaluation

preprocessing (basic stop and rare word removal). It is worth pointing out the last

column from the table, which indicates the wide spectrum of text environments.

The 20NG dataset contains 20 ground truth classes which correspond to a variety of

topics from Computer Graphics, to Motorcycles, Baseball and Religion. The Reuters

dataset has categories like Earn, Grain, Trade, or Interest. The TMN and TMN-T

datasets contain documents from 7 generic categories covering Sport, Business, U.S.,

Health, Sci&Tech, World and Entertainment. The number of documents per ground

truth class is relatively balanced in the 20NG dataset, and more sparse in the others.

To facilitate the replicability of the experimental setup we discuss the details

behind the preprocessing. For all the datasets, we discarded stop words, words with

a length smaller than 3 characters and documents with less than 3 words. For the

R8 and TMN datasets we discarded the words with a global frequency less than 10.

For the TMN-T dataset the frequency threshold was 5, while for 20NG it was 30.

5.4.2 Topic Coherence Evaluation

In this section we present and discuss the results for topic coherence, a measure

of topic quality which aims to capture the human interpretability of topics in an

automatic fashion (i.e.: no human annotators). Please consult Chapter 2.3.1 for a

review of the task and details about the utilized metric.

We focus first on Table 5.3. The results indicate that using a model which allows

K topics per document (i.e.: LDA) leads to the worst coherence scores compared

with all the other models, across all columns, on very short to short text (TMN-T

and TMN datasets). At the other extreme, using a model which allows only one
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Dataset Method Top 5 words Top 10 words Top 20 words

TMN-T

MoU -22.778 -146.090 -738.455
LDA -29.395 -165.145 -778.575

STM T2 J2 -25.398 -155.147 -745.603
STM T3 J2 -24.834 -157.862 -773.100
STM T4 J2 -25.573 -161.482 -776.503
STM T5 J2 -25.063 -159.160 -773.580

TMN

MoU -19.895 -124.986 -616.045
LDA -20.850 -123.513 -622.296

STM T2 J2 -17.092 -110.920 -580.669
STM T3 J2 -19.416 -117.573 -594.668
STM T4 J2 -17.009 -115.882 -594.538
STM T5 J2 -17.992 -116.690 -606.951

R8

MoU -10.774 -76.348 -410.018
LDA -9.253 -71.768 -350.030

STM T2 J2 -8.849 -69.822 -380.413
STM T3 J2 -6.961 -57.728 -357.312
STM T4 J2 -6.349 -46.942 -307.390
STM T5 J2 -7.184 -48.305 -322.277

20NG

MoU -11.616 -73.009 -394.146
LDA -10.317 -74.227 -380.699

STM T2 J2 -10.972 -73.515 -393.910
STM T3 J2 -10.872 -75.059 -370.687
STM T4 J2 -12.249 -75.634 -390.196
STM T5 J2 -11.524 -74.971 -389.671

Table 5.3: Topic Coherence results with K set to the number of ground truth classes:
K = 7 for TMN-T and TMN; K = 8 for R8; K = 20 for 20NG.
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topic per document (MoU), leads to poor performance on medium to longer text

(R8 and 20NG datasets). On very short text data (TMN-T dataset) the model with

one topic per document (i.e.: MoU) does best - increasing the number of topics

per document (STM T2 J2 to STM T5 J2) is mainly inversely proportional to the

performance (best seen in Top 10 and 20 words columns), suggesting that a lower

number of topics gives a better performance. Moving on from the TMN-T dataset

to the TMN dataset we have a difference in the average words per document of

12 (statistic taken from Table 5.2). The difference in the number of words causes

the performance of MoU to drop significantly (best seen in Top 10 and 20 words

columns) - this suggests that more than one topic is now required; instances of STM

with T = 2 to T = 5 confirm that by having the better performance. Going from the

TMN dataset to the R8 dataset, the number of average words per document triples.

The one topic per-document assumption of MoU causes to model to become the

worst performer. LDA is now better than MoU but its assumption of a maximum

of K topics per document is still too broad for the length of the documents, placing

its performance behind the one obtained by the instances of STM. On the 20NG

dataset, many models perform on par when coherence is assessed on the top 5 and

10 words. A more clear advantage is achieved by STM T3 on Top 20 words.

In Figure 5.4, the evaluation set-up from Table 5.3 is replicated on different levels

of K. On the very short text dataset (TMN-T), LDA keeps the previously identified

pattern as the worst performer across all K values. On the TMN dataset, where

documents are slightly lengthier (17 words on average), you have the same pattern

as before in which LDA and MoU are the worst performers. Moving on to the R8

dataset, where the number of words triples (51 words on average), the results are

mixed, but there are still some useful observations. For example, MoU is the worst

performer overall on coherence scores on the top 10 and 20 words. STM T4 and

T5 are in most cases better than LDA. This last pattern is also kept on the 20NG

dataset.

77



5. EXPERIMENTING WITH A SUBSET TOPIC MODEL

Dataset Top 5 words Top 10 words Top 20 words

TMN-T

TMN

R8

20NG

Table 5.4: Topic Coherence results when K varies
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5.5 Discussion

In this chapter we experimented with a topic model which assumes documents ex-

hibit only a subset of the entire topic space. This complements existing work which

assumes documents contain either a single topic - MoU - or a mixture of the entire

topic space - LDA.

On very short text items (i.e.: 5 words on average) the evaluation confirms the

previously known superiority of MoU and the drastic impact sparsity has on LDA.

In this chapter we find though that on a dataset of items which are slightly bigger

(i.e.: 17 words on average), instances of the proposed model with two to five topics

per document perform better than both MoU and LDA. On the longer text datasets

(i.e.: 51 and 95 words on average per documents), we find that LDA is surpassed

by the models with subset sizes of 4 and 5.

The proposed subset topic model has its drawbacks. Mainly, a better way of

creating the subsets of topics and assigning them to the documents in desirable

(i.e.: having a generative process to guide the assignment of latent topics into latent

subsets). Future work can look into utilizing a Markov chain for this purpose (e.g.:

creating the subset by adding topics conditioned to the ones already present; doing

so, the subsets can be viewed as clusters of correlated topics). Even though the

evaluation is sometimes noisy, the results indicate a connection between the size of

the documents and the performance of the models with respect to the number of

topics assumed for every document.
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Chapter 6

Conclusions

Topic models have been used with great success over the years in organizing large

collections of unstructured text allowing people to interact with the data more eas-

ily. The applicability is extensive and in multiple areas: analyzing the evolution of

topics over time in digital library data [7, 54], the identification of correlated top-

ics [4, 25], modeling authors and their publications [40], or capturing spatial and

temporal patterns from blog posts [32, 33]. The advancements in parameter estima-

tion techniques allow topic models to be applied at scale and in online frameworks

[19, 20].

Although there is a vast research literature on topic models, the development of

such models for short text data is still a relatively new field. Topic models which

behave well on normal text collections under-perform on short text items due to a

reduced number of observations (i.e.: the words) available for a reliable inference.

This causes the models to suffer from sparsity.

In this dissertation this sparsity problem was addressed from two main per-

spectives. In the first part, we developed models which exploit the context that

accompanies certain short text collections. Concretely, we utilized the authors in

datasets created from titles of scientific publications, but other useful examples of

context include hashtags for twitter data, locations for titles of blog posts or time

for headlines of news articles. In the second part, we proposed a more general pur-

pose model which can be used when such contextual information is not available.

The model creates and exploits patterns of word co-occurrences. The evaluation
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addressed multiple tasks such as topic coherence (i.e.: a measure of topic quality

which aims to capture the human interpretability of topics in an automatic fash-

ion), document clustering and document classification. We discuss below, in more

details, the main contributions that result from this thesis with direct references to

the posed research questions and the chapters which addressed them.

