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Abstract

We propose a new method of controlling demand through delivery time slot pricing in attended

home delivery management with a focus on developing an approach suitable for industry-scale

implementation. To this end, we exploit a relatively simple yet effective way of approximat-

ing delivery costs by decomposing the overall delivery problem into a collection of smaller,

area-specific problems. These cost estimations serve as inputs into an approximate dynamic

programming method that provides estimates of the opportunity cost associated with having

a customer from a specific area book delivery in a specific time slot. These estimates depend

on the area and on the delivery time slot under consideration.

Using real, large-scale industry data, we estimate a demand model including a multinomial

logit model of customers’ delivery time slot choice, and show in simulation studies that we

can improve profits by over two per cent in all tested instances relative to using a fixed-

price policy commonly encountered in e-commerce. These improvements are achieved despite

making strong assumptions in estimating delivery cost. These assumptions allow us to reduce

computational run-time to a level suitable for real-time decision making on delivery time

slot feasibility and pricing. Our approach provides quantitative insight into the importance

of incorporating expected future order displacement costs into opportunity cost estimations

alongside marginal delivery costs.
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1. Introduction

Online grocery sales are experiencing double digit growth in the United Kingdom (12.5

per cent in 2015), and new market entrants like Amazon are increasing competitive pressure

on the incumbents to maintain their share of the market as reported by the market research

company Mintel (2016). Fulfilment logistics are one of the main cost drivers in the business;

hence it is important for retailers to balance carefully the need for high customer service levels

in terms of narrow home delivery time slots with the associated costs of service provision.

Mintel (2016) find that 32 per cent of current online grocery shoppers shop online because of

improvements in delivery time slots. Most UK retailers have moved to one-hour slots offered

over a wide time span, from around 6am to 11pm. Whilst customers expect convenient

delivery slots, they are not prepared to pay much for peak-time delivery; between £6 and

£7 is the maximum currently charged by UK retailers. However, Yang et al. (2016) show

in an empirical study that even small fee differences may influence customers’ delivery time

slot decisions, and may lead to overall improved profitability. Mintel (2016) further find

that about 80 per cent of online grocery customers in the UK pay per delivery, whilst the

remaining 20 per cent have delivery passes. Therefore, influencing customers’ delivery time

slot choices through dynamic pricing seems a promising way of achieving more profitable

delivery schedules.

This problem has recently received considerable attention from the academic community

(see Section 2), and various contributions in this context have been made toward estimat-

ing choice behavior, dynamic pricing, controlling the availability of delivery time slots, and

approximating the delivery costs associated with a set of orders.

In this work, we develop a dynamic delivery slot pricing policy to manage demand over

a finite booking horizon prior to the actual delivery date such that we maximize expected

profit. We do not consider same-day delivery. The policy is based on a customer delivery slot

choice model and reflects in its pricing the so-called opportunity cost associated with each

delivery slot option. The opportunity cost of a delivery slot may be interpreted as its value,

which is influenced by the anticipated displaced order cost (meaning that some future orders

are lost due to capacity constraints if the customer selects this time slot) and by marginal

delivery costs.

The main challenge is to calculate the opportunity costs; once these are known, we only
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need a fast method to evaluate the feasibility of a delivery in a given time slot and area,

and to optimize delivery time slot prices when a customer arrives wanting to book a delivery.

The opportunity cost calculation and feasibility check both require a way of approximating

the NP-hard, capacitated vehicle routing problem with time windows. We decompose this

problem into a collection of smaller, independent subproblems corresponding to clusters of

postcodes, and use a continuous approximation of the total traveling distance. Based on

this decomposition, we propose an approximate dynamic programming model to estimate the

opportunity costs. The latter are used as inputs into the real-time optimization of delivery

time slot prices.

The main contribution of our work to the existing literature is to quantify the impact on

profit of incorporating expected order displacement costs (in addition to marginal delivery

costs) into the opportunity cost estimate in a way suitable for large-scale applications. Real-

time decision making is achieved by using a simple approximation of the vehicle routing

problem that allows an easy and quick time slot feasibility check, and by exploiting results

available in the literature on how to solve the pricing problem efficiently. We demonstrate

the effectiveness of this method in a simulation study based on real data from our industry

partner, and show that our approach may produce significant profit improvements against

various benchmarks.

From a business perspective, several managerial insights can be gleaned from our numer-

ical experiments. First, dynamic pricing does not necessarily always improve on fixed-price

strategies; its success hinges on good opportunity cost estimates that include both marginal

delivery costs and expected order displacement cost. Second, it may be better to offer low

delivery charges in remote areas with low demand density, even though the cost of deliveries

is higher than in areas with high demand density. Our proposed method sets delivery charges

in this way in order to stimulate demand in areas with low demand, in contrast to alternative

methods (e.g. Yang et al. (2016)) that make delivery charge decisions based solely on delivery

cost estimates. In practice, we expect this stimulation to be further reinforced by the so-called

neighborhood effect (our study does not take this into account): direct social interaction be-

tween neighbors or observation of deliveries to neighbors typically leads to increased demand,

as shown by Bell and Song (2007). If charges are based exclusively on estimated marginal

delivery costs for a given order, the resulting higher charges in areas with low demand density
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are a hindrance to demand growth. Furthermore, such pricing policies give rise to equity

concerns regarding systematically disadvantaged customers in remote areas (see Lang et al.

(2017)).

This paper is organized as follows: in Section 2 we review and discuss the related literature

and in Section 3 we formally state the problem formulation. In Sections 4 and 5 respectively,

we then explain how we approximate the delivery costs and value function. Based on these

approximations, we obtain a pricing policy, as defined in Section 6. This policy is tested

against fixed-price benchmarks in a numerical study presented in Section 7, and we draw

conclusions in Section 8.

2. Literature review

For a review of e-fulfillment from an operational research perspective, see Agatz et al.

(2008). A recent overview of fulfillment and distribution from a qualitative point of view is

provided by Hübner et al. (2016).

In their seminal work, Campbell and Savelsbergh (2005) investigate a dynamic routing

and scheduling problem of a grocery vendor who needs to decide which deliveries to accept

or reject, and in which time slot to deliver the accepted orders. Customers are assumed to

have a certain time slot profile which represents all slots that they are willing to accept; if

the order is accepted, the firm assigns one of these slots to the order.

Campbell and Savelsbergh (2005) model demand as an arrival process that is not influ-

enced by the firm’s decisions. In the follow-up paper Campbell and Savelsbergh (2006), they

use a relatively simple model of customer behavior to capture the effect of incentives (such as

delivery charges) on the probability of a particular time slot being chosen. Their focus is on

influencing delivery time slot choices to reduce delivery costs, as opposed to improving total

expected profits, which is the focus of our paper.

