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Abstract

Groups are generally superior to individuals in making decisions. How-

ever, time constraints and authoritarian leaders could nullify the po-

tential advantages provided by groups.

This thesis proposes a hybrid collaborative Brain-Computer Interface

(cBCI) for improving performance in group decision-making. Neural

signals recorded via electroencephalography are integrated with other

physiological and behavioural measures to predict the likelihood of the

user being correct in a decision, i.e., decision confidence. Behavioural

responses from multiple users are then weighed according to these

confidence estimates to obtain group decisions.

The proposed cBCI has been tested with a variety of decision-making

tasks, including visual matching, visual search with traditional and

realistic stimuli, face recognition from multiple viewpoints, and speech

perception. Groups assisted by the cBCI were significantly superior in

making decisions than both individuals and traditional equally-sized

groups making decisions using the majority method.

This thesis also investigates the impact that a constrained form of

communication has on individual and group performance in a visual-

search experiment. When decision makers are able to exchange in-



formation during the experiment, their performance dramatically de-

creases. However, the cBCI yields superior group decisions even in

this context.

The confidence estimated by the cBCI is also a more reliable predictor

of correctness than the confidence reported by participants after mak-

ing a decision. When group members were allowed to communicate

during visual search, their reported confidence was totally unrelated

to the decision correctness, while in a speech perception task reported

confidences were very good predictors of correctness. On the contrary,

the cBCI’s confidence estimates correlated with correctness in all ex-

periments.

When critical decisions involving substantial risks have to be made

(e.g., in defence), the proposed cBCI could be a useful tool to reduce

the number of erroneous group decisions, thereby saving money and

lives.
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Chapter 1

Introduction

This chapter introduces the motivation of this thesis, summarises its main contri-

butions and research questions addressed, and describes its organisation. A list

of papers published during this research is also provided.

1.1 Motivation

Decision making has been studied for decades by a broad range of disciplines

for its direct impact on everyday life. Cognitive neuroscientists have been trying

to decipher what exactly is happening in our mind when we make decisions,

while social scientists have been investigating which external factors influence

our decisions and how. One of the objectives of studying decision making is to

understand what leads human to make incorrect choices, in order to find strategies

to reduce the number of erroneous decisions, as their consequences could be very

dramatic in certain contexts. For example, in finance, where deciding to buy/sell

the wrong stock can cause significant loss of money, or in medicine, where a wrong



CHAPTER 1. INTRODUCTION 2

therapy prescribed to a patient could cause serious issues, or in defence, where

not identifying a threat in pictures taken from a security camera could cause loss

of human lives.

Frequently, making the correct decision depends on several factors, including

the level of knowledge of the person and the time available. Moreover, the hu-

man brain has some capacity limitations that restrict our ability of processing

information and perceive properly [108]. These flaws of the conscious perception

could make people decide on the basis of incorrect information gathered from the

senses, leading to suboptimal decisions.

Research on decision making has shown that a solution to partially solve

individual misjudgement is making decisions in groups. Groups have augmented

capabilities and intelligence that are the result of integrating different views and

percepts through the interaction of their members [181]. For these reasons, group

decisions are usually more accurate than those made by individuals [6]. This is

why organisations such as universities are run by boards and panels, and why

democratic institutions such as the parliaments are organised in committees and

assemblies.

However, there are circumstances in which involving other people in a decision

could be deleterious [12]. For example, having strict time constraints or in the

presence of leaders can nullify most of the advantages provided by groups. More-

over, the traditional approach to group decision making includes communication

and discussion between the group’s members, which could reduce or even nullify

the contribution of some people (e.g., people who are naturally shy) to the group

decision, as well as slowing down the decision process. In contexts where decisions

have to be taken rapidly, group discussion is not possible and its absence could
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lead to suboptimal decisions [6].

Brain-Computer Interfaces (BCIs) are devices that convert brain signals into

commands that can be used to operate external devices, such as a prosthetic

arm. BCIs have traditionally been used to provide an alternative communication

channel to people with disabilities, allowing them to act on the world. In recent

years, the promising results obtained by BCIs have pushed researchers to apply

these technologies to other fields, such as human augmentation, hence increasing

the number of potential BCI end-users. One of these promising new areas of

applications of BCIs is decision making. Research has shown that it is possible to

decode the choice of the user from his/her brain signals, allowing to develop BCIs

that can accelerate decisions in tasks such as the classification of images [9] or the

detection and localisation of planes in aerial images [111]. However, EEG signals

are noisy and require the averaging of multiple recordings over time to be able

to provide reasonable performance, which, in turns, reduces the responsiveness

of the system. This trade-off between performance and speed makes single-user

BCIs difficult to be applied in contexts like critical decision making, where an

error caused by the system not being able to correctly detect the intentions of

the user could have serious consequences.

With the aim of improving BCI performance without reducing speed, re-

searchers have started investigating the possibility of aggregating brain signals

from multiple users as an alternative approach for reducing the noise that affects

neural recordings. When compared to single-user BCIs, these collaborative BCIs

(cBCIs) have been able to significantly boost performance. For example, when

applied to decision making, cBCIs make better and faster decisions than indi-

viduals [212]. However, these systems have only been applied to a very limited
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number of simple tasks. Moreover, when critical decisions are involved, reducing

the number of erroneous decisions is usually more important than making faster

(but less accurate) decisions.

This thesis explores the possibility of using a hybrid cBCI to support and

augment group decision making in a variety of critical, difficult target-detection

tasks, involving visual or auditory stimuli. The cBCI uses a hybrid approach

as it combines behavioural responses, acquired via traditional means (i.e., mouse

clicks), and decision confidence, estimated using the brain signals and other phys-

iological and behavioural measures. This approach allows cBCI-assisted groups

to perform better not only than individuals, but also than equally-sized groups

making decisions using the majority rule, in contrast with traditional cBCIs based

only on neural signals which required up to seven participants to perform better

than individuals [36].

Group decisions could also be obtained using confidence estimates reported

by the observers themselves after each decision. This thesis shows how these

subjective estimates may be unreliable as their reliability is highly influenced

by the task at hand, the participants, and other external factors, such as the

interaction between group members. In some circumstances, group decisions

made using these confidence estimates are even worse than those made using

the simple majority. Conversely, the hybrid cBCI is able to provide a consistent

advantage for groups over majority across tasks.

Finally, this thesis investigates which are the best conditions for groups to

make decisions. These factors include (a) the presence or absence of communica-

tion between group’s members, (b) the exposure of observers within a group to

the same or different sources of information, and (c) the modality of stimulating
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the decision makers (e.g., visual or audio).

1.2 Contributions

The main scientific contributions of this thesis are:

1. A hybrid cBCI framework to enhance group decision making (Chapter 3).

The framework uses a combination of physiological and behavioural mea-

sures to estimate the confidence level of each decision maker, which rep-

resents the likelihood of the user making a correct decision. Individual

decisions acquired with traditional means (e.g., mouse clicks) are then in-

tegrated together according to these confidence estimates to obtain group

decisions. Since the hybrid cBCI is based on individual decisions, it does

not require the extra time generally needed by traditional groups to discuss

and agree on a decision, hence making cBCI decisions faster than traditional

groups ones.

2. The identification of the best set of physiological and behavioural correlates

of decision confidence amongst a number of indicators analysed. Previous

cBCIs were focused on predicting the intentions of the users (decisions)

rather than their validity (decision confidence). Therefore, more research

was needed in order to identify confidence correlates. We analysed (a)

brain signals recorded via electroencephalography, (b) eye movements and

eye blinks, and (c) response times (RTs). The experimental work (Chap-

ters 4, 5, 6, 8 and 9) shows that a few neural features and RTs provide most

of the information available on decision confidence in all experiments, while
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eye features seemed to be informative only in tasks using visual stimuli.

3. An evaluation of the performance obtained using the proposed hybrid cBCI

in a variety of decision-making tasks of increasing realism involving un-

certainty. These tasks include (a) visual matching (Chapter 4), (b) visual

search with traditional stimuli (Chapter 5), (c) visual search with realis-

tic stimuli (Chapters 5 and 6), (d) face recognition from realistic pictures

recorded from multiple security cameras (Chapter 8), and (e) speech percep-

tion with real radio communication messages affected by noise (Chapter 9).

A total of 76 participants have taken part in the seven experiments de-

scribed in this thesis, hence providing evidence of the superiority of the

proposed approach for group decision making.

4. A comparison between the decision confidence estimated by the cBCI using

physiological and behavioural measures and the confidence reported by the

participants after making a decision. The results (Chapters 6, 8 and 9)

show that the cBCI is able to provide an estimate that correlates with

decision correctness in all experiments, while the confidence reported by

the participants is generally less reliable, working well in some cases and

really badly in others.

5. An investigation on the impact that a constrained form of communication

has on individual and group performance (Chapter 6), both when groups are

assisted by the hybrid cBCI or when they are not. In the visual search exper-

iment with naturalistic stimuli, participants were paired while undertaking

the same decision tasks. After individual decisions, they were given feed-

back about the decision and confidence level of the other member. Results
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show that this constrained communication negatively affects the individ-

ual (and, therefore, the group) performance when compared to experiments

where participants undertake the task in isolation. The communication had

also a negative impact on the correlation between the confidence reported

by the users and the correctness in the decision.

6. A study on how the exposure of different observers to different sources of

information (e.g., pictures of the same scene taken from various viewpoints)

affects the performance of non-BCI and BCI-assisted groups. Previous stud-

ies have shown that traditional groups are effective when individual opinions

are not correlated [181], which is more likely to happen when each partic-

ipant is exposed to different sources of information. However, little was

known about the effects of this multi-viewpoint approach on cBCI perfor-

mance. Chapter 8 analyses the performance of groups undertaking a face

recognition task where group’s members were exposed to images of the same

scene taken from three different viewpoints. Results show that the multi-

viewpoint groups are superior to groups where members are exposed to the

same stimuli.

1.3 Research Questions

This thesis addresses the following research questions:

Q1. Can group decision making based on neural, physiological and behavioural

features achieve better levels of accuracy than traditional majority voting

across a range of tasks?
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Q2. What is the best set of physiological and behavioural features acting as

confidence indicators?

Q3. What are the neural features that are the most relevant for the proposed

hybrid cBCI for group decision making?

Q4. Is the confidence estimate provided by the cBCI more reliable than a con-

fidence reported by the user?

Q5. Can collaborative BCIs lead to faster decisions than average human reaction

times?

Q6. Are there optimal scenarios for which BCI group decision making is most

suited?

Q7. What is the impact of group interaction on cBCI performance?

Q8. In what ways does the exposure of different observers to various sources of

information modify optimal group sizes, accuracy, and speed of decisions?

1.4 Structure

The concepts of BCI and cBCIs are introduced in Chapter 2, which also reviews

relevant literature related to decision making and neural signal processing.

Chapter 3 describes the hybrid cBCI framework that will be used in most

other parts of the thesis to improve group decisions. This chapter also discusses

which features a decision-making experiment should have to be suitable for the

proposed cBCI. Moreover, it provides an overview on how the physiological signals
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are recorded, processed and used to estimate the decision confidence and obtain

group decisions.

The proposed framework has firstly been applied to a simple visual matching

task, described in Chapter 4, where the experimental part of this thesis starts.

The results obtained with 10 participants are presented and discussed, showing

how, for the first time, the proposed cBCI was able to beat not only non-BCI

users but also equally-sized non-BCI groups.

Chapter 5 analyses the performance of the hybrid cBCI in two visual search

experiments, one using standard stimuli (i.e., coloured bars) and one using real-

istic ones (i.e., pictures of Arctic environments). This chapter also describes the

performance obtained by the cBCI when using a more advanced technique for

extracting neural correlates of decision confidence.

The analyses of performance in visual search continues in Chapter 6, where

the impact of a constrained form of communication between pairs is studied.

This chapter also discusses whether or not a decision confidence reported by

participants would be more accurate than the confidence obtained by the cBCI.

Chapter 7 explores the possibility of using state-space models to estimate the

cognitive state of the decision maker by means of behavioural and physiological

measures. This model could then be used by the hybrid cBCI to temporarily

exclude from the group individuals that are tired or not focused, hence improving

group performance.

In an attempt to make another step towards applying the proposed cBCI to

real decision-making problems, Chapter 8 describes the performance of cBCI-

assisted groups carrying out a face recognition task using pictures gathered from

three surveillance cameras. This chapter also discusses the variations on perfor-
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mance when participants are exposed to different sources of information.

While the previous chapters were focused on tasks based on visual stimuli,

Chapter 9 analyses the performance of groups undertaking a speech recognition

task using auditory stimuli. Here, the cBCI used only a small subset of the

electrodes to estimate the decision confidence, hence promoting generalisation

and practicality of the system. However, in this experiment participants seemed

to be very good in estimating the confidence themselves, therefore making the

cBCI not needed. The chapter discusses the risks of using the reported confidence

for obtaining group decisions and analyses the limitations of the cBCI in that

particular task.

The thesis ends with Chapter 10, where the major achievements of this doc-

toral work are summarised and ideas for future work are discussed.

1.5 List of Publications

This thesis is partially based on the papers listed in the following subsections.

The chapters based on each paper are indicated in bold face.

1.5.1 Peer-Reviewed Journal Papers

• Davide Valeriani, Riccardo Poli and Caterina Cinel. Enhancement of Group

Perception via a Collaborative Brain-Computer Interface. IEEE Transac-

tions on Biomedical Engineering, vol. 64, no. 6, August 2016. Chapters 5

and 6

• Riccardo Poli, Davide Valeriani and Caterina Cinel. Collaborative brain-
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computer interface for aiding decision-making. PLOS ONE, vol. 9, no. 7,

July 2014. Chapters 3 and 4

1.5.2 Peer-Reviewed Conference Papers

• Davide Valeriani, Caterina Cinel and Riccardo Poli. Augmenting Group

Performance in Target-Face Recognition via Collaborative Brain-Computer

Interfaces for Surveillance Applications. 8th International IEEE EMBS

Conference on Neural Engineering, May 2017. Chapter 8

• Davide Valeriani, Caterina Cinel and Riccardo Poli. Hybrid Collaborative

Brain-Computer Interfaces to Augment Group Decision Making. 1st Inter-

national Conference on Neuroergonomics, October 2016. Chapter 9

• Davide Valeriani, Caterina Cinel and Riccardo Poli. Improving Speech Per-

ception with Collaborative Brain-Computer Interfaces. 38th Annual Inter-

national Conference of the IEEE Engineering in Medicine & Biology Soci-

ety, August 2016. Chapter 9

• Davide Valeriani, Riccardo Poli and Caterina Cinel. A Collaborative Brain-

Computer Interface to Improve Human Performance in a Visual Search

Task. Proceedings of the 7th International IEEE EMBS Neural Engineering

Conference, pp. 218-223, April 2015. Chapter 5

• Davide Valeriani, Riccardo Poli and Caterina Cinel. A Collaborative Brain-

Computer Interface for Improving Group Detection of Visual Targets in

Complex Natural Environments. Proceedings of the 7th International IEEE

EMBS Neural Engineering Conference, pp. 25–28, April 2015. Chapter 5
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1.5.3 Book Chapters

• Davide Valeriani and Ana Matran Fernandez. Past and Future of Multi-

Mind Brain-Computer Interfaces. Brain-Computer Interfaces Handbook:

Technological and Theoretical Advances, C. S. Nam, A. Nijholt and F. Lotte,

Eds. CRC Press. 2017 (in press). Chapter 2

1.5.4 Other Publications

The following papers were published during the writing of this thesis, although

they do not directly contribute to it:

• Ana Matran-Fernandez, Davide Valeriani and Riccardo Poli. Toward BCIs

Out of the Lab: Impact of Motion Artifacts on Brain-Computer Interface

Performance. Wireless Medical Systems and Algorithms, P. Salvo and M.

Hernandez-Silveira, Eds. CRC Press, pp. 219-240, 2016.

• Davide Valeriani, Ana Matran Fernandez, Diego Perez Liebana, Javier Asen-

sio Cubero, Christian O’Connell and Andrei Iacob. A Comparison of En-

semble Methods for Motor Imagery Brain-Computer Interfaces. Proceedings

of the European Conference on Data Analysis, 2015.

• Davide Valeriani and Ana Matran Fernandez. Towards a Wearable Device

for Controlling a Smartphone with Eye Winks. Proceedings of the 7th Com-

puter Science and Electronic Engineering Conference (CEEC15), pp. 41-46,

2015.



Chapter 2

Background

This chapter presents an overview of the main literature published in the research

areas related to this thesis, spanning from single and collaborative brain-computer

interfaces to biomedical signal processing and group decision making. The main

elements required in a collaborative brain-computer interface, such as the signal

acquisition and the methods for data processing, are also introduced.

2.1 Neuroimaging Techniques

The human brain is one of the most powerful and complex machines in the world.

Despite advances in research and technology, no computer is able to perform all

the activities of the brain with the same accuracy. Its largest part, the cerebrum,

is divided into four lobes, each of which is in charge of many different functions.

Figure 2.1 summarises the main functions associated to each lobe [47].

The human brain is far from being perfect. Phenomena such as inattentional

blindness [106] could lead to individuals failing to recognise unexpected stimuli
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Figure 2.1: Summary of the main functions associated to each brain lobe.

that are in plain sight. Moreover, our brain has some intrinsic speed limitations,

for example in visual processing [188].

Some of the limitations of the human brain could be overcome with the use of

technology. Computers are incredibly fast and accurate in doing complex calcu-

lation or, in general, in performing tasks that can be translated into algorithms.

For these reasons, for many years scientists have looked into the possibility of

integrating brain and computers to enhance human capabilities. In order to do

so, methods to observe the brain activity of a user and transform it in signals that

are processable by a machine are required. This section presents an overview of

the main noninvasive techniques for neuroimaging, most of which are adaptations
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of corresponding technologies used in the medical sector. Particular attention is

devoted to electroencephalography, the technique that will be used in this thesis.

2.1.1 Electroencephalography (EEG)

The human brain is composed of billions of neurons, cells that process and trans-

mit information through electrical and chemical signals. A neuron transfers infor-

mation by “firing”, i.e., generating trains of pulses along its axon. The currents

produced by this electrical activity are generally too small to be measured, but

when many neurons fire at the same time, they become measurable via EEG [102].

To record this electrical activity, various electrodes are placed on the scalp

of the user, usually following the 10-20 international system. Active electrodes

are generally the most used. These include an additional pre-amplifier located

inside the electrode to amplify the small signal before it gets contaminated by

electromagnetic environmental noise, while passive electrodes only rely on the

EEG system amplifier. Also, electrodes may be “wet” or “dry”. The former re-

quire placing a small amount of electrically conductive gel between each electrode

and the scalp to ensure good electrical contact, which extends preparation time.

Dry electrodes are quicker to set up since they use different mechanical methods

to ensure acceptable contact, but the quality of the signals recorded is generally

inferior to that obtained with wet electrodes.

EEG is one of the cheapest and most portable techniques to measure neural

activity, together with fNIRS (see Section 2.1.4). It also has an excellent temporal

resolution (milliseconds) and is totally noninvasive and safe for the user. The main

drawbacks of EEG are the low spatial resolution (mainly due to the skull and
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skin between the electrodes and the brain, which are not perfect conductors [107])

and the poor signal-to-noise ratio, which require sophisticated data processing to

extract useful information from the brain signals acquired. Also, EEG mainly

records neural activity that occurs in the upper layers of the brain.

The information obtained from the EEG signals can be used to understand

the brain activity [203], diagnose pathological conditions or for human augmenta-

tion. The application of this technology to humans dates back to 1929, when the

German psychiatrist Hans Berger recorded the first human EEG [8]. Since then,

EEG has been broadly used in neuroscience and its popularity has also pushed

the development of commercial portable EEG devices [118] that can be bought

and used by the end-user for different applications [59].

The low cost and non-invasiveness of EEG have made this method the most

popular for data recording for human augmentation. For this reason, EEG is

also the method adopted in this thesis for observing the brain activity of decision

makers.

2.1.2 Magnetoencephalography (MEG)

The electrical activity produced by firing neurons generates magnetic fields. MEG

is a technique that uses special sensors (SQUIDs, i.e., Superconducting Quantum

Interference Devices) to detect the very tiny magnetic fields (a few fT in strength)

generated by the neurons. This technology has been broadly used to determine

the function of various parts of the brain, localise regions affected by a pathology,

and other medical applications [63]. One of the main drawbacks of MEG is

that it requires complex and expensive devices for signal acquisition, including a
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magnetically-shielded room, making it not practical for most human enhancement

applications.

2.1.3 Functional Magnetic Resonance Imaging (fMRI)

Neurons are active cells that require energy (sugar) and oxygen to perform their

functions. fMRI is a noninvasive technique that measures brain activity by de-

tecting changes in the blood flow (hemodynamic response). The primary form

of fMRI uses the blood-oxygen-level dependent contrast to associate changes in

blood flow to neural activity in the brain. When blood is rich in contrast, it

produces a stronger electromagnetic response to the spin-altering waves emitted

by the MRI scanner than when it is poor in contrast, making it possible for fMRI

to measure differential brain activity.

Like MEG, fMRI does not require the contact with the body but it needs big

and expensive devices for signal acquisition. For these reasons, it is generally

unsuitable for applications in human augmentation [202].

2.1.4 Functional Near-Infrared Spectroscopy (fNIRS)

Similarly to fMRI, fNIRS uses hemodynamic responses to measure the brain

activity. Instead of measuring chemical concentrations, fNIRS sends beams of

near-infrared (NIR) light into the scalp and measures how much light is reflected

back. The transmission and absorption of NIR light in human body tissues is

related to changes of oxygen concentration.

NIR beams are sent via several probes placed on the scalp at different loca-

tions, making this technology more portable [163] and cheaper than fMRI, and
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less susceptible to electrical noise than EEG. However, the quality of the signals

recorded is quite poor due to low spatial and temporal resolution. For these

reasons, its applications to human augmentation are still quite limited [120].

2.2 Event-Related Potentials

One of most interesting uses of EEG signals is the study of relationships between

external events (e.g., the presentation of a stimulus) and the corresponding brain

activity recorded, in order to understand how the brain reacts to a single event

or a category of events. These brain responses to external events are named

event-related potentials (ERPs).

External stimuli usually generate the activation of multiple areas of the brain

and the corresponding elicitation of many ERPs. Literature has introduced the

term ERP component to identify the scalp-recorded voltage change that reflects

a specific psychological process. However, this assumption is an approximation.

In fact, an ERP is generated by a neural activation that, usually, lasts for tens

or hundreds of milliseconds. Therefore, as it happens frequently, when an ERP

signal is generated (after a particular event) the tails of old ERPs are still present.

This means that an overlap between different neural processes could happen,

making the precise mapping between ERP components and specific psychological

processes almost impossible [104].

ERPs are usually represented through their waveforms. An ERP waveform

is a depiction of the changes over time in the scalp-recorded voltage that reflect

the sensory, cognitive, affective, and motor processes elicited by a stimulus [104].

Multiple ERP components are generally represented in a waveform.
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Recorded ERPs are generally affected by noise. The high impedance of the

skull makes the electric signals travelling from the neurons to the electrodes spread

laterally. Therefore, the EEG signal recorded at a particular location is the result

of a weighted sum of ERP components and noise, where the weights depend on

the distance between the sensor and the firing neurons. A metaphor often used

to explain this phenomenon is that of a cocktail party, where several people are

chatting together in small groups. If a person (EEG recorder) enters into the room

and wants to understand what a particular person is saying (ERP component),

he/she will hear sounds originated by a mix of the different conversations held in

the room (waveform). However, if the person moves around the room, the sound

changes because the contribution of each person to the mix changes.

Several signal processing techniques have been employed in the literature to

reduce the noise of ERP recordings. The most used consists in averaging several

ERP recordings belonging to many repetitions of the same stimulus [102]. By

using enough repetitions, a robust EEG waveform describing how the brain reacts

to a particular stimulus can be obtained.

The number of different ERP components reported in cognitive neuroscience

and psychophysiology (some of which are used in BCI research) is quite high –

see [162] for a review. It includes components associated to visual responses, such

as C1 and P1, auditory responses, such as N1, and so on. The following section

will describe a particular component called P300 which is the most used ERP in

this thesis.
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2.2.1 The P300 ERP

One of the main ERPs used in BCI is the P300 [43], a parietocentral positive peak

occurring between 300 and 600 ms after the onset of a stimulus. This component

is also known as P3 (the third positive peak after stimulus’ onset) as the latency

of its peak could vary between subjects [147, 74] and trials.

The P300 component is associated with the detection and recognition of in-

teresting, rare, deviant or target stimuli [152, 66, 145]. Its amplitude can reach

40 µV, which is large for an ERP, making it easy to use in several BCI applica-

tions. The P300 ERP seems to correlate better with stimulus task relevance than

with conscious perception [124].

Generally, the P300 component is employed in tasks where users have to

discriminate between different stimuli [145]. These tasks usually follow the odd-

ball paradigm [42], characterised by a number of low-probability “target” and

high-probability “non-target” stimuli presented to the user. When a stimulus

containing the target is shown, the brain of the user generates a P300 wave in

response to this rare event.

P300-based BCIs, such as a speller [42] or a mouse [22], use a display where

different locations are associated with different stimuli, each of which represents a

“command” (e.g., a character to spell). The stimuli are flashed in turn (typically

in random order) and the user is asked to focus on one of them (i.e., “target”). The

P300 ERPs are generated only after the flashing of target stimuli and no other,

making it possible for the BCI to determine which stimulus is being attended to,

i.e., which command the user intends to issue. The process of focusing attention

can be made easier by assigning a mental task, such as counting the flashes or
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mentally naming the colour of the target stimulus [164]. P300-based BCIs have

also been used to control external devices other than computers [32].

Some studies [178, 175] have proposed to split the P300 into two subcompo-

nents: P3a and P3b. In a modification of the oddball paradigm using a third

type of stimuli similar to the target (“distractors”), research suggested that the

P3a subcomponent is generally associated to distractors, while the P3b (differing

in latency from the P3a [102]) is the ERP associated to the target [23, 61, 145].

In a modification of the inattentional blindness paradigm [138], Pitts et al. found

that, while ERP negativities could be elicited in presence of awareness, regardless

the task relevance, the P3b component seems to be elicited only by task-relevant

stimuli [139]. The P3a subcomponent is generated with both auditory and visual

stimulus modalities [23].

Several researchers have shown that the P300 is also elicited in the process

of decision-making [127, 160, 137], e.g., the brain process responsible to deter-

mine the presence or absence of a particular target in a stimulus and to map

this decision to a particular response. For example, there seems to be a correla-

tion between P300 amplitude and the uncertainty of a user in a decision [182].

This suggests possible BCI applications of the P300 other than those used for

communication purposes.

P300 is not the only component used in BCI. A recent study [80] compared

the reaction of participants in an oddball paradigm experiment by considering

the components P300 and N200. They found that 30% of participants achieved

better results using the N200 component instead of the P300. However, currently

the P300 seems to be the most reliable and easy-to-use component in BCI. Recent

advances have also allowed to further push the performance of BCIs based on this
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component [191].

2.3 Decision Making

The process of decision making has been studied for centuries in several fields,

such as psychology, political sciences and government. A particular focus has

been group decision making, with several investigations about voting structures

in democracies.

Several studies [6, 25, 82, 89, 83] have shown how group decisions can be

superior compared to individual ones in many different contexts, including set-

tings where individuals are involved in visuals tasks [177]. An earlier study by

Barnlund [6] showed that the main reason why group decisions are superior is the

discussion taking place within the group that leads people to be more cautious

and focused on the task.

However, there are circumstances in which the discussion cannot take place

properly and thereby group decision-making can be disadvantageous [75, 12]. For

example, sometimes an agreed decision is difficult to be achieved because of lack

of interaction between group members; also, a strong leadership can make the

decision unfair for some members [82, 83, 177].

Another reason why groups seem to be superior to individuals in the decision-

making process is that they can represent a larger set of perspectives and points

of view. The decision made is the result of a process of mediation and discussions

where members share information and get to know other members’ opinions [190].

However, more communication and feedback is not necessarily better. A recent

study [5], for example, has found that when there are time constraints or if lead-
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ership prevails, the process of combining information from freely-communicating

individuals can be an obstacle to optimal decision-making. Moreover, even when

there is an advantage in the decision made by a group, the optimal group-size

depends on the task at hand [90]. In other words, a decision made by a group

of three people could be better than a decision made by an individual but also

better than the decision made by a group of five people.

2.3.1 Neural Correlates of Decision Making

Neuroimaging techniques such as EEG can reveal important information about

the different cognitive stages that lead to a decision. For example, the timing

of the N1 – a large negative ERP occurring between 80 and 120 ms after the

onset of an unpredictable stimulus in the absence of task demands – is sensitive

to the difficulty of the task, while its amplitude decreases with the attentional

level [105, 65]. The difficulty of a task also affects amplitude and timing of the

P300 [61, 102]. For example, the differences in P300 responses have been used to

make rapid decisions when determining whether a soldier is under fire from only

auditory perception [170, 171].

While the aforementioned ERPs are typically associated with early perceptual

and cognitive processing of events, other, later ERPs are instead associated with

decision processes preceding, for example, the overt response of a decision maker.

For instance, the contingent negative variation is a slow negative deflection related

to the preparation for a motor response and stimulus anticipation. This ERP

is smaller before incorrect responses than before correct ones in a task where

information necessary to identify a target letter (e.g., its colour) is conveyed to
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participants only a few hundred milliseconds before two potential targets are

presented [131]. The error related negativity – an ERP occurring 50–80 ms after

an incorrect response – is affected by confidence in own performance [168]. This

happens even when participants are unaware of the error [128]. Moreover, neural

correlates of individual decisions can be detected hundreds of milliseconds before

an explicit response is given [192].

The observation of the brain activity during decision making does not provide

only an insight on the choice itself, but on the decision-making process as a whole.

This includes the estimation of the “decision confidence”, our feeling about the

validity of the response provided (metacognition) [57]. To this extent, several

models have been proposed in the literature, including those using signal detec-

tion theory [237] and Bayesian inference [117]. All these models were based on the

assumption that confidence estimates are built during the formation of our deci-

sion. More recent theories, however, have proposed that our sense of confidence is

determined by brain processes occurring well after making a choice [228, 122, 220].

This sometimes leads participants to desire to reverse their initial choice [157],

especially when their confidence is low [45]. Navajas et al. [125] used eye tracking

to show that later stimuli are assigned greater confidence and that, therefore,

confidence does not only measure the accumulated intensity of a stimulus [206],

but varies reflecting an endogenous integration process. These studies suggest

that in a behavioural experiment where participants report their choices, it is

reasonable to observe the EEG activity both before and after the participants’

responses.

Several studies have shown how the decision confidence estimated by partic-

ipants is far from being perfect. In an ideal case, we would like this quantity to
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reflect the probability our decision being correct (“metacognitive accuracy”) [148],

that is, having high values of confidence only when the decision is likely to be

correct. However, humans are often miscalibrated [122]. For example, when the

task is hard we tend to underestimate our confidence, while when the task is

easy we usually overestimate it [96, 132]. Moreover, confidence estimates seem to

be dependent on the stimulus features, including the motion direction in visual

tasks [27], and on the amount of time between making a decision and giving the

confidence estimate of that decision [122, 1].

2.4 Brain-Computer Interfaces

A brain-computer interface is a system that converts the brain activity (observed

using one of the techniques described in Section 2.1) into commands for external

devices or textual messages for communication [223]. They, therefore, allow users

to affect the world without moving any muscle.

BCIs tend to be divided into two groups: (1) continuous BCIs, where the BCI

transforms the user intentions into continuous outputs (i.e., real-valued quantities

that can have many different values), and (2) discrete BCIs, where the BCI

outputs categorical values. Examples from the first class are BCIs for cursor

control [225, 136, 41, 224, 22, 210] or robotic control [18, 48, 67, 55]. Discrete

BCIs include the P300 speller developed by Farwell and Donchin [42] and used in

many other studies [10, 191], as well as BCIs for playing video games [200] and

image classification [9, 111].

The typical structure of an EEG-based BCI system is depicted in Figure 2.2.

It is composed by the following steps:
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Figure 2.2: The main steps of an EEG-based BCI.

• data acquisition: usually performed with EEG [202] via electrodes mounted

on a headcap;

• amplification: the small currents produced by neurons are amplified at this

stage; an AD converter then converts the analogue signals to digital signals

that could be interpreted by the computer;

• preprocessing : operations such as artefact removal, noise reduction and

band-pass filtering are performed to improve the quality of the signals; also,

the synchronisation of the signals with the occurrence of external events

(such as visual stimuli) is performed;

• feature extraction and selection: signal processing and machine learning

methods are used to isolate the components of the brain signals that carry

the most information related to the task;

• classification: a classifier maps the set of features extracted from the brain

signals at the previous step to a command/decision;

• output : the command produced at the previous step is sent to the external

device, such as a wheelchair or a computer.

A BCI could be based on various paradigms. In this thesis, we will use ERP-

based BCIs (see Section 2.2) as they have the advantage of requiring little training
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from the user. Moreover, decision-making tasks usually include the presentation

of a stimulus (i.e., evidence on which the user has to make the decision), which

is a requirement for this type of BCIs. Another popular BCI paradigm is that

based on mental tasks that the user has to perform to trigger the activation of the

BCI. In this case, the BCI has to identify from the brain signals which cognitive

task the user is performing (e.g., imagining the movement of a limb) and convert

it to a specific output [34].

2.5 Collaborative BCI

The encouraging results obtained by BCIs have triggered the idea of using neural

data from multiple brains to enhance BCI performance. The terms collaborative

BCIs and multi-mind BCIs were introduced to identify systems that use the brain

activity of at least two participants to perform a common task [197, 212]. Before

that, the brain activity of multiple users participating in a common activity was

analysed only for monitoring purposes with the hyperscanning technique [3]. The

development of collaborative BCIs has also allowed to improve the accuracy of

single-user BCIs, making it possible to use such systems as tools to enhance

human performance for able-bodied users, as well as for people with disabilities.

Occasionally, the name “collaborative BCIs” has been associated to systems

where the output depends on a combination of artificial intelligence and single-

user BCIs [55, 79] and not on the brain signals of multiple users. We prefer to

identify such systems with the term “shared-control BCIs”, as there collaboration

occurs between the computer and one user.

In the rest of this section, we review the main research conducted in the area
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of collaborative BCIs [197].

2.5.1 Implementing a Collective Brain

Collaborative BCIs have been introduced back in 2010, when Wang and Jung [211]

proposed a collaborative framework for BCIs to integrate brain signals recorded

from multiple participants performing a movement planning task. The same

authors also discussed the possible ways to implement a cBCI via fusing the

brain activity of multiple users [212].

As explained in the previous section, a traditional single-user BCI is usually

composed by a signal acquisition module, a feature extraction module, and a de-

cision module. The brain activity of multiple users can thus be combined at four

different levels: signal, feature, decision and application levels – see Figure 2.3.

Collaborative BCIs fusing brain recordings at the signal level have been stud-

ied to a significant extent. Generally, the brain signals of multiple users are

averaged (an operation that also reduces the noise) and fed into a unique clas-

sifier directly, without extracting any feature [141, 112, 17, 16, 109, 72, 78, 86].

Some studies have also used the averaged brain signals to perform multi-user

analyses [28, 110].

In a second scenario, features extracted from each user’s EEG signals are

merged. The fusion can be done by simple concatenation to form a unique feature

vector or any other combination [212, 36], so that only one classifier is used to

obtain the BCI output.

In the first two scenarios, the cBCI follows a “centralised” paradigm [212]:

the neural data from multiple participants are collected by one machine and used
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Figure 2.3: Main techniques to fuse neural signals from multiple users.

as inputs of a conventional BCI module. However, the large amount of data

generated by several users and high computational costs for signal processing

make this approach not suitable for many applications [212].

In the last two levels, the data acquisition, processing and classification steps

are done on a participant-by-participant basis (“distributed” paradigm [212]).

The outputs of these single-user BCIs are then aggregated by a separated module

(e.g., another computer over a network). This approach is more efficient as it

reduces significantly the amount of data travelling towards the central module.

Multi-mind BCIs at the decision level integrate the outputs of individually-

tailored classifiers. At this level, we should emphasise the work by Cecotti and

Rivet [17, 16], who studied different modes of combining the BCI decisions on

a P300-based cBCI and a steady-state visual evoked potential multi-brain BCI.
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Their strategies for merging the classifiers outputs included majority voting, av-

erage, maximum and minimum values. They found that averaging the classifiers’

outputs provided the best performance. However, Eckstein et al. [36] found that

the similarity in performance across observers affects the optimal strategy to in-

tegrate their decisions. Three different rules for integrating the classifier output

of multiple observers discriminating pictures of cars and faces were compared:

the optimal linear, the standard majority and the extreme opinion. The majority

rule with its simplicity seemed to provide the best balance between performance

and computational cost.