Which class of models benefits more from aggregation in short text data, a mixture

or an admixture? Can document aggregation lead to state of the art performance?

In Chapter 3 we explicitly modeled the implicit assumptions of document ag-

gregation, a popular heuristic employed to alleviate sparsity, and applied it to two

standard model architectures: a mixture and an admixture. The latter is known

to suffer greatly from sparsity, whereas the ”one topic assumption” of the former

is considered to be a good fit for short text items. The two architectures are also

the backbone of a great number of models developed over the years. For evaluation,

we created datasets with both very short (i.e.: titles of publications) and medium

(i.e.: abstracts) text items, which also had different opportunities for aggregation (a

smaller vs. a larger number of documents per context). This allowed us to assess the

performance of the models with respect to different text environments and context

sizes. Our findings indicate that an admixture model benefits more from aggregation

compared to a mixture which rarely improved over its baseline (i.e.: the standard

mixture). We also find that the state of the art in short text data can be surpassed

as long as every context contains a small number of documents. The findings inform

future researchers interested in developing topic models for context accompanied

short text data that having at the core of the models the set of assumptions of an

admixture has the potential to lead to a better performance compared to developing

a model on top of a mixture.

Can short text collections be enhanced such that repeating word co-occurrences

have a better chance to arise across the documents more consistently and facilitate

a better topic discovery?

In Chapter 4 we introduced a new topic model, which in contrast to our previ-

ous approach to alleviate sparsity, can be used when contextual information is not

available or it does not help (i.e.: it is shared by documents which have little or no

82



topical relationship). The model proposed was formulated around the observation

that in normal text data, a classic model like LDA works well because patterns of

word co-occurrences arise across the documents. However, the possibility of such

patterns to arise in a short text dataset is reduced. The model assumes every docu-

ment is a bag of word co-occurrences, where each co-occurrence belongs to a latent

topic. The documents were enhanced a priori with related co-occurrences from the

other documents, such that the collection had a greater chance of exhibiting word

patterns. We evaluated the model on two labeled datasets of tweets and one of titles

of scientific publications. The latter is a dataset which we also utilized in Chapter

3 and has contextual information available. The model we proposed performed well

managing to surpass the state of the art and popular topic model baselines. The

best performing contextual model introduced in Chapter 3 managed to get the best

results in this evaluation as well, further strengthening the argument that contex-

tual information is indeed useful when available. Nevertheless, the results showed

that novel approaches which focus on modeling word co-occurrences are a promising

direction towards a new class of models for short text data.

Can topic models be improved by assuming a more appropriate number of topics

for every document?

In Chapter 5 we experimented with a topic model which assumes documents

are mixtures of only a subset of the entire topic space. This complements existing

work which assumes documents contain either a single topic or a mixture of the

entire topic space. The model was built on the observation that the aforementioned

assumptions are too extreme. Even if the ”one topic per document” assumption

performs reasonably well on a short text dataset such as a Twitter collection, there

can be many tweets which cover more than one topic. At the same time, even

though longer documents tend to cover multiple topics, it is implausible they cover

the whole topic space. The evaluation assessed coherence, a measure of topic in-

terpretability, and was performed in varying text environments from very short to

medium and longer text. The results, although preliminary, were in accordance with

the observations made and indicated a connection between the size of the documents

and the performance of the models with respect to the number of topics assumed

83



6. CONCLUSIONS

for every document. The findings from this chapter inform researchers that topic

models trained on short text data could obtain a better performance not only by

increasing the number of observations, but also by reducing the size of the topic

space associated with the documents.
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Appendix A

Detailed Proofs for

Single-Context Topic Models

Throughout the proofs we make use of a short-hand notation which de-clutters

the mathematics. For some K-dimensional vector α, we use the convention α0 =∑K
i=1 αi. We also make a note of the digamma function Ψ() present in many equa-

tions - this is the first derivative of the log Γ function and can be computed using a

Taylor approximation [1].

A.1 The Single-Context Mixture of Unigrams Model

Equations (A.1), (A.2), (A.3) and (A.4) complete the description of the model from

Chapter 3.2.2.

Equation (A.1) represents the probability of the context specific topic propor-

tions in the exponential family form.

p(θx|α) = exp{(
K∑
i=1

(αi − 1) log θx,i) + log Γ(α0)−
K∑
i=1

log Γ(αi)} (A.1)

Equation (A.2) represents the probability of a topic in the exponential family

form.

p(βi|η) = exp{(
V∑
j=1

(ηj − 1) log βi,j) + log Γ(η0)−
V∑
j=1

log Γ(ηj)} (A.2)

85



A. DETAILED PROOFS FOR SINGLE-CONTEXT TOPIC MODELS

Equation (A.3) gives the probability of a topic assignment for a document.

p(zd|θ) = θcd,zd =

C,K∏
x,i

θ
I(cd=x)I(zd=i)
x,i (A.3)

Equation (A.4) gives the probability of a word given the topic assigned to the

document it belongs to.

p(wd,n|zd, β) = βzd,wd,n
=

K,V∏
i,j

β
I(wd,n=j)I(zd=i)
i,j (A.4)

A.1.1 Deriving the Complete Conditionals

In this section we derive the complete conditionals of every latent variable given all

the other latent variables and the observations. We are showing that each such con-

ditional is in the exponential family. We further define the variational distributions

to have the same form as their corresponding complete conditionals.

In Equation (A.5) we derive the complete conditional associated with the context

topic proportions.

p(θx|θ−, z, β, w) ∝ p(θx|α)p(z|θx)

∝ p(θx|α)

M∏
d=1

p(zd|θx)I(cd=x)

∝
K∏
i=1

θαi−1
x,i

M,K∏
d,i

θ
I(cd=x)I(zd=i)
x,i

∝
K∏
i=1

θ
[αi+

∑M
d=1 I(cd=x)I(zd=i)]−1

x,i

= Dir(a), ai = αi +
M∑
d=1

I(cd = x)I(zd = i)

= exp{(
K∑
i=1

(ai − 1) log θx,i) + log Γ(a0)−
K∑
i=1

log Γ(ai)}

(A.5)

Because the complete conditional of the context topic proportions is a Dirich-

let, the corresponding variational distribution is going to be a Dirichlet as well.
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Equations (A.6) and (A.7) give the necessary information.

q(θx|γx) = exp{(
K∑
i=1

(γx,i − 1) log θx,i) + log Γ(γx,0)−
K∑
i=1

log Γ(γx,i)} (A.6)

Eq[log θx,i|γx] = Ψ(γx,i)−Ψ(γx,0) (A.7)

In Equation (A.8) we derive the complete conditional associated with the topics.

p(βi|β−, z, θ, w) ∝ p(βi|η)p(w|z, βi)

∝ p(βi|η)

M,Nd∏
d,n

p(wd,n|zd, βi)

∝
V∏
j=1

β
ηj−1
i,j

M,Nd,V∏
d,n,j

β
I(wd,n=j)I(zd=i)
i,j

∝
V∏
j=1

β
[ηj+

∑M,Nd
d,n I(wd,n=j)I(zd=i)]−1

i,j

= Dir(b), bj = ηj +

M,Nd∑
d,n

I(wd,n = j)I(zd = i)

= exp{(
V∑
j=1

(bj − 1) log βi,j) + log Γ(b0)−
V∑
j=1

log Γ(bj)}

(A.8)

Because the complete conditional of a topic is a Dirichlet, the corresponding

variational distribution is going to be a Dirichlet as well. Equations (A.9) and

(A.10) give the necessary information.

q(βi|λi) = exp{(
V∑
j=1

(λi,j − 1) log βi,j) + log Γ(λi,0)−
V∑
j=1

log Γ(λi,j)} (A.9)

Eq[log βi,j |λi] = Ψ(λi,j)−Ψ(λi,0) (A.10)

In Equation (A.11) we derive the complete conditional associated with the per-
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document topic assignments.

p(zd = i|z−, θ, β, w) ∝ p(zd = i|θ)p(w|βi)

∝ p(zd = i|θ)
Nd∏
n=1

p(wd,n|βi)

∝
C∏
x=1

θ
I(cd=x)
x,i

Nd,V∏
n,j

β
I(wd,n=j)
i,j

∝ θcd,i
Nd∏
n=1

βi,wd,n

∝ exp{log c}, c = θcd,i

Nd∏
n=1

βi,wd,n

∝ exp{log θcd,i +

Nd∑
n=1

log βi,wd,n
}

(A.11)

Because the complete conditional of the per-document topic assignment is a

Categorical, the corresponding variational distribution is going to be a Categorical

as well. Equation (A.12) gives the necessary information.

q(zd = i|φd) = φd,i = exp{log φd,i} (A.12)

A.1.2 Deriving the Update Formulas of the Variational Parameters

The mathematics of the inference are based on the fact that the natural parame-

ters of the variational distributions are equal to the expected value of the natural

parameters of the corresponding complete conditionals.

