
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 16, NO. 4, APRIL 2017 2123

Interference Efficiency: A New Metric to Analyze
the Performance of Cognitive Radio Networks

Mohammad Robat Mili and Leila Musavian, Member, IEEE

Abstract— In this paper, we develop and analyze a novel
performance metric, called interference efficiency, which shows
the number of transmitted bits per unit of interference energy
imposed on the primary users (PUs) in an underlay cognitive
radio network (CRN). Specifically, we develop a framework to
maximize the interference efficiency of a CRN with multiple
secondary users (SUs) while satisfying target constraints on the
average interference power, total transmit power, and minimum
ergodic rate for the SUs. In doing so, we formulate a multi-
objective optimization problem (MOP) that aims to maximize
ergodic sum rate of SUs and to minimize average interference
power on the primary receiver. We solve the MOP by first
transferring it into a single objective problem (SOP) using a
weighted sum method. Considering different scenarios in terms of
channel state information (CSI) availability to the SU transmitter,
we investigate the effect of CSI on the performance and power
allocation of the SUs. When full CSI is available, the formulated
SOP is nonconvex and is solved using augmented penalty method
(also known as the method of multiplier). When only statistical
information of the channel gains between the SU transmitters and
the PU receiver is available, the SOP is solved using Lagrangian
optimization. Numerical results are conducted to corroborate our
theoretical analysis.

Index Terms— Underlay cognitive radio networks, interference
efficiency, multiobjective optimization, full and limited channel
state information.

I. INTRODUCTION

THE scarcity of spectrum resources is one of the major
challenges for enabling future generations of wireless

communication systems. In contrast, several statistical studies
and measurements on the spectrum utilization, carried-out by
the federal communications commission (FCC), have shown
that a significant portion of the spectrum is temporally and
geographically under-utilized although limited portions, which
are mainly related to unlicensed parts of the spectrum, are
overloaded. For example, amateur radios and paging net-
works are under-utilized whereas cellular systems are highly
overloaded [1]. Cognitive radio (CR) technologies target the
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spectrum scarcity challenge by promising a flexible spec-
trum utilization management such that spectrum resources are
shared intelligently across different networks of licensed and
non-licensed users. The key principle of CRNs is to improve
efficiency and flexibility in spectrum usage by allowing non-
licensed users, referred to as secondary users (SUs), to access
the resources owned by licensed users, referred to as primary
users (PUs), in an opportunistic manner. Intelligent spectrum
sharing, is a particular case of CR technologies that is also
referred to by underlay CRN. In this technology, the spectrum
sharing scenario where SUs in CRNs are allowed to coexist
with the PUs as long as the PUs’ quality-of-service (QoS)
is not harmfully affected by the SU network existence is
practiced. The SUs have the obligation to intelligently utilize
their resources and adapt to their surrounding environment
such that the interference they induce to the PUs is less than
a predefined threshold level [2]–[4].

Despite the traditional wireless networks that are noise
limited, the future generation CRNs are affected significantly
by interference [5]–[8]. In [6], distributed energy efficient
discrete spectrum sharing strategy selection is investigated in
cognitive MIMO interference channels with limited feedback
while using a game theoretic framework. In order to reduce
interference and save energy, a mechanism for shutting down
links is also offered in [6]. Traditionally, spectrum efficiency
(SE), that shows the number of bits per spectrum unit uti-
lization, has been considered as a designing performance
metric [8]. However, such metric does not necessarily reflect
the performance of the network in terms of the interference
limitations. In general, the aims of the recent research studies
in underlay CRNs have been focused on maximizing the CRN
throughput subject to imposing constraint on the level of the
interference imposed on the PU receivers. We further note that
most of the research literature in spectrum sharing systems has
focused on maximizing the ergodic capacity of a single user
CRN coexisting with a primary link, while less focus has been
given to analyzing the effects of multiple secondary links on
the performance on either CR or PU networks.

In this trend, the ergodic and outage capacity offered by a
dynamic spectrum sharing approach in a single-antenna fading
primary network has been investigated under different interfer-
ence power constraints in [9]–[11]. These constraints at the PU
receiver belong to the long-term constraint, regulating the aver-
age interference power, and short-term constraint, limiting the
instantaneous interference power across all the fading states,
while assuming that perfect channel side information (CSI) is
available at both the receiver and the transmitter of the SU.
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The SU transmitter is offered a feedback path between its
transmitter and the PU receiver to get the CSI [12] and [13].
In [14], the effect of different levels of side information on
the ergodic capacity of a simple spectrum sharing scenario
is investigated. A step forward to analyze the performance
of CRNs in a more practical setting, namely, considering
imperfect or limited CSI is considered in [15]–[17] where
the ergodic capacity of a CR user with imperfect channel
information has been investigated. We note that in the above-
mentioned works, the interference from the PU transmitter to
the SU receiver is ignored, or approximated, and the capacity
is evaluated based on the signal-to-noise-ratio (SNR).

On the other hand, we note that wireless communication
systems mostly require more than one QoS requirements to
be maintained [19]–[21]. These QoSs are usually maintained
by formulating and solving the resource allocation problem
as MOPs. For example, in [19], a generalized resource allo-
cation optimization problem for the downlink transmission
with guaranteed QoS as an MOP is formulated. MOPs focus
on the simultaneous optimization of two or more conflicting
objective functions where the most preferred optimal solution
needs to be chosen in the presence of trade-offs between
objectives [22]. MOPs are considered widely in recent lit-
erature (e.g. [23]–[28]). In detail, considering multicarrier
systems, [23] proposed an algorithm to jointly maximize
the throughput and minimize the transmission power while
satisfying target constraints on the bit-error-rate (BER) per
subcarrier and on the total transmit power. An MOP approach
to maximize the CR system throughput and minimize its
transmit power of orthogonal frequency division multiplexing
(OFDM)-based CR systems in spectrum sensing mode while
guaranteeing a maximum BER, transmit power budget, and
a maximum number of allocated bits per subcarrier was
considered in [24]. A MOP for the design of a Pareto opti-
mal resource allocation algorithm which incorporates three
important system parameters, namely, total transmit power
minimization, energy harvesting efficiency maximization, and
interference power leakage-to-transmit power ratio minimiza-
tion is formulated in [27]. In [28], a MOP was formulated to
improve the energy efficiency and then solved by first transfer-
ring it into a single objective problem (SOP), namely, a power
minimization problem, by using the ε-constraint method.

Although, in most of previously mentioned works, the
interference is taken into account by including an interfer-
ence constraint in the system problem formulation, but given
the increasing importance and effect of interference on the
performance of spectrum sharing systems, a more elaborate
study is required to analyze the system performance in terms
of the imposed interference power on neighbouring users.
In this paper, we introduce a novel performance metric called
interference efficiency (IE) which shows the number of bits
transmitted per unit of interference energy imposed on the PU
receivers. We formulate the system optimization program to
maximize the IE of the SU network and solve it using an MOP
approach. Specifically, we maximize the ergodic sum rate of
multiple SUs, which is the numerator of the IE formulation,
and minimize the interference power imposed on the PUs,
which is the denominator of the IE.

The main contribution of this paper are:

• We introduce a novel performance metric for CRNs, i.e.,
IE, and optimize the system performance in a multi-user
underlay CRN.

• In contrast to most previous works which assumed single
secondary link sharing the same channel with one primary
link, we here consider a model where multiple SUs
coexists with one PU. Under this system model, we
formulate the system optimization problem, which is to
maximize IE subject to average transmit and interference
power constraints.

