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ABSTRACT 

Bet- hedging has long been recognised as an adaptive mechanism in unpredictable 

environments, yet is often overlooked as an evolutionary strategy in corals to adapt to 

environmental conditions associated with climate change. Most environments vary spatially 

and temporally over the lifespan of corals, and corals use cues from their natal environments 

as “predictors” of the environment they will release their offspring into and may optimise 

phenotypes to maximise fitness to changes in the maternal environment. However, when 

conditions fluctuate in unpredictably or environmental cues are otherwise lost, producing a 

single phenotype could cause population bottlenecks. Prolonged summer periods of high sea 

surface temperatures combined with anthropogenic impacts are inhibiting environmental cues 

that have previously secured reproductive success in tropical scleractinian corals and enabled 

them to fine-tune their reproductive patterns to time periods that optimize external 

fertilization success, appropriate larval dispersal and efficient coral recruitment.  

This study tested the ability of the brooding species Favia fragum to “hedge their bets” on 

reproductive strategies in the presence/ absence of lunar cues, a cue known to play an important role 

in synchronizing reproductive output. Results illustrated F. fragum exhibited dynamic bet-hedging, 

tailoring larval output and producing a range of larval phenotypes and thus exhibiting plasticity 

dependent on their environment. In the absence of lunar cues, corals varied the timing of planulae 

release as well as within-clutch size variation promoting dispersal and retention to their natal 

environment. Lunar stimulated corals concentrated release to 3-6 days, typically produced a single 

phenotype aiding retention and re-seeding local reef populations. Reproductive flexibility will enable 

coral to strategize larval/ gamete release that optimise recruitment success within unstable 

environmental conditions. The use of such strategies in other brooding species and broadcast 

spawners should be a focus of further investigation to evaluate the potential for corals to populate 

environments beyond the familiar and persist future unpredictability.  
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1.0 INTRODUCTION   

Life originated from the ocean and at present is host to 14% of all known species (Tessmar-Raible 

et al., 2011). The most distinctive characteristic of the marine environment is that it is governed by a 

range of environmental cycles including diel photoperiod, lunar phases, tidal cycles, seasons; all 

influenced by the periodic re-occurrence of the sun and moon (Tessmar-Raible et al., 2011). These 

cycles occur across multiple time-scales from daily light/ dark cycles to monthly lunar/ semi- lunar 

and seasonal cycles. Marine organisms have adapted over millions of years to these rhythms and 

depend on their predictability to coordinate their own biological cycles. The need to anticipate and 

prepare for periodic changes in the environment is evident by an almost universal presence of 

molecular timekeeping mechanisms in both unicellular and multicellular organisms (Sorek et al., 

2014).  

Coral reefs are among the most productive ecosystems in the world, supporting ca. 25% of all 

marine organisms (Buddemeier et al., 2004). Scleractinian corals are distinguished by their ability to 

continuously secrete a hard calcium carbonate skeleton, it is this feature that enables scleractinian 

coral to build reefs thus providing the characteristic complex 3D framework (Harrison, 2011). 

Tropical scleractinian corals owe most of their success to the tightly coupled symbiosis with their 

endo-symbiotic algae, primarily Symbiodinium (Stat et al., 2006). The mutualistic symbiosis of coral 

host and algae has enabled the persistence of corals in shallow oligotrophic waters for over 200 

million years (Hoegh-Guldberg, 1999). In it hypothesized that optimization of metabolic 

synchronization and coordination between processes in the host and the symbiont may have driven the 

evolution of an internal clock (Reitzel et al., 2013). 

Increases in oceanic temperatures driven by elevated levels of atmospheric CO2 is a major driver 

of mass bleaching/ mortality events across all geographical regions which along with other natural 

and anthropogenic factors (Frieler et al., 2012), has led to the loss of ca. 19% of the world’s reefs over 

the past 50 years (Wilkinson, 2008). Unseasonably high summer temperatures, remaining 1-2oC 
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above the norm over extended periods is the main driver of mass coral bleaching with effects 

observed on global scales (Hoegh-Guldberg and Ridgway, 2016; Carroll et al., 2016). Resistance and 

ability to recover rapidly from environmental disturbances either anthropogenic or natural, largely 

dictates the current status and likely future of the worlds reefs (Schoepf et al., 2015). The rate of 

increase in atmospheric CO2 level up to a current value of more than 400ppm (Stap et al., 2016), is 10 

times greater than any previous natural occurring rises (Kump et al. 2009). The rate of change appears 

to be beyond the adaptive capacity of scleractinian corals however, coral itself encompasses other 

organisms including bacteria, archaea, fungi and dinoflagellates to form the coral holobiont 

(Rosenberg et al., 2007). The composition of the holobiont differs vastly across environments changes 

in community structure may act as a source of coral adaptation within the reproductive lifetime and 

elevate resilience of the host to environmental stressors (Reshef et al., 2006). To what extent 

microbial communities can contribute is at the forefront of current research, corals may still be driven 

to seek refuge at higher latitude reef systems or migrate vertically (increasing depth) in to the 

mesophotic zone.   

The extensive generation times of most coral species (5- 100 years) indicates most species 

will fail to adapt in time (Frieler et al., 2015). This combined with variable periods of larval 

production (Van Woesik, 2009; Norstrom and Sandstrom, 2010) and planktonic larval duration (PLD) 

averaging just a few days to weeks (Szmant- Froelich and Meadows, 2006) offers a very small escape 

window. However, as the only stage capable of mobility, the planktonic larval stage is fundamental to 

species survival. Hence, of all the life stages in scleractinian corals, the larval stage is suggested to 

adhere to the biggest evolutionary adaptations (Kenkel et al., 2011; Muir et al., 2015). 
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1.1 Reproduction in scleractinian corals  

1.1.1 Sexual reproduction 

 

Scleractinian corals have a simple structure with a primitive nervous system and basic 

anatomical features; yet exhibit diverse and complex reproductive strategies. Most are categorised 

into four main patterns of sexual reproduction: hermaphroditic broadcast spawners, hermaphroditic 

brooders, gonochoristic broadcast spawners, and gonochoristic brooders (Harrison and Wallace, 1990; 

Richmond and Hunter, 1990). Hermaphroditic describes corals in which both sexes develop whereas 

sexes are separate in gonochoric corals (Harrison, 2011). Hermaphroditism is assumed to be 

advantageous over gonochorism when the probability of locating members of the opposite sex is 

impeded and conditions favour self- fertilization. This is reflected throughout reef-building corals, 

with 68% of those assessed confirmed as hermaphroditic (Harrison and Wallace, 1990). Corals are 

then further grouped into two main reproductive modes, 82.7% practice broadcast spawning and only 

14.3% brooders, 3% exhibit both modes (Harrison, 2011). Broadcast spawners release buoyant 

gametes into the water column where external fertilization takes place. Eggs are often packed together 

with sperm in bundles insuring simultaneous arrival of both gametes to the surface of the ocean. 

