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Abstract 

G-protein coupled receptors (GPCRs) are a large and diverse family of cell surface 

receptors involved in signal transduction.  They share a general structure of a seven 

transmembrane domain, an extracellular N-terminus and an intracellular C-terminus 

domain responsible for coupling to the G-protein. GPCRs are split into 6 families 

(class A to F) based on sequence homology.  GPCRs are associated with a number 

of diseases such as Schizophrenia, Parkinson’s, Alzheimer’s, anxiety and some 

cancers making them attractive targets for drug design.  There is huge potential for 

further development of drugs that target GPCRs and the more that is understood 

about the receptors and their structures, the better the chance of discovering a 

successful drug compound.  An accurate way to model the structure of other 

GPCRs using known structures from X-ray crystallography would therefore be very 

useful. To do this, sequences from the different classes of GPCR will need to be 

aligned as accurately as possible.  Half sphere exposure data can be used to more 

accurately identify the transmembrane regions which are the most conserved across 

the different classes. The method used then compared ungapped alignments of 

defined helical regions. An ungapped pair-wise alignment was carried out to 

compare two helix sequences at a time (one from class C and the other from class 

A, B, E or F) and to score how well they align at each position. This data was then 

collected, each top scoring alignment from the pair-wise alignments is noted and the 

alignment that has the highest number of votes is considered to be the best. The 

criteria that were scored at each alignment were the BLOSUM matrix scores, 

hydropathy, entropy, amino acid volume and variability. 
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Chapter 1 

Overview of GPCRs 

1.1. General introduction to the GPCR superfamily 

G-protein coupled receptors (GPCR’s) are the largest superfamily of cell surface 

receptors (Chun et al. 2012).  They are a very diverse family of receptors and their 

main function is cell signal transduction (Kroeze et al. 2003).  GPCR’s are present in 

most eukaryotic organisms from mammals to insects and even plants.  This shows 

that GPCR’s originated very early on in evolution.  GPCR’s are characterised by 

having a common domain of seven transmembrane helices (7TM region).  These 

helices are connected by intracellular and extracellular loops and pass through the 

cell membrane, anchoring the GPCR to the plasma membrane.  Ligands for some 

GPCR families bind directly to this 7TM region.  Some of the families of receptors, 

however, also have a large, extracellular N-terminus region that can consist of a 

number of different domains with a variety of functions including ligand binding 

(Fredriksson and Schiöth, 2005).  GPCRs also have an intracellular C-terminus 

region.  These regions can vary widely in shape and length between the main 

classes and have different functions depending on the class of receptor (Kroeze et 

al. 2003).   

There is a wide variety of receptors in the GPCR family and also a diverse 

range in the type of ligand they respond to, including amino acids, light, 

neurotransmitters, hormones and large proteins (Kroeze et al. 2003).  The ligand 
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may bind to the receptor differently in the different classes but always causes a 

conformational change in the receptor. This conformational change helps to activate 

the G-protein coupled to the receptor. There are a number of types of G-protein that 

can be coupled to the receptor and that will determine which signalling pathway is 

activated (Kroeze et al. 2003 and Watkins et al. 2016). 

The G-proteins that associate with GPCRs are heterotrimers.  They consist of 

an α, β and a γ subunit (Wall et al. 1995).  Heterotrimeric G-proteins are very 

important in GPCR cell signalling as they are the mediating step (Baltoumas et al. 

2013).  The role of the G-protein is to transmit the signal from an activated (usually 

ligand bound) GPCR to the enzymes and channels etc. (Neer and Smith, 1996).  G-

proteins have an active and an inactive state that they can switch between, 

depending on the state of the GPCR they are coupled with (Kleuss et al. 1993).   

The β and the γ subunits are bound very tightly together and are commonly known 

as the βγ subunit (Neer and Smith, 1996).  When this βγ subunit is bound to the α 

subunit in the heterotrimeric complex they are inactive and do not interact with the 

effector molecules.  In this inactive state the α subunit is tightly bound to a GDP 

molecule and this interaction is further stabilised by the attached βγ component 

(Wall et al. 1995).  The G-protein becomes active when a ligand is bound to the 

GPCR as it causes conformational changes to the GPCR which then causes a 

conformational change in the α subunit (Kleuss et al. 1993).  This conformation 

change allows the GDP molecule to be replaced with a GTP molecule.  This switch 

causes further conformational changes that allows the α-GTP complex to dissociate 

from the βγ subunit (Wall et al. 1995).  These separated subunits can then go on to 

interact with different cell effector molecules and cause the cell to respond to the 

external ligand (Kleuss et al. 1993).  The α subunit contains GTPase that will cause 
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the GTP to be slowly hydrolysed into GDP (Wall et al. 1995).  This then allows the 

two components to reassemble into the inactive state.  This mechanism is very 

important and it is vital for GPCR signal regulation (Neer and Smith, 1996).  There 

are a number of different possible isoforms for each of the three subunits in 

heterotrimeric G-proteins (over 20 have been discovered for the α subunit for 

example).  The type of subunit present in the G-protein determines the type of 

GPCRs it will interact with and the effector molecules it is able to activate. These are 

important for ensuring signalling specificity (Baltoumas et al. 2013). 

GPCR’s have been found to play important roles in a large variety of organs 

and cells and have been associated with a number of diseases.  They are therefore 

very important to pharmaceutical companies and have been the focus of lots of 

research as drug targets. There is a high demand for potential new drugs to combat 

the important diseases associated with GPCRs and so there has been significant 

research into searching and screening for new drug leads in this area (Chun et al. 

2012). 

There is a downside to using GPCR’s as drug targets, however. One issue is 

the fact that GPCR’s are seen in such a wide variety of locations in the body. This 

potentially makes it difficult to obtain high specificity in the target sites. Low 

specificity in the target site leads to a number of problems including tolerance and 

potentially hazardous side effects (Chun et al. 2012). 

Despite problems with using GPCRs as drug targets they are such an 

important group that the benefits outweigh potential risks.  This, however, means 

that determining as much as possible about the structure, activation method and 

function of the different types of GPCR is more important than ever in the search for 
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drugs with the optimum outcome (Chun et al. 2012), hence this investigation into the 

class A – class C alignment. 

1.2. GPCR families 

GPCR’s are classified into families based on the conservation of important amino 

acids in the transmembrane helical regions of the receptors (Chun et al. 2012). 

There are a number of different classification systems that have been used for the 

GPCR superfamily.  One of these classification systems is the GRAFS system that 

splits GPCR’s into 5 main families.  These are the glutamate receptors, the 

rhodopsin receptors, adhesion receptors, frizzled receptors and the secretin 

receptors. Another system is the Class A-F system as described below (Fredriksson 

and Schiöth, 2005). 

1.2.1. Class A 

Class A receptors (also known as the rhodopsin-like receptors) are the largest class 

of GPCR containing approximately 670 receptor proteins.  This group has the 

largest number of drugs targeting them on the market, for example, antihistamines, 

cardiovascular drugs and antipsychotics.  As this group is so large it can be further 

divided into the α, β, γ and δ groups.  Class A receptors have had the most research 

carried out on them as they are the largest group.  The first solved GPCR crystal 

structure was of the class A receptor bovine rhodopsin ( Palczewski et al., 2000). 

 Rhodopsin is found in the rod cells of the retina and is involved in vision.  

Light is absorbed by these GPCRs causing them to activate and trigger visual signal 

transduction (Maeda et al. 2003). 
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 Class A receptors mostly have a very short N-terminus region that does not 

usually bind to the ligands.  However, the N-terminus is involved in binding for   

class A peptide receptors such as neurotensin receptors (White et al. 2012).  There 

is quite a range in the ligands that bind to class A receptors including light, peptides, 

amines and purines.  These ligands bind directly to the transmembrane and the 

extracellular loop regions. The TM regions form a pocket for the ligand and the 

interactions formed cause a conformational change, thus activating the G protein 

(Lagerström and Schiöth, 2008). 

 A large number of crystal structures have been found for other GPCRs in 

class A, also. Examples include the beta1-Adrenergic Receptor (Warne et al. 2008); 

A2A Adenosine Receptor  (Jaakola et al. 2008); Protease activated receptor 1 

(Zhang et al. 2012); CXCR4 Chemokine Receptor (Wu et al. 2010). 

1.2.2. Class B 

The class B GPCR receptors are often split into two groups; the secretin receptors 

and the adhesion receptors  (Lagerström and Schiöth, 2008).  The secretin 

receptors are found in many different organs and can activate a wide variety of 

pathways.  Secretin receptors are involved in many different cellular processes for 

example appetite regulation, regulation of bile secretion and homeostasis etc.  (Siu 

et al. 2006). There are drugs currently on the market that target the secretin 

receptor and these are used to treat, for example, hypercalcaemia, hypoglycaemia 

and osteoporosis.  Due to the involvement these receptors have in the regulation of 

appetite they are a potential future drug target for combating type 2 diabetes.  

Secretin receptors have an extracellular ligand binding domain that binds to peptide 

hormones (Lagerström and Schiöth, 2008). 
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 Adhesion receptors are known to be involved in cell growth and the immune 

system.  They are also found to be present in the central nervous system but their 

function here is not yet known.  The activation mechanism involves the cleaving of 

the extracellular domain by a protease revealing a 7TM stalk that activates the 

receptor (Stoveken et al. 2015).  Adhesion receptors have very long and diverse N-

terminus regions that are highly glycosylated and contain several domains.  These 

N-terminus regions form rigid structures outside the cell.  There is not much known 

about the adhesion receptor ligands so far but the ones that are known are all large 

and membrane bound (Lagerström and Schiöth, 2008). 

 Both secretin and adhesion receptors have conserved cysteine residues in 

the first two transmembrane regions.  Secretin also has conserved cysteines in the 

N-terminus region that form cysteine bridges and stabilise the structure of the 

receptors (Lagerström and Schiöth, 2008). While the extracellular regions of 

secretin and adhesion receptors are quite different, the TM regions align well, and 

so in our analysis (Chapter 3), these two families are combined. 

There have been two crystal X-Ray structures found so far for the class B 

receptors. These are for the Glucagon Receptor (Siu et al. 2013) and for the 

Corticotropin-Releasing Factor Receptor 1 (Hollenstein et al. 2013). 

1.2.3. Class C 

Class C receptors (also known as the glutamate receptors) are a family of receptors 

found mainly in the CNS.  They have been connected to a number of CNS disorders 

and also to disorders in calcium regulation.  They consist of 22 human proteins and 

can be further split into subgroups including the metabotropic glutamate receptors 

(mGLu), GABAb, calcium sensing receptors (CASRs) and taste receptors.  The N-
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terminus region in class C is very large and is folded into two lobes or domains.  The 

two lobes operate in a venus fly trap (VFT) mechanism in which the ligand binds in 

the cleft between the two lobes and stabilises a closed conformation, activating the 

cell signalling pathway.  So far there have been drugs developed that successfully 

target certain receptors in this class. For example, a drug has been developed that 

targets CASR’s and treats hyperparathyroidism (Lagerström and Schiöth, 2008). 