• We solve the formulated IE-optimization problem through
an MOP that jointly maximizes the ergodic sum rate of
multiple SUs and minimizes the interference power on the
PU receivers from the SU transmitters while satisfying
target constraints on the average interference power, total
SU transmit power and minimum ergodic rates for the
SUs. We then prove a Lemma that shows the Pareto
Optimal region of the proposed MOP is inclusive of the
IE-maximization problem solution.

• In order to investigate the effect of different levels of CSI
availability on the power allocation and performance of
the CR users, various MOPs are presented with difference
levels of CSI at SU transmitter. We consider cases with
full CSI and with only limited CSI. We note that having
a full CSI when there are multiple SUs in the system,
can be very challenging and can impose overhead on
the system. By studying both scenarios, we are able to
find practical solutions for when a full CSI is not avail-
able, and we also are able to analyse what performance
penalty we face due to reduced CSI available at the
SU transmitter. Closed-form results for evaluating the
maximum ergodic sum rate are derived over Rayleigh
fading channels for most cases.

• Via numerical results, we analyze the IE of the CRN and
investigate the trade-off between contradicting objectives
that are the maximum sum rate against the minimum
average interference power.

The rest of this paper is organized as follows. Section II
describes the system model. Section III proposes new MOP for
multiple secondary links under full and partial CSI available
at the SU transmitters. Interference Acquisition problem is
investigated in Section IV. Numerical results are presented in
section V and finally Section VI concludes the paper.

II. SYSTEM MODEL

In this paper, we assume multiple secondary users sharing
spectrum with a single point-to-point PU. All the considered
nodes can access the spectrum simultaneously, as long as the
total interference power imposed on the primary receiver is
limited below a certain threshold. The network of the sec-
ondary users are assumed to be multiple secondary transmitters
communicating simultaneously with their respective receivers
over the same spectrum. As shown in Fig. 1, a spectrum
sharing scenario is assumed where a CR network with multiple
secondary links (K links) shares the same channels with an
existing primary link.
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Fig. 1. Cognitive radio with multiple secondary links.

The link between the kth SU transmitter and the kth SU
receiver is characterized by its instantaneous channel power
gain gk and an additive white Gaussian noise (AWGN) nk .
The noise nk is an independent random variable with the dis-
tribution C N(0, σ 2

n ) (circularly symmetric complex Gaussian
variable with mean zero and variance σ 2

n ).
We assume that the PU transmits with a fixed transmission

power ρ. The channel between the PU transmitter and the
kth SU receiver is denoted by hk . The instantaneous received
signal-to-interference-plus-noise ratio (SINR) at the kth SU
receiver is given by

SINRk = Pk gk

N0 + ρhk + ∑K
j=1, j �=k Pj g jk

, (1)

where N0 = σ 2
n B, Pk refers to the instantaneous power

of the kth SU transmitter1, g jk represents an interference
channel gain between the kth SU receiver and other SU
transmitters. We note that the effect of interference among
the SUs is taken into consideration in SINR formulation in
(1). All the channel fading are considered to be independent
and identically distributed (i.i.d.) Rayleigh flat-fading channels
with unit variance. The channel power gains are assumed
to remain constant during one fading block and change to
independent values in the following fading block.

We further assume that the PU imposes an interference
constraint on the total interference power received on its
receiver as a result of the CRN operation. Specifically, the
total average interference power imposed by the transmission
of the CR users on the PU receivers is assumed to be below
a predefined interference threshold, Qavg. The interference

1We note that the transmit power of the SU is a function of the available CSI
at the SU transmitter. Since we will consider various kinds of CSI availability
at the SU transmitter, here we refer to this power in general by Pk . A more
detailed presentation of the SU transmission power will be provided in each
section based on the available CSI at the SU transmitter.

power constraint, hence, can be formulated as

K∑

k=1

E[Pk fk ] ≤ Qavg, (2)

where E[.] denotes the statistical expectation and fk represents
the channel power gain between the kth SU transmitter and
the PU receiver.

In this paper, we consider interference efficiency as a
system performance metric and define it as the number of bits
transmitted per unit of interference energy imposed on the PU
receiver. The IE can hence be formulated as

ηIE =
∑K

k=1 E [ln (1 + SINRk)]
∑K

k=1 E[Pk fk]
. (3)

The importance of the introduced concept of IE lays in
the fact that in spectrum sharing channels in general, and
in CRNs in particular, the major constraint that limits the
system performance is the constraint on the imposed inter-
ference power on the neighboring primary receivers rather
than the SUs’ transmit power constraints. One main approach
for investigating the efficiency against a limited resource in
communication systems is to find the ratio of the desirable
metric (here, the achievable rate) and the limited resource.
We refer to the SE when the efficiency is calculated as a
ratio of the rate and the occupied bandwidth, when available
bandwidth is limited. On the other hand, in Green radio
communication networks, wherein the energy consumption is
the major limiting factor for the system, the concept of energy
efficiency (EE) that calculates the number of communicated
bits versus the consumed energy, and is defined as the ratio
between the achievable rate and the consumed energy, is being
considered widely as the defining performance metric.

An information theoretic analysis of channels with imposed
received power constraints, rather than traditionally considered
transmit power constraints, due to the fact that the dominant
constraint in some systems, e.g., in interference channels or
CRNs, will be the interference power constraint (rather than
the transmit power constraint) was provided first in [18].
This motivates the new concept of the IE that calculates the
number of communicated bits per unit of imposed interference
energy of the neighbouring receivers. Once the performance
metric of the system is formulated according to the proposed
IE concept, the resources can be managed and optimally
allocated to fit best with the characteristics of the interference
limited systems. This can be achieved by maximizing the num-
ber of transmitted bits versus the unit of imposed interference
energy, hence maximizing the IE. With considering only SE
as the performance metric, the resources will be allocated
to maximize the rate, with or without considering a fixed
target for the interference; henceforth a dynamic allocation
of resources for maximizing the performance per unit of
interference cannot be achieved.

As mentioned before, in this paper, we consider a sin-
gle channel single-cell CRN. We note that for a single-cell
scenario, the case for multiple channels can be easily obtained
from a single channel case that have been considered in this
paper. The is due to the fact that the multichannel problem
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will be a summation of the convex functions, hence yielding
a convex optimization problem. In multi-cell multi-channel
systems, on the other hand, the interference for the channels
that are used in difference cells need to be taken into account,
and hence the denominator of the IE formulation will be
converted into a summation of interferences over difference
channels and from difference cells. A survey on resource
allocation techniques in multichannel CRNs is given in [3].

III. IE OPTIMIZATION AND MOP FORMULATION

Here, we present the problem formulation considered in this
paper. As previously stated, we consider IE as the system
performance metric and aim to design a power allocation
strategy that maximizes the IE of a CRN with K SUs. The
problem formulation can hence be given as

max
Pk

ηIE (4a)

s.t.
K∑

k=1

E[Pk fk] ≤ Qavg, (4b)

K∑

k=1

E[Pk ] ≤ Pavg, (4c)

E [ln (1 + SINRk)] ≥ Ravg, for k = 1, . . . , K , (4d)

where Pavg indicates the maximum total power of the SU
transmitters and Ravg is the minimum ergodic capacity of
the each SU link. The objective function in (4a) is fractional
non-convex optimization problem. Here, we propose to solve
this optimization problem using an MOP approach such that
we simultaneously maximize the numerator and minimize the
denominator of (4a). In detail, we formulate an MOP that
jointly maximizes the ergodic sum rate of multiple secondary
links in the CR networks and minimizes the total average
interference power on the PU recevier, when considering full
or partial CSI scenarios. The MOP can, hence, be formulated
as

max
Pk

K∑

k=1

E [ln (1 + SINRk)] , (5a)

min
Pk

K∑

k=1

E[Pk fk], (5b)

s.t.
K∑

k=1

E[Pk fk ] ≤ Qavg, (5c)

K∑

k=1

E[Pk] ≤ Pavg, (5d)

E [ln (1 + SINRk)] ≥ Ravg, for k = 1, . . . , K . (5e)

In the following, we prove that the Pareto optimal region
of the introduced MOP includes the solution for the fractional
IE-maximization problem.

