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ABSTRACT

Holder-extendable options are characterized by two maturity dates, which
means the option can be exercised at either the expiration date or the
extended maturity date. This paper develops a pricing framework for
holder-extendable options which deals with the extended version of a
stochastic volatility model with an Ornstein-Uhlenbeck (OU) process.
The extended model allows correlation between volatility and asset re-
turns. The method uses Fourier inversion techniques that does not re-
quire an initial guess of the characteristic functions. A closed-form pric-
ing formula for holder-extendable options is derived for logarithmic asset
price dynamics.
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1. Introduction

Options are derivatives which give the holder the right to trade certain
underlying assets at a fixed price at specific period of time. Options are cheaper
than stocks, and buying options may limit risks and has the potential for higher
profits. Standard European and American options have one maturity date,
where the former can only be exercised at maturity, and the latter can be
exercised at any time right up until its maturity. However, to cater the needs
of investors, it brings existence to non-standard options or known as exotic
options with custom-made payoff structures. One of many extensions to the
standard option payoffs is to having a dual-maturity as discussed in Buchen
(2004), and extendable option is one of the options that is characterized by two
maturity dates.

To our best knowledge, extendable options were first discussed by Longstaff
(1990) in which numerous applications of extendable contracts are provided, for
instance extendable warrants and extendable bonds. Dias and Rocha (2000)
also used the extendable options framework to oil prices in a jump-diffusion
model with mean-reversion, whereas within the same framework, Abinzano
and Navas (2008) priced the equity of a firm. Recently, Koussis et al. (2013)
studied the features of extendable contracts for product development.

Under the Black-Scholes model (Black and Scholes, 1973), Longstaff (1990)
and Ibrahim et al. (2014) discuss extendable options when the contract is ex-
tendable once. Chung and Johnson (2011) extend the work by presenting a
general pricing formula for extendable options, where the contract can be ex-
tended more than once. On the other hand, Gukhal (2004) presented a closed-
form solution for extendable options under the Merton jump-diffusion model
(Merton, 1973), and Peng and Peng (2012) present the price for extendable
options when the dynamics of the underlying asset price follows a fractional
process with jumps.

Other than modeling jumps in option pricing model, it is also well-known
as a stochastic volatility model. Prominent models that capture asset re-
turns variability are the Heston model (Heston, 1993), the Stein-Stein model
(Stein and Stein, 1991), and the Schöbel-Zhu model (Schobel and Zhu, 1999).
The Schöbel-Zhu model is stochastic volatility model with a mean-reverting
Ornstein-Uhlenbeck process. Moreover, the Schöbel-Zhu model extends the
Stein-Stein model by allowing correlation between asset returns and volatili-
ties.

This study develops a theoretical pricing framework of European call holder-
extendible options in the Schöbel-Zhu model. The paper is structured as fol-
lows: In Section 2, we examine the construction of the option price as dis-
tribution functions. Section 3 presents the characteristic functions of holder
extendable options, and the closed-form pricing formula. Section 4 concludes
our work.
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2. The Schöbel-Zhu Model

The Schöbel-Zhu model assumes that the logarithmic asset price and the
volatility v(t) follows the following dynamics:

dx(t) =

[
r − 1

2
v2(t)

]
dt+ v(t) dwS(t),

dv(t) = κ[θ − v(t)] dt+ σ dwv(t),

where x(t) = lnS(t) and < dwS dwv >= ρ dt.