A more sophisticated model of customer choice, namely multinomial logit (MNL), is used

by Asdemir et al. (2009) for dynamic time slot pricing. They propose a dynamic programming

(DP) formulation under the assumption that the problem can be addressed independently for

each geographical area (e.g. a postcode), and that delivery capacity levels are committed a

priori to each delivery time slot. Therefore, delivery costs are fixed, and the objective is to

maximize the expected profit from orders. The state space of their DP grows exponentially
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in the number of delivery time slots, which makes practical application difficult. In our

work, we likewise use the MNL choice model and consider a DP formulation decomposed by

geographical area, but we also discuss how to obtain these areas, and how to approximately

solve the DP for industry-sized problems. Furthermore, the delivery cost approximation in

our model is dynamic, not fixed as in Asdemir et al. (2009).

Agatz et al. (2011) address the geographical dependence issue of the attended home deliv-

ery problem. Their approach relates to ours in that they also use the work of Daganzo (1987)

to obtain a continuous delivery cost approximation. However, they consider the problem of

which delivery time slots to offer in which area so as to reduce delivery costs while meeting

service requirements. Their work does not address the problem of how to influence customer

choice behavior so as to improve expected profit, which is the aim of our work.

Ehmke and Campbell (2014) examine an integrated routing and scheduling problem in

the context of attended home delivery. Their objective is to maximize the number of requests

accepted for delivery, subject to retaining feasible tours. Customers’ delivery slot choices are

assumed to be independent of the firm’s decision making, which is limited to accepting or

rejecting delivery slot booking requests. In contrast, our study aims to maximize total profit

by deciding on delivery time slot charges, which directly influence our model of customers’

delivery time slot choice behavior. Similarly, Cleophas and Ehmke (2014) discuss decision

making in terms of acceptance or rejection of delivery requests, but also propose to reserve

transport capacity for specific delivery areas and time windows with a high expected order

value.

Yang et al. (2016) estimate an MNL choice model from real e-grocer data and demonstrate

numerically that using this model for time slot pricing to influence demand may improve

overall profitability. They employ insertion heuristics to update a pool of feasible routes as

orders come in over the booking horizon, and derive marginal delivery cost estimates used as

estimates of the opportunity cost of accepting an order into a particular time slot. In our work,

we draw on their choice model but use a different (and computationally much more efficient)

way of estimating marginal delivery costs. Furthermore, our opportunity cost estimates are

not based solely on delivery costs, but also take potential future order displacement costs into

account. The work of Cleophas and Ehmke (2014) relates to that of Yang et al. (2016), in

that both papers combine demand fulfillment and revenue management. However, the latter
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is concerned with time slot pricing and incorporates customer choice modeling, in contrast to

the static demand model of Cleophas and Ehmke (2014).

A key difficulty of the attended home delivery problem is estimating routing costs before

all (or even any) orders are known. Bühler et al. (2016) propose several linear mixed-integer

programs to approximate delivery costs based on a fixed pool of potential routes. Klein

et al. (2016) integrate a linear mixed-integer program (MIP) formulation into the dynamic

pricing approach of Yang et al. (2016) in attempting to anticipate future customer requests.

This approach aims to obtain opportunity cost estimates that feature both delivery costs

and revenue implications similar to those we produce in this work. In other words, their

MIP formulation can be seen as an approximation of the value function. However, the MIP

as proposed by Klein et al. (2016) suffers from computational challenges for industry-sized

problems because the number of decision variables grows exponentially in the number of

delivery time slots.

Klein et al. (2015) is related to our work in that they consider time slot pricing in attended

home delivery under a model of customer choice. Their objective and problem setting are

very similar to ours, but they tackle the problem with a different delivery cost estimation, a

different choice model, and a different approximation of the value function (namely using an

MIP formulation).

3. Problem statement

We consider an e-grocer receiving orders via an online booking system which requires

customers to book their delivery when completing their purchase. Orders for a specific delivery

day can be received over a finite time horizon until a certain cut-off time, after which no further

orders are accepted. Deliveries are made after the cut-off time. We model this as a discrete

booking horizon, starting at time t = 1 and ending in time period t = T . Each time period

is sufficiently small for the probability of more than one customer arrival to be negligible.

Customers arrive over this time horizon to book their delivery for this specific delivery day.

This follows the demand model of Yang et al. (2016) in that we do not consider delivery time

slot choice beyond a single day. Customer arrivals follow a homogeneous Poisson process, λ.

Note that this homogeneity can be achieved by appropriately defining a non-homogeneous

time grid, as explained by Yang et al. (2016). An arriving customer requests delivery in area a
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with probability µa. With a probability of σai, the number of totes in an order from area a is

i ∈ Ia, where Ia is a finite set of order sizes that may be encountered in area a (obtained from

historical data). By definition,
∑

i∈Ia
σai = 1, ∀a. We assume that order size is independent

of both time of order placement and delivery charge.

When a customer arrives, we need to check which time slots s ∈ {1, . . . ,m} out of the total

of m slots are feasible for the desired area given an order size of i (measured in the number of

required transport totes). We denote the resulting feasible set by Fai ⊂ {1, . . . ,m}, ∀a, i ∈ Ia.

We then need to decide which delivery charges to impose on the feasible slots. Faced with

the resulting set of feasible slot alternatives s ∈ Fai for area a and given order size i as well as

delivery charges ~da := (das)s∈Fai
, the customer decides according to some choice model when

(or whether) to book delivery. This choice model specifies the probability Ps,Fai
(~da) that a

customer will choose slot s, given the vector of delivery charges ~da for area a over all feasible

slots Fai. If the customer books slot s, we receive a delivery charge of das and a revenue of

ir, where i is the number of totes ordered and r is the average profit per tote.

This control problem can be modeled as a Markov decision process over states labeled

(~xt, ~yt) defined for discrete time periods (stages) t = 1, . . . , T which collectively represent the

booking horizon. Vector ~xt consists of components xtas which represent the number of orders

accepted in time slot s for area a until time t in the booking horizon. Vector ~yt consists

of components yta representing the total number of totes collected over all time slots s for

area a until time t. As we assume that a van is only loaded once in the morning, yta is

independent of delivery time slots s. Note that this state definition does not capture which

order has requested which totes; rather, we only have the aggregated required number of

totes yta. We use this reduced state because it contains sufficient information for delivery

cost approximation, as discussed in the next section. Our actions are the setting of delivery

time slot charges ~da ∈ R
|Fai|
+ for all areas a and order sizes i ∈ Ia. Having taken an action

in time period t, we then transition stochastically from state (~xt, ~yt) to state (~xt+1, ~yt+1)

according to the distributions of customer arrival λ, order size σ and slot choice Ps,Fai
(~da).

More specifically, if we receive in booking period t an order of i totes for delivery in slot s,

then we transition from state (~xt, ~yt) to state (~xt + 1as, ~yt + i1a), where 1as (1a) is the unit

vector with 1 in the (a, s)th (ath) position. Our objective is to maximize expected profit over

booking horizon [1, T ]. In the following, we omit time index t in (~xt, ~yt) since this will be
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clear from the context of the dynamic programming recursion, which also features time index

t.