Lemma 1: The solution to the MOP given in (5a)-(5e)
covers the solution of the IE-maximization problem introduced
in (4a)-(4d).

Proof: The proof is given in Appendix A.

Now, we use a well-known technique to solve the MOP,
which is to linearly combine the normalized competing objec-
tive functions into a single objective function, through weight-
ing coefficients that reflect the required preferences [22].
We note that to combine the two MOP’s competing objectives,
namely, the ergodic sum rate and total average interference
power objectives, we normalize them to their respective ref-
erence values so that they become unitless. For the conve-
nience of notation, however, the normalization factors are
not presented in the following formulations and solutions.
Hence, the objective functions in the MOP (5) can be changed
into

max
Pk

ν

(
K∑

k=1

E [ln (1 + SINRk)]

)

− (1 − ν)

(
K∑

k=1

E [Pk fk]

)

,

(6)

where ν denotes the weighting coefficient which is between 0
and 1 indicating the importance of different objectives.

A. Full CSI [Pk(gk, fk, hk , g1k, g2k, . . . , gK k)]

In this section, we assume that full CSI is avail-
able to the SU transmitter. Henceforth, the transmission
power of the kth SU is a function of full CSI and is
represented by Pk(gk, fk, hk , g1k, g2k, . . . , gK k). However,
for the ease of notation, in this section we refer to
Pk(gk, fk , hk, g1k, g2k, . . . , gK k) by Pfull

k . The objective func-
tion in this section, hence, is according to (6), only replacing
Pk with Pfull

k .
Since the objective function (6) under full CSI is a noncovex

function [29], we here offer a method known as augmented
Lagrange to deal with the nonconvex optimization (6) subject
to (5c)-(5e). In nonconvex optimization problem, non-zero
duality gap between the primal problem and its dual may
occur, which prevents ordinary Lagrangian duality from giving
the optimal solution. This method augments the Lagrangian
function to eliminate these duality gap [30], [32], [33]. The
"augmentation" which consists of a penalty-like quadratic
term is introduced into the objective function in order to
“convexify” the problem.

In an optimization problem with general inequality con-
straints, this method, which is a combination of penalty
function and local duality methods, converts the inequality
constraints into equality constraints by introducing squared
additional variables. The augmented Lagrangian differs from
the standard Lagrangian because of the squared terms, while it
differs from the quadratic penalty function in having the sum-
mation term including Lagrangian multipliers. In this sense, it
is a combination of the Lagrangian function and the quadratic
penalty function. This method eliminates the constraints and
adds them to the cost function as a penalty term giving a high
cost to infeasible points. Berteskas in [30] has shown that the
augmented Lagrangian is locally convex when penalty para-
meter becomes sufficiently large. This algorithm reduces the
possibility of ill conditioning by introducing explicit Lagrange
multiplier estimates into the function to be minimized, which
is known as the augmented Lagrangian function. In contrast
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to the penalty functions, the augmented Lagrangian func-
tion largely preserves smoothness and no longer requires the
penalty parameter to go to infinity for the method to converge.
Augmented Lagrangian algorithms are based on successive
minimization of the augmented Lagrangian function in which
the multiplier estimates and penalty parameter are held fixed in
each iteration and then updated between iterations [30], [31].
This method has been used in [28] to obtain the minimum
transmission power giving the maximum energy efficiency of
a CRNs.

The augmented Lagrangian function can be expressed
as

Lσ (Pfull
k , μ, λ)

= ν

(
K∑

k=1

E [ln (1 + SINRk)]

)

− (1 − ν)

(
K∑

k=1

E

[
Pfull

k fk

]
)

+ 1

2σ

⎡

⎢
⎣

⎛

⎜
⎝

⎛

⎝

[

λ + σ

(
K∑

k=1

E

[
Pfull

k fk

]
− Qavg

)]+⎞

⎠

2

−λ2

⎞

⎟
⎠

+
⎛

⎜
⎝

⎛

⎝

[

μ + σ

(
K∑

k=1

E

[
Pfull

k

]
− Pavg

)]+⎞

⎠

2

− μ2

⎞

⎟
⎠

+
K∑

k=1

(
([ξk +σ(Ravg − E[ ln(1+SINRk)])]+)2−ξ2

k

)
⎤

⎥
⎦,

(7)

where λ, μ and ξ = [ξ1,ξ2, . . . ,ξK ]T are Lagrangian dual
variables, σ is an adjustable penalty parameter and [.]+ stands
for max{0,·}. We note that the penalty term corresponding
to the inequality constraints is continuously differentiable in
Pfull

k . Hence, the problem in (7) can be solved by an iterative
algorithm to update λ, μ, ξ and σ until the convergence
criteria is met. In this method, the following iterations for
λ, μ and ξ are implemented as:

λ(n+1) =
[

λ(n) + σ

(
K∑

k=1

E

[
Pfull(n)

k fk

]
− Qavg

)]+
, (8)

μ(n+1) =
[

μ(n) + σ

(
K∑

k=1

E

[
Pfull(n)

k

]
− Pavg

)]+
, (9)

ξ
(n+1)
k =

[
ξ

(n)
k + (

Ravg − E [ln (1 + SINRk)]
)]+

, (10)

where Pfull(n)

k , λ(n), μ(n) and ξ
(n)
k are the values of Pfull

k , λ,
μ and ξk at stage n, respectively. The steps for the power
control algorithm are shown in Table 1, in which Pfull(n+1)

k ,

λ(n+1), μ(n+1) and ξ
(n+1)
k are updated to maximize ergodic

sum rate.
In this method, the rate of convergence changes by increas-

ing σ such that large value of σ brings fast convergence rate
but it may bring computational difficulty to minimizing the
augmented Lagrangian. The linear rate of convergence of the
augmented Lagrangian method is given in [32] and [33] where

TABLE I

PROPOSED ALGORITHM

nonconvex nonlinear optimization problems are constrained
by inequality relations. The convergence rate of this method
is linear, whose ratio constant is proportional to 1/σ , when
the penalty parameter σ exceeds a threshold σ̄ > 0. The
significance of the result in [33, Ch. 3] is due to the fact
that theoretically we can choose a large σ to accelerate the
convergence, which partially demonstrates why the perfor-
mance of this method has been practically high. Another
issue significantly affecting the convergence rate is to choose
a quadratic penalty function. Hence, the convergence rate
can become sublinear or superlinear if a different penalty
function is taken. Bertsekas in [30] has suggested increasing
σ gradually to a certain threshold value.