Finally, more recently an additional level of integration of brain signals called

the “application level” has been proposed [11]. In this case, the implementation

of the multi-mind BCI is not done by a module of the cBCI but by the application

operated with the BCI, which receives the outputs of the single-BCIs and decide

which one should be used to determine the collective choice. For example, if speed

is a requirement of the system, the application could choose the fastest available

output, assuming that faster responders are also more accurate. Other options

would be to choose the most consistent brain activity or the strongest one [129].

2.5.2 Applications

Collaborative BCIs have been employed in a broad spectrum of applications, from

traditional BCI ones (e.g., control and communication [223]) to group tasks (e.g.,

video games and decision making).

In communication, integrating brain signals from multiple participants al-

lowed Cecotti and Rivet [17] to improve the offline performance of a P300 speller.
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These results were then validated online by Kapeller et al. [78], who showed that

the aggregation of EEG signals of eight participants allowed a cBCI to reach

perfect performance on single-trial classification. Both studies recognised that

communication is not a realistic application for cBCIs, as multiple users should

agree on what to spell beforehand. However, these results showed the potential

of cBCIs to enhance single-BCI performance.

Similarly to single-user BCIs, cBCIs have also been used to control external

devices. In a simple movement-planning task, the cBCI developed in [212] yielded

accuracies of up to 95% when predicting the direction of the movement (left vs.

right) up to 250 ms before the actual motor response. Based on these encour-

aging results, Poli et al. [141] used cBCIs to perform complex control tasks. In

that study, the neural signals from two participants were used jointly to control a

spacecraft simulator through an analogue online cBCI. Other researchers devel-

oped SSVEP-based cBCIs that allowed pairs of participants with amyotrophic lat-

eral sclerosis to operate a robot by sending target sequences of commands [94, 95].

The brain activity from multiple users could also be used in a competitive

manner, especially for developing innovative video games [129]. In this scenario,

brain signals are usually fused at the application level and the outputs of different

single-user BCIs may be (a) used to control different avatars (e.g., cars) in a

game [93, 4, 71], (b) compared to control a unique aspect of the interface according

to the intentions of the “winner” [97] or (c) taken into account independently for

shared control of a unique interface [91, 167, 11, 94]. While competition is at

the basis of the majority of video games, cBCIs have also been applied to arcade

games played in a collaborative manner. For example, in the BCI version of the

popular video game Space Invaders developed in [86], the two users operating the
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cBCI scored extra points if they were able to reduce the number of repetitions

needed for successful selection of a target.

One of the most promising applications of multi-mind BCIs is probably deci-

sion making, as this is a task in which groups of users generally achieve superior

performance than individuals [181]. Researchers have mostly applied cBCIs to

target detection tasks, where groups of users have to decide whether a target

object/person is present or not in a scene. A first attempt in this direction was

made in [213], where participants were performing a detection task consisting in

identifying a target stimulus. Users were asked to release a button when they

saw the target (Go/NoGo task). The detection accuracy achieved by the cBCI

integrating EEG signals from multiple participants was substantially superior

than that obtained with single-user BCIs. Furthermore, the multi-mind BCI was

able to accelerate the decision with respect to the motor action, as also shown

in [212]. A following study [229] validated these results with an online cBCI with

groups of six participants performing a discrimination task between faces and

cars images following the Go/NoGo approach. In recent years, cBCIs have also

been applied to more complex and challenging decision-making tasks, including

face recognition [72], detection of visual targets in slow [230] and rapid [180, 112]

presentation of images, and target localisation within images [109].

While the previous studies in decision making have shown the advantages of

cBCIs with respect to single-user BCIs, one may wonder if such systems would

also be more accurate than non-BCI users. Eckstein et al. [36] conducted a study

in which they asked participants to discriminate between pictures of cars and

faces. The performance achieved by individual observers was compared with

that obtained using a cBCI merging brain signals at the decision level. While
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the cBCI was faster than humans in making decisions, it required at least seven

users to achieve the same accuracy of individual observers.

The results obtained in [36] triggered in researchers the idea of combining

behavioural responses (which were more accurate) and BCIs (which were faster)

to obtain superior group decisions. These hybrid cBCIs were firstly proposed

in [142], where the neural signals of each decision maker were used to esti-

mate his/her probability of having made the correct decision, a measure which

was called “confidence”. Group decisions were then obtained by weighing be-

havioural responses according to these confidence estimates. The preliminary

results showed that this hybrid approach could provide the expected superior

performance both in accuracy and speed.

2.6 Visual Search

One of the main decision-making tasks used in this thesis is visual search. It con-

sists in a perceptual process involving visually-scanning the environment in search

for an item of interest [222]. We perform visual search tasks on a daily basis, e.g.,

when looking for a particular item in a drawer containing many different objects

or scanning our home for misplaced keys. Visual search, in the form of looking

for a suspect or a potential terrorist within a crowd or in surveillance video, is

also a key element of policing and counter intelligence. Despite there being clear

evolutionary advantages in animals quickly identifying dangerous elements in the

environment, humans invariably find visual search tasks slow, taxing and diffi-

cult to carry out (although performance varies across different people, contexts

and details of the task performed, as well as with the experience and age of the
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observer [62]).

Given the important role of visual search, it is not surprising that experimental

visual-search paradigms have been extensively used in the study of perception and

visual attention for more than 30 years [221, 35, 201]. These studies have shown

that attentional mechanisms are vital to succeed in this task, both when single

or multiple targets are present [15].

In a typical experiment, observers are asked to look at a display containing

a number of different items and establish whether or not a particular object of

interest (i.e., “target”) is present in the scene. To make the task harder, the items

in the scene which are not the target (i.e., “distractors”) share some common

features with it (e.g., shape, colour).

Visual search experiments usually follow two main approaches [221]. On the

one hand, in the percent correct approach participants are presented a stimulus

for a short period of time and have to decide whether or not the target is present.

In this method, the aim of the participant is to maximise the number of correct

answers in a difficult situation where too little information is available. On the

other hand, in the speed based approach the stimulus is presented to participants

until they provide a response (although, many studies introduce a timeout after

which the experiment moves on even without a response from the participant

recording an invalid decision). In this approach, the aim of the participant is to

minimise the response time (RT) to give a correct answer.

The design of visual search experiments generally requires to set various pa-

rameters, including (a) the number of targets and distractors in a trial, (b) which

features characterise the target (e.g., shape, colour, size, orientation, motion,

etc.), (c) how many features the distractors share with the target, (d) the target
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ratio (i.e. the probability of a target being present in a trial), (e) the duration

of the stimuli, and (f) the timeout for acquiring a response. The choice of these

values is strictly related to the difficulty of the task [2] and to the brain patterns

that could be detected [103].

Various studies on visual search have shown that when the feature identifying

the target is the colour, the differences in both the brain activity [103] and the

response times [54] recorded in target and non-target trials are bigger than if the

feature is the motion, the size or the orientation. This is because the attention

of the participant is more focused on colour than on orientation and motion [54].

2.6.1 Face Recognition

In security and surveillance, a particularly interesting application of visual search

is to identify an individual, usually via a process of “face recognition”. Humans

are generally extremely good and fast in recognising faces [92], even if they have

seen the target person only once or in the presence of different facial expressions

or lighting conditions. Our brain has a complex network of regions dedicated to

process face information, the fusiform face area being its computational hub [52].

Due to the complexity of this task, the human brain splits face recognition in

multiple stages, including pre-attentive processing, template fitting, and template

evaluation [92].

In the last decades much effort has been spent in the development of algo-

rithms to automatically identify a target person from a digital image or a video

stream, achieving very good performance in controlled conditions [236, 207]. Re-

cent results have made automated systems trained on large datasets comparable



CHAPTER 2. BACKGROUND 36

or even superior than humans [184, 166]. However, in dynamic environments

(e.g., with changes of lighting) [236] or when only a very limited number of train-

ing examples of the target face are available [185], the performance of automatic

face recognition systems deteriorates significantly.

When we see a face, our brain reacts with specific ERPs, starting with the

N170, which peak latency occurs between 130 and 200 ms after the face stimulus

onset [121]. The N170 represents the most reliable difference in the brain activity

on the scalp between faces and non-face objects [161]. A few milliseconds later,

familiar faces elicit the N250 ERP [186]. Thus, EEG activity could be used to

reveal how we judge people, for example in political elections [204].

The generation of specific brain patterns in the presence of a target face has

made possible to further improve the accuracy of BCIs for control and communica-

tion [19]. Moreover, it has allowed the development of specific BCIs to accelerate

and augment human performance in face recognition. A combination of different

ERPs, including N170 and P300, was used in [234] to achieve an average accu-

racy of 88% in recognising inverted faces. A BCI to discriminate between familiar

and unknown faces was developed in [87]. Other studies adopted the rapid serial

visual presentation (RSVP) protocol to develop BCI systems able to recognise

target faces amongst images of celebrities and relying on the brain activity of

single [14] or multiple [72] users. Shared-control systems based on both computer

vision and BCIs have also been proposed to further improve performance [214].



Chapter 3

A Hybrid Framework for Aiding

Decision-Making

This chapter describes the architecture of a collaborative BCI (cBCI) for group

decision making, from the data acquisition to the validation of the results. This

cBCI will be used in the following chapters to make group decisions in multiple

environments, from visual matching to speech perception. Most of the material

in this chapter has been published in the paper [143].

3.1 Introduction

As presented in the previous chapter, cBCIs have shown the potential to over-

come the traditional limitations of single-user BCIs, including low information

transfer rate (ITR) and accuracy. The first encouraging results obtained with

cBCIs in decision making [36, 230, 229] showed that groups of BCI users can

make better decisions than single non-BCI users. Those studies focused on pre-
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dicting individual decisions from the neural signals and then aggregating them

in a variety of ways to obtain group decisions. The performance of the cBCI was

then compared with that of traditional group decisions. In other words, a fully-

neural approach (cBCI) was compared with a fully-behavioural one (non-BCI

individuals or groups).

The neural and behavioural approaches, however, could be complementary.

Humans make decisions as a result of different cognitive processes, including at-

tention, perception, learning, memory, and thinking [40]. The information gath-

ered from our senses (perception) is firstly filtered and integrated with previous

knowledge (memory), then we reason to, finally, make a decision. In this pipeline

of different cognitive processes our brain discards information considered unreli-

able or not of interest for the current task. For example, if we see an image for

a few milliseconds, our brain will rely mainly on the information gathered from

the part of the image under the focus of attention and ignore the rest, therefore

remaining subconscious [40]. However, part of this information could actually

be very important for the decision-making task, even if we are not aware of it.

In fact, the outcome of a decision seems to be encoded in the neural activity

much earlier than the user reaches awareness [176], the so called “unconscious

mind”. Other physiological signals such as involuntary eye movements and heart

rate seem also to be correlated with mental workload and decision making [13],

although we do not directly control them.

To augment cognition and improve decision making, a BCI could use neural

and other physiological signals to directly extract relevant information to the

decision-making task from the unconscious mind of the user. Part of this infor-

mation represents the “decision confidence”, which is the probability that the
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Figure 3.1: Architecture of the proposed collaborative BCI to improve group
decisions.

current decision is correct [148]. The cBCI could then obtain group decisions

by weighing the individual responses of each group member according to these

neural-based confidence estimates [143] – see Figure 3.1. As a result, the integra-

tion of conscious and unconscious mind can then lead to superior decisions.

This chapter describes a hybrid framework for cBCIs that uses neural and

behavioural information to improve group decision making. Section 3.2 presents

the main criteria for designing experiments that have been used in this thesis to

test the proposed framework. The methods used for recording and preprocessing

behavioural, neural and other physiological signals are described in Sections 3.3

and 3.4, respectively. The corresponding methods used to transform this infor-

mation into decision confidence estimates are then discussed in Sections 3.5, 3.6

and 3.7. Section 3.8 explains how group decisions can be made using these confi-

dence estimates to integrate behavioural responses. Section 3.9 describes how the

group performance obtained with different methods are compared. The chapter

ends with Section 3.10 which draws some conclusions and makes suggestions for

future research and improvements of the proposed framework.
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3.2 Experimental Design

Making decisions can be a very challenging task, especially when critical decisions

have to be made, for example in health and defence. Neuroimaging techniques

such as EEG can reveal important information about the different cognitive pro-

cesses that lead to a decision. When the decision-making task is related to target

detection and recognition (as it is in this thesis), the P300 is usually considered

as the most informative ERP for both visual [61, 160] and auditory [144] stimuli.

3.2.1 Notation and Common Features

In the decision-making experiments conducted in this thesis, let N be the total

number of trials composing the experiment, each of which includes at least a

decision to be made. In order to reduce the effects of drops on performance

due to the tiredness/boredom of participants, the trials are split into B blocks

(sessions) of N
B

trials each. At the end of each block, volunteers are allowed to

take a break and rest for a few minutes.

Preliminary results presented in previous research [142] have shown that a

hybrid cBCI could augment group performance in a very constrained and simple

target detection task. In this thesis, we decided to extend that work to more

complex and realistic tasks by proceeding in small steps. For this reason, all

decision-making experiments conducted in this thesis share some common fea-

tures (listed below) which were also used in [142] and that make the recognition

of specific ERP components (e.g., P300) easier. For a tutorial on designing ERP

experiments, the reader could refer to [101].

Feature 3.2.1 The decision-making task follows the oddball paradigm.
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In cognitive psychology and BCI, target-detection experiments usually adopt

the oddball paradigm [146]: users are presented sequences of two different stimuli

in a random order, with one (i.e., target) occurring much less frequently than

the other (i.e., distractors). Rare stimuli of interest cause a more prominent

P300 in the EEG recording, which could easily be detected by the BCI [152]. In

many decision-making tasks, users provide an answer more often than another.

For example, a driver waiting at an intersection with the red traffic light will

decide to keep pushing the brake while the time is passing. When the traffic

light turns green (target event), the driver has to decide to release the brake and

start accelerating. A similar example involving a more critical decision is when a

driver is approaching an intersection with the green light. Most of the times, the

car passes with the light remaining green, leading to the decision of accelerating

(i.e., standard choice). However, in some cases the traffic light turns yellow while

the car is approaching the intersection. In that case, the driver has to decide, in

a fraction of a second, whether to pass or brake.

Feature 3.2.2 The user has to decide between two possible choices.

In some circumstances the range of possible choices is very large, but most

often we deal with binary decisions where we only have two alternatives (i.e.,

yes/no) [56]. Hence, it is reasonable to focus on binary decision-making. How-

ever, we should note that the proposed framework could be extended to support

multiple-choice decision-making tasks.

Feature 3.2.3 The task is challenging for a single individual.

The main aim of the proposed framework is to make better decisions than

the average human and group of humans. It is, therefore, obvious that the task
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undertaken by the decision makers should not be too simple for them, otherwise

the group would not bring any significant advantage.

3.2.2 Protocol

In all experiments, a trial starts by presenting the participant a fixation cross in

the middle of the screen for a brief amount of time (i.e., 1 second). This allows

the EEG signals to return to the baseline after the previous stimulus and the user

to prepare for the next stimulus.

The fixation cross is then followed by the stimulus characterising the exper-

iment, which could be a picture or an audio recording. In order to make the

task more difficult (see Feature 3.2.3), several tricks have been adopted. Visual

stimuli are presented for a very brief amount of time ts to preclude the brain

the possibility to process all the information gathered from the senses. A mask

similar to the ones shown in Figure 3.2 could also be presented after the visual

stimulus to clear the iconic memory. When concerning auditory decision-making

tasks, the stimuli are spoken sentences affected by various types of noise, making

it difficult for the auditory system to understand what is being said in its entirety.

After the stimulus and, possibly, the mask, a display reminding the user to

make his/her decision is generally presented.

3.3 Data Recording

The proposed hybrid cBCI for decision making uses a combination of behavioural

and physiological measures to improve group decisions. In this section, we de-

scribe the methodology used to record each of these measurements.
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Figure 3.2: Examples of masks to make target detection with visual stimuli more
challenging.

The user’s decision and response time (RT) are acquired through button clicks

of an ordinary USB mouse operated with the right hand. Users are instructed to

press the left mouse button to indicate the presence of the target and to press

the right mouse button otherwise. While there are typically RT differences when

participants use their non-preferred hand over the preferred one, such differences

are very small [135] and whether the preferred hand is faster or slower than the

non-preferred one depends on the task (e.g., see [81]). Therefore, this constraint

is unlikely to affect the individual and group performance.

RTs are measured from the stimulus onset. The USB polling rate is 125 Hz

and, therefore, the maximum hardware jitter on the RT measurement is 8 ms.

The software presenting the stimuli captures mouse click events every 5 ms and,

so, in the worst case scenario the jitter is increased by 5 ms. Furthermore, the

EEG status channel of the ActiveTwo device is used to mark the event, which had

a further maximum jitter of 1 ms. Summing up, the total maximum jitter on RT

measurements is 14 ms, which is far smaller than the average RT in the decision-

making tasks considered in this thesis, making the hardware jitter negligible.

Neural data of participants undertaking the decision-making experiments are

recorded from 64 electrode sites (according to the 10/20 international system)
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using a BioSemi ActiveTwo EEG system. The electrodes are placed on a BioSemi

EEG cap worn by the participant with a small amount of conductive gel used to

improve conductance and signal quality. We ensure that the impedance of the

electrodes is below 20 kΩ. Two additional electrodes are placed on the earlobes

for reference.

Eye movements and blinks are recorded by means of a Jazz eye tracker plugged

into the Biosemi EEG system and placed on the forehead of the participant on

the top of the EEG cap – see Figure 3.3. The eye tracker allows recording of both

horizontal and vertical eye movements.

In the experiment conducted in this thesis additional physiological measures

have been recorded, including breathing frequency, heart rate and galvanic skin

response. These measures have not been used in this thesis but are available

for further research, given that they correlate with attention, mental workload

and decision confidence [24, 44, 13]. Breathing frequency is recorded by means

of a respiration belt worn by the participant on the chest and plugged into the

Biosemi EEG system. Heart rate is recorded via two additional electrodes placed

on both wrists of the participant. The difference between the two signals is then

computed and processed to extract relevant information. Finally, the galvanic

skin response is recorded by measuring the impedance of the skin via two passive

Nihon Kohden electrodes placed on the index and middle fingers of the left hand

of the participant, in order to not obstruct the operation of the mouse.

Neural and physiological signals are sampled at 2,048 Hz.

All experiments conducted in this thesis lasted approximately two hours, in-

cluding preparation time and task familiarisation. Each participant was paid a

base rate of £16 for volunteering and signed an informed, consent form before
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Figure 3.3: Position of the different sensors recording the physiological signals.
The eye tracker is placed on top of the EEG cap without obstructing the sight of
the participant.

taking part in the experiment. The research described in this thesis has received

MoD and University of Essex ethical approval in July 2014.

3.4 Data Preprocessing

EEG data from each channel are referenced to the mean of the electrodes placed

on each earlobe. Data are then band-pass filtered between 0.15 and 40 Hz with

a non-causal 14677-tap FIR filter obtained by convolving a windowed low-pass

filter with a windowed high-pass one. The choice of these filters is motivated

by the promising results obtained with the visual matching task (see Chapter 4

and [143]). Artefacts caused by eye-blinks and other ocular movements are re-
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moved by using a standard subtraction algorithm based on correlations between

the average value recorded at electrode sites Fp1 and Fp2 and the average value

recorded at F1 and F2 [153].

EEG data are then segmented into two types of epochs: stimulus-locked and

response-locked. Stimulus-locked epochs are extracted from 200 ms before the on-

set of the stimulus and have a duration of 1900 ms, while response-locked epochs

also last 1900 ms but start 1200 ms before the user’s response – see Figure 3.4.

The extracted epochs are then de-trended on a channel-by-channel basis by sub-

tracting the average voltage recorded in the first five samples. Depending on the

experiment conducted, it is possible for the response- and stimulus-locked epochs

to overlap (albeit to different degrees). However, it should be noted that the

stimulus-locked epochs are still very different from the response-locked ones and,

therefore, together they carry more information than each type on its own.

Epoch data are then low-pass filtered with an optimal 820-tap FIR filter de-

signed with the Remez exchange algorithm [116] with a pass band of 0–pb Hz and

a stop band of sb–1024 Hz. The choice of this filter is motivated by the promising

results obtained with the visual matching task (see Chapter 4 and [143]). The

data are finally down-sampled to sr Hz to speed up the computation without af-

fecting the detection of meaningful variations (e.g., P300s) in the EEG data. pb,

sb and sr have been set to 14, 16 and 32 Hz, respectively, for the face recognition

experiment (see Chapter 8) and to 6, 8 and 16 Hz, respectively, for the remaining

experiments. Finally, the first and last 200 ms of each epoch were trimmed (see

black striped areas in Figure 3.4) to obtain epochs of 1500 ms and avoid transient

effects. Therefore, each epoch is represented by a total of 48 and 24 samples per

channel for sr equal to 32 or 16 Hz, respectively.
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Figure 3.4: Protocol adopted to segment the EEG data into stimulus-locked
and response-locked epochs. The black striped areas are trimmed after low-pass
filtering and subsampling the extracted epochs.

The vertical component of the eye movements recorded by the eye tracker is

also band-pass filtered between 0.15 and 40 Hz with the same filter used for the

EEG data. We use the vertical component as this is also influenced by eye blinks,

which correlate with the mental workload [13], and because in preliminary tests

we found that the horizontal component did not seem to contribute any additional

information. The resulting signal is then referenced to the mean value recorded

during the presentation of the fixation cross, i.e., one-second interval before the

stimulus. The eye data are then segmented into stimulus-locked and response-

locked epochs, the former starting at the onset of the stimulus and lasting 500 ms,

the latter starting 250 ms before the user’s response and also lasting 500 ms –

see Figure 3.5. The choice of a different duration for the eye movement epochs

compared to the EEG epochs is motivated by the reasonable assumption that, on

the one hand, the eyes will move mainly during the presentation of the stimulus

(250 ms) and the mask (250 ms), so there is no need to extend the stimulus-locked

epochs to more than 500 ms. On the other hand, with the response-locked epochs,

we would like to capture the eye activity when the user is about to provide an

answer. The promising results obtained in visual search (see Chapter 5 and [199])

validated this choice.
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Figure 3.5: Protocol adopted to segment the vertical component of the eye move-
ments into stimulus-locked and response-locked epochs.

We should note that the non-causal filters adopted by our framework could

prevent it to be used in online applications. However, it is possible to modify the

FIR filters to be causal [218] or to use different filters already used in collaborative

BCIs [229]. While this thesis is mainly focused on the off-line validation of the

proposed cBCI, we believe it is possible to extend the framework to support also

real-time BCI applications.

3.5 Epochs Labelling

The strategy adopted by the proposed hybrid cBCI to improve group decisions

is to estimate the confidence of each group’s member (i.e., the probability of

his/her decision to be correct [122]) via machine learning algorithms. This re-

quires ground-truth information on the actual confidence in an appropriate train-

ing set to fit the predictive model. In principle participants could be asked to

rate their degree of confidence in the decisions of the training set and the cBCI

could use these values to fit its model. However, as we will see in Chapter 6, this

measure can be biased and unreliable [96, 132].

Another approach would be to use the correctness of individual decisions to

fit the cBCI model, as this information is available to the cBCI in the training
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set. This will lead to assign high values of confidence when the response provided

by the participant is very likely to be correct and low values otherwise, a so-

called well-calibrated system [122]. This strategy is optimal considering that the

proposed cBCI uses these confidence values to weigh individual responses and

obtain group decisions. Moreover, it follows the approach of rational observers,

who tend to be less confident when they do not have enough information to make

an informed choice (and, therefore, are more likely to be incorrect) and more

confident when they are likely to be correct.

To train the machine learning component of the cBCI, the trials in the training

set in which the decision made by a participant was correct (independently from

the presence or absence of the target) have been labelled as “confident” (−1

label), and the trials where the decision was incorrect as “non-confident” (+1

label). This means that the cBCI is trained to predict whether a user made a

confident (correct) or a non-confident (incorrect) decision, and not, unlike other

studies [229, 17], to predict the response of the user.

3.6 Feature Extraction

One of the aims of this thesis was to find the best combination of behavioural and

physiological features for estimating the decision confidence. For these reasons,

different types of features have been extracted from the preprocessed signals in the

various experiments and the performance of cBCIs based on each type (or com-

binations of them) have been compared. This section provides a brief overview

of the methods used across the thesis for extracting neural and eye-movement

features.
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3.6.1 Neural Features

The available EEG data are characterised by high dimensionality: each epoch

is represented by either 24 or 48 samples for each of the 64 available channels.

This means that, even in the best scenario, the cBCI has to predict the deci-

sion confidence of one trial from a total of 3,072 values. However, the number

of trials available in the training set is much smaller (about 300) than the num-

ber of features describing a trial. In these conditions, the predictive power of

the machine learning algorithms reduces as the dimensionality increases (Hughes

phenomenon [70]). Therefore, the proposed cBCI requires a process of feature

extraction and selection to reduce the dimensionality of the classification process.

A well-known method used for this purpose in BCI research is Principal Com-

ponent Analysis (PCA) [33], an orthogonal linear transformation that projects

the data into a subspace where the components are ordered by the magnitude of

their variance. PCA is based on the idea that it is possible to represent most of

the variation in the original dataset with a small set of “principal” components,

which are linear combinations of the original variables [158]. These components

are obtained by extracting the eigenvalues and eigenvectors of the covariance ma-

trix. Spatial PCA has been used in BCI research to select the most representative

channels for the task at hand [189]. However, information related to the decision

confidence is also likely to appear in the temporal domain. Thus, in this thesis we

adopt a spatio-temporal PCA [30], which considers each sample of each channel

in an epoch as a separate stochastic variable. For each trial, the epochs recorded

in the 64 channels are concatenated and a covariance matrix is computed. The

PCA features are extracted by performing the dot product between the first p
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eigenvectors of the covariance matrix (i.e., most important principal components)

and the voltage values in the concatenated epoch.

Another important method broadly used in BCI, especially for identifying

motor imagery, is Common Spatial Pattern (CSP) [155, 235, 159]. This supervised

spatial filter aims at separating a multivariate signal (e.g., EEG) into additive

subcomponents having maximum difference in variance between two classes. It

could be thought of as a supervised version of PCA. Let X1 and X2 be the sets

of trials associated with class 1 and class 2, respectively. CSP aims at finding the

component wT such that the ratio of variance between the two sets is maximised:

w = argmaxw
||wX1||2
||wX2||2

(3.1)

After computing the CSP matrix on the data of the training set for each

type of epochs, the data on the test set are transformed by performing the dot

product between the epochs and the CSP matrix. The first and last columns

of the resulting matrix are then selected as they represent the most significant

patterns, i.e., those with the maximum difference in variance. The variances

of these two columns are then used as neural features to represent the decision

confidence. In this thesis we only use two neural features for each type of epochs

to promote efficiency and generalisation.

It should be noted that while the version of PCA we employ is spatio-temporal,

CSP takes into account only spatial information. This could lead to losing im-

portant information related to the decision confidence stored in the temporal

domain, especially considering that we deal with ERPs. For this reason, we

have also used a spatio-temporal version of CSP termed Local Temporal Cor-
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relation Common Spatial Pattern (LTCCSP) [233] for extracting features from

the EEG data. LTCCSP introduces a weight matrix to impose larger coefficients

on patterns that are similar within a local temporal range τ . In this thesis, we

have empirically set τ = 10 regardless of the final sampling rate (i.e., either 16

or 32 Hz). Once the LTCCSP matrix is computed and multiplied by this new

weight matrix, the process of extracting neural features is similar to the one used

for CSP.

3.6.2 Eye-Movement Features

When the decision-making task involves visual stimuli, eye movements could also

be related to the decision confidence [208] as well as to the mental workload [7].

For these reasons, we extracted three features from the stimulus-locked epochs

of the eye-movement vertical component. The first feature is represented by

the total distance covered by the eyes along the vertical axis during stimulus

presentation (i.e., first 250 ms of the epoch). This feature aims at describing

the number of saccades and the effort made by the eyes in spotting the target

in the stimulus. Ideally, if the total distance is high it is likely that the eyes

did not spot the target and, therefore, the participant is less confident about the

decision. Another feature extracted from these epochs is the standard deviation

of the vertical eye movements during stimulus and mask presentation (i.e., whole

stimulus-locked epoch). This feature is likely to describe how spread the eye

movements are during and after the stimulus presentation. Furthermore, we also

compute the mean of the numerical derivative of the vertical eye movements in

the same time window, to consider the velocity of the eyes in scanning the picture.
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An additional feature is then extracted from the response-locked epochs. The

first derivative of the signal recorded in the epoch is computed and its mean is

used as a feature representing the velocity of eye movements before and after

making the decision.

The promising results obtained in visual search (see Chapter 5 and [199])

validated the choice of these four features.

3.7 Confidence Estimation

Given a feature vector composed by a subset of the features described in the

previous section, the cBCI needs to predict the decision confidence of the user in

a particular trial. This requires a machine learning algorithm. We chose Least

Angle Regression (LARS) [37] for its linearity (i.e., to keep the framework simple)

and its intrinsic ability to also perform feature selection, which might be useful

in future extensions of the current framework. The positive results obtained in

visual matching (Chapter 4 and [143]) validated this choice.

The decision confidence is computed as follows:

f =
C∑
j=1

aj · xj + ε (3.2)

where aj and ε are constant coefficients (to be identified via a training set when

fitting the model) and xj is the j-th component of the feature vector.

Once a confidence estimate, fi, is available for a particular decision of par-

ticipant i, it is transformed to a weight wi according to the following negative
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exponential weighting function:

wi = exp(2.5− fi). (3.3)

This weighting function has been chosen in preliminary tests and is motivated

by the desire to allow confident users to count substantially more than uncertain

users in the group’s decision, thanks to the negative exponential. By adding the

constant 2.5 to the exponent we ensure there is reasonable variation in weights in

the range of values of LARS’ outputs, a necessary condition to do better than the

majority rule. This weighting function is also desirable as it is always positive,

avoiding negative weights which would imply changing “yes” decisions into “no”

ones or vice versa.

It should be noted that, by mapping incorrect decisions to label +1 and correct

ones to −1 (see Section 3.5), the raw prediction given by the cBCI is proportional

to the probability of the user to be incorrect. To transform this into the proba-

bility of being correct (i.e., our interpretation of the decision confidence), we use

the non-linear weighting function to associate higher values of confidence to high

probabilities of being correct and vice versa.

3.8 Group Decisions

As shown in Section 2.5, different methods could be used to integrate decisions of

multiple participants to obtain a group’s decision. Multi-brain fusion at the deci-

sion level (see Figure 2.3) seems to give the highest performance amongst feature

and signal fusion techniques. Moreover, for the structure of the proposed frame-
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work, decision fusion is the most appropriate method for integrating individual

responses.

The cBCI obtains group decisions by using a weighted majority rule, described

as follows:

dgroup = sign

m∑
i=1

wi · di (3.4)

where sign is the sign operator, m is the group’s size, di = {−1, 1} is the decision

of participant i = 1, . . . ,m (di= −1 means a correct decision), and wi ∈ R+ is

the weight associated with the confidence of participant i in the current decision

computed as described in the previous section. In case of tie (i.e., dgroup = 0),

a random decision is made. While ties could easily happen in even-sized groups

using standard majority, they are very unlikely to happen when using a weighted

majority as the weights are real numbers.

3.9 Results Validation

In order to validate the results obtained by the cBCI and reduce the risk of

overfitting, 10-fold cross-validation is used to split the dataset of each experiment

in 10 different training and test sets. In each fold 90% of the trials are used for

training and the remaining 10% for testing. The same non-overlapping sets are

built for each participant.

All the possible
(
P
s

)
groups of size s that could be assembled with the P

participants are then built, for s = 2, 3, . . . , P . The average cross-validation error

rate obtained by each group using the proposed cBCI with different sets of features

is compared with that achieved by traditional groups using the standard majority
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(i.e., a weighted majority where wi = 1,∀i=1, . . . ,m). To test if the observed

differences in error rates using different methods are statistically significant, we

compare the error distributions within each group size by using the one-tailed

Wilcoxon signed-rank test with the Bonferroni correction. We choose this paired-

data test since all decision methods are applied to the same groups and as it relies

on fewer assumptions than parametric tests (i.e., it does not assume that the data

are Gaussian distributed).

3.10 Conclusions

This chapter has described the architecture of the proposed collaborative BCI

for improving group decision making, as well as listing the shared features of the

experiments that have been used to test the cBCI (see following chapters).

While most of the data recording and preprocessing procedures and tech-

niques are used in all experiments, the feature extraction step changes between

different tasks. The reason behind this is dual: (a) traditional methods used in

previous studies did not work well with new, realistic experiments, and (b) dur-

ing our research we identified certain methods for feature extractions (e.g., CSP)

performing much better than others (e.g., PCA) used previously – see Chapter 5.

The feature extraction step is probably the most important design choice of

the cBCI. For this reason, the classification method used to transform the fea-

tures into decision confidence (i.e., LARS) has been reused in all experiments.

More advanced and traditional machine learning algorithms such as logistic re-

gression and support vector machines could be used and their performance could

be compared in future research. Moreover, it would be interesting to study the
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performance of cBCI-assisted groups in experiments including multi-choice deci-

sion tasks (i.e., not satisfying Feature 3.2.2).



Chapter 4

Improving Group Performance in

Visual Matching

This chapter describes the first results obtained with the proposed framework

described in Chapter 3 when applied to a simple visual matching task. Most of

the material in this chapter has been published in [143].

4.1 Introduction

Decades of research in artificial intelligence have been spent trying to build com-

puter systems that could outperform the human visual system. Despite recent

advances in computer vision, the human brain remains superior in processing and

interpreting the information coming from the senses for most of the applications.

This is because of its ability of processing visual information using features and

learning processes, which are critical for recognition but not used in computer

vision algorithms [193]. However, our visual system is not perfect. When the
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perceptual load is high (e.g., when processing complex and crowded scenes), the

time available is not sufficient for completing the processing, or the attention is

divided amongst multiple tasks, our brain can make mistakes. Phenomena like

attentional blink and repetition blindness, which have been studied for years, can

show the limitations of our perception and cognition[133, 21, 106, 31] which re-

sult in observers being able to perceive only a subset of the features of a complex

scene.

These limitations can lead to suboptimal performance in tasks that require

visual perception, for example decision making [68]. When critical decisions have

to be made, wrong perception could have serious consequences, for example in

identifying a threat in a scene. To partly overcome these limitations, two or more

individuals could be involved in the decision-making process. Groups generally

have augmented perception, especially when the information is not shared among

their members [190], and error correction capabilities, which could produce better

decisions than an individual. Although two heads are not necessarily better than

one [5], technology such as BCIs could further enhance group perception. Col-

laborative BCIs have already been successfully used for enhancing the detection

of a visual stimulus [230, 229] or the discrimination between images of faces and

images of cars [36].

This chapter examines the possibility of using the hybrid cBCI presented in

Chapter 3 to augment group performance in a visual matching task characterised

by high perceptual load and high speed of stimulus presentation. As mentioned

before, in these conditions human perception may not only be incomplete but

also incorrect, leading to erroneous decisions. The cBCI could tap into the un-

conscious and conscious processes and extract relevant information to improve
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the evaluation of the images. This research has been described in [143].

The chapter is organised as follows. Section 4.2 describes the visual match-

ing experiment and details the methodology used by the cBCI to make group

decisions introduced in Chapter 3. Section 4.3 presents and discusses the results

obtained in the experiment. Finally, Section 4.4 draws some conclusions.

4.2 Methodology

This section describes the protocol used in the visual matching experiment and

briefly recalls the methods employed by the cBCI to obtain group decisions.

It should be noted that the design of the experiment and the data recording

were performed in a previous research project and, therefore, were not part of this

PhD thesis. Here, we analysed the data and used them to assess the performance

of the cBCI described in Chapter 3. This study received ethical approval on the

30th of May 2012 by the Research Director of the School of Computer Science

and Electronic Engineering of the University of Essex on behalf of the university’s

Faculty Ethics Committee.