Fertilization is followed by an obligatory development period of ca. 3 days before larvae reach 

competency to settle (Edmunds and Bruno, 2008). During this phase, larvae mature and have been 

known to partake in horizontal transmission of algal symbionts initiating the start of their symbiotic 

relationship (Edmunds et al., 2011). In brooding corals fertilization is internal and larvae are released 

several days to weeks after (Harrison and Wallace, 1990). Larvae are generally competent to settle 

almost immediately after release and characteristically aggregate in patterns to form small colonies 

(Edmunds and Bruno, 2008).  
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Figure 1a. A summary of coral reproduction patterns in both brooding and broadcasting corals 

(adapted from Vermeij et al., 2009) 

Reproductive traits are generally preserved within species and genera however, exceptions do 

exist and not all coral species can be classified within the four aforementioned patterns. At least 13 

species have been observed to exhibit mixed patterns and reproductive modes (Harrison, 2011).  

Galaxea fascicularis and Galaxea astreata were first observed to be simultaneous hermaphroditic, 

however later research revealed populations of female colonies that spawned pink eggs and 

hermaphroditic colonies that released sperm and white eggs (Harrison, 1988).  

 

1.1.2 Asexual reproduction  

 

Most scleractinian corals can produce both sexually and asexually (Combosch and Vollmer, 

2013). Asexual reproduction produces genetically identical units via processes including 

fragmentation, partial mortality, polyp bailout or asexual production of larvae. Physical breakage of 

large coral colonies via storm and wave action causes small parts to fragment off and be dispersed 

along the reef (Lirman, 2000). Partial mortality is often associated with disease by which parts of the 

colony are killed leaving a patch work of live coral remaining (Aronson and Precht, 2001). Both 

processes result in the proliferation of smaller sexually immature colonies of identical genotypes, 
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impairing sexual reproduction and reducing genetic diversity (Lirman, 2000). Predicted increases in 

storm frequencies could cause fragmentation to become more prolific and diminish the abundance of 

sexually reproductive coral colonies, further impeding larval supply to degraded reefs (Wilkinson, 

2008).  

The occurrence of asexual production of larvae has been associated with environmental 

conditions that cannot support sexual reproduction (Brazeau et al., 1998), but most species investing 

in asexual reproduction require some sexual recombination to maintain genetic diversity (Combosch 

and Vollmer, 2013). Interchanging between the two modes is suggested to continue throughout the 

adult life (Barnes and Hughes, 1999). Patterns and factors underpinning the production of 

parthenogenetic larvae are poorly defined (Combosch and Vollmer, 2013). Few studies have 

described self- fertilisation in scleractinian corals, parthenogenesis was first documented in 

Pocillopora damicornis (Stoddart, 1983). Brazeau et al (1998) described high rates of self- 

fertilisation in Favia fragum and Porites astreoides under natural conditions in which both species 

typically inhabit sites with high turbidity hindering cross fertilization. High rates of “selfing” 

combined with natal philopatry may enhance local adaptation, local speciation and potentially lead to 

changes that will enable colonies to survive new environments (Gleason et al., 2001). However, 

extensive self- seeding may also lead to genetic uniformity increasing vulnerability to environmental 

stressors (Szmant- Froelich and Meadows, 2006).   

 

1.1.3 Bet- hedging reproductive strategies 

 

Trends in reproductive mode appear to be much less systematic than previously thought, both 

broadcast spawning and brooding has been observed within families, genera and between species 

from different geographical locations. Pocillopora damicornis in Western Australia exhibit both 

modes of reproduction (Ward, 1992), as does Goniastrea aspera in Okinawa, Japan (Sakai, 1997). 

This implies that reproduction has a high level of plasticity (Harrison, 1985) and reproductive 
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strategies may adhere to significant changes to optimise population persistence as environmental 

conditions continue to change.  

Bet- hedging has long been recognised as an adaptive mechanism in unpredictable 

environments. Most environments vary spatially and temporally over the lifespan of corals, and corals 

use cues from their natal environments as “predictors” of the environment they will release their 

offspring into and may optimise phenotypes to maximise fitness to changes in the maternal 

environment (Bishop, 2006). However, when conditions fluctuate in unpredictably or environmental 

cues are otherwise lost, producing a single phenotype (regardless of cues or not) could cause 

population bottlenecks. Hence, corals should “hedge their bets” by producing a range of phenotypes 

and thus exhibit plasticity dependent on their environment. Edmunds et al (2011) suggested peak 

larval release of brooding Pocilloporid species, which correspond with warmest annual temperatures, 

correspond to times when the   metabolic rates of larvae would be greatest (as indicated by maximum 

respiration) to shorten dispersal and stimulate local coral recruitment within these favourable habitats. 

Larvae released in periods of colder water would have longer dispersal stages due to reduced 

metabolic rates, contributing to reef connectivity by settling in reefs away from their native reef. 

Evidence of reproductive bet- hedging in corals is rare but should be a focus of future studies  when 

addressing the coral resilience question particularly as it concerns environmental change and 

uncertainty. 

   

Figure 1b. Bet-hedging strategies under predictable/ unpredictable environment, producing a single mean size 

phenotype when environment can be anticipated versus producing a range of phenotypes in unstable 

environmmental conditions to insure reproductive success in both scenarios.  
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1.2 Ultimate and proximate cues driving reproductive patterns 

  

Most coral reproduction exhibits some degree of synchronicity (Szmant- Froelich et al., 

1985), variations in timing and synchrony cause reproduction patterns to rage from temporal isolation 

to fine- tuned mass spawning events (Gilmour et al., 2016). On the GBR, ca. 40 species of 

scleractinian corals release gametes simultaneously in one night and ca. 130 species spawn over a few 

weeks in austral late spring (Harrison et al., 1984). This ‘mass spawning’ event is unique to the GBR, 

the scale and magnitude of synchronicity is not replicated in any other reef system (Gilmour et al., 

2016). Other regions demonstrate a reduced degree of synchronicity between species, months and 

seasons (Shlesinger and Loya, 1985). For example, spawning patterns in Puerto Rico exhibit strong 

synchronisation within species, but species spawn at different times over a period of 3 months 

(Szmant- Froelich, 1986). Brooding corals show varying degrees of periodicity, from weak 

synchronicity with a monthly peak but continuous release (Fan et al., 2002) to strict synchronicity 

fine- tuned to a few days in a month (Johnson, 1992).  

