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Abstract: We consider testing for the presence of a change in mean, at an

unknown point in the sample, in data that are possibly fractionally integrated,

and of unknown order. This testing problem has recently been considered in a

number of papers, most notably Shao (2011, “A Simple Test of Changes in Mean

in the Possible Presence of Long-Range Dependence.” Journal of Time Series

Analysis 32:598–606) and Iacone, Leybourne, and Taylor (2013b, “A Fixed-b Test

for a Break in Level at an Unknown Time under Fractional Integration.” Journal

of Time Series Analysis 35:40–54) who employ Wald-type statistics based on OLS

estimation and rely on a self-normalization to overcome the fact that the stan-

dard Wald statistic does not have a well-defined limiting distribution across

different values of the memory parameter. Here, we consider an alternative

approach that uses the standard Wald statistic but is based on quasi-GLS

estimation to control for the effect of the memory parameter. We show that

this approach leads to significant improvements in asymptotic local power.
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1 Introduction

In this paper we revisit the problem of testing for the presence of a change (at an

unknown point) in the mean of a series, that is possibly fractionally integrated,

with memory parameter δ, IðδÞ. It is well known that if not accounted for, a

mean shift in a short memory process can induce features in the autocorrelation

function and the periodogram of a time series that can be mistaken as evidence

of long memory; see, for example, Diebold and Inoue (2001), Granger and Hyung

(2004), Mikosch and Stărică (2004) and Iacone (2010). To avoid the possibility of

spurious inference being made about the memory properties of a time series it is
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therefore important to be able to detect a mean change and several recent

papers have addressed this testing problem using sup-Wald based statistics.

Berkes et al. (2006) and Qu (2011) suggest tests to discriminate between a null

hypothesis of long memory without mean change and an alternative of change

in the mean in an otherwise weakly autocorrelated process. A rather less

restrictive approach is taken by Wang (2008), Shao (2011) and Iacone,

Leybourne, and Taylor (2013b). Here the null is of no mean change, and the

alternative is of mean change, but with no restriction on the memory properties

of the series under either the null or alternative hypothesis (i. e. the mean

change can be associated with either a short or long memory process).

Focussing on the latter group of tests because of their wider applicability,

the approach they take is essentially based on OLS estimation in that the (sup-)

Wald-type statistic used to test for the presence of a change in mean is that

which would be computed were it known that δ=0. Self-normalisations applied

to the raw test statistics ensure that they have well-defined limiting null dis-

tributions which depend only on the memory parameter, δ. It is, however,

unlikely that these OLS-based statistics will provide the best available power

for detecting a mean change when δ≠0, or even when δ=0 (due to the normal-

isations involved). It therefore makes sense to investigate an approach that

employs a quasi-GLS estimation procedure appropriate for a given δ; that is,

one based on taking Δ
δ-differences of the series under consideration, and con-

structing a non-normalised (sup-) Wald statistic. We show that the correspond-

ing quasi-GLS based Wald statistic again has a limit null distribution depending

only on the memory parameter. We also demonstrate that its local asymptotic

power function is significantly higher than those of the OLS-based tests of Shao

(2011) and Iacone, Leybourne, and Taylor (2013b).

In what follows we use the notation: x := y (x =: y) to indicate that x is defined

by y (y is defined by x); ½�� to denote the integer part; Ið�Þ to denote the indicator

function whose value is one when its argument is true and zero otherwise; L to

denote the lag operator; and!
d
to denote convergence in the Skorohod J1 topology

of D 0, 1½ �, the space of real-valued functions on 0, 1½ � which are continuous on the

right and with finite left limit, respectively, as the sample size diverges.