4.2.1 Participants

Data were gathered from 11 healthy participants with normal or corrected-to-

normal vision (average age 30.6 ± 9.5 years, 6 females, 8 right handed). The

preliminary analysis of individual performance of the participants revealed that

one observer gave responses that were hardly distinguishable from random. For

this reason, the data recorded from that participant were discarded and, therefore,

the analysis were conducted on the remaining 10 participants.



CHAPTER 4. IMPROVING GROUP PERFORMANCE IN VISUAL MATCHING 61

4.2.2 Stimuli and Tasks

Participants underwent a sequence of 8 blocks of 28 trials each, for a total of

224 trials. Each trial (see Figure 4.1) started with the presentation of a fixation

cross in the middle of the screen for 1 second, followed by a black screen for

another second. Then observers were presented with a sequence of two displays,

each showing a set of shapes. The two displays were showed for 83 ms (5 frames

of a 60 Hz screen) and 100 ms (6 frames), respectively. The first display was

immediately followed by a mask for 250 ms and a black background for 100 ms.

The mask was a vertical sinusoidal grating with a period of 1 degree subtending

approximately 8 degrees. Following this sequence of displays, observers had to

decide, as quickly as possible, whether or not the two sets of shapes were iden-

tical. Responses were given with the two mouse buttons (left for “identical”,

right for “different”), controlled with the right hand, and response times (RTs),

measured from the onset of Set 2, were recorded. Each stimulus display consisted

of three shapes (subtending approximately 1.5 degrees and being approximately

1.8 degrees apart), which could be any combination of a triangle, square and

pentagon (see Sets 1 and 2 in Figure 4.1). The same shape was allowed to be

present multiple times within a set. Each shape was coloured either in pure white

(corresponding to normalised RGB (1,1,1)) or light grey (RGB (0.65,0.65,0.65)).

Shapes were presented on a black background.

With two colours and three possible shapes we can obtain six elements: white

triangle, light grey triangle, white square, light grey square, white pentagon, light

square pentagon. Each set of shapes contained three elements and, therefore,

there were a total of 63 = 216 different stimuli, leading to a 2162 = 46, 656
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Response

250 ms 1000 ms 100 ms
RT

1000 ms 83 ms

1000 ms

Fixation
Cross

Mask
Set 1

Set 2

Figure 4.1: Stimulus sequence used in the visual matching experiment.

possible set combinations. Each pair of displays was classified by counting the

number of matching features (i.e., colour and shape) of their ordered shapes, a

number that we called degree of match (DoM). If all three stimuli of Set 1 differ

in both shape and grey level from the three stimuli in Set 2, we have a DoM of 0;

if the first two elements shares one feature (e.g., the same colour) and the third

element shares both features, that is a DoM of 4; etc. So, DoM ranges from 0 to

6, with 6 corresponding to a perfect match between Set 1 and Set 2.

It should be noted that the DoM influences the difficulty of the task at hand.

If the two sets of shapes are very similar (high DoM) but different, the processing

of the displays would require more time than that available, making the observers

more erroneous. The same happens when the two sets of shapes match (DoM =

6) as participants have to make sure they did not miss any mismatching feature

before deciding that the two displays contained the same shapes. On the other

hand, if the two sets do not share any feature, it should be quite straightforward

for the user to make the correct decision. In order to better control the difficulty

of the task, the experiment was designed to have an equal proportion of each

DoM category in each block. Therefore, there were four trials for each value of

DoM ∈ {0, 1, 2, 3, 4, 5, 6}.

The order of the trials was randomly shuffled and identical sequences were
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used for all participants. This ensures that all participants underwent exactly

the same experiment, which should increase repeatability and reproducibility,

while allowing groups to be formed offline to test the performance obtained with

the proposed cBCI without requiring to acquire data from all participants simul-

taneously.

The experimental blocks were preceded by a session of practice to allow ob-

servers to familiarise with the task and the stimuli. Participants were seated

comfortably at about 80 cm from an LCD screen. Briefing, preparation of partic-

ipants (including checking and correcting the impedances of the electrodes used

for EEG recording) and task familiarisation took approximately 30 minutes, while

the experiment took about 20 minutes.

4.2.3 Data Acquisition and Transformation

Participants undertook the visual matching experiment in conditions of complete

absence of communication or any other form of social influence.

Neural data were acquired and preprocessed as explained in Sections 3.3

and 3.4.

As a first test of our cBCI, as a method for extracting neural features we

adopted space-time PCA. We selected the 24 principal components of each epoch

as neural features. This corresponds to a 1 to 64 reduction from the original

1,536 features (i.e., 24 samples for each of the 64 channels available). Due to the

simplicity of the classifier used to transform the features into decision confidence

and to reduce the risk of overfitting, we decided to only use response-locked

epochs. We did analyse response- and stimulus-locked epochs but found that
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the former contained more information related to the decision confidence than

the latter – see Section 4.3.5. Therefore, we extracted the 24 neural features

from the response-locked epochs starting 1000 ms before the response and lasting

1500 ms.1

4.2.4 Decision Confidence Estimation

The 24 PCA neural features extracted from each epoch were transformed in

confidence estimates by using LARS, as described in Section 3.7. The presence

of this machine learning component required splitting the available data into a

training set (used to fit the model) and a test set (to evaluate the model on unseen

data). We then used the correctness in the decision as ground-truth information

for the confidence estimation (see Section 3.5). As it is customary for small

dataset, such as the ones used in BCI research, and as described in Section 3.9

we adopted a k-fold cross-validation approach. In order to ensure all folds had

the same number of samples, as the number of trials (224) is divisible by 7 and by

powers of 2 up to 25 but not by 10 (as indicated in Section 3.9), in this experiment

we used k = 2, 4, 7, 8, 14, 16, 28, 32, 56, 112 and 224 (leave-one-out strategy).

Since the performance varied very little with k [143], we will only report results

for k = 16.

The data on the training set have been used to fit the LARS model on a

participant-by-participant basis. Then, the neural features in the test set have

been transformed into confidence correlates using the fitted model. For the rest

of the chapter, we will call these neural confidence correlates nf, to indicate their

1For simplicity, in this experiment we did not use physiological measures other than the
brain signals to predict the decision confidence. Eye movements and the other measures de-
scribed in Section 3.3 have been recorded and we plan to use them in future research.
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Figure 4.2: Plots of the negative exponential weighting functions adopted in our
studies to transform neural (blue) and behavioural (red) correlates of confidence
into weights. The shape of these functions allows confident decisions to count
more than uncertain ones.

dependency on the neural features only. These confidence values were then trans-

formed to weights using the negative exponential weighting function described in

Section 3.7 and plotted in blue in Figure 4.2.

Response times have also been used as an alternative “behavioural method”

to measure the decision confidence, as they are predictors of correctness [100].

As described earlier, slower RTs are generally associated with uncertainty in the

decision and, therefore, a high likelihood to err. To obtain confidence weights

from the raw RTs, we used a weighting function similar to the one used for the

neural features given by

wRT,i = exp(4−RTi), (4.1)
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where RTi is the response time for observer i in a particular decision. Figure 4.2

shows a plot of this weighting function in red.

Furthermore, we have also used an optimal combination of the behavioural

and neural features as confidence weights. For the rest of the chapter, we will call

these “neuro-behavioural” confidence correlates RTnf. Given an observer i, the

decision confidence estimated using the 24 neural features and the response time

in a particular decision, the neuro-behavioural confidence weights are computed

as:

wRTnf,i = 0.75 · wRT,i + 0.25 · wi, (4.2)

where wRT,i and wi are the weighting functions described in Equations (4.1) and

(3.3), respectively.

The choice of the coefficients 0.75 and 0.25 was simply guided by our expe-

rience. BCIs tend to be relatively unreliable in single-trial classification tasks.

Since our system requires trial-by-trial decisions, by giving more influence to the

confidence weight inferred from RT we attempted to compensate for the higher

noise expected in nf. By combining these two methods we hoped to obtain a more

robust confidence measurement which would then result in better decisions.

4.2.5 Making Group Decisions

The simplest method to obtain group decisions from a set of individual responses

is by using the standard majority rule (i.e., traditional non-BCI groups). In this

case, all observers’ decisions (either a “yes” or a “no”) count the same. The final

decision is based on straight majority for teams with an odd number of members

and majority followed by the flipping of an unbiased coin in the case of ties for
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teams with an even number of members.

In this experiment, group decisions made with the majority rule were com-

pared with those obtained by using a weighted majority, where the decision made

by each observer was weighed according to the confidence weights computed us-

ing either the behavioural, neural or neuro-behavioural methods described in Sec-

tion 4.2.4. Given the confidence weights ci of participant i computed according

to either the RT -based (wRT,i), nf -based (wi) or RTnf -based (wRTnf,i) methods

explained earlier for all group’s members, the group decision is made as:

decisiongroup =


yes if

∑
i∈Y ci >

∑
j∈N cj

no otherwise,

(4.3)

where Y and N represent the sets of all observers in the group who decided “yes”

and “no”, respectively.

Since response times are influenced by, and thus can reveal, the confidence in a

decision [100] and that more confident responders are more likely to be correct, we

could assume that, typically, faster responders are correct more often than slower

ones. For this reason, we decided to also investigate the group performance of a

behavioural decision-making system where only the fastest responders in a group

were allowed to influence the group decision, as will be described in detail in

Section 4.3.4.
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4.3 Results

This section presents and discusses the results obtained with the 10 participants

and the cBCI described in the previous section.

4.3.1 Individual Decisions

We start our analysis by looking at the differences in performance shown by the 10

participants when performing the task in isolation and without any manipulation

of their decisions.

The individual performance of the participants in the visual matching task

used in our experiment was quite variable, with error rates ranging from just below

5% to over 20% – see Figure 4.3. The average error rate across all participants was

12.5%, showing that the task was quite challenging for individuals. Interestingly,

if we look at the subset of trials where matching pairs of stimuli were presented,

we see that participants gave incorrect decisions in only 0 or 1 out of the 28

matching pairs, thereby showing a very high sensitivity to identical sets. The

bulk of the errors, instead, were due to participants that indicated as “matching”

stimuli that were actually not containing the same shapes.

4.3.2 Metacognitive Accuracy of Confidence Estimates

Let us now turn our attention to the neural and behavioural correlates of decision

confidence.

To investigate the relationship between correct/incorrect responses and the

confidence with which decisions were taken (i.e., metacognitive accuracy [122]),

we studied the distributions of the RT, nf and RTnf confidence weights obtained
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Figure 4.3: Percentage of erroneous decisions made by each participant in the 224
trials of our experiment. The average error rate across participant is indicated
by the black dashed horizontal line.

as indicated in Equations (4.1), (3.3) and (4.2), respectively.

We started by binning the data (obtained via cross-validation) on the basis of

whether a decision made in a trial by an observer was correct or incorrect. Ta-

ble 4.1 reports the medians of the confidence weights associated to the behavioural

feature RT and the neural features nf, and the neuro-behavioural mixing of the

two, RTnf, for correct and incorrect trials. The corresponding box plots and den-

sity functions (obtained via a kernel-based estimator) are shown in Figure 4.4.

As one can see from these, the medians of the confidence weights are significantly

lower for the incorrect decisions than for the correct ones for all the features used.

We used two non-parametric tests to assess whether these differences were sta-

tistically significant: the one-way Kruskal-Wallis test and the Wilcoxon rank-sum
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Table 4.1: Medians (across all participants) of the confidence weights associated
to behavioural, neural and neuro-behavioural methods as a function of whether
the user’s response was correct or incorrect.

Decision RT nf RTnf

Correct 27.514 26.967 27.543

Incorrect 22.721 21.943 22.412

test.1 Sample sizes were 1,960 for the “correct” class and 280 for the “incorrect”

class. The use of non-parametric tests was required as the distributions of confi-

dence weights (see Figure 4.4(right)) are clearly non-Gaussian. In all comparisons

and for both tests, p<10−17 with statistics H>77.7 and W>151, 740 in all cases.

These tests indicate that trials where the confidence weights were characterised

by lower values were also those where decisions were more difficult (and were,

therefore, taken with a high level of uncertainty) than those characterised by

higher weights. Behavioural, neural and neuro-behavioural estimates of the deci-

sion confidence seem therefore to provide a good metacognitive accuracy across

participants.

We also repeated the analysis on a participant-by-participant basis to further

validate these results. Table 4.2 reports the p-values of the one-way Kruskal-

Wallis and the Wilcoxon rank-sum tests. As can be seen, the weights associated

to the “correct” trials are significantly different than those related to “incorrect”

trials for most methods and participants. In particular, it should be noted that the

RTnf method seems to be the best out of the three analysed, as the distributions

of the confidence weights are significantly different for all participants.

We then binned the data on the basis of the degree of match of the stimuli

1Unlike what we reported in [143], here we used the approximated Wilcoxon rank-sum test
as implemented in R. However, this did not significantly affect the results.
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Figure 4.4: Box plots representing the distributions of the weights across par-
ticipants for different features and decisions (left) and corresponding probability
density functions (right). The plots on the left also report the p-values of the
Kruskal-Wallis and Wilcoxon rank-sum tests comparing the two distributions.
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Table 4.2: p-values of the one-way Kruskal-Wallis test (KW) and Wilcoxon rank-
sum test comparing the distributions of the weights for “correct” and “incorrect”
trials for different features for each participant. p-values below the significance
level 0.05 are reported in bold.

RT nf RTnf

User KW Wilcoxon KW Wilcoxon KW Wilcoxon

1 2.7× 10−4 1.4× 10−4 4.4× 10−4 2.2× 10−4 3.7× 10−5 1.9× 10−5

2 9.3× 10−2 4.7× 10−2 1.1× 10−1 5.7× 10−2 2.8× 10−2 1.4× 10−2

3 1.1× 10−2 5.6× 10−3 2.8× 10−2 1.4× 10−2 6.7× 10−3 3.3× 10−3

4 7.2× 10−2 3.6× 10−2 1.3× 10−2 6.4× 10−3 1.7× 10−2 8.4× 10−3

5 7.6× 10−7 3.7× 10−7 1.1× 10−4 5.7× 10−5 9.2× 10−8 4.7× 10−8

6 1.4× 10−3 6.7× 10−4 2.3× 10−1 1.2× 10−1 1.7× 10−3 8.3× 10−4

7 8.6× 10−5 4.7× 10−5 1.2× 10−3 6.2× 10−4 4.5× 10−6 2.2× 10−6

8 9.6× 10−3 5.0× 10−3 4.6× 10−4 2.3× 10−4 2.9× 10−4 1.5× 10−4

9 2.3× 10−5 1.1× 10−5 1.7× 10−3 8.8× 10−4 9.0× 10−7 4.6× 10−7

10 8.1× 10−6 4.1× 10−6 5.2× 10−3 2.6× 10−3 6.2× 10−6 3.1× 10−6

presented in each trial, as the DoM is an indicator of the objective difficulty of

the task of discriminating them. Table 4.3 reports the medians (across all partic-

ipants) of the confidence weights associated to different features as a function of

the DoM of the stimuli used in a trial. The corresponding box plots are shown

in Figure 4.5.

Overall, as we hypothesised, stimuli configurations characterised by higher

DoM, which are thus objectively harder to decide upon and more likely to end

up with incorrect decisions, are associated with lower confidence weights. This

suggests that the neural and behavioural features do indeed capture the decision

confidence.1

1We should note that here we are comparing confidence values in trials of different DoM
regardless of the correctness of the decision. Hence, although for DoM=6 (matching stimuli)
we have a median confidence lower than for other stimuli, there were still significant differences
between trials where the user made the correct choice (confidence higher than the median) and
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Figure 4.5: Box plots representing the distributions of the confidence weights for
different DoM when the decision confidence is estimated using only RTs (top),
only the neural features (middle) or the combination of them (bottom).
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Table 4.3: Medians (across all participants) of the confidence weights associated
to behavioural, neural and neuro-behavioural methods, as a function of the degree
of match (DoM), of the pair of stimuli used in a trial.

DoM RT nf RTnf

0 29.410 28.286 29.236

1 29.396 27.881 28.836

2 28.673 27.939 28.936

3 27.041 26.701 27.151

4 26.726 25.224 26.686

5 24.399 24.923 24.045

6 22.904 22.591 23.030

4.3.3 Group Decisions

To test the performance obtained using our cBCI framework, as described in

3.9, we compared the performance of single observer decisions (presented in Sec-

tion 4.3.1) with group decisions made by groups of increasing size for all possible

memberships of the groups. With our 10 participants, we had
(

10
m

)
groups of size

m.

For each group size we computed the average error rates for when the major-

ity rule was applied, and the error rates of the three confidence-based methods

described before (i.e., RT, nf and RTnf ). The results are shown in Figure 4.6.

The data are also reported in numerical form in Table 4.4. As one can see, in

all methods studied except when using majority rule for groups of size 2, group

decisions were superior to the decisions of single observers (the statistical sig-

nificance is studied later), suggesting that integration of perceptual information

across non-communicating observers is possible and beneficial.

trials where the observer was wrong (confidence lower than the median).
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Table 4.4: Average error rates (%) vs group size for the four methods used to
obtain group decisions. The minimum error rate for each group size is shown in
bold face.

Group Size Majority RT nf RTnf
1 12.50 12.50 12.50 12.50
2 12.50 10.27 10.41 9.74
3 7.23 7.16 7.36 7.18
4 7.23 6.18 6.32 5.96
5 5.28 5.10 5.20 5.12
6 5.28 4.67 4.69 4.57
7 4.31 4.25 4.13 4.18
8 4.31 3.92 3.67 3.95
9 3.79 3.92 3.52 3.79
10 3.79 3.12 2.67 3.12

These results also show that the straight majority is generally outperformed

by the other three methods. This is particularly evident with groups having an

even number of members where the coin-tossing required by majority rule in the

presence of ties implies that performance is the same as that of groups with one

fewer member. The data also show that of the three other methods, the RTnf-

based method appears to be the most consistent, being best or second best in 9

out of 10 cases. Furthermore, the performance of groups of large sizes (from 7

upward) starts saturating, possibly to a worse asymptote than the performance

of the methods based on confidence correlates.

It is also interesting to note that while performance of the nf -based method

appears to be inferior to RT -based and RTnf -based methods for groups of sizes

2 to 6, it is the best method for groups of 7, 8, 9 and 10 members. This suggests

that our choice of coefficients in Equation (4.2), while making RTnf a generally

good all-rounder, may have been suboptimal for the larger groups. This issue

should be explored in future research.
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Figure 4.6: Average percentage of errors for different group sizes for the four
methods for group decisions tested in this study.

To test if the observed differences in error rates in Figure 4.6 and Table 4.4

are statistically significant, we compared the distributions of errors made. We

started by comparing the error distributions of single observers with those of

groups of increasing size (for the four methods of group decision tested) using

the Kruskal-Wallis statistical test. Table 4.5 reports the p-values and statistics

returned by the test. This shows that for groups of size 2, the RTnf -based method

is very close to be statistically significantly better than single observers, while for

the RT - and nf -based methods the overlap of the distributions and sample sizes

are such that statistical significance is not achieved despite the performance of

all methods being on average 2 to 3% better than the single observers’ case (as

shown in Figure 4.6). On the contrary, for groups of size from 3 to 9 group

decisions are always significantly superior to single observers. Finally, we should
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Table 4.5: p-values and corresponding H statistics (in brackets) returned by the
Kruskal-Wallis test when comparing the performance of single observers against
the performance of groups of increasing sizes and adopting different decision meth-
ods. Sample sizes are reported in the second column. p-values below 0.05 are in
bold face.

Group size Samples Majority RT nf RTnf

2 45 0.751561 (0.1) 0.088386 (2.9) 0.274314 (1.1) 0.050447 (3.8)

3 120 0.000094 (15.2) 0.000080 (15.5) 0.000077 (15.6) 0.000070 (15.8)

4 210 0.000065 (15.9) 0.000009 (19.7) 0.000011 (19.3) 0.000006 (20.5)

5 252 0.000002 (22.4) 0.000002 (23.0) 0.000002 (22.6) 0.000002 (22.9)

6 210 0.000003 (21.7) 0.000001 (24.1) 0.000001 (24.2) 0.000001 (24.5)

7 120 0.000001 (24.9) 0.000001 (24.9) 0.000000 (25.6) 0.000000 (25.5)

8 45 0.000002 (22.4) 0.000002 (23.0) 0.000001 (23.3) 0.000002 (23.0)

9 10 0.000174 (14.0) 0.000172 (14.1) 0.000146 (14.4) 0.000146 (14.4)

10 1 0.113024 (2.5) 0.113024 (2.5) 0.113024 (2.5) 0.113024 (2.5)

note that our group of size 10 is, unsurprisingly, not significantly superior to single

observers, even though its performance is superior to all the single observers ones

(see Figure 4.3), due to it being a sample of just one data point.

We then compared the error distributions across the group-decision methods

within each group size. Since errors are paired in each comparison (by the fact

that the two methods being compared were applied to exactly the same groups),

here we used the one-tailed Wilcoxon signed-rank test. The corresponding p-

values and statistics are reported in Table 4.6.

As expected, we found that several of the small differences shown in Figure 4.6

and Table 4.4 are not significant. To make it easier to see which differences were

significant, we summarise the p-values obtained in our tests using the statistical-

significance preference-relation diagram shown in Figure 4.7. Groups of size 1

(all methods performing the same) and 10 (where we only have one such group)

are not reported as no difference is statistically significant. For other groups
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Table 4.6: p-values and corresponding W statistics (in brackets) returned by the
one-tailed Wilcoxon signed-rank test when comparing the performance of groups
of different sizes adopting the four decision methods considered in the study.
Samples sizes are indicated in the last row of the table. p-values below 0.05 are
in bold face.

Group size

Comparison 2 3 4 5 6 7 8 9

Is RT better
than Majority?

0.0000
(83)

0.1518
(1102)

0.0000
(1086)

0.0000
(5441)

0.0000
(2068)

0.1790
(1324)

0.0002
(147)

0.7813
(14)

Is nf better
than Majority?

0.0000
(60)

0.9923
(1913)

0.0000
(1966)

0.0443
(7240)

0.0000
(2006)

0.0001
(902)

0.0000
(35)

0.0625
(0)

Is nf better
than RT?

0.7981
(519)

0.9911
(2735)

0.9678
(9132)

0.9707
(11577)

0.4837
(8298)

0.0506
(1647)

0.0184
(244)

0.0625
(5)

Is RTnf better
than Majority?

0.0000
(7)

0.1634
(631)

0.0000
(444)

0.0000
(2826)

0.0000
(1441)

0.0039
(920)

0.0000
(133)

0.6875
(5)

Is RTnf better
than RT?

0.0133
(207)

0.8182
(1470)

0.0000
(3721)

0.8166
(5882)

0.0014
(2594)

0.0538
(765)

0.6754
(204)

0.2813
(5)

Is RTnf better
than nf ?

0.0283
(316)

0.0014
(1081)

0.0000
(4647)

0.0412
(7033)

0.0362
(6284)

0.8537
(1790)

0.9978
(431)

1.0000
(10)

Sample size 45 120 210 252 210 120 45 10

sizes, while at one end of the spectrum we see that majority is almost always the

worst method of the four, at the other end we see that the RTnf -based method

is statistically superior to majority in 6 out of 8 group sizes. Moreover, RTnf is

superior to the RT -based method in 3 out of 8 group sizes and is superior to the

nf -based method in 5 out of 8 cases. Both the nf -based and RT -based methods

are also competitive against majority. In particular, nf is superior to majority 6

times and almost statistically superior one further time (being inferior to it only

for groups of size 3).

Nonetheless, one would probably choose the RT -based method if group sizes

were small or if there was not a need for the slightly better performance afforded

by nf for larger groups. This is because, of course, using RT on its own to

measure the confidence does not require the use of a BCI, with its associated
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Figure 4.7: Statistical preference-relation diagram representing the results re-
ported in Table 4.6 graphically. For each group size, a one-tailed Wilcoxon
signed-rank test was executed, comparing the performance obtained with different
decision methods. Solid arrows indicate that the method at the arrow-head is sta-
tistically superior to the method at the other end of the arrow (p-value lower than
0.01) while dashed arrows indicate near statistical significance (0.01 ≤ p < 0.05).
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and obvious drawbacks in terms of practicality and setup time. However, if top

performance is required, the RTnf -based method seems to be the overall leader,

although had we been able to test larger groups it is likely that the nf -based

method would have potentially resulted top.

We should note that the results obtained by using nf and RTnf to measure

the decision confidence are influenced very little by the number of folds chosen

for cross-validation (while, of course, the results of majority and the RT -based

method are exactly the same for any choice of folds as no learning process takes

place in such methods). To illustrate this, in Figure 4.8 we report the error rates

for the RTnf -based method as a function of group size and number of folds.

A statistical comparison of the performance obtained with different numbers of

folds using the Wilcoxon exact test with Bonferroni correction showed that in

only 13.8% of the 550 comparisons required for a full analysis1 differences were

statistically significant. Also, for most group sizes the differences are very small.

This suggests that the case of 16 folds on which we focused in most of the chapter

is reasonably representative.

Let us now focus on decision times. In Figure 4.9 we report the average

time required by groups of each size to make a decision after the presentation

of the second stimulus set. Since all groups members must have made their

decision before the group can make a choice, a group’s response time is the

maximum RT across group members. Unsurprisingly, the higher accuracy shown

by bigger groups in Figure 4.6 comes at the cost of an increased group response

time. In most cases it is unlikely that waiting an extra few hundreds milliseconds

would be a problem, but in some circumstances (e.g., in critical decision making)

1With 11 numbers of folds and 10 group sizes, there are 10×
(
11
2

)
= 550 pairwise comparisons.
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Figure 4.8: Average percentage of errors vs group size and number of cross-
validation folds for group decisions made with the RTnf -based method.

minimising the decision time could be vital. Hence, in the next section we show

a strategy to reduce the group response time with a minor impact on accuracy.

The improvement in performance seen in groups of increasing size in Figure 4.6

might simply be due to the increased likelihood of inclusion of the top-performing

participants in the larger groups. For instance, our top performer, participant 4,

will only be included in 20% of the groups of size 2, in 50% the groups of size 5 and

90% of the groups of size 9. It is possible that the presence of that participant

in a group would be sufficient to drive the error rate of the groups downward

significantly. In principle, it might be the case that groups do not perform better

than their best member. Of course, we know that this is not the case, at least for

groups of size 6 or above, simply because the group error rates are below the error

rate of our top participant. However, to investigate this issue more thoroughly,
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Figure 4.9: Average time required for groups of each size to make a decision. The
error bars show the standard error of the mean.

for each group of a given size, we have compared the performance of the group

obtained by our RTnf -based method to that of its best individual performer.

Figure 4.10 reports the median difference in error rates between the two, for each

group size. The figure makes it quite clear that group decisions are to a significant

extent the result of a process of integration of confidence across participants, and

not only the result of top performers driving group errors down.

4.3.4 Performance of Fastest Responders

Let us further investigate the relationship between performance and response

times. As expected from the literature [100], also in our experiment there is a

relationship between the relative speed with which observers give their response
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Figure 4.10: Medians of the differences in error rates between group decisions
made with RTnf and decisions taken by the best performer in each group. Pos-
itive values indicate the extent to which groups were better than their best per-
formers.
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and the correctness of the decisions, with faster respondents being on average

correct more often than slower ones (see Figure 4.4(top right)). Also, as we have

seen in Figure 4.9 the larger a group the longer the delay in getting the group’s

response. So, we wondered whether we could improve group decision times with

relatively little impact on group accuracy if we allowed only the faster responders

in a group to influence the group’s decision, as described in Section 4.2.5. In

particular, we considered groups of all sizes and for each size we looked at what

level of performance could be achieved by making decisions based on the fastest

respondent, the two fastest respondents, and so on, in each trial.

Figure 4.11 compares the accuracies obtained with different groups sizes (and

different sub-group sizes) with the corresponding response times for a group.

More specifically, Figure 4.11(top) shows a plot of the mean group response time

vs the mean group error rate for each group size when using the majority method.

In the plot, circles of different diameters represent different numbers of fastest

responders (“# voters” in the figure) from each group which were allowed to vote.

That is, with the exception of the largest circle on each line (which represents the

error vs RT trade-off for groups where everyone votes), only the decision of the

fastest subgroup were used to determine group decisions. Figure 4.11(bottom)

reports the corresponding results for the RTnf -based method. Let us analyse

these data.

Firstly, results confirm that the fastest respondents (“# voters=1”) tend to

be the most accurate. On average a single observer has an error rate of 12.5%

(see data point for the “group size=1” case) while selecting the response of the

fastest performer in each trial produces an error rate of less than 8% for groups of

size 5 or above (irrespective of decision method). Of course, the larger the group
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Figure 4.11: Comparison of the accuracies obtained with different groups’ sizes
and different numbers of voters from within a group against the corresponding
response times for the group when using the majority (top) and RTnf (bottom)
group-decision rules. Each line colour represents a group size. Circles of different
diameters represent different numbers of fastest responders (“# voters”) from
each group which were allowed to vote.
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considered the shorter the response time of the fastest respondent. So, fastest

respondents for groups of sizes 9 take 480 ms on average to make a decision, while

the full group takes approximately three times longer (1550 ms).

Secondly, we see that for the majority method there is no gain in using fastest-

pair (“# voters=2”) decisions over fastest-respondent decisions (“# voters=1”),

as the former are both slower and more error-prone than the latter. On the

contrary, for the RTnf -based method, we see that fastest pairs are almost always

more accurate (but slower) than single fastest respondents. For instance, for

groups of size 3, single fastest respondents make decisions in 560 ms while pairs

take 730 ms. However, while the error rate for fastest respondents is the same

(9.2%) for majority and RTnf, the error rate for the fastest pair is 10.8% for

majority but only 8.6% for the RTnf -based method.

Thirdly, we see that when only the fastest triplet of observers (“# voters=3”)

is allowed to make a decision, there is a very marked improvement in accuracy

over pairs or single fastest respondents for both majority and the RTnf -based

method for all group sizes. The benefits of such a scheme are particularly clear

for larger groups where the fastest triplet’s response is much faster compared with

the full group response, while the accuracy is significantly better than for pairs

or single fastest respondents. For instance, for groups of size 9, the fastest triplet

has an error rate of 4.4% and a response time of 610 ms for both majority and

the RTnf -based method.

Fourthly, for fastest subgroups of four observers (“# voters=4”) we see a

similar situation to that of the fastest pairs. That is, one never gains from using

the fastest four observers to make a decision with majority rule, as accuracy is

worse than for the three fastest observers and speed is slower. However, with the
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RTnf -based method we see that, for groups of size 4, 5, 6 and 7, the four fastest

observers are more accurate (but obviously slower) than any smaller subgroup.

This behaviour seems to be present also at larger subgroup sizes.

Finally, this approach of considering only the fastest respondents for comput-

ing the group decision could also compensate the disadvantage in speed of using

response-locked epochs, which require to collect neural data even after the re-

sponse is provided. This is particularly useful in online systems, where real-time

constraints apply.

4.3.5 ERP Analysis

We used two statistical tests to analyse our ERP data sets. To get an indication

of the differences in the statistical distributions of ERPs for correct and incorrect

responses, we grouped all ERPs (irrespective of the participant they pertained to)

into two corresponding sets. We then applied the Kruskal-Wallis test to compare

the voltages measured in each channel at each time step in the two data sets.

We also performed a two-tailed Wilcoxon signed-rank test for paired samples

to compare the mean ERPs obtained on an individual basis. It should be noted

that, for the central-limit theorem, means tend to be distributed according to a

normal distribution. So, in principle one could also use a paired-sample t-test

to perform this comparison. We performed both this test and the Wilcoxon test

(which does not assume normal distribution) on our data. Differences in p-values

were minimal. Here we prefer to report only the results of the statistically-weaker

Wilcoxon test as this relies on fewer assumptions.

Figure 4.12 shows the stimulus-locked grand averages (averages of individ-
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ual averages) of the ERPs recorded in our experiment for correct and incorrect

responses for channels Fz, Cz, Pz, Oz, C3, C4, P5 and P6 and the p-values of

the statistical tests comparing the signals for correct and incorrect trials in the

period immediately following the onset of stimulus Set 2. Figure 4.13 shows

corresponding response-locked grand averages.

If we look at the grand averages in Figure 4.12, we see that generally there

are seemingly small differences between the ERPs for correct and incorrect trials.

Differences do exist, however, particularly in the region where the P300 wave

peaks (approximately 500 ms after the presentation of Set 2) and for central and

posterior electrodes in the right hemisphere, i.e., Cz, Pz, C4 and P4. Similar

differences are present in many other channels in the same regions, as shown in

Figure 4.14(left) which shows a snapshot of the scalp potentials recorded 500 ms

after the presentation of the stimulus (in a stimulus-locked reference system).

If we look at the response-locked grand averages in Figure 4.13, however, we

see much larger differences between the correct and incorrect responses in all 8

channels shown, either in the period preceding the response or during it or in

both, with most of these differences being highly statistically significant. Similar

differences are present in most other channels, as shown in Figure 4.14 which

shows snapshots of the scalp potentials recorded 500 ms before the response

(centre) and at the response (right).

We should note that a response-locked reference system amplifies the differ-

ences in the duration of the memory-retrieval and decision phases following the

presentation of the stimulus for the two conditions. More specifically, P300s start

approximately 600 ms before the response for incorrect decisions and approx-

imately 400 ms before the response for correct decisions (as the corresponding
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Figure 4.12: Stimulus-locked grand averages of the EEG activity (in µV) for chan-
nels Fz, Cz, Pz, Oz, C3, C4, P5 and P6 and corresponding temporal profile of the
p-values of the Wilcoxon signed rank test comparing participant-by-participant
averages (grey) and of the Kruskal-Wallis test for all ERPs recorded, irrespective
of participant (black), in each error class. The dotted lines represent the 5%
confidence level. The corresponding axes are oriented so that values above that
line indicate statistical significance and vice versa.
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Figure 4.13: Response-locked grand averages of the EEG activity (in µV) for
channels Fz, Cz, Pz, Oz, C3, C4, P5 and P6 and corresponding temporal pro-
file of the p-values of the Wilcoxon signed rank test comparing participant-by-
participant averages (grey) and of the Kruskal-Wallis test for all ERPs recorded,
irrespective of participant (black), in each error class. The dotted lines represent
the 5% confidence level. The corresponding axes are oriented so that values above
that line indicate statistical significance and vice versa.
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Figure 4.14: Scalp maps representing the grand averages of the EEG activity (in
µV) recorded 500 ms after the presentation of the second stimulus, as represented
by the stimulus-locked epochs (left), and 500 ms before the response (centre)
and at the response (right), as represented by the response-locked epochs. Rows
represent the activity for correct and incorrect trials (first two rows), the difference
between them (third row) and the corresponding p-values of the Kruskal-Wallis
test used to compare the two sets.
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median response times are approximately 880 ms and 690 ms, respectively). They

peak at approximately 400 ms and 200 ms before the response, respectively. This

temporal shift and the small differences in P300 amplitude seen in the stimulus-

locked grand averages for the two conditions cause the large statistically signif-

icant differences observed in a response-locked reference system up to 150 ms

before the response (see Figure 4.14(centre)).

4.4 Conclusions

This chapter has described the results obtained by groups of observers undertak-

ing a visual matching task making decisions using the cBCI framework described

in Chapter 3. To test our ideas in a suitably constrained environment, we used

a particularly simple set of visual stimuli, which, however, were presented very

briefly thereby making the matching task arduous. We compared group deci-

sions with those made by single non-BCI users and identically-sized groups of

non-BCI users. The approach we have taken is unusual in relation to previous

studies on collaborative BCI as here we have exploited not only neural data but

also behavioural measures of confidence to weigh group members’ decisions on a

decision-by-decision basis.

Experimental evidence gathered with 10 participants conclusively indicates

that group decisions (whether BCI-assisted or not) are nearly always statisti-

cally significantly superior to single user decisions. Also, BCI-assisted group

decisions obtained by weighting observers’ responses via our nf -based and RTnf -

based methods were almost always statistically better than those obtained by

equally-sized (non-BCI) groups adopting the majority rule. These methods are
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particularly beneficial to groups of an even size, where the standard majority rule

is unable to reach a decision more accurate than random in the presence of ties.

We also analysed the relationship between performance and response times.

As predicted, we found that faster individual RTs are associated with increased

accuracy. We also found that the larger a group, the longer it takes to gather all

the single decisions and give a group response, so that the advantage obtained

by groups over a single observer in terms of accuracy is associated with a disad-

vantageous response time. Based on these observations, we considered a scheme

where only the fastest respondents of each group influence the group’s decision

and found that this improves significantly the group’s response time with very

little or no cost in terms of accuracy, making groups not only more accurate but

also faster than single observers.