There are a multitude of mechanisms and evolutionary factors controlling the timing and 

synchronisation which result in the reproductive patterns exhibited by both broadcast spawners and 

brooders. Ultimate and proximate cues play an intricate role to fine-tune the timing of gametogenesis, 

spawning and release of planulae. Ultimate factors result from evolutionary selective pressures that 

govern species- specific responses that will enhance their survival and increase their fitness such as 

increased fertilization success or predator avoidance. Proximate cues describe environmental 

mechanisms including temperature, tidal and diel cycles, and food abundance (Harrison and Wallace, 

1990). Most reproductive patterns are associated with a plethora of environmental cues that act in 

synergy but differ in time scale. There have been few studies that have isolated individual 

environmental cues associated with spawning; hence individual roles on reproductive patterns are not 

well understood. The relationship between proximate environmental cues and endogenous circadian 

rhythms also remains unknown. Sea surface temperature, lunar and diel cycles are considered the 

most influential cues driving the month, day and hour of spawning (Babcock et al., 1986).   
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1.2.1 Temperature  

 

Temperature is often cited as the primary factor for regulating or synchronizing reproductive 

cycles in corals (Babcock et al., 1986). Particularly in broadcast spawning species, spawning typically 

occurs during the summer months when sea surface temperatures are at their maximum, where 

increases in temperatures have been directly linked with gamete development and maturation 

(Harrison and Wallace, 1990). On the GBR delays in temperature rises have been directly linked with 

delays in gametogenesis and hence spawning time, where offshore reefs experience increasing 

temperatures one month later than inshore localities. Here offshore communities were observed 

spawning one month later than those of inshore sites (Babcock et al., 1986). Similar spawning 

patterns were recorded in Taiwan where coral reefs in the south experience warmer and reduced 

annual temperature variations and spawn 1-2 months earlier than corals in the north (Dai et al. 1992). 

Laboratory studies have previously isolated and manipulated temperature. Hunter (1988) found 

spawning ceased in colonies of Montipora verrucosa and Montipora dilatata when exposed to 

constant winter temperatures. In contrast, brooding species appear to less sensitive to temperature 

variation when it comes to their reproductive cycles. Many typically release larvae over multiple 

months and in some cases year- round (Szmant- Froelich et al., 1985).  

It is suggested that rather than the absolute temperature, it is the annual temperature range that 

exerts that greatest influence in regulating the longitudinal patters of the reproductive period and 

spawning synchrony (Richmond and Hunter, 1990). In the Red Sea and Arabian Gulf, variations in 

temperature regimes are the predominant cue driving reproductive cycles.  Fadlallah and Lindo (1988) 

noted significant differences in the length and timing of reproduction in Stylophora pistillata between 

reefs at the same latitude in the Arabian Gulf and Red Sea. In the central parts of the Red Sea, 

temperature range is relatively narrow (25-31oC) compared to the Gulf where variation is at the global 

extreme (15-35oC). S. pistillata exhibited two peaks in planulation in the Red Sea, compared to the 

Gulf where the same species had a short gametogenesis cycle and a brief planulation period. 
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However, reefs across similar latitudes in Western and Eastern Australia experience similar 

temperature regimes yet there is a 6-month lapse between spawning times (Simpson, 1991).  

Temperature must act at some level to regulate reproduction however, significant variations in 

gamete/ larval release across similar temperature regimes suggests other factors contribute to   

underpin reproductive patterns across all coral species.  

 

1.2.2 Tidal regimes 

 

The connection between land and sea represents a boundary subjected to some of the most 

extreme fluctuations in environmental conditions. Daily rising and falling tides are superimposed with 

the light/ dark diel cycle and cause huge variations in salinity, temperature, food availability, 

predation rates, hydrostatic pressure, water current and oxygen levels (Tessmar- Raible et al., 2011). 

Hence, tidal influence may act as a co- factor to influence reproductive patterns. The most probable 

explanation for regulation larval/ gamete released with tidal cycles is to reduce gamete dilution, 

optimize fertilization rates or increase dispersal and larval settlement rates (Babcock et al., 1986).    

The gravitation forces of the sun and moon influence tides and coastal areas can experience 

two high/ low tides (semidiurnal) or one high/ low (diurnal) per day. Semidiurnal tidal cycles have an 

approximate 12.4- hour period/ half a lunar day and diurnal approximately 24.8 hour (Naylor, 2015). 

However, other factors also influence tides so that some locations can experience four tides/ day and 

others will lack a tidal regime (McDowall, 1969). Every 14.8 days the effects of the moon and the sun 

alternately amplify and oppose each other causing spring and neap tides (Sverdrup et al, 1942). 

Correlations between tidal and reproductive cycles appears to vary between geographical locations. 

Mass spawning events such as those on the GBR occur during neap low tides (Babcock et al., 1986), 

when tidal movement is reduced allowing external fertilisation of released gamete bundles to occur 

successfully (Gilmour et al., 2016) and local retention to re- populate local reefs (Szmant- Froelich 

and Meadows, 2006). However, in Southern Taiwan and Japan spawning occurs on high tides during 
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spring and neap tides (Dai et al., 1992). Coral populations inhabiting high latitudinal reefs in Houtman 

Abrolhos spawn at spring tides to enhance dispersal and connectivity between reefs (Babcock et al., 

1994). Tidal effect likely acts synergistically with the lunar cycle and the degree to which it drives 

reproductive patterns appears to be directly connected to reef location.   

 

1.2.3 Light  

 

Light is one of the most fundamental cyclic events, it is predictable indicator and translates 

environmental information on daily, lunar and seasonal time- scales. The role of moonlight in 

regulating gamete/ larval release has been demonstrated both in situ and within laboratory 

experiments. Under artificial light regimes, the timing of larval release in Pocillopora damicornis and 

gamete release in Montipora verrucosa was altered, suggesting lunar cycles are used to entrain 

reproductive rhythms (Jokiel et al., 1985). On the GBR multi-specific synchronous broadcast 

spawning occurs between full-and third quarter-moon (Harrison et al., 1984). In Japan, recorded 

spawning patterns across the years indicated consistencies in timings between individual species 

(Hayashibara et al., 1993). It remains unclear what specifically induces these organisms to spawn on a 

certain night of the lunar cycle. Documentation of broadcast spawning is rare around the new moon 

however, a few species have been observed releasing gametes in Hawaii, South Africa and the Red 

Sea (Willis et al., 1985; Hunter, 1988; Shlesinger and Loya, 1985). Hence, light as well as other 

factors that include temperature and tidal cycles may act synergistically or antagonistically in 

advancing or delaying spawning patterns.  

 

1.3 Circadian rhythms in scleractinian corals   

 

Scleractinian corals depend on environmental cycles to regulate multiple physiological processes 

including tentacle retraction-expansion (Sebens and DeRiemer, 1977; Hendricks et al., 2012), 
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calcification (Gutner-Hoch et al., 2016) and reproduction (Chalker, 1977; Hoadley et al., 2011; Sorek 

and Levy, 2014). Linking of the endogenous clock with environmental conditions provides clear 

advantages and enables corals to anticipate, prepare and optimise their metabolic, behavioural and 

physiological states for upcoming changes in ambient conditions of light/dark cycles (Brady et al., 

2009), light spectra (Gorbunov and Falkowski, 2002), ambient temperature (Mangubhai and Harrison, 

2009) and nutrient availability (van Woesik, 2009).  