Let Vt(~x, ~y) denote the value function at period t and state (~x, ~y); this represents the

maximum expected profit obtainable from the sales process from time t until cut-off time T .

The dynamic programming recursion at stage t ∈ {1, 2, . . . , T} is thus:

Vt(~x, ~y) = max
~d

λ
∑

a,i

µaσai
∑

s∈Fai

Ps,Fai
(~da)

[

ir + das + Vt+1(~x+ 1as, ~y + i1a)
]

+

[

1− λ
∑

a,i

µaσai
∑

s∈Fai

Ps,Fai
(~da)

]

Vt+1(~x, ~y)

= max
~d

λ
∑

a,i

µaσai
∑

s∈Fai

Ps,Fai
(~da)

[

ir + das −
(

Vt+1(~x, ~y)− Vt+1(~x+ 1as, ~y + i1a)
)]

+ Vt+1(~x, ~y) ∀ (~x, ~y) ∈ X . (3.1)

In each time period t of the booking horizon, we need to decide on the optimal delivery

charges ~d. A customer arriving in this time period with probability λ, is interested in delivery

to area a with probability µa, orders i totes with probability σai and then chooses delivery

slot s with probability Ps,Fai
(~da). In this case, we receive ir profit from the order, plus das from

the delivery charge, and we transition in the next stage (t+1) to a new state (~x+1as, ~y+i1a).

If no order is placed, we remain in state (~x, ~y).

We let C(~x, ~y) represent an oracle that returns an approximation of the minimum cost for

the underlying vehicle routing problem with time windows for the set of orders (~x, ~y) given a

fixed fleet of vehicles with known capacities. If there is no feasible solution for a given state,

then C(~x, ~y) :=∞. We denote by Fai(~x, ~y) := {s : C(~x+ 1as, ~y + i1a) <∞} all feasible time

slots for area a into which an order with i totes can be feasibly inserted given that we are in

state (~x, ~y). For brevity of notation, we use the short-hand notation Fai mentioned above.

The value function after cut-off is

VT+1(~x, ~y) = −C(~x, ~y) ∀ (~x, ~y) ∈ X , (3.2)

where X denotes the set of all possible states that could be generated from the arrival process.

If we can somehow solve this dynamic program (or at least approximate the value func-

tion), then we can use the value function in a decision policy in the following form. Given
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the arrival of a customer from a known area a with order size i during the booking horizon,

we simply need to solve the so-called online decision problem:

{d∗as|s ∈ Fai} = argmax
∑

s∈Fai

Ps,Fai
(~da)

[

ir + das −
(

Vt+1(~x, ~y)− Vt+1(~x+ 1as, ~y + i1a)
)]

.

The term
(

Vt+1(~x, ~y) − Vt+1(~x + 1as, ~y + i1a)
)

represents the opportunity cost of having a

customer from area a book delivery in slot s at time t with an order of size i, given that

we currently have orders (~x, ~y) on the books. This opportunity cost can be interpreted as

the expected displacement of profits from future orders as a result of accepting this order,

so in the revenue management literature, it is sometimes also referred to as the displacement

cost. Depending on the choice model, the online decision problem can be solved efficiently, as

discussed in Section 6, provided that we have an approximation of the opportunity cost and a

way of determining the feasible set of slots Fai. Note that the opportunity cost reflects both

the revenue and cost implications of having a customer book a delivery. Yang et al. (2016)

approximate the opportunity cost using only the estimated delivery cost, but here we take

both effects into account.

However, we stress that the suitability of the solution approach for practical, industry-sized

application hinges on the ability to identify feasible slots Fai and to solve the online pricing

problem very quickly, namely in less than 100 milliseconds, as advised by our industry partner.

Furthermore, close to the delivery day, we may have orders arriving in quick succession, so

there may be no time for offline computations between order arrivals.

In the following sections, we propose a solution approach that adheres to these tight

practical limitations. The delivery cost function approximation is discussed in Section 4, and

the value function approximation in Section 5.

4. Delivery cost approximation

Evaluation of the delivery cost function C(~x, ~y) requires a solution to the capacitated

vehicle routing problem with time windows, which is known to be NP-hard. Moreover, we

need to evaluate this cost function repeatedly for various states (~x, ~y). However, we only

need a reasonable cost estimate; the underpinning routes themselves are not required for our

solution approach. Therefore, we propose using the clustering-first, route-second strategy

developed by Daganzo (1987), which considerably simplifies the problem whilst still retaining
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sufficient information to provide a useful cost estimation, as we demonstrate numerically in

Section 7. This allows us to solve the dynamic program (3.1) approximately. We emphasize

that this cost estimation is different from the final cost assessment used in our simulation

experiments given a final set of orders for which we do base the costs on specific routes.

The idea is to decompose the problem geographically by assuming that each area has a

single delivery van associated with it, and that this van is driving to complete a full cycle in

each time slot within its designated area. Under some further assumptions, we can express

the daily traveling distance Da within a given area a by a simple function of the number of

orders received, ~xa. These assumptions are that customer locations are randomly and nearly

uniformly scattered within the area, that the time windows are equally long, that customers

only place requests within one of the time periods, and that demand is balanced over time

slots. The assumptions regarding uniformly-distributed customers over space and time are

strong. Whilst we would expect that our dynamic pricing approach will eventually lead to

more uniformly-distributed orders over time, some peaks and troughs are still likely to occur.

Likewise the geographical distribution will typically be non-uniform.

Therefore, one would expect the resulting estimates to be of limited quality, in so far as

the actual vehicle routes would be much more flexible. However, our main objective is to

devise an approach that requires very little computational time to evaluate routing costs, yet

that estimates them in such a way as to still improve overall profitability. We define a single

set of delivery areas for the delivery day under consideration, and we keep this fixed over the

entire booking horizon. Whilst being restrictive, this approach allows us to (approximately)

evaluate delivery costs very quickly.

Clustering: defining delivery areas

First, we define rectangular delivery areas a with length La and width Wa that represent

geographical clusters of customers to be served. The clustering problem features routing con-

straints; hence, approaches like k-means cannot be applied in a straightforward manner. Any

area must be defined such that a single van can accommodate all expected orders (capacity

constraint), and such that it is small enough to allow the van to complete full cycles and to

visit and serve all customers in each delivery time slot (time constraints).

We propose the following clustering approach. For a given weekday, e.g. Monday, we

obtain the average number of daily deliveriesNz in postcode z from the final delivery schedules
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of past Mondays. For any postcode center located in a given rectangular area, this area’s van

needs to serve all daily orders associated with these postcodes. The total daily number of

orders in area a is denoted by Na =
∑

z∈aNz, where z ∈ a denotes all postcodes centered

within area a. These Na orders form our expectation of total daily demand for this area;

according to our assumptions above, we expect ⌈Na/m⌉ orders in each of the m time slots.