Although there are many advantages of group decision making, difficulties in

communication and interaction, strong leadership and group judgement biases

can sometimes be obstacles, particularly when accurate and fast decisions have

to be taken. Here we demonstrated that, for a simple visual matching task,

the proposed cBCI framework achieves some of the benefits of groups decisions,

namely error correction and knowledge/certainty integration, without requiring

intra-group communication and, thereby, avoiding some of the potential weak-

nesses of group decision-making.

One of the aims of this thesis was to develop a method based on neural

features to estimate the decision confidence of multiple participants and improve

group performance. Several ERP components may be possibly used to predict the

accuracy or confidence of one’s response. We chose to include in our neural feature

the ERPs in the proximity of the response (before and after it) by providing the
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system with a 1500 ms response-locked window of EEG starting 1 s before the

response. We found that this gives reliable information on decision confidence,

but in the following chapters and in future research we will also explore other

possibilities.

This chapter has illustrated a very first application of the proposed cBCI

framework which has, inevitably, some limitations. For example, here observers

performed a relatively simple visual matching task, which is nowhere as complex

as those carried out in realistic decision-making situations. The following chapters

of this thesis will investigate more demanding real-world scenarios, with different

perceptual modalities (e.g., audio signals) and with more complex decisions. Fur-

thermore, we will also investigate whether it is possible to extend our approach

to decisions where the team members are exposed to different sources of infor-

mation (unlike here, where they were exposed to exactly the same information)

– see Chapter 8.



Chapter 5

Augmenting Group Performance

in Visual Search

This chapter explores the possibility of using the proposed cBCI framework to

augment visual search performance of groups of users. It describes the results

obtained with two visual search experiments: (a) one using simple shapes (i.e.,

oriented and coloured rectangles) where the task consisted in spotting an irregular

item, and (b) one using realistic stimuli (i.e., pictures of arctic environments)

where participants had to spot the presence of a photorealistically-added polar

bear. Most of the material in this chapter has been published in [198, 199].

5.1 Introduction

One of the most important tasks of the visual system is to perform visual search,

namely to scan the environment in search for an item of interest. We perform

this task multiple times per day but, despite evolution, humans still find it taxing
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and difficult – see Section 2.6.

The promising results obtained with simple visual matching task described

in Chapter 4 encouraged us in exploring the possibility of using our cBCI to

make group visual search more accurate, as well as applying that system to more

complex visual tasks. This would allow us to validate those results in a different

context, while other cBCIs have generally been validated with only one task

– see Section 2.5. Visual search is a task that is perceptually and cognitively

different from the visual matching task previously tested. The high perceptual

load (due to the large number of non-targets presented in each display), the

difficulty of discriminating between targets and non-targets (due to the shared

features between the target and the non-targets) and the fast presentation of each

display render decisions very hard in this task. This chapter describes the results

obtained in this investigation via two main studies.

In the first study, we designed a traditional visual search experiment (Ex-

periment 1) in which participants were presented a display containing a set of

vertical and horizontal, red and green rectangles (bars) for 250 ms and had to

decide whether or not a vertical red bar (i.e., target) was present. This exper-

iment used simple stimuli similar to the ones used in [103]. However, to make

the task even more difficult for a single user, we reduced the pop-out effect by

using a combination of features to identify a target (i.e., colour and orientation)

instead of a single feature. Hence, it was not sufficient for a participant to search

for red bars or vertical ones to identify the target in the display, but he/she had

to focus on the two features together. We then used the framework described in

Chapter 3 to obtain group decisions based on the confidence estimated from a

combination of physiological and behavioural signals.
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The second study aimed at moving towards real-life applications of the pro-

posed cBCI. We designed a new experiment (Experiment 2) where the stimuli

were realistic images representing arctic environments. In each display, a variable

number of penguins (i.e., distractors) were present and, in target images, a polar

bear was also present in a random (but realistic) location. Participants had to

report whether or not they had seen a polar bear (i.e., target) in the display,

which was presented for 250 ms. These displays aimed at simulating environ-

ments in which the target can camouflage, as this makes the visual search task

more difficult and realistic (e.g., for threat detection).

Furthermore, this chapter describes the advances made in identifying the best

set of behavioural and physiological correlates of the decision confidence. We

used a combination of (a) neural features extracted from both stimulus- and

response-locked EEG epochs via spatio-temporal common spatial patterns, (b)

eye movement features extracted from both stimulus- and response-locked epochs

recorded via an eye tracker, and (c) RTs, to estimate the decision confidence of

the user and obtain superior group decisions. The choice of using both stimulus-

and response-locked epochs was guided by previous studies showing that both are

informative of the decision-making process [229, 143].

Eye movements have been studied for years because they seem to reveal many

hidden information, such as mental workload [114] or personal emotions. Eye

blinks are the rapid closing and reopening of the eyelid that a human performs

several times every minute. Eye blink rate and duration are two of the most

common used indicators for fatigue and workload. Researchers have used eye

blinks to detect workload in many situations, including heavy professions like

drivers [88, 156, 7] or air traffic controllers [13]. Therefore, eye movement sig-
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nals could represent an additional source of information related to the decision

confidence for our cBCI.

5.2 Methods

5.2.1 Participants

Ten healthy volunteers (average age 28.5±6.0 years, 4 females) took part in both

experiments. The order of the experiments was counterbalanced, so that five

observers undertook Experiment 1 first and then Experiment 2, and the remaining

observers undertook the experiments in the opposite order. All participants had

normal or corrected-to-normal vision.

5.2.2 Stimuli and Tasks

We designed both experiments by using the percent-correct approach described in

Section 2.6, so that the difficulty of the task was due to the lack of time available

for scanning the whole image.

Each experiment consisted of 8 blocks of 40 trials each, for a total of 320 trials.

Figure 5.1 shows the sequence of displays presented in a trial for Experiment 1

(top) and Experiment 2 (bottom), which they only differed in the image used

as a stimulus and both followed the protocol described in Section 3.2. In both

experiments, the stimulus was followed by a mask consisting in a black and white

24×14 checkerboard presented for 250 ms.

In Experiment 1, the stimulus consisted in a display containing a set of 40

bars, either green (RGB (0,1,0)) or red (RGB (1,0,0)), vertical or horizontal, on a
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Experiment 1

Mask
Stimulus

Response

RT250 ms 250 ms

1000 ms

Fixation Cross

Experiment 2

Mask
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Response

RT250 ms 250 ms

1000 ms

Fixation Cross

Figure 5.1: Sequence of displays presented in the Experiments 1 (top) and 2
(bottom).

black background, which was presented for 250 ms. Participants had to decide, as

quickly as possible, whether or not there was a vertical red bar, the target, among

the vertical green, horizontal green and horizontal red bars, the distractors.

The position of the bars was randomly selected (without allowing overlaps

between bars) within a rectangular screen region subtending approximately 17.7

degrees horizontally and 11.9 degrees vertically. Bars subtended approximately

1.09 degrees in their longer dimensions and 0.36 degrees in their shorter dimen-

sion. The number of distractors of each type was also randomly selected, but

ensuring that at least one instance of each type was present in the display. Sam-

ple displays with and without the target are shown in Figure 5.2(top).

For Experiment 2, we used a set of manually-created realistic images represent-

ing an arctic environment containing a variable number of penguins (distractors)
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Figure 5.2: Examples of displays with and without the target (left and right,
respectively) used in experiments 1 (top) and 2 (bottom).

and, possibly, a polar bear (target). We used five different arctic environments

(backgrounds) as non-target stimuli. We then added two different bear pictures

in four possible positions to each background to obtain 40 different images con-

taining the target.

An example of a background (and non-target stimulus) and an example of

a correspondent display containing the target are shown in Figure 5.2(bottom).

Each image was displayed in full screen mode and subtended approximately 30.29

degrees horizontally and 19.22 degrees vertically.

The sequences of stimuli used in each experiment were randomly generated,

stored and reused with all participants. This made it possible to test offline the

benefits of combining the decisions of different participants to form group deci-



CHAPTER 5. AUGMENTING GROUP PERFORMANCE IN VISUAL SEARCH 101

sions using the proposed cBCI without requiring to collect data in parallel. The

stimuli containing the target were presented in 25% of trials of each experiment.

Participants were comfortably seated at about 80 cm from an LCD screen.

Briefing, preparation of participants and task practice of both experiments (2

blocks of 10 trials each) took approximately 45 minutes, while the actual ex-

periments lasted approximately 25 minutes each. The two experiments were

undertaken on the same day with a break of a few minutes in between.

5.2.3 Data Acquisition and Transformation

Participants undertook experiments in conditions of complete absence of commu-

nication or any other form of social influence.

Data were acquired and preprocessed as explained in Chapter 3. As already

mentioned in Chapter 3, for these experiments we set pb = 6 Hz, sb = 8 Hz and

the final sampling rate sr = 16 Hz. We have also verified that it is possible to

slightly improve the classification performance of the cBCI by using pb = 14 Hz,

sb = 16 Hz and sr = 32 Hz. However, this has the significant disadvantage of

tripling the feature extraction time.

For each participant, we have applied LTCCSP to the response- and stimulus-

locked epochs of the training set separately to obtain two projection matrices,

WRlckd and WSlckd, respectively. The original epochs were then transformed using

these matrices to obtain two new feature spaces where data are organised in such

a way that the first and the last columns of each have the maximum and the

minimum difference in terms of variance, respectively. The variances of the first

and last columns of the response-locked and the stimulus-locked transformed
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epochs (four features in total) were then used as neural features.

It should be noted that, as we show in Section 5.3, LTCCSP allows to achieve

very good performance with only two features, while with PCA (used in the

visual matching experiment described in Chapter 4) we needed 24 features to

obtain good performance. This significant reduction in the number of features

allowed us to use also the information extracted from the stimulus-locked epochs

to better capture the brain activity correlated with the decision confidence.

As done in the visual matching experiment, we have also added the RT to the

feature vector used by the cBCI to estimate the decision confidence.

To complement the neural and behavioural features, in these experiments we

have also extracted four features from the vertical component of the eye move-

ments recorded by the Jazz eye tracker associated to both stimulus- and response-

locked epochs (see Chapter 3). These four features contain information about the

occurrence of eye blinks and the activity of the eyes during the experiment.

5.2.4 Confidence Estimation and Group Decisions

The decision confidence of each participant was estimated by using all the neu-

ral, behavioural and physiological features described in the previous section. As

discussed in Chapter 3, we split the available data into a training set, which

was used to compute the LTCCSP matrices and fit the model used to predict

the decision confidence (LARS), and a test set, which was used to evaluate the

performance of the cBCI. In these experiments we used 10-fold cross-validation

to reduce the risk of overfitting, as this choice of k guarantees that all the folds

have the same number of samples (i.e., 288 in the training set and 32 in the test
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set). The confidence estimates obtained from the data available in the test set of

each participant i were then transformed into confidence weights wi by using the

negative exponential weighting function described in Equation (3.3).

For comparison, in Experiment 1 we have also estimated the decision confi-

dence by using different subsets of the available types of features, namely RTs

(as done in Chapter 4), RTs and eye features, and LTCCSP neural features and

RTs. Moreover, to assess whether or not LTCCSP better identifies neural corre-

lates of the decision confidence than PCA used previously, we have concatenated

the stimulus- and response-locked epochs and extracted PCA features from the

resulting epochs.1 We then compared the performance obtained by a cBCI using

these PCA features and the RTs with the performance of a cBCI using LTCCSP

features (extracted separately from response- and stimulus-locked epochs) and

RTs.

Considering the results obtained with Experiment 1 (reported in Section 5.3),

for Experiment 2 we have only considered a cBCI estimating the decision confi-

dence with LTCCSP neural features, RTs and eye movements, and a cBCI using

only LTCCSP neural features and RTs.

It should be noted that in the cBCI used in Chapter 4, the confidence esti-

mated by using both PCA neural features and RTs was obtained by training two

different classifiers (one for each type of feature), the outputs of which were then

combined to obtain a confidence estimator. However, we found that this added

1As discussed in Chapter 4, the high number of features required by PCA to achieve good
performance (namely, 24) increased the risk of overfitting of the linear classifier used (LARS).
For this reason, we previously decided to extract neural features from the response-locked
epochs only. However, here, for a fair comparison, we decided to include both types of epoch in
the analysis by concatenating them, so that the total number of features remains 24 but PCA
and LTCCSP have the same information available to identify neural correlates of the decision
confidence.
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complexity was not necessary. Hence, here we trained a single linear model with

all the features used by the cBCI, which further reduced the free parameters in

our system.

Group decisions were then made as described in Section 3.8 by using the

various confidence estimates analysed in this chapter and we compared the cBCI

decisions with choices made by non-BCI groups using the standard majority rule.

5.3 Results

5.3.1 Individual Performance

Since the main aim of this thesis is to develop a cBCI to improve human per-

formance, we start by looking at the errors of each participant in the two visual

search tasks considered in this chapter. Figure 5.3 shows the error rates of each

participant for Experiment 1 (left) and 2 (right). Observers had very different

individual levels of performance. Moreover, the average error rate in both visual

search experiments was higher than the average error rate achieved by partici-

pants of the visual matching task described in Chapter 4, confirming that these

visual search tasks are much more taxing and difficult for individuals.

5.3.2 Group Performance in Experiment 1

Figure 5.4 shows the mean error rate for groups of different sizes in Experiment 1

making their decisions using the majority rule as well as the confidence-based

methods analysed in this study. Table 5.1 provides a numerical representation of

the same information.
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Figure 5.3: Error rates of participants of Experiment 1 (left) and 2 (right). The
average error rate across the participants of each experiment is shown by the
dashed black lines.
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Figure 5.4: Average percentage of errors vs group size in Experiment 1 for group
decisions made by: (1) the majority rule, (2) a RT-based decision system, (3) a
RT- and eye-based decision system, (4) a cBCI using LTCCSP neural features
and RTs, and (5) a cBCI using LTCCSP neural features, RTs and eye movements
features. The y axis uses a logarithmic scale.
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As we found in Chapter 4, also for a visual search task a reason why confidence-

based decision-making rules outperform simple majority is that they meaningfully

break ties (which are otherwise resolved with a random decision) in even-sized

groups. Indeed, as we can see both in Table 5.1 and Figure 5.4, the difference in

performance for such groups is usually much greater than for odd-sized groups.

However, all our confidence-based systems, but particularly the cBCI based on

LTCCSP, RTs and eye movements features, appear to augment human decision-

making performance also with odd-sized groups.

We have also seen that, as found for the visual matching task (Chapter 4),

the performance of the cBCI system using only behavioural features appears to

be worse than when using a combination of neural and behavioural features for

most group sizes (i.e., compare “RT” and “LTCCSP+RT” columns in Table 5.1).

The p-values of the Wilcoxon signed-rank tests performed to compare the

error distributions across different methods are reported in Table 5.2. Sample

sizes are indicated in the last row of the table. It is clear that for all group

sizes our new LTCCSP-based cBCI yields group decisions that are significantly

better than traditional (majority-based) group decisions. Also, for many group

sizes such decisions are significantly better than those made by groups assisted

by cBCIs using only a subset of the types of features available.

When analysing group decision times we found similar results to those ob-

tained with the visual matching task (Chapter 4): groups increase decision times

by up to 70% compared to individuals. However, as we did in Chapter 4, we ver-

ified that group RTs can be shortened by allowing only the fastest respondents

to contribute in the group’s decision (data not reported). With this technique,

again there are many choices that allow cBCI-assisted groups to be both faster
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Table 5.1: Tabular representation of the results in Figure 5.4. The best results
for each group size are shown in boldface while the worst are in italics.

Group size Majority RT RT+Eyes LTCCSP+RT LTCCSP+RT+Eyes

1 21.00 21.00 21.00 21.00 21.00

2 21.00 13.83 13.89 13.94 14.17

3 12.60 12.31 12.23 12.26 12.15

4 12.60 9.09 9.01 9.05 9.02

5 9.21 8.66 8.58 8.52 8.40

6 9.21 7.32 7.28 7.11 7.08

7 7.66 7.10 7.05 6.96 6.81

8 7.66 6.38 6.47 6.08 6.05

9 6.72 6.28 6.28 6.13 5.97

10 6.72 5.62 5.94 5.62 5.94

Table 5.2: Statistical comparison of methods for group decisions for different
group sizes in Experiment 1. The table reports the p-values returned by the one-
tailed Wilcoxon signed-rank test when comparing the performance of groups of
different sizes adopting the different decision methods analysed in this chapter.
The number of groups of each size that could be assembled with 10 participants
is indicated in the last row of the table. p-values below the statistical significance
level 0.05 are in bold face.

Group size

Comparison 2 3 4 5 6 7 8 9

Is RT better than Major-
ity?

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0063

Is RT+Eyes better than
RT?

0.6378 0.0003 0.0128 0.0002 0.0535 0.0544 0.9341 0.5562

Is LTCCSP+RT+Eyes
better than Majority?

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0026

Is LTCCSP+RT+Eyes
better than RT?

0.9773 0.0000 0.0288 0.0000 0.0000 0.0000 0.0000 0.0264

Is LTCCSP+RT+Eyes
better than RT+Eyes?

0.9811 0.0001 0.4176 0.0000 0.0000 0.0000 0.0000 0.0116

Is LTCCSP+RT+Eyes
better than LTCCSP+RT?

0.9548 0.0001 0.3212 0.0000 0.2416 0.0000 0.2810 0.0599

Sample size 45 120 210 252 210 120 45 10
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Table 5.3: Tabular representation of the results in Figure 5.5. The best results
for each group size are shown in boldface while the worst are in italics.

Group size Majority LTCCSP+RT LTCCSP+RT+Eyes

1 18.47 18.47 18.47

2 18.47 13.49 13.30

3 12.04 12.00 11.97

4 12.04 9.94 9.81

5 9.98 9.90 9.76

6 9.98 8.69 8.63

7 8.91 8.76 8.58

8 8.91 8.22 8.08

9 8.12 7.94 7.81

10 8.12 7.81 7.50

and more accurate than single individuals. For instance, by allowing only the

fastest 2 respondents in groups of 5 to decide in our LTCCSP-based cBCI, error

rates are halved while RTs are approximately 200 ms shorter than for an average

individual.

5.3.3 Group Performance in Experiment 2

Let us now analyse the performance of groups in Experiment 2, where the visual

search task uses realistic stimuli.

Figure 5.5 shows the mean error rate of groups of different sizes in Experi-

ment 2 making their decisions using the majority rule, a cBCI based on LTCCSP

neural features and RTs, and a cBCI based on LTCCSP neural features, RTs and

eye movements features. Table 5.3 provides a numerical representation of the

same information.
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Figure 5.5: Error rates of groups of different size in Experiment 2 making decisions
using (1) the majority rule, (2) a cBCI using LTCCSP neural features and RTs,
and (3) a cBCI using LTCCSP neural features, RTs and eye movements features.
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Table 5.4: Statistical comparison of methods for group decisions for different
group sizes in Experiment 2. The table reports the p-values returned by the
one-tailed Wilcoxon signed-rank test when comparing the performance of groups
of different sizes adopting the majority rule, a cBCI based on LTCCSP neural
features and RTs, and a cBCI based on LTTCSP neural features, RTs and eye
movements features. The number of groups of each size that could be assembled
with 10 participants is indicated in the last row of the table. p-values below the
statistical significance level 0.05 are in bold face.

Group size

Comparison 2 3 4 5 6 7 8 9

Is LTCCSP+RT better
than Majority?

0.0000 0.0118 0.0000 0.0000 0.0000 0.0000 0.0000 0.0354

Is LTCCSP+RT+Eyes
better than Majority?

0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0096

Is LTCCSP+RT+Eyes
better than LTCCSP+RT?

0.1332 0.0195 0.0004 0.0000 0.0245 0.0000 0.0119 0.0359

Sample size 45 120 210 252 210 120 45 10

These results confirm that the cBCI boosts group performance over traditional

majority even in realistic visual search, making another important step towards

bringing this cBCI out of the lab. Most of the reduction in error rates happens for

even-sized groups, where the cBCI is able to break ties better than coin flipping

(used by majority in case of ties). Moreover, the addition of eye movements

features seems to slightly improve the performance of cBCI-assisted groups even

more, especially for large groups.

To validate these differences statistically, we used the one-tailed Wilcoxon

signed-rank test as done previously – see Section 5.3.2. The p-values are reported

in Table 5.4. While both confidence-based methods are significantly superior than

standard majority, the cBCI based also on eye movements features is significantly

better than the cBCI based only on neural features and RTs for all group sizes

3–9. The two cBCIs perform on par for groups of size 2.
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5.3.4 Group Performance Across Tasks

To gather some preliminary evidence on the degree of performance improvement

that our cBCI can deliver across tasks, in Figure 5.6 we compare the results

obtained with the less challenging visual matching task described in Chapter 4

and the results obtained by groups performing the visual search task studied in

Experiment 1. In either case we report the results obtained with Majority (solid

lines) and a cBCI using 24 PCA neural features extracted from the response-

locked epochs and the RTs (dashed lines). We have plotted these data using

a logarithmic scale as this makes it possible to compare the relative improve-

ments across systems (equal distances along the ordinates correspond to equal

improvement percentages). For reference, we also report the results obtained in

the visual search task by our best method: the cBCI based on LTCCSP response-

and stimulus-locked neural features, RTs and eye movements (black dotted line).

The most apparent feature in the figure is that the lines representing the

visual matching task (blue) and those representing the visual search task (red)

run almost parallel, indicating that both Majority and the PCA-based cBCI

provide the same relative benefits as the group size varies. Of course the cBCI

lines are below the Majority lines (as we have already discussed). However, the

distances between the solid and the dashed lines of each colour follow a very

similar profile. This indicates that the relative benefits obtained by the cBCI

over Majority at each group size are comparable across the two tasks. Indeed,

the average increase in performance across group sizes brought by the PCA-based

cBCI is 8.6% for visual matching and 8.7% for visual search.

These results corroborate the hypothesis that the approach used by the cBCI
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Figure 5.6: Comparison of the results obtained in Chapter 4 with a visual match-
ing task and the results of the present work with the visual search task of Ex-
periment 1 obtained with Majority and PCA-based cBCIs. The black dotted line
represents the results of the cBCI based on LTCCSP, RT and eye features in the
visual search task. The ordinate axis uses a logarithmic scale.

to obtain and exploit correlates of decision confidence generalises well to tasks of

different nature and difficulty.

5.3.5 LTCCSP vs PCA Neural Features

One of the main contributions of this chapter was to replace PCA with LTCCSP

as the method to extract the neural features. To further investigate the advan-

tage provided by this choice, we compared the performance obtained by groups

in Experiment 1 using a cBCI based on PCA neural features and RTs with the

performance obtained by a cBCI using LTCCSP neural features and RTs. Fig-

ure 5.7 shows the error rates of groups of different sizes using the two methods
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Figure 5.7: Average percentage of errors vs group size for group decisions made
by: (1) the majority rule, (2) a cBCI using PCA neural features and RTs, and
(3) a cBCI using LTCCSP neural features and RTs.

and the error rates of traditional non-BCI groups using the majority rule. The

p-values of the Wilcoxon signed-rank test used to compare the three methods are

shown in Table 5.5.

These results show that the cBCI based on LTCCSP neural features is sta-

tistically significantly better than the cBCI based on PCA features for all group

sizes except for groups of three observers, where the two methods are on par.

Moreover, as expected, both cBCIs are significantly better than traditional non-

BCI groups using the majority rule for all group sizes, although the PCA-based

cBCI performs on par with non-BCI groups for groups of size 9.

Taken together, these results suggest that LTCCSP should be preferred to

PCA for extracting neural features.
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Table 5.5: p-values returned by the one-tailed Wilcoxon signed-rank test when
comparing the performance of groups of different sizes adopting the majority
rule, the PCA-based cBCI and the LTCCSP-based cBCI. The number of groups
of each size that could be assembled with 10 participants is indicated in the last
row of the table. p-values below the statistical significance level 0.05 are in bold
face.

Group size

Comparison 2 3 4 5 6 7 8 9

Is PCA+RT better
than Majority?

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2284

Is LTCCSP+RT better
than Majority?

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0042

Is LTCCSP+RT better
than PCA+RT?

0.0000 0.5562 0.0000 0.0000 0.0000 0.0001 0.0000 0.0241

Sample size 45 120 210 252 210 120 45 10

5.3.6 ERP Analysis

To provide more evidence on why the cBCI achieves superior performance when

using also neural features, we analysed the differences in the statistical distribu-

tions of ERPs for correct (confident) and incorrect (non-confident) responses in

each experiment. Since our cBCI uses both stimulus-locked and response-locked

epochs, we show results in both representations. For better visualisation, we

down-sampled the epochs data to 64 Hz instead of 16 Hz (as used by the cBCI).

Figure 5.8 shows the stimulus-locked grand averages of a representative subset

of the 64 electrode sites used for EEG recording (i.e., Fz, Cz, C3 and C4) for

Experiments 1 (left) and 2 (right). As done in Chapter 4, we have used the

Kruskal-Wallis test to compare the voltages measured in each channel at each

time step for the correct and incorrect trials, and the two-tailed Wilcoxon signed-

rank test for paired samples to compare the mean ERPs obtained on an individual

basis. The p-values of the statistical tests are also shown in Figure 5.8. Figure 5.9
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shows corresponding response-locked grand averages.

These results show that the ERPs of the correct and incorrect classes are

significantly different at many time steps in both stimulus- and response-locked

representations for both experiments. This suggests that our original decision of

discarding the stimulus-locked epochs in the cBCI used with the visual matching

task (see Chapter 4) could have led to lose important information about the

decision confidence.

The stimulus-locked ERP representation (Figure 5.8) allows the cBCI to see

in full resolution [140] and, thus, exploit differences in exogenous and endoge-

nous ERPs associated with the processing and evaluation of the stimulus. In

this representation, major differences between correct and incorrect trials occur

at approximately 600 ms after stimulus onset, where a slow positive wave has

a statistically significantly greater amplitude for the correct than the incorrect

decisions. This is likely to be due to the fact that when a trial is particularly

hard and, hence, users being unsure of their decision, the amplitude of the P300

is reduced [147], reflecting a more elaborate decision process.

Significant differences between the ERPs elicited in correct and incorrect trials

are also present in the response-locked analysis (Figure 5.9). Here the traditional

stimulus-locked ERPs associated with early visual processing (such as the P1, N1,

P2, and N2) are almost completely absent due to the blurring effect associated

with wide RT distributions (see [140] for details) and the preprocessing taking

place in the system (in particular the de-trending of the epochs). However, it is

apparent that the final phases of the decision-making process (i.e., a few hundred

milliseconds before the response) are associated with different amplitudes for

correct and incorrect trials, particularly for posterior and occipital channels.
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Figure 5.8: Stimulus-locked grand averages for channels Fz, Cz, C3, C4 and
corresponding temporal profile of the p-values of the Wilcoxon signed-rank test
comparing participant-by-participant averages (grey) and of the Kruskal-Wallis
test for all ERPs recorded, irrespective of participant (black), in each error class.
The dotted lines represent the 5% confidence level. The corresponding axes are
oriented so that values above that line indicate statistical significance.
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Figure 5.9: Response-locked grand averages for channels Fz, Cz, C3, C4 and
corresponding temporal profile of the p-values of the Wilcoxon signed-rank test
comparing participant-by-participant averages (grey) and of the Kruskal-Wallis
test for all ERPs recorded, irrespective of participant (black), in each error class.
The dotted lines represent the 5% confidence level. The corresponding axes are
oriented so that values above that line indicate statistical significance.
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When comparing the stimulus- and response-locked epochs between Experi-

ments 1 and 2, we can see that the visual search experiment using realistic stimuli

generates ERPs which are more significantly different between the correct and in-

correct classes than the ERPs of Experiment 1. The grand averages of the correct

class show P300 waves which last longer in Experiment 2 than in Experiment 1.

Participants might be more engaged with the task due to its reality, which can

therefore affect the P300 wave [145]. These results suggest that the choice of

using realistic stimuli makes the brain signals more informative for the cBCI, as

well as making another step towards real applications of such a system.

To provide an overview of the differences in ERPs between the correct and

incorrect trials across the whole scalp, Figure 5.10 shows a snapshot of the scalp

potentials recorded 600 ms after the presentation of the stimulus for Experiments

1 and 2, while Figure 5.11 shows another snapshot taken 250 ms before the user’s

response. We chose these time steps because the differences between the two

classes were bigger (e.g., the P300s have their peak between 400 and 700 ms

after the stimulus onset [102]). The first three rows of these figures report the

scalp maps representing the grand averages for the correct and incorrect trials

and their differences, while the last row shows the scalp maps of the p-value of

the Kruskal-Wallis test used to compare the voltages recorded at each channel in

the two classes.

These scalp maps clearly show how the information provided by stimulus- and

response-locked epochs is complementary. Most of the differences of the stimulus-

locked representation of the EEG signals are located in the frontal and parietal

lobes. Response-locked epochs capture evidence of the decision confidence from

the occipital lobe in Experiment 1 and all around the scalp for Experiment 2,
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Figure 5.10: Scalp maps of the grand averages of the EEG activity recorded
600 ms after stimulus onset for Experiments 1 (first column) and 2 (second col-
umn). Rows represent the activity for correct and incorrect trials (first two rows),
the difference between them (third row) and the corresponding p-values of the
Kruskal-Wallis test used to compare the two sets (last row).
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Figure 5.11: Scalp maps of the grand averages of the EEG activity recorded
250 ms before the response of the user for Experiments 1 (first column) and 2
(second column). Rows represent the activity for correct and incorrect trials
(first two rows), the difference between them (third row) and the corresponding
p-values of the Kruskal-Wallis test used to compare the two sets (last row).
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further confirming our previous findings that ERPs are more informative in the

visual search task with realistic stimuli than in the one based on bars. These re-

sults corroborate our assumption that both representations are useful to estimate

decision confidence and should, therefore, be available to the cBCI.

5.4 Conclusions

This chapter has explored the possibility of using the cBCI framework described

in Chapter 3 to augment group performance in visual search. We started our

investigations with a traditional experiment in which observers had to identify

a vertical red bar in a display containing tens of coloured horizontal/vertical

bars presented for 250 ms. We then extended our analysis to a more realistic

visual search task where participants had to identify a polar bear in an arctic

environment containing many penguins.

With both experiments, we have found that cBCI-assisted groups of different

size were more accurate than equally-sized non-BCI groups using the simple ma-

jority. Most of this group augmentation occurred for even-sized groups, where

the cBCI was able to break ties towards correct decisions.

We have also compared the performance of various cBCIs based on differ-

ent types of confidence correlates, to investigate which combination of features

achieves the best group decisions. We have extracted neural features with spatio-

temporal common spatial patterns, a technique generally used in motor-imagery

BCI [233], from both response- and stimulus-locked epochs. We showed that this

approach provided more information to the cBCI to assess the decision confidence.

The performance obtained by a cBCI using such features and RTs was compared



CHAPTER 5. AUGMENTING GROUP PERFORMANCE IN VISUAL SEARCH 122

with the performance of our previous cBCI based on PCA neural features and

RTs. We found that LTCCSP performs significantly better than PCA.

Moreover, this chapter has started investigating the possibility of combining

different types of features (i.e., behavioural, neural and physiological) to estimate

the decision confidence of a user. We have compared the group performance

obtained by a decision-making system based on (1) RTs only, (2) RTs and eye

movements features, (3) RTs and LTCCSP neural features, and (4) RTs, LTCCSP

and eye movements features. Results indicate that all three types of features

provide unique information about the decision confidence and, therefore, the cBCI

based on all of them achieves the best performance for most group sizes.

Furthermore, we have verified that our cBCI generalises across tasks. More

specifically, we used the cBCI based on 24 PCA neural features and RTs described

in Chapter 4 to estimate the decision confidence of the participants undertaking

the visual search task with simple stimuli. The results obtained show that both

traditional groups based on majority and the cBCI provide the same relative

benefits as the group size increases.

When analysing the neural correlates of the decision confidence, we found

that the use of realistic stimuli makes correct (confident) decisions easier to be

distinguished from incorrect (not confident) ones. This confidence fingerprint

could be exploited further with even more realistic tasks (e.g., video-games).

The promising results described in this chapter were obtained with partici-

pants performing the experiments in isolation. Group decisions were then sim-

ulated offline. A drawback of this approach is that it does not consider the

impact that collaboration and, in general, being in a group can have on an indi-

vidual’s behaviour and cognitive processing, and, ultimately, on neural activity.
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The interaction in a real environment would most likely change the neural sig-

nals thereby affecting the performance of a cBCI. In the next chapter, we will

investigate the impact of a constrained form of communication on individual and

group performance.



Chapter 6

Impact of Group Communication

on Visual Search Performance

This chapter studies the impact that a constrained form of communication be-

tween pairs of users has on the performance of individuals, traditional groups and

cBCI-assisted groups. It also compares the confidence estimated by the cBCI with

the confidence estimated by the participants after each decision.

6.1 Introduction

Typically, group decisions are mediated by communication and feedback, whereby

members of a group share information and get to know other members’ opin-

ions [190]. This often leads to groups having augmented capabilities and intel-

ligence over single individuals. However, communication and feedback do not

always provide advantages.

Groups are effective when four conditions apply [181]: (1) individual opinions
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are not correlated (diversity), (2) decisions of one individual are not influenced by

others (independence), (3) each group member is able to specialise (decentralisa-

tion), and (4) it is possible to merge individual opinions into a group decision (ag-

gregation). When some of these conditions are not met, the interactions between

group members can have a negative impact on decisions [181, 75]. Moreover,

if there are time constraints or if leadership prevails, the process of combining

information from freely-communicating individuals can be an obstacle to optimal

decision-making [5].

The previous chapters have described a hybrid cBCI which was able to ob-

tain the advantages of groups without member interactions. Given that group

communication is a double-edged sword [181, 83], one may wonder if allowing

communication between the group members assisted by our cBCI would provide

further improvement in performance or would be disadvantageous for groups.

The very encouraging results obtained with our hybrid cBCI in visual match-

ing (Chapter 4) and visual search (Chapter 5) were mainly due to the use of the

decision confidence estimated from neural, behavioural and physiological signals

to weigh individual decisions. In principle, one could more easily and, perhaps,

more accurately ask participants themselves to report their decision confidence.

This may lead to more accurate group decisions without the need of acquiring

the physiological signals required by the cBCI to work, including the noisy and,

sometimes, unreliable EEG signals. However, reported confidence is not always

accurate. Research has shown that sometimes humans do not report high val-

ues of confidence where their decisions are more likely to be correct and vice

versa [122], which was the assumption our cBCI was based on (see Section 3.5).

For example, overconfident people may report high values of confidence when
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they are likely to be wrong [96, 132].

This chapter describes the investigation of these two possibilities (i.e., allowing

communication and asking users to self-estimate decision confidence) via two

experiments.

In the first study, we modified the visual search experiment with realistic

stimuli used in Chapter 5 to also ask participants to report their confidence after

each decision (Experiment 1). We then compared group decisions obtained using

such estimates to weigh individual responses with group decisions made by our

cBCI.

In the second investigation, we analysed the impact that a constrained form

of communication had on individual and group performance. We designed an ex-

periment where participants were paired while undertaking the visual search task

with realistic stimuli described in Chapter 5 and were allowed to exchange in-

formation (Experiment 2). The performance of these communicating groups was

then compared with the performance of groups of isolated users. Moreover, we

also investigated the impact that communication had on the reported confidence

estimates.

The chapter is organised as follows. Section 6.2 describes the experiments

used in this chapter and the different methods adopted to obtain group decisions.

Section 6.3 presents and discusses the results obtained with the participants of

our experiments, with a particular focus on comparing the confidence estimates

(i.e., reported confidence and BCI confidence) and the group performance with

and without user interaction. The chapter ends with Section 6.4 summarising

the findings.
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6.2 Methodology

6.2.1 Participants

Ten healthy volunteers (average age = 27.4 ± 5.5 years, 5 females) took part

in Experiment 1 on different days. Sixteen healthy participants (average age =

28.1±7.2 years, 7 females) were randomly paired and took part in Experiment 2,

where they were allowed to exchange information. All volunteers had normal or

corrected-to-normal vision.

6.2.2 Experiments

Each experiment consisted of 8 blocks of 40 trials, for a total of 320 trials. Fig-

ure 6.1 shows the sequence of stimuli presented in a trial for Experiment 1 (top)

and 2 (bottom). In the first four displays, both experiments followed the protocol

described in Section 5.2.2, presenting participants the fixation cross, the stimu-

lus, the mask and then asking to indicate their choice with the mouse button.