Circadian clocks are internal systems that enable organisms to regulate patterns of activity 

simultaneous with their external environmental conditions (Edmunds, 1988).  These rhythms are 

typically described as free-running systems with a periodicity of around 24 hours in the absence of 

external cues or under continuous stimulation (Sorek et al., 2014). There are 3 primary mechanisms 

involved in maintaining the clock: i. the input pathway which identifies environmental cues (such as 

light, temperature) ii. the central oscillator based on transcriptional or translational loops of positive/ 

negative feedback and iii. The output pathway which coordinates the expression of genes involved in 

circadian- controlled processes. 

 

1.3.1 Detection mechanisms in coral 

 

In terms of anatomical features, corals are simple organisms that lack specialised visual 

structures such as ocelli/ pigment rings (Strader et al., 2015), the mechanisms enabling them to detect 

light has stimulated multiple investigations (Levy et al., 2007; D’Angelo et al., 2008; Mason et al., 

2012). The identification of blue- sensing cryptochromes and long-wave sensitive opsins in Acropora 

suggest these as a likely mechanism for light detection (Levy et al., 2007). Crytochromes are DNA 

photolyase- like photoreceptor proteins and are assumed to partake significantly in enabling corals to 

adapt and coordinate with external light levels. A recent study also suggests gamete release in corals 

is triggered by a protein similar to melanopsin (Kaniewska et al., 2015). In mammals melanopsin has 

been shown to be critical in synchronizing circadian rhythms with the diel light/dark cycle (Provencio 
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et al., 1998). Melanopsin is also capable of catalysing the activation of G- proteins. G- proteins are 

known to assist in the transmission of signals across cell membranes to appropriate locations in 

response to changes in light conditions (Brown and Robinson, 2004). Specific classes of G- proteins 

have also been stimulated by opsins in response to light in coral larvae (Mason et al., 2012). 

Kaniewska et al (2015) observed an up- regulation of processes linked to a G- protein activation 

cascade in Acropora millepora when exposed to moonlight.  

 

1.3.2 Molecular involvement in driving reproductive patterns 

 

The central oscillator is responsible for generating and maintaining rhythm. Most circadian 

clocks rely on core molecular components composed of regular positive and negative feedback loops 

(Reitzel et al., 2013). Technological advances in sequencing have accelerated the availability of 

genomic and transcriptomic databases, consequently genes involved in maintaining the circadian 

clock have been identified and their expression patterns in response to external cues investigated 

(Levy et al., 2007). CLOCK and CYCLE transcriptional activators are critical core clock components; 

these two positive elements appear to be almost universal components of bilaterian circadian clocks 

along with other positive and negative components including PERIOD, TIMELESS and 

CRYPTOCHROME (Lin and Todo, 2005; Hoadley et al., 2011; Hardin et al., 1990). Studies on 

Nematostella vectensis, Favia fragum and Acropora millepora have all confirmed the expression of 

CLOCK, CYCLE, CRY1 and CRY2 transcription factors (Reitzel et al., 2010; Brady et al., 2011; 

Hoadley et al., 2011). Of these genes, CLOCK, CRY1 and CRY2 have all been shown to undergo 

rhythmic expression. Specifically, CRY2 has been implicated to play a role in spawning as its’ 

expression was upregulated in A. millepora during a full moon spawning event (Levy et al., 2007). 

Currently, there is no evidence to suggest these genes are directly involved in entraining coral 

behaviour. However, expression of CLOCK and the two CRY variants have also been shown to 

undergo rhythmic expression in insect and mammalian model organisms. The role of these clock gene 

orthologs have been implicated in short and long term reproductive processes (Dolatshad, 2005); 
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Dolatshad et al., 2009) and may be important in the synchronization of diel and monthly behaviour of 

scleractinian coral (Hoadley et al., 2011).  

 Molecular mechanisms mediating synchronisation of gametogenesis and gamete/ planulae 

release require further investigation (Reitzel et al., 2013). Supporting the presence of a weak circadian 

clock, Levy et al (2007) indicated CRY1 and CRY2 clock genes could not sustain circadian rhythm 

under constant darkness. Contrastingly, Hoadley et al (2011) found no association with planulation 

patterns and upregulation of any clock genes. It remains unclear whether reproduction patterns are the 

result of entrained circadian behaviour or a direct response to environmental cues.  

 

1.3.3 Evolution of circadian clock  

 

Three main theories have been proposed in relation to the driving forces behind the evolution 

of circadian clocks. The first suggests clocks evolved to ensure DNA replication occurred only during 

darkness to minimize UV damage. Evidence to corroborate this hypothesis is linked to the presence of 

blue- light sensitive cryptochromes which have been identified in different taxonomic groups 

including insects (Zhu et al., 2008), plants (Somers, 1998) and cnidarians (Levy et al., 2007). Photo- 

sensitive cryptochromes are thought to have evolved from photolyases, these enzymes require blue 

light to repair DNA damaged by UV. Alternatively, Edgar et al (2012) suggest they may have arisen 

during the Great Oxidation Event 2.5 billion years ago. The third hypothesis states that the circadian 

clocks arose during the symbiotic fusion between a prokaryote and an archaebacterium that resulted in 

the first eukaryotic organism (DeCoursey, 2003). To achieve optimization in a symbiotic relationship, 

both partners must synchronize metabolic processes and coordinate cell cycles, hence the evolution of 

an internal pacemaker.  
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1.4 Larval recruitment 

 

One of the growing concerns is coral’s high level of dependency on recruitment to persist 

through periods of continued disturbance and taking in to account the susceptibility of the early- life 

stages to environmental conditions. Recruitment itself encompasses a plethora of critical factors 

including successful reproduction (Harrison and Wallace, 1990), viability of pelagic larvae (Harrison, 

2006), larval dispersal, successful settlement and post- settlement survival (Richmond, 1997).  

 

1.4.1 Dispersal  

 

Recent advances in our understanding of larval dispersal has begun to question earlier 

theories suggesting that reef communities represented open populations with substantial larval 

exchange between populations (Levin, 2006). Early studies assumed that due to size and motility 

limitation, once in the water column larvae were dispersed as passive particles and exuded no 

influence on their ultimate place of settlement (Caley et al., 1996). However, recent studies suggest 

populations may be much more closed with frequent larval retention within the natal reef (Cowen, 

2002; Levin, 2006). Adding to this changing paradigm is the increasing recognition of larval 

behaviour and the ability of individuals to influence their own dispersal potential. Incontrovertibly, 

oceanic currents play a pivotal role in connectivity between coral populations, coral larvae have weak 

motility abilities and likely adopt the role of passive particles for at least part of their dispersal 

process. However, different hydrodynamics exist at varying depths in the water column providing 

larvae an opportunity to vertically distribute (Tay et al., 2011). In the process of transportation by 

surface currents, larvae develop locomotion abilities and combined with a loss of buoyancy (via the 

depletion of energy reserves) may be able to change their position within the water column, increasing 

the probability of encountering suitable sites (Raimondi and Morse, 2000). Effect on dispersal have 
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been shown to be significant when models incorporate the behavioural ability of larvae to vertically 

migrate in the water column (Levin, 2006). 