B. Partial CSI

In order to discuss the significance of having knowledge
of instantaneous gk, fk ,hk and (g1k, g2k, . . . , gK k) at the kth
SU transmitter, the power allocation at SU transmitter is
evaluated under different cases in terms of what kind of
knowledge about these channel gains are available at the SU
transmitters. In the first case, we assume that only a statistical
information about (g1k, g2k, . . . , gK k) is available at the kth
SU transmitter. In other word, the SU is not provided with
instantaneous knowledge of (g1k, g2k, . . . , gK k). Henceforth,
the kth SU power becomes a function of gk, fk and hk

which is represented by Pk(gk, fk , hk). In the following cases,
we reduce the level of CSI of gk, fk and hk available at
the kth SU transmitter to discuss the significance of having
these channel gains on the performance of the kth SU.
In the following, we will explain these scenarios in more
detail.

1) Knowledge of gk, fk and hk [Pk(gk, fk , hk)]: Here,
we assume only partial information about (g1k, g2k, . . . , gK k),
namely, the statistical channel knowledge, is available at the
kth SU transmitter, therefore the kth SU transmit power
becomes a function of only gk, fk and hk . In such case, the
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MOP can be modified as

max
Pk

K∑

k=1

E

⎡

⎣ ln

⎛

⎝1

+ Pk(gk, fk , hk)gk

N0 + ρhk + E

[∑K
j=1, j �=k Pj

(
g j , f j , h j

)
g jk

]

⎞

⎠

⎤

⎦,

(11a)

min
Pk

K∑

k=1

E[Pk(gk, fk , hk) fk ], (11b)

s.t.
K∑

k=1

E [Pk(gk, fk , hk) fk ] ≤ Qavg, (11c)

K∑

k=1

E[Pk(gk, fk , hk)] ≤ Pavg, (11d)

E

⎡

⎣ ln

⎛

⎝1

+ Pk(gk, fk , hk)gk

N0 + ρhk + E

[∑K
j=1, j �=k Pj

(
g j , f j , h j

)
g jk

]

⎞

⎠

⎤

⎦

≥ Ravg, for k = 1, . . . , K , (11e)

which is a convex optimization program. The objectives in the
above MOP becomes

max
Pk

ν

⎛

⎝
K∑

k=1

E

⎡

⎣ ln

⎛

⎝1

+ Pk(gk, fk, hk)gk

N0 + ρhk + E

[∑K
j=1, j �=k Pj

(
g j , f j , h j

)
g jk

]

⎞

⎠

⎤

⎦

⎞

⎠

− (1 − ν)

(
K∑

k=1

E[Pk(gk, fk , hk) fk ]
)

. (12)

By applying the expectation on the interference power
from other SU transmitters in the denominator of expression
(11a), this interference term becomes a constant value. Hence,
according to the definition of the convex function (the Hessian
is positive definite), (12) converts into a convex function.
The convex structure can guarantee that the primal and dual
problem have the same solution so we form the Lagrangian
dual problem and solve the dual problem [34]. We employ the

Lagrangian approach for the convex optimization problem (12)
subject to (11c)-(11e) by forming the Lagrangian function and
taking the derivative of the Lagrangian function with respect
to Pk(gk, fk , hk). Then, letting the derivative equal to zero
gives the optimal transmission power Pk(gk, fk , hk) as

Pk(gk, fk , hk) =
[

ν + ξk

(1 − ν + λ) fk + μ
− A + ρhk

gk

]+
, (13)

where A = N0 +E

[∑K
j=1, j �=k Pj g jk

]
. Note that the optimum

power allocation Pk(gk, fk , hk), the instantaneous power at
the SU transmitter, is only a function of gk, fk and hk , and
average value of all interference from other SU transmitters
which are constant values. In (13) by considering the constraint
Pk(gk, fk , hk) ≥ 0, we get

gk ≥ A + ρhk

ν + ξk
((1 − ν + λ) fk + μ) . (14)

In order to account for the maximum ergodic sum rate
and the minimum interference power, the following iteration
search based on the sub-gradient method can be implemented
while substituting the obtained power (13) in constraints (11c)-
(11e) as equation (15)-(17) (shown at the bottom of this page)
where α is a positive gradient search step-size. In theory, when
the step-size α is small enough this approach converges to a
definite number [35], [36]. A detailed explanations on how
(15)-(17) can be obtained are given in Appendix B. Then,
we can get the maximum sum rate under Rayleigh fading by
substituting (13) into (11a) and using [37] as equation (18)
(shown at the top of next page) where C is the achieved
ergodic capacity and Ei (.) is the exponential integral function
defined as Ei (x) = ∫ x

−∞
et

t dt . (18) is a closed-form expression
for the ergodic sum rate of the secondary links when the k-th
SU transmitter has access to the instantaneous channel gains
of gk , fk and hk .

2) Knowledge of fk and hk [Pk( fk, hk)]: In order to find
the impact of having the knowledge of instantaneous CSI of gk

at the SU transmitter, here the maximum sum rate with only
having statistical information of gk at the kth SU transmitter
is computed and compared with the results of the previous
sections. We note that since it is easier to obtain the knowledge
of the direct channel gains than the cross channel gains, this
case is only investigated to discuss the significance of having
gk at the SU transmitter and to compare this case with the
other considered scenarios. In this scenario, the MOP (11),

λ(n+1) =
[

λ(n) + α

(
K∑

k=1

E

[(
ν + ξ

(n)
k

(1 − ν + λ(n)) fk + μ(n)
− A + ρhk

gk

)

fk

]

− Qavg

)]+
, (15)

μ(n+1) =
[

μ(n) + α

(
K∑

k=1

E

[(
ν + ξ

(n)
k

(1 − ν + λ(n)) fk + μ(n)
− A + ρhk

gk

)]

− Pavg

)]+
, (16)

ξ
(n+1)
k =

[

ξ
(n)
k + α

(

Ravg − E

[

ln

(
gk(ν + ξ

(n)
k )

(A + ρhk)
(
(1 − ν + λ(n)) fk + μ(n)

)

)])]+
, (17)
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C =
K∑

k=1

∫ ∞

0

∫ ∞

0

∫ ∞
A+ρhk

ν+ξ
(n+1)
k

((1−ν+λ(n+1)) fk+μ(n+1))
ln

(
gk

ρhk + A

ν + ξ
(n+1)
k

(1 − ν + λ(n+1)) fk + μ(n+1)

)

× e− fk−hk−gk dgkd f kdhk = K

⎛

⎝−Ei

(

− Aμ(n+1)

ν + ξ
(n+1)
k

)

+ e
A
ρ Ei

⎛

⎝−
A
(
μ(n+1)ρ + ξ

(n+1)
k + ν

)

ρ(ν + ξ
(n+1)
k )

⎞

⎠

− e
A
ρ + μ(n+1)ρ+ν+ξ

(n+1)
k

ρ(1−ν+λ(n+1)) Ei

⎛

⎝−
(

A
(
1 − ν + λ(n+1)

) + ν + ξ
(n+1)
k

) (
μ(n+1)ρ + ν + ξ

(n+1)
k

)

(
1 − ν + λ(n+1)

)
ρ
(
ν + ξ

(n+1)
k

)

⎞

⎠

+ e
μ(n+1)

1−ν+λ(n+1) Ei

(

μ(n+1)

(

− 1

1 − ν + λ(n+1)
− A

ν + ξ
(n+1)
k

)))

(18)

can be update as follows:

max
Pk≥0

K∑

k=1

E

⎡

⎣
∫ ∞

0
ln

⎛

⎝1

+ Pk( fk, hk)gk

N0+ρhk +E

[∑K
j=1, j �=k Pj ( f j , h j )g jk

]

⎞

⎠e−gk dgk

⎤

⎦

(19a)

min
Pk

K∑

k=1

E[Pk( fk , hk) fk ] (19b)

s.t.
K∑

k=1

E [Pk( fk, hk) fk ] ≤ Qavg, (19c)