Let C be a European call option C with asset price S, strikeK, and maturity
date T0, and I1, I2 are critical prices1. The holder of an extendable option has
three choices with different outcomes: if at time T0, S(T0) < I1, the holder of
the call option may let the option to expire; or if S(T0) > I2, the holder may
exercise the call option; or if I1 ≤ S(T0) ≤ I2, the holder may pay a fee P to
extend the maturity of the call option to a future date T1 with a new strike X.
On that account, the payoff for a European call holder-extendable option can
be represented as:

HC = max [0, S(T0)−K, C(S(T0), X, T1 − T0)− P ] . (1)

Hence, under risk-neutral measure Q, the price is the discounted payoff at
risk-free rate r :

HC = e−r(T0−t)EQ {max [0, S(T0)−K, C(S(T0), X, T1 − T0)− P ]} , (2)

or:

HC = e−r(T0−t)
[
EQ
{

(S(T0)−K)[1{S(T0)>I2}]

+ [C(S(T0), X, T1 − T0)− P ][1{I1≤S(T0)≤I2}]
}]

= e−r(T0−t)
[
EQ
{

(S(T0)−K)[1{S(T0)>I2}]

− P [1{I1≤S(T1)≤I2}]
}]

+e−r(T1−t)EQ
{

(S(T1)−X)[1{I1≤S(T0)≤I2,S(T1)>X}]
}
. (3)

Let QS and QT denote probability measure and T−forward measure, respec-
tively. By the Radon-Nikodym derivative, we have:

dQS

dQ

∣∣∣∣
FT

= e−r(T−t)−x(t)+x(T ), (4)

dQT

dQ

∣∣∣∣
FT

= 1. (5)

where x(T ) = lnS(T ). Therefore, in view of Equations (4) and (5), Equation
1The critical prices are obtainable using a root-search algorithm to I2−K = C(I2, X, T1−

T0)− P and C(I1, X, T1 − T0)− P = 0, where I1 < I2 and K > I1.
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(3) can be expressed as such:

HC = S(t) EQS

[1{x(T0)>ln I2}]−K e−r(T0−t) EQT

[1{x(T0)>ln I2}]

+S(t)
(

EQS [
1{x(T1)>lnX, x(T0)≤ln I2}

]
− EQS [

1{x(T1)>lnX, x(T0)≤ln I1}
])

−X e−r(T1−t)
(

EQT [
1{x(T1)>lnX, x(T0)≤ln I2}

]
− EQT [

1{x(T1)>lnX, x(T0)≤ln I1}
])

−P e−r(T0−t)
(

EQT [
1{x(T0)≤ln I2}

]
− EQT [

1{x(T0)≤ln I1}
])
. (6)

Following Schobel and Zhu (1999), Equation (6) can be written in terms of
probabilities as follows:

HC = S(t)FQS

(S(T0) > I2)−K e−r(T0−t) FQT

(S(T0) > I2)

+S(t)

FQS

(S(T1) > X, S(T0) ≤ I2)︸ ︷︷ ︸
I

−FQS

(S(T1) > X, S(T0) ≤ I1)︸ ︷︷ ︸
II


−X e−r(T1−t)

FQT

(S(T1) > X, S(T0) ≤ I2)︸ ︷︷ ︸
III

−FQT

(S(T1) > X, S(T0) ≤ I1)︸ ︷︷ ︸
IV


−P e−r(T0−t)

[
FQT

(S(T0) ≤ I2)− FQT

(S(T0) ≤ I1)
]
. (7)

3. The Closed-Form Solution

In this section, we derive the characteristic functions using the approach
presented in Scott (1997) to obtain analytical solutions for the probabilities
in Section 2. Here, we apply stochastic calculus to compute the characteristic
functions directly. Let us define the characteristic functions as follows:

fS(φ1) = EQ
[
e−r(T0−t)−x(t)+(1+iφ1)x(T0)

]
,

fT (φ1) = EQ
[
eiφ1x(T0)

]
fS(φ1, φ2) = EQ

[
e−r(T1−t)−x(t)+iφ1x(T0)+(1+iφ2)x(T1)

]
,

fT (φ1, φ2) = EQ[eiφ1x(T0)+iφ2x(T1)].

The characteristic functions for fS(φ1) and fT (φ1) are as provided in Schobel
and Zhu (1999). These are given in the following lemma.