In Equation (A.13) we derive the update formula of the variational parameter
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associated with the topics.

λi,j − 1 = Eq[bj − 1]

λi,j = Eq[bj ] = Eq[ηj +

M,Nd∑
d,n

I(wd,n = j)I(zd = i)]

= ηj +

M,Nd∑
d,n

I(wd,n = j)Eq[I(zd = i)]

= ηj +

M,Nd∑
d,n

I(wd,n = j)φd,i

(A.13)

In Equation (A.14) we derive the update formula of the variational parameter

associated with the context topic proportions.

γx,i − 1 = Eq[ai − 1]

γx,i = Eq[ai] = Eq[αi +

M∑
d=1

I(cd = x)I(zd = i)]

= αi +
M∑
d=1

I(cd = x)Eq[I(zd = i)]

= αi +
M∑
d=1

I(cd = x)φd,i

(A.14)

In Equation (A.15) we derive the update formula of the variational parameter

associated with the per-document topic assignments.

log φd,i ∝ Eq[log c] = Eq[log(θcd,i

Nd∏
n=1

βi,wd,n
)]

= Eq[log(

C∏
x=1

θ
I(cd=x)
x,i

Nd,V∏
n,j

β
I(wd,n=j)
i,j )]

=
C∑
x=1

I(cd = x)Eq[log θx,i] +

Nd,V∑
n,j

I(wd,n = j)Eq[log βi,j ]

=

C∑
x=1

I(cd = i)(Ψ(γx,i)−Ψ(γx,0)) +

Nd,V∑
n,j

I(wd,n = j)(Ψ(λi,j)−Ψ(λi,0))

φd,i ∝ exp{
C∑
x=1

I(cd = x)(Ψ(γx,i)−Ψ(γx,0)) +

Nd,V∑
n,j

I(wd,n = j)(Ψ(λi,j)−Ψ(λi,0))}

(A.15)
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A.1.3 Deriving the Evidence Lower Bound

The ELBO is the objective function which needs to be maximized. The maximization

is done using a coordinate ascent algorithm in which the variational parameters are

updated iteratively until the ELBO convergences. Monitoring the value of the ELBO

is useful for assessing algorithm termination, but also for sanity checks (the ELBO

is guaranteed to increase with every iteration).

In Equation (A.16) we expand the lower bound according to the conditional

dependencies of the model and those of the variational distribution.

L = Eq[log p(θ, β, w, z|α, η)]− Eq[log q(θ, β, z|γ, λ, φ)]

= Eq[log p(θ|α)] + Eq[log p(β|η)] + Eq[log p(z|θ)] + Eq[log p(w|z, β)]

− Eq[log q(θ|γ)]− Eq[log q(β|λ)]− Eq[log q(z|φ)]

(A.16)

In Equation (A.17) we derive the expectation term that regards the probability

of the topic proportions.

Eq[log p(θ|α)] = Eq[log
C∏
x=1

p(θx|α)]

= Eq[
C∑
x=1

log p(θx|α)]

=

C,K∑
x,i

(αi − 1)(Ψ(γx,i)−Ψ(γx,0)) +
C∑
x=1

log Γ(α0)−
C,K∑
x,i

log Γ(αi)

(A.17)

In Equation (A.18) we derive the expectation term that regards the probability

of the topics.

Eq[log p(β|η)] = Eq[log
K∏
i=1

p(βi|η)]

= Eq[
K∑
i=1

log p(βi|η)]

=

K,V∑
i,j

(ηj − 1)(Ψ(λi,j)−Ψ(λi,0)) +

K∑
i=1

log Γ(η0)−
K,V∑
i,j

log Γ(ηj)

(A.18)
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In Equation (A.19) we derive the expectation term that regards the probability

of the topic assignments.

Eq[log p(z|θ)] = Eq[log
M∏
d=1

p(zd|θ)]

= Eq[log

M∏
d=1

θcd,zd ]

= Eq[log

M,C,K∏
d,x,i

θ
I(cd=x)I(zd=i)
x,i ]

=

M,C,K∑
d,x,i

I(cd = x)φd,i(Ψ(γx,i)−Ψ(γx,0))

(A.19)

In Equation (A.20) we derive the expectation term that regards the probability

of the words.

Eq[log p(w|z, β)] = Eq[log

M,Nd∏
d,n

p(wd,n|zd, β)]

= Eq[log

M,Nd∏
d,n

βzd,wd,n
]

= Eq[log

M,Nd,K,V∏
d,n,i,j

β
I(wd,n=j)I(zd=i)
i,j ]

=

M,Nd,K,V∑
d,n,i,j

I(wd,n = j)φd,i(Ψ(λi,j)−Ψ(λi,0))

(A.20)

In Equation (A.21) we derive the expectation term that regards the variational

distributions of the topic proportions.

Eq[log q(θ|γ)] = Eq[log
C∏
x=1

q(θx|γx)]

= Eq[
C∑
x=1

log q(θx|γx)]

=

C,K∑
x,i

(γx,i − 1)(Ψ(γx,i)−Ψ(γx,0)) +
C∑
x=1

log Γ(γx,0)−
C,K∑
x,i

log Γ(γx,i)

(A.21)

In Equation (A.22) we derive the expectation term that regards the variational
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distributions of the topics.

Eq[log q(β|λ)] = Eq[log

K∏
i=1

p(βi|λi)]

= Eq[
K∑
i=1

log q(βi|λi)]

=

K,V∑
i,j

(λi,j − 1)(Ψ(λi,j)−Ψ(λi,0)) +
K∑
i=1

log Γ(λi,0)−
K,V∑
i,j

log Γ(λi,j)

(A.22)

In Equation (A.23) we derive the expectation term that regards the variational

distributions of the topic assignments.

Eq[log q(z|φ)] = Eq[log
M∏
d=1

q(zd|φd)]

= Eq[log

M∏
d=1

φd,zd ]

= Eq[log

M,K∏
d,i

φ
I(zd=i)
d,i ]

=

M,K∑
d,i

φd,i log φd,i

(A.23)

A.2 The Single-Context Latent Dirichlet Allocation Model

Equations (A.24), (A.25), (A.26) and (A.27) complete the description of the model

from Chapter 3.2.1.