 Allosteric ligands have been discovered that bind directly to the TM regions of 

the GPCR.  The discovery of these allosteric ligands may aid drug design as, if 

drugs that mimic these with high affinity are developed, it may be possible to 

develop drugs with a much better specificity for the target receptor (Lagerström and 

Schiöth, 2008). 

 At the start of the research program no structures had been found for class C 

GPCRs. Since then structures have been found for metabotropic glutamate receptor 

5 (Christopher et al. 2015 and Doré et al. 2014) and for metabotropic glutamate 

receptor 1 (Wu et al. 2014). 

1.2.4. Class D 

Class D receptors are fungal mating pheromone receptors.  Pheromones are a type 

of molecule that facilitates communication between different individuals in a species.  

Pheromones can relate to a variety of things such as food, alarm and mating for 

example.  The behaviour of the individual receiving the pheromone is usually altered 

in some way depending on the message.  Mating pheromones are detected in fungi 

by class D GPCR’s (Lock et al. 2014).  Once a pheromone binds to the GPCR a 

signal pathway is activated to initiate mating (Xue et al. 2008). 
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There are currently no X-Ray crystal structures for class D GPCRs. 

 

 

1.2.5. Class E 

The class E GPCRs are also known as the cyclic AMP (cAMP) receptors.  These 

receptors are present in Dictyostelium organisms and are vital in their development.  

When the receptors are activated by a cAMP molecule they allow single cells to 

aggregate together and allows them to form a multicellular organism.  Without the 

presence of this receptor the cells do not develop but remain as single cells 

(Johnson et al. 1993). These receptors align well to plant GPCRs and in this thesis 

the two groups are treated as one group (Taddese et al., 2014).  Currently there are 

no X-Ray crystal structures for receptors in this class.  

1.2.6. Class F 

The frizzled/smoothened family of GPCR’s (Class F) have been associated with a 

number of types of cancer development.  Therefore development of drugs to target 

these receptors would be very significant for medicine and drug design.  So far there 

have not been any successful drugs discovered for this class.  The frizzled 

receptors bind to wnt glycoprotein ligands.  The ligands bind to cysteine rich regions 

in the extracellular loops. The smoothened receptor has been found to function 

without the presence of a ligand.  Small molecules have been found to be able to 

bind directly to the TM regions and affect the signalling of the GPCR (Lagerström 

and Schiöth, 2008). 
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An X-ray crystal structure for the smoothened receptor has been found by 

Wang et al. (2013). 

 

 

1.3. Class C specific structure 

Like all GPCRs, receptors in class C all contain seven highly conserved 

transmembrane helical regions with short loop regions both intracellular and 

extracellular joining them.  These loop regions vary much more widely in length and 

amino acid residues but have been seen to contain some conserved residues and 

motifs.  Unlike some other classes of GPCR, the 7TM region itself does not directly 

bind to the ligands, however it does still contain a conserved binding pocket (Chun 

et al. 2012). 

Large extracellular region 

Class C GPCR’s are different from other classes in that they have a very large 

extracellular domain involved in binding the ligands.   This domain contains a 

number of orthosteric sites. The extracellular domain of class C GPCR’s is 

described as a venus fly trap (VFT) module due to the fact that it folds into two lobes 

or domains with a central cleft that acts as a binding pocket for the ligands.  The 

VFT domain has an open and a closed configuration which it switches between in 

the absence of a bound ligand.  When the ligand binds it stabilises the closed 

conformation activating a signalling pathway.  This VFT domain is connected to the 

seven transmembrane (7TM) region by a cysteine rich domain. This connecting 

section consists of approximately 80 amino acids and has 9 cysteines that remain 
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completely conserved and have been found to be vital to the activation of the 

receptors (Chun et al. 2012).  In the metabotropic glutamate (mGlu)–like receptors, 

a highly conserved disulfide bridge is seen to form between the VFT region and the 

cysteine rich domain.  This interaction was discovered to be vital for the formation of 

interactions between the VFT and 7TM regions.  Mutations were carried out to 

prevent the formation of these activations and it was found that without them, 

activation cannot occur (Chun et al. 2012). 

Dimerisation  

Class C GPCR’s have been shown to undergo mandatory dimerisation to go into 

their active state. This dimerisation can be either homodimerisation (as in mGlu and 

calcium sensing receptors) or heterodimerisation (as in GABAb). (Chun et al. 2012, 

Marshall and Foord 2010 and Marshall 2007). 

Complex activation process 

The activation process for class C GPCRs is seen to be very complex.  The ligand 

for class C receptors binds directly to the extracellular venus fly trap (VFT) domain.  

This binding causes conformational changes in all of the receptors domains and 

activates the coupled G-protein.  Class C receptors are dimers and as such have 

four or six independent domains. These domains however are all connected by 

allosteric interactions so that a conformational change in one causes the change in 

the other regions (Chun et al. 2012). 

1.4. Class C is further split into subgroups 

Metabotropic glutamate receptors 
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One subgroup of class C GPCR receptors are the metabotropic glutamate receptors 

(mGlu).  These receptors are activated by the neurotransmitter glutamate.  

Glutamate is the main excitatory neurotransmitter in the central nervous system (Xu 

et al. 2014).  The metabotropic glutamate family of receptors is further divided into 

three groups (I, II and III) of receptors that share a high level of sequence homology.  

Figure 1.1 shows the three different groups and their members.  Group I contains 

mGluR1 and mGluR5 (Speyer et al. 2014).  This group, when activated by a ligand, 

increases the level of inositol 1,4,5-triphosphate and diacylglycerol (Julio-Pieper et 

al. 2011).  Group I mGlu receptors induce a very strong presynaptic stimulatory 

response causing excitation.  The signalling cascades triggered by receptors in this 

group are involved in cell proliferation.  Group I also modulates some ion channels 

(Speyer et al. 2014).  Group II contains mGluR2 and mGluR3 and group III contains 

mGluR4, mGluR6, mGluR7 and mGluR8.  Both of these groups decrease the levels 

of intracellular cAMP when bound to a ligand (Julio-Pieper et al. 2011). 
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Figure 1.1: The three subgroups of mGlu receptors. Taken from (Julio-Pieper et al. 

2011). 

 Metabotropic glutamate receptors are found in large numbers throughout the 

central nervous system (CNS) (Kang et al. 2014).  In particular they are found in the 

synaptic cleft of neurons and glial cells.  They have also been found in many other 

locations in the body outside of the CNS (Julio-Pieper et al. 2011).  These receptors 

are very widespread in the brain and as such are involved in many CNS functions.  

This means that when the receptors start to function incorrectly it can cause many 

neurological problems.  It has been shown that mGlu receptors play a role in 

depression, anxiety, pain, epilepsy, schizophrenia, Alzheimer’s and Parkinson’s 

disease.  The severity of some of the conditions linked to mGlu receptors makes 
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studying them and finding suitable drugs to target them a highly important area of 

medical research (Kang et al. 2014).  It is not only neurological conditions that mGlu 

receptors have been linked with.  They have also been found to play a role in certain 

types of cancer including melanomas and gliomas.  This is because the receptors 

are involved with cell proliferation and are known to contribute to tumour growth in 

breast cancer (Speyer et al. 2014). 

  There are eight subtypes of mGlu receptor and these are named mGluR1 through 

to mGluR8 (Xu et al. 2014).   

 Metabotropic glutamate receptors are homodimeric meaning they have two 

subunits of the same type working together to produce a cell response.  The 

receptors, as they belong to class C, have large N-terminus regions folded into the 

venus fly trap conformation.  As the receptor is a homodimer the ligand binding site 

is identical in both of the subunits.  The glutamate molecule binds to one of the VFT 

modules and causes it to change to its closed conformation.  The binding of a ligand 

also causes the two units to move closer together.  It is unclear what the true active 

state of mGlu receptors is.  Some believe that the receptor is active when one 

subunit is bound to the ligand and in the closed conformation while the other is 

unbound and open (closed-open conformation).  Others believe that receptors in the 

closed-open conformation are only partly activated however and they believe that a 

second ligand has to bind to the other subunit and cause it to change to its closed 

conformation (closed-closed conformation) for the receptor to be truly active (Kubo 

and Tateyama, 2005).  Figure 1.2 below shows the different possible conformations 

of the dimer depending on the presence of zero, one or two glutamate molecules.  

The diagram also shows that the space between the two subunits is decreased with 

the addition of each glutamate molecule. 
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Figure 1.2: The three possible activation states of mGlu receptors.  Top: inactive 

with no bound ligand. Bottom left: Activated state 1 with one bound glutamate 

molecule (Closed-Open). Bottom right: Activated state 2 with two bound glutamate 

receptors (Closed-Closed). Adapted from (Kubo and Tateyama, 2005). 

  

Inactive state 

Glutamate Glutamate 
Glutamate 

Activated state 1: 
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Activated state 2:   

full or unusual? 
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The fact that mGlu receptors are seen to be so widespread across the body outside 

of the CNS indicates that they have a variety of roles elsewhere that are currently 

unknown.  Continued research into the other functions of mGlu receptors outside of 

the CNS could prove to be very important.  The more that we know about these 

receptors and the ligands that they respond to, the easier it will be to design more 

efficient and specific drugs to combat associated diseases (Julio-Pieper et al. 2011). 

 

GABAb 

Another main subfamily of class C GPCRs are the GABAb receptors.  These 

receptors are found mainly in the central nervous system (CNS) and can be seen 

both pre-synaptically and post-synaptically.  The main role of GABAb receptors is to 

inhibit neurotransmission in the brain and CNS (Geng et al. 2013).  Pre-synaptically, 

when activated by a ligand, these receptors will inhibit the action of calcium 

channels in the neuron, which in turn inhibits the release of neurotransmitters.  Post-

synaptically, an activated GABAb receptor will cause neuron hyperpolarisation by 

triggering the opening of potassium channels (Bettler et al. 2004). 

As these receptors are involved with the brain and neurotransmission, when 

there are problems with GABAb receptors this can lead to a number of different 

neurological disorders (Geng et al. 2013).  Examples of diseases and disorders that 

GABAb receptors are thought to play a role in include schizophrenia, epilepsy, 

spasticity, addiction, anxiety, depression and other neurological conditions.  They 

are also known to play a role in cell survival, position of neurons and migration in the 

CNS (Xu et al. 2014).  There is only one drug currently on the market that 

specifically targets GABAb receptors.  It is a selective agonist for the receptor and is 
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used for the treatment of muscle spasticity in disorders such as cerebral palsy and 

multiple sclerosis and also for spinal cord injuries (Geng et al. 2013). 