2 A Quasi-GLS based Test for a Break in the Mean

and Its Limit Distribution

Consider the scalar time series process, yt, satisfying the data generating process

[DGP]:
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yt = α+ βI t >T0ð Þ+ ut, t = 1, ..., T, [1]

yt =0, t ≤0. [2]

where T0 := bτ0Tc for τ0 2 τL, τU½ �=: Λ � 0, 1ð Þ; that is, T0 2 ΛT := fbτLTc, ...,

bτUTcg (τL and τU representing trimming parameters). Here ut is a zero-mean IðδÞ

process. When β=0, E ytð Þ= α for any t > 0, so the mean is constant, but when β≠0,

the mean changes at observation T0 from α to α+ β. One concern lies with testing the

null hypothesis H0 : β=0 against the two-sided alternative hypothesis H1 : β≠0,

without assuming knowledge of the location of the breakpoint T0.

We obtain ut in (1) by integrating an I 0ð Þ process, ηt say, δ times; that is, let

ηt be a scalar, zero-mean covariance stationary process with finite and non-zero

spectral density at all frequencies, then

ut :=Δ
− δ ηtIðt > 0Þ
� �

when t ≥ 1, ut := 0 when t ≤0. For δ 2 −0.5, 0.5ð Þ, Δ
− δ = 1− Lð Þ− δ can be

expanded as Δ
− δ =

P
∞

t =0 Δ
δð Þ
t Lt, where Δ

δð Þ
t := Γ t + δð Þ= Γ δð ÞΓ t + 1ð Þð Þ, with Γ �ð Þ

denoting the Gamma function, with the conventions that Γ 0ð Þ :=∞ and

Γ 0ð Þ=Γ 0ð Þ := 1. Therefore, when t ≥ 1 the process ut can be written as

ut =
Pt

s= −∞
Δ

δð Þ
t − s ηsIðs > 0Þ

� �
, and, noting Iðs > 0Þ, as ut :=

Pt
s= 1 Δ

δð Þ
t − sηs.

Remark 1: The process ut is I δð Þ and it belongs to the class of Type II fraction-

ally integrated processes; see, for example, Marinucci and Robinson (1999). The

assumption that δ 2 −0.5, 0.5ð Þ is common in the literature, and is also made in

Shao (2011) and Iacone, Leybourne, and Taylor (2013b). Notice that α and β

cannot be estimated consistently if δ > 0.5. □

We follow the approach of Iacone, Leybourne, and Taylor (2013a), and take

Δ
δ-differences of yt in (1), to obtain

Δ
δyt = αΔ

δ 1I t > 0ð Þf g+ βΔδ 1I t >T0ð Þf g+Δδut, t = 1, ..., T [3]

where, by definition, Δδut = ηt. Let τ 2 Λ denote a generic break fraction, with

Ta := bτTc 2 ΛT the associated break date. To keep the notation manageable, we

also introduce

μt :=Δ
δ 1I t > 0ð Þf g; μt τð Þ :=Δδ 1I t >Tað Þf g

so that (3) can be written more succinctly as

Δ
δyt = αμt + βμt τ0ð Þ+ ηt.
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Because the location of the putative mean shift is not assumed known, we consider

the Wald statistic to test H0 : β=0 when evaluated at the generic break point

Ta: for xt τ; δð Þ := ½μt, μtðτÞ�′, let Mxx τ; δð Þ :=
PT

t = 1 xt τ; δð Þxt τ; δð Þ′, Mxy τ; δð Þ :=
PT

t = 1 xt τ; δð ÞΔδyt, and, for c := ½0, 1�′, bβ τ; δð Þ := cMxx τ; δð Þ− 1Mxy τ; δð Þ. The Wald

statistic is given by

W τ; δð Þ :=
bβ τ; δð Þ2

σ2cMxx τ; δð Þ− 1c′
[4]

where σ2 is the long run variance of ηt. We then consider the supremum of

W τ; δð Þ taken over τ 2 Λ; that is,

S W δ := sup
τ2Λ

W τ; δð Þ

As a practical matter, the statistic W τ; δð Þ in (4) is computed for each of the

candidate dates Ta 2 ΛT and the maximum value of these is then taken.

In Assumption 1 we now state the necessary regularity conditions such that

we can evaluate the limiting distribution of S W δ under a sequence of local

alternatives of the form H1L : β= κσT
δ− 1=2. This will be subsequently given in

Theorem 1.

Assumption 1: Let ηt be the linear process satisfying ηt :=A Lð Þ εt :=
P

∞

j=0 Ajεt − j.