The overall delivery region is partitioned into bands of equal size. A delivery area is

defined as a piece of a band that satisfies both delivery time and capacity constraints. We

only need to decide on the width of each area because its length is fixed by the latitude of each

band. For illustration, Figure 1 (in Section 7) shows such a cluster derived for the Greater

London region. In that numerical study, we tested different numbers of these horizontal bands

and selected the one resulting in the smallest number of required vans.

For a given set of bands, we move from east to west within a given band to determine the

maximum allowable width Wa of a delivery area a that satisfies:

• the time constraint that the total traveling and service time required to serve all ⌈Na/m⌉

orders in a slot should not exceed the duration of that slot (e.g. one hour). We assume

a known average traveling speed v of the delivery van and a known average service time

τ at a customer location. Distance driven is split into vertical and horizontal distances:

in each time slot s, the van travels the whole length La of the area twice. Note that the

expected distance of two uniformly-distributed points in the unit interval is 1/3. The

van is assumed to travel in a full cycle covering the upper half of the rectangle on the

first half cycle, and the other on its return, so the expected distance between two orders

is Wa/6. This results in the constraint:

(2La +
Wa

6
⌈Na/m⌉)/v + τ⌈

Na

m
⌉ ≤ 1.

We refer the interested reader to Daganzo (1987) for further details of the derivation of

this formula.

• the capacity constraint, namely that the total number of totes does not exceed the

capacity κ of the delivery van: Na

∑

i∈Ia
iσai ≤ κ.

This method produced realistic numbers of required vans in our numerical experiments.
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Routing: approximating delivery costs

For a rectangular area a of width Wa and length La, we define the stem distance ρa from

the depot to the area’s center. For a given number of
∑

s xas orders to be served on the

delivery day under consideration, the daily traveling distance is given by

Da(~xa) = (2ρa − La) +
m
∑

s=1

(2Laδas + xasWa/6), (4.1)

where

δas =



























0, if xas = 0,

1, if 0 < xas ≤Ma,

∞, if xas > Ma,

and the maximum number of orders that can be served within a one hour time slot is denoted

by Ma := argmax{x ∈ Z
+|τx+

[

2La +
Wa

6 x
]

1
v
≤ 1}. The first part of the formula expresses

the stem distance traveled between the depot and the area, and the second part is based on

the same reasoning as presented for the time constraint in the clustering discussion above.

We assume that driving distance is the only cost incurred in accepting deliveries since

the fleet and the drivers’ salaries are assumed to be fixed costs, so the total cost of area a

is Ca(~xa, ya) = ξDa(~xa) if the van capacity is not exceeded, i.e. ya ≤ κ (and ξ is a known

cost-per-mile factor), or Ca(~xa, ya) =∞ otherwise.

In summary, this delivery cost estimation has the advantage that the resulting overall

cost function C(~x, ~y) =
∑

aCa(~xa, ya) is decomposable by delivery area, and can be quickly

evaluated. We exploit these features in our approximation of the dynamic programming value

function.

5. Value function approximation

For the final stage T+1, the value function decomposes by areas: VT+1(~x, ~y) = −
∑

aCa(~xa, ya).

Since slot-pricing decisions are independent between different areas, the dynamic program as

a whole decomposes by area:

V a
t (~x, ~y) = max

~da

λ
∑

i

µaσai
∑

s∈Fai

Ps,Fai
(~da)

[

ir + das −
(

V a
t+1(~xa, ya)− V a

t+1(~xa + 1s, ya + i)
)]

+ V a
t+1(~x, ya) ∀ (~xa, ya) ∈ Xa, (5.1)
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where Xa = {(~xa, ya) ∈ (Nm × N)|0 ≤ xas ≤ Ma, ya ≤ κ}. In the following, we omit area

index a since we are focusing on a solution to this single-area dynamic program. It is still

intractable because of the large state space which grows exponentially in the number of time

slots; therefore, we propose to use approximate dynamic programming with a linear value

function approximation, similar to the affine approximation proposed by Adelman (2007).

Note that we omit dependence on the total number of totes y to be delivered in the area

under consideration. This number is relevant to the cost function in determining whether all

orders fit into the van, and is used in the determination of slot feasibility. However, the time

constraints are usually much more restrictive than van capacity if the delivery time slots are

narrow (say, one hour), so we ignore y in the approximation:

Vt(~x, y) ≈ V̄t(~x) := γ0 −
∑

s

γsxs + (T + 1− t)θ, ∀(~x, y) ∈ X . (5.2)

Parameter γs can be interpreted as an estimate of the opportunity cost of accepting an order

in slot s (regardless of order size i) since Vt+1(~x, y) − Vt+1(~x + 1s, y + i) ≈ γs. Parameter θ

reflects the time dependence of the value function: the fewer time periods remain until the

end of the booking horizon, the smaller the expected profits that can be gained over these

remaining time periods.

In Algorithm 1, we outline our proposed approximate dynamic programming procedure

to find parameters ~γ and θ. We sample kmax paths of order arrivals indexed by k, and use

our current best knowledge of the parameters to approximate the value-to-go in the dynamic

programming recursion. This allows us to step forward in time, and at each time step t

we calculate the value V̂
(k)
t of being in state ~x

(k)
t . Next, we update the parameters with a

stochastic gradient step. Specifically, we seek to find parameters that bring our value function

approximation V̄
(k)
t closer to the observed value V̂

(k)
t :

min
~γ,θ

1

2
E

[

V̄
(k)
t (~x

(k)
t )− V̂

(k)
t

]2
.

The updating scheme (with fixed step sizes α1, α2, α3 along the negative gradient direc-

tions) is thus the following:

γ
(k)
0 = γ

(k−1)
0 − α1[V̄

(k−1)
t (~x

(k)
t )− V̂

(k)
t ],

γ(k)s = γ(k−1)
s − α2[V̄

(k−1)
t (~x

(k)
t )− V̂

(k)
t ]x

(k)
ts , ∀ s,

θ(k) = θ(k−1) − α3[V̄
(k−1)
t (~x

(k)
t )− V̂

(k)
t ](T + 1− t).
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We stop the procedure after kmax iterations (corresponding to the kmax sample paths), and

use the final value function approximation in the real-time control policy to make pricing

decisions, as discussed in the next section.

6. Real-time control policy

As soon as a customer request arrives, we need to determine which delivery slots are

feasible, and then decide on the delivery price. In fact, for the sake of practical relevance, this

decision needs to be made almost instantaneously. We propose to determine the area clusters

and the corresponding value function approximations before the start of the booking horizon.