After making a decision (1st response), volunteers were asked to indicate, within

4 seconds, the degree of confidence of their decision (0− 100%) using the mouse

wheel (which varied confidence in 10% steps). Moreover, in Experiment 2 pair

members were then shown a display containing the decisions and the degrees of

confidence indicated by each of them for 2 seconds. Finally, each pair member

was asked again to indicate whether or not the target was present (2nd response).

To synchronise Experiment 2, a display containing the text “Please wait” was

shown to the fastest member of the pair after indicating his/her confidence, until

the other member had also indicated his/her confidence. Response times (RTs)
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Figure 6.1: Sequence of stimuli presented in the Experiments 1 and 2. The last
two displays were only presented in Experiment 2.

were recorded.

The displays used as stimuli for both experiments were obtained from the

dataset generated previously (see Section 5.2.2) where (a) six displays where the

average error rate across participants in Experiment 1 was below 10% (too easy)

or above 90% (too difficult) were discarded, and (b) the number of stimuli was

increased by including horizontally-flipped versions of the displays. Thus, the

resulting dataset contained 68 stimuli with the target and 10 without it.

The same sequence of displays (randomly generated) was used in both ex-

periments and for all participants. Target occurred in 25% of the trials of each

block.

Before an experiment, participants were briefed and familiarised with the

task by doing 2 training blocks of 10 trials each. Preparation and practice took

roughly 45 minutes. Then, Experiments 1 and 2 lasted about 30 and 40 min-

utes, respectively. Participants controlled the mouse with the preferred hand and

were comfortably seated at about 80 cm from an LCD screen. In Experiment 2,

participants were randomly paired and tested in different rooms to avoid direct

communication (i.e., the interaction was mediated by the computer as described
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above).

6.2.3 Making Group Decisions

Data were acquired and preprocessed as explained in Chapter 3.

We used 10-fold cross-validation to split the dataset into a training set of

288 trials and a test set of 32 trials. Neural features were then extracted as

described in Section 5.2.3 by computing the LTCCSP matrices on the data in the

training set and using these matrices to transform the data in the test set. Hence,

the cBCI used in the two experiments considered in this chapter estimated the

decision confidence from 5 features: 2 LTCCSP neural features extracted from

each type of epochs (i.e., stimulus-locked and response-locked) and the RT of the

1st response.

Once the features were extracted, we fit the LARS [37] model to predict the

decision confidence (as done in Chapter 5) using the data in the training set.

Then, the data of each participant in each trial of the test set were transformed

into confidence weights w by using the negative exponential weighting function

described in Equation (3.3).

To address one of the aims of this study, we have also used the raw confidence

reported by the user in a trial as weight w to compute the group decision. In this

case, the weights were discrete, i.e., w = {0, 10, 20, . . . , 100}.

Group decisions were then made as described in Section 3.8 by using the sign

of the weighted sum of members’ decisions, where the weights were either the

confidence reported by the participants or the confidence weights computed by

the cBCI.



CHAPTER 6. IMPACT OF GROUP COMMUNICATION ON VISUAL SEARCH

PERFORMANCE 130

Due to the limited number of identical EEG acquisition devices available in our

lab, in Experiment 2 we could only test the effects of concurrent communication

on pairs. However, to gain some insight on the performance achievable by larger

groups of interacting observers, we combined (offline) the 8 pairs in all possible

ways to form groups of size 4, 6, etc. We chose this way of proceeding instead of

the method described in Chapter 3 and used in Experiments 1 (i.e., combining

individual participants in all possible groups of increasing size) to avoid splitting

communicating pairs, thereby retaining some of the dynamics observed in such

groups. Hence, we had 28 groups of size 4, 56 groups of size 6, and so on.

6.3 Results

This section presents the results obtained with the two experiments.

6.3.1 Communication Worsens Individual Performance

We start our analysis by looking at individual performances in the two exper-

iments. It should be noted that, when considering the 1st responses in Exper-

iment 2 (i.e., those given by the observers before any exchange of information

related to the task at hand), in principle the performance of the participants

should be similar in the two experiments as they are exposed to the same infor-

mation.

Figure 6.2 shows the individual error rates in the two experiments. While the

participants of Experiment 1 made, on average, 22.6% erroneous decisions, those

of Experiment 2, surprisingly, were 50% worse in the same task (i.e., when con-

sidering the 1st response), with an average error rate of 33.1%. A Kruskal-Wallis
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test confirmed that the error distributions of individual decisions in Experiment 2

before the communication occurred were significantly different from the distribu-

tions of the isolated observers in Experiment 1 (p = 0.0017).

Even more surprising was the individual performance obtained when using,

in Experiment 2, the 2nd response provided by participants after our constrained

form of communication (dark grey bars in Figure 6.2(right)). We expected these

decisions to be more accurate than the 1st ones as they integrated the information

shared within the pair [60]. However, the average error rate across participants

was not statistically significantly different from that obtained using the 1st re-

sponses (two-sided Wilcoxon signed-rank p = 0.875). This suggests that the

exchange of information between participants had no effect on their individual

performance.

It is known that in certain tasks, such as estimating the number of sweets in a

jar [84] or answering factual questions with a numerical answer [99], interactions

between participants can negatively affect individual performance. However, we

found it surprising that such an effect could occur in the perceptual decision

task used in our experiments (cf. individual performance in Experiments 1 and

2), especially when considering the first responses provided by participants in

Experiment 2 where no interaction happened between the pair’s members. This

suggests that the context in which participants were immersed (i.e., isolated or

paired) was sufficient to cause a change in participants’ performance.

In Figure 6.2(right) we can see an additional effect of the interaction: in

most of the pairs, the performance of the two participants are very similar to

each other, especially when considering the 2nd responses. This suggests that

interaction seems to have an effect on individual performance, although leading
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Figure 6.2: Error rates of participants for the two experiments. In Experiment 2
(right) the individual decision errors are based on either the 1st (light grey) or the
2nd (dark grey) responses, given by observers before or after seeing the decision
and the confidence reported by the other group member, respectively.

to higher error rates instead of lower ones.

6.3.2 cBCI Groups Achieve the Best Performance

Figure 6.3 shows, for each experiment, the mean error rate of groups of increasing

size making their decisions using the 1st responses provided by participants and

adopting (a) the majority rule, (b) a weighted majority where weights are given

by the confidence reported by each participant, and (c) a weighted majority using

the confidence weights estimated by our cBCI. For Experiment 2 we also report

the performance of the majority rule when using the individual decisions provided

by participants after exchanging information (2nd responses) – see green line in

Figure 6.3(right).

Let us first analyse the results of Experiment 1, where participants undertook

the visual search task without any interaction with each other. As done previ-

ously, we have used the Wilcoxon signed-rank test to compare the performance

of groups of various sizes making decisions using the three methods analysed in
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Figure 6.3: Error rates of groups of increasing size in the two visual search exper-
iments conducted in the study. Group decisions are built using: (a) a majority
rule based on individual responses (black line), (b) a weighted majority based on
the reported confidence (blue), (c) a weighted majority based on the confidence
estimated by the cBCI (orange), and (d) only for Experiment 2, a majority rule
based on individual responses after the feedback (green).

this chapter. The p-values of these comparisons are shown in Table 6.1.

For group sizes 2–8 the performance of cBCI-assisted groups was significantly

better than that of traditional groups using the majority rule, confirming our

previous findings described in Chapter 5. The two methods perform on par for

groups of size 9. Groups making decisions using the confidence reported by the

observers are also superior to majority-based groups for group sizes 2, 4, 5, 6, 7, 8,

while the two methods perform on par for group sizes 3 and 9. This suggests that

the reported confidence is a good alternative to the cBCI to improve on standard

majority when participants are not communicating. However, when comparing

the two confidence-based methods, we found that cBCI-assisted groups made

significantly better decisions than groups based on the confidence reported by

the participants for all even group sizes, while the two methods performed on par

for the odd group sizes. This suggests that the confidence reported by participants



CHAPTER 6. IMPACT OF GROUP COMMUNICATION ON VISUAL SEARCH

PERFORMANCE 134

Table 6.1: Statistical comparison of methods for group decisions for different
group sizes in Experiment 1. The table reports the p-values returned by the
one-tailed Wilcoxon signed-rank test when comparing the performance of groups
of different sizes adopting (a) the majority rule, (b) a weighted majority using
the confidence reported by participants as weights (ConfidenceMajority), and (c)
a weighted majority using the confidence weights estimated by the cBCI. The
number of groups of each size that could be assembled with 10 participants is
indicated in the last row of the table. p-values below the statistical significance
level 0.05 are in bold face.

Group size

Comparison 2 3 4 5 6 7 8 9

Is ConfidenceMajority
better than Majority?

0.0000 0.2005 0.0000 0.0019 0.0000 0.0005 0.0000 0.4719

Is cBCI better than Ma-
jority?

0.0000 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.1173

Is cBCI better than
ConfidenceMajority?

0.0060 0.6469 0.0000 0.8643 0.0003 0.8913 0.0102 0.2491

Sample size 45 120 210 252 210 120 45 10

was never superior to the one estimated by the cBCI while the cBCI was able to

significantly enhance even-sized group performance.

We now analyse the results obtained in Experiment 2 (Figure 6.3(right)),

where a constrained form of communication was allowed between pairs of users.

Table 6.2 reports the p-values of the Wilcoxon signed-rank test comparing the

performance of groups of different sizes making decisions using either the three

methods compared for Experiment 1 employing the 1st responses or a majority

rule based on the 2nd responses provided by the participants after exchanging

information with the other group’s member in Experiment 2.

As seen in the previous section, the individual performance in Experiment 2

was much worse than the performance obtained by isolated participants. There-

fore, it is not surprising seeing that, overall, groups of various sizes are generally
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Table 6.2: Statistical comparison of methods for group decisions for different
group sizes in Experiment 2. The table reports the p-values of the one-tailed
Wilcoxon signed-rank test when comparing the performance of groups of different
sizes adopting (a) the majority rule based on the 1st responses, (b) a weighted
majority using the confidence reported by users as weights (ConfidenceMajority),
(c) a weighted majority using the confidence weights estimated by the cBCI, and
(d) the majority rule based on the 2nd responses. The number of groups of each
size that could be assembled with 8 pairs is indicated in the last row of the table.
p-values below the statistical significance level 0.05 are in bold face.

Group size

Comparison 2 4 6 8 10 12 14

Is Majority better than
Majority2?

0.4167 0.0000 0.0000 0.0000 0.0000 0.0002 0.0294

Is Majority better than
ConfidenceMajority?

0.6880 0.0018 0.0000 0.0000 0.0000 0.0001 0.0124

Is cBCI better than Ma-
jority?

0.0111 0.0000 0.0000 0.0000 0.0000 0.0000 0.0071

Is cBCI better than Con-
fidenceMajority?

0.0210 0.0000 0.0000 0.0000 0.0000 0.0000 0.0071

Is cBCI better than Ma-
jority2?

0.0104 0.0000 0.0000 0.0000 0.0000 0.0000 0.0071

Sample size 8 28 56 70 56 28 8

less accurate than equally-sized groups of Experiment 1, since their decisions are

obtained by combining individual responses.

The performance of pairs making decisions using non-BCI methods were on

par in Experiment 2, although the method based on the 2nd responses slightly

increased the error rates of the pairs. However, cBCI-assisted pair decisions were

significantly superior than those made using all non-BCI methods.

When simulating larger groups by aggregating pairs, we found that the cBCI

was always superior to the three other methods. Moreover, decisions made by

larger groups using the confidence values reported by the participants or their
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2nd responses were significantly worse than those made by majority-based groups

using the individual responses provided before any interaction.

On the basis of these results we can make three main conclusions. Firstly,

the cBCI provides the best group performance over the other methods analysed

in this chapter regardless of the presence or absence of communication within

the pairs. Secondly, the confidence reported by the participants is a valid al-

ternative to the neuro-behavioural confidence estimates provided by the cBCI

only with isolated users. When observers are communicating, the performance

of groups where decisions are based on the reported confidence is never superior

and generally significantly worse than the performance of majority-based groups.

Thirdly, giving participants the opportunity to change their decision after ex-

changing information (i.e., 2nd responses) significantly reduces group performance

for groups of size 4–14 and does not provide any advantage over the 1st responses

for pairs. Sections 6.3.3 and 6.3.8 provide more evidence to support the last two

considerations.

6.3.3 Paired Context Worsens Metacognitive Accuracy

To investigate further the reasons behind the poor performance obtained by

groups of communicating observers when using the reported confidence, we com-

pared the confidence values indicated by participants in correct decisions (Dc set)

with those indicated in incorrect decisions (Di set). As described in Chapter 3,

to obtain good group performance with our decision-making system the confi-

dence should correlate with the correctness of the decision (i.e., metacognitive

accuracy).
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Figure 6.4: Confidence values indicated by participants for correct and incorrect
decisions in Experiment 1 (left) and 2 (right) and corresponding p-value of the
Kruskal-Wallis test used to compare the two distributions.

Figure 6.4 shows the distribution of the reported confidence values in the Dc

and Di sets. The p-value of the Kruskal-Wallis test used to compare the two

distributions is also shown. When participants were not allowed to communi-

cate (i.e., in Experiment 1), these confidence values were good predictors of the

correctness of the decision as the two distributions Dc and Di were significantly

different – see Figure 6.4(left). However, observers of Experiment 2 (who were

allowed to exchange information) reported confidence values which were totally

unrelated with the correctness in the decisions.

These results show that reported confidence is significantly affected by the

context in which participants are immerse (i.e., isolated or paired) and, there-

fore, it is an unreliable predictor of correctness. While reported confidence allows

to improve group performance over majority when participants are deciding in

isolation, it does not provide any advantage when participants communicate indi-

rectly through their being made aware of each others’ 1st responses and reported

confidence levels. This leads to group decisions that are often even more erroneous

than those made with simple majority.
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Figure 6.5: Confidence weights estimated by the cBCI for correct and incorrect
decisions in Experiment 1 (left) and 2 (right) and corresponding p-value of the
Kruskal-Wallis test used to compare the two distributions.

6.3.4 BCI Confidence is not Affected by Context

Similarly to the analysis conducted in the previous section, we have also com-

pared the distributions of the confidence weights estimated by our cBCI for the

correct (Dc) and incorrect (Di) sets of trials. Figure 6.5 shows the results of this

comparison.

In both experiments, the cBCI is able to provide confidence weights that are

significantly different for the Dc and Di sets. This makes the cBCI a robust pre-

dictor of the correctness of the decision regardless of the context, which explains

the superior performance achieved by cBCI groups in both experiments – see

Section 6.3.2.

6.3.5 Response Times Correlate with Correctness

In this and the following section, we will examine more in detail the sources of

the robustness of the cBCI in estimating a decision confidence that correlates

with the accuracy. As described in Section 6.2, our cBCI uses a combination of
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Figure 6.6: Response times for correct and incorrect decisions in Experiment 1
(left) and 2 (right) and corresponding p-value of the Kruskal-Wallis test used to
compare the two distributions.

RTs and neural signals to estimate the decision confidence. In this section we

examine whether or not the information brought by the RTs is affected by the

communication, while in the next section we will perform a similar analysis on

the neural signals.

Similarly to what we have done with confidence estimates, we used the Kruskal-

Wallis test to compare the distributions of RTs between the correct (Dc) and

incorrect (Di) sets of trials. For Experiment 2, we have considered the RTs of

the 1st responses. As shown in Figure 6.6, we found that the RTs distributions

were significantly different between Dc and Di for both experiments. However,

it should be noted that in Experiment 2 the two distributions become more sim-

ilar, suggesting that also RTs are influenced by the context. Nevertheless, they

still carry information related to the probability of the decision being correct

and, therefore, it is reasonable to use them as a feature for the cBCI to obtain

confidence estimates.



CHAPTER 6. IMPACT OF GROUP COMMUNICATION ON VISUAL SEARCH

PERFORMANCE 140

6.3.6 Context Changes Neural Correlates of Confidence

We also investigated the impact of the context on the decision-making processes

in the brain, as these are the sources of the neural features that our cBCI uses to

build the confidence estimations.

We divided the stimulus- and response-locked epochs in the Dc and Di sets,

the former containing the ERPs recorded in trials where the user made a correct

decision and the latter with ERPs associated to incorrect responses. We then

used the Kruskal-Wallis test to compare the voltages measured at each time step

at each electrode site for the two sets. Moreover, we have used the Wilcoxon

signed-rank test to compare participant-by-participant averages.

Results from representative electrode sites Fz, Pz, C3 and C4 of Experiments 1

and 2 are shown in Figure 6.7 for stimulus-locked epochs and in Figure 6.8 for

response-locked ones.

These results confirm that the neural signals still differ significantly between

correct and incorrect trials. However, in both ERP representations the informa-

tion about decision confidence was less evident in Experiment 2, where partici-

pants were paired while performing the visual search task. In this experiment,

the grand averages of the ERPs for the two classes look very similar to each other,

but still present some statistical differences.

Nevertheless, the relative separation of the confidence values provided by the

cBCI for correct (confident) and incorrect (not confident) trials shown in Fig-

ure 6.5 indicated that our system is able to provide robust correctness predictors

even with the fainter evidence available in Experiment 2, leading to significantly

reducing the percentage of erroneous group decisions.
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Figure 6.7: Averages of stimulus-locked epochs computed across participants
on the correct (red) and incorrect (blue) ERP sets and corresponding temporal
profile of the p-values of the Wilcoxon signed-rank test comparing participant-
by-participant averages (grey) and of the Kruskal-Wallis test comparing all ERPs
recorded in each error class (black) for representative channels Fz, Pz, C3 and C4
for Experiments 1 and 2. p-values above the horizontal dotted line (representing
the 5% confidence level) indicate statistical significance.
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Figure 6.8: Averages of response-locked epochs computed across participants
on the correct (red) and incorrect (blue) ERP sets and corresponding temporal
profile of the p-values of the Wilcoxon signed-rank test comparing participant-
by-participant averages (grey) and of the Kruskal-Wallis test comparing all ERPs
recorded in each error class (black) for representative channels Fz, Pz, C3 and C4
for Experiments 1 and 2. p-values above the horizontal dotted line (representing
the 5% confidence level) indicate statistical significance.
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6.3.7 Interaction Nullifies the Advantages of Experience

In Section 6.3.1 we have seen that the error rates of participants of Experiment 2

were much higher than those of observers in Experiment 1. In the following

sections we investigate the reasons behind this reduction in performance.

Firstly, we analysed how the error rates vary during the experiments. Experi-

ence and task familiarisation should improve performance [98] and, therefore, we

should expect higher error rates in the earlier part of an experiment than later on.

Figure 6.9 shows the mean error rates across participants for the two experiments

computed using a simple moving average over 40 consecutive trials when using

the 1st (both experiments) or the 2nd (only Experiment 2) responses. To visualise

better the trend of the error rates along the experiment, we have fitted a linear

regressor to each dataset.

Let us consider the data gathered from the 1st response (red lines in Fig-

ure 6.9), which are available for both experiments. When no communication is

allowed between participants (i.e., in Experiment 1), the individual performance

does increase along the experiment – see Figure 6.9(left). However, when users

are allowed to communicate (Experiment 2), surprisingly, we observed the oppo-

site trend, with participants getting worse over time – see Figure 6.9(right). As

we have verified with the Kruskal-Wallis test, these error distributions of the two

experiments were significantly different (p = 4.95× 10−99).

Differences between the two error distributions start as early as the first session

of the experiments. When participants were isolated, the error distributions in

trials 1–10 and 31–40 were similar as users were still familiarising with the task

(two-sided Wilcoxon signed-rank p = 0.75). On the other hand, the performance
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Figure 6.9: Mean error rates across participants for Experiments 1 (left) and 2
(right) computed using a simple moving average on the 1st (red) and 2nd (blue)
responses. The grey lines show the linear regressors fitted on the each set of data.
The correlation coefficients and the two-sided p-values of the regressors are also
indicated.

of communicating participants very rapidly and significantly deteriorates in those

trials (p = 0.04).

Interestingly, the average performance of participants of Experiments 1 and 2

were almost identical in the first 10 trials and error distributions were not signif-

icantly different (Kruskal-Wallis p = 0.77). This suggests that the participants

had the same initial attitudes and abilities to perform the visual search task.

Therefore, their subsequent significantly-different performance was mainly due

to the presence or absence of communication (i.e., context).

The average error rates increased even more if we considered the responses

provided by the participants of the Experiment 2 after seeing the other group

member decision and confidence (blue and light-grey lines in Figure 6.9(right)).

The two error rate distributions of Experiment 2 (shown in red and blue in

Figure 6.9(right)) were significantly different (two-sided Wilcoxon signed-rank

p = 3.87× 10−49).
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These results suggest that not only communicating participants are not im-

proving their performance over time, but also that the group interaction (at any

stage) negatively affects individual error rates.

6.3.8 Communication Does Not Increase Agreement

One of the main advantages of groups is their intrinsic error correction capabil-

ities, which could be exploited when the decisions made by their members are

diverse and observations are not correlated [181, 77, 36]. In case of pairs, this

occurs when the participants give opposite responses, hence generating a tie. The

voting method adopted to aggregate the different decisions should then have a

tie-breaker strategy (e.g., based on the expertise of the observer) to arrive at a

group decision in all cases. Hence, the group performance is not only related to

individual accuracy but also to the breaking of ties.

We analysed how the level of agreement of the pairs varied along Experi-

ments 1 and 2 by plotting the mean percentage (across participants) of decisions

in which the pair members were disagreeing on a decision (i.e., tie) using either

the 1st responses and, for Experiment 2, the 2nd response. The values are aver-

aged across the 45 possible pairs formed with participants of Experiment 1 and

the eight pairs of users of Experiment 2. A simple moving average algorithm over

40 consecutive trials has been used to smooth the data. We expected that com-

municating participants would be more likely to agree on a decision than isolated

ones. The results are shown in Figure 6.10.

In Experiment 1 (Figure 6.10(left)), the percentage of trials in which the pair

disagrees decreases as the experiment progresses. This is reasonable because,
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Figure 6.10: Percentage of ties in Experiment 1 (left) and 2 (right). The grey
lines show the linear regressor fitted on the data. The correlation coefficients and
the two-sided p-values of the regressors are also indicated.

as we have seen before (see Figure 6.9(left)), participants performance improved

due to experience. Therefore, some of the ties were actually turned into correct

decisions. However, surprisingly, when observers communicated (Experiment 2),

their level of agreement remained almost constant – see Figure 6.10(right). We

verified with the Kruskal-Wallis test that the two error distributions (red lines

in Figure 6.10) were significantly different (p = 2.32 × 10−80). One of the main

causes of this significantly different behaviour is that individual performance did

not improve over time in Experiment 2 (see previous section).

Experiment 2 gave a chance to participants to change their decisions after

sharing information about the other member’s decision and reported confidence.

In theory, these new decisions would be the result of the increased sensing ca-

pabilities and cognition of groups obtained by merging members’ knowledge and

intelligence. Hence, we expected the level of agreement to be higher and to

achieve better performance than that obtained using the decisions made by the

participants before sharing any information.
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The results shown by the blue line in Figure 6.10(right) confirmed that the

level of agreement was much higher (as indicated by fewer ties) when using this 2nd

response. However, surprisingly, as shown in Figures 6.9 and 6.3(right), perfor-

mance was worse. The percentages of erroneous decisions achieved by individual

participants and even-sized groups using the majority rule and the 2nd responses

(green line) were higher (+2%) than those obtained when using individual deci-

sions provided before the constrained form of communication (black line). This

suggests that interaction makes participants agree on erroneous decisions.

6.4 Conclusions

Communication in groups is a double edged sword. It is a vital means to reach

a consensus, but, for instance, in the presence of strong leadership it can lead to

poor group decisions [83]. In this chapter we have investigated the impact of a

constrained form of communication on individual and group performance. To do

so, we used two realistic visual-search experiments, one where participants were

not allowed any interaction and one where a constrained form of communication

was taking place within pairs of users after each decision, giving the observers

the possibility of changing their responses.

Group decisions were obtained by integrating individual responses using either

the majority rule or a confidence-based weighted majority, where the weights were

estimated by our cBCI introduced in Chapter 3 using EEG signals and RTs.

We have shown that groups make significantly better decisions when assisted

by our cBCI than when using the standard majority rule, regardless of the pres-

ence or absence of communication.
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When a controlled form of communication within pairs was allowed, however,

users made many more erroneous decisions than in the experiment where they

could not interact. Moreover, communication had a negative impact on the level

of agreement (i.e., the number of ties did not decrease over time, hence requiring

a better-than-random tie-breaker, like the cBCI, even more) and neural signals

(i.e., the patterns that identify confidence became similar to those identifying

uncertainty). Furthermore, decisions made by interacting pairs were significantly

worse than those made by the average isolated participant. These results suggest

that social influence deteriorates individual and group performance in our visual

search task. Communicating people trust their gut feelings less than isolated

ones [181] and become less prone to risk than required by the task [38], resulting

in increased error rates.

The changes in the neural signals caused by interaction made the discrimina-

tion between correct and incorrect trials performed by our cBCI more challenging

due to the reduction in available information. However, even in these conditions,

thanks to its machine learning component and the presence of the RTs in the fea-

ture vector (which, we showed were still affected by communication), the cBCI

was able to provide a consistent (i.e., results verified with 10-fold cross-validation)

and statistically significant improvement in the performance of even-sized groups

when compared to traditional groups.

This chapter has also investigated whether it would be possible to replace the

confidence estimated by the cBCI with a confidence reported by the participant

after making a decision. While this approach works when participants are in

isolation, we showed that communication makes reported confidence totally un-

related to the correctness of the decision. These results suggest that the reported
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confidence is an unreliable predictor of correctness, while the estimates produced

by our cBCI are more robust and consistent.

The results obtained in this chapter suggest that superior group decisions in

visual search are achieved when group members are isolated and their decisions

are integrated by using our cBCI based on neural signals and RTs. The confidence

estimated by the participants could be a good alternative tie-breaker, but should

be used cautiously due to its unpredictable reliability.



Chapter 7

A State-Space Model for

Cognitive State Estimation

Apart from being used for estimating the decision confidence, physiological and

behavioural measures could give an insight into the cognitive processes of a per-

son, which, in turn, are likely to affect decision making. This chapter describes

the development of a state-space model based on neural and behavioural signals

to estimate the cognitive state of observers undertaking a decision-making task.

7.1 Introduction

Humans and animals have the ability to learn and change their behaviour as a

result of the experience gained while undertaking a certain task. Learning is a

dynamic process that generally leads to better performance. For example, in a

decision-making task, participants usually improve their performance over time

thanks to their experience [98]. This learning process does not only have an
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impact on the behaviour, but also on neural and other physiological signals [174].

Research has shown that the cognitive load is likely to affect the learning

process [183]. EEG signals could be used to monitor the cognitive load of a

user [113, 39] and, so, indirectly, to monitor how a decision-maker improves

his/her performance due to experience. Moreover, EEG has been used to de-

tect variations in other measures related to decision making, including mental

fatigue and attention level [130, 20, 187]. This information could be used as ad-

ditional inputs to our cBCI to further improve the accuracy of the confidence

estimates.

This chapter starts exploring the possibility of using a state-space model to es-

timate the cognitive state of the decision makers from their neural and behavioural

signals. This model could then be plugged into the cBCI (see Figure 7.1) to de-

tect and, possibly, predict changes in the attention level of the user that could

affect individual and group performance. Equipped with such a feature, the cBCI

could then decide to temporally exclude the tired (and therefore more likely to

err) users from the group, leading to further improvement in group performance.

The chapter is organised as follows. Section 7.2 introduces state-space mod-

els and defines some notation that will be used across the chapter. Section 7.3

describes a state-space model derived from behavioural measures including the

correctness in the decision and the RTs. This model will then be extended in Sec-

tion 7.4 to also include neural features. Section 7.5 compares different state-space

models based on various behavioural and neural features. Finally, Section 7.6 will

discuss the potential implications of this work and draw some conclusions.
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Figure 7.1: Architecture of the decision-making system including the BCI to
estimate the decision confidence (as described in Chapter 3) and the additional
state-space model to estimate the cognitive state of the user analysed in this
chapter. The BCI and the cognitive state modules share the same feature vector
(i.e., EEG and RTs).

7.2 State-Space Models

This section briefly introduces state-space models and the methods used in this

thesis to estimate their parameters.

7.2.1 Definition and Representation

A Hidden Markov Model (HMM) [154] is a probabilistic model that represents

a system as a Markov process with unobserved, discrete states over sequences of

observations. Let xt be the hidden state at time t. An HMM is described by the

number of possible values that the state could assume K, the number of possible

values that the observations could assume M , the state transition matrix A, the

observation matrix B and the initial conditions π. In an HMM, the hidden state

xt satisfies the Markov property: the current state xt is independent of all the

states prior to t− i, where i is the order of the model [51]. In this thesis, we will

consider first-order HMM, so that the hidden state at time t only depends on the
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state at time t− 1.

A State-Space Model (SSM) is an HMM where the hidden state modelled is

continuous, that is, although the progression between one state and another is

discrete, the state variable could take any real value (K ∈ R). A first-order SSM

can be written with two equations, a state equation and an observation equation:

 xt = f(xt−1, νt;w)

yt = h(xt, nt;w)
, (7.1)

where νt and nt are noise processes affecting the state and the observation evo-

lutions, respectively, while f and h are nonlinear functions parametrised via a

parameter vector w. The state equation describes how the state evolves over

time, while the observation equation describes how the hidden state is observed.

State-space models, like any HMM, are generally represented with Bayesian

networks (Bayes nets), graphs showing the dependencies between the observed

and hidden variables of the model. An example of a Bayes net is shown in

Figure 7.2.

When equations in (7.1) are both linear and Gaussian, the problem of estimat-

ing the parameters of an SSM from a sequence of observations can be solved using

the Kalman filter [76]. Various extensions of the Kalman filter have solved the

problem of estimating the parameters in the absence of linearity [209] or normal

distributions [85].

SSMs have been extensively used in several fields to characterise a process

where the state is unobservable. For example, in ecology they have been used

to study and predict the animal movements [134], in control theory to control

industrial processes [73], and in neuroscience to estimate the cognitive state of
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Figure 7.2: Representation of a state-space model using a Bayesian network.
Each node represents a model variable (yt are the observations and xt the hidden
states), while each arrow indicates a dependency between two variables.

the user during a learning task [173, 174, 150, 149]. For example, an SSM model

has been used in [174] to characterise learning in behavioural experiments as the

probability of a correct response as a function of the trial number. Given the T

trials of a behavioural experiment, the SSM developed in [174] was expressed by:

 xt = xt−1 + εt

p(ct|pt, xt) = pctt (1− pt)1−ct
, (7.2)

where ct denotes the correctness of the response on trial t, εt are independent

Gaussian random variables with mean 0 and variance σ2
ε , and pt is defined by the

logistic equation

pt =
exp(µ+ xt)

1 + exp(µ+ xt)
, (7.3)

where µ is the chance probability of correct decisions.

In this chapter, we will use and extend the SSM developed in [174] in which

the observation model is a point process. Point processes are random processes



CHAPTER 7. A STATE-SPACE MODEL FOR COGNITIVE STATE ESTIMATION 155

where realisations are composed by isolated points either in time or in space.

The reason behind this choice is that these random processes are a good approx-

imation of what happens in stimulus-response experiments used in ERP-based

BCIs, where a stimulus (input) controlled by the experimenter is applied and the

response (output) of the human brain (system with a hidden state) is measured,

for example via EEG.

7.2.2 Parameter Estimation

This section briefly describes the algorithms used in [174] to estimate the param-

eters of the state-space model in Equation (7.2).

We firstly set x0 = 0 to set the baseline of the cognitive state of the user before

starting the experiment. We then determine µ by using the observation equation

in Equation (7.3) to obtain µ = log[p0(1−p0)−1], where p0 denotes the probability

of a correct response occurring by chance given the experimental setup.

In order to build a forward filter to estimate the state xt at trial t from the

set of observations Nt = [n1, . . . , nt], we need to express the probability density

of the state given the observations:

p(xt|Nt) =
p(xt|Nt−1)p(nt|xt)

p(nt|Nt−1)
(7.4)

and the associated one-step prediction probability density obtained using the

Chapman-Kolmogorov equation

p(xt|Nt−1) =

∫
p(xt−1|Nt−1)p(xt|xt−1)dxt−1 (7.5)
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The numerator of Equation (7.4) combines information from the one-step pre-

diction of the state at trial t based on the observation up to through trial t − 1

(first term) and the observation process (second term). The denominator is sim-

ply the normalising constant of the probability density. The one-step prediction

density, p(xt|Nt−1) is the probability density of the state at trial t given the obser-

vations up through trial t− 1. Equation (7.5) computes this probability density

of the state at trial t by “averaging over” the state given the data up to trial t−1

defined by p(xt−1|Nt−1) (first term, i.e., posterior density at t− 1) and the state

transition between trials t− 1 and t defined by p(xt|xt−1) (second term).

Taken together, Equations (7.4) and (7.5) define a recursion that can be used

iteratively to compute the probability of the state given the observations. While

this approach might work for low-dimensional models, it becomes less computa-

tionally feasible for complex systems [173].

For these reasons, we simplify the problem by computing the Gaussian approx-

imation of Equations (7.4) and (7.5), a process also termed maximum a posteriori

estimation [174]. A Gaussian probability density is fully defined by its mean and

variance. Therefore, to approximate the probability density Equation (7.4) with

a Gaussian, we need to compute its mean (or maximum-a-posteriori estimate of

xt) µ̂ and its variance σ̂2.

The mean µ̂ describes the maximum of Equation (7.4), while the variance

σ̂2 defines its curvature. To obtain µ̂, we compute the first derivative of the log

of Equation (7.4) with respect to xt, set it equal to zero and solve for xt. The

variance σ̂2 is then obtained by computing the negative inverse of the second

derivative of the log posterior probability density with respect to xt.

Once the Gaussian approximation of Equation (7.4) is given, we can find the
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mean xt|t−1 (i.e., mean of the state at time t given the states up to time t − 1)

and the variance σ2
t|t−1 of the Gaussian approximation of Equation (7.5) with

standard formula as the integral contains two Gaussian random variables. Given

xt−1|t−1 and Equation (7.2), we have that

xt|t−1 = E(xt|xt−1|t−1) = xt−1|t−1 (7.6)

and

σ2
t|t−1 = Var(xt|xt−1|t−1) = Var(xt−1 + εt|xt−1|t−1) = σ2

t−1|t−1 + σ2
ε . (7.7)

With the Gaussian approximation in place, the state-space model of Equa-

tion (7.2) could be fully defined by its parameters θ = (µ, σ2
ε , µ̂, σ̂

2). These

parameters could be estimated by maximum likelihood using the well-known

expectation-maximisation (EM) algorithm [29]. Given a set of observations D =

{y1, . . . , yT}, the maximum likelihood procedure finds the combination of parame-

ters that maximise the likelihood of observing D and estimating the hidden state

X = {x1, . . . , xT} given the set of parameters θ, as described in the following

equation:

p(D|θ) =
T∏
i=1

p(yi, xi|θ) (7.8)

Let us define the logarithm of the likelihood as:

L(θ) =
T∑
i=1

log p(yi, xi|θ). (7.9)

Because the log is a monotonically-increasing function, the set of parameters
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θ̂ that maximise the likelihood also maximise L(θ).

We should note that the parameters µ and σ2
ε are associated to the state-

space model itself, while µ̂ and σ̂2 are associated to the approximation of the

hidden state. Indeed, if the two parameters of the state-space model were known,

one could use the Viterbi algorithm [46] to maximise the log likelihood over all

possible values of the hidden state X and easily find the values of the other

two parameters. Conversely, if the hidden state parameters are known (i.e., all

the variables are observable), the computation of the model parameters would

be quite easy [51]. However, when all parameters need to be estimated, solving

the maximum likelihood (or the maximum log likelihood) problem is usually

intractable.

The EM algorithm allows to find the optimal parameters for a lower bound of

L(θ) [51]. Let Q(X) be a distribution over the hidden variables. We can define

a lower bound of L(θ) as

L(θ) >
K∑
i=1

[Q(xi) log p(yi, xi|θ)]−
K∑
i=1

[Q(xi) logQ(xi)] = F(Q, θ). (7.10)

When considering the lower bound F(Q, θ), we now have two quantities to

optimise: (a) the distribution Q, which we want to make the lower bound as

more similar to L as possible, and (b) the set of parameters θ, as our original

objective was to find the optimal parameters of the state-space model. The EM

procedure iteratively alternates between two steps: the E step, where given a set

of parameters θk finds the best function Qk+1 that approximate L(θ), and the M

step, where given a function Qk+1 finds the optimal set of parameters θk+1. The
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detailed derivation of the EM algorithm for the model presented in Equation 7.2

can be found in [174].