K∑

k=1

E [Pk( fk , hk)] ≤ Pavg, (19d)

E

⎡

⎣ ln

⎛

⎝1

+ Pk( fk, hk)gk

N0 + ρhk + E

[∑K
j=1, j �=k Pj ( f j , h j )g jk

]

⎞

⎠

⎤

⎦

≥ Ravg, for k = 1, . . . , K , (19e)

where the expectation is with respect to the channel gains fk

and hk . Notice that (19a) and (19b) subject to (19c )-(19e) is
mathematically equivalent to the following problem

max
P ′

k≥0
ν

⎛

⎝
K∑

k=1

E

⎡

⎣ln

⎛

⎝1

+ P
′
k(gk, fk, hk)gk

N0 + ρhk + E

[∑K
j=1, j �=k Pj ( f j , h j )g jk

]

⎞

⎠

⎤

⎦

⎞

⎠

−(1 − ν)

(
K∑

k=1

E

[
P

′
k(gk, fk , hk) fk

]
)

, (20a)

s.t.
K∑

k=1

E

[
P

′
k(gk, fk, hk) fk

]
≤ Qavg, (20b)

K∑

k=1

E

[
P

′
k(gk, fk , hk)

]
≤ Pavg, (20c)

E

⎡

⎣ ln

⎛

⎝1

+ P
′
k(gk, fk , hk)gk

N0 + ρhk + E

[∑K
j=1, j �=k Pj ( f j , h j )g jk

]

⎞

⎠

⎤

⎦

≥ Ravg, for k = 1, . . . , K , (20d)

where the expectation is with respect to the channel gains
gk, fk and hk . Here, we regarded the integration in (19a) with
respect to gk as an expectation with respect to a dummy
random variable gk, which is distributed with exponential
distribution. P

′
k(gk, fk , hk) can also be regarded a dummy

power allocation which is a function of gk, fk and hk .
Following the same procedure by applying the Lagrangian

approach, we find P
′
k(gk, fk , hk) as

P
′
k(gk, fk , hk) =

[
ν + ξk

(1 − ν + λ) fk + μ
− ρhk + A

gk

]+
(21)

where A = N0 + E

[∑K
j=1, j �=k Pj g jk

]
. Then, we can find

the optimal power allocation, Pk( fk , hk), as the average of
P

′
k(gk, fk , hk) over gk as equation (22)

Pk( fk, hk)

=
∫ ∞

((1−ν+λ) fk+μ)(ρhk+A)
ν+ξk

(
ν + ξk

(1 − ν + λ) fk + μ
− ρhk + A

gk

)

× e−gk dgk

= e
− (ρhk +A)((1−ν+λ) fk+μ)

ν+ξk (ν + ξk)

(1 − ν + λ) fk + μ

+ (ρhk + A)Ei

(

− (ρhk + A) ((1 − ν + λ) fk + μ)

ν + ξk

)

(22)

which gives the power at the k-th SU transmitter when only
CSI of fk and hk are available at the k-th SU transmitter.

Similar iteration search-based on the sub-gradient method
as indicated in (15)-(17) should be implemented to obtain the
maximum ergodic sum rate by substituting (22) into (19a)
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which can be simplified into

C =
K∑

k=1

∫ ∞

0

∫ ∞

0

(

−e
B

e−B+BEi(−B)

× Ei

(

−B − B

e−B + BEi (−B)

)

+ e−B ln
(

1 + e−B + BEi (−B)
))

×e− fk e−hk d fkdhk, (23)

where B = (ρhk+A)
(
(1−ν+λ(n+1)) fk+μ(n+1)

)

ν+ξ
(n+1)
k

. (23) is an expres-

sion for the ergodic sum rate of the secondary links when
only instantaneous channel gains of fk and hk are provided at
the transmitter of the k-th SU. We observe that closed-form
expressions are not obtainable for (23), and hence, we need
to solve the equation numerically.

3) Knowledge of gk and hk [P(gk, hk)]: Here, the maxi-
mum of the ergodic sum rate with a reduced side information
of fk at the kth SU transmitter is computed. Therefore, we
disregard the effect of fk from the power allocation, resulting
in the following optimization problem

max
Pk≥0

K∑

k=1

E

⎡

⎣ ln

⎛

⎝1

+ Pk(gk, hk)gk

N0 + ρhk + E

[∑K
j=1, j �=k Pj (g j , h j )g jk

]

⎞

⎠

⎤

⎦

(24a)

min
Pk

K∑

k=1

E[Pk(gk, hk) fk ], (24b)

s.t.
K∑

k=1

E [Pk(gk, hk) fk] ≤ Qavg, (24c)

K∑

k=1

E [Pk(gk, hk)] ≤ Pavg, (24d)

E

⎡

⎣ ln

⎛

⎝1

+ Pk(gk, hk)gk

N0 + ρhk + E

[∑K
j=1, j �=k Pj (g j , h j )g jk

]

⎞

⎠

⎤

⎦

≥ Ravg, for k = 1, . . . , K , (24e)

which (24c) can be simplified into

K∑

k=1

E [Pk(gk, hk)] ≤ Qavg. (25)

Similarly, by applying the Lagrangian approach, we get the
optimal power allocation as

Pk(gk, hk) =
[

ν + ξk

1 − ν + λ + μ
− ρhk + A

gk

]+
, (26)

where A = N0 + E

[∑K
j=1, j �=k Pj (g j , h j )g jk

]
.

Again, we use a similar iteration search based on the sub-
gradient method as shown in equations (15)-(17) to get the
maximum ergodic sum rate by substituting (26) in (24a) and
using [37] as

C = K

(

−Ei

(

−1 − ν + λ(n+1) + μ(n+1)

ν + ξ
(n+1)
k

A

)

+ e
A
ρ Ei

⎛

⎜
⎜
⎝−

A +
(

1−ν+λ(n+1)+μ(n+1)

ν+ξ
(n+1)
k

)

ρ A

ρ

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ , (27)

where (27) is a closed-form expression for the ergodic sum
rate of the SU links when only instantaneous channel gains
gk and hk are provided at the transmitter of the kth SU.

4) Knowledge of gk and fk [P(gk, fk)]: Here, we find
the sum rate with a reduced side information when instan-
taneous knowledge of hk is not made available at the kth
SU transmitter. Hence, by disregarding hk , the power of SU
transmitter depends on gk and fk . The MOP (11) hence is
modified as

max
Pk≥0

K∑

k=1

E

⎡

⎣
∫ ∞

0
ln

⎛

⎝1

+ Pk(gk, fk)gk

N0 + ρhk + E

[∑K
j=1, j �=k Pj (g j , f j )g jk

]

⎞

⎠

×e−hk dhk

]
(28a)

min
Pk

K∑

k=1

E[Pk(gk, fk) fk], (28b)

s.t.
K∑

k=1

E [Pk(gk, fk) fk] ≤ Qavg, (28c)

K∑

k=1

E [Pk(gk, fk)] ≤ Pavg, (28d)

E

⎡

⎣
∫ ∞

0
ln

⎛

⎝1

+ Pk(gk, fk)gk

N0 + ρhk + E

[∑K
j=1, j �=k Pj (g j , f j )g jk

]

⎞

⎠

×e−hk dhk

⎤

⎦ ≥ Ravg, for k = 1, . . . , K , (28e)

where the expectation is with respect to the channel gains
gk and fk . The optimal power allocation in the optimization
problem (28a) and (28b) subject to (28c)-(28e) is given by

Pk(gk, fk) =
[

ν + ξk

(1 − ν + λ) fk + μ
− ρ + A

gk

]+
(29)

where A = N0 + E

[∑K
j=1, j �=k Pj (g j , f j )g jk

]
.