The weights fAjg are such that
P

∞

j=0 j Aj

�� �� <∞ and εt is an independent, identically

distributed sequence with E εtð Þ=0, E ε2t
� �

= 1, and E εtj jqð Þ <∞, for q > max

4, 2
1− 2δ

� �
.

Remark 2: Under Assumption 1, the long run variance of ηt is given as

σ2 =A 1ð Þ2. □

Because ηt is I 0ð Þ and xt τ; δð Þ comprises deterministic regressors, it is straightfor-

ward to establish that for a fixed value of τ theWald statistic W τ; δð Þ has a χ21 limiting

distribution under H0 : β=0 and under the regularity conditions of Assumption 1.

However, because the location of the potential break is unknown and consequently

we take the supremum of W τ; δð Þ over all possible values of τ, we need to treat

W τ; δð Þ as a function of τ. As a consequence, we need to establish the limit of this

function rather than simply establish the marginal limit for a given value of τ. The

key to doing so is to use the result that under Assumption 1,

Tδ− 1=2
XT

t = 1 + τTb c

t − τTb cð Þ− δηt !
d
σ

ð1

τ

r − τð Þ− δdB rð Þ [5]
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where B rð Þ denotes a standard Brownian motion process on r 2 0, 1½ �; see

Lemma A.1 of Iacone, Leybourne, and Taylor (2013a).

Before we characterise the limiting distribution of S W δ in Theorem 1, we

first need to introduce some additional notation. To that end, we define

C τ; δð Þ :=
1

Γ 1− δð Þð Þ2

Ð 1
0 r

− 2δdr
Ð 1
τ r

− δ r − τð Þ− δdr
Ð 1
τ r

− δ r − τð Þ− δdr
Ð 1
τ r − τð Þ− 2δdr

2

4

3

5

D τ; δð Þ :=
1

Γ 1− δð Þ

Ð 1
0 r

− δdB rð Þ
Ð 1
τ r − τð Þ− δdB rð Þ

2

4

3

5

Ψ τ, τ0; δð Þ :=
1

Γ 1− δð Þð Þ2

Ð 1
τ0
r − δ r − τ0ð Þ− δdr −

Ð 1
τ r

− δ r − τð Þ− δdr

Ð 1
τM

r − τð Þ− δ r − τ0ð Þ− δdr −
Ð 1
τ r − τð Þ− 2δdr

2

4

3

5

where τM := max τ, τ0ð Þ.

Theorem 1: Let yt be generated according to (1)-(2) and let Assumption 1 hold.

Under H1L : β= κσT
δ− 1=2,

S W δ !
d
sup
τ2Λ

L τ, τ0, κ; δð Þ [6]

where

L τ, τ0, κ; δð Þ : =
c C τ; δð Þ½ �− 1D τ; δð Þ+ κ 1 + c C τ; δð Þ½ �− 1 Ψ τ, τ0; δð Þ

� �� �2

c C τ; δð Þ½ �− 1c′
. [7]

Remark 3: Setting κ =0 in (6) and (7) in Theorem 1 it immediately follows that

under the null hypothesis, H0 : β=0, S W δ !
d
sup
τ2Λ

L τ, τ0, 0; δð Þ where L ðτ, τ0,

0; δÞ := ðc½Cðτ; δÞ�− 1Dðτ; δÞÞ2=c½Cðτ; δÞ�− 1c′. □

Remark 4: The proof of Theorem 1 follows along similar lines to the proof of

Theorem 1 of Iacone, Leybourne, and Taylor (2013a) and is therefore omitted.

Observe that the limiting distribution given for S W δ in Theorem 1 does not

depend on σ2 nor does it depend on the form of the weights Aj, as long as

Assumption 1 is met. Under H0, both the numerator and the denominator, when

scaled by appropriate functions of T, converge to limits that depend on σ2; see

for example (5) and notice the presence of σ2 in (4). However, and as is common

with Wald-type statistics, under the null hypotheses these terms cancel out from

the limiting distribution. Under H1L the additional non-centrality term present in

the limit distribution of S W δ does not depend on σ2 by virtue of the fact that the

local break magnitude in H1L is scaled by σ. □
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As the limiting null distribution of S W δ depends on δ, the critical values for

the test also depend on δ. Moreover, the critical values also depend on Λ, as

does the test statistic S W δ. Both these observations are typical of tests of this

kind; cf. Shao (2011) and Iacone, Leybourne, and Taylor (2013b).