7.3 Behavioural Model

State-space models have already been used with behavioural experiments to char-

acterise learning from the observations of (a) correctness in a decision and (b)

response times [150, 149]. Apart from being related to decision confidence [100],

RTs could also indicate the attention level of the user [151]. This section briefly

describes the behavioural state-space model developed in [150, 149] and present

the results obtained by using that model to estimate the cognitive state of human

participants undertaking the realistic visual-search task described in Chapter 5.

The behavioural model defines the unobservable cognitive state of the user xt

with the following state equation:

xt = ρ0 + ρxt−1 + υt, (7.11)

where υt are independent, zero mean Gaussian random variables with variance

σ2
υ and t = 1, . . . , T represent the time steps in which a decision is made. In the

case of our visual search task, we have a total of T = 320 decisions made by each

participant.

The observation model for the RTs is defined as

zt = log rt = α + βxt + εt, (7.12)

where rt is the RT at trial t, εt are independent, zero mean Gaussian random
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variables with variance σ2
ε , which we assume it is independent from υt. The

parameter α governs the baseline RT, whereas β represents the rate at which the

subject reacts as a function of his/her cognitive state. For an experiment in which

a subject learns we would expect β < 0. The use of the logarithmic transformation

with the Gaussian error assumption models the empirical observation that larger

RTs tend to show greater variability than shorter RTs [149].

Finally, we model the correctness process using a Bernoulli observation model,

as the correctness is a binary observation

p(ct|xt) = pctt (1− pt)1−ct , (7.13)

where ct is 1 if the response is correct and 0 if it is incorrect, and pt is the

probability that the process takes the value 1, which is given by

pt =
exp(µ+ γxt)

1 + exp(µ+ γxt)
, (7.14)

where γ is a modulation parameter which governs the effect of the cognitive state

process on the probability of observing the binary outcome, and µ defines the

probability of the binary outcome when the state process is zero.

The Bayesian network representing this behavioural model is shown in Fig-

ure 7.3. We should note that both observations (i.e., RT and correctness) need

to indicate an increase in the cognitive state (which could represent an increase

in the attentional level of the user) to make the model predict such change. This

means that the cognitive state will rise only when the RT is small and the cor-

rectness is 1, and decrease when the RT is big and the correctness is 0. In the
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Figure 7.3: Bayesian network representing the behavioural state-space model
based on correctness (ct) and log-transformed RTs (zt) developed in [149].

other cases (i.e., when the correctness is 1 but the RT is big, or the correctness

is 0 and the RT is small), the model will maintain the cognitive state constant.

Let Zt = [z1, . . . , zT ] and Ct = [c1, . . . , cT ] be the sequences of log trans-

formations of RTs and decision correctness measures from trials 1 through T ,

respectively. In order to build a recursive filter to estimate the state xt at trial t

from Zt and Ct, similarly to what we did for the model based on the sole correct-

ness (see Section 7.2.2), we need to express the probability density of the state

given the observations:

p(xt|Zt, Ct) =
p(xt|Zt−1, Ct−1)p(zt|xt)p(ct|xt)

p(zt, ct|Zt−1, Ct−1)
(7.15)

and the associated one-step prediction probability density (Chapman-Kolmogorov
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equation) is

p(xt|Zt−1, Ct−1) =

∫
p(xt−1|Zt−1, Ct−1)p(xt|xt−1)dxt−1 (7.16)

The probability densities p(zt|xt) and p(ct|xt) are the Gaussian and the Bernoulli

observation models for the RTs (defined in (7.12)) and the correctness (defined

in (7.13) and (7.14)) measures, respectively.

Similarly to the simple correctness-based model described in Section 7.2.2, we

estimated the parameters of the behavioural model with the EM algorithm on a

participant-by-participant basis. Moreover, similarly to [149] we chose ρ = 1 and

γ = 1, to focus the analysis on the estimation of the parameters associated to the

RT observations α and β.

7.3.1 Results

Figure 7.4 shows the probability of correct response of each participant at each

trial of the realistic visual-search experiment derived using the behavioural model.

These probabilities are directly obtained by the cognitive state estimate by the

model.

These results confirm that the cognitive state is quite different between par-

ticipants. For example, participant 1 and 9 seem to slowly increase their cognitive

state along the whole experiment, as an effect of experience. Other participants

(e.g., 2, 3, 4, 6 and 7) have a peak of performance in sessions 4 and 5 and

then their cognitive state drops, probably because of tiredness/boredom. The

remaining participants (5, 8 and 10) seem to have constant performance along

the experiment.
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Figure 7.4: Cognitive state evolution for each participant (thick black lines) es-
timated using the state-space model based on correctness and RTs for the visual
search experiment in realistic environments. 95% confidence intervals are shown
in light red. Correct (black) and incorrect (grey) decisions for each trial are also
shown above each plot.
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7.3.2 Between-Trial Comparisons of Performance

Similarly to [149], we compared the performance of learning between pairs of

trials to assess how much the cognitive state changes from one trial to another.

For each participant and given two trials i and j, we computed the probability

that the cognitive state of the observer on trial i is greater than the cognitive

state at trial j for all combinations (i, j). To compute these probabilities, we

used the Monte Carlo algorithm used in [149].

Figure 7.5 shows a 2D representation of the probabilities that the cognitive

state at trial i (abscissas) is greater than the cognitive state at trial j (ordinates)

for each participant. The purple areas show the trial comparisons for which

p(xi > xj) > 0.95, while the black areas show the trial comparisons for which

such probability is smaller than 0.05. These two areas represent significant varia-

tions of the cognitive state of the user along the experiment. Since the cognitive

state represents the level of attention and fatigue of the user, we expect to see

some purple areas in the middle of the experiment (result of the process of task

familiarisation of the participant and high attentional level due to the engage-

ment in the experiment) and some black areas towards the end of the experiment

(when the user is likely to be tired).

These results show that, for all participants except for observer 3, there is

a high probability that the cognitive state in the trials towards the end of the

experiment is higher than the trials at the beginning (cf. purple areas in the

bottom-right corner of each plot in Figure 7.5). This confirms the assumption

that users increase their attentional level after using the first session to familiarise

with the task, then improving their performance due to experience. A different
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Figure 7.5: Probability p(xi > xj) that the cognitive state at trial i (abscissas)
estimated using the behavioural state-space model based on correctness and RTs
is greater than the cognitive state at trial j (ordinates) for each participant.
Comparisons for which this probability is greater than 0.95 or smaller than 0.05
are shown in purple and black, respectively.
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situation happens for participant 3, who is very likely to have a low cognitive

state in the second half of the experiment with respect to the middle sessions.

This suggests that participant 3 started getting tired towards the end of the

experiment.

7.4 Neuro-Behavioural Model

This section describes an extension of the behavioural model presented in the

previous section that also includes a set of neural features extracted from the

EEG signals. We will firstly derive the model mathematically and then we will

describe the neural features we have used to estimate the cognitive state. Results

obtained with the realistic visual search experiment are also presented.

7.4.1 Observation Model of the EEG Feature

Starting from the behavioural model described in Section 7.3, we firstly need to

extend the observation equations to also include a description on how the neural

features are observed. Let us assume Ω being the set of different EEG features

we want to include in the model. Each feature ej,t is represented by a continuous

value at each time step t, with j = 1, . . . , |Ω|. Similarly to the observation model

used for the RTs (see Equation 7.12), the j-th EEG feature recorded at time t is

defined as

ej,t = φj + ψjxt + ωj,t, (7.17)
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where ωj,t are independent, zero mean Gaussian random variables with variance

σ2
ωj

associated to the j-th feature, which we assume it is independent from υt

and εt (see Equations (7.11) and (7.12)). The parameter φj governs the baseline

of the j-th EEG feature, whereas ψj represents the influence that the cognitive

state has on that feature. A positive value of ψj > 0 means that the cognitive

state increases when the j-th EEG feature also increases.

Adding these |Ω| equations to our behavioural model, we obtain the neuro-

behavioural model:



xt = ρ0 + ρxt−1 + υt

zt = α + βxt + εt

ej,t = φj + ψjxt + ωj,t, ∀j = 1, . . . , |Ω|

p(ct|xt) = pctt (1− pt)1−ct

pt = exp(µ+γxt)
1+exp(µ+γxt)

.

(7.18)

The Bayesian network representing the neuro-behavioural model is shown in

Figure 7.6.

7.4.2 Derivation of the Recursive Filter

This section describes how we construct a recursive filter to estimate the state xt

at trial t from the correctness, RTs and EEG features.

Let Zt and Ct be the sequences of observed RTs and correctness, respectively

(as described in Section 7.3) and let EΩ,t =
[ u1,1 ... e1,t

... ... ...
u|Ω|,1 ... e|Ω|,t

]
∈ R|Ω|×T be the se-

quences of values for each EEG feature ej ∈ Ω from trials 1 through t. The

Equations (7.15) and (7.16) become as follows:



CHAPTER 7. A STATE-SPACE MODEL FOR COGNITIVE STATE ESTIMATION 168

Figure 7.6: Bayesian network representing the neuro-behavioural state-space
model based on correctness (ct), log-transformed RTs (zt) and |Ω| EEG features
(ef,t, with f ∈ Ω).

p(xt|EΩ,t, Zt, Ck) =
p(xt|EΩ,t−1, Zt−1, Ct−1)

[∏|Ω|
j=1 p(ej,t|xt)

]
p(zt|xt)p(ct|xt)

p(e1,t, . . . , e|Ω|,t, zt, ct|EΩ,t−1, Zt−1, Ct−1)
,

(7.19)

p(xt|EΩ,t−1, Zt−1, Ct−1) =

∫
p(xt−1|EΩ,t−1, Zt−1, Ct−1)p(xt|xt−1)dxt−1, (7.20)

where p(ej,t|xt) is the Gaussian observation model for the j-th EEG feature de-

fined in (7.17).
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7.4.3 Derivation of the Gaussian Approximation

In order to build the recursive filter to estimate the state xt at trial t from

EΩ,t, Zt and Ct, we need to follow an approximation process similar to the one

used in Section 7.3. To approximate an unimodal probability density f(x) with

a Gaussian probability density, we compute its mode µ̂ as the solution of the

equation:

∂ log f(x)

∂x

∣∣∣∣
µ̂

= 0, (7.21)

and its variance σ̂2 as

σ̂2 =

[
−∂

2 log f(x)

∂x2

∣∣∣∣
µ̂

]−1

. (7.22)

We derive the mixed filter algorithm by computing the Gaussian approxima-

tion [173] to the posterior density p(xt|EΩ,t, Zt, Ct) in Equation (7.19). At trial

t, we assume that the one-step prediction probability density in Equation (7.20)

is the Gaussian probability:

p(xt|EΩ,t−1, Zt−1, Ct−1) = (2πσ2
t|t−1)−

1
2 exp{−(2σ2

t|t−1)−1(xt − xt|t−1)2}. (7.23)

The probability densities for the EEG and the RTs are the following, respec-

tively:

p(ej,t|xt) = (2πσ2
ωj

)−
1
2 exp{−(2σ2

ωj
)−1(ej,t − φj − ψjxt)2}, (7.24)

p(zt|xt) = (2πσ2
ε )
− 1

2 exp{−(2σ2
ε )
−1(zt − α− βxt)2}, (7.25)
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while the probability mass function for the correctness is given by simply rewrit-

ing (7.13) as follows:

p(ct|xt) = pctt (1− pt)1−ct =

= exp(log(pctt (1− pt)1−ct)) =

= exp(log(pctt ) + log(1− pt)1−ct) =

= exp(ct log pt + (1− ct) log(1− pt)) =

= exp(ct log pt − ct log(1− pt) + log(1− pt)) =

= exp(ct(log pt − log(1− pt)) + log(1− pt)) =

= exp(ct(log pt(1− pt)−1) + log(1− pt)).

(7.26)

Substituting Equations (7.23), (7.24), (7.25) and (7.26) into Equation (7.19)

gives the following posterior probability density:

p(xt|EΩ,t, Zt, Ct) ∝ exp{ − (2σ2
t|t−1)−1(xt − xt|t−1)2+

−
|Ω|∑
j=1

[(2σ2
ωj

)−1(ej,t − φj − ψjxt)2]+

− (2σ2
ε )
−1(zt − α− βxt)2+

+ ct(log pt(1− pt)−1) + log(1− pt)},

(7.27)

where we have ignored the denominator and the other constant terms (2πσ2
ωj

)−
1
2 ,

(2πσ2
ε )
− 1

2 and (2πσ2
t|t−1)−

1
2 , for j = 1, . . . , |Ω|.

We can then compute the log posterior probability density as:
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log p(xt|EΩ,t, Zt, Ct) =− (2σ2
t|t−1)−1(xt − xt|t−1)2+

−
|Ω|∑
j=1

[(2σ2
ωj

)−1(ej,t − φj − ψjxt)2]+

− (2σ2
ε )
−1(zt − α− βxt)2+

+ ct(log pt(1− pt)−1) + log(1− pt).

(7.28)

To compute the maximum-a-posteriori estimate of xt and its associated vari-

ance estimate, we compute the first and second derivatives of the log posterior

probability density with respect to xt, which are respectively:

∂ log p(xt|EΩ,t, Zt, Ct)

∂xt
=− (σ2

t|t−1)−1(xt − xt|t−1)+

+

|Ω|∑
j=1

[(σ2
ωj

)−1ψj(ej,t − φj − ψjxt)]+

+ (σ2
ε )
−1β(zt − α− βxt)+

+ γ(ct − pt),

(7.29)

∂2 log p(xt|EΩ,t, Zt, Ct)

∂x2
t

= −(σ2
t|t−1)−1 −

|Ω|∑
j=1

[(σ2
ωj

)−1ψ2
j ]− (σ2

ε )
−1β2 − γ2pt(1− pt).

(7.30)

We now set Equation (7.29) equal to zero and solve for xt|t to obtain the

posterior mode or maximum-a-posteriori estimate for xt. For simplicity, we solve

it for |Ω| = 1 (i.e., when there is only one EEG feature), as the generalisation for

|Ω| > 1 follows. We obtain:
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−(xt − xt|t−1)

σ2
t|t−1

+
ψ(et − φ− ψxt)

σ2
ω

+
β(zt − α− βxt)

σ2
ε

+ γ(ct − pt) = 0

xt

(
1

σ2
t|t−1

+
ψ2

σ2
ω

+
β2

σ2
ε

)
=
xt|t−1

σ2
t|t−1

+
ψ(et − φ)

σ2
ω

+
β(zt − α)

σ2
ε

+ γ(ct − pt)

xt

(
σ2
ωσ

2
ε + σ2

εσ
2
t|t−1ψ

2 + σ2
ωσ

2
t|t−1β

2

σ2
t|t−1σ

2
εσ

2
ω

)
=
xt|t−1

σ2
t|t−1

+
ψ(et − φ)

σ2
ω

+
β(zt − α)

σ2
ε

+ γ(ct − pt)

xt =

(
σ2
t|t−1σ

2
εσ

2
ω

σ2
ωσ

2
ε + σ2

εσ
2
t|t−1ψ

2 + σ2
ωσ

2
t|t−1β

2

)[
xt|t−1

σ2
t|t−1

+
ψ(et − φ)

σ2
ω

+
β(zt − α)

σ2
ε

+ γ(ct − pt)
]
.

(7.31)

Let us define the gain coefficient Gt ,
σ2
t|t−1

σ2
ωσ

2
ε+σ2

εσ
2
t|t−1

ψ2+σ2
ωσ

2
t|t−1

β2 . Then we obtain

xt =

(
���σ2
t|t−1σ

2
εσ

2
ω

σ2
ωσ

2
ε + σ2

εσ
2
t|t−1ψ

2 + σ2
ωσ

2
t|t−1β

2

)
xt|t−1

���σ2
t|t−1

+

+Gtσ
2
εσ

2
ω

[
ψ(et − φ)

σ2
ω

+
β(zt − α)

σ2
ε

+ γ(ct − pt)
]
.

(7.32)

We then sum and subtract the term
σ2
εσ

2
t|t−1

ψ2+σ2
ωσ

2
t|t−1

β2

σ2
ωσ

2
ε+σ2

εσ
2
t|t−1

ψ2+σ2
ωσ

2
t|t−1

β2xt|t−1 (with Gt in it)

to obtain

xt = xt|t−1 +Gt

[
−(σ2

εψ
2 + σ2

ωβ
2)xt|t−1 + ψσ2

ε (et − φ) + βσ2
ω(zt − α) + σ2

εσ
2
ωγ(ct − pt)

]
xt = xt|t−1 +Gt

[
βσ2

ω(zt − α− βxt|t−1) + ψσ2
ε (et − φ− ψxt|t−1) + σ2

εσ
2
ωγ(ct − pt)

]
.

(7.33)

Finally, we compute the variance of the Gaussian approximation by replacing

Equation (7.30) in Equation (7.22). The one-step prediction and its variance are
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obtained as follows:

xt|t−1 = E(xt|xt−1|t−1) = ρ0 + ρxt−1|t−1, (7.34)

σ2
t|t−1 = Var(xt|xt|t−1) = Var(ρxt−1 + υt|xt|t−1) = ρ2σ2

t−1|t−1 + σ2
υ. (7.35)

Putting all together, we obtain the recursive mixed filter algorithm described

as follows:

One-Step Prediction xt|t−1 = ρ0 + ρxt−1|t−1

One-Step Variance σ2
t|t−1 = σ2

t−1|t−1 + σ2
υ

Gain Coefficient

Gt = [
∑
j∈Ω

(ψ2
jσ

2
t|t−1σ

2
ε

∏
i 6=j∈Ω

σ2
ωi

)+

(
β2σ2

t|t−1 + σ2
ε

)∏
j∈Ω

σ2
ωj

]−1 σ2
t|t−1

Posterior Mode

xt|t =xt|t−1 +Gt×[
σ2
ε

∑
j∈Ω

(
ψj(ej,t − φj − ψjxt|t−1)

∏
i 6=j∈Ω

σ2
ωi

)
+

(
β(zt − α− βxt|t−1) + γσ2

ε (ct − pt)
)∏
j∈Ω

σ2
ωj

]

Posterior Variance

σ2
t|t =

[
(σ2

t|t−1)−1 + γ2pt(1− pt)+∑
j∈Ω

[(σ2
ωj

)−1ψ2
j ] + (σ2

ε )
−1β2

]−1
.



CHAPTER 7. A STATE-SPACE MODEL FOR COGNITIVE STATE ESTIMATION 174

7.4.4 Derivation of the EM Algorithm

In this section, we derive the equations of the EM algorithm that has been used for

finding the optimal parameters of the neuro-behavioural model. For simplicity,

we will consider the initial condition ρ0 = 0 as done in [149].

7.4.4.1 E-step

We use the EM algorithm to compute the maximum likelihood estimates of θ.

In order to do that, we need to maximise the expectation of the complete data

log-likelihood, which is the joint probability density of E,Z,C and x over the T

trials:

p(EΩ, Z, C, x|θ) =
T∏
t=1

pctt (1− pt)1−ct

×
∏
j∈Ω

T∏
t=1

(2πσ2
ωj

)−
1
2 exp{(−2σ2

ωj
)−1(ej,t − φj − ψjxt)2}

×
T∏
t=1

(2πσ2
ε )
− 1

2 exp{(−2σ2
ε )
−1(zt − α− βxt)2}

×
T∏
t=1

(2πσ2
ν)
− 1

2 exp{(−2σ2
ν)
−1(xt − ρxt−1)2},

(7.36)

where the first term on the right is defined by the Bernoulli probability mass

function in Equation (7.13), the second term is defined by the Gaussian probabil-

ity density in Equation (7.17) and associated to each EEG feature ej, the third

term is defined by the Gaussian probability density in Equation (7.12), and the

fourth term is the joint probability density of the state process defined by the

Gaussian model in Equation (7.14).
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At iteration (l+1) of the algorithm, in the E-step we compute the expectation

of the complete data log likelihood given the observations EΩ, Z and C across the

T trials and θ(l) = (φ
(l)
j∈Ω, ψ

(l)
j∈Ω, σ

2(l)
ωj∈Ω , α

(l), β(l), σ
2(l)
ν , ρ(l), σ

2(l)
ε , x

(l)
0 ), the parameter

estimates from iteration l, which is defined as:

E{log[p(EΩ, Z, C, x|θ)]||EΩ, Z, C, θ
(l)} =

= E

(
T∑
t=1

{ct log[pt(1− pt)−1] + log(1− pt)}
∣∣∣∣∣∣∣∣ EΩ, Z, C, θ

(l)

)

+
∑
j∈Ω

E

[
−1

2
T log(2πσ2

ωj
)− (2σ2

ωj
)−1

T∑
t=1

(ej,t − φj − ψjxt)2

∣∣∣∣∣∣∣∣ EΩ, Z, C, θ
(l)

]

+ E

[
−1

2
T log(2πσ2

ε )− (2σ2
ε )
−1

T∑
t=1

(zt − α− βxt)2

∣∣∣∣∣∣∣∣ EΩ, Z, C, θ
(l)

]

+ E

[
−1

2
T log(2πσ2

ν)− (2σ2
ν)
−1

T∑
t=1

(xt − ρxt−1)2

∣∣∣∣∣∣∣∣ EΩ, Z, C, θ
(l)

]
.

(7.37)

To evaluate the E-step we have to consider the following terms

xt|T ≡ E[xt||EΩ, Z, C, θ
(l)]

Wt|T ≡ E[x2
t ||EΩ, Z, C, θ

(l)]

xt−1,t|T ≡ E[xtxt−1||EΩ, Z, C, θ
(l)],

(7.38)

for t ∈ {1, . . . , T} where the notation t|T denotes the expectation of the state

variable at time t given the responses up to time T . To compute these quantities

efficiently, we decompose the E-step into three parts [172]: a nonlinear recursive

filter algorithm to compute xt|t, a fixed interval smoothing algorithm to estimate
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xt|T , and a state-space covariance algorithm to estimate Wt|T and Wt,t−1|T .

7.4.4.2 Fixed Interval Smoothing Algorithm

Given the sequence of posterior mode estimates xt|t and the variance σ2
t|t in Equa-

tion 7.36, we use the fixed-interval smoothing algorithm [173] to compute xt|T and

σ2
t|T as follows:

xt|T = xt|t + At(xt+1|T − xt+1|t), (7.39)

At = ρσ2
t|t(σ

2
t+1|T )−1, (7.40)

σ2
t|T = σ2

t|t + A2
t (σ

2
t+1|T − σ2

t+1|t), (7.41)

for t = T − 1, . . . , 1 and initial conditions xt|t and σ2
t|t.

7.4.4.3 State-Space Covariance Algorithm

The covariance estimate, σt,q|T , can be computed from the state-space covariance

algorithm and is given as

σt,q|T = Atσt+1,q|T (7.42)

for 1 ≤ t ≤ q ≤ T . It follows that the covariance terms required for the E-step

are

Wt|T = σ2
t|T + x2

t|T , (7.43)
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Wt−1,t|T = σt−1,t|T + xt−1|Txt|T . (7.44)

7.4.4.4 M-step

In the M-step, we maximise the expected value of the complete data log likelihood

given by Equation (7.37) with respect of θl+1 obtaining:

(A) State part

x
(l+1)
0 = ρx1|t (7.45)

ρ(l+1) =
T∑
t=1

Wt−1,t|T
[ T∑
t=1

Wt−1|T
]−1

(7.46)

σ2
v = T−1

T∑
t=1

[Wt|T − 2ρWt−1,t|T + ρ2Wt−1|T ] (7.47)

(B) RT part

σ2(l+1)
ε = T−1

T∑
t=1

z2
t + Tα2(l+1)

+ β2(l+1)

T∑
t=1

Wt|T − 2α(l+1)

T∑
t=1

zt

− 2β(l+1)

T∑
t=1

xt|T zt + 2α(l+1)β(l+1)

T∑
t=1

xt|T

(7.48)
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α(l+1)

β(l+1)

 =

 T
∑T

t=1 xt|T∑T
t=1 xt|T

∑T
t=1 Wt|T


−1  ∑T

t=1 zt∑T
t=1 xt|T zt

 (7.49)

(C) EEG part for feature j ∈ Ω

σ2(l+1)
ωj

= T−1

T∑
t=1

e2
j,t + Tφ

2(l+1)
j

+ ψ
2(l+1)
j

T∑
t=1

Wt|T − 2φ
(l+1)
j

T∑
t=1

et

− 2ψ
(l+1)
j

T∑
t=1

xt|T ej,t + 2φ
(l+1)
j ψ

(l+1)
j

T∑
t=1

xt|T

(7.50)

φ(l+1)
j

ψ
(l+1)
j

 =

 T
∑T

t=1 xt|T∑T
t=1 xt|T

∑T
t=1 Wt|T


−1  ∑T

t=1 ej,t∑T
t=1 xt|T ej,t

 (7.51)

The algorithm alternates between the E-step of Equation (7.37) and the M-

step of Equations (7.45), (7.48) and (7.50), using the filter algorithm, the fixed

interval smoothing algorithm and the state-space covariance algorithm to evaluate

the E-step. The maximum likelihood estimate of θ̂ = θ(∞). The convergence

criteria for the algorithm were absolute changes of the parameters of less than

102 in consecutive iterations and relative changes of the parameters of less than

103 [173].
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7.4.5 Selecting the EEG Features

A vital part of the neuro-behavioural model is choosing representations of the

EEG signals that best correlate with the latent cognitive state. Several tech-

niques for extracting neural features have been used in the literature, including

computing the average power in certain frequency bands and more advanced

techniques such as PCA and CSP (see Section 3.6.1).

We decided to start our exploration from one EEG feature, namely the average

log power in the beta band (16–23 Hz) recorded at electrode Cz. Low values of the

lower-beta power have been associated to active thinking and attention [20]. For

each stimulus-locked epoch i, the preprocessed EEG signal recorded at electrode

Cz si has been filtered with a pass-band between 15 and 24 Hz.1 We used the

Welch method [216] to compute the power spectrum of the filtered signal. The

neural feature ei has been computed as the logarithm of the sum of the power

spectral density (PSD) between the considered frequencies:

ei = log
24∑

f=15

PSDi(f).

7.4.6 Results

Figure 7.7 shows the cognitive state of each participant obtained using the neuro-

behavioural state-space model based on the correctness in the decision, the RT

and the EEG feature selected in the previous section.

Let us compare these results with those obtained using the behavioural model

(cf. Figures 7.4 and 7.7). For participants 1, 3 and 4, there are no major differences

1We used a wider pass-band for the filter than the range of frequencies of interest (16–23 Hz)
to reduce transient effects of a non-ideal filter.
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Figure 7.7: Cognitive state at each trial estimated using the neuro-behavioural
state-space model based on correctness, RTs and average power in the EEG
lower-beta band of each participant for the visual search experiment in realistic
environments. 95% confidence intervals are shown in light red. Correct (black)
and incorrect (grey) decisions for each trial are also shown above each plot.
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in the estimates of the two models. For volunteers 2, 5, 6, 7 and 10, the neuro-

behavioural model estimates a much lower cognitive state across the experiment.

This is reasonable, for example, for participant 10, as his/her performance across

the whole experiment are close to random. For the remaining participants, the

neuro-behavioural model estimates they have a higher cognitive state than that

estimated by the behavioural model.

These changes are particularly relevant if we consider the potential applica-

tion of such a model, which is to be able to recognise drops in attention and

temporarily ignoring the decisions of certain group members when making group

decisions. In the case of participant 10, the performance of the group is likely to

be superior if this user is excluded, considering his/her individual performance.

We should note that the neuro-behavioural model is still far from being per-

fect. For example, it overestimates the cognitive state of participant 9, which has

performance close to the average individual performance, and underestimates the

cognitive state of participant 4, which is very likely to be correct across the whole

experiment. This is likely to be caused by the fact we only used one EEG feature

together with behavioural measures, such as RTs and correctness. The addi-

tion of extra EEG features (which are supported by the proposed model) and the

adoption of more advanced techniques for feature extraction may further improve

these results.

7.4.7 Between-Trial Comparisons of Performance

We repeated the trial-by-trial analysis we performed in Section 7.3.2 for the neuro-

behavioural state-space model. The results are shown in Figure 7.8.
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Figure 7.8: Probability p(xi > xj) that the cognitive state at trial i (abscissas)
estimated using the neuro-behavioural model is greater than the cognitive state at
trial j (ordinates) for each participant. Comparisons for which this probability is
greater than 0.95 or smaller than 0.05 are shown in purple and black, respectively.
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The inclusion of the EEG feature in the model has revealed more processes

related to the attention and tiredness of participants. For example, the plot of

participant 5 shows that in the last session his/her cognitive state is very likely

to be lower than in the previous sessions. This may be due to tiredness, which

is indicated by an increase in the beta power and was not visible from only

behavioural features. Similar results are obtained for participants 3 (as found

also with the behavioural model) and 10. The results for volunteer 9 show that

his/her cognitive state reached a maximum in session 3: the probability of the

cognitive state in trials in sessions other than 3 to be higher than the cognitive

state in trials of that session is very low (cf. black spots along the horizontal

line representing session 3 in Figure 7.8). Indeed, this reflects the peak in the

cognitive state shown in Figure 7.7.

7.5 Comparison of State-Space Models

This section aims at comparing the goodness-of-fit of the state-space models

including different combinations of features developed in this chapter. Since a

ground-truth of the cognitive state is not directly available, we evaluated the

models on the basis of their ability of predicting the correctness in a decision. In

addition to the model based on the sole correctness (Section 7.2), the behavioural

model (Section 7.3) and the neuro-behavioural one (Section 7.4), we also studied

the performance of a model based on the correctness and the EEG feature (i.e.,

without RTs). This “neural” model is based on the way the neural feature has

been modelled (i.e., similarly to RTs), making it possible to reuse the model

described in Section 7.3 by simply replacing the RT observations with the log
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Table 7.1: p-values of the likelihood ratio test comparing the goodness of fit
of the four models analysed in this chapter based on different combinations of
the features, namely the correctness (Cor), RT and correctness (RTCor), EEG
and correctness (NeurCor), and EEG, RT and correctness (NeurRTCor). The
operator “/” separates the alternative model (first term) from the null model
(second term). The difference in the number of free parameters between the two
models compared (degrees of freedom) is shown in brackets. p-values below the
confidence level 0.05 are shown in boldface and mean that the first model is better
than the second one.

Comparison P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

RTCor / Cor (3) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 0.000

NeurCor / Cor (3) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000

NeurRTCor / Cor (6) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 0.000

NeurRTCor / RTCor (3) 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 0.000 0.000

NeurRTCor / NeurCor (3) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

power in the beta band.

Figure 7.9 shows the cognitive state of each participant estimated with the

aforementioned four different state-space models.

We used the likelihood ratio test to compare the accuracy of the four models

in predicting the correctness in a decision. This test is based on the ratio between

the logarithms of the likelihood (Equation 7.9) of two models, one of which (the

null model) is a special case of the other (the alternative model). This ratio

expresses how many times more likely the data are under the alternative model

than under the null one. For each comparison, we computed the test statistic D

as:

D = 2× log

(
likelihood for alternative model

likelihood for null model

)
. (7.52)

Finally, we computed the probability of the chi-squared approximation of the

distribution of D. The results are shown in Table 7.1.
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Figure 7.9: Cognitive state processes of each participant estimated with state-
space models based on the correctness (blue) and a combination of correctness
and (a) RT (orange), (b) neural feature (red), and (c) RT and neural feature
(green). Correct (black) and incorrect (grey) decisions for each trial are also
shown above each plot.
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These results suggest that the state-space models based on the correctness

and, either, the RTs or the neural feature are significantly more accurate than the

model based on the sole correctness (first two rows in Table 7.1). When combining

correctness, RTs and neural features (last three rows), although, the resulting

model becomes much better than the models based on the sole correctness or

on RTs and correctness for some participants. The neuro-behavioural model

performs on par with the model based on the neural feature and the correctness.

This suggests that the neural feature used in this chapter and the RTs provide

similar information regarding the correctness in the decision, the former being

more accurate than the latter with some volunteers.

The likelihood ratio test requires to know the number of free parameters of

each model. In the results reported above we empirically-estimated the number

of these parameters, although we did not take into account the dependencies

between each other. Hence, we have also used the Watanabe-Akaike Informa-

tion Criterion (WAIC) [215] to select the best state-space model. Similarly to

leave-one-out cross-validation (LOO), WAIC is a method for estimating point-

wise out-of-sample prediction accuracy (i.e., the quality of the model) from a

fitted Bayesian model [50, 205], such as our state-space models. WAIC does not

require the estimation of the free parameters of the model, making it a more

general method to evaluate a model [50].

WAIC is defined as follows:

WAIC = −2(l̂pd− p̂WAIC) (7.53)

where l̂pd is the log pointwise predictive density computed by evaluating the



CHAPTER 7. A STATE-SPACE MODEL FOR COGNITIVE STATE ESTIMATION 187

Table 7.2: WAIC values of the models based on the sole correctness (Cor), the RT
and the correctness (RTCor), the neural feature and the correctness (NeurCor),
and the RT, the neural feature and the correctness (NeurRTCor) for each partic-
ipant. The minimum value of WAIC for each volunteer indicates the best model
and is reported in boldface, while the second-best model is shown in italics.

Model P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Cor 1.284 1.311 1.177 0.971 1.207 1.214 1.215 1.353 1.210 1.376

RTCor 1.187 1.475 1.063 0.920 1.063 1.383 1.120 1.757 1.310 1.437

NeurCor 1.136 2.513 1.007 0.908 1.280 1.237 1.915 1.321 1.459 2.492

NeurRTCor 1.142 2.120 1.039 0.930 1.309 1.154 1.494 1.283 1.063 1.787

expectation using draws from the posterior probability, and p̂WAIC is estimated

effective number of parameters computed using the posterior variance of the log

predictive density for each data point. Lower values of WAIC imply higher pre-

dictive accuracy of the model [50].

Table 7.2 reports the WAIC of all participants for the four models analysed

in this section. The best model of each volunteer is indicated in boldface, while

the second best is shown in italics.

The results obtained with WAIC indicate that the two models based also

on the neural feature provide the best predictive accuracy of the correctness in

the decision on the majority of the participants. For some volunteers (e.g., P2

and P10), the sole correctness is sufficient to provide the best fit. In summary,

these results show that there is no best model across participants, suggesting

that the selection of the best features for estimating the cognitive state should

be conducted on a participant-by-participant basis.
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7.6 Conclusions

This chapter has explored the possibility of using first-order state-space models

to estimate the cognitive state of a user engaged in a decision-making task from a

series of neural and behavioural observations. Detecting changes in the cognitive

state could reveal variations in the attentional level and fatigue, which are likely

to affect decision-making performance. Our aim was to investigate whether or not

our cBCI for group decision making equipped with such models could improve its

performance by temporarily excluding the group’s members with a low cognitive

state from contributing to the group decision, as they are more likely to make an

incorrect choice.

We introduced four state-space models based on different combinations of

observations, namely the correctness in the decision (Section 7.2), the correctness

and RT (Section 7.3), the correctness, RT and a neural feature represented by

the log power in the EEG lower-beta band (Section 7.4), as well as a model based

on the correctness and the EEG feature. We applied these models to the visual

search experiment with realistic stimuli described in Chapter 5 and compared

their performance in Section 7.5.

Similar behavioural state-space models have been developed in the literature

to track the cognitive state, although they have mainly been applied to learning

experiments with animals [149]. In that domain, it is easier to assess the perfor-

mance of the model, as you can clearly identify when the user or the animal has

learnt the task by tracking the correctness in the decisions. Here we track the

cognitive state of human participants engaged in a target-detection task including

uncertainty, where even if the volunteer has learned the task properly, he/she can
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still make an erroneous decision due to the intrinsic difficulty of the task at hand.

The preliminary results described in this chapter suggest that the integra-

tion of an EEG feature in the state-space model could improve the prediction of

the cognitive state for certain participants. However, the quantitative analysis

conducted with the likelihood ratio test and the WAIC suggests that every par-

ticipant requires a different combination of features to achieve the best prediction

of the cognitive state. Despite these interesting results, we should note that the

investigation conducted in this chapter was very preliminary and had the aim

of starting exploring the application of state-space models to cBCIs for decision

making. Further research is therefore required before being able to draw any

conclusions.