Similarly, the iteration search based on the sub-gradient
method can be used and the maximum ergodic sum rate by
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substituting (29) in (28a) is expressed as

C = − K Ei

(

− ρ + A

ν + ξ
(n+1)
k

μ(n+1)

)

+ K e
μ(n+1)

1−ν+λ(n+1)

× Ei

⎛

⎜
⎝−

λ(n+1) + ρ+A

ν+ξ
(n+1)
k

(
1 − ν + λ(n+1)

)
λ(n+1)

1 − ν + λ(n+1)

⎞

⎟
⎠ .

(30)

The expression given in (30) represents a closed-form solution
for the ergodic sum rate of the secondary links when only CSI
of gk and fk are available at the k-th SU transmitter.

5) No Knowledge of CSI [Constant P]: Here, we assume
that no instantaneous CSI is available at the kth SU transmitter,
therefore, the best strategy for the SU is to transmit with a
constant power. Hence, the MOP simplifies into

max
Pk≥0

K∑

k=1

E

⎡

⎣
∫ ∞

0

∫ ∞

0
ln

⎛

⎝1

+ Pk gk

N0 + ρhk + E

[∑K
j=1, j �=k Pj g jk

]

⎞

⎠

×e−gk e−hk dgkdhk

⎤

⎦ (31a)

min
Pk

K∑

k=1

E[Pk fk ] (31b)

s.t.
K∑

k=1

E [Pk fk ] ≤ Qavg (31c)

K∑

k=1

E [Pk] ≤ Pavg (31d)

E

⎡

⎣
∫ ∞

0

∫ ∞

0
ln

⎛

⎝1

+ Pk gk

N0 + ρhk + E

[∑K
j=1, j �=k Pj g jk

]

⎞

⎠

×e−gk e−hk dgkdhk

⎤

⎦ ≥ Ravg for k = 1, . . . , K .

(31e)

The transmission power in the optimization prob-
lem (31a) and (31b) subject to (31c)-(31e) can be
expressed as

Pk =
∫ ∞

0

∫ ∞
ρhk+A
ν+ξk

((1−ν+λ)+μ)

(
ν + ξk

(1 − ν + λ) + μ

−ρhk + A

gk

)

e−gk e−hk dgkdhk

(32)

= e
− (1−ν+λ)+μ

ν+ξk
A

λ
+ (A + ρ) Ei

(

−
(

(1 − ν + λ) + μ

ν + ξk

)

A

)

− e
A
ρ ρEi

⎛

⎝−
A +

(
(1−ν+λ)+μ

ν+ξk

)
Aρ

ρ

⎞

⎠ , (33)

where A = N0 +E

[∑K
j=1, j �=k Pj g jk

]
. We note that (33) is a

closed-form expression for the power at the k-th SU transmitter
when no CSI is available at this SU transmitter.

In this case, we also use the iteration search based on the
sub-gradient method as shown in equation (15)-(17) to find
maximum ergodic sum rate by substituting (33) in (31a) which
is expressed as

C =
K∑

k=1

∫ ∞

0

∫ ∞

(λ(n+1)+μ(n+1))(ρhk+A)
ln

(

1 +

+ gk

ρhk + A

⎛

⎜
⎜
⎜
⎝

e
−
(

(1−ν+λ(n+1))+μ(n+1)

ν+ξ
(n+1)
k

)

A

λ
+ (A + ρ)

× Ei

(

−
(

(1 − ν + λ(n+1)) + μ(n+1)

ν + ξ
(n+1)
k

)

A

)

− e
A
ρ ρEi

⎛

⎜
⎜
⎝−

A +
(

(1−ν+λ(n+1))+μ(n+1)

ν+ξ
(n+1)
k

)

Aρ

ρ

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

×e−gk e−hk .dgkdhk . (34)

(34) gives the expression for the ergodic sum rate of the
secondary links when the power at the k-th SU transmitter
is kept constant.

IV. INTERFERENCE ACQUISITION

We note that the practicality of the IE-optimal transmission
method depends on the availability of the interference channel
knowledge at the SU transmitter which could be challenging.
Hence, here, we consider two different scenarios in terms
of interference energy knowledge in the SU transmitter and
investigate their IE performance.

A. Imperfect CSI

In this case, we consider a single cell scenario, hence no
interference on the PU receiver is imposed from outside the
cell. We then assume that the instantaneous information of the
interference energy is known to the SU transmitters. Various
strategies are proposed in the literature on how the informa-
tion about CSI between secondary transmitters and primary
receivers are obtained. For example, [41] considers a band
manager that mediates between the primary and secondary
users and provides the CSI information, or [13] proposes
that the CSI can be directly fed back from the primary’s
receiver to the secondary user through an algorithm that allows
the primary and secondary users to collaborate and exchange
information. For primary networks that sublease their spectrum
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for monetary purposes, a level of cooperation between the
primary and secondary networks can be expected. Moreover,
our work does not require the phase information of the chan-
nel but requires only knowledge of the interference channel
power gains. Hence, knowledge of the transmission signal
power of the primary receiver is adequate to estimate the
interference channel power gains [42]. In practice, certain
cooperation in terms of parameter feedback between the PUs
and the SUs is required.

Since obtaining a perfect interference energy information
from all the neighbouring receivers could be challenging, in
this scenario, we explain how the results of this paper can
be used when the information of the interference channel,
or equivalently, the information of the interference energy,
is imperfect. The effects of imperfect interference CSI on
the ergodic rate of CR systems is previously studied in [11]
and [43]. Under imperfect CSI, it is assumed that the sec-
ondary transmitter performs minimum mean square error
(MMSE) estimation of the interference channel gain. Here,
we we adopt the following model:

fk = ε2
fk

f̂k +
(

1 − ε2
fk

)
f̃k, (35)

where f̂k is the secondary channel MMSE estimation and f̃k

is the estimation error which are independent of each other
and also ε2

fk
represents the uncertainty with 0 < ε2

fk
< 1.

The secondary transmitter, hence, has access to the estimated
channel information along with the statistical information of
the estimation error. Using (35), the MOP objective function
(5b) changes into

min
Pk

K∑

k=1

E

[
Pk

(
ε2

fk
f̂k +

(
1 − ε2

fk

)
f̃k

)]
. (36)

Also, the MOP constraint (5c) changes into

s.t.
K∑

k=1

E

[
Pk

(
ε2

fk
f̂k +

(
1 − ε2

fk

)
f̃k

)]
≤ Qavg. (37)

Now, by applying the augmented Lagrangian, as introduced
in (7 )-(10) the updated MOP when the CSI is imperfect can
be solved.

B. Multi-Cell Scenario

In this case, we consider a multi-cell scenario wherein
the instantaneous information about the interferences energy
imposed on the PU receiver from the other cells is not available
to the CR user. We also consider that there could be other
operating CRNs within the same area. In this case aslo, we
assume that the SU transmitter does not have instantaneous
knowledge of the interference energy that the other CRNs
impose on the PU receiver. Only the SU knows the total
average interference power imposed on the PU receiver from
the other networks (or other cells), referred to by I0. Hence,
the IE formula in this case becomes

ηIE =
∑K

k=1 E [ln (1 + SINRk)]
∑K

k=1 E[Pk fk] + I0
. (38)

We use the similar MOP solution approach as in Section III
and convert it into a SOP. In this scenario, given that the value

Fig. 2. Ergodic sum rate of secondary links versus the number of iterations
with power control algorithm proposed in Table 1 with K = 2 and ν = 0.9.

of (I0) which is added to the denominator of IE is constant,
the developed solution method obtained in Section III applies
to this scenario as well.