Within the booking horizon, we can then check the “feasibility” of delivery in a given area

a by checking whether (a) the current number of totes to be delivered in this area exceeds the

van’s capacity, and (b) whether we exceed the maximum number of orders Ma in any slot.

Both conditions are simple comparisons of known numbers.

This proposed “feasibility” check is unrealistic, in so far as the actual routing would

look very different from the assumed area-based routing approximation. However, it may be

regarded as a conservative estimate: whilst slots deemed “infeasible” may actually be feasible

in the actual vehicle routing process, “feasible” slots would be expected to indeed be feasible.

Keeping sets of feasible vehicle routings, as done by Yang et al. (2016), is likely to be too

time-consuming for real-time decision making.

Next, given the set of feasible slots Fai(~x, ~y) for the incoming request in area a for i totes

and associated order profit ir given state (~x, ~y), we need to find the optimal delivery charges

to offer. We are seeking to solve the following problem:

~d = argmax
∑

s∈Fai

Ps,Fai
(~da)

[

ir + das − γs

]

. (6.1)

The difficulty of solving this problem depends on the choice model underpinning the cus-

tomers’ time slot decisions as well as on the range of feasible price vectors. Note that essen-

tially the same problem needs to be solved repeatedly in the approximate dynamic program-

ming iterations as described in Algorithm 1. Various constellations have been investigated

and tractable formulations proposed, for example using the MNL choice model and continu-

ous prices (Dong et al., 2009), MNL with a discrete price set (Davis et al., 2013), or nested

MNL with bounded continuous prices (Rayfield et al., 2013).
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We use an MNL choice model with continuous prices, as in Yang et al. (2016), whereby

the probability of a customer choosing delivery slot s, given that the set F of slots is available

at prices ~d, is defined by:

Ps,F (~d) =
exp

(

β0 + βs + βdds
)

∑

k∈F exp
(

β0 + βk + βddk
)

+ 1
,

where β0 is an offset parameter, βs measures the attractiveness of slot s and βd is the price

sensitivity. The no-purchase utility is normalized to zero.

Proposition 6.1. For the MNL choice model and continuous prices, the optimal solution to

(6.1) is given by

d∗s = γs − ir −
h

βd
, ∀ s ∈ F,

where h is the unique solution of

(h− 1) exp(h) =
∑

s∈F

exp(β0 + βs + βd(γs − ir)). (6.2)

Proof. Theorem 1 in Dong et al. (2009).

Standard Newton root search can be employed to find h in (6.2).

7. Numerical results

We tested our approach in a simulation study based on real data from our industrial

partner. With these experiments, we sought answers to the following questions:

1. Does the proposed policy deliver consistent improvement in profitability over various

demand scenarios compared with benchmarking policies? How does dynamic pricing

with different opportunity cost estimates perform, and what is the value of including

order displacement cost in the opportunity cost estimate?

2. Is computational speed sufficient for potential commercial application?

3. Can we glean managerial insights from the new pricing approach regarding whether

delivery areas that are far from the depot should be priced differently from closer areas,

and how order volume influences the average delivery charge?

We discuss these questions and summarize our findings in the next sub-sections.
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7.1. Data description

The data were provided by a major e-grocer in the United Kingdom, focussing specifically

on delivery operations in the Greater London area. The same data were used by Yang et al.

(2016) to estimate time-dependent customer arrival processes and to calibrate an MNL choice

model. The dataset contains anonymized customer booking requests over six months from

the beginning of June to the end of November 2011, all made through the company’s website.

Customer are identified by a unique ID number, and they must be logged into their personal

account in order to book delivery. The postcode of each customer is contained in the data.

Every request to display available delivery slots is stored, including which customer made

the request, the order size in terms of number of totes, the time and delivery day of the

request, which slots were displayed as available, and at what charges. Customers’ delivery

slot decisions are likewise recorded. Expenditure is not included in the data set, but a fixed

average revenue per tote of £30.39 was provided. Furthermore, since we aimed to maximize

profit, we assumed the average profit before delivery costs to be 30 per cent of revenue.

Regarding the range of data used, only customers who had to pay per delivery were con-

sidered,excluding those with a subscription for free delivery. Furthermore, we focussed our

attention on customers wanting to book a Monday delivery. Customers who considered a

Monday delivery but then decided on delivery on another day were considered to be lost sales

because we optimized for each day individually. It would have been desirable to include mul-

tiple days in the choice model, but this would have considerably increased its complexity and

is beyond the scope of this paper. Twenty-six booking histories were associated with Mon-

day deliveries over the full time horizon available, each containing several thousand customer

arrivals. We only used the latest instance of a booking request by a particular customer for

a particular delivery day (sometimes a customer looked at options for the same delivery day

at different times). For the sake of simplicity, we did not include cancelations in the model;

thus, we removed canceled orders from the data.

The arrival process was estimated over T = 6, 990 non-homogeneous periods with arrival

probability λ = 0.824 in each period. Note that time period sizes were chosen to allow

for constant probability: early periods were wide, whereas periods close to the delivery day

were narrow (see Yang et al. (2016) for details of the estimation procedure). Since the data

contained the postcode of each customer, we were able to calculate the probability µz that
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a new delivery request would hail from a particular postcode z as the proportion of requests

from z relative to all requests. This probability was then used to derive the probability µa

that an arriving customer would belong to area a (consisting of a collection of postcodes).

Regarding delivery slot choices, the online grocer uses 27 partly overlapping delivery time

slots of one-hour duration, starting either on the hour or at half past the hour. However,

our routing cost estimation assumes that we have non-overlapping slots. Therefore, we trans-

formed the data by randomly changing any half-past-the-hour slot request to either the pre-

ceding or succeeding overlapping slot with equal probability. We estimated the MNL choice

model based on these modified data and obtained parameters as reported in Table 1. For

details of how to derive the MNL parameters and the arrival process, see Yang et al. (2016).

Note that the base utility parameter is small relative to the utility of the non-purchase op-

tion (which is set to zero). This is because the data contains many cases where customers

looked at a particular day but then went on either to select a slot on a different day or not to

book delivery at all. The β parameters reflect the popularity of different slots; for example,

9-11am, noon-1pm, and 9-10pm are particularly attractive. The price sensitivity parameter

βd is negative in line with expectation. All delivery charges contained in the data belong to

the set {£0, £1, . . . £7}.

β6 β7 β8 β9 β10 β11 β12 β13 β14

-1.0305 -0.3591 0.3107 0.5922 0.6154 0.0796 0.5356 -0.2415 -0.6286

β15 β16 β17 β18 β19 β20 β21 β22

-1.6736 -0.4351 -0.161 0 0.2533 0.0736 0.562 0.2346

Table 1: MNL parameters estimated for Monday deliveries. Base utility β0 = −2.5087, price sensitivity

parameter βd = −0.0766. Slot preference β6 represents the 6-7am slot, etc. Slot 18 is used as a reference point

and is hence set to zero.