Lemma 3.1. (Schobel and Zhu, 1999) The characteristic functions with respect
to the asset price measure and the T−forward measure for an underlying asset
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in the Schöbel-Zhu model are given by:

fS(φ1) = exp

{
iφ1[r(T0 − t) + x(t)]− i(φ1 − i)ρ

2

[
v2(t)

σ
+ σ(T0 − t)

]
+

1

2
D(t, T0; z1, z3)v2(t) +B(t, T0; z1, z2, z3)v(t)

+ C(t, T0; z1, z2, z3)} , (8)

fT (φ1) = exp

{
iφ1[r(T0 − t) + x(t)]− iφ1ρ

2

[
v2(t)

σ
+ σ(T0 − t)

]
+

1

2
D(t, T0; ẑ1, ẑ3)v2(t) +B(t, T0; ẑ1, ẑ2, ẑ3)v(t)

+ C(t, T0; ẑ1, ẑ2, ẑ3)} , (9)

where

z1(φ1) = −1

2

[
(i(φ1 − i))2(1− ρ2)− i(φ1 − i)

(
1− 2κρ

σ

)]
,

z2(φ1) = i(φ1 − i)
κθρ

σ
,

z3(φ1) =
1

2
i(φ1 − i)

ρ

σ
,

ẑ1(φ1) = −1

2

[
(iφ1)2(1− ρ2)− iφ1

(
1− 2κρ

σ

)]
,

ẑ2(φ1) = iφ1
κθρ

σ
,

ẑ3(φ1) =
1

2
iφ1

ρ

σ
,

and functions B(t, T0), C(t, T0) and D(t, T0) are defined as such:

B(t, T0) =
1

σ2Γ1

{
[κθΓ1 − Γ2Γ3] + Γ3[sinh[Γ1(T0 − t)] + Γ2 cosh[Γ1(T0 − t)]]

cosh[Γ1(T0 − t)] + Γ2 sinh[Γ1(T0 − t)]
−κθΓ1} ,

C(t, T0) = −1

2
{ln[cosh[Γ1(T0 − t)] + Γ2 sinh[Γ1(T0 − t)]]− κ(T0 − t)}

+
κ2θ2Γ2

1 − Γ2
3

2σ2Γ3
1

{
sinh[Γ1(T0 − t)]

cosh[Γ1(T0 − t)] + Γ2 sinh[Γ1(T0 − t)]
− Γ1(T0 − t)

}
+

(κθΓ1 − Γ2Γ3)Γ3

σ2Γ3
1

{
cosh[Γ1(T0 − t)]− 1

cosh[Γ1(T0 − t)] + Γ2 sinh[Γ1(T0 − t)]

}
,

D(t, T0) =
1

σ2

{
κ− Γ1

sinh[Γ1(T0 − t)] + Γ2 cosh[Γ1(T0 − t)]
cosh[Γ1(T0 − t)] + Γ2 sinh[Γ1(T0 − t)]

}
,

where

Γ1 =
√

2σ2z1 + κ2,

Γ2 =
κ− 2σ2z3

Γ1
,

Γ3 = κ2θ − z2σ2.
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From Equation (7), there are two-dimensional probabilities labeled as I, II, III
and IV. In order to obtain the analytical solutions for the two-dimensional prob-
abilities, we derive their corresponding characteristic functions, as given in the
following lemma.

Lemma 3.2. The characteristic functions with respect to the asset price mea-
sure and the T−forward measure for an underlying asset in the Schöbel-Zhu
model are given as follows:

fS(φ1, φ2) = exp {r[iφ1(T0 − t) + iφ2(T1 − t)] + i(φ1 + φ2)x(t)

− iφ1ρ
2σ

[v2(t)− σ2(T0 − t)]−
i(φ2 − i)ρ

2σ
[v2(t)− σ2(T1 − t)]