Equation (A.24) represents the probability of the context specific topic propor-

tions in the exponential family form.

p(θx|α) = exp{(
K∑
i=1

(αi − 1) log θx,i) + log Γ(α0)−
K∑
i=1

log Γ(αi)} (A.24)

Equation (A.25) represents the probability of a topic in the exponential family
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form.

p(βi|η) = exp{(
V∑
j=1

(ηj − 1) log βi,j) + log Γ(η0)−
V∑
j=1

log Γ(ηj)} (A.25)

Equation (A.26) gives the probability of a topic assignment for a word.

p(zd,n|θ) = θcd,zd,n =

C,K∏
x,i

θ
I(cd=x)I(zd,n=i)
x,i (A.26)

Equation (A.27) gives the probability of a word given its assigned topic.

p(wd,n|zd,n, β) = βzd,n,wd,n
=

K,V∏
i,j

β
I(wd,n=j)I(zd,n=i)
i,j (A.27)

A.2.1 Deriving the Complete Conditionals

In this section we derive the complete conditionals of every latent variable given all

the other latent variables and the observations. We are showing that each such con-

ditional is in the exponential family. We further define the variational distributions

to have the same form as their corresponding complete conditionals.

In Equation (A.28) we derive the complete conditional associated with the per-

context topic proportions.

p(θx|θ−, z, β, w) ∝ p(θx|α)p(z|θx)

∝ p(θx|α)

M,Nd∏
d,n

p(zd,n|θx)I(cd=x)

∝
K∏
i=1

θαi−1
x,i

M,Nd,K∏
d,n,i

θ
I(cd=x)I(zd,n=i)
x,i

∝
K∏
i=1

θ
[αi+

∑M,Nd
d,n I(cd=x)I(zd,n=i)]−1

x,i

= Dir(a), ai = αi +

M,Nd∑
d,n

I(cd = x)I(zd,n = i)

= exp{(
K∑
i=1

(ai − 1) log θx,i) + log Γ(a0)−
K∑
i=1

log Γ(ai)}

(A.28)

Because the complete conditional of the per-context topic proportions is a Dirich-
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let, the corresponding variational distribution is going to be a Dirichlet as well.

Equations (A.29) and (A.30) give the necessary information.

q(θx|γx) = exp{(
K∑
i=1

(γx,i − 1) log θx,i) + log Γ(γx,0)−
K∑
i=1

log Γ(γx,i)} (A.29)

Eq[log θx,i|γx] = Ψ(γx,i)−Ψ(γx,0) (A.30)

In Equation (A.31) we derive the complete conditional associated with the topics.

p(βi|β−, z, θ, w) ∝ p(βi|η)p(w|z, βi)

∝ p(βi|η)

M,Nd∏
d,n

p(wd,n|zd,n, βi)

∝
V∏
j=1

β
ηj−1
i,j

M,Nd,V∏
d,n,j

β
I(wd,n=j)I(zd,n=i)
i,j

∝
V∏
j=1

β
[ηj+

∑M,Nd
d,n I(wd,n=j)I(zd,n=i)]−1

i,j

= Dir(b), bj = ηj +

M,Nd∑
d,n

I(wd,n = j)I(zd,n = i)

= exp{(
V∑
j=1

(bj − 1) log βi,j) + log Γ(b0)−
V∑
j=1

log Γ(bj)}

(A.31)

Because the complete conditional of a topic is a Dirichlet, the corresponding

variational distribution is going to be a Dirichlet as well. Equations (A.32) and

(A.33) give the necessary information.

q(βi|λi) = exp{(
V∑
j=1

(λi,j − 1) log βi,j) + log Γ(λi,0)−
V∑
j=1

log Γ(λi,j)} (A.32)

Eq[log βi,j |λi] = Ψ(λi,j)−Ψ(λi,0) (A.33)

In Equation (A.34) we derive the complete conditional associated with the per
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word topic assignments.

p(zd,n = i|z−, θ, β, w) ∝ p(zd,n = i|θ)p(wd,n|βi)

∝
C∏
x=1

θ
I(cd=x)
x,i

V∏
j=1

β
I(wd,n=j)
i,j

∝ θcd,iβi,wd,n

∝ exp{log c}, c = θcd,iβi,wd,n

∝ exp{log θcd,i + log βi,wd,n
}

(A.34)

Because the complete conditional of the per-word topic assignment is a Categor-

ical, the corresponding variational distribution is going to be a Categorical as well.

Equation (A.35) gives the necessary information.

q(zd,n = i|φd,n) = φd,n,i = exp{log φd,n,i} (A.35)

A.2.2 Deriving the Update Formulas of the Variational Parameters

The mathematics of the inference are based on the fact that the natural parame-

ters of the variational distributions are equal to the expected value of the natural

parameters of the corresponding complete conditionals.

In Equation (A.36) we derive the update formula of the variational parameter

associated with the topics.

λi,j − 1 = Eq[bj − 1]

λi,j = Eq[bj ] = Eq[ηj +

M,Nd∑
d,n

I(wd,n = j)I(zd,n = i)]

= ηj +

M,Nd∑
d,n

I(wd,n = j)Eq[I(zd,n = i)]

= ηj +

M,Nd∑
d,n

I(wd,n = j)φd,n,i

(A.36)

In Equation (A.37) we derive the update formula of the variational parameter
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associated with the per-context topic proportions.

γx,i − 1 = Eq[ai − 1]

γx,i = Eq[ai] = Eq[αi +

M,Nd∑
d,n

I(cd = x)I(zd,n = i)]

= αi +

M,Nd∑
d,n

I(cd = x)Eq[I(zd,n = i)]

= αi +

M,Nd∑
d,n

I(cd = x)φd,n,i

(A.37)

In Equation (A.38) we derive the update formula of the variational parameter

associated with the per-document topic assignments.

log φd,n,i ∝ Eq[log c] = Eq[log(θcd,iβi,wd,n
)]

= Eq[log(

C∏
x=1

θ
I(cd=x)
x,i

V∏
j=1

β
I(wd,n=j)
i,j )]

=
C∑
x=1

I(cd = x)Eq[log θx,i] +
V∑
j=1

I(wd,n = j)Eq[log βi,j ]

=

C∑
x=1

I(cd = x)(Ψ(γx,i)−Ψ(γx,0)) +

V∑
j=1

I(wd,n = j)(Ψ(λi,j)−Ψ(λi,0))

φd,n,i ∝ exp{
C∑
x=1

I(cd = x)(Ψ(γx,i)−Ψ(γx,0)) +
V∑
j=1

I(wd,n = j)(Ψ(λi,j)−Ψ(λi,0))}

(A.38)

A.2.3 Deriving the Evidence Lower Bound

The ELBO is the objective function which needs to be maximized. The maximization

is done using a coordinate ascent algorithm in which the variational parameters are

updated iteratively until the ELBO convergences. Monitoring the value of the ELBO

is useful for assessing algorithm termination, but also for sanity checks (the ELBO

is guaranteed to increase with every iteration).

In Equation (A.39) we expand the lower bound according to the conditional
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dependencies of the model and those of the variational distribution.

L = Eq[log p(θ, β, w, z|α, η)]− Eq[log q(θ, β, z|γ, λ, φ)]

= Eq[log p(θ|α)] + Eq[log p(β|η)] + Eq[log p(z|θ)] + Eq[log p(w|z, β)]

− Eq[log q(θ|γ)]− Eq[log q(β|λ)]− Eq[log q(z|φ)]

(A.39)

In Equation (A.40) we derive the expectation term that regards the probability

of the topic proportions.

Eq[log p(θ|α)] = Eq[log

C∏
x=1

p(θx|α)]

= Eq[

C∑
x=1

log p(θx|α)]

=

C,K∑
x,i

(αi − 1)(Ψ(γx,i)−Ψ(γx,0)) +
C∑
x=1

log Γ(α0)−
C,K∑
x,i

log Γ(αi)

(A.40)

In Equation (A.41) we derive the expectation term that regards the probability

of the topics.

Eq[log p(β|η)] = Eq[log
K∏
i=1

p(βi|η)]

= Eq[

K∑
i=1

log p(βi|η)]

=

K,V∑
i,j

(ηj − 1)(Ψ(λi,j)−Ψ(λi,0)) +
K∑
i=1

log Γ(η0)−
K,V∑
i,j

log Γ(ηj)

(A.41)

In Equation (A.42) we derive the expectation term that regards the probability
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of the topic assignments.