Finally, as inputs for the delivery cost estimation we used ξ = 0.25 as the cost per mile,

and κ = 80 totes as the van capacity. Stem distances ρa from the depot to the center of a

given rectangular area a were calculated as the crow flies. Average van speed was assumed to

be v = 25.4 miles per hour as provided by our industry partner. Deliveries are made in two

sequential shifts (6:00 to 15:00, 15:00 to 23:00). We made the simplifying assumption that vans

were ready for delivery at the beginning of each shift; however, we did include the driving cost

17



between each area and the depot in the cost estimation because we were mainly interested in

obtaining reasonable delivery cost estimations and were less concerned with feasible schedules.

Our area-based cost estimation is anyway a very conservative approximation, so feasibility

under this scheme is likely to imply feasibility under a more sophisticated routing.

7.2. Clustering

We derived the delivery area definitions as described in Section 4. The overall delivery

region was divided into 16 bands, resulting from experimenting with different numbers to see

which resulted in the least number of areas required to cover all postcodes z with positive

average total daily number of orders, denoted by Nz. For our data, using 16 bands and

applying our ad hoc area definition method resulted in 111 areas. The resulting rectangular

areas and the customer locations covered by each are shown in Figure 1. Some areas on the

outskirts of London are wide and contain few customer locations; others in central London are

very small due to the high density of customers there. Recall that the maximum width of an

area is determined using the time and capacity constraints described in Section 4; therefore,

in areas with high order density, the time constraint becomes binding even for small values

of width Wa. Each dot represents a postcode z with a certain underpinning average daily

number of orders Nz. We assume that these orders are all uniformly distributed over the m

delivery slots (required for the cost estimation framework of Daganzo (1987)), so here we do

not use historical slot booking information. Note that some areas span white space because

we need to be able to attribute an order from a postcode that is in the delivery region but

from which we have not yet received orders to a specific area. The area definition remains

static throughout the booking horizon, and therefore needs to be able to accommodate orders

from any part of the delivery region.

All experiments were conducted on the basis of this area decomposition. The probability

that an arriving customer will be from area a is defined by µa :=
∑

z∈a µz, where z ∈ a is

shorthand notation to represent all postcode centers within area a. For each postcode z, we

know the average order size iz (measured by the number of totes and rounded to the nearest

integer) for the delivery day under consideration. The order size distribution σ is assumed to

be the same for each cluster, and is defined by σi :=
∑

z:iz=i µz, for all i ∈ {1, 2, . . . , 10}.
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Figure 1: Scatter plot of customer location clusters. Each dot represents a zip code where at least one order

has been received in at least one of the 26 booking histories.

7.3. Simulation results

Using arrival rates λ, µa and order size distributions σ, we generate 1,000 arrival streams

over the entire booking horizon T . Order value is derived from the sampled order size multi-

plied by the average revenue per tote. For these 1,000 demand scenarios, we test the following

policies:

• VS : Value-based, Static pricing. Delivery charge is based on order value, namely £3 for

goods worth £50 or more, and £5 otherwise.

• F4, F5 : Fixed prices, at £4 and £5 respectively, for all time slots.

• OC-0 : Given a request for delivery of an order of size i to area a (and a feasible set of

slots Fai), assume that the opportunity cost is zero and solve (6.1), with γs replaced

by 0 for all slots s.

• OC-C : Given a request for delivery of an order of size i to area a (and a feasible set of

slots Fai), assume that the opportunity cost equals the marginal estimated delivery

cost and solve (6.1) with γs replaced by ξ(2La+Wa/6) for the first order in slot s, and

by ξWa/6 subsequently.

• OC-R: Given a request for delivery of an order of size i to area a (and a feasible set of

slots Fai), assume that the opportunity cost equals γs, where the boundary condition

in Algorithm 1 is replaced with V̄
(k)
T+1(~x) = 0 for all ~x, for all k (i.e. we ignore all cost
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implications). The underpinning approximate dynamic program uses step sizes α of

0.0001, 0.00014 and 0.00025 for γ0, θ and γs, respectively (note that different scaling of

these variables requires different step sizes). We use kmax = 3, 000 iterations.

• OC-CR: Given a request for delivery of an order of size i to area a (and a feasible set

of slots Fai), assume that the opportunity cost equals γs, i.e. it consists of both cost

and revenue effects, and solve (6.1). This is our proposed approach. All parameters of

Algorithm 1 are the same as for OC-R.

For all policies, feasibility of delivery in a particular area, for a particular slot at a particular

time t in the booking horizon is evaluated based on the fixed area definition, as described in

Section 6. Customers’ choices are sampled from the MNL model depending on the delivery

charges that we limit to the interval [-£10, £10] as in Yang et al. (2016). We follow their

approach of projecting optimal prices onto this interval, so the resulting price set will no

longer necessarily be optimal.

We remark that OC-0 is a myopic policy which assumes that there are no delivery capacity

constraints and no delivery costs; accordingly, this policy should do well in areas where

expected demand is much lower than capacity and where delivery costs are low. Policy OC-C

should do better, in that it accounts for delivery costs, and overall is also expected to work

well if expected demand is much less than capacity.

Final delivery costs are calculated in a two-stage process: we first assume that each vehicle

serves one area only and insert as many accepted orders as possible into the single-cluster

delivery route using a greedy insertion heuristic. If any orders remain unserved, we then try

in a second stage to insert these orders into the delivery routes of vans in adjacent areas that

still have available capacity. If there are still orders left unserved, then we add a fixed penalty

cost of £5 to each (corresponding to standard second-class delivery by the mail service).

In Table 2, we report the results over all delivery areas for different scalings of the arrival

rate λ, so as to gain insights into the robustness of the profit improvements of our proposed

policy OC-CR over the benchmark VS with respect to changes in demand intensity. For

each scaling scenario, the approximate dynamic program is only solved once and the resulting

parameters ~γ are used in the OC-CR policy in all simulations.

Table 2 provides many insights. First and most importantly, we observe that OC-CR

performs consistently the best over all scenarios, with improvements over the benchmark in
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the range of 2.2–2.5 per cent. Secondly, we always observe OC-0 < OC-C < OC-R < OC-CR.

In particular, OC-CR is significantly and consistently better than OC-C in all scenarios,

demonstrating the value of incorporating the impact of future profit opportunities from orders,

rather than just the estimated marginal delivery cost, into the opportunity cost. OC-CR

achieves these profit improvements despite collecting fewer orders than the other two dynamic

policies, and at a higher cost per order. This is due to our focus on optimizing total profit

rather than minimizing costs. The algorithm anticipates future order values and in which

time slot they are likely to occur, so that the pricing can influence demand accordingly.