Advantages of dispersal must outweigh disadvantages to make it a viable stage in the life- 

history of coral. The ability to disperse larvae into the water column opens the door to escape 

incongruous conditions, re- populate neighbouring reefs and colonise disturbed or novel habitats 

(Ritson- Williams et al., 2009), but the overriding factor driving dispersal is the potential to spread 

beneficial alleles and increase genetic variability. Palumbi (2003) concluded that genetic structure and 

dispersal distance were correlated and transport on intermediate scales (100kms) had the greatest 

influence on genetic structure. However, there are also major trade-offs associated with this pelagic 

stage including transportation to less hospitable habitats, predation and a reduced ability to fine- tune 

adaptations to local conditions (Isomura and Nishihira, 2001). Therefore, not all larvae are produced 

equally within or between species or even within the same cohort. Richmond (1987) indicated 

planulae size was positively correlated with dispersal potential, with larger larvae dispersing further 

than smaller which may remain for up to 103 days in the water column.  

 

1.4.2 Settlement  

 

 Coral larvae use a hierarchy of cues to enhance the probability of transportation to 

settlement sites most probably due to the complexity involved in the settlement process and the high 

specificity of a species optimum site requirements (Grasso et al., 2011). The degree of influence an 

environmental cue has on coral larval behaviour is dependent on the spatial scale over which they act 

and their reliability as an indicator of reef structure (Gleason and Hofmann, 2011). Initial cues to 

impact on larvae are those that act at the largest spatial scales, coarse cues including ocean currents, 

light, water temperature, and changes in hydrostatic pressure all direct larvae towards the reef (Price, 

2010). Precise cues including water soluble/ insoluble chemicals, sedimentation and reef topography 

allow for refined selection of final settlement sites and initiating metamorphosis (Gleason and 
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Hofmann, 2011). The decreasing distance towards settlement points is correlated with an increase in 

the amount of environmental cues influencing larval behaviour (see Figure 2).  

 

 

Figure 2. A model illustrating coarse and precise environmental cues based on estimated spatial 

scales and indicator strength of reef settlement sites. Abbreviations of abiotic and biotic 

cues: HP = hydrostatic pressure, WI = water insoluble chemicals, OC = ocean currents, 

WS = water soluble chemicals, RS = reef sounds, T = temperature, PAR = 

photosynthetically active radiation, UVR = ultraviolet radiation, LC = local currents, S = 

sedimentation (Vermeij et al., 2010; Gleason and Hofmann, 2011).  

 

 Questions remain unanswered as to how larvae acquire the ability to determine reef quality. 

Particularly for brooded species, fully competent larvae may imprint on their natal reef and acquire an 

accurate estimate of habitat quality before being dispersed into the water column (Price, 2010). It may 

also be detrimental to population connectivity causing more larvae to be retained in their natal reef, 

although imprinting has never been investigated in coral larvae (Huijbers et al., 2012). Brooded larvae 

are also equipped with zooxanthellae transmitted from their parents that may provide habitat 
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information and play a role in settlement choice (Kenkel et al., 2011)), whether this is significant to 

directly influence larval behaviour requires further research. For broadcast species larvae are fertilized 

whilst dispersing impeding any opportunity to imprint on their natal reef, therefore it is critical they 

develop the ability to use cues indicative of quality novel habitats (Huijbers et al., 2012). Vermeij et al 

(2010) suggested coral larval could distinguish reef sounds, Dixon et al (2014) also suggested larvae 

could differentiate between algal and coral dominated reefs via chemical cues. A recent study found 

ex-hospite zooxanthellae influenced CCA selectivity in aposymbiotic coral larvae and may be a huge 

contributing factor in the larval settlement process (Winkler et al., 2015); free-living Symbiodinium 

species aggregate on CCA which provide a source of metabolic waste products. The presence of 

Symbiodinium types differs dependent on their energetic requirements and the release rate of 

metabolites by CCA species hence, larvae dependent on horizontal transmission following settlement 

may select CCA sites based on the presence of symbionts.  

Upon contact with the substrate, larvae exhibit a “sniffing dog” behaviour, exploring the 

substrate on a millimetre scale (Hadfield et al., 2001). Their aboral end contacts the surface multiple 

times until they encounter a suitable spot to complete metamorphosis or abandon the location and 

resume vertical swimming back into the water column to be dispersed to further settlement sites 

(Koehl and Hadfield, 2004). Larvae mark the beginning of their sessile life by attaching their aboral 

end to the surface and entering metamorphosis by flattening the aboral- oral axis and undergoing 

extensive tissue remodelling to form a primary polyp (Vandermeulen, 1975; Grasso et al., 2011). 

They must produce a pharynx which opens to the gastrovascular cavity and form a functional mouth 

complete with tentacles and secure formation of the primary mesenteries (Harrison and Wallace, 

1990). 

Metamorphosis is induced by receptors that detect chemical signals and trigger a signal- 

transduction process (Tran and Hadfield, 2013). The cells that detect these cues are typically 

concentrated in the anterior poles of many invertebrate larvae (Hadfield et al, 2000). The collective 

term for these columnar cells is the apical sensory organ, the cells are surrounded by microvilli which 
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twist together to form an apical tuft. In cnidarian larvae some bear an apical tuft while in others it 

appears absent, including coral larvae (Chia and Koss, 1979).  

 Sensory cells in the aboral epidermis have a single flagellum surrounded by multiple 

microvilli (Tran and Hadfield, 2012) and it has been postulated that they may be used in 

chemoreception based on evidence that larvae settle on the aboral end (Vandermeulen, 1974).  This 

was recently supported when the aboral region of Montipora capitata larvae was removed and they 

failed to metamorphose to known inducing cues. Tran and Hadfield (2013) removed aboral and oral 

regions of coral larvae, assuming sensory cells are localised in those regions, and concluded that the 

distribution of sensory cells for chemoreception is variable between coral species; interestingly larvae 

of Pocillopora damicornis could metamorphose even after the removal of the aboral end. These larvae 

most likely sense cues along their sides and rotate whilst in the water column enabling them to best 

detect a chemical gradient (Hadfield et al, 2000). They also noted that an artificial inducer (Caesium 

Chloride) resulted in a metamorphic response at the oral and aboral region in both P. damicornis and 

M. capitata suggesting that the oral portion of larvae retain the ability to metamorphose but are 

instead deprived of signal which originates in sensory cells in aboral end. It would seem therefore that 

internal signalling in conjunction with chemoreception of external cues is necessary to mediate 

metamorphosis (Tran and Hadfield, 2013). 