Like all class C receptors, the GABAb receptors are obligatory dimers (Geng 

et al. 2013).  They can also be seen as tetramers and other oligomers with a higher 

number of subunits.  However, the more subunits, the weaker the interaction 

between them seem to be (Xu et al. 2014).  GABAb receptors are heterodimers so 

they have two different subunits that cause the activation of a signalling pathway 

(Geng et al., 2013).  Studies have shown that there is only one single type of 

GABAb receptor even though more than one function is observed.  The same type 

of GABAb receptor is seen in the CNS both pre and post-synaptically (Xu et al., 

2014).  The two subunits of GABAb receptors are known as GBR1 and GBR2 

(Geng et al., 2013).  These subunits do not function by themselves (Marshall and 

Foord 2010, Marshall 2007 and Bettler et al., 2004).   They have different functions 

but both are required to be present and functional for successful activation.  Both 

subunit’s N-terminus regions are folded into the venus fly trap (VFT) module that is 

common among class C GPCR’s.  In the inactive state the VFT module on both 

subunits are in the open conformation.  The ligand binds only to the subunit GBR1.  

It binds in the cleft of the VFT module and in the case of an agonist, causes the 

subunit to adopt the closed conformation.  Antagonists bind to the same place but in 

that case they cause the VFT to remain in the open conformation thus leaving it 

inactive (Geng et al., 2013).  The GBR2 subunit does not appear to bind to any 

known ligands, but even though the GBR2 subunit is not involved directly in the 

ligand binding it does help to increase the binding affinity for the ligand by stabilising 

the agonist bound closed conformation of the VFT module (Xu et al., 2014).    The 

transmembrane region of the GBR2 subunit is also important as it binds to the 
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heterotrimeric g-protein inside the cell (Geng et al., 2013).  Another function of the 

GBR2 subunit is seen in the binding of positive allosteric modulators (PAM) to its 

TM region.  These interactions increase the effect of the bound agonist (Xu et al., 

2014). 

The GBR1 subunit alone cannot leave the endoplasmic reticulum (ER) and 

move to the cell membrane.  This is because it has a very high ER retention signal.  

The C-terminal regions of the two subunits interact with each other to form a coiled-

coil (see Figure 1.3 below).  This interaction between the GBR1 and the GBR2 

molecule masks this signal and the molecules are able to reach the cell surface 

membrane as a heterodimer.  Therefore both subunits are required to be present for 

the correct function of the GABAb receptor to be carried out (Xu et al., 2014). 
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Figure 1.3:  The structure of the GABAb dimer with the ligand bound to the 

GABAb1subunits VFT module. Taken from (Xu et al., 2014). 

 

Although the GBR1 subunit oscillates between the open and closed 

conformation depending on if it is or isn’t bound to an agonist ligand, the 

conformation of the GBR2 subunit is not significantly affected by the presence of a 

ligand.  As this subunit does not interact directly with the ligand it remains in the 

open conformation regardless of whether or not a ligand is present.  All of the 

ligands that bind to and activate the GABAb receptors are derivatives of the GABA 

molecule.  As such, they all share the structure of a γ-amino acid. Once the agonist 

is in the binding pocket several chemical interactions are formed.  The main ligand-
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receptor interactions are hydrogen bonds but some Van der Waals forces are also 

in effect (Geng et al., 2013).  Although there is only one type of GABAb receptor 

there are a number of isoforms that have been discovered.  These isoforms may be 

the cause of any functional diversity seen in the receptors (Xu et al., 2014). 

Calcium sensing 

The third main subfamily of GPCR’s in the class C family is the calcium sensing 

receptors (CASRs).  The main role of the calcium sensing receptors is in calcium 

homeostasis.  It is very important to maintain the level of calcium within a narrow 

range as small changes putting the level either side of this range can be life-

threatening.  These receptors are found all over the body but are of particular 

importance in the parathyroid gland.  In the parathyroid gland the CASRs are 

responsible for regulating the synthesis and the release of parathyroid hormone 

(PTH). Parathyroid hormone is a calcium regulating hormone (Tfelt-Hansen and 

Brown, 2005). 

 In the kidneys, calcium sensing receptors further aid the regulation of calcium 

levels by regulating the excretion of calcium and influencing the movement of water 

and electrolytes to maintain the necessary range of calcium in the body.  Other 

organs where the calcium receptors are important for signal transduction include the 

placenta, brain and the pancreas (Goodman 2004). 

 The importance of the role the calcium sensing receptors play in calcium 

homeostasis is seen in the consequences of naturally occurring mutations.  When 

these mutations cause either loss or gain in function of the receptors a number of 

diseases are seen to occur.  The severity of the disease depends on whether the 

mutation in the receptor is heterozygous or homozygous.  Heterozygous mutations 
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are not as severe as homozygous mutations.  For example, familial hypocalciuric 

hypercalcaemia (FHH) also known as familial benign hypocalciuric hypercalcaemia 

(FBHH) is the result of a heterozygous mutation and is often asymptomatic.  A 

homozygous mutation causes neonatal severe primary hyperparathyroidism 

(NSHPT).  Unlike FHH, this disease is quite severe and it can be fatal if left 

untreated.  Gain of function mutations have been seen to cause autosomal 

dominant hypoparathyroidism (ADH) which generally results in asymptomatic 

hypocalcaemia (Tfelt-Hansen and Brown, 2005). 

 These receptors are not only found in the cells of the parathyroid gland; they 

have other functions when present in other types of cells.  Some other roles that 

CASRs have include modulating the cell cycle and the regulation of ion channels 

etc. (Tfelt-Hansen and Brown, 2005). 

 As is common among class C GPCRs, CASRs have a very large extracellular 

domain folded into a venus fly trap conformation (Trivedi et al. 2008).  It is believed 

that extracellular calcium ions interact with acidic portions of the binding domain 

allowing the receptor to measure the level of calcium.  The exact binding locations in 

the extracellular domain are not known (Goodman 2004).  

 Activation of the CASRs occurs when the level of extracellular calcium either 

increases or decreases outside of the narrow normal range.  An increase in the 

extracellular calcium causes a reduction in PTH release.  This will in turn decrease 

the calcium levels. A decrease in the extracellular calcium causes inactivation of the 

CASR and triggers the release of PTH and therefore the calcium levels will also 

increase (Goodman 2004). 
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 The extracellular domain in CASRs is so large that there is an issue of 

promiscuity.  There are a number of sites that allow the binding of other charged 

molecules.  This makes creating drugs with a high level of selectivity difficult (Trivedi 

et al. 2008). 

 CASRs are functional as homodimers (Tfelt-Hansen and Brown, 2005).  The 

two subunits are linked by disulfide bridges arising from interactions between 

cysteine residues in the extracellular region of the receptor (Goodman 2004). Other 

non-covalent interactions also occur to strengthen the interaction between the two 

subunits (Tfelt-Hansen and Brown, 2005). 

 The function of the CASR means that they are attractive as drug targets for 

altering the function of the parathyroid gland (Goodman 2004).  There have been 

drugs approved to help treat hyperparathyroidism (HPT) by targeting CASRs (Tfelt-

Hansen and Brown, 2005).  The approved drug is a calcimimetic drug.  It lowers the 

levels of PTH and therefore extracellular calcium by activating the receptor.  A 

potential drug for the treatment of osteoporosis also targets CASRs.  These drugs 

are calcilytics and they stimulate PTH release under normal calcium levels.  These 

have not yet been approved (Trivedi et al. 2008). 

 

1.5. Class C GPCR role in Schizophrenia 

Schizophrenia is one of the main diseases that has been directly linked to class C 

GPCRs (Foster and Goa, 1998).  It is a disorder of the central nervous system that 

affects approximately 1% of the population worldwide (Vinson and Conn, 2012).  

The age of onset in patients that have schizophrenia is between the late teens to 
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mid 30’s.  There is no cure for schizophrenia and it is a chronic disease that is 

usually very disabling.  It often involves extended hospitalisation of patients meaning 

it is a very expensive disease to treat (Foster and Goa, 1998). 

 The symptoms of schizophrenia are often split into three categories; the 

positive, the negative and the cognitive symptoms.  Positive symptoms are when the 

patient perceives non-existent stimulation.  This results in hallucinations that can be 

visual and/or audio and also paranoia.  Negative symptoms of schizophrenia include 

depression and social withdrawal and finally cognitive symptoms may include 

disorganised thoughts and a reduced ability to process information.  So far, the 

treatment available for schizophrenia has been much more effective on the positive 

symptoms than on the negative or cognitive symptoms.  Therefore the search for 

new drugs should focus on treating all three groups of symptoms (Vinson and Conn, 

2012). 

 Metabotropic glutamate receptors 5, 2 and 3 are seen to play an important 

role in schizophrenia and are potential targets for drugs to treat the disease.  

Activation of group II mGlu (mGlu2 and mGlu3) receptors by agonists is seen to 

reduce excitatory neurotransmission by decreasing glutamate release.  The 

antipsychotic effects seen with these agonists make them a very promising drug 

lead.  Selective activators of mGlu5 have also shown promising potential in the 

treatment of both positive and negative symptoms as well as showing cognitive 

enhancing effects (Vinson and Conn, 2012). 

 Many class C GPCRs have been associated with important diseases but only 

a few currently have approved drugs available that target them.  There is not as 

much known about this class of GPCRs as there is, for example, with class A.  
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Further increasing our knowledge of the structure and function of class C will make 

finding a suitable drug much easier and mean that it is likely to be a much more 

efficient drug with fewer side effects. 
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Chapter 2 

 

An approach to identifying the optimal helical range 

for alignment 

 

2.1 Introduction 

Several studies have sought to generate homology models of GPCRs based on the 

structure of a GPCR in a different class where the alignment is not straightforward 

(Bissantz et al., 2004; Conner et al., 2005; Coopman et al., 2011; deGraaf et al., 

2011; Dong et al., 2007; Donnelly, 1997; Frimurer and Bywater, 1999; Sheikh et al., 

1999; Taylor et al., 2003). For example, Vohra et al. (2013) have showed that there 

is agreement on the class A - class B GPCR alignment when the receptors share 

conserved aromatic residues in a given helix but not otherwise. These studies 

carried out an explicit alignment on each helix. However, in the absence of 

structure, it is not clear which residues are helical – if the helix is too short, there 

may not be enough information to determine the alignment but if it is too long, the 

lack of a common secondary structure may contaminate the alignment results. One 

approach that can be taken when there are a number of structures of a given class, 

e.g. class A is to determine the consensus from a range of structures. Thus, the 

program used to align the helices from different classes of G-protein coupled 

receptor (GPCR) requires a range of residues thought to be in the helical region of 

the protein.  The more accurate this region is, the more accurate the results will be 

from the analysis program. Here we explore a new approach to identifying this 

common helical region. 
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Half sphere exposure, HSE, (Hamelryck 2005) measures how buried or 

exposed a particular residue in a protein sequence is.  The method is based on 

counting the number of neighbouring residues within a half-sphere of radius 13Å 

centred on the Cα carbon atom of the amino acid, as shown in Figure 2.1.  