+
1

2
D(t, T0; ẑ1, ẑ3)v2(t) +B(t, T0; ẑ1, ẑ2, ẑ3)v(t) + C(t, T0; ẑ1, ẑ2, ẑ3),

+
1

2
D(t, T1;w1, w3)v2(t) +B(t, T1;w1, w2, w3)v(t)

+ C(t, T1;w1, w2, w3)} , (10)
fT (φ1, φ2) = exp {r[iφ1(T0 − t) + iφ2(T1 − t)] + i(φ1 + φ2)x(t)

− iφ1ρ
2σ

[v2(t)− σ2(T0 − t)]−
i(φ2 − i)ρ

2σ
[v2(t)− σ2(T1 − t)],

+
1

2
D(t, T0; ẑ1, ẑ3)v2(t) +B(t, T0; ẑ1, ẑ2, ẑ3)v(t) + C(t, T0; ẑ1, ẑ2, ẑ3),

+
1

2
D(t, T1; ŵ1, ŵ3)v2(t) +B(t, T1; ŵ1, ŵ2, ŵ3)v(t)

+ C(t, T1; ŵ1, ŵ2, ŵ3)} , (11)

where

w1(φ2) = −1

2

[
(i(φ2 − i))2(1− ρ2)− i(φ2 − i)

(
1− 2κρ

σ

)]
,

w2(φ2) = i(φ2 − i)
κθρ

σ
,

w3(φ2) =
1

2
i(φ2 − i)

ρ

σ
,

ŵ1(φ2) = −1

2

[
(iφ2)2(1− ρ2)− iφ2

(
1− 2κρ

σ

)]
,

ŵ2(φ2) = iφ2
κθρ

σ
,

ŵ3(φ2) =
1

2
iφ2

ρ

σ
,

and functions B(t, T ), C(t, T ), D(t, T ), z1, z2, z3, ẑ1, ẑ2, and ẑ3 are as defined
in Lemma 3.1.

Hence, we obtain the pricing formula for a European call holder-extendable
option as presented in the following proposition.
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Proposition 3.1. Under the Schöbel-Zhu model, the price of a European call
holder-extendable option is given by:

EC = S(t)[1− FS(ln I2)]−Ke−r(T0−t)[1− FT (ln I2)]

+S(t)[FS(ln I2, lnX)− FS(ln I1, lnX)]

−Xe−r(T1−t)[FT (ln I2, lnX)− FT (ln I1, lnX)]

−Pe−r(T0−t)[FT (ln I2)− FT (ln I1)], (12)

where the probability distribution functions F are obtainable via the Fourier
inversion formula (Shephard, 1991):

Fm(j) =
1

2
+

1

π

∫ ∞
0

Re

[
fm(φ1)e−iφ1j

iφ1

]
dφ1

Fm(j, lnX) =
1

4
+

1

2π

∫ ∞
0

Re

[
fm(0, φ2)e−iφ1(lnX)

iφ2

]
dφ2

− 1

2π

∫ ∞
0

Re

[
fm(φ1, 0)e−iφ1j

iφ1

]
dφ1

+
1

2π2

∫ ∞
0

∫ ∞
0

Re

[
fm(φ1, φ2)e−iφ1j−iφ2(lnX)

φ1φ2

]
dφ1 dφ2,

− 1

2π2

∫ ∞
0

∫ ∞
0

Re

[
fm(φ1,−φ2)e−iφ1j+iφ2(lnX)

φ1φ2

]
dφ1 dφ2,

with m = S, T, and j = ln I1, ln I2.

This completes the pricing framework for European call holder-extendable
options within the Schöbel-Zhu model, which is a stochastic volatility model
with an Ornstein-Uhlenbeck process that allows correlation between asset re-
turns and volatility.

4. Conclusion

Stochastic volatility model incorporates one of several important empirical
characteristics of asset returns variability. In this study, we develop a theoret-
ical pricing framework and derive a closed-form pricing solution for European
call holder-extendable options under the Schöbel-Zhu model where the stochas-
tic volatility has been specified by an Ornstein-Uhlenbeck process. Further
investigation aims to incorporate jumps with stochastic volatility to capture
other important empirical characteristics of asset return variability.
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