Eq[log p(z|θ)] = Eq[log

M,Nd∏
d,n

p(zd,n|θ)]

= Eq[log

M,Nd∏
d,n

θcd,zd,n ]

= Eq[log

M,Nd,C,K∏
d,n,x,i

θ
I(cd=x)I(zd,n=i)
x,i ]

=

M,Nd,C,K∑
d,n,x,i

I(cd = x)φd,n,i(Ψ(γx,i)−Ψ(γx,0))

(A.42)

In Equation (A.43) we derive the expectation term that regards the probability

of the words.

Eq[log p(w|z, β)] = Eq[log

M,Nd∏
d,n

p(wd,n|zd,n, β)]

= Eq[log

M,Nd∏
d,n

βzd,n,wd,n
]

= Eq[log

M,Nd,K,V∏
d,n,i,j

β
I(wd,n=j)I(zd,n=i)
i,j ]

=

M,Nd,K,V∑
d,n,i,j

I(wd,n = j)φd,n,i(Ψ(λi,j)−Ψ(λi,0))

(A.43)

In Equation (A.44) we derive the expectation term that regards the variational

distributions of the topic proportions.

Eq[log q(θ|γ)] = Eq[log
C∏
x=1

q(θx|γx)]

= Eq[
C∑
x=1

log q(θx|γx)]

=

C,K∑
x,i

(γx,i − 1)(Ψ(γx,i)−Ψ(γx,0)) +
C∑
x=1

log Γ(γx,0)−
C,K∑
x,i

log Γ(γx,i)

(A.44)

In Equation (A.45) we derive the expectation term that regards the variational
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distributions of the topics.

Eq[log q(β|λ)] = Eq[log

K∏
i=1

q(βi|λi)]

= Eq[
K∑
i=1

log q(βi|λi)]

=

K,V∑
i,j

(λi,j − 1)(Ψ(λi,j)−Ψ(λi,0)) +
K∑
i=1

log Γ(λi,0)−
K,V∑
i,j

log Γ(λi,j)

(A.45)

In Equation (A.46) we derive the expectation term that regards the variational

distributions of the topic assignments.

Eq[log q(z|φ)] = Eq[log

M,Nd∏
d,n

q(zd,n|φd,n)]

= Eq[log

M,Nd∏
d,n

φd,n,zd,n ]

= Eq[log

M,Nd,K∏
d,n,i

φ
I(zd,n=i)
d,n,i ]

=

M,Nd,K∑
d,n,i

φd,n,i log φd,n,i

(A.46)

99



A. DETAILED PROOFS FOR SINGLE-CONTEXT TOPIC MODELS

100



Appendix B

Detailed Proofs for the

Co-occurrence Topic Model

Throughout the proof, we make use of a short-hand notation which de-clutters

the mathematics. For some K-dimensional vector α, we use the convention α0 =∑K
i=1 αi. We also make a note of the digamma function Ψ() present in many equa-

tions - this is the first derivative of the log Γ function and can be computed using a

Taylor approximation [1].

Equations (B.1), (B.2), (B.3) and (B.4) complete the description of the model

from Chapter 4.2.

Equation (B.1) represents the probability of the document-level topic proportions

in the exponential family form.

p(θd|α) = exp{(
K∑
i=1

(αi − 1) log θd,i) + log Γ(α0)−
K∑
i=1

log Γ(αi)} (B.1)

Equation (B.2) represents the probability of a topic in the exponential family

form.

p(βi|η) = exp{(
V∑
j=1

(ηj − 1) log βi,j) + log Γ(η0)−
V∑
j=1

log Γ(ηj)} (B.2)

Equation (B.3) gives the probability of a topic assignment to a word co-occurrence.
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B. DETAILED PROOFS FOR THE CO-OCCURRENCE TOPIC
MODEL

p(zd,p|θd) = θd,zd,p =

K∏
i=1

θ
I(zd,p=i)
d,i (B.3)

Equation (B.4) gives the probability of a word given the topic assigned to the

co-occurrence set it is part of.

p(wd,p,n|zd,p, β) = βzd,p,wd,p,n
=

K,V∏
i,j

β
I(wd,p,n=j)I(zd,p=i)
i,j (B.4)

B.1 Deriving the Complete Conditionals

In this section we derive the complete conditionals of every latent variable given all

the other latent variables and the observations. We are showing that each such con-

ditional is in the exponential family. We further define the variational distributions

to have the same form as their corresponding complete conditionals.

In Equation (B.5) we derive the complete conditional associated with the docu-

ment topic proportions.

p(θd|θ−, z, β, w) ∝ p(θd|α)p(z|θd)

∝ p(θd|α)

Nd∏
p=1

p(zd,p|θd)

∝
K∏
i=1

θαi−1
d,i

Nd,K∏
p,i

θ
I(zd,p=i)
d,i

∝
K∏
i=1

θ
[αi+

∑Nd
p=1 I(zd,p=i)]−1

d,i

= Dir(a), ai = αi +

Nd∑
p=1

I(zd,p = i)

= exp{(
K∑
i=1

(ai − 1) log θd,i) + log Γ(a0)−
K∑
i=1

log Γ(ai)}

(B.5)

Because the complete conditional of the document topic proportions is a Dirich-

let, the corresponding variational distribution is going to be a Dirichlet as well.
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Equations (B.6) and (B.7) give the necessary information.

q(θd|γd) = exp{(
K∑
i=1

(γd,i − 1) log θd,i) + log Γ(γd,0)−
K∑
i=1

log Γ(γd,i)} (B.6)

Eq[log θd,i|γd] = Ψ(γd,i)−Ψ(γd,0) (B.7)

In Equation (B.8) we derive the complete conditional associated with the topics.

p(βi|β−, z, θ, w) ∝ p(βi|η)p(w|z, βi)

∝ p(βi|η)

M,Nd,Nd,p∏
d,p,n

p(wd,p,n|zd,p, βi)

∝
V∏
j=1

β
ηj−1
i,j

M,Nd,Nd,p,V∏
d,n,p,j

β
I(wd,p,n=j)I(zd,p=i)
i,j

∝
V∏
j=1

β
[ηj+

∑M,Nd,Nd,p
d,p,n I(wd,p,n=j)I(zd,p=i)]−1

i,j

= Dir(b), bj = ηj +

M,Nd,Nd,p∑
d,p,n

I(wd,p,n = j)I(zd,p = i)

= exp{(
V∑
j=1

(bj − 1) log βi,j) + log Γ(b0)−
V∑
j=1

log Γ(bj)}

(B.8)

Because the complete conditional of a topic is a Dirichlet, the corresponding

variational distribution is going to be a Dirichlet as well. Equations (B.9) and

(B.10) give the necessary information.

q(βi|λi) = exp{(
V∑
j=1

(λi,j − 1) log βi,j) + log Γ(λi,0)−
V∑
j=1

log Γ(λi,j)} (B.9)

Eq[log βi,j |λi] = Ψ(λi,j)−Ψ(λi,0) (B.10)

In Equation (B.11) we derive the complete conditional associated with the per
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word co-occurrence topic assignments.

p(zd,p = i|z−, θ, β, w) ∝ p(zd,p = i|θd)p(w|βi)

∝ p(zd,p = i|θd)
Nd,p∏
n=1

p(wd,p,n|βi)

∝ θd,i
Nd,p,V∏
n,j

β
I(wd,p,n=j)
i,j

∝ θd,i
Nd,p∏
n=1

βi,wd,p,n

∝ exp{log c}, c = θd,i

Nd,p∏
n=1

βi,wd,p,n

∝ exp{log θd,i +

Nd,p∑
n=1

log βi,wd,p,n
}

(B.11)

Because the complete conditional of the per word co-occurrence topic assign-

ment is a Categorical, the corresponding variational distribution is going to be a

Categorical as well. Equation (B.12) gives the necessary information.

q(zd,p = i|φd,p) = φd,p,i = exp{log φd,p,i} (B.12)

B.2 Deriving the Update Formulas of the Variational

Parameters

The mathematics of the inference are based on the fact that the natural parame-

ters of the variational distributions are equal to the expected value of the natural

parameters of the corresponding complete conditionals.