V. NUMERICAL RESULTS

In this section, we numerically evaluate the interference
efficiency, maximum ergodic sum rate of secondary links and
also the minimum total average interference power on PU
receivers in Rayleigh fading channels. We further investigate
the effects of varying weighting coefficient, ν, fading severe-
ness, the number of SU interferers, K , and having different
CSI on the SU performance. In the following figures, we
assume that N0 = 1, Ravg = 2.5 nat/sec/Hz and Pavg = 25 dB,
unless otherwise is indicated. Our simulation analysis suggest
that σ (0) ∈ [1, 5] works well in practice. In this case, the
penalty parameter σ (n) would not be increased either too fast
or too slowly avoiding ill-conditioning or reduction of the
convergence rate. The subsequent values of σ (n) should be
monotonically increased by σ (n+1) = τσ (n) in which τ is a
scalar with τ > 1. In our numerical analysis, we assume that
τ = 2. Additional guidelines for choosing σ (n) and τ can be
found in [30, Sec. 4.2].

In Fig. 2, the plots for the sum rate of secondary links of
the CR network under the assumption of full CSI versus the
number of iterations in the power control algorithm, proposed
in Table 1, are given. In this figure, we assume that K = 2
and ν = 0.9. The figure shows that after around 25 iterations,
all three curves have converged to their corresponding optimal
points.

Fig. 3 presents the plots for sum rate of multiple secondary
links for different number of K under full CSI versus the
average interference power threshold (Qavg) with ν = 0.9.
The figure reveals that as the number of secondary links
increases, the ergodic sum rate decreases. For instance, when
Qavg = 10dB, the sum rate of two secondary links is almost
1.05 nats/s/Hz but the ergodic sum rate of four SU links is
less than 0.9 nats/s/Hz. Consequently, the secondary interferers
significantly decrease the ergodic sum rate degrading the
performance of the CRN.
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Fig. 3. Ergodic sum rate versus the interference power constraint limit for
various number of the secondary transmitters under full CSI with ν = 0.9.

Fig. 4. Ergodic sum rate versus Pavg for various weighting factor ν with
ρ = 5dB and K = 2.

Fig. 4 displays the ergodic sum rate versus Pavg for different
values of weighting factor ν with K = 2. As expected, the
figure shows that by reducing the value of ν the ergodic sum
rate also decreases. This happens because when the weighting
factor increases, the system gives more importance to the sum
rate.

The impact of varying weighting coefficient (ν) on the
ergodic sum rate and the average interference power imposed
on the PU receiver as a result of CR users transmission are
respectively shown in Fig. 5 and 6. From Fig. 5 we observe
that for ν between 0 and 0.5, the ergodic sum rate is very
low whereas for the higher value ν ergodic sum rate increases
sharply with ν. Fig. 6 shows that by increasing ν the minimum
average interference power is also increasing.

Fig. 7 displays the maximum ergodic sum rate of secondary
link against the minimum average interference power for
various values of ν with K = 2. This figure indicates a trade
off between contradicting objectives that are the maximum
sum rate against the minimum average interference power.
In detail, we can see that higher capacity is achieved when
higher interference is created. The rate, however, does not
increase after the point where interference reaches a certain

Fig. 5. Ergodic sum rate versus the weighting factor ν with K = 2.

Fig. 6. Average interference power imposed on the PU receiver versus
weighting factor ν with K = 2.

Fig. 7. Ergodic sum rate versus average interference power for various values
of ν with K = 2.

threshold. When the importance factor increases, the sum rate
saturates at higher values of interference.

The effect of varying weighting coefficient (ν) on IE is
shown in Fig. 8 which includes the plots for the IE versus
the weighting factor when two SUs sharing the spectrum with
a PU. This figure shows that the IE decreases monotonically
with ν. The slop of the plot however slows down after ν = 0.1.
Hence, the figure reveals that the IE of the system is more
sensitive to the weighting factor for smaller values of ν.
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Fig. 8. Impact of varying ν on IE.

Fig. 9. IE versus Qavg for various values of Pavg.

Fig. 10. IE versus Ravg for various values of ρ.

Fig. 9 shows the plots for the IE of the CRN against Qavg for
various values of Pavg. In this figure, IE decreases when Qavg
increases. The IE, however, remains constant after a certain
threshold that depends on the value of Pavg.

The behaviour of the IE versus Ravg for various values of the
PU transmit power (ρ) is shown in Fig. 10. From this figure,
we can see that IE decreases when Ravg increases. Also, for
a fixed value of Ravg, IE decreases when ρ increases.

Fig. 11 and Fig. 12 include the plots for the sum rate
versus Qavg under partial CSI for different values of ρ with

Fig. 11. Impact of reducing different CSI on the ergodic sum rate with
ρ = 5dB.

Fig. 12. Impact of reducing different CSI on the ergodic sum rate with
ρ = 10dB.

ν = 0.95 and A = 1. Comparing Fig. 11 with Fig. 12 indicates
that the interference from the PU transmitter can have a big
impact on the CRN ergodic sum rate. As we can see, the CRN
ergodic sum rate in all cases increases with Qavg. Further
examination of Fig. 11 and Fig. 12 reveals that the highest
sum rate occurs when instantaneous knowledge of gk, fk and
hk is available at the SU transmitter while the lowest sum rate
occurs when no instantaneous knowledge of CSI is available at
the SU transmitter. Another important observation is that there
is a very small sum rate difference between the cases when the
instantaneous knowledge of gk, fk and hk are made available
at the kth SU transmitter and when the only knowledge of fk

and hk are available at the kth SU transmitter. Hence, implying
that having side information of gk at the kth SU transmitter has
a small effect on the system performance. We further observe
that when only CSI of fk is removed, the secondary link loses
most of the sum rate advantage that can be achieved by having
knowledge of gk, fk and hk . Therefore, fk has the highest
impact on the sum rate of the system, while having gk has
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Fig. 13. Impact of reducing different CSI on the ergodic sum rate with
ρ = 5dB and m = 2.

very minimal impact. Furthermore, the effect of reducing only
hk is less than fk and bigger than gk such that by removing
only the instantaneous knowledge of CSI hk , the system loses
almost half of the obtainable sum rate.

In addition, we also include the result of a Nakagami
fading channel, where channel power gain gk, fk and hk are
distributed according to the following Gamma distribution

f (x) = mm xm−1

�(m)
e−mx , (39)

in Fig. 13 which shows ergodic sum rate against Qavg
under the constraints on average interference power and total
transmit power for ρ = 5dB and m = 2. The Nakagami
parameter indicates the severity of fading, such that m = 1
corresponds to Rayleigh fading and as m = ∞, the Nakagami
fading channel converges to a non-fading AWGN channel [12].
Comparing Fig. 13 and Fig. 11 reveals that as severity parame-
ter m increases the difference between the highest and lowest
ergodic sum rate of the SU link decreases.