 

 

 

Figure 2.1: A diagram to illustrate HSE adapted from Hamelryck (2005). A sphere 

with radius of 13 Å surrounding the Cα atom of the amino acid is divided in two, 

perpendicular to the Cα-Cβ vector, and the residues within the half sphere are 

counted. Since this is a count of residues, there are no units. 

 

The residues of an alpha helical structure will all follow a similar pattern for 

each transmembrane (TM) region for GPCR’s, therefore, measuring the HSE is 

useful when trying to determine the alpha helical regions of the GPCR.  When a 

number of proteins have been analysed the results can be plotted to give a good 
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prediction of the common areas of alpha helical structure across the range of GPCR 

classes.  

For each transmembrane region, a figure was produced to show the HSE 

results for a number of GPCR’s. Namely the beta1-Adrenergic Receptor (2VT4 - 

chain A) (Warne et al. 2008); Rhodopsin (1F88) (Palczewski et al. 2000); A2A 

Adenosine Receptor (3EML) (Jaakola et al. 2008); Protease activated receptor 1 

(3VW7) (Zhang et al. 2012); CXCR4 Chemokine Receptor (3ODU) (Wu et al. 2010); 

Smoothened Receptor (4JKV) (Wang et al. 2013); Glucagon Receptor (4L6R) (Siu 

et al. 2013); Corticotropin-Releasing Factor Receptor 1 (4K5Y) (Hollenstein et al. 

2013). The area where the pattern of results matches well is a good indication of 

where the common helical regions are.  

 

2.2 Methods 

The half-sphere exposure, HSE was determined using the method of 

Hamelryck (2005). Eight GPCRs were chosen as representative structures to test 

the method, namely receptors with the following PDB codes: 2VT4, 1F88, 3EML, 

3VW7, 3ODU, 4JKV, 4L6R and 4K5Y. These include structures from class A (2VT4, 

1F88, 3EML, 3VW7, 3ODU), class B (4K5Y, 4L6R) and class F (4JKV). Class A, 

class B and class F GPCRs are remote homologues sharing ~10-18% identity 

(Taddese et al. 2014) and so cannot be easily aligned using traditional sequence 

alignment. The alignment was therefore taken from Taddese et al. (2014), which 

was generated by structural alignment using the salign module of Modeller (Eswar 

et al. 2007) and also given in the original GPCR X-ray crystal structure publications 
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(Siu et al. 2013 and Wang et al. 2013). This alignment was used to align the HSE 

results. 

 

2.3. Results and Discussion 

2.3.1. TM1 

Figure 2.2 shows the HSE results for the TM1 region of the 8 GPCR’s.  The further 

away from the alpha helical TM1 region, the less the data matches up. The area in 

which the data from the different GPCR’s matches very well will be the predicted 

TM1 region used for alignment.  The figure shows that the TM1 region is likely to be 

from residue 38-64 (as numbered in the figure). The old range of residues being 

used was from 43-65 (Vohra et al. 2012 and Taddese et al. 2014). This new window 

increases the region by 4 residues. This increase will give more data for use in the 

next stage and should result in a more accurate alignment.  In addition, the top 

values of each peak and the bottom of each peak are fairly consistent for this helix. 

This is in contrast to TM3 in which the peaks can vary greatly from each other. The 

consistency in the peaks shows that the environment is fairly consistent across the 

whole of the helix and that the helix is similarly exposed across all the residues. 
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Figure 2.2: Half Sphere Exposure results for TM1. The low HSE regions correspond 

to exposed residues; high HSE regions correspond to the buried (internal) residues.  

The class A GN motif is at positions 55-56. 

 

2.3.2. TM2 

Figure 2.3 shows the HSE results from the TM2 region. The figure shows that the 

area between residues 72-92 match up very well and therefore this is the new 

predicted TM2 alpha helical region. The old region was between residues 79-95 

(Vohra et al. 2012 and Taddese et al. 2014), so this shows an increase of 4 

residues as well as a shift of 3 residues. The increase in window length increases 

the data available for use in the alignment especially in the lower residue numbers. 

The shift of 3 residues removes the area in the higher residue numbers where the 

pattern does not match and should improve the accuracy by not including the areas 

of the GPCR where the structures start to differ.  The peptide receptors (3ODU – 
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CXCR4 Chemokine receptor and 3VW7 – Protease activated receptor 1) contain a 

bulge in TM2 (Kant and Vriend 2014), which should result in a gap / insertion in the 

alignment. This bulge does not affect the HSE results as all receptors for this region 

match the pattern, regardless as to whether they have a bulge or not. This indicates 

that the HSE results may make one contribution towards improving the alignment, 

but it does not address other issues such as bulges in alpha helices. 

 

Figure 2.3: Half Sphere Exposure results for TM2. The low HSE regions correspond 

to exposed residues; high HSE regions correspond to the buried (internal) residues. 

The class A LxxxD motif is residues 81-85. 

 

2.3.3. TM3 

Figure 2.4 shows the HSE results of the TM3 region.  These results do not line up 

quite as clearly in this TM region.  This is likely due to the TM3 helix passing behind 

TM4 making all the residues in this region (~132-142) buried, rather than following 

0 

5 

10 

15 

20 

25 

30 

35 

40 

70 75 80 85 90 95 100 

H
al

f 
Sp

h
e

re
 E

xp
o

su
re

 

Residue number 

2VT4_A 

1F88 

3EML 

3VW7 

3ODU 

4JKV 

4L6R 

4K5Y 



34 
 

the typical alternating pattern of exposed and buried residues. The HSE results for 

this region are all high which confirms that these residues are buried so although the 

pattern does not line up as neatly, the results for these residues are consistent with 

the structure. In contrast to TM1, the high points and low points of the peaks vary 

greatly from each other as the helix passes behind TM4 and back out again. The 

region that matches up the best on Figure 4 is between residues 123-155.  This is 

an increase of 6 residues from the old region which was between residues 125-151 

(Vohra et al. 2012 and Taddese et al. 2014). This increase in the window length 

should allow for a more accurate alignment even though the results in the middle of 

the helix do not line up as well. 

 

Figure 2.4: Half Sphere Exposure results for TM3. The low HSE regions correspond 

to exposed residues; high HSE regions correspond to the buried (internal) residues. 

The class A DRY motif is residues 149-151. 
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2.3.4. TM4 

Figure 2.5 shows the results from the HSE analysis of the TM4 region.  The section 

of this graph that lines up the best is between residues 173-191.  This new window 

is a 1 residue increase from the old window of 169-186 (Vohra et al. 2012 and 

Taddese et al. 2014). It also shifts the analysis window of TM4 over by 4 residues 

which should increase the accuracy of the alignment.  Since the analysis, a newer 

structure has been released for 4L6R by a different group.  The structure for TM4 

has some errors that are fixed in the newer version. However, this does not seem to 

affect the HSE results as seen in the figure below. 

 

Figure 2.5: Half Sphere Exposure results for TM4. The low HSE regions correspond 

to exposed residues; high HSE regions correspond to the buried (internal) residues. 

The class A W motif is residue 179. 
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2.3.5. TM5 

Figure 2.6 shows the HSE results from the TM5 region of the 8 GPCR’s tested. 

There is a very clear region in which the results line up. This is between residues 

233-258 which is a 5 residue increase from the old window of 239-259 (Vohra et al. 

2012 and Taddese et al. 2014).  This 5 residue increase in the size of the window 

gives more data for the analysis of the alignment and should lead to more accurate 

results. However, the published structural alignment for TM5 for the class A – class 

B and class A – class F alignment (Siu et al. 2013 and Wang et al. 2013) indicates 

gaps in the vicinity of the proline, creating a situation similar to that arising through 

the bulge in TM2, indicating that additional improvements, besides those arising 

from HSE may be required to improve the reliability of the alignment, but these are 

beyond the scope of this work. 
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Figure 2.6: Half Sphere Exposure results for TM5. The low HSE regions correspond 

to exposed residues; high HSE regions correspond to the buried (internal) residues. 

The class A FXXP motif is residues 239-242. 

 

2.3.6. TM6 

Figure 2.7 shows the HSE results from TM6. The graph shows that the results 

between residues 286-304 match up the best, making this the new predicted TM6 

alpha helical region.  The only receptor that does not fit well with the pattern in the 

whole of this region is 4K5Y.  This divergence from the pattern is due to the bend in 

the top of TM6 and TM7 for this receptor so the results from this section are 

expected and the new window should not be affected by it (Hollenstein et al. 2013). 

The original region used was between residues 284-305 (Vohra et al. 2012 and 

Taddese et al. 2014), so this shows a decrease by 3 residues.  Although this is a 

smaller window and therefore uses less data for the alignment, it should still provide 
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a more accurate result as it does not include results from areas that do not match in 

structure as well that may be affecting the quality of the alignment. 

 

Figure 2.7: Half Sphere Exposure results for TM6. The low HSE regions correspond 

to exposed residues; high HSE regions correspond to the buried (internal) residues. 

The class A CWLP motif is residues 301-304. 

 

2.3.7. TM7 

Figure 2.8 shows the HSE results from the TM7 region of 8 GPCR’s. Some of the 

GPCR results do not match up well at the beginning of this region but generally, 

between residues 337-358 has the best match between most of the receptors. This 

new window is the same length as the old window between residues 336-357 

(Vohra et al. 2012 and Taddese et al. 2014), but shifted by 1 residue. This shift 

should provide a more accurate region for the alignment. 
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Figure 8: Half Sphere Exposure results for TM7. The low HSE regions correspond 

to exposed residues; high HSE regions correspond to the buried (internal) residues. 

The class A NPXXY motif is residues 353-357. 