In Equation (B.13) we derive the update formula of the variational parameter

104



B.2 Deriving the Update Formulas of the Variational Parameters

associated with the topics.

λi,j − 1 = Eq[bj − 1]

λi,j = Eq[bj ] = Eq[ηj +

M,Nd,Nd,p∑
d,p,n

I(wd,p,n = j)I(zd,p = i)]

= ηj +

M,Nd,Nd,p∑
d,p,n

I(wd,p,n = j)Eq[I(zd,p = i)]

= ηj +

M,Nd,Nd,p∑
d,p,n

I(wd,p,n = j)φd,p,i

(B.13)

In Equation (B.14) we derive the update formula of the variational parameter

associated with the document topic proportions.

γd,i − 1 = Eq[ai − 1]

γd,i = Eq[ai] = Eq[αi +

Nd∑
p=1

I(zd,p = i)]

= αi +

Nd∑
p=1

Eq[I(zd,p = i)]

= αi +

Nd∑
p=1

φd,p,i

(B.14)

In Equation (B.15) we derive the update formula of the variational parameter

associated with the per word co-occurrence topic assignments.

log φd,p,i ∝ Eq[log c] = Eq[log(θd,i

Nd,p∏
n=1

βi,wd,p,n
)]

= Eq[log(θd,i

Nd,p,V∏
n,j

β
I(wd,p,n=j)
i,j )]

= Eq[log θd,i] +

Nd,p,V∑
n,j

I(wd,p,n = j)Eq[log βi,j ]

= Ψ(γd,i)−Ψ(γd,0) +

Nd,p,V∑
n,j

I(wd,p,n = j)(Ψ(λi,j)−Ψ(λi,0))

φd,p,i ∝ exp{Ψ(γd,i)−Ψ(γd,0) +

Nd,p,V∑
n,j

I(wd,p,n = j)(Ψ(λi,j)−Ψ(λi,0))}

(B.15)

105
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B.3 Deriving the Evidence Lower Bound

The ELBO is the objective function which needs to be maximized. The maximization

is done using a coordinate ascent algorithm in which the variational parameters are

updated iteratively until the ELBO convergences. Monitoring the value of the ELBO

is useful for assessing algorithm termination, but also for sanity checks (the ELBO

is guaranteed to increase with every iteration).

In Equation (B.16) we expand the lower bound according to the conditional

dependencies of the model and those of the variational distribution.

L = Eq[log p(θ, β, w, z|α, η)]− Eq[log q(θ, β, z|γ, λ, φ)]

= Eq[log p(θ|α)] + Eq[log p(β|η)] + Eq[log p(z|θ)] + Eq[log p(w|z, β)]

− Eq[log q(θ|γ)]− Eq[log q(β|λ)]− Eq[log q(z|φ)]

(B.16)

In Equation (B.17) we derive the expectation term that regards the probability

of the topic proportions.

Eq[log p(θ|α)] = Eq[log

M∏
d=1

p(θd|α)]

= Eq[
M∑
d=1

log p(θd|α)]

=

M,K∑
d,i

(αi − 1)(Ψ(γd,i)−Ψ(γd,0)) +

M∑
d=1

log Γ(α0)−
M,K∑
d,i

log Γ(αi)

(B.17)

In Equation (B.18) we derive the expectation term that regards the probability
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of the topics.

Eq[log p(β|η)] = Eq[log

K∏
i=1

p(βi|η)]

= Eq[
K∑
i=1

log p(βi|η)]

=

K,V∑
i,j

(ηj − 1)(Ψ(λi,j)−Ψ(λi,0)) +
K∑
i=1

log Γ(η0)−
K,V∑
i,j

log Γ(ηj)

(B.18)

In Equation (B.19) we derive the expectation term that regards the probability

of the topic assignments.

Eq[log p(z|θ)] = Eq[log

M,Nd∏
d,p

p(zd,p|θd)]

= Eq[log

M,Nd∏
d,p

θd,zd,p ]

= Eq[log

M,Nd,K∏
d,p,i

θ
I(zd,p=i)
d,i ]

=

M,Nd,K∑
d,p,i

φd,p,i(Ψ(γd,i)−Ψ(γd,0))

(B.19)

In Equation (B.20) we derive the expectation term that regards the probability

of the words.

Eq[log p(w|z, β)] = Eq[log

M,Nd,Nd,p∏
d,p,n

p(wd,p,n|zd,p, β)]

= Eq[log

M,Nd,Nd,p∏
d,p,n

βzd,p,wd,p,n
]

= Eq[log

M,Nd,Nd,p,K,V∏
d,p,n,i,j

β
I(wd,p,n=j)I(zd,p=i)
i,j ]

=

M,Nd,Nd,p,K,V∑
d,p,n,i,j

I(wd,p,n = j)φd,p,i(Ψ(λi,j)−Ψ(λi,0))

(B.20)

In Equation (B.21) we derive the expectation term that regards the variational
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distributions of the topic proportions.

Eq[log q(θ|γ)] = Eq[log

M∏
d=1

q(θd|γd)]

= Eq[
M∑
d=1

log q(θd|γd)]

=

M,K∑
d,i

(γd,i − 1)(Ψ(γd,i)−Ψ(γd,0)) +

M∑
d=1

log Γ(γd,0)−
M,K∑
d,i

log Γ(γd,i)

(B.21)

In Equation (B.22) we derive the expectation term that regards the variational

distributions of the topics.

Eq[log q(β|λ)] = Eq[log

K∏
i=1

p(βi|λi)]

= Eq[

K∑
i=1

log q(βi|λi)]

=

K,V∑
i,j

(λi,j − 1)(Ψ(λi,j)−Ψ(λi,0)) +
K∑
i=1

log Γ(λi,0)−
K,V∑
i,j

log Γ(λi,j)

(B.22)

In Equation (B.23) we derive the expectation term that regards the variational

distributions of the topic assignments.

Eq[log q(z|φ)] = Eq[log

M,Nd∏
d,p

q(zd,p|φd,p)]

= Eq[log

M,Nd∏
d,p

φd,p,zd,p ]

= Eq[log

M,Nd,K∏
d,p,i

φ
I(zd,p=i)
d,p,i ]

=

M,Nd,K∑
d,p,i

φd,p,i log φd,p,i

(B.23)
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Appendix C

Detailed Proofs for the Subset

Topic Model

Throughout the proof, we make use of a short-hand notation which de-clutters

the mathematics. For some K-dimensional vector α, we use the convention α0 =∑K
i=1 αi. We also make a note of the digamma function Ψ() present in many equa-

tions - this is the first derivative of the log Γ function and can be computed using a

Taylor approximation [1].

Equations (C.1), (C.2), (C.3), (C.4), (C.5) and (C.6) complete the description

of the model from Chapter 5.2.