  

1.5 Larval development using LSFM 

 

Presumably due to the experimental difficulties and constraints associated with studying 

mesoscopic sized larvae on natural reef systems, large knowledge gaps remain in our understanding of 

developmental and behavioural processes of coral pelagic larval stage all the way through to the 

transition in to sessile benthic life form. These gaps limit our understanding of the adaptive potential 

of this life stage and its influence on driving future vertical/ horizontal migration patterns of shallow 

water species to seek refuge from deleterious natal conditions. The necessity to understand early life 
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history stages is driving research to exploit techniques developed in other scientific fields and 

manipulate them to answer new biological questions.  

Although the morphological structure of scleractinian corals can extend for metres, most 

chemical and biological processes occur within the tissue/ cellular layers of a few mm thickness. 

Developments in old and emerging microscopy techniques including histology (Downs et al., 2009), 

electron scanning microscopy (Tchernov et al., 2004), theta confocal microscopy (Greger et al., 2007) 

and nanoscale secondary ion mass spectrometry (Pernice et al., 2012) have proved pivotal in 

unravelling crucial insights into the organisation of tissue and Symbiodinium at a cellular and sub-

cellular level. As a result, knowledge of coral physiology has undergone significant advancements.  

A major limitation of microscopy is the need to fix samples prior to imaging, hence real time 

accounts of biological process in vivo are limited to the time frame at which fixation occurred. The 

fixation process itself can also result in cell/ tissue disruption (Shapiro et al., 2016). The development 

of miniature model systems of cell/ tissue cultures has been used as an alternative approach to further 

understand biological mechanisms underpinning symbiosis and calcification (Helman et al., 2008; 

Mass et al., 2012). In addition, dependency on high irradiance to retain images causes immediate 

physiological stress to corals, to the extent that limits even short- term investigations. High light levels 

excite fluorophores to produce reactive oxygen species (ROS) (Wright et al., 2002) which react with 

components that are easily oxidised (such as proteins, nucleic acids and lipids), reducing the 

fluorescence signal and resulting in photobleaching (Song et al., 1996) and phototoxicity (Salih et al., 

2000).  

The development of light sheet-  selective plane illumination microscopy (LS- SPIM) 

combines a high sensitive low light approach with fast speed optical sectioning (Laissue et al., 

unpubl.).  Exposure time is minimised and each focal plane is illuminated once, reducing the amount 

of photobleaching/ toxicity so the physiological state of the specimen is uncompromised and even the 

most sensitive specimens can be imaged over long- term (repetitive) experiments.  An overriding 

advantage of LS- SPIM is the ability to understand cell interactions within a native multicellular 

environment and capture real- time biological events. Traditionally, cells are cultured on substrates or 
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within a media that is representative of their environment within their organism. The movement of 

cells themselves and their interactions with neighbouring cells defines their behaviour and functional 

role, thus it is essential to study at subcellular level within natural setting (environment) to truly 

understand cellular behaviour. Improvements in imaging apparatus has progressed to the point that is 

now possible to capture quantitative data at a single- cell resolution (Huisken and Stainier, 2009). 

These studies opened the gateway to understanding biological processes in 5D (3D over time and 

wavelength) as they unfold.   

 Auto-fluorescence in corals makes them as ideal candidates for fluorescence microscopy, and 

GFP- like proteins are among the most abundant proteins in corals (Oswald et al., 2007), accounting 

for up to 14% of the total protein content in some species (Treibitz et al., 2015). Despite their 

prevalence, the precise function of fluorescent proteins (FPs) within corals remains ambiguous, 

although it is thought they are involved in some of the most significant mechanisms used by corals to 

acclimate and interact with their environment (Kenkel et al., 2011). Chlorophyll a within 

zooxanthellae (Warner et al., 2010) also contributes to fluorescence, its excitation range partially 

overlaps with that of GFP’s enabling simultaneous imaging of GFP and chlorophyll- a with a single 

excitation source (Treibitz et al., 2015). LS- SPIM could provide key insight into the developmental 

processes in early life stages of coral. 
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1.6 Thesis Aims and Objectives  

 

The main aim of the study was to examine reproductive traits in Favia fragum and to understand how 

varying environmental conditions influence larval strategies.  

 Specific objectives were to: 

1. Determine the effect of lunar cues on the reproductive strategy employed by Favia fragum 

2. Determine whether reproductive traits of F. fragum change when faced with different 

environmental cues.  

3. Determine whether F. fragum produce greater variability in larval phenotype in the absence 

of lunar cues. 

4. Determine whether differences in larval strategies influence other key life-history traits 

including timing of settlement and metamorphosis   

It is critical to identify whether spawning and larval release is a direct response to light or a result 

of entrained circadian behaviour. Unable to adapt, corals may seek refuge in subtropical areas at 

higher latitudes or transfer deeper into the mesophotic zone. Either way, their reproductive ability 

may be compromised as they are exposed to exogenous conditions and cues that are not synchronous 

to their own internal clocks. Depleted light levels and weakened lunar signals could causes serious 

disruptions to reproductive patterns and subsequent implications for other early life stage processes. 

The aim of this study was to assess the ability of corals to utilise a bet-hedging reproductive strategy 

when key environmental cues are altered through assessing the daily rate of larval release over 

consecutive months in the presence and absence of cues. In the hierarchy of cues associated with coral 

reproduction lunar cues are most likely the major driver of spawning and planulation patterns and 

were therefore selected as the cue to manipulate and test the impacts on reproduction.  

Few studies have manipulated environments on long term scales, and variance in offspring 

numbers and phenotypes (e.g. size) across multiple planulation events are often neglected in 

ecological studies. Therefore, within this study we assess the effects of lunar cues (presence and 
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absence) on the reproductive strategies of a coral species using larval reproductive output, timing, and 

larval size, settlement and metamorphic development, to determine reproductive bet-hedging 

employed by the common Caribbean brooding coral Favia fragum  

 

1.7 Favia fragum  

 

Favia fragum has been investigated in a number of studies focusing on reproductive strategies 

(Szmant- Froelich et al., 1985; Hoadley et al., 2011); this brooding coral has extended planulation 

periods with multiple reproductive events, making it ideal for lab- based longitudinal studies. F. 

fragum readily reproduces under laboratory conditions, despite the complexity of cues involved in 

coral reproduction, and is an appropriate model representative of a simultaneous hermaphroditic 

brooding species. 

Favia fragum is a member of the Faviidae family which constitutes the second largest family 

of corals in terms of number of species (Veron, 1995). F. fragum is widespread throughout Western 

Atlantic reef systems extending from the Caribbean to Bermuda (Veron, 2000). Colonies reach sexual 

maturity at small sizes and brood embryos to a planula larval stage. Parental colonies invest on 

vertical transmission of its symbionts, hence larvae released in the water column are assumed to have 

a short planktonic larval duration. They have also observed to be simultaneous hermaphrodites 

meaning the production of sperm and eggs overlaps giving way to self-fertilization (Brazeau et al., 

1998). Szmant- Froelich (1985) was the first to describe continual monthly planulation throughout the 

year in F. fragum making it ideal research in to reproductive cycles and strategies.  