 

2.4. Conclusions 

HSE analysis has shown clear patterns for the alpha helical transmembrane 

regions. The extra information provided on the environments and positions of the 

residues should improve accuracy. The results have shown changes are needed in 

the windows of all of the TM regions over those used in previous publications (Vohra 

et al. 2013 and Taddese et al. 2014). Some are small changes such as a simple 1 

residue shift for TM7, but even this should mean clearer and more accurate results 

in the alignment. The new helix positions will be investigated in the next chapter for 

the purpose of predicting the alignment of class C to class A, class B and class F. 
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Chapter 3 

 

Alignment of the new optimal helical ranges of 

Class C GPCRs with other classes 

 

3.1. Introduction 

Aligning different classes of G-protein-coupled receptors is a difficult task due to the 

lack of homology between the different classes. There have been many methods 

developed over the years to generate an alignment between class A and B GPCRs 

(Bissantz et al., 2004; Conner et al., 2005; Coopman et al., 2011; deGraaf et al., 

2011; Dong et al., 2007; Donnelly, 1997; Frimurer and Bywater, 1999; Sheikh et al., 

1999; Taylor et al., 2003). The method outlined by Vohra et al. (2013) to align class 

A and B GPCRs is the basis for the method used below.  For this method to be as 

accurate as possible it is important to have the best window for the alpha helical 

regions. The optimal helical regions found from the half sphere exposure analysis in 

Chapter 2 have been used for the alignment of class C with GPCRs from classes A, 

B, E and F. 

3.2. Methods 

The method outlined by Vohra et al. (2013) has been modified to carry out the 

alignment between class C and the other classes of GPCR. This method compared 

ungapped alignments of defined helical regions (in this case the windows were 

determined using half sphere exposure data). An ungapped pair-wise alignment was 

then carried out to compare two helix sequences at a time and to score how well 
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they align at each position; one sequence of the pair was taken from say class A 

and the other from class C. The data are then collected, each top scoring alignment 

from the pair-wise alignments is noted and the alignment that has the highest 

number of votes is considered to be the best. 

The method scores each pair-wise alignment based on a number of different 

criteria over the residues in the sliding window. The BLOSUM matrix is a 

substitution matrix created by Henikoff and Henikoff (1992) that scores alignments 

based on similarity of amino acids, as judged by their propensity to substitute for 

each other at given positions within a multiple sequence alignment.  

The hydrophobicity of the residues was also measured using the Kyte-

Doolittle hydropathy scores (Kyte and Doolittle, 1982).  The best pair wise alignment 

is determined by a linear regression between the hydrophobicity values in the given 

sliding window on say the class A helix and those on the class C helix: the highest R 

value indicates the best alignment. 

Other properties that were compared and scored are the amino acid volume, 

entropy and variability; which are also used via linear regression. Entropy is a 

measure of conservation. The more amino acids there are at a given position, the 

higher the entropy score. The variability is also a measure of conservation but within 

very similar subsets. It can be useful to know the areas where the variability is 

particularly high or low in similar sequences as this can give an indication of the 

areas that are the most important for function. The entropy and variability for TM1 of 

the class C GPCRs is shown in Figure A1 in the appendix. Each property was 

scored at each alignment and scaled between 0 and 1 and a product of all of these 

scores was used to determine the best overall alignment. The advantage of scaling 

between 0 and 1 is that the overall score for low scoring alignments tends to 
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decrease and the overall score for high scoring alignments tends to increase. 

Because of this, it is not necessary to identify the best alignment as the highest 

scoring one, but rather it just needs to be a high scoring alignment over all the 

measures used in the product. Further products were found excluding one or more 

of the properties to check that an extreme outlier was not skewing the results. These 

results were plotted on two graphs to show the best alignment for class C with each 

of the other classes. 

3.3. Results and Discussion 

3.3.1. TM1 

3.3.1.1. Class A – class C 

Figure 1 shows the product scores for the BLOSUM substitution matrix (B), the 

Kyte-Doolittle hydrophobicity (K), amino acid volume (Vo) and entropy (E) for the 

alignment of class C with class A receptors. The Figure also shows the product of 

the alignment scores with K, Vo and E removed one at a time. This is to see if one 

of the criteria is much lower for an alignment and may be affecting the products of 

the results of the best alignment.  There is a percentage identity of 13.8 between 

these two classes at the optimal alignment. Percentage identity is important in the 

quality of the alignment. The higher the % ID the more accurate the alignment will 

be. 
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Figure 1: The product of the scores of the BLOSUM substitution matrix (B), the 

Kyte-Doolittle hydrophobicity (K), amino acid volume (Vo) and entropy (E) for the A-

C TM1 region alignment. 

 

Figure 2 shows further products of B, K, Vo, and E along with variability (Va) rather 

than entropy as a measure of conservation that are measured to give a further look 

into the accuracy of the alignment between class A and class C GPCRs. The results 

seen in Figures 1 and 2, show that the best alignment between classes A and C is 

the 0 alignment with a second best alignment of +3. 
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Figure 2: The product of scores of the BLOSUM substitution matrix (B), the Kyte-

Doolittle hydrophobicity (K), amino acid volume (Vo), entropy (E) and Variability (Va) 

for the A-C TM1 alignment.  

 

3.3.1.2. Class B – class C 

Figure 3 shows the product scores for the alignment of class C with class B 

receptors. There is a percentage identity of 11.7 between these two classes in the 0 

alignment. 
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Figure 3: The product of the scores of the BLOSUM substitution matrix (B), the 

Kyte-Doolittle hydrophobicity (K), amino acid volume (Vo) and entropy (E) for the B-

C TM1 region alignment. 

 

Figure 4 shows the products of B, K, Vo, E and Va for the B-C alignment.  The 

results in Figures 3 and 4 show the +3 alignment to be the best with a second best 

alignment of 0. This is the opposite to the results of the A-C alignment. 
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Figure 4: The product of scores of the BLOSUM substitution matrix (B), the Kyte-

Doolittle hydrophobicity (K), amino acid volume (Vo), entropy (E) and Variability (Va) 

for the B-C TM1 alignment. 

 

3.3.1.3. Class E – Class C 

Figure 5 shows the products of the scores of B, K, Vo and E for the alignment of the 

TM1 region of E-C. There is a percentage identity of 14.5 between these two 

classes for the 0 alignment. 
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Figure 5: The product of the scores of the BLOSUM substitution matrix (B), the 

Kyte-Doolittle hydrophobicity (K), amino acid volume (Vo) and entropy (E) for the E-

C TM1 region alignment. 

 

Figure 6 shows the products of B, K, Vo, E and Va for the B-C alignment.  Figures 5 

and 6 show the 0 alignment to clearly be the preferred option, with a second smaller 

peak at the +3 alignment. This result is in agreement with A-C for this TM region. 
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Figure 6: The product of scores of the BLOSUM substitution matrix (B), the Kyte-

Doolittle hydrophobicity (K), amino acid volume (Vo), entropy (E) and Variability (Va) 

for the E-C TM1 alignment. 

 

3.3.1.4. Class F – class C 

Figure 7 shows the product scores for B, K, Vo and E for the F-C alignments of 

TM1.There is a percentage identity of 15.7 between these two classes for the 0 

alignment. From this Figure we can see that the K score does not agree with the 

others for the best alignment. When the K score is removed from the product the 

alignment score for the 0 alignment goes up significantly higher than all the other 

results even though with it included it looks as though +3 is the best alignment. 
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Figure 7: The product of the scores of the BLOSUM substitution matrix (B), the 

Kyte-Doolittle hydrophobicity (K), amino acid volume (Vo) and entropy (E) for the F-

C TM1 region alignment. 

 

Figure 8 shows the products of B, K, Vo, E and Va for the F-C alignment.  Again the 

products that do not include the K values give the 0 alignment significantly higher 

results. If the K result is included both figures 7 and 8 show the +3 alignment to be 

the best but without they show the 0 to be the best alignment. 
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Figure 8: The product of scores of the BLOSUM substitution matrix (B), the Kyte-

Doolittle hydrophobicity (K), amino acid volume (Vo), entropy (E) and Variability (Va) 

for the F-C TM1 alignment. 

 

The 0 alignment is given in Chart 1.  

 

Chart 1: The alignment of the class C TM1 against TM1 for class A, class B, class E 

and class F. The class A - class B - class E - class F alignment is defined by the 

structural alignment of the relevant X-ray crystal structures. The correct 0 alignment 

(as defined by structural alignment) is given, along with the alternative of +3 

indicated by Figures 1, 4, 5, 7 and 8. The Xs mark the window over which the 

alignment was determined. The colour scheme for the residues is the default Taylor 

colour scheme used by Jalview. 
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Analysis of the figures in Tadesse et al., (2014), similar to Figures 1-8 here, shows 

that the most reliable method for determining the correct alignment is the Blosum 

scores, with entropy similar to variability and hydrophobicity and volume less 

reliable. Consequently, in Chart 2 we show that a composite score can be obtained 

for the alignment of class C to class A, class B, class E and class F by scaling the 4 

blosum scores given in Figures 1, 3, 5 and 7 between 0 and 1 and multiplying 

together. The resulting composite multi-reference alignment score is given in Chart 

2 and this confirms that the method gives the correct result for TM1, since the major 

peak is alignment 0, in both bar charts. This shows that the method has given the 

correct results for TM1, despite the low percentage identity of 13.0 – 15.7, which is 

well within the twilight zone. 

 

Chart 2: The multi-reference alignment scores. On the left the score is given for 

multiplying the Class A, class B, class E and class F scores together; on the right 

the score is given for missing out class A (red), class B (green), class E (purple) and 

class F (cyan). 
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3.3.2.TM2 

3.3.2.1. Class A – class C 

Figure 9 shows the product scores for the alignment of A-C of the TM2 region. 

There is a percentage identity of 11.4 between these two classes for the 0 

alignment. 

 

Figure 9: The product of the scores of the BLOSUM substitution matrix (B), the 

Kyte-Doolittle hydrophobicity (K), amino acid volume (Vo) and entropy (E) for the A-

C TM2 region alignment. 

 

Figure 10 shows the products of B, K, Vo, E and Va for the A-C alignment.  The 

results seen in Figure 10 do not have as clear results as the others and shows no 

real clear peak as the best alignment. Figure 9 however, shows the -4 alignment to 

be the best with a small peak at +1 as second best. The product scores for these 

however are still much lower than the scores seen in the TM1 alignments, even for 
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the highest peak. The lower scores indicate the results may not be as reliable for 

this helix. 

 

 

Figure 10: The product of scores of the BLOSUM substitution matrix (B), the Kyte-

Doolittle hydrophobicity (K), amino acid volume (Vo), entropy (E) and Variability (Va) 

for the A-C TM2 alignment. 

 

3.3.2.2. Class B – Class C 

Figure 11 shows the product scores for the alignment of B-C of the TM2 region. 