The OC-R policy represents a tractable implementation of the dynamic programming

approach of Asdemir et al. (2009). The observed results are intuitive. First, OC-R works

better than all other simple policies apart from OC-CR as long as demand is high relative to

capacity (so the expected value of displaced order revenue is often positive). OC-R gives the

highest average price within the dynamic pricing group, as a result of the higher expected

opportunity cost without considering delivery costs. As the demand scaling factor increases,

OC-R and OC-CR become increasingly similar. This is due to the increasing importance of

order value over delivery cost: when demand is high, by accepting an order in a certain slot

we are more likely to displace future orders than in a scenario with low demand. Therefore,

the proportion of expected displaced future profits becomes bigger relative to routing costs

as demand increases (assuming a fixed fleet), and so OC-R behaves almost like OC-CR under

high-demand scenarios.

All dynamic policies attract higher average order values than static policies, but overall

profitability of OC-0 and OC-C may suffer compared with the benchmark, even if they attract

more orders. This is because they set the delivery charge too low (due to underestimating the

opportunity cost), and hence the additional profit from orders fails to compensate for resulting

loss in delivery charge income, resulting in an overall loss. This demonstrates the importance

of the revenue stream from delivery pricing (in the absence of other potential forms of control

such as slot availability control). Dynamic pricing per se does not improve profitability over

simple fixed-price policies; its success hinges on good opportunity cost estimates that capture

both marginal delivery costs and future order displacement costs.

The lower the demand relative to available capacity (i.e. the smaller the scaling parameter),

the better OC-0 and OC-C perform because the true opportunity costs move toward the
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marginal delivery cost (note that with demand considerably below capacity, it is unlikely that

future orders will be displaced by an order). Accordingly, we expect that if demand is scaled

down further, then at some point OC-C and OC-CR will perform similarly well.

We emphasize that the observation that OC-C may be worse than VS does not contradict

the findings of Yang et al. (2016), who propose a policy that approximates opportunity costs

only with estimated marginal delivery cost and who observe that this policy improves over the

same fixed-price policy. Their opportunity-cost estimation relies on a computationally more

intensive way of estimating marginal delivery costs. This is likely to produce better results

than OC-C and static pricing policies, but it would be difficult to implement in a real-time

decision-making environment. We limit our comparison to policies that we deem suitable for

real-time decision making in large-scale applications.
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Figure 2: Average delivery charge of OC-CR for different order sizes.

Figure 2 depicts how delivery charges vary with order size when using the OC-CR policy.

The average delivery charge of OC-CR is calculated over all requests with the same order

size (expressed in the number of totes) for the scenario with a scaling parameter of 1. As

one would expect, the larger the order, the lower the charge tends to be; in fact, for larger

orders, we often even charge negative delivery fees, i.e. discounts. The graph reflects that the

algorithm differentiates the value of orders and adjusts pricing accordingly.
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Figure 3: Opportunity cost estimate γas of OC-CR policy for each area a and time slot s. Missing dots

represent γas = 0. The color represents the value of γas: high opportunity cost values are shown in green, low

values in red.

The opportunity cost estimates γas of OC-CR may be interpreted as the average profit

value that slot s has in a; in other words, we do not want to have a customer book that slot

unless we are making at least γas profit from that order and the delivery charge combined.

The estimates take the popularity of time slots into consideration, as well as the likelihood

that a future order will be displaced by accepting an order into a time slot. Figure 3 shows

that popular slots (9am-10am, noon-1pm, 7-10pm) receive high opportunity cost estimates

in areas close to the depot. The depot is located in London, so delivery areas close by (i.e.

within around 30 miles) have a denser customer population than more remote ones; hence,

demand for peak-time delivery slots is likely to reach full capacity.

Figure 3 also illustrates that remote areas have very low opportunity cost estimates across

all slots. This may be somewhat counter-intuitive since they are also associated with high

stem driving costs, which are taken into account by the OC-CR. However, demand in these

areas is much smaller than available van capacity; therefore, the opportunity cost is influenced
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mainly by delivery costs and less by order displacement costs. The latter often have the biggest

impact on γs, and OC-CR accordingly produces low estimates for remote areas. Delivery

charges will also tend to be lower than in busy areas so as to attract more orders, a feature

of our approach that may help to develop rural markets. Note that delivery charges are one

of the main inhibitors of online shopping: “26% of consumers who have either stopped or are

shopping less for groceries online said they are doing so because of higher delivery charges”,

see Mintel (2016).

The fact that the opportunity cost estimates γas are close to zero in remote areas also

means that OC-0 should give similar results to OC-CR for these areas. Therefore, one might

consider using the simpler policy OC-0 in these areas so as to further reduce computational

effort.

In terms of computational effort, parameter estimation through approximate dynamic

programming for all area clusters takes a total of around 15 to 17 minutes (depending on the

scaling of the arrival rate) on a standard desktop PC. More important is the speed of online

feasibility and pricing decisions that must be made when a customer booking request arrives.

The critical threshold for practical implementation is stated by our industrial partner to be

100 milliseconds; our method achieves it in an average of 0.4 microseconds.

In summary, our findings regarding the research questions listed at the outset of this

section are as follows:

1. Consistent improvement of OC-CR: We observe profit improvements of over two per

cent across all demand scenarios over the VS benchmark policy. This suggests that the

method returns stable improvements relative to uncertain demand intensity. Dynamic

pricing policies OC-O and OC-C may perform worse than static pricing because they

may set prices too low if the opportunity cost is over-influenced by order displacement

cost (especially when capacity is tight).

2. Computational speed: The crucial online calculations underpinning the feasibility check

and pricing decisions are virtually instantaneous owing to the simplistic routing model

and efficient price optimization.

3. Managerial insights: Although one might intuitively expect that delivery charges in

areas distant from the depot should be higher than in areas nearby, our approach is

designed such that the best pricing policy is to keep charges low in remote areas so as to
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increase overall demand there. This is also beneficial with respect to perceived fairness;

customers would not accept being penalized for living further from the company’s depot.

Charges should reflect the value of a delivery time slot, in terms of both marginal delivery

costs and future order displacement costs. Dynamic pricing may perform much worse

than static pricing if the opportunity cost does not include order displacement costs,

especially when demand is similar to or exceeds capacity.

If profit is the overall objective, performance should not be measured in terms of cost

per order, number of deliveries made or average order profit (before delivery). Delivery

charges may make a substantial contribution to overall profit.

8. Conclusions and future research

We propose a new method of controlling demand through delivery time slot pricing in

attended home delivery management with a focus on developing an approach suitable for

industry-scale implementation. To that end, we exploit a relatively simple yet effective way

of approximating delivery costs by decomposing the overall delivery problem into a collection

of smaller, area-specific problems. This cost estimation serves as an input to an approximate

dynamic programming method, which provides estimates of the opportunity cost of accepting

a given customer booking in a specific time slot. These estimates depend on the area and on

the delivery time slot under consideration.

