Research Repository

Reef-building corals thrive within hot-acidified and deoxygenated waters

Camp, EF and Nitschke, MR and Rodolfo-Metalpa, R and Houlbreque, F and Gardner, SG and Smith, DJ and Zampighi, M and Suggett, DJ (2017) 'Reef-building corals thrive within hot-acidified and deoxygenated waters.' Scientific Reports, 7 (1). ISSN 2045-2322

[img]
Preview
Text
s41598-017-02383-y.pdf - Published Version
Available under License Creative Commons Attribution.

Download (6MB) | Preview

Abstract

© The Author(s) 2017. Coral reefs are deteriorating under climate change as oceans continue to warm and acidify and thermal anomalies grow in frequency and intensity. In vitro experiments are widely used to forecast reef-building coral health into the future, but often fail to account for the complex ecological and biogeochemical interactions that govern reefs. Consequently, observations from coral communities under naturally occurring extremes have become central for improved predictions of future reef form and function. Here, we present a semi-enclosed lagoon system in New Caledonia characterised by diel fluctuations of hot-deoxygenated water coupled with tidally driven persistently low pH, relative to neighbouring reefs. Coral communities within the lagoon system exhibited high richness (number of species = 20) and cover (24-35% across lagoon sites). Calcification rates for key species (Acropora formosa, Acropora pulchra, Coelastrea aspera and Porites lutea) for populations from the lagoon were equivalent to, or reduced by ca. 30-40% compared to those from the reef. Enhanced coral respiration, alongside high particulate organic content of the lagoon sediment, suggests acclimatisation to this trio of temperature, oxygen and pH changes through heterotrophic plasticity. This semi-enclosed lagoon therefore provides a novel system to understand coral acclimatisation to complex climatic scenarios and may serve as a reservoir of coral populations already resistant to extreme environmental conditions.

Item Type: Article
Subjects: G Geography. Anthropology. Recreation > GC Oceanography
G Geography. Anthropology. Recreation > GE Environmental Sciences
Divisions: Faculty of Science and Health > Life Sciences, School of
Depositing User: Jim Jamieson
Date Deposited: 20 Jul 2017 15:26
Last Modified: 19 Aug 2019 23:15
URI: http://repository.essex.ac.uk/id/eprint/19938

Actions (login required)

View Item View Item