Chapter 8

Augmenting Group Performance

in Face Recognition

This chapter explores the possibility of using the proposed cBCI to improve per-

formance on face recognition, a task with a broad range of applications in security.

Part of the material in this chapter has been published in [196].

8.1 Introduction

Face recognition is a vital task in our everyday lives, especially when applied

to security contexts. As seen in Section 2.6.1, BCIs have been used to improve

human performance in this taxing and challenging task in a number of experi-

ments. However, the encouraging performance of those BCIs were obtained by

performing a particular type of face recognition, that is seeing a sequence of in-

dividual faces and deciding which ones were target faces. In a real environment,

we usually deal with pictures or video frames of crowded scenes, possibly taken
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from different viewpoints, where faces could even be partially occluded. This is

the situation in which automatic face recognition usually fails and where BCIs

could potentially augment human performance.

This chapter explores the possibility of using the cBCI described in Chapter 3

with a realistic face recognition experiment, where participants have to decide

whether a target person was present or not in an image of a crowded environ-

ment shown for a very limited time. The aims of this additional experiment

are (a) testing the performance of the cBCI described in Chapter 3 with a face

recognition task using realistic stimuli and comparing them with those obtained

with traditional groups; (b) studying whether confidence reported by participants

after each decision could be used to make better group decisions than the cBCI

in face recognition; (c) investigating whether traditional and cBCI groups where

participants are exposed to different sources of information about the same scene

are more accurate than groups where each participant sees the same image.

The chapter is organised as follows. Section 8.2 presents the experimental

setup and how group decisions have been obtained in the single and multi-

viewpoint approaches. Results are then presented and discussed in Section 8.3.

The chapter ends with Section 8.4 drawing some conclusions.

8.2 Methodology

8.2.1 Participants

We gathered data from 10 healthy participants (mean age ± standard deviation

= 37.8± 4.8 years old, 7 females, all right-handed) with normal or corrected-to-
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normal vision and no reported history of epilepsy.

In addition to the base rate of £16, volunteers were paid an additional rate

ar which depended on their performance as follows:

ar =


£0 if acc < 60%

£2 if 60% ≤ acc < 80%

£4 if acc ≥ 80%

where acc was the average performance (in %) of the participant across the exper-

iment. The additional rate was adopted in order to further encourage volunteers

to focus on the task and achieve the maximum performance.

8.2.2 Experiment

The experiment consisted of a face recognition task where participants had to

decide whether a target person was present or not in a picture of a crowded scene

shown for a limited amount of time.

The images required for this experiment have been gathered from the se-

quences P2E S5 and P2L S5 of the ChokePoint dataset [226], which was de-

signed for person identification under real-world surveillance conditions. The two

sequences consisted in 29 people (six female) walking indoor and passing through

two different portals. Three cameras were positioned at the top-left (L), top-

center (C) and top-right (R) of each portal, respectively, so that every scene was

described by three pictures of size of 800×600 px2 taken from different viewpoints.

Each image contained between 2 and 11 faces.

Since in video sequences consecutive frames contain similar information, we
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randomly sampled the 700+ images available in each sequence to select 48 scenes

represented by one image for each viewpoint. We then shuffled the selected pic-

tures. This procedure allowed to reduce the possibility that participants used pre-

vious knowledge to make decisions. Each image has been converted to greyscale

and its histogram has been equalised. Therefore, our dataset was composed of

48× 3× 2 = 288 images. The first three rows of Figure 8.1 show a representative

image for each sequence and viewpoint.

In each sequence, a different person has been chosen as “target” – see Fig-

ure 8.1(bottom). The images have then been labelled as “target” or “non-target”

depending on the presence or not of the target person. For each sequence, a total

of 36 images (12 per viewpoint) were labelled as “target” and the remaining 108

(36 per viewpoint) as “non-target”.

The experiment was split into six sessions of 48 trials each. A session included

the presentation of all images taken from a specific combination of sequence and

viewpoint, namely (1, L), (1, C), (1, R), (2, L), (2, C), (2, R). Target images

were shown in 25% of the trials. The images of each session were shuffled and

presented in the same order for each participant, while the order of the sessions

was randomised across volunteers. Hence, each stimulus selected as explained

before was used exactly once.

Sessions started with a display showing the cropped face of the target person

assigned to that session (Figure 8.1(bottom)) and the participant was asked to

memorise it. When ready, the user pressed the left mouse button to start the

48 trials of that session. Figure 8.2 shows the sequence of stimuli presented

in each trial, which follows the protocol described in Section 3.2 except for the

mask, which was not used for this experiment. After the initial fixation cross,
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Figure 8.1: Example of images used in the face recognition experiment for the
two sequences (columns) and the three viewpoints (first three rows). The last
row shows the cropped face of the target person assigned to each sequence.
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Figure 8.2: Sequence of displays presented in each trial of the face recognition
experiment.

an image of a crowded scene was presented for 300 ms in full screen, subtending

approximately 14.4 degrees horizontally and 11.0 degrees vertically. After that,

a screen showing the target face associated to that session was shown and the

user had to decide, as quickly as possible, whether or not the target person was

present in the scene, by clicking the left or the right mouse buttons, respectively.

After indicating their decision, the participants were asked to indicate the degree

of confidence in that decision (0–100%) using the mouse wheel (i.e., scrolling

up/down to increase/decrease the confidence by 10%) within a time window of 4

seconds.

The experimental session started with briefing and preparation of the vol-

unteers. Then, two training sessions of 10 trials each were undertaken by the

participants to familiarise with the task. Preparation and practice took approx-

imately 45 minutes, while the experiment took about 25 minutes. Participants

were comfortably seated at about 80 cm from a LCD screen.
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8.2.3 Making Group Decisions

Data were acquired and preprocessed as explained in Chapter 3. For this exper-

iment, we set pb = 14 Hz, sb = 16 Hz and the final sampling rate sr = 32 Hz.

Therefore, each stimulus- and response-locked epoch was represented by 48 time

samples for each of the 64 EEG channels used.

As done in previous experiments (e.g., see Chapter 6), we split the dataset

into a training and a test sets using 10-fold cross-validation. We then used the

training set to compute the LTCCSP matrices for the two types of epochs to

extract the neural features – see Section 5.2.3. Hence, the cBCI used for the

face recognition experiment used 5 features to estimate the decision confidence: 2

LTCCSP neural features extracted from each type of epochs (i.e., stimulus-locked

and response-locked) and the RT. Once the BCI confidence was estimated, we

computed the confidence weights w by using the negative exponential weighting

function described in Equation (3.3).

Group decisions were then made as described in Section 3.8 by using the sign

of the weighted sum of members’ decisions, where the weights were either the

confidence reported by the participants or the confidence weights computed by

the cBCI. Group performance were then validated as described in Section 3.9.

In this chapter we tested two approaches for forming groups: a “traditional”

one, which has been used in the other experiments and assuming all members of

the groups are exposed to the same stimuli, and a “multi-viewpoint” approach,

where group members are exposed to different sources of information (i.e., im-

ages of the same scene taken from different viewpoints). The following sections

describe in details these two approaches.
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8.2.4 Traditional Approach

Similarly to what has been done in other experiments, we simulated group deci-

sions in which each group’s member was exposed to the same stimulus. To do so,

we saved the order in which the experiment’s sessions had been presented (see

Table 8.1) to allow reordering the stimuli offline.

With the 10 participants, we were able to assemble
(

10
m

)
groups of size m, for

m = 2, 3, . . . , 10. Hence, we computed group decisions for 45 groups of size 2,

120 groups of size 3, and so on.

In this experiment, the stimuli within each session had some shared features

(i.e., the sequence and the viewpoint). Hence, we also compared individual and

group performance between different sessions. In particular, we looked into the

error distributions associated to the three viewpoints (L, C, R), in order to assess

whether participants performed better from a certain viewpoint.

8.2.5 Multi-Viewpoint Approach

One of the aims of this experiment was to investigate whether exposing partic-

ipants to different source of information would improve group performance, as

suggested by the literature on group decision making [181]. As described in Sec-

tion 8.2.2, each scene selected from each sequence was presented in three sessions

from different viewpoints. In this experiment, we also simulated group decisions

where each group’s member was exposed to stimuli representing the same scene

seen by other participants but taken from a different viewpoint.

When forming groups of size m, we guaranteed that none of the viewpoints

was over-represented, in the sense that the number of members viewing images
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Table 8.1: Order of the sessions in which each participant has undertook the face
recognition experiment. Each session is described by the number of the sequence
from which the stimuli has been gathered (i.e., 1 or 2) and the viewpoint of the
camera (i.e., “L” for left, “C” for central, “R” for right).

Session

Participant 1 2 3 4 5 6

1 (1, R) (1, L) (2, L) (2, C) (2, R) (1, C)

2 (2, C) (1, L) (1, R) (1, C) (2, L) (2, R)

3 (1, C) (2, L) (1, R) (1, L) (2, C) (2, R)

4 (1, R) (2, R) (2, C) (1, C) (2, L) (1, L)

5 (2, L) (1, C) (2, R) (2, C) (1, L) (1, R)

6 (1, L) (2, L) (1, R) (2, C) (1, C) (2, R)

7 (1, L) (1, R) (2, L) (2, C) (2, R) (1, C)

8 (2, R) (2, C) (1, L) (1, R) (1, C) (2, L)

9 (2, C) (1, L) (1, R) (2, R) (2, L) (1, C)

10 (1, R) (1, C) (2, C) (2, R) (1, L) (2, L)

from a particular viewpoint never differed by more than 1 from the number of

participants viewing images from any other viewpoint. Due to this constraint,

the number of possible ways to combine viewpoints vm for each group size was

equal to 1 for m = 3, 6, 9 and equal to 3 for the other values of m. The number of

groups of size m we could assemble with our N = 10 participants was given by the

m-permutations of N multiplied by the number of combinations of viewpoints,

namely vm
N !

(N−m)!
. Hence we had 270 groups of size 2, 720 groups of size 3, and

so on. The performance of each group was computed on a third of the total

number of trials, as only the stimuli from a specific viewpoint were used for the

simulation.

It should be noted that the order of the sessions was randomised between

participants (see Section 8.2.2) and, therefore, we could consider the samples of
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the statistical test used to compare the group performance independent. For this

reason, we still use the Wilcoxon signed-rank test for this purpose.

8.3 Results

8.3.1 Individual Performance

Figure 8.3 shows the error rates of each participant in the experiment and the

fraction of the overall error rates due to each viewpoint.

The average error rate across participants for the whole experiment was (mean

± standard deviation) 27.74±11.98%, showing that the face recognition task was

extremely difficult for an individual. When considering each viewpoint separately,

the average performance across participants was 28.12± 12.25%, 28.02± 13.25%

and 27.08± 12.07% for the left, center and right camera, respectively.

The average performance was quite similar for the three viewpoints. Indeed,

a Kruskal-Wallis test comparing the error rates with each viewpoint showed no

statistical differences (p > 0.7 for all combinations).

8.3.2 Group Decisions Made from the Same Viewpoint

Figure 8.4 shows the average error rates across all the trials of the experiment for

groups of different size making decisions using the standard majority rule (gray

line), the confidence-based weighted majority (blue line) and the cBCI-based

weighted majority (red line) when participants were seeing images from the same

viewpoint.

The results show that the two confidence-based methods perform much better
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Figure 8.3: Mean error rates for each participant across the 288 trials. The
fraction of the overall error rates due to each viewpoint is also indicated.

1 2 3 4 5 6 7 8 9 10
Groupsize

6%

8%

10%

12%

14%

16%

18%

20%

22%

24%

26%

28%

30%

E
rr

o
r 

ra
te

Majority

Confidence-based

cBCI

Figure 8.4: Error rates made by groups of different size using the three methods
analysed when participants were exposed to stimuli of the same viewpoint.
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than the simple majority rule, which confirms our previous findings with other

visual experiments [143, 199]. Interestingly, the confidence-based methods do not

only improve the performance of even-sized groups, as we were expecting due to

their intrinsic ability to break ties in a better way than making a random decision

(i.e., the strategy adopted by the majority rule). They also boost the performance

of odd-sized groups, hence making their adoption even more advantageous.

The confidence values reported by the participants seem to be quite accurate

in predicting when they are making the correct decision. Weighing individual

decisions according to subjective estimates reduces the error rates by at least

2% for all group sizes when compared to the error rates obtained with standard

majority.

When the decision confidence is estimated by the cBCI using the neural signals

and the RTs, however, groups of size 2, 4, 6, 7, 8, 9 are able to further reduce

error rates when compared to groups using the confidence values reported by each

participant. Particularly interesting is the improvement provided by the cBCI to

the performance of pairs, as these are the groups more likely to be used in practice.

The cBCI reduces the error rates of traditional pairs (making decisions with the

standard majority rule) from 27.7% down to 20.9%.

When analysing the results of odd-sized groups in Figure 8.4, one may wonder

why the error rates of groups of size 3 and 5 are higher than the error rates

of smaller groups. Ties do not occur in odd-sized groups and, so, to improve

performance the cBCI has to allow a minority of users to decide on behalf of

the group. For example, in a situation where two group’s members made the

incorrect decision and one group member made the correct one, the group will

make the correct decision only if the cBCI is able to assign a confidence value to
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the correct group’s member that is higher than the sum of the confidence values

assigned to the erroneous group’s members. However, for small odd-sized groups

this task is quite hard considering the distribution of cBCI weights for the two

classes (see Section 8.3.5). This leads to cBCI performance that is closer to (but

still significantly better than) the performance obtained by traditional groups.

To compare further the performance of different group sizes making deci-

sions with the three methods analysed, we used the Wilcoxon signed-rank test

to compare the different error distributions. The p-values of the Wilcoxon test

comparing the overall performance are shown in Table 8.2. It is clear that the

performance obtained by the two confidence-based methods is statistically signif-

icantly better than that obtained with traditional majority-based groups for all

meaningful group sizes (we should note that it is not possible to achieve statistical

significance for groups of size 10 as we only have one sample).

When comparing the two confidence-based methods together, we can see from

Table 8.2 that the cBCI and the confidence-based methods are complementary,

but the cBCI yields significantly better decisions in 6 out of 8 group sizes, while

the confidence-based is significantly better than the cBCI only for groups of size

3. The two methods perform on a par for groups of size 5.

These results suggest that both confidence-based methods provide significant

improvement in group performance, but the cBCI should be preferred due to its

primacy for pairs (the most practical group) and for bigger group sizes (the ones

achieving the lowest error rates).

Let us now look at the results obtained by groups when using only the subset

of stimuli from one of the viewpoints. Figure 8.5 shows the mean error rates

obtained by groups adopting the three decision methods analysed in this chapter
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Table 8.2: Statistical comparison of methods for group decisions made using all
stimuli for different group sizes. The table reports the p-values returned by the
one-tailed Wilcoxon signed-rank test when comparing the performance of groups
of different sizes adopting different decision methods: standard majority, weighted
majority based on the reported confidence (ConfidenceMajority), and cBCI-based
weighted majority (cBCI). The p-values below the Bonferroni-corrected statistical
significance level 0.05/4 = 0.013 are in bold face. Sample sizes (the number of
groups of each size) are indicated in the last row of the table.

Group size

Comparison 2 3 4 5 6 7 8 9

Is ConfidenceMajority
better than Majority?

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0026

Is ConfidenceMajority
better than cBCI?

0.9968 0.0000 1.0000 0.1802 1.0000 1.0000 0.9998 0.9969

Is cBCI better than Ma-
jority?

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0029

Is cBCI better than Con-
fidenceMajority?

0.0033 1.0000 0.0000 0.8200 0.0000 0.0000 0.0003 0.0045

Sample size 45 120 210 252 210 120 45 10

and using only the subset of the recorded trials associated to a specific viewpoint.

When we look at the error rates obtained with standard majority reported in

Figure 8.5 (grey), the group error rate decreases much faster as the group size

grows for the right viewpoint than for the centre and the left ones. This is due to

the fact that for one sequence of stimuli, people were coming from the top-right

corner and, therefore, it was easier for the users to spot the target face from this

viewpoint. Also, in the decisions made from the right viewpoint, participants

are also more precise in estimating their degree of confidence. In fact, when we

compare the performance using the Wilcoxon signed-rank test (Table 8.5), the

method based on the reported confidence significantly outperforms the other two

methods for almost all group sizes for that viewpoint.

The error rates of groups making decisions using the standard majority from
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Figure 8.5: Error rates made by groups of different size using the three methods
analysed in the study when participants were exposed to stimuli of the left (first
row), centre (second row) and right (last row) viewpoints.
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the central viewpoint decrease up to group size 5 and then there is no advantage

in performance in adding extra group members, with error rates that actually

becomes higher than smaller groups for groups of size 9 and 10. This confirms

that, in certain circumstances, smaller groups are better than bigger ones [77].

When comparing the performance of the two confidence-based methods with

that obtained using the majority rule for the three viewpoints using the Wilcoxon

signed-rank test (Tables 8.3–8.5), we can see that the former are almost always

significantly better than the latter. However, we should note that for the left

viewpoint, the confidence-based method achieves performance that are very sim-

ilar to the one obtained by traditional groups (statistical differences are present

only for groups of size 2, 4 and 6). This is likely to be the other side of the

coin of our previous argument: in one of the sequences, people are walking from

the top-right corner of the image and, therefore, the left viewpoint is the one

containing the lowest information and, therefore, providing more uncertainty.

If we now focus on the performance of the two confidence-based methods

themselves, we can see that the cBCI provides a robust and significant improve-

ment over the majority rule in all viewpoints and for all group sizes (i.e., compare

the shape of the red curves in Figure 8.4). On the contrary, the method based on

the confidence values reported by the participants varies its performance quite a

lot depending on the viewpoint. The confidence-based group decisions are signif-

icantly better than the cBCI-based ones from the right viewpoint for all group

sizes. When considering the central viewpoint, the two confidence-based methods

are complementary, with performance on a par for groups of size 2, 7, 8, 9, signif-

icantly better performance for the method based on the reported confidence for

group sizes 3 and 5, and significantly better performance for the cBCI for groups
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Table 8.3: p-values returned by the one-tailed Wilcoxon signed-rank test when
comparing the performance of groups of different sizes using only the stimuli from
the left viewpoint adopting the three methods analysed in this chapter. The p-
values below the Bonferroni-corrected statistical significance level 0.05/4 = 0.013
are in bold face. Sample sizes are indicated in the last row of the table.

Group size

Comparison 2 3 4 5 6 7 8 9

Is ConfidenceMajority
better than Majority?

0.0014 0.6430 0.0002 0.8986 0.0004 0.8623 0.0671 0.6374

Is ConfidenceMajority
better than cBCI?

1.0000 0.9982 1.0000 1.0000 1.0000 1.0000 1.0000 0.9983

Is cBCI better than Ma-
jority?

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0028

Is cBCI better than Con-
fidenceMajority?

0.0000 0.0019 0.0000 0.0000 0.0000 0.0000 0.0000 0.0024

Sample size 45 120 210 252 210 120 45 10

of size 4 and 6. Finally, when participants see the stimuli from the left viewpoint,

confidence-based group decisions are significantly worse than the cBCI-based ones

for group sizes 2, 4, 6, 7, 8, 9, significantly better only for groups of size 3 and

on a par for groups of size 5.

These results suggest that the reported confidence could be a good predictor

of correctness, but it is risky as in some circumstances it is unreliable. On the

other hand, the cBCI is able to provide a good estimate of the decision con-

fidence independently from the viewpoint, allowing groups of isolated users to

significantly improve their performance.

8.3.3 Group Decisions Made from Different Viewpoints

Figure 8.6 shows the average performance of groups of different sizes when each

group member was exposed to stimuli representing the same scene seen by his/her
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Table 8.4: p-values returned by the one-tailed Wilcoxon signed-rank test when
comparing the performance of groups of different sizes using only the stimuli from
the centre viewpoint adopting the three methods analysed in this chapter. The p-
values below the Bonferroni-corrected statistical significance level 0.05/4 = 0.013
are in bold face. Sample sizes are indicated in the last row of the table.

Group size

Comparison 2 3 4 5 6 7 8 9

Is ConfidenceMajority
better than Majority?

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0028

Is ConfidenceMajority
better than cBCI?

0.9858 0.0000 1.0000 0.0075 1.0000 0.6963 0.1472 0.3979

Is cBCI better than Ma-
jority?

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0028

Is cBCI better than Con-
fidenceMajority?

0.0146 1.0000 0.0000 0.9926 0.0000 0.3047 0.8568 0.6668

Sample size 45 120 210 252 210 120 45 10

Table 8.5: p-values returned by the one-tailed Wilcoxon signed-rank test when
comparing the performance of groups of different sizes using only the stimuli from
the right viewpoint adopting the three methods analysed in this chapter. The p-
values below the Bonferroni-corrected statistical significance level 0.05/4 = 0.013
are in bold face. Sample sizes are indicated in the last row of the table.

Group size

Comparison 2 3 4 5 6 7 8 9

Is ConfidenceMajority
better than Majority?

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0045

Is ConfidenceMajority
better than cBCI?

0.2646 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0967

Is cBCI better than Ma-
jority?

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0027

Is cBCI better than Con-
fidenceMajority?

0.7394 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9298

Sample size 45 120 210 252 210 120 45 10
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Figure 8.6: Error rates obtained by groups of different size when group’s members
were exposed by stimuli from different viewpoints. The performance obtained
using three methods for making decisions are reported: the majority rule (grey),
the confidence-based weighted-majority rule (blue), and our cBCI (red).

colleagues but taken from a different viewpoint. Similarly to the analysis de-

scribed in Section 8.3.2, we compared the group performance obtained when

using: (a) the majority rule (grey line), (b) a weighted-majority rule where in-

dividual decisions were weighted according to the confidence value reported by

each participant (blue line), and (c) a weighted-majority rule where the weights

were obtained from the confidence estimated by the cBCI from the neural signals

and RTs (red line).

The results are quite surprising. First of all, we should note the big drop of

error rates for traditional groups of size 3 using standard majority when compared

to error rates of pairs. When participants were exposed to the same type of

stimuli, this reduction was about 4.3%, while here it is almost 10%. This is



CHAPTER 8. AUGMENTING GROUP PERFORMANCE IN FACE RECOGNITION 209

quite interesting as one might have expected that exposing group’s members

to unshared information would have a positive impact on group performance

only when users are allowed to communicate and pool information [219, 179, 83,

115], while in this experiment no interaction was allowed between participants.

Moreover, volunteers did not know one another and, yet, were able to achieve

better group performance than in other studies [58].

Increasing the group size further reduced the error rates, except for groups

of size 4 in which the majority rule was performing worse than with groups of

size 3. This is due to the combination of two factors: (a) the group members are

exposed to different sources of information and, therefore, their decisions will be

more uncorrelated, making ties more frequent to happen; (b) the majority rule

adopts a random decision in case of ties, which could only happen in even-sized

groups. While for bigger even-sized groups these effects are obfuscated by the

high number of groups simulated, in groups of size 4 they seem to provide a visible

reduction in performance.

Interestingly, the group performance obtained by using the reported confi-

dence to weigh individual responses (blue line in Figure 8.6) are superior than that

obtained by traditional majority-based groups (grey line in Figure 8.6). This sug-

gests that the confidence values provided by the participants now correlate much

better with the correctness of their decision than before. The performance ob-

tained by groups using these confidence estimates appears also to be much better

than the average performance achieved by the cBCI for odd-sized groups. These

results indicate that combining participants exposed to different information al-

lows groups to correct individual errors of estimating the decision confidence,

hence improving “metacognitive” and decision accuracies.
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To further assess these differences, Table 8.6 shows the p-values of the Wilcoxon

signed-rank test that has been used to compare the performance of the three

methods over different group sizes. Both confidence-based methods are signifi-

cantly better than simple majority for all group sizes, including groups of size 10

for which we now have more than 10 millions of samples and becomes therefore

meaningful to use the Wilcoxon test. Moreover, cBCI-assisted group decisions

are significantly better than confidence-based group ones for group sizes 2, 4 and

6, while they are statistically worse for all other group sizes.

Nevertheless, the multi-viewpoint approach allowed groups to reduce error

rates down to less than 8%, while the best performance obtained when group

members were exposed to the same information was just under 14% (see Fig-

ure 8.5(bottom)), which is still worse than what the simple majority rule achieves

with the multi-viewpoint approach.

8.3.4 Group Decision Times

Figure 8.7 shows the average time required by groups of different sizes to make a

decision when using the same-viewpoint (first four plots) and the multi-viewpoint

(last plot) approaches. A group’s response time is considered to be the maximum

response time recorded across its members.

In Section 8.3.2 we have seen that groups using only the stimuli gathered

from the right viewpoint are also the most accurate within the same-viewpoint

approaches, as participants could spot the target more easily from this perspec-

tive. We have also seen that when people are confident, their RTs is generally

lower than when they are not confident [100, 143]. Therefore, for these stimuli we
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Table 8.6: p-values returned by the one-tailed Wilcoxon signed-rank test com-
paring the performance of groups of different sizes adopting the three methods
analysed in this chapter when group’s member were exposed to stimuli of the
same scene taken from different viewpoints. The p-values below the Bonferroni-
corrected statistical significance level 0.05/4 = 0.013 are in bold face. Sample
size for group size g is the number of permutations of the g elements picked from
the 10 participants 10!

(10−g)! .

Group size

Comparison 2 3 4 5 6 7 8 9 10

Is ConfidenceMa-
jority better than
Majority?

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Is ConfidenceMa-
jority better than
cBCI?

0.9995 0.0000 1.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

Is cBCI better
than Majority?

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Is cBCI better
than Confidence-
Majority?

0.0005 1.0000 0.0000 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000

were expecting RTs to be lower than for the other analysis. However, the results

reported in Figure 8.7 show that the average RTs for individuals is very similar

(around 1.5s) in the five cases analysed, including the right viewpoint. This is

likely to be due to the randomness with which participants had seen stimuli from

the different viewpoints (see Section 8.2.2). The effects of tiredness and learning

on RTs [217] could have merged with the effect of correctness in a decision, lead-

ing to similar average performance in all conditions. Furthermore, group decision

times seem to increase much faster for the right viewpoint and much slower for

the left one. This is likely to be due to the higher (lower) standard deviation of

RTs for the right (left) viewpoint: bigger groups are more likely to include the

slowest participants, which are the ones deciding the group RT.

A different scenario happens when considering the multiple viewpoints ap-
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Figure 8.7: Average time required for groups of each size to make a decision when
considering only the images from the left, central or right viewpoints (first three
rows), when considering all images and having group members seeing the scene
from the same viewpoint (fourth row), and when group members are seeing the
scene from different viewpoints (last row). The error bars show the standard
errors of each group size.
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proach (purple plot in Figure 8.7). In this case, group decision times increase

at a slower pace than with the right viewpoint, even though we have seen that

groups perform much better with this multiple viewpoints approach than with

others (see Figure 8.6). Providing participants with different sources of informa-

tion seems to provide advantages both in terms of performance and speed.

We should note that the average group decision times are the same for groups

using the same-viewpoint approach with all stimuli and those using the multi-

viewpoint approach (blue and purple plots in Figure 8.7). This is due to the fact

that both approaches use all the available stimuli and, therefore, while the multi-

viewpoint approach builds many more groups than the same-viewpoint one, on

average the group response times are the same.

Similarly to what we found in other chapters, in all approaches groups are

much slower than the average individual in making a decision. This is because

groups need to wait for all members to cast their votes, so that the group decision

time is actually given by the RT of its slowest member. In Chapter 4 we have

shown that this limitation could be overcome by allowing only the fastest respon-

dents to influence the group’s decision. To verify whether this strategy works also

in the face recognition task used in this chapter, we applied it to groups seeing

stimuli from the same viewpoint across all trials.

For each group size m, we have studied the performance and decision times

obtained by groups of size m̂ composed by the fastest m̂ respondents on each

trial, for all m̂ = 1, . . . ,m. The results obtained by traditional and cBCI-assisted

groups are shown in Figure 8.8, where the line colour represents the group size

m and the diameter of each circle represents the number of fastest respondents

allowed to cast a vote m̂.
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Figure 8.8: Comparison of the error rates and decision times obtained by tradi-
tional (top) and cBCI-assisted (bottom) groups of different sizes m when allowing
only the fastest m̂ voters to influence the group decision, for all m̂ = 1, . . . ,m.
Each colour represents a group size m, while the diameter of the circle represents
the number of fastest respondents m̂ that contributed to the group decision. The
horizontal and vertical dashed lines represent the average individual error rates
and decision times, respectively. Therefore, the ideal situation is represented by
the bottom-left quadrant where, on average, groups are faster and more accurate
than individuals.
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In each plot, the average error rate of individuals is represented by the horizon-

tal dashed line, while their average response time is shown by the vertical dashed

line. These lines split each plot in four quadrants. The top-right quadrant rep-

resents groups that are less accurate and slower than the average participant in

making decisions. As expected, no groups fall in this quadrant, confirming that

group decisions always provide an advantage in performance. The top-left and

bottom-right quadrants represent groups that are faster or more accurate than

the average individual in making decisions, respectively. The ideal condition is,

finally, represented by the bottom-left quadrant, where groups are both faster

and more accurate than the average individual.

These results confirm that it is possible to accelerate group decisions also in

the face recognition task by allowing only the fastest respondents to contribute

to the group decisions. For all group sizes m, there is at least one value m̂ < m

for which groups fall in the bottom-left quadrant and, therefore, have lower error

rates and faster decision times than the average individual.

Moreover, in this experiment, the fastest respondent of each group size (i.e.,

smallest circles in each plot) is not always the most accurate, as opposed to what

we found with the visual matching task (see Section 4.3.4). In both plots of

Figure 8.8, we can see that the error rates of the fastest respondents decrease

with the increase of the group sizes until groups of size 4. Then, for bigger group

sizes, the average error rate of the fastest respondent increases with the expansion

of the groups. This suggests that certain participants (which are more likely to

be present in bigger groups) have an inverse relation between decision times and

error rates.

Let us now focus on the average error rates. Indeed, for each group size m



CHAPTER 8. AUGMENTING GROUP PERFORMANCE IN FACE RECOGNITION 216

the minimum decision time is achieved by the fastest individual (i.e., m̂ = 1).

However, when considering error rates, we can see that the most accurate groups

for most group sizes do not include all members in the decision-making process.

For example, for m = 10, the most accurate group using the majority rule is the

one including only the five fastest respondents, while for cBCI-assisted groups

the best performance is achieved by considering the eight fastest respondents.

Furthermore, we can see that even adopting the strategy of considering only

the fastest respondents in a group, cBCI-assisted sub-groups are almost always

more accurate, on average, than equally-sized sub-groups using the majority rule.

Also, while the majority rule requires three members in the sub-group to achieve

the biggest improvement over smaller groups (i.e., see big drop in error rates

in Figure 8.8(top)), only two fastest respondents are needed for cBCI-assisted

sub-groups to significantly reduce the error rates.

8.3.5 Comparison of Confidence Estimates

The previous sections have shown that confidence-based group decisions are sig-

nificantly better than traditional group decisions using the simple majority rule.

We hypothesised that the reason behind this performance boost is a correlation

between decision confidence and correctness (i.e., higher values of confidence are

associated to higher probability of being correct [148]).

To verify this hypothesis, we compared the distributions of the two confidence

estimates (i.e., reported by the user and cBCI) between trials in which the par-

ticipants were correct and those where they were incorrect. The results of these

comparisons are shown in Figures 8.9 and 8.10, respectively. We used Kruskal-



CHAPTER 8. AUGMENTING GROUP PERFORMANCE IN FACE RECOGNITION 217

Correct Incorrect
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
p
o
rt

e
d
 c

o
n
fi
d
e
n
ce

p= 2. 1× 10−38

Figure 8.9: Distributions of the confidence values indicated by the participants
after each response for the correct and incorrect decisions. The corresponding
Kruskal-Wallis p-values comparing the correct and incorrect distributions are also
reported.

Wallis test to assess whether or not the correct and incorrect distributions for

reported and cBCI confidence estimates were significantly different.

Both confidence estimates have significantly different distributions for correct

and incorrect trials, suggesting that they are good predictors of the correctness

in a decision. Indeed, groups using confidence-based methods were superior, on

average, to groups using standard majority – see Figure 8.4. However, in Sec-

tion 8.3.2 we have seen that when considering only the stimuli from the left view-

point, the performance of groups based on reported-confidence weighted-majority

was similar to that of traditional groups using the majority rule. Although the

distributions of reported confidence values for correct and incorrect trials using

left stimuli were significantly different (Kruskal-Wallis p = 1.3× 10−6), the cBCI

seems to provide more robust predictors of correctness in all conditions.
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Figure 8.10: Distributions of the confidence weights estimated by the cBCI using
neural signals and RTs for the correct and incorrect decisions. The corresponding
Kruskal-Wallis p-values comparing the correct and incorrect distributions are also
reported. The confidence weights have been divided by 34 for plotting purposes.

8.3.6 Neuro-Behavioural Correlates of Decision Confidence

Since the cBCI uses neural features and RTs to estimate the decision confidence,

we expect to find significant differences in these features between correct and

incorrect trials, which are, in turn, used by the machine learning algorithms to

separate the two classes.

Figure 8.11 shows the distributions of response times for the correct and incor-

rect trials across all participants. The Kruskal-Wallis test has been used to verify

that the two distributions are significantly different. Participants are generally

slower in making decisions when they are less confident and, therefore, more likely

to be incorrect. This confirms that, also for our face recognition experiment, RTs

are good predictors of the correctness in the decision.

To study differences in the neural signals, we computed the grand averages of
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Figure 8.11: Distributions of response times across participants for the correct
and incorrect trials. The corresponding Kruskal-Wallis p-values comparing the
two distributions are also reported.

the stimulus- and response-locked epochs across the correct and incorrect trials

(Figure 8.12). As done in Chapters 4 – 6, we have used the Kruskal-Wallis

test to compare the voltages measured in each channel at each time step for

the correct and incorrect trials, and the two-tailed Wilcoxon signed-rank test for

paired samples to compare the mean ERPs obtained on an individual basis. The

p-values of the statistical tests are also shown in Figure 8.12.

Figure 8.13 shows the scalp maps for the stimulus- and response-locked epochs

for the difference between the grand averages of correct and incorrect trials (first

row) and the corresponding Kruskal-Wallis p-values (last row) at representative

time steps.

Let us first analyse the scalp maps. Figure 8.13 shows that, at the selected

time steps, there are statistically significant differences at many electrode sites

in both stimulus- and response-locked representations. The choice of including
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Figure 8.12: Grand averages of stimulus- (left) and response-locked (right) ERPs
and corresponding temporal profile of the p-values of the Wilcoxon signed-rank
test comparing participant-by-participant averages (grey) and of the Kruskal-
Wallis test for all ERPs recorded, irrespective of participant (black), in each
error class for representative channels. The horizontal dotted line represents the
5% significance level. The corresponding axes are oriented so that values above
that line indicate statistical significance.
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Figure 8.13: Scalp maps of the grand averages of the EEG activity recorded
600 ms after stimulus onset (first column) and 400 ms before the response (sec-
ond column). Rows represent the difference in the activity between correct and
incorrect trials (first row) and the p-values of the Kruskal-Wallis test used to
compare the two sets ERPs (last row).

both types of epochs in the cBCI has proven to be beneficial (see similar results in

Chapters 5 and 6), as they both provide useful information regarding the decision

confidence and they also complement each other (e.g., the stimulus-locked epochs

have most of the significant differences between correct and incorrect trials in the

front-parietal and left-temporal lobes, while the response-locked epochs present

significant differences mainly in the fronto-parietal and occipital lobes).

When looking at the results temporally (Figure 8.12), we can see that most of

the differences in the stimulus-locked epochs between the “correct” and “incor-

rect” classes appear in the range 300–700 ms after the stimulus onset. This is the

time range in which the peak of the P300 ERP is likely to occur [102]. Previous
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research has shown that the P300 presents significant differences between target

and non-target stimuli in face recognition [14]. Hence, we expect the P300 peak

to be smaller in the trials where the user did not see the target (non-confident)

and higher in the trials where the target was noticed by the observer (confident).

Indeed, Figure 8.12 shows this behaviour. However, it should be noted that,

in these plots, we are grouping the trials on the basis of the correctness in the

decision. The “correct” set includes both trials where the target was present

(P300 peak) and the user responded “yes” and the trials where the target was

not present (no P300 peak) and the user responded “no”. For these reasons,

the differences in the grand averages between the two classes are smaller than

expected, as the P300 is generally more associated to the presence of an unex-

pected event (e.g., the target face [14]) than to the decision confidence. However,

these differences are still statistically significant, hence providing the cBCI the

required information to estimate the decision confidence.