There is a percentage identity of 13.0 between these two classes. For this alignment 

the 0 alignment is given the best score for all products apart from when the 

hydrophobicity score is removed. In that case the -1 alignment is given the best 

score. The score for the 0 alignment is particularly strong when the amino acid 

volume is removed from the product. 
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Figure 11: The product of the scores of the BLOSUM substitution matrix (B), the 

Kyte-Doolittle hydrophobicity (K), amino acid volume (Vo) and entropy (E) for the B-

C TM2 region alignment. 

 

Figure 12 shows the products of B, K, Vo, E and Va for the B-C alignment.  The 

results seen in Figure 12 are again not particularly clear here, but the 0 alignment is 

always the highest scoring apart from the product of B and Va in which the -1 

alignment score is slightly higher. 
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Figure 12: The product of scores of the BLOSUM substitution matrix (B), the Kyte-

Doolittle hydrophobicity (K), amino acid volume (Vo), entropy (E) and Variability (Va) 

for the B-C TM1 alignment. 

 

3.3.2.3. Class E – class C 

Figure 13 shows the product scores for B, K, Vo and E.  There is a percentage 

identity of 13.2 between these two classes for the 0 alignment. 
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Figure 13: The product of the scores of the BLOSUM substitution matrix (B), the 

Kyte-Doolittle hydrophobicity (K), amino acid volume (Vo) and entropy (E) for the E-

C TM2 region alignment. 

 

Figure 14 shows the products of B, K, Vo, E and Va for the B-C alignment. Again 

the results from this alignment are not as clear as in others but Figures 13 and 14, 

show the highest values for the +1 alignment quite closely followed by the 0 

alignment or, when amino acid volume is removed, the 0 alignment slightly 

overtakes the +1 alignment. 
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Figure 14: The product of scores of the BLOSUM substitution matrix (B), the Kyte-

Doolittle hydrophobicity (K), amino acid volume (Vo), entropy (E) and Variability (Va) 

for the E-C TM2 alignment. 

 

3.3.2.4. Class F – class C 

The product scores for B, K, Vo and E for the TM2 region of F-C are shown in 

Figure 15.  There is a percentage identity of 7.9 between these two classes for the 0 

alignment, which is particularly low. 
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Figure 15: The product of the scores of the BLOSUM substitution matrix (B), the 

Kyte-Doolittle hydrophobicity (K), amino acid volume (Vo) and entropy (E) for the F-

C TM2 region alignment. 

 

Figure 16 shows the results of the of B, K, Vo, E and Va for the F-C alignment. 

These results so not show a clear peak for the best alignment but +3, -1 and +1 are 

mainly the highest scorers. 
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Figure 16: The product of scores of the BLOSUM substitution matrix (B), the Kyte-

Doolittle hydrophobicity (K), amino acid volume (Vo), entropy (E) and Variability (Va) 

for the F-C TM2 alignment. 

 

Chart 3 shows that the multi-reference alignment gives ambiguous results, both of 

which are wrong relative to the structural alignment.  The alignments given are +1 

and -4, with the correct 0 score having a very low score, despite getting reasonable 

score for class B and class E.  The -4, 0 and +1 alignments are given for reference 

in Chart 4. It is not clear why TM1 gives good results and TM2 gives poor results, 

but one reason may be that the helices are not uniformly alpha-helical. Thus, it is 

known that many class A GPCRs have a bulge in TM2 (van der Kant and Vriend 

2014) and this may be the reason why the method does not work for TM2, as an 

underlying assumption is that the helices are essentially ideal alpha-helices and at 

present we do not know how much deviation from ideality can be tolerated.              
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Chart 3: The multi-reference alignment scores. On the left, the score is given for 

multiplying the class A, class B, class E and class F scores together; on the right the 

score is given for missing out class A (red), class B (green), class E (purple) and 

class F (cyan). 

 

 

Chart 4: The alignment of the class C TM2 against TM2 for class A, class B, class E 

and class F. The class A - class B - class E - class F alignment is defined by the 

structural alignment of the relevant X-ray crystal structures. The correct 0 alignment 

(as defined by structural alignment) is given, along with the alternatives indicated by 

Figures 9, 10, 13 and 14, and chart 3. The Xs mark the window over which the 

alignment was determined. The colour scheme for the residues is the default Taylor 

colour scheme used by Jalview. 
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3.3.3. TM3 

3.3.3.1. Class A – Class C 

Figure 17 shows the product scores of B, K, Vo and E for the TM3 region of A-C.  

There is a percentage identity of 12.4 between these two classes. The 

hydrophobicity scores for this region are really having a big effect on the product 

scores as with them no real peaks are seen but without the 0 alignment is the clear 

best followed by a smaller peak at -3. 

  

Figure 17: The product of the scores of the BLOSUM substitution matrix (B), the 

Kyte-Doolittle hydrophobicity (K), amino acid volume (Vo) and entropy (E) for the A-

C TM3 region alignment. 

 

The peaks in figure 18 are not as well defined but still show the best alignment to be 

either 0 or -3 depending on what results are included, i.e. if hydrophobicity is 

excluded then 0 is the preferred alignment. Since TM3 largely runs through the 
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middle of the TM bundle, hydrophobicity may not be used to determine the 

orientation of the helix anywhere near as much as is used for the other helices. 

 

Figure 18: The product of scores of the BLOSUM substitution matrix (B), the Kyte-

Doolittle hydrophobicity (K), amino acid volume (Vo), entropy (E) and Variability (Va) 

for the A-C TM3 alignment. 

 

3.3.3.2. Class B – Class C 

Figure 19 shows the product scores of B, K, Vo and E.  There is a percentage 

identity of 12.3 between these two classes. The product scores for this alignment 

are not very high even for the best peaks and most agree that the best peak is the 

+5 alignment. When the amino acid volume is not included however the best 

alignment becomes 0. 
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Figure 19: The product of the scores of the BLOSUM substitution matrix (B), the 

Kyte-Doolittle hydrophobicity (K), amino acid volume (Vo) and entropy (E) for the B-

C TM3 region alignment. 

 

The product scores, shown in figure 20 show a very high peak for the 0 alignment in 

the product scores of B and E. Other product scores for this alignment also show 0 

to be the best alignment but the +5 alignment is still shown as the best by many 

product scores. The highest peaks for the +5 alignment are not as high as for the 0 

alignment however, even though there are more of them. 
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Figure 20: The product of scores of the BLOSUM substitution matrix (B), the Kyte-

Doolittle hydrophobicity (K), amino acid volume (Vo), entropy (E) and Variability (Va) 

for the B-C TM3 alignment. 

 

3.3.3.3. Class E – Class C 

There is a percentage identity of 11.9 between these two classes. The best product 

score seen in figure 21 is for the 0 alignment when the score for the amino acid 

volume is removed. The product score when the hydrophobicity score is removed 

indicates the +6 alignment to be the best but this peak is not as high as the highest 

peak at the 0 alignment. 
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Figure 21: The product of the scores of the BLOSUM substitution matrix (B), the 

Kyte-Doolittle hydrophobicity (K), amino acid volume (Vo) and entropy (E) for the E-

C TM3 region alignment. 

 

The product scores in figure 22 show the best alignment to be the 0 alignment by 

quite a large amount, particularly for the BE product score. 
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Figure 22: The product of scores of the BLOSUM substitution matrix (B), the Kyte-

Doolittle hydrophobicity (K), amino acid volume (Vo), entropy (E) and Variability (Va) 

for the E-C TM3 alignment. 

 

3.3.3.4. Class F – Class C 

The product scores of B, K, Vo and E are shown in figure 23. There is a percentage 

identity of 10.4 between these two classes. The results seen in figure 23 are very 

low even for the highest peaks and the best alignments are indicated as -7 and -3. 
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Figure 23: The product of the scores of the BLOSUM substitution matrix (B), the 

Kyte-Doolittle hydrophobicity (K), amino acid volume (Vo) and entropy (E) for the F-

C TM3 region alignment. 

 

 

A number of the product scores are much stronger for F-C TM3 in figure 24. These 

results indicate the -3 alignment to be the best. 
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Figure 24: The product of scores of the BLOSUM substitution matrix (B), the Kyte-

Doolittle hydrophobicity (K), amino acid volume (Vo), entropy (E) and Variability (Va) 

for the F-C TM3 alignment. 

 

The multi-reference alignment is given in Chart 5. The Blosum matrix score is 

overwhelmingly in favour of alignment 0 for class A, class B and class E and this 

determines the preference for the correct 0 alignment. This suggests that the 

hydrophobicity and volume, which mitigate against alignment 0 for TM3 (e.g. Fig. 

17, 19) are less accurate than the Blosum matrix scores. The conserved cysteine on 

TM3 is correctly aligned in the 0 alignment. The percentage ID for class A, class B, 

class E and class F at the 0 alignment to class A is 12.4, 12.3, 11.9 and 10.4, 

indicating that as the %ID approaches 10% that the results of the Blosum alignment 

start to become less reliable. The alignment is given in Chart 6. 
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Chart 5: The multi-reference alignment scores. On the left, the score is given for 

multiplying the class A, class B, class E and class F scores together; on the right the 

score is given for missing out class A (red), class B (green), class E (purple) and 

class F (cyan). 

 

Chart 6: The alignment of the class C TM3 against TM3 for class A, class B, class E 

and class F. The class A - class B - class E - class F alignment is defined by the 

structural alignment of the relevant X-ray crystal structures. The correct 0 alignment 

(as defined by structural alignment) is given, along with the alternative of -3 

indicated by Figures 17, 18, 23 and 24,. The Xs mark the window over which the 

alignment was determined. The colour scheme for the residues is the default Taylor 

colour scheme used by Jalview. 

 

 

3.3.4. TM4 

3.3.4.1. Class A – Class C 

Figure 25 is the product of the scores of B, K, Vo and E for the A-C alignment of 

TM4. The results show the 0 alignment to have the best score. A second, smaller 
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peak seen at the -10 alignment favoured when the hydrophobicity scores are 

excluded from the product.  There is a percentage identity of 10.2 between these 

two classes at the 0 alignment. 

 

Figure 25: The product of the scores of the BLOSUM substitution matrix (B), the 

Kyte-Doolittle hydrophobicity (K), amino acid volume (Vo) and entropy (E) for the A-

C TM4 region alignment. 

 

The results in figure 26 are not as clear but many of them still indicate 0 to be the 

best alignment. When hydrophobicity is removed there are strong product scores for 

the -3 alignment.  Finally, the -10 alignment has quite good product scores, though 

not as strong as for the 0 and -3 alignment. 
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Figure 26: The product of scores of the BLOSUM substitution matrix (B), the Kyte-

Doolittle hydrophobicity (K), amino acid volume (Vo), entropy (E) and Variability (Va) 

for the A-C TM4 alignment. 