One possible outcome of altering coral communities is the potential for local increases in the 

number of scleractinian corals that display resistance to long- term repeated disturbances. In some 

Caribbean locations, for example Bermuda, F. fragum is already subjected to large fluctuations in 

environmental conditions, where temperatures can differ by 10-15oC between seasons (annual lows of 

15.5- 19oC and summer highs of 29- 30.5oC). Its ability to exist under extremes have been identified 
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as key players in future coral reef communities (Green et al., 2008; Camp et al., 2016) however, 

future persistence will depend on its’ reproductive biology as well as physiological tolerance. 
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2.0 METHODS AND MATERIALS  

2.1 Experiment overview 

 

Multiple environmental factors including temperature, tidal regimes and solar insolation, 

either in synergy or in succession at different time scales, have been implicated in regulating planulae 

release in brooding corals. In situ and laboratory measurements of planulation patterns in Favia 

fragum demonstrate that this species is capable of brooding larvae all year round suggesting no 

inherent temperature limitations on the planulation cycle. Therefore, patterns must be explained by 

alternative environmental cycles that occur monthly. The lunar cycle offers stable and predictable 

cues and has previously been implicated to induce reproduction of both brooding and broadcast 

spawning coral species (Harrison and Wallace, 1990; Szmant- Froelich et al., 1985). This study 

isolated lunar irradiance as the sole factor to examine planulation patterns in Favia fragum. 

Reproductively active colonies were placed into separate light treatments, one group was placed under 

a 12:12 light: dark (constant new moon), the other exposed to an artificial induced lunar cycle. Daily 

reproductive output, larval size and settlement rates were measured over a 10 month- period. 

 

2.2 Experimental set-up 

 

Six colonies of gravid Favia fragum were collected from the Horniman Museum (London, 

UK) and transported to the Coral Reef Research Unit (University of Essex, UK) where all 

experiments described in this thesis were conducted. No approval from an ethics committee was 

required as scleractinian corals are exempted from legislation concerning the use of animals for 

scientific purposes in the European Union (Directive 2010/63/EU). Previous isolation and 

observations of larval release conducted at the Horniman Museum confirmed all colonies were of 

reproductively active. Coral fecundity, defined by number of larvae produced by colony polyps, has a 
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positive correlation with colony size. Larger colonies typically contain more larva producing polyps 

and have the capacity to direct more energy towards reproduction, whereas smaller colonies may 

invest more resources into growth to optimise survival (Babcock,1991). For this reason, F. fragum 

colonies of approximately equal size were selected to insure similar reproductive potential across all 

six individuals. 

Corals were maintained in a 1700 L closed aquaria system. Aquarium water consisted of 

reverse osmosis water mixed with a commercial synthetic sea salt (H2Ocean pro+ reef salt). All 

artificial sea water (ASW) was prepared in a separate mixing container made up to a salinity of 35 ppt 

and allowed to mix for 24 hours, enabling the pH to stabilize before being added to the aquaria 

system. Water was circulated through a microbial sand sump, packed with established live rock, and a 

protein skimmer to remove dissolved organic compounds, before being distributed between 3 separate 

tanks. A UV sterilizer also formed part of the filtration system but was only implemented occasionally 

to remove potentially harmful bacteria and unwanted free- floating algae. As the UV sterilizer does 

not distinguish between bacteria and beneficial planktonic organisms, it was only turned on during 

daylight hours to reduce the chance of eliminating those organisms that are advantageous. Water 

parameters were tested weekly using API colour change test kits (NT Laboratories, Ltd., 

Chorleywood, UK). Temperature was monitored daily, manually using a digital hand held 

thermometer (± 0.2oC; E.T.I Ltd, Worthing, UK) and electronically using an automated data logger 

(HOBO, Onset Computer Corporation, MA, USA). The logger was placed centrally in the tank and 

set to measure both temperature and light at 30 minute intervals for the duration of the experiment. 

Salinity was measured daily with a TMC V2 refractometer (Tropical Marine Centre, Chorleywood, 

UK). Weekly 30% water changes were performed to maintain parameters (Table 1) and additional 

sodium carbonate, sodium hydrogen carbonate and calcium chloride were added to sustain alkalinity 

and calcium levels when required. Day- time light intensity was measured using a biospherical PAR 

sensor- LI-250A (LI- COR Bioscience Ltd, Cambridge, UK) and maintained at 200+/- 50 umol 

photons m-2 s-1 using 4 54 W metal halide lamps (Growth Technology Ltd., Somerset, UK). Water 

pumps were provided to mimic flow current (Eheim 400, Tropical Marine Centre, Chorleywood, UK).  
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Table 1. Chemical breakdown of synthetic salt (D-D The Aquarium Solution Ltd, UK) used to produce 

artificial seawater and water parameters tested weekly, average measurements over length 

of experiment (10 months). 

Parameters H2Ocean pro+ reef salt Measurements 

Temperature 

Salinity 

pH 

Nitrate (NO3
-) 

Nitrite (NO2
-) 

Ammonia (NH4) 

Phosphate (PO3) 

Magnesium 

Calcium 

Alkalinity 

Chloride 

Potassium 

- 

- 

8.3 (8.2-8.4) 

- 

- 

- 

- 

1340 (1330-1380) 

440 (430-460) 

10.5 (10-11) 

19550 (19960-20130) 

410 (380-420) 

26.8 ± 0.5 OC 

35 ± 0.5 ppt 

8.2 ± 0.2 

10 ± 5 mgL-1 

< 0.01 mgL-1 

< 0.01 mgL-1 

< 0.25 mgL-1 

1340 ± 50 mgL-1 

420 ± 40 ppm 

2.7± 0.5 mEq 

- 

- 

 

Prior to their arrival, aquaria parameters were adjusted to closely replicate those at the 

Horniman Museum (temperature 27oC, salinity 35 ppt, light 300 µmol photons m-2 s-1) to minimize 

stress on the corals and reduce the degree of physiological adjustments.  During acclimatization corals 

re- allocate nutrients and energy supplies as a consequence of amending their physiology to new 

environmental conditions. Measurements of larval production during this period would be impeded by 

these re- adjustments hence corals were given two weeks to acclimate to the aquaria before  

experiments began. The light regime was set on a 12: 12 light dark cycle throughout the acclimation 

period and for the first 3 months. Each colony was placed in the tank and rotated daily to reduce any 

tank effect (due to slight differences in light intensity and water flow). Corals were target fed on a diet 

of krill, mysis and brine shrimp (2ml per coral) 3 times per week.  
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2.3 Larval production rates  

 

To assess daily and monthly planulation patterns, every night the six F. fragum colonies were 

isolated in 1L glass jars submerged with only the lid above water level to maintain water temperature; 

lids were removed to allow for gas exchanged overnight. Each morning the jars were inspected for 

planulae which were individually counted and carefully removed from the jars with Pasteur pipettes.  