A. Interference Acquisition

Fig. 14 shows IE versus η for different values of I0. As can
be seen in this figure, the maximum achievable IE decreases
with I0. Also as I0 increases, the η at which the IE is
maximized increases. The point at which IE is maximized is
when the optimal value of the SOP (equation (6)) is equal to
zero. We note that by considering I0 in (6), this equation is
expressed as

max
Pk

ν

(
K∑

k=1

E [ln (1 + SINRk)]

)

− (1 − ν)

(
K∑

k=1

E [Pk fk] + I0

)

.

In Fig. 15, we have plotted equation (6) versus η. According
to (44) in Appendix A, η that returns the root for (6) is
the η that corresponds to the maximum IE. So, when each

Fig. 14. IE versus ν for various values of I0.

Fig. 15. Equation (6) versus ν with I0 = 0dB and various values of error
on I0.

plot crosses the zero line, the corresponding optimal η can
be found. For example, when perfect knowledge of I0 is
available, the optimal η is η = 0.765. Now, by referring to
Fig. 14, one can find the maximum IE, which is at η = 0.765.
In Fig. 15, we also include the plots when there are some
error in the knowledge of I0 at the SU transmitter. We note
that when there is error in the information of I0, the ν at which
the plotted curve crosses the zero line departs from its optimal
value at η = 0.765. This, in turn, affects the IE-optimal
transmission strategy and results in a lower achievable IE.

B. IE Versus EE

In Fig. 18, Fig. 16 and Fig. 17, we includes the results of
two different adaptive power transmission schemes, namely
1) an IE-efficient approach: a power allocation scheme that
maximizes the IE of the CRN (according to the derivations
of this paper), and 2) an EE-efficient approach: a power
allocation scheme that maximizes the energy efficiency of the
SU network, which is defined as

EE =
∑K

k=1 E [ln (1 + SINRk)]
∑K

k=1 E[Pk] + Pc
, (40)

where Pc is a constant value of the circuit power consump-
tion [44], [45]. Through these figures we can observe the
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Fig. 16. IE and EE versus Qavg with I0 = Pc = −10dB.

Fig. 17. IE and EE versus Ravg with I0 = Pc = −10dB.

Fig. 18. IE and EE versus Pavg with I0 = Pc = −10dB.

difference between the maximum achievable IE and EE under
these two power allocation schemes.

In detail, Fig. 18 includes the plots for the maximum
achievable IE and EE versus the Pavg under IE-efficient and
EE-efficient power allocation schemes when I0 = −10dB,
Pc = 0dB and ρ = 5dB. The figure shows that at low SU
transmit power limits, i.e., Pavg ≤ 5dB, although the achiev-
able EE by the two schemes are not very different, but the
achievable IE by the IE-efficient transmission scheme is much
higher than the one with the EE-efficient scheme. This happens
since the distribution of the power in the IE-efficient scheme is
adopted to both direct and interference channels in the CRN,
and hence, it can benefit from the variations of both channels.
As the value for Pavg increases, the IE that can be achieved

by the two schemes become similar. The maximum achievable
IE and EE versus Qavg and also versus Ravg under these
two transmission schemes are given in Fig. 16 and Fig. 17,
respectively. The two figures show that at higher values of
Qavg and Ravg, the performance of the two transmission
schemes becomes similar.

VI. SUMMARY

In this paper, we considered a spectrum-sharing system
where multiple secondary links share the spectrum with an
existing primary link. We have proposed a new performance
factor called interference efficiency to analyze the sum rate
of the CRN versus the imposed interference power on the
PU receiver. By formulating the performance objective as an
MOP which jointly maximizes the ergodic sum rate of the
CRN and minimizes the average interference power on PU
receiver, subject to average constraints on the interference
power, total transmit power and minimum ergodic rates for
the SUs, we aim to maximize the IE of the CRN. The MOP
is converted into an SOP through weighted sum method.
Numerical analysis indicate that the maximum rate highly
depends on the weighting coefficient by which the compet-
ing objective functions are linearly combined into a single
objective function. Furthermore, we investigated the effect of
different levels of CSI, which has been provided to each
SU transmitter, on the performance of the system. From
the numerical result, we observed that the sum rate of the
CRN highly depends on having side information of the links
between the SU transmitter and the PU receiver at each SU
transmitter. However, the side information of the link between
the SU transmitter and the SU receiver at the SU transmitter
has negligible impact on its rate. Another important result is
that the higher the number of secondary interferers results in
achieving a lower ergodic sum rate.

APPENDIX A

In order to give a formal proof of Lemma 1, we have
employed a general fractional programming which can be
formulated as

max θ(x) = f (x)

g(x)
: x ∈ X, (41)

where X is a nonempty compact of Rn . f (x) and g(x) are
continuous real-valued functions of x ∈ X and g(x) > 0 for
all x ∈ X. Let define

H (q∗) = max
x

{
f (x) − q∗g(x) : x ∈ X

}
, (42)

as the minimum value of f (x) − qg(x) with each fixed q∗.
It is proved in [38] that

q∗ = f (x∗)
g(x∗)

= max
x

{
f (x)

g(x)
: x ∈ X

}

, (43)

if and only if

H (q∗) = H (q∗, x∗) = max
x

{
f (x) − q∗g(x) : x ∈ X

} = 0.

(44)
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Therefore, from (43) and (44), it can be found that the
optimal solution x of (41) is the optimal solution of (42)
when (44) holds.

On the other hand, we now formulate a general MOP with
two objectives as follows:

max f (x) (45)

min g(x) (46)

s.t. x > 0 (47)

In MOPs, it is characteristic that no unique solution exists
but a set of mathematically equally good solutions can be
identified. These solutions are known as Pareto Optimal solu-
tions. With different parameters for the scalarization, different
Pareto Optimal solutions are produced. A solution is called
nondominated or Pareto Optimal if none of the objective func-
tions can be improved in value without degrading some of the
other objective values. By combining the competing objective
functions (45) and (46) into a single objective function linearly
through weighting coefficients, the objective functions in the
MOP can be changed into a SOP as follows

max f (x) − νg(x). (48)

By comparing (48), (44) and (41), one can show that optimal
set of (48) is inclusive of the solution for (41). The value of
ν that makes the maximum of the SOP equivalent to zero will
yield a solution for the fractional programming problem.

We note that (48) is equal to (6) when one replaces f (x)
with ergodic sum rate and g(x) with interference power. The
solution of the MOP in (6) subject to (4b)-(4d) is a pareto
optimal region. There is a point on this region that returns the
solution of the IE maximization in (4). To find this point, we
need to find the value of ν that makes (6) equal to zero.

Finally, we note that the MOP can be applied to find the
optimal solution from n objective functions (n can be bigger
than 2) whereas the fractional programming only works for
two functions.

APPENDIX B

If we consider the following general concave maximization
over a set as:

max f (x)

s.t. x ∈ χ.

This subgradient method generates a sequence of feasible
points as

x(t + 1) = [x(t) + α(t)s(t)]χ

where s(t) denotes a gradient of f evaluated at the point
x(t) if f is differentiable, [.]χ is the projection onto the
feasible set χ , and α(t) represents a positive step-size. The
distance of the current solution x(t) to the optimal solution
x∗ for sufficiently small step-size decreases which makes the
subgradient method converge. With different choices of step-
sizes, many results on convergence of the subgradient method
can be found [39], [40]. For example, for a diminishing step-
size rule α(t) = 1+m

t+m , in which m denotes a fixed nonnegative

number, it is guaranteed that the algorithm converges to the
optimal value [40]. For a constant step-size α(t) = α, which
is more convenient for distributed algorithms, the subgradient
algorithm converges to the best value within some range of
the optimal value provided that the step-size is sufficiently
small [39].
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