The P300 is not the only ERP providing useful information to estimate the

decision confidence. The response-locked epochs used in our analysis included

neural data recorded 1 s before the response and 500 ms after it, allowing the

cBCI to also capture information related to post-decisional processes, such as

evidence accumulation and confidence estimation [122]. Figure 8.12(right) shows

that, about 250 ms after the response, the two distributions of “correct” and

“incorrect” trials are significantly different. This adds further information about

the decision confidence, which is likely to be used by the machine learning module

of the cBCI to estimate the probability of being correct.
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8.4 Conclusions

This chapter has studied the performance of cBCI-assisted groups in a face recog-

nition task where isolated individuals made, on average, more than a quarter of

decisions wrong. The group performance obtained by aggregating individual de-

cisions according to the confidence estimated by the cBCI was compared with

the performance achieved by traditional groups using the simple majority rule

or a weighted-majority rule where confidence values reported by each participant

after the decision were used as weights. We have showed that, when participants

are exposed to the same stimuli (as they were in our previous tests of the cBCI

with other experiments), their decision confidence estimates do not always corre-

late with the correctness in the decision, while the cBCI is able to provide more

robust confidence estimates and significantly improve group performance. More-

over, the cBCI achieves the best performance with pairs, which are the groups

that are more likely to be used in practice.

The cBCI predictions rely on two types of features: behavioural and neural.

On the one hand, we have verified that response times correlate with the prob-

ability of being correct in a decision. On the other hand, we have shown that

neural correlates of the decision confidence could be extracted from the EEG

recordings by looking at the P300 and other ERPs from both a stimulus- and

a response-locked representation. Moreover, post-decisional processing also pro-

vides information about the decision confidence.

We also tested the performance obtained by groups using the three decision

methods described before when each group member was presented a picture of the

same scene but taken from a different viewpoint. The exposure of participants to
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different information allowed groups to be much more accurate than previously,

even when using the simple majority. Moreover, the method using the confidence

values reported by participants achieved the best performance for many group

sizes. This suggests that, in the presence of unshared information, groups could

use the confidence reported by each participant to make better decisions, although

the confidence provided by the cBCI allows to further reduce the error rates in

even-sized groups.

The confidence reported by participants after each decision should be used

carefully. In Chapter 6 we found that group interaction makes these estimates

totally unrelated from the correctness in the decision. Here, we have seen that,

for the stimuli taken from the left viewpoint (which were also the more difficult

ones for individuals), the performance of reported-confidence-based groups were

similar to that of majority-based groups, while the cBCI was able to significantly

augment group performance even in this condition.

When decision times are critical, we have also shown that group decision

making could be accelerated and further improved in accuracy by allowing only

the fastest respondents to contribute to the group decisions. Even with this

strategy in place, cBCI-assisted groups are generally more accurate and faster

than equally-sized groups using standard majority rule.

Face recognition is a task applied to several domains, including security and

target detection. The advances of computer vision algorithms have allowed to

make face recognition an automatic process for certain applications, although

without reaching human-level performance. We believe that the proposed cBCI

could be more accurate or, at least, have similar performance than computer-

vision-based face-recognition systems, although it requires groups of people and,
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therefore, it is not automatic.



Chapter 9

Augmenting Group Performance

in Speech Perception

This chapter explores the possibility of applying the cBCI presented in Chapter 3

to groups performing a complex speech-perception task involving recognising tar-

get words in audio recordings affected by noise. Part of the research described in

this chapter has been included in [195] and [194].

9.1 Introduction

Previous chapters have shown how a collaborative BCI could be used to improve

group performance in a simple visual matching task (Chapter 4) and more chal-

lenging visual search (Chapters 5 and 6) and face recognition (Chapter 8) tasks.

All of these tasks were based on decision tasks involving visual perception only,

as visual responses are generally easy to detect over the scalp [126].

Certain decisions are taken on the basis of information gathered from senses
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other than sight. For example, a soldier might need to establish from a sound

whether or not there is a potential threat in the environment [49]. A few studies

have used neural signals to improve the detection of target auditory stimuli, such

as gunfire events [170, 171], or to spatially localise the source of the sound [119,

165]. Other studies have used auditory stimuli with a modified version of the

oddball paradigm to make binary [64] or multi-choice [169] decisions and allow

locked-in people to communicate. This suggests that the information used by

our cBCI could also be available with auditory tasks. In particular, the P3a

ERP seems to also be elicited by auditory stimuli [23]. However, the stimuli used

in those studies did not include speech sounds, which also require the user to

interpret and understand the meaning of what he/she heard.

One of the main functions of the human auditory system is speech perception,

namely mapping sounds to internal linguistic representations [53]. In a broad

range of contexts, such as defence and communications, speech perception is a

very important task and succeeding in it is sometimes vital. For example, not

interpreting correctly the location of the enemy communicated via radio could

cause injuries to soldiers. Brain activity could be used with BCIs to augment and

improve human performance in this challenging task. For example, in [69] users

were listening to digits spoken in Chinese and the BCI was able to recognise from

their brain signals the “target” ones. Sellers and Donchin [169] also used a BCI

to discriminate between “target” and “non-target” auditory stimuli represented

by single words.

In this chapter, we investigate whether or not the cBCI described in Chapter 3

could be successfully applied to a complex speech-perception task where partici-

pants listened to spoken sentences affected by noise and had to decide whether or
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not certain target words are uttered. Individual decisions were aggregated using

either the majority rule or a weighted majority based on confidence estimated by

(a) the participants after each decision or (b) a cBCI using neural signals and RTs.

Group decisions made by these three methods were then compared. We describe

the main issues faced in the transition from visual to auditory tasks, including

the modifications done to the original cBCI to adapt to auditory stimuli.

9.2 Methodology

9.2.1 Participants

Ten healthy volunteers (average age 24.9 ± 4.9, 2 females) with normal hearing

and normal or corrected-to-normal vision participated in the experiment. All

participants were native English speakers.

9.2.2 Stimuli and Task

Participants underwent a sequence of 8 blocks of 40 trials each, for a total of 320

trials. The sequence of displays presented in each trial is shown in Figure 9.1.

After the usual fixation cross (see Section 3.2), an audio recording was played.

Then, participants were asked to decide whether or not one of the following

target words was uttered: “route”, “check”, “grid”, “lookout”, “side”, “trucks”,

“village”. Decisions were accepted even if made by the participants before the

end of the audio recording. After the response, similarly to the visual search

experiments described in Chapter 6, participants were asked to report their degree

of confidence in that decision, ranging from 0 to 100%, using the mouse wheel.
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Figure 9.1: Sequence of stimuli presented in a trial of the speech perception task.

An horizontal bar indicated the selected confidence during this 4-s period.

The audio recordings used as stimuli consisted of 41 sentences containing one

target word and 42 sentences without any target word. Between 4 and 20 words

(average length 9.3 ± 2.8 words) were uttered in each audio recording, which

were recorded from a member of the army (male, native-English speaker). The

duration of the audio recordings was between 2.19 and 8.75 s (average duration

4.3± 1.4 s).

Two sets of stimuli were created from these audio recordings: “standard” and

“high-noise”. Each set included 415 stimuli, obtained as follows. For each audio

recording, we created five versions by superimposing multiple types of noise on the

original audio files, in order to make the task of identifying the target words more

difficult. Noise types included white noise, environmental noise, volume changes,

speed change, change of sampling rate, and audio drop-outs, all of which are

typical of real-world military communications. Table 9.1 reports the parameters

used for each type of noise in each set of stimuli. The difference between the

standard and high-noise sets is that the stimuli in the latter were generally more

affected by noise than the former ones. Noise was added using the Pydub library

(www.pydub.com).
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Noise Set of stimuli

Applied to track Parameter Standard High-noise

Original Volume reduction (dB) rand(6, 12) rand(6, 16)

Original Speed-up (factor) rand(1, 1.5) rand(1, 1.7)

White noise Volume reduction (dB) rand(5, 23) rand(2, 15)

White noise Speed-up (factor) rand(1, 1.7) rand(1, 1.7)

Environmental noise Volume reduction (dB) rand(5, 23) rand(2, 15)

Original and noise Volume reduction (dB) rand(10, 25) rand(12, 26)

Original and noise Duration (ms) rand(0, 700) rand(0, 700)

Output track Sampling rate (kHz) rand(9, 17) rand(7, 17)

Table 9.1: Parameters used to add various types of noise to the original au-
dio recording for the two sets of stimuli used in the experiment. The function
rand(a, b) represents a random float value picked from the range [a, b).

Before the main experiment, participants were asked to memorise the set of

target words via a memorisation experiment – see Figure 9.2. In each trial, they

were presented a display containing one word randomly chosen from a set of 39

words including the 7 target words, and were asked to indicate whether or not it

was a target word by pressing the left or the right mouse buttons, respectively.

The memorisation experiment ended as soon as the participant provided a correct

answer to 80 questions in a row. If the volunteer made an incorrect response, an

“error display” reminding him/her of the set of target words was shown and the

memorisation experiment started again.

After completing the memorisation experiment, each participant was famil-

iarised with the speech-perception task by doing 2 training blocks of 10 trials each

of the main experiment. During familiarisation, participants had the chance to

adjust the volume. Only stimuli from the “standard” set were used in this stage.

Sentences containing one of the target words were used in 50% of the trials.
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Figure 9.2: Protocol of the memorisation experiment used to help participants
memorise the set of target words.

The same sequence of sentences was used in the experiment for all participants to

be able to simulate offline concurrent group decisions (see Section 3.2). However,

in order to reduce individual performance variations in the task, the difficulty of

the audio tracks was dynamically varied by adjusting the proportion of sentences

from the “standard” set vs the “high-noise” one. In the first block of trials, stimuli

were chosen from the “standard” set for all participant. In the following blocks,

a percentage ps of audio recordings was chosen from the “high-noise” set so as to

keep the accuracy of all participants not too far from 80%. More specifically, ps

was varied according to the following formula:

ps = min{1.0, max{0.0, ps−1+sign(accs−1−0.8)·min{|accs−1 − 0.8| , 0.2}}} (9.1)

where ps−1 and accs−1 are the percentage of “high-noise” stimuli and the percent-

age of correct decisions made by the participant in the previous block, respec-

tively (p1 = 0 and accs−1 = 0.8 for the first block). The aim of this formula is

to make the speech-perception task gradually more difficult for participants that

performed above the target 80% accuracy level in a block of trials by increasing

the frequency of “high-noise” stimuli in the following block.
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The volunteers were comfortably seated at about 80 cm from a LCD screen

and were wearing in-ear earphones. All participants successfully completed the

memorisation experiment in less than five minutes. Preparation and task famil-

iarisation took approximately 40 minutes, while the actual experiment took about

35 minutes.

9.2.3 Making Group Decisions

Data were acquired and preprocessed as explained in Chapter 3. We set pb = 6 Hz,

sb = 8 Hz and the final sampling rate sr = 16 Hz.

The stimuli used in the speech perception task had different duration and

the target word could be uttered at any time within the audio recording. This

feature, very typical of realistic speech perception tasks, has two consequences.

Firstly, it makes the stimulus-locked epochs used in previous experiments of this

thesis (i.e., Chapters 5, 6 and 8) not appropriate to capture the ERPs associated

to target detection and decision making (e.g., P300 and N200 [102]). The fact

that target words could be uttered in any position of the audio recording makes

the detection of such ERPs very difficult from stimulus-locked epochs. Moreover,

these ERPs could even be produced after the end of the epoch, which, in other

experiments, we considered lasting 1.5 s from the stimulus onset – see Chapter 3.

One may suggest to increase the length of such epochs. However, this approach

could be a double-edge sword as it will end up including neural data not related

to the decision-making task in case of short audio recordings, hence increasing the

noise included in the classification problem. Therefore, for simplicity we decided

to only extract response-locked epochs starting 1 s before the user’s response and
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lasting 1.5 s from each trial. Secondly, since RTs are measured from the onset of

the stimulus, they will not represent only the reaction time of the user but also

the length of the audio recording. This is likely to reduce their correlation with

the decision confidence. To partially compensate for this, we subtracted from

each RT the duration of the audio recording used in that trial and used the result

as RT feature. Indeed this requires the BCI to wait until the end of the audio

recording before being able to estimate the decision confidence, hence increasing

group decision times, while participants could provide a response before the end

of the stimulus. However, we believe this is a reasonable compromise to partially

compensate the loss of confidence-related information in RTs due to the realism

of the task and increase the accuracy of cBCI-assisted groups.

This new RT feature also includes additional information. If the participant

provided the response before the end of the audio recording (resulting in a negative

RT feature), it is reasonable to think that he/she was particularly sure of having

heard a target word, while in non-target trials a participant is more likely to wait

until the end of the sentence to give his/her response. This information could

further help the machine learning element of the cBCI to predict the confidence

of the user.

Considering that the voice recognition task performed by the participants

involved word recognition and language comprehension, we expected that key

information could be found in the neural signals recorded in the left temporal

lobe [232, 231]. Hence, we only used EEG data recorded at locations C5, TP7,

T7, FC5 and CP5 for extracting neural features to estimate the confidence in

decisions. This reduction in the number of electrodes is likely to promote gener-

alisation and it makes the cBCI much more practical for real applications.
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Neural features were extracted from response-locked epochs using LTCCSP

as described in Section 5.2.3. Therefore, the cBCI used LARS to estimate the

decision confidence from a feature vector of two LTCCSP and one RT features.

Group decisions were then made as described in Section 3.8 by using the sign

of the weighted sum of the decisions of its members, where the weights were either

the confidence reported by the participants after each decision or the confidence

weights computed by the cBCI.

9.3 Results

9.3.1 Individual Performance

The percentages of erroneous decisions made by individuals undertaking the

speech perception task are shown in Figure 9.3. The individual performance

confirmed the difficulty of the task for a single participant. Many of the errors

were false negatives, showing the effectiveness of adding noise to the stimuli to

make the task of recognising the target words more challenging.

We should note that the error rates of some participants deviated from the tar-

get performance of the algorithm described in Section 9.2 for tuning the difficulty

of each block of trials. Despite the use of high-noise stimuli, those participants

were still able to perform well in the task.

9.3.2 Group Performance

Figure 9.4 shows the mean error rates obtained by groups of increasing size making

their decisions using either the Majority rule (black line) or a weighted majority
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Figure 9.3: Mean decision errors (in %) achieved by participants in the speech
perception experiment. The average error rate across the participants is shown
by the dashed black line.

where individual decisions were weighed according to the confidence reported by

the participants (ConfidenceMajority, blue line) or the confidence estimated by

the cBCI (orange line). Table 9.2 shows the results of the statistical comparisons

between the three methods made with the Wilcoxon signed-rank test.

Even with the very realistic experiment used in this chapter, groups of al-

most all sizes assisted by our cBCI were able to achieve significantly superior

performance than traditional groups using majority (for groups of size 3, cBCI

performance were nearly statistically significance). Similarly to the experiments

described in other chapters of this thesis, the cBCI provides most of the advan-

tages over majority for even-sized group, thanks to its tie-breaker ability.

Surprisingly, participants were extremely good in assessing their degree of

confidence for this task. When using the reported confidence to weigh individual
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Figure 9.4: Mean decision errors (in %) of groups of different sizes when deciding
using the majority rule (black) or a confidence-based weighted majority based on
the reported confidence (blue) or the cBCI confidence (orange).

Table 9.2: One-tailed p-values returned by the Wilcoxon signed-rank test when
comparing the performance of groups of increasing sizes adopting (a) the majority
rule, (b) a weighted majority using the reported confidence (ConfidenceMajority),
and (c) a weigthed majority based on the cBCI confidence. The number of groups
of each size that could be assembled with 10 participants is indicated in the last
row. p-values below the significance level 0.05 are in bold face.

Group size

Comparison 2 3 4 5 6 7 8 9

Is ConfidenceMajority
better than Majority?

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0028

Is cBCI better than
Majority?

0.0000 0.0760 0.0000 0.0000 0.0000 0.0000 0.0000 0.0058

Is ConfidenceMajority
better than cBCI?

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0026

Sample size 45 120 210 252 210 120 45 10
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decisions, groups were significantly more accurate than both those using majority

and those assisted by our cBCI. Particularly encouraging was the performance

of groups of 8+ members, which obtained perfect decisions in almost every trial

(error rates < 1%).

9.3.3 Comparisons of Confidence Estimates

Figure 9.5 compares the distributions of confidence values between trials where

the participants made correct decisions and trials where they made incorrect ones,

for both the reported (left) and the cBCI (right) confidence estimates.

As expected considering the results showed in the previous section, the confi-

dence reported by the participants is well separated between the two sets, with

median values for incorrect decisions being half (0.5) of those for correct ones

(1.0). Interestingly, the median value for correct responses is 1.0, which is the

ideal value to achieve an optimal metacognitive accuracy (i.e., when the partic-

ipant made a correct decision, we want to give his/her response the maximum

weight in the weighted majority rule used to obtain the group decision).

The distributions of the values in the “correct” and “incorrect” sets of trials

are more similar for the cBCI confidence, although significantly different. These

results are also confirmed by the plots of the density functions shown in Fig-

ure 9.5(bottom). The distributions of the cBCI confidence values overlap much

more than those of the reported confidence.

The particularly good results obtained by groups with the reported confidence

should be taken with caution. On the one hand, they represent a much harder

yardstick for the cBCI than majority, and this can promote further research and
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Figure 9.5: Box plots (top) representing the distributions of the confidence values
reported by participants (left) and estimated by the cBCI (right) for correct and
incorrect decisions and corresponding probability density functions (bottom) esti-
mated via Gaussian kernel density estimation. The corresponding p-values of the
Kruskal-Wallis test used to compare the “correct” and “incorrect” distributions
are also shown. The cBCI confidence values have been divided by 36 for plotting
purposes.

improve the exploitation of neural correlates of the decision confidence. Indeed,

moving towards real-world decision-making applications comes at a cost: in this

study, the cBCI could only count on response-locked epochs and RT features only

partially correlated with correctness. On the other hand, there are circumstances

in which these subjective confidence estimates might be totally unrelated to the

correctness in a decision, especially when individuals are not very accurate [96,

132], in the presence of difficult stimuli (see Chapter 8), or when communication
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between participants is allowed [99], as verified in Chapter 6.

To understand whether there is a risk in using the reported confidence in

the auditory experiment, we looked at the distributions of confidence values for

correct and incorrect trials on a participant-by-participant basis. Table 9.3 shows

the results of this analysis. As can be seen, the confidence values reported by

some participants were not correlating with the correctness in the decision. For

example, participants 3 and 9 were overconfident, reporting high confidence values

most of the times, even when they were incorrect. Conversely, participants 5 and

8 were underconfident, as they reported low confidence values even when they

made the correct decisions. Groups using these confidence estimates to make

decisions were very accurate because of their intrinsic ability of correcting errors

(wisdom of crowds). However, the reported confidence is an unreliable predictor

of correctness in a significant proportion of the participants.

9.3.4 ERP Analysis

Figure 9.6 shows the grand averages of the ERPs recorded in the “correct”

and “incorrect” trials, as well as the temporal profiles of the p-values of the

Wilcoxon signed-rank test comparing participant-by-participant averages and of

the Kruskal-Wallis test comparing all ERPs recorded in each error class.

The plots clearly show that there are statistically significant differences in the

neural signals between the two classes. These are mainly located in proximity of

the response. However, other significant differences are also present at an earlier

stage (e.g., around 500 ms before the response on channel TP7).

Our cBCI uses brain signals recorded from only five electrodes out of the 64
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Table 9.3: Percentage of trials in which different participants (x axis) reported
each value of the subjective confidence for the correct (top) and incorrect (bot-
tom) trials. The last two rows of each table (grey) show the mean and the median
confidence values of each participant in each set.
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Figure 9.6: Grand averages of the response-locked epochs recorded at electrodes
C5, TP7, T7, FC5 and CP5 and corresponding temporal profile of the p-values
of the Wilcoxon signed-rank test comparing participant-by-participant averages
and of the Kruskal-Wallis test comparing all ERPs recorded in each error class.
The scalp maps (bottom right) show the p-values of the Kruskal-Wallis test used
to compare the grand averages of the EEG activity recorded 100 ms before and
after the user’s response in each error class.
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channels available to estimate the confidence. Figure 9.6(bottom right) shows

the p-values of the Kruskal-Wallis test used to compare the grand averages of the

EEG activity recorded 100 ms before and after the user’s response in each error

class for all electrodes available. These scalp maps justify our choice of electrodes:

the neural information about the decision confidence is mainly concentrated in

the left temporal lobe, where the primary auditory cortex is located. This part of

the brain has several important functions related to speech perception, including

low-level auditory processing and language comprehension [231, 232].

9.4 Conclusions

This chapter has analysed the possibility of using a cBCI to improve group de-

cision making in a speech perception task. Participants were asked to listen to

audio recordings of spoken sentences highly affected by noise and recognise target

words.

The transition between the visual tasks used in Chapters 4, 5, 6 and 8 and

the speech perception task used in this chapter has required some adaptations.

Firstly, auditory tasks are perceptually and cognitively very different from the

visual ones and generate different ERPs, such as the N100 and N200 [102]. Sec-

ondly, while the visual experiments conducted previously presented stimuli for a

constant period of time, the audio recordings used here were of different duration

and target words could be uttered in any position of the sentence. For these

reasons, the cBCI could not use stimulus-locked EEG epochs to estimate the

decision confidence. Response times were also affected by this less-constrained

type of stimuli. Thirdly, to promote generalisation and practicality for future ap-
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plications, we decided to only use the brain signals recorded from five electrode

locations instead of using all 64 available channels as in our previous experiments.

With these changes, the cBCI was able to provide significantly better group

decisions than standard majority for almost all group sizes. We have, therefore,

verified that our cBCI improve group decision making also with auditory stimuli.

This chapter has also described the results obtained by groups making deci-

sions using the confidence estimated by the participants themselves. Surprisingly,

these confidence-based groups were significantly superior to both majority and

cBCI groups. However, we showed how most of these very good results were

due to the intrinsic error correction capabilities of groups, and not to the high

metacognitive accuracy of the users. In fact, many participants were either un-

derconfident or overconfident, hence reporting confidence values unrelated from

the correctness in the decision. These results further corroborate our previous

finding (see Chapter 6): the reported confidence is an unreliable predictor of

correctness.



Chapter 10

Conclusions

This chapter summarises the main contributions of this thesis, looks at the degree

to which it has addressed its research questions, and suggests possible future

avenues of further studies in the area of collaborative BCIs for improving group

decision making.

10.1 Main Contributions

Making correct decisions is, of course, very important in multiple contexts and

has triggered research to study new techniques to assist humans in this delicate

process. One of the most frequently used approaches to improve the quality of

decisions is to act in groups, as these have augmented cognition capabilities due

to the integration of the different perspectives of their members. However, in

certain circumstances groups fail to provide advantages, especially when time

constraints are present.

While BCIs are traditionally used as assistive technologies, in recent years
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they have been applied to the area of human augmentation, especially with a

collaborative approach. Researchers have started using brain signals from multi-

ple users to improve the performance of single-user BCIs. Moreover, in decision

making, collaborative BCIs have been able to outperform individuals in simple

target-detection tasks [36].

This thesis has explored the possibility of using hybrid cBCIs to improve group

decisions in a number of difficult tasks using either visual or auditory stimuli,

including visual matching, traditional and realistic visual search, face recognition

and speech perception. Instead of predicting the decision of the user from his/her

brain signals, the hybrid cBCI firstly records the response of the participant

via mouse clicks and, then, uses a combination of physiological and behavioural

measures to estimate how confident the user is in making that decision. These

confidence estimates correlate directly with decision correctness and can then be

used to weigh individual responses and obtain better group decisions.

Seven experiments of increasing difficulty and realism have been conducted to

test this approach. In all cases, cBCI-assisted groups were able to achieve superior

performance than both individuals and equally-sized groups making decisions via

the majority rule.

We have also studied the impact of a constrained form of communication on

individual and group performance. Pairs of users were allowed to exchange in-

formation related to each other’s opinion and degree of confidence before being

able to choose whether or not changing their responses. We showed that this

approach led individuals and groups to be much more erroneous than when par-

ticipants were acting in isolation. However, the proposed cBCI was still able to

significantly boost the group performance.
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Furthermore, we showed how the confidence estimated by the cBCI was reli-

able across tasks and experiments, unlike the confidence reported by the partic-

ipants after each decision, which yielded superior group decisions in the speech

perception experiment but significantly deteriorated group performance in the

visual search experiment with communicating pairs.

10.2 Progress towards Answering the Research

Questions of this Thesis

At the beginning of this thesis (Section 1.3), several research questions were set.

On the basis of the evidence gathered from the experimental work and analyses

conducted, this section provides tentative answers to those questions.

Q1. Can group decision making based on neural, physiological and behavioural

features achieve better levels of accuracy than traditional majority voting

across a range of tasks?

In all decision tasks adopted in the various experiments described in this thesis

(i.e., visual matching, visual search, face recognition and speech perception),

groups assisted by the proposed hybrid cBCI based on neural features, RTs and,

possibly, eye movements were able to achieve significantly better performance

than equally-sized groups using majority voting to obtain group decisions.

While these results were obtained by the cBCI offline, they were also confirmed

in the presence of a constrained form of communication within pairs of users

performing the task concurrently. This suggests that the proposed cBCI achieves
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better group decisions than traditional majority voting across a range of tasks

and settings.

Q2. What is the best set of physiological and behavioural features acting as con-

fidence indicators?

We firstly verified a finding from decades ago [100]: RTs are very informative

in relation to estimating decision confidence and, therefore, they were always in-

cluded in our feature set. Secondly, we found that neural signals always provided

additional information to the cBCI. In particular, in Chapter 4 we showed that a

cBCI based on both RTs and neural features achieved better performance than

a cBCI based only on one of these two features. Furthermore, we found that,

in decision-making tasks using visual stimuli, the vertical component of the eye

movements could be used to extract eye features that correlate with the decision

confidence.

These analyses have identified a set of physiological and behavioural correlates

of decision confidence that works across tasks and settings.

Q3. What are the neural features that are the most relevant for the proposed

hybrid cBCI for group decision making?

We have experimented with a number of techniques for extracting neural features

correlating with the decision confidence, including stimulus- and response-locked

ERP analysis, PCA and LTCCSP. The results obtained in this thesis suggest

that the response-locked epochs are generally more informative about the decision

confidence than the stimulus-locked ones, but the combined use of neural data

from both epochs leads to the best group decisions.
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The results obtained in visual matching and visual search also suggest that

neural features extracted using LTCCSP are more informative than those ob-

tained using the classic PCA transform. This is also reasonable as LTCCSP is a

supervised method for feature extraction. However, it is very encouraging that 2

LTCCSP features seem to be more informative than 24 PCA ones, as this would

also help the cBCI to scale up.

Q4. Is the confidence estimate provided by the cBCI more reliable than a confi-

dence reported by the user?

We asked participants to report their degree of confidence in four experiments

out of the seven conducted, namely in realistic visual search with and without

group interaction (Chapter 6), face recognition (Chapter 8) and speech percep-

tion (Chapter 9). In all experiments the confidence estimated by the cBCI was

able to provide advantages to groups over the majority rule. On the contrary,

the confidence reported by the participants had very variable performance. In

the auditory experiment, the reported confidence was far superior than the cBCI

one (see Chapter 9). In visual search with non-communicating volunteers (Chap-

ter 6), groups using these confidence estimates did achieve better performance

over traditional majority groups, but were worse than cBCI-assisted groups, es-

pecially for even group sizes. Similar results were obtained in face recognition

(Chapter 8). Finally, in visual search with communicating participants (Chap-

ter 6), the reported confidence was totally uncorrelated with the correctness of the

decision, making groups using these estimates even less accurate than majority

groups.

These results confirm previous findings in the literature regarding the high
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variability of metacognitive accuracy [122], depending on the participants them-

selves [123] or the context in which decisions are made [132]. With reported

confidence, one needs to check whether it correlates with the correctness in a

decision on a task-by-task basis, and comparing group performance using these

estimates with that of majority-based and cBCI-assisted groups. If the reported

confidence correlates with the correctness, then one could use these estimates and

achieve higher group performance with less complexity (e.g., no needs of wearing

EEG cap, eye tracker, etc.). However, in only one out of four experiments con-

ducted this was the case. This suggests that when the aim is to provide better

decisions in a variety of tasks and conditions, the confidence estimated by the

cBCI should be preferred for its ability to provide significant advantages over

traditional majority groups.

Q5. Can collaborative BCIs lead to faster decisions than average human reaction

times?

Traditionally, groups are slower in making decisions than the average individual,

as they require time for discussion and to collect the opinions of all members.

Indeed, this happened in our experiments too, as the RT of the group was equal

to the RT of its slowest member.

However, in Chapter 4 we have proposed a strategy that allow groups to

become faster than the average individual with very minor loss in terms of group

accuracy. We verified that a similar strategy worked also with groups undertaking

a face recognition task (Chapter 8). Since RTs correlate with individual decisions

being correct [100], we studied how the performance of groups of different size

varies when allowing only the fastest members to contribute to the group decision.
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This approach led to cBCI groups that were both faster and more accurate than

the average individual and equally-sized majority groups, even when the latter

were using the same strategy. Therefore, we can argue that the answer to this

research question is in the positive.

Q6. Are there optimal scenarios for which BCI group decision making is most

suited?

All decision tasks considered in this thesis share some common features, including

uncertainty (e.g., due to the stimulus being shown for a very limited time or

being affected by a high level of noise) and no time for discussion within the

group. In all experiments, the cBCI was able to provide significant advantages

over majority groups, especially for even-sized groups. However, we should note

that the best improvement in performance was obtained in visual search with

non-communicating participants, while the worst one was associated to auditory

stimuli. These findings are reasonable as it is usually easier to extract neural

information from the visual cortex [126], as a large part of the brain is devoted

to visual processing and, therefore, the cBCI could rely on many EEG signals

related to that activity.

Given that the cBCI provides a significant improvement already for very small

groups, e.g., pairs, this is the most likely setup for practical applications of this

technology. For instance, we can envisage a scenario where two users assisted

by our cBCI look for threats in images gathered from a surveillance camera in

all situations where the added security achieved through the cBCI is of primary

importance (e.g., security control at the airport).

Q7. What is the impact of group interaction on cBCI performance?
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Chapter 6 has shown how a constrained form of group interaction negatively

affects individual and group performance. Since our cBCI only decides the weight

to assign to behavioural responses (i.e., it cannot change individual decisions),

indeed group communication also negatively affected the cBCI performance. We

have also shown that the interaction between participants had a negative impact

on the neural correlates of the decision confidence, i.e., on the ability of the cBCI

to predict the likelihood of the user being correct in the decision. Despite these

adverse conditions, the cBCI was still able to achieve significantly better group

decisions than traditional groups.

Q8. In what ways does the exposure of different observers to various sources of

information modify optimal group sizes, accuracy, and speed of decisions?

To start addressing this question, we formed groups with observers undertaking

a face recognition task that were presented with images of the same scene from

different viewpoints – see Chapter 8. We found that group accuracy was very

much boosted by this approach when compared to the traditional strategy where

all group members were seeing the same stimuli. Majority groups of size 9 were

able to reduce the error rates from 20% to 11% when using the multi-viewpoint

approach, while cBCI groups went from 16% down to 8%. These results are

reasonable as the multi-viewpoint approach allows groups to integrate unique

information provided by each member [181]. When concerning optimal group

sizes and speed of decisions, no major effects were found by using this multi-

viewpoint approach instead of the traditional one.

Moreover, in all experiments conducted in this thesis we found that group

error rate decreases monotonically as the group size grows. When minimising
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the accuracy is the only objective, one should therefore prefer bigger groups.

However, when practicality and low decision times are also important, we envisage

that pairs or groups of four people assisted by our cBCI are the optimal groups,

as they are significantly more accurate than individuals without requiring long

decision times.

10.3 Future Work

The research conducted in this thesis has proposed a hybrid cBCI framework to

improve group decision making and tested it with several decision-making tasks.

The positive results and issues faced during this work have opened up different

pathways for future research.

10.3.1 Online Validation

All experiments conducted in this thesis were offline. Individual responses of the

participants performing the various decision-making tasks were collected in dif-

ferent sessions and then aggregated, at a later stage, to simulate group decisions.

However, BCI studies should always be validated online.

Future research should, therefore, be pointed at developing experiments where

participants simultaneously make decisions while the cBCI estimates their deci-

sion confidence in real-time, so that the resulting group decisions could be pre-

sented to the volunteers immediately after their responses. The analyses of these

online results should focus on how these settings affect metacognitive accuracy,

individual and group performance in a range of tasks.
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10.3.2 Full Communication between Participants

Chapter 6 has investigated the impact on performance of a constrained form of

communication. We showed that both communicating individuals and groups

were significantly less accurate than when the task was performed by isolated

users. However, our computer-mediated communication did not allow partici-

pants to discuss and agree on a decision, but only consisted in sharing opin-

ions and decision confidence followed by the possibility of changing the response.

Moreover, interaction only occurred between pairs of users. Studying the impact

of a more natural form of communication between participants in pairs and larger

groups would be interesting to see if the results presented in Chapter 6 still hold.

10.3.3 Expand the Feature Set

The speech perception task analysed in Chapter 9 was the only experiment where

the confidence reported by the participants together with the error correction

capability of groups was providing significantly superior performance than the

cBCI. This stimulates to conduct more research in order to improve the quality

of the cBCI confidence estimates and leading to better group decisions.

One of the core components of the cBCI that could be improved is the feature

set. Future research should (a) explore other methods for extracting neural fea-

tures in the time, frequency and time-frequency domains (e.g., wavelet analysis),

and (b) investigate other physiological measures related to decision making (e.g.,

skin conductance and pupil dilation [26]) that could complement our feature set

and lead to better confidence estimates. This additional research would make

another step towards identifying the best feature sets for estimating the decision



CHAPTER 10. CONCLUSIONS 254

confidence.

10.3.4 Developing Advanced State-Space Models for Cog-

nitive State Estimation

This thesis has also explored the possibility of estimating the cognitive state of

a decision maker from a series of observations using state-space models. The

neuro-behavioural model presented in Chapter 7 could be applied to our cBCI

to temporarily exclude the group members with a low cognitive state from con-

tributing to the group decision, as they are more likely to make an incorrect

choice. This could lead to significant improvement in group performance.

Future research should be focused on investigating this integration process.

Moreover, the accuracy of such state-space model in predicting the cognitive state

could be enhanced by using advanced methods for extracting neural features,

including the promising Gaussian-process factor analysis [227], which takes into

account both temporal and spatial information.

Furthermore, while these state-space models aim at estimating the cognitive

state of single users, one could also assume that the group itself has a dynamic

cognitive state. Therefore, another interesting avenue of research would be to use

state-space models to track the group cognitive state based on the observations

related to its members (e.g., correctness, RTs and EEG signals of all the mem-

bers). The dynamics of the cognitive state process could then be used for group

selection, i.e., to identify which participants are more effective together. This, in

turn, could further improve group performance in decision making.
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10.3.5 Broaden the Range of Tasks

This thesis has applied the proposed cBCI to various decision-making tasks in-

volving visual and auditory stimuli. Moreover, it paves the way to a number of

real-world applications of cBCIs, especially when reducing the decision errors is

vital.

Future research should investigate the performance of the proposed cBCI with

decision-making tasks using (a) different auditory stimuli, for example where

the user has to listen to an audio recording, understand the command issued

and, possibly, execute it, (b) video streams as stimuli, for example as a natural

extension of our face recognition experiment, and (c) multisensory stimuli (e.g.,

video and audio), to study whether or not the combination of multiple modalities

impacts on the cBCI estimates of decision confidence.

Moreover, it will be important to bring the cBCI out of the lab and apply it

to a real scenario. Also, more complex decision-making tasks should be adopted,

including those requiring reasoning and not providing only two possible options

(i.e., “yes” and “no”). For example, the performance of the cBCI could be studied

when applied to the financial market, where two brokers assisted by such a system

have to decide whether or not a certain stock should be bought. The performance

could be evaluated in terms of amount of money lost instead of just as a number

of erroneous decisions made. This is likely to trigger more interest on applying

cBCIs to critical decision making and increase the probability that, in the near

future, we will be able to use this technology to reduce our misjudgements.
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