Equation (C.1) represents the probability of the subset proportions in the expo-

nential family form.

p(π|δ) = exp{(
S∑
x=1

(δx − 1) log πx) + log Γ(δ0)−
S∑
x=1

log Γ(δx)} (C.1)

Equation (C.2) represents the probability of a topic in the exponential family

form.

p(βi|η) = exp{(
V∑
j=1

(ηj − 1) log βi,j) + log Γ(η0)−
V∑
j=1

log Γ(ηj)} (C.2)

Equation (C.3) represents the probability of the proportions over the indexes of

109
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a subset’s elements in the exponential family form.

p(θd|α) = exp{(
T∑
p=1

(αp − 1) log θd,p) + log Γ(α0)−
T∑
p=1

log Γ(αp)} (C.3)

Equation (C.4) gives the probability of assigning the index of a subset’s element

to a word.

p(zd,n|θd) = θd,zd,n =

T∏
p=1

θ
I(zd,n=p)
d,p (C.4)

Equation (C.5) gives the probability of a subset assignment to a document.

p(td|π) = πtd =
S∏
x=1

πI(td=x)
x (C.5)

Equation (C.6) gives the probability of a word given the index of subset’s element

and the subset associated with the document.

p(wd,n|zd,n, β, td) = βtd.zd,n,wd,n
=

S,T,K,V∏
x,p,i,j

β
I(wd,n=j)I(zd,n=p)I(td=x)I(x.p=i)
i,j (C.6)

Equations (C.7), (C.9), (C.11), (C.13) and (C.15) define the variational distribu-

tions used in the posterior approximation. Equations (C.8), (C.10), (C.12), (C.14)

and (C.16) give some necessary expectations for the proof. The expectation terms

from (C.8), (C.10) and (C.12) are obtained based on the observation that the first

derivative of the log normalizer is equal to the expected value of the sufficient statis-

tics, while the ones from (C.14) and (C.16) result from the fact that the expected

value of the indicator of a variable taking on a particular setting is the probability

of the variable being in that setting.

Equation (C.7) represents the variational distribution of the subset proportions

in the exponential family form.

q(π|µ) = Dir(µ) = exp{(
S∑
x=1

(µx − 1) log πx) + log Γ(µ0)−
S∑
x=1

log Γ(µx)} (C.7)

Eq[log πx|µ] = Ψ(µx)−Ψ(µ0) (C.8)

110



Equation (C.9) represents the variational distribution of a topic in the exponen-

tial family form.

q(βi|λi) = Dir(λi) = exp{(
V∑
j=1

(λi,j−1) log βi,j)+log Γ(λi,0)−
V∑
j=1

log Γ(λi,j)} (C.9)

Eq[log βi,j |λi] = Ψ(λi,j)−Ψ(λi,0) (C.10)

Equation (C.11) represents the variational distribution of the proportions over

the indexes of a subset’s elements in the exponential family form.

q(θd|γd) = Dir(γd) = exp{(
T∑
p=1

(γd,p − 1) log θd,p) + log Γ(γd,0)−
T∑
p=1

log Γ(γd,p)}

(C.11)

Eq[log θd,p|γd] = Ψ(γd,p)−Ψ(γd,0) (C.12)

Equation (C.13) gives the variational distribution of the assignment of an index

of a subset’s element to a word.

q(zd,n|φd,n) = Cat(φd,n) = φd,n,zd,n =
T∏
p=1

φ
I(zd,n=p)
d,n,p (C.13)

Eq[I(zd,n = i)] = q(zd,n = i|φd,n) = φd,n,i (C.14)

Equation (C.15) gives the variational distribution of a subset assignment to a

document.

q(td|ζd) = Cat(ζd) = ζd,td =
S∏
x=1

ζ
I(td=x)
d,x (C.15)

Eq[I(td = x)] = q(td = x|ζd) = ζd,x (C.16)
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C.1 Deriving the Evidence Lower Bound

The ELBO is the objective function which needs to be maximized. The maximization

is done using a coordinate ascent algorithm in which the variational parameters are

updated iteratively until the ELBO convergences. Monitoring the value of the ELBO

is useful for assessing algorithm termination, but also for sanity checks (the ELBO

is guaranteed to increase with every iteration).

In Equation (C.17) we expand the lower bound according to the conditional

dependencies of the model and those of the variational distribution.

L = Eq[log p(θ, β, π, w, z, t|α, η, δ)]− Eq[log q(θ, β, π, z, t|γ, λ, µ, φ, ζ)]

= Eq[log p(π|δ)] + Eq[log p(θ|α)] + Eq[log p(β|η)] + Eq[log p(z|θ)]+

+ Eq[log p(t|π)] + Eq[log p(w|z, t, β)]− Eq[log q(θ|γ)]−

− Eq[log q(β|λ)]− Eq[log q(π|µ)]− Eq[log q(z|φ)]− Eq[log q(t|ζ)]

(C.17)

In Equation (C.18) we derive the expectation term that regards the probability

of the proportions over the indexes of a subset’s elements.

Eq[log p(θ|α)] = Eq[log
M∏
d=1

p(θd|α)]

= Eq[

M∑
d=1

log p(θd|α)]

=

M,T∑
d,p

(αp − 1)(Ψ(γd,p)−Ψ(γd,0)) +
M∑
d=1

log Γ(α0)−
M,T∑
d,p

log Γ(αp)

(C.18)

In Equation (C.19) we derive the expectation term that regards the probability
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of the topics.

Eq[log p(β|η)] = Eq[log

K∏
i=1

p(βi|η)]

= Eq[
K∑
i=1

log p(βi|η)]

=

K,V∑
i,j

(ηj − 1)(Ψ(λi,j)−Ψ(λi,0)) +
K∑
i=1

log Γ(η0)−
K,V∑
i,j

log Γ(ηj)

(C.19)

In Equation (C.20) we derive the expectation term that regards the probability

of the proportions over the subsets.

Eq[log p(π|δ)] =

S∑
x=1

(δx − 1)(Ψ(µx)−Ψ(µ0)) + log Γ(δ0)−
S∑
x=1

log Γ(δx) (C.20)

In Equation (C.21) we derive the expectation term that regards the probability

of assigning the index of a subset’s element to every word.

Eq[log p(z|θ)] = Eq[log

M,Nd∏
d,n

p(zd,n|θd)]

= Eq[log

M,Nd∏
d,n

θd,zd,n ]

= Eq[log

M,Nd,T∏
d,n,p

θ
I(zd,n=p)
d,p ]

=

M,Nd,T∑
d,n,p

φd,n,p(Ψ(γd,p)−Ψ(γd,0))

(C.21)

In Equation (C.22) we derive the expectation term that regards the probability
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of assigning a subset to every document.

Eq[log p(t|π)] = Eq[log

M∏
d=1

p(td|π)]

= Eq[log
M∏
d=1

πtd ]

= Eq[log

M,S∏
d,x

πI(td=x)
x ]

=

M,S∑
d,x

ζd,x(Ψ(µx)−Ψ(µ0))

(C.22)

In Equation (C.18) we derive the expectation term that regards the probability

of the words given the subset assigned to the document and the indication of which

element of the subset to draw from.

Eq[log p(w|β, z, t)] = Eq[log

M,Nd∏
d,n

p(wd,n|td, zd,n, β)]

= Eq[log

M,Nd∏
d,n

βtd.zd,n,wd,n
]

= Eq[log

M,Nd,S,T,K,V∏
d,n,x,p,i,j

β
I(wd,n=j)I(zd,n=p)I(td=x)I(x.p=i)
i,j ]

=

M,Nd,S,T,K,V∑
d,n,x,p,i,j

ζd,xφd,n,p(Ψ(λi,j)−Ψ(λi,0))I(wd,n = j)I(x.p = i)

(C.23)

In Equation (C.24) we derive the expectation term that regards the variational

distributions of the proportions over a subset’s elements.

Eq[log q(θ|γ)] = Eq[log

M∏
d=1

q(θd|γd)]

= Eq[

M∑
d=1

log p(θd|γd)]

=

M,T∑
d,p

(γd,p − 1)(Ψ(γd,p)−Ψ(γd,0)) +
M∑
d=1

log Γ(γd,0)−
M,T∑
d,p

log Γ(γd,p)

(C.24)
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In Equation (C.25) we derive the expectation term that regards the variational

distributions of the topics.