Using real, large-scale industry data, we estimate a demand model involving a multi-

nominal logit choice model, and show in simulation studies that we can improve profits by

over two per cent in all instances compared with using an order-value-dependent, fixed-price

policy. These improvements are achieved despite making strong assumptions in delivery-

cost estimation, which are needed to reduce computational run-time to a level that allows

real-time decision making. Our approach provides quantitative insight into the importance

of incorporating expected future order displacement costs into opportunity-cost estimation

alongside marginal delivery costs.

There are some limitations of our study that warrant further research. First, it would be

insightful to conduct a simulation study in which the final delivery cost incurred at the end

of each simulated booking horizon is based on an industry-standard vehicle-routing solution.

Second, our proposed approach uses opportunity-cost estimates that depend neither on time
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of booking within the booking horizon nor on the level of orders accepted; Meissner and

Strauss (2012) show that incorporating this intuitive dependence may further improve the

results at the cost of significantly increased computational burden. Our model may take

time-dependence to some extent into account by re-solving several times over the booking

horizon with the most recent information on accepted orders; we thus obtain opportunity-

cost estimates that may change over time. Third, one would expect a better value function

approximation to return stronger results, such as a piecewise linear approximation. Finally, it

would be desirable to include a choice between adjacent delivery days in addition to a choice

between delivery time slots. As we remarked in Section 6, a nested logit model might be used

to that end, as long as the resulting pricing problem could still be solved sufficiently quickly.
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Algorithm 1 Approximate Dynamic Programming Procedure.

1: Initial value function parameters: ~γ ← ~0, θ ← 0 to define V̄
(0)
t (~x) in (5.2) for all t, ~x.

2: Boundary condition: V̄
(k)
T+1(~x) = −ξD(~x) for all ~x, k = 1, . . . , kmax, where ξ is cost per

mile and D(~x) is the total milage driven

3: Iteration counter: k ← 1

4: Initial state: ~x
(k)
1 = ~0, y

(k)
1 = 0 (initially no orders on record)

5: while k ≤ kmax do

6: Generate sample path of order arrivals (for area under consideration): (~R
(k)
1 , ..., ~R

(k)
T ),

where ~R
(k)
t is a vector containing either zeros (no order), or information on order size

i(k), and its profit r
(k)
t before delivery cost.

7: for all t = 1, 2, . . . , T do

8: Define feasible set Fi := {s|~x
(k)
ts + 1 ≤ Ma} if there is sufficient van capacity (y(k) +

i(k) ≤ κ), or Fi = ∅ otherwise. Solve for optimal ~d in:

V̂
(k)
t = max

~d

∑

s∈Fi

Ps,F (~d)
(

r
(k)
t + ds −

[

V̄
(k−1)
t+1 (~x

(k)
t )− V̄

(k−1)
t+1 (~x

(k)
t + 1s)

])

+ V̄
(k−1)
t+1 (~x

(k)
t ),

9: Update value function parameters ~γ, θ using V̂
(k)
t with a stochastic gradient step to

define the new approximation V̄
(k)
t (~x) for all ~x.

10: Simulate customer’s decision under prices ~d and available slots Fi, and accordingly

define next state ~x
(k)
t+1 and y

(k)
t+1.

11: end for

12: k ← k + 1

13: end while
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Scaling Policy #Deliv TotalCost MeanCost MeanPrice MeanValue Total Profit±Stddev Gap (%)

VS 2408 4942 2.05 3.01 32.62 80856±48.84 0

F4 2334 4874 2.09 4 32.61 80581±52.33 −0.34∗

0.8 F5 2256 4811 2.13 5 32.62 80058±51.50 −0.99∗

OC-0 2503 4941 1.97 0.29 34.36 81790±45.86 1.16∗

OC-C 2506 4942 1.97 0.29 34.35 81884±44.85 1.27∗

OC-R 2342 4939 2.06 2.49 34.56 81934±49.73 1.33∗

OC-CR 2385 4974 2.09 2.27 34.58 82906±50.23 2.53∗

VS 2652 5159 1.95 3.01 32.59 89236±48.37 0

F4 2576 5088 1.98 4 32.6 89198±49.84 −0.04

0.9 F5 2498 5020 2.01 5 32.61 88933±54.61 −0.34∗

OC-0 2820 5327 1.89 −0.7 34.19 89098±40.97 −0.15∗

OC-C 2738 5154 1.88 0.13 34.33 89207±43.30 −0.03

OC-R 2569 5127 2.00 2.66 34.55 90454±49.85 1.36∗

OC-CR 2608 5179 1.99 2.45 34.57 91373±49.08 2.39∗

VS 2866 5349 1.87 3.01 32.55 96569±47.24 0

F4 2793 5284 1.89 4 32.56 96810±48.69 0.25∗

1 F5 2714 5208 1.92 5 32.57 96772±51.04 0.21∗

OC-0 3015 5524 1.83 −0.8 34.15 95018±40.11 −1.61∗

OC-C 2936 5356 1.82 0.01 34.29 95356±40.38 −1.26∗

OC-R 2775 5356 1.93 2.73 34.57 98132±46.22 1.62∗

OC-CR 2802 5357 1.91 2.61 34.55 98745±46.29 2.25∗

VS 3052 5534 1.81 3.01 32.52 102884±46.19 0

F4 2982 5461 1.83 4 32.52 103470±47.36 0.57∗

1.1 F5 2907 5391 1.85 5 32.54 103728±47.74 0.82∗

OC-0 3177 5706 1.8 −0.88 34.11 99872±36.51 −2.93∗

OC-C 3100 5542 1.79 −0.09 34.27 100413±38.59 −2.4∗

OC-R 2937 5497 1.87 2.94 34.56 104634±47.01 1.70∗

OC-CR 2970 5521 1.86 2.76 34.53 105231±43.99 2.28∗

VS 3212 5697 1.77 3.01 32.5 108346±41.50 0

F4 3146 5627 1.79 4 32.5 109206±45.57 0.79∗

1.2 F5 3074 5550 1.81 5 32.52 109812±45.61 1.35∗

OC-0 3310 5880 1.78 −0.94 34.1 103867±35.78 −4.13∗

OC-C 3236 5714 1.77 −0.17 34.25 104557±36.66 −3.5∗

OC-R 3090 5661 1.83 3.06 34.54 110529±45.29 2.02∗

OC-CR 3112 5676 1.82 2.92 34.5 110751±41.82 2.22∗

Table 2: “#Deliv” is the average number of deliveries under the respective policy, “TotalCost” the average

total delivery cost, “MeanCost” is TotalCost/#Deliv, “MeanPrice” the average delivery charge, “MeanValue”

the average order value in terms of profit before delivery costs, “TotalProfit” the average total profit after

distribution, “StdDev” is the standard deviation of profits, and “Gap” is the percentage gap to the total

profit achieved by policy VS. All percentage improvements that are statistically significant at the 95% level

are indicated by an asterisk.
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