 

 

3.3.4.2. Class B – Class C 

The product scores of B, K, Vo and E are given in figure 27 for the B-C alignment of 

TM4.  There is a percentage identity of 8.4 between these two classes at the 0 

alignment. There are two relatively strong peaks at the 0 and +7 alignment. The 0 

alignment is preferred alignment when all of the data is included and when only Vo 

is excluded and the +7 is preferred for when K and also E are excluded. 
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Figure 27: The product of the scores of the BLOSUM substitution matrix (B), the 

Kyte-Doolittle hydrophobicity (K), amino acid volume (Vo) and entropy (E) for the B-

C TM4 region alignment. 

 

The results from figure 28 are not as clear but indicate the 0 alignment as preferred 

in most cases. This second figure helps to strengthen the case for the 0 alignment 

and weaken the +7 as the +7 only has one high scoring result in figure 28. This 

means it is much less likely to be the correct B-C alignment for the TM4 region. 
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Figure 28: The product of scores of the BLOSUM substitution matrix (B), the Kyte-

Doolittle hydrophobicity (K), amino acid volume (Vo), entropy (E) and Variability (Va) 

for the B-C TM4 alignment. 

 

 

3.3.4.3. Class E – Class C 

Figure 29 is the product of the scores of B, K, Vo and E for the E-C alignment of 

TM4.  There is a percentage identity of 8.8 between these two classes for the 0 

alignment. The product of the scores quite clearly indicate the 0 alignment to be the 

best for these classes. The result is particularly strong when the Vo score is 

excluded. 
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Figure 29: The product of the scores of the BLOSUM substitution matrix (B), the 

Kyte-Doolittle hydrophobicity (K), amino acid volume (Vo) and entropy (E) for the E-

C TM4 region alignment. 

 

The product scores in figure 30 strengthen the peak at the +3 alignment which was 

only small in figure 29 but still show the 0 alignment giving the strongest result of all 

indicating that this is the preferred alignment for E-C in the TM4 region. 
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Figure 30: The product of scores of the BLOSUM substitution matrix (B), the Kyte-

Doolittle hydrophobicity (K), amino acid volume (Vo), entropy (E) and Variability (Va) 

for the E-C TM4 alignment. 

 

 

3.3.4.4. Class F – Class C 

Figure 31 shows the product of scores for the F-C alignment of TM4. There is a 

percentage identity of 9.7 between these two classes at the 0 alignment. The scaled 

product scores are all quite weak for this alignment but the alignments that 

consistently got the highest peaks are the +3 alignment followed by the 0 and -10 

alignments. The peak at -10 when K is excluded is much higher than most of the 

other scores but when the K result is taken into account the alignment does not 

score very well. 
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Figure 31: The product of the scores of the BLOSUM substitution matrix (B), the 

Kyte-Doolittle hydrophobicity (K), amino acid volume (Vo) and entropy (E) for the F-

C TM4 region alignment. 

 

Again, the results seen in figure 32 show the +3 alignment to be consistently the 

best. The highest peaks overall are seen at the -10 alignment when the K scores 

are not included in the product but the other scores are significantly lower than at 

the +3 alignment making the +3 the preferred alignment in this case. 
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Figure 32: The product of scores of the BLOSUM substitution matrix (B), the Kyte-

Doolittle hydrophobicity (K), amino acid volume (Vo), entropy (E) and Variability (Va) 

for the F-C TM4 alignment. 

 

The multi-reference alignment is given in Chart 7. Class B favours alignment +7 and 

class F favours alignment +3, but both give a reasonable score to the 0 alignment 

and so this has the highest score. The percentage ID for class A, class B, class E 

and class F at the 0 alignment to class A is 10.4, 8.4, 8.8 and 9.7, again indicating 

that as the %ID approaches 10% that the results of the Blosum alignment start to 

become less reliable. The alignment is given in Chart 8. 
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Chart 7: The multi-reference alignment scores. On the left, the score is given for 

multiplying the class A, class B, class E and class F scores together; on the right the 

score is given for missing out class A (red), class B (green), class E (purple) and 

class F (cyan). 

 

Chart 8: The alignment of the class C TM4 against TM4 for class A, class B, class E 

and class F. The class A - class B - class E - class F alignment is defined by the 

structural alignment of the relevant X-ray crystal structures. The correct 0 alignment 

(as defined by structural alignment) is given, along with the alternatives of +3 and +7 

indicated by Figures 31 and 27, and Chart 7. The Xs mark the window over which 

the alignment was determined. The colour scheme for the residues is the default 

Taylor colour scheme used by Jalview. 

 

3.3.5. TM5 

3.3.5.1. Class A – Class C 
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Figure 33 shows the product of scores for the A-C alignment of TM5. There is a 

percentage identity of 6.7 between these two classes. The results show that the +4 

alignment is the best followed by smaller peaks at the +7 alignment. 

 

 

Figure 33: The product of the scores of the BLOSUM substitution matrix (B), the 

Kyte-Doolittle hydrophobicity (K), amino acid volume (Vo) and entropy (E) for the A-

C TM5 region alignment. 

 

The results in figure 34 are not as clear but show the alignment at +7 to be the best 

with similarly high peaks at +6. 
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Figure 34: The product of scores of the BLOSUM substitution matrix (B), the Kyte-

Doolittle hydrophobicity (K), amino acid volume (Vo), entropy (E) and Variability (Va) 

for the A-C TM5 alignment. 

 

3.3.5.2. Class B – Class C 

The product scores for the TM5 region of B-C are shown in figure 35. There is a 

percentage identity of 6.3 between these two classes. The results show the best 

alignment to be +4 but the peaks are not very strong, particularly when the entropy 

scores are included. 
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Figure 35: The product of the scores of the BLOSUM substitution matrix (B), the 

Kyte-Doolittle hydrophobicity (K), amino acid volume (Vo) and entropy (E) for the B-

C TM5 region alignment. 

 

Figure 36 does not have any particularly clear peaks but as above the alignment for 

+4 is one of the best seen. All the scores are quite low though. 
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Figure 36: The product of scores of the BLOSUM substitution matrix (B), the Kyte-

Doolittle hydrophobicity (K), amino acid volume (Vo), entropy (E) and Variability (Va) 

for the B-C TM5 alignment. 

 

3.3.5.3. Class E – Class C 

Figure 37 shows the product scores for E-C. There is a percentage identity of 4.7 

between these two classes. These show a clear result for the +8 alignment being 

the best scoring with hardly any other significant peaks. 
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Figure 37: The product of the scores of the BLOSUM substitution matrix (B), the 

Kyte-Doolittle hydrophobicity (K), amino acid volume (Vo) and entropy (E) for the E-

C TM5 region alignment. 

 

The results from figure 38 are not as clear as in 37 but still show the +8 alignment 

as being the best. 

0.0000 

0.1000 

0.2000 

0.3000 

0.4000 

0.5000 

0.6000 

0.7000 

0.8000 

-1
4

 

-1
3

 

-1
2

 

-1
1

 

-1
0

 

-9
 

-8
 

-7
 

-6
 

-5
 

-4
 

-3
 

-2
 

-1
 0
 

1
 

2
 

3
 

4
 

5
 

6
 

7
 

8
 

9
 

1
0

 

1
1

 

1
2

 

1
3

 

1
4

 

Sc
al

e
d

 S
co

re
 

Alignment 

ProdBKVoE 

ProdBVoE 

ProdBKE 

ProdBKVo 



84 
 

 

Figure 38: The product of scores of the BLOSUM substitution matrix (B), the Kyte-

Doolittle hydrophobicity (K), amino acid volume (Vo), entropy (E) and Variability (Va) 

for the E-C TM5 alignment. 

 

3.3.5.4. Class F – Class C 

The product scores for F-C are shown in figure 39. There is a percentage identity of 

8.2 between these two classes. The results show clearly a significant peak at +10 

only. 
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Figure 39: The product of the scores of the BLOSUM substitution matrix (B), the 

Kyte-Doolittle hydrophobicity (K), amino acid volume (Vo) and entropy (E) for the F-

C TM5 region alignment. 

 

Figure 40 also shows the alignment with the highest product score to be the +10 

alignment. 
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Figure 40: The product of scores of the BLOSUM substitution matrix (B), the Kyte-

Doolittle hydrophobicity (K), amino acid volume (Vo), entropy (E) and Variability (Va) 

for the F-C TM5 alignment. 

 

The multi-reference alignment is given in Chart 9. The Blosum matrix score favours 

alignment +1 for class A and class B, +5 for class E and +7 for class F. The 

percentage ID for class A, class B, class E and class F at the 0 alignment to class A 

is 6.9%, 9.7%, 6.3% and 7.0%. These figures are very low and it is unreasonable to 

expect the alignment method to work at such low percentage identities. The 

alignment, and the alternatives suggested by the methods are given in Chart 10. 
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Chart 9: The multi-reference alignment scores. On the left, the score is given for 

multiplying the class A, class B, class E and class F scores together; on the right the 

score is given for missing out class A (red), class B (green), class E (purple) and 

class F (cyan). 

 

Chart 10: The alignment of the class C TM4 against TM4 for class A, class B, class 

E and class F. The class A - class B - class E - class F alignment is defined by the 

structural alignment of the relevant X-ray crystal structures. The correct 0 alignment 

(as defined by structural alignment) is given, along with the alternatives of  +1, +5 

and +7 indicated by chart 9. The Xs mark the window over which the alignment was 

determined. The colour scheme for the residues is the default Taylor colour scheme 

used by Jalview. 

 

 

3.3.6. TM6 

3.3.6.1. Class A – Class C 

Figure 41 shows the product scores of the TM6 region of A-C. There is a 

percentage identity of 14.9 between these two classes. 
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Figure 41: The product of the scores of the BLOSUM substitution matrix (B), the 

Kyte-Doolittle hydrophobicity (K), amino acid volume (Vo) and entropy (E) for the A-

C TM6 region alignment. 

 

The product scores seen in figure 41 and 42 show 0 to be the best alignment in all 

of the cases where the amino acid volume score is not included. When it is included 

the alignment -3 is seen as better. 
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Figure 42: The product of scores of the BLOSUM substitution matrix (B), the Kyte-

Doolittle hydrophobicity (K), amino acid volume (Vo), entropy (E) and Variability (Va) 

for the A-C TM6 alignment. 

 

3.3.6.2. Class B – Class C 

The product scores for B-C for TM6 are shown in figures 43 and 44. There is a 

percentage identity of 12.6 between these two classes. 
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Figure 43: The product of the scores of the BLOSUM substitution matrix (B), the 

Kyte-Doolittle hydrophobicity (K), amino acid volume (Vo) and entropy (E) for the B-

C TM6 region alignment. 