Eq[log q(β|λ)] = Eq[log
K∏
i=1

q(βi|λi)]

= Eq[

K∑
i=1

log p(βi|λi)]

=

K,V∑
i,j

(λi,j − 1)(Ψ(λi,j)−Ψ(λi,0)) +

K∑
i=1

log Γ(λi,0)−
K,V∑
i,j

log Γ(λi,j)

(C.25)

In Equation (C.26) we derive the expectation term that regards the variational

distribution of the proportions over the subsets.

Eq[log q(π|µ)] =

S∑
x=1

(µx − 1)(Ψ(µx)−Ψ(µ0)) + log Γ(µ0)−
S∑
x=1

log Γ(µx) (C.26)

In Equation (C.27) we derive the expectation term that regards the variational

distributions of the assignment of subset indexes to words.

Eq[log q(z|φ)] = Eq[log

M,Nd∏
d,n

q(zd,n|φd,n)]

= Eq[log

M,Nd∏
d,n

φd,n,zd,n ]

= Eq[log

M,Nd,T∏
d,n,p

φ
I(zd,n=p)
d,n,p ]

=

M,Nd,T∑
d,n,p

φd,n,p log φd,n,p

(C.27)

In Equation (C.28) we derive the expectation term that regards the variational
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distributions of the assignment of subsets to documents.

Eq[log q(t|ζ)] = Eq[log

M∏
d=1

q(td|ζd)]

= Eq[log
M∏
d=1

ζd,td ]

= Eq[log

M,S∏
d,x

ζ
I(td=x)
d,x ]

=

M,S∑
d,x

ζd,x log ζd,x

(C.28)

C.2 Deriving the Update Formulas of the Variational

Parameters

Maximizing the lower bound with respect to every variational parameter leads to

the update formulas from Equations (C.31), (C.34), (C.37), (C.40) and (C.43).

Equations (C.29), (C.30) and (C.31) address the maximization with respect to

the variational parameter corresponding to the subset proportions.

Lµx = (δx − 1)(Ψ(µx)−Ψ(µ0)) + (Ψ(µx)−Ψ(µ0))
M∑
d=1

ζd,x−

− (µx − 1)(Ψ(µx)−Ψ(µ0))− log Γ(µ0) + log Γ(µx)

(C.29)

(Lµx)′ = (δx − 1)(Ψ′(µx)−Ψ′(µ0)) + (Ψ′(µx)−Ψ′(µ0))

M∑
d=1

ζd,x−

− (µx − 1)(Ψ′(µx)−Ψ′(µ0))−Ψ(µx) + Ψ(µ0)−Ψ(µ0) + Ψ(µx)

= (Ψ′(µx)−Ψ′(µ0))(δx +

M∑
d=1

ζd,x − µx)

(C.30)

µx = δx +
M∑
d=1

ζd,x (C.31)

Equations (C.32), (C.33) and (C.34) address the maximization with respect to

the variational parameter corresponding to the document-level proportions over the
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indexes of a subset.

Lγd,p = (αp − 1)(Ψ(γd,p)−Ψ(γd,0)) + (Ψ(γd,p)−Ψ(γd,0))

Nd∑
n=1

φd,n,p−

− (γd,p − 1)(Ψ(γd,p)−Ψ(γd,0))− log Γ(γd,0) + log Γ(γd,p)

(C.32)

(Lγd,p)′ = (αp − 1)(Ψ′(γd,p)−Ψ′(γd,0)) + (Ψ′(γd,p)−Ψ′(γd,0))

Nd∑
n=1

φd,n,p−

− (γd,p − 1)(Ψ′(γd,p)−Ψ′(γd,0))−Ψ(γd,p) + Ψ(γd,0)−Ψ(γd,0) + Ψ(γd,p)

= (Ψ′(γd,p)−Ψ′(γd,0))(αp +

Nd∑
n=1

φd,n,p − γd,p)

(C.33)

γd,p = αp +

Nd∑
n=1

φd,n,p (C.34)

Equations (C.35), (C.36) and (C.37) address the maximization with respect to

the variational parameter corresponding to a topic.

Lλi,j = (ηj − 1)(Ψ(λi,j)−Ψ(λi,0))+

+ (Ψ(λi,j)−Ψ(λi,0))

M,Nd,S,T∑
d,n,x,p

ζd,xφd,n,pI(wd,n = j)I(x.p = i)−

− (λi,j − 1)(Ψ(λi,j)−Ψ(λi,0))− log Γ(λi,0) + log Γ(λi,j)

(C.35)

(Lλi,j )
′ = (ηj − 1)(Ψ′(λi,j)−Ψ′(λi,0))+

+ (Ψ′(λi,j)−Ψ′(λi,0))

M,Nd,S,T∑
d,n,x,p

ζd,xφd,n,pI(wd,n = j)I(x.p = i)−

− (λi,j − 1)(Ψ′(λi,j)−Ψ′(λi,0))−Ψ(λi,j) + Ψ(λi,0)−Ψ(λi,0) + Ψ(λi,j)

= (Ψ′(λi,j)−Ψ′(λi,0))(ηj +

M,Nd,S,T∑
d,n,x,p

ζd,xφd,n,pI(wd,n = j)I(x.p = i)− λd,p)

(C.36)
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λi,j = αp +

M,Nd,S,T∑
d,n,x,p

ζd,xφd,n,pI(wd,n = j)I(x.p = i) (C.37)

Equations (C.38), (C.39) and (C.40) address the maximization with respect to

the variational parameter corresponding to the subset-index assignment to a word.

This is a constrained maximization where
∑T

p=1 φd,n,p = 1. The Lagrangian is

presented below.

Lφd,n,p
= φd,n,p(Ψ(γd,p)−Ψ(γd,0))+

+ φd,n,p

S,K,V∑
x,i,j

ζd,x(Ψ(λi,j)−Ψ(λi,0))I(wd,n = j)I(x.p = i)−

− φd,n,p log φd,n,p + ad,n

T∑
p=1

(φd,n,p − 1)

(C.38)

(Lφd,n,p
)′ = Ψ(γd,p)−Ψ(γd,0)+

+

S,K,V∑
x,i,j

ζd,x(Ψ(λi,j)−Ψ(λi,0))I(wd,n = j)I(x.p = i)−

− log φd,n,p − 1 + ad,n

(C.39)

φd,n,p ∝ exp{Ψ(γd,p)−Ψ(γd,0) +

S,K,V∑
x,i,j

ζd,x(Ψ(λi,j)−Ψ(λi,0))I(wd,n = j)I(x.p = i)}

(C.40)

Equations (C.41), (C.42) and (C.43) address the maximization with respect to

the variational parameter corresponding to the subset assignment to a document.

This is a constrained maximization where
∑S

x=1 ζd,x = 1. The Lagrangian is pre-

sented below.

Lζd,x = ζd,x(Ψ(µx)−Ψ(µ0))+

+ ζd,x

Nd,T,K,V∑
n,p,i,j

φd,n,p(Ψ(λi,j)−Ψ(λi,0))I(wd,n = j)I(x.p = i)−

− ζd,x log ζd,x + bd

S∑
x=1

(ζd,x − 1)

(C.41)
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C.2 Deriving the Update Formulas of the Variational Parameters

(Lζd,x)′ = Ψ(µx)−Ψ(µ0)+

+

Nd,T,K,V∑
n,p,i,j

φd,n,p(Ψ(λi,j)−Ψ(λi,0))I(wd,n = j)I(x.p = i)−

− log ζd,x − 1 + bd

(C.42)

ζd,x ∝ exp{Ψ(µx)−Ψ(µ0) +

Nd,T,K,V∑
n,p,i,j

φd,n,p(Ψ(λi,j)−Ψ(λi,0))I(wd,n = j)I(x.p = i)}

(C.43)
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