Table 1 below reports asymptotic null (i. e. κ =0) critical values for S W δ, for

Λ= 0.15, 0.85½ � and various values of δ, δ= f−0.4, −0.3, ..., 0.0, ...0.3, 0.4g, for

each of the 0.10, 0.05 and 0.01 (upper tail) significance levels. The results were

obtained using Gauss 9.0, via direct simulation of the limiting distribution

L τ, τ0, 0; δð Þ from Theorem 1, using a discretisation of r that uses 2000 steps,

BðrÞ simulated using IID N 0, 1ð Þ variates, and 10000 Monte Carlo replications.

With regard to the trimming parameters, we set τL =0.15 and τU =0.85. Our

choice of Λ follows Shao (2011) and Iacone, Leybourne, and Taylor (2013b), to

facilitate comparison, and is common in the literature.

3 Asymptotic Local Power

We next analyze the asymptotic local power properties of the S W δ test as

functions of κ, with the local limit distributions L τ, τ0, κ; δð Þ being simulated

in the same way as in Section 2 above. We evaluate powers for nominal 0.05-

level tests, using the asymptotic critical values from Table 1. For δ we consider

δ 2 f−0.40, −0.20, 0.00, 0.20, 0.40g. Although we considered τ0 2 f0.25,

0.50, 0.75g as values for the break fraction, we only report results here for

τ0 =0.5 because the results for τ0 =0.25 and τ0 =0.75 were qualitatively similar

to those for τ0 =0.5 and are therefore omitted in the interests of brevity. The

results for τ0 =0.5 are shown in Figure 1, where we also give asymptotic local

powers (under the assumption of a Type II fractionally integrated process) of the

self-normalized OLS based tests of Shao (2011) and Iacone, Leybourne, and

Taylor (2013b), denoted S G and S W respectively. Here the S W test is constructed

using a fixed-b estimate of the long run variance with b =0.1 and a Bartlett

kernel; see Kiefer and Vogelsang (2005). Notice that the S G statistic implicitly

employs b= 1.

Table 1: Asymptotic critical values of the S W δ test with Λ= 0.15, 0.85½ �.

Sig. level δ −. −. −. −.  . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .
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It is immediately evident from Figure 1 that, for all the values of δ considered the

S W δ test offers higher asymptotic power than either of the OLS based tests, and

we also observe that S G is outperformed by S W . Broadly speaking, the power

advantage of S W δ is at its strongest the farther δ is away from 0, and is

substantial in such cases; however, S W δ still has notably higher asymptotic

local power than the S W test even for δ=0. This last result is a consequence of

the self-normalization being employed by the S W statistic.

Finally, for practical application one would require a feasible version of the

S W δ statistic, with δ and σ2, replaced by consistent estimators thereof, δ̂ and σ̂2

say (the OLS based tests require estimation of δ, but not σ2 as such). It can be

shown that provided δ̂− δ=OpðT
− λÞ for some λ > max 0, δð Þ and σ̂2 !

p
σ2, then the

feasible variant of S W δ obtains the limiting properties stated for S W δ in

Theorem 1. Iacone, Leybourne, and Taylor (2013a) discuss suitable local

Whittle-type choices for δ̂ (and σ̂2) which are easily adapted to the current

modelling framework.

(a)

(c)

(e)

(b)

(d)

Figure 1: (a) Power of the texts for δ=–0.4, τ0=0.5; (b) Power of the texts for δ=–0.2,

τ0=0.5; (c) Power of the texts for δ=0, τ0=0.5; (d) Power of the texts for δ=0.2, τ0=0.5;

(e) Power of the texts for δ=0.4, τ0=0.5.
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