 

The results, seen in figure 43 and figure 44 show that the best alignment between 

these two classes for TM6 is the 0 alignment. Although the results in figure 43 are 

very low the product scores in figure 44 are much higher and the result clearer. 
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Figure 44: The product of scores of the BLOSUM substitution matrix (B), the Kyte-

Doolittle hydrophobicity (K), amino acid volume (Vo), entropy (E) and Variability (Va) 

for the B-C TM6 alignment. 

 

3.3.6.3. Class E – Class C 

Figure 45 and 46 show product scores for the E-C alignment of TM6. There is a 

percentage identity of 11.5 between these two classes. 
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Figure 45: The product of the scores of the BLOSUM substitution matrix (B), the 

Kyte-Doolittle hydrophobicity (K), amino acid volume (Vo) and entropy (E) for the E-

C TM6 region alignment. 

 

The highest product scores seen in figures 45 and 46 are for the 0 alignment but 

again they are not particularly strong in figure 45. Stronger results are seen in figure 

46. 

0.0000 

0.0200 

0.0400 

0.0600 

0.0800 

0.1000 

0.1200 

0.1400 

0.1600 

0.1800 

-13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

Sc
al

e
d

 S
co

re
 

Alignment 

ProdBKVoE 

ProdBVoE 

ProdBKE 

ProdBKVo 



93 
 

 

Figure 46: The product of scores of the BLOSUM substitution matrix (B), the Kyte-

Doolittle hydrophobicity (K), amino acid volume (Vo), entropy (E) and Variability (Va) 

for the E-C TM6 alignment. 

 

3.3.6.4. Class F – Class C 

The product scores for the F-C alignment of TM6 are seen in figures 47 and 48 

below.  There is a percentage identity of 7.4 between these two classes. 

 

0.0000 

0.1000 

0.2000 

0.3000 

0.4000 

0.5000 

0.6000 

0.7000 

0.8000 

0.9000 

-13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

Sc
al

e
d

 S
co

re
 

Alignment 

ProdBE 

ProdBKVoVa 

ProdBKVoVaE 

ProdBVaE 

ProdBVoVa 

ProdBKVa 

ProdBVa 



94 
 

 

Figure 47: The product of the scores of the BLOSUM substitution matrix (B), the 

Kyte-Doolittle hydrophobicity (K), amino acid volume (Vo) and entropy (E) for the F-

C TM6 region alignment. 

 

The results for this are not particularly clear but show the highest product score at 

the alignment -1 and 1 in figure 47. Figure 48 shows significantly higher peaks at the 

alignments -3, +1 and +4.  
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Figure 48: The product of scores of the BLOSUM substitution matrix (B), the Kyte-

Doolittle hydrophobicity (K), amino acid volume (Vo), entropy (E) and Variability (Va) 

for the F-C TM6 alignment. 

 

The multi-reference alignment is given in Chart 11. The Blosum matrix score is high 

for alignment 0 for class A, class B and class E, but class F has a low score for the 

correct (0) alignment and a high score for +1 and -3. Since class A and class E also 

give a high score for -3, this would indicate that -3 is the correct alignment. 

However, the percentage ID for class A, class B, class E and class F at the 0 

alignment to class A is 14.9, 12.6, 11.5 and 7.4. The low percentage %ID for class F 

indicates that this ought to be ignored, as in the right hand part of chart 11; under 

these circumstances the method gives the correct result. The alignment is given in 

Chart 12. 
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Chart 11: The TM6 multi-reference alignment scores. On the left, the score is given 

for multiplying the class A, class B, class E and class F scores together; on the right 

the score is given for missing out class A (red), class B (green), class E (purple) and 

class F (cyan). 

 

Chart 12: The alignment of the class C TM6 against TM6 for class A, class B, class 

E and class F. The class A - class B - class E - class F alignment is defined by the 

structural alignment of the relevant X-ray crystal structures. The correct 0 alignment 

(as defined by structural alignment) is given, along with the alternative of -3 

indicated by Figures 41, 42 and 48, and chart 11. The Xs mark the window over 

which the alignment was determined. The colour scheme for the residues is the 

default Taylor colour scheme used by Jalview. 

 

3.3.7. TM7 

3.3.7.1. Class A – Class C 

Figures 49 and 50 shows the product scores for B, K, Vo, Va and E for the TM7 

region of the A-C alignment.  There is a percentage identity of 14.5 between these 
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two classes at the 0 alignment. The results clearly show the 0 alignment to be the 

best alignment. 

 

Figure 49: The product of the scores of the BLOSUM substitution matrix (B), the 

Kyte-Doolittle hydrophobicity (K), amino acid volume (Vo) and entropy (E) for the A-

C TM7 region alignment. 
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Figure 50: The product of scores of the BLOSUM substitution matrix (B), the Kyte-

Doolittle hydrophobicity (K), amino acid volume (Vo), entropy (E) and Variability (Va) 

for the A-C TM7 alignment. 

 

3.3.7.2. Class B – Class C 

Figures 51 and 52 show the product scores of the TM1 B-C alignment.  There is a 

percentage identity of 11.4 between these two classes at the 0 alignment. Figure 1 

shows the +4 alignment to be the best with a small peak also at the +6 alignment. 

The results from figure 52 are not as clear but still show the +4 alignment as the 

best one which does not agree with the alignment of class C against class A. 
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Figure 51: The product of the scores of the BLOSUM substitution matrix (B), the 

Kyte-Doolittle hydrophobicity (K), amino acid volume (Vo) and entropy (E) for the B-

C TM7 region alignment. 
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Figure 52: The product of scores of the BLOSUM substitution matrix (B), the Kyte-

Doolittle hydrophobicity (K), amino acid volume (Vo), entropy (E) and Variability (Va) 

for the B-C TM7 alignment. 

 

3.3.7.3. Class E – Class C 

The product scores for the TM1 region of E-C are given in figures 53 and 54.  There 

is a percentage identity of 12.8 between these two classes at the 0 alignment.  The 

results clearly show the 0 alignment to be the best which agrees with the results of 

class C against class A. 
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Figure 53: The product of the scores of the BLOSUM substitution matrix (B), the 

Kyte-Doolittle hydrophobicity (K), amino acid volume (Vo) and entropy (E) for the E-

C TM7 region alignment. 
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Figure 54: The product of scores of the BLOSUM substitution matrix (B), the Kyte-

Doolittle hydrophobicity (K), amino acid volume (Vo), entropy (E) and Variability (Va) 

for the E-C TM7 alignment. 

 

3.3.7.4. Class F – Class C 

Figures 55 and 56 show the product of the scores of the TM7 alignment of class F 

and class C.  The preferred alignment from these results is the+4 alignment.  There 

is a percentage identity of 7.9 between these two classes at the 0 alignment. This is 

quite low which indicates the results of the alignment are not as reliable as the 

others.  
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Figure 55: The product of the scores of the BLOSUM substitution matrix (B), the 

Kyte-Doolittle hydrophobicity (K), amino acid volume (Vo) and entropy (E) for the F-

C TM7 region alignment. 
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Figure 56: The product of scores of the BLOSUM substitution matrix (B), the Kyte-

Doolittle hydrophobicity (K), amino acid volume (Vo), entropy (E) and Variability (Va) 

for the F-C TM7 alignment. 

 

The multi-reference alignment is given in Chart 13. The Blosum matrix score favours 

alignment +4 with the 0 alignment also scoring well. The percentage ID for class A, 

class B, class E and class F at the 0 alignment to class A is 14.5%, 11.4%, 12.8% 

and 7.9%. These figures are acceptable apart from those for class F; when class F 

is ignored (rhs of Chart 13), the method gives the right answer, as the correct 

alignment gets a reasonable score for class A, class B and class E. The alignment, 

and the +4 alternative alignment as suggested by the methods, are given in Chart 

14. 
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Chart 13: The multi-reference alignment scores. On the left, the score is given for 

multiplying the class A, class B, class E and class F scores together; on the right the 

score is given for missing out class A (red), class B (green), class E (purple) and 

class F (cyan). 

 

Chart 14: The alignment of the class C TM7 against TM7 for class A, class B, class 

E and class F. The class A - class B - class E - class F alignment is defined by the 

structural alignment of the relevant X-ray crystal structures. The correct 0 alignment 

(as defined by structural alignment) is given, along with the alternative of +4 

indicated by chart 13. The Xs mark the window over which the alignment was 

determined. The colour scheme for the residues is the default Taylor colour scheme 

used by Jalview. 
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Concluding Remarks 

The work carried out in this thesis started out as a way to predict the structure of 

Class C GPCRs as no structure had yet been found. Since the start of the project 

some Class C structures have been found so the focus of the study was altered to 

focus more on the accuracy of the method used.  

 If I had more time available it would have been useful to compare the results I 

gained with published results seen in the Vohra et al. (2013) paper to assess the 

difference made by using the HSE data. This would show how useful it is to 

determine the alignment window using this method. Using HSE data reduces the 

chance of including regions where the GPCR structures start to deviate from one 

another making the alignment more difficult and less accurate. It also indicates the 

TM regions for which the window length could be increased. A longer window length 

can give more accurate results as it uses more data to compare and determine the 

correct alignment. The results should therefore be clearer than when HSE data is 

not considered. 

 The results from the alignment generally agreed with the published structures 

but this is not always the case. The results for some TM regions were not as clear or 

as strong as expected. From the results seen the alignments where the %ID for the 

0 alignment drops below 10% are the ones where this method does not give the 

correct alignment. However, traditional sequence alignment methods usually require 

%ID of 40% or higher to give accurate results. This method gives the correct answer 

in most cases where the %ID is over 10% which is a big improvement.  
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 The alignment with class F GPCR’s was the reason for incorrect results seen 

in more than one transmembrane regions and was usually the class with the lowest 

%ID at the 0 alignment. This indicates that class F has quite a low sequence 

homology with class C and the results from this alignment are less accurate than 

with the other classes. If I had more time I would investigate this further and 

determine whether class F should be included in this alignment method or not. 

 Also, if more time was available I would have liked to have created models 

for the structure of Class C GPCRs from the alignment results and compared these 

to the ones published to check the accuracy of the alignment results. 
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Appendix 

 

Figure A1. A. The three subsets of highly similar sequences generated at a 

similarity level of 70% (i.e. the pairs of sequences have a percentage identity of 70% 

or greater within each subset, but a percentage identity of less than 70% between 

subsets. The variability is taken from the differences within a subset (Vohra et al., 

2013). B. The variation of entropy and variability along TM1 and its flanking regions. 

Variability N is based on the number of amino acid differences, regardless of the 

nature of the mutation while Variability J is based on the number of differences in 

the properties, as defined in the Jalview conservation score. Variability N is the form 

used in the thesis. 

 