 

2.4 Larval size measurements 

 

Freshly released larvae were selected randomly and measured for length and width using a 

dissecting microscope and stage- micrometer (10 per jar, subject to numbers released per day) 

Transference from tub to slide combined with exposure to bright illumination from the microscope 

resulted in short- term stress and some larvae recoiled and spun continuously in a circle, making 

measurements inaccurate. Hence only measurements with clear longitudinal view of the aboral and 

oral end were considered for analysis. The length of the larva was measured as the longest distance 

from the oral to aboral end and the width of the larva was measured at the widest part of the larva 

perpendicular to the length. The area of a larva was calculated as the area of an ellipse: 

A = πab  

where a is ½ length and b is ½ width. 

 

2.5 Settlement rates  

 

In this experiment settlement rate was defined as the percentage of larvae that had settled 

within the following pre- determined time intervals: 12h, 24h, 48h, 72h, 96h, 120+. Time 0 was 

defined as the point when larvae were collected and allocated into tubs (immediately during the 
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morning following planulation and hence assessments of settlement should be considered minimum 

times depending on the time of night individual larvae were produced). Slides were pre-treated in the 

aquarium for 2 months prior to the start of the experiment to enable bacterial biofilms and crustose 

coralline algae (CCA) to establish; both of which are known settlement inducers in a multitude of 

coral species (Negri et al., 2001; Tebben et al., 2015). Slides were placed into 5 x 5 cm tubs and ca. 20 

larvae from each treatment group were placed into each tub. Larvae were pooled from all 3 colonies/ 

treatment due to the low numbers being produced, particularly under the lunar light cue. Light 

intensity, temperature and all other variables were kept the same as those in the main aquaria system. 

100% water changes were completed daily until all larvae were settled. In this study larvae were 

considered settled if they could not be dislodged by pipetting a gentle stream of water directly at them 

(Miller and Mundy, 2003). Settled recruits were then transferred to wracks in the main experiment 

aquaria, elevated above the tank floor to reduce post- settlement mortality (through sedimentation, and 

predation or erosion from Turbo and Stomatella snails). 

 

2.6 Larval production under different treatments  

 

Two 75L tanks were set- up adjacent to each other, all 6 colonies were separated equally and 

randomly assigned to the two replicate tanks. The tanks were linked into the main system in order to 

maintain stable conditions throughout the duration of the experiment. For the remaining experiments, 

the filtration system was altered to improve water quality and reduce fluctuations in parameters 

significant to coral health including alkalinity, calcium and nitrate levels. ASW was filtered first 

through an algal tank (containing Chaetomorpha, commonly used in aquariums due to its efficient 

removal of phosphates and nitrates) and then passed through a protein skimmer before returning to the 

main system. Using ASW instead of filtered seawater offers a controlled and standardised supply of 

elements necessary for coral including calcium and magnesium, as corals continue to grow and lay 

down their calcium carbonate skeleton these elements get depleted and may limit coral growth and 

reproductive potential. The only opportunity to replenish these elements is to perform regular water 
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changes which thereby maintained and kept key elements. Nutrient limitation was avoided throughout 

the study by using a Triton system (TRITON GmbH, Dusseldorf, Germany) which ensured water was 

replete of magnesium, potassium, fluorine, boron, calcium, strontium and carbonate. Three solutions 

of TRITON Elementz were supplied to the main system at 200 ml/ hour using a dosing pump. 

Preliminary tests for carbonate hardness determined the volume of solution to raise the alkalinity to 8 

KH degrees, this was then adjusted accordingly to maintain alkalinity throughout. 

Tanks were set to one of two nocturnal light regimes: one tank remained in constant new 

moon (CNM), the other was exposed to an artificially illumination system that simulated daily sunset, 

sunrise and a monthly lunar cycle (Figure 3). The CNM treatment tank was covered with cardboard 

during the 12 hours of darkness to eradicate any potential light pollution, a HOBO sensor confirmed 0 

light irradiance throughout the experiment. Colonies were rotated around the tanks daily to account 

for any discrepancies in light intensity and water flow. Jars were inspected daily for larvae and larval 

counts recorded per colony for 3 consecutive months. Colonies were then swapped between light 

treatments for a further 2 months and then reverted to their original light treatments for a final month 

(Table 2). This was done to reduce bias that could result from the order in which the light treated is 

provided. Larval counts were continually measured throughout all experiments.   

 

 

Figure 3. Nocturnal light treatments, colonies subjected to constant new moon for 12 hours (left) or 

exposed to an artificial lunar cycle (right). Individual colonies were isolated in single jars at night 

for larval collection. 
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Figure 4. Light intensity of LED simulated lunar cycle over one month, measured every 30 minutes 

using HOBO sensor loggers.   

Table 2. Light treatments of F. fragum colonies over the 10-month period, either constant new moon 

(“CNM”), or artificial monthly lunar cycle (“lunar”).  

MONTH COLONY 1, 4, 6 COLONY 2, 3, 5 

MARCH CNM CNM 

APRIL CNM CNM 

MAY CNM CNM 

JUNE CNM CNM 

JULY Lunar CNM 

AUGUST Lunar CNM 

SEPTEMBER Lunar CNM 

OCTOBER CNM Lunar 

NOVEMBER CNM Lunar 

DECEMBER Lunar CNM 
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The aquaria lights used for the duration of the light manipulation experiments differed from 

those used in the previous 3- month experiment. These lights were selected specifically so they could 

be programmed to produce a lunar cycle using an AI MKII Controller (Aquaillumination, Ames, IA). 

Light intensity remained at 250 µmol photons m-1 s-1, however the light spectrum during daylight 

hours was altered (Figure 5). A spectroradiometer was used to measure the light spectrum of each 

lights, U-3000 spectrophotometer fitted with an integrating sphere to minimize the scattering (ø60, 

Hitachi High-Technologies, Berkshire, UK).  

 

Figure 5. Day- time light spectrum of T5 Halide bulbs (top) used during first 3 months, LED lights 

used during nocturnal light manipulation experiments (bottom).  
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  2.7 Metabolic rate 

 

Respiration and photosynthesis measurements of coral colonies were taken using a standard 

respirometer chamber and optode technology (FOXY-R, 1.58mm diameter, Ocean Optics, Dunedin, 

FL, USA). The use of oxygen probes provides a non- invasive and accurate method to measure coral 

metabolism. Preliminary tests were carried out to establish acclimation and incubation times and 

volume of the vessel required for respirometry measurements. Conditions in the respiratory 

mesocosms were set to replicate those in the holding tanks (Temp 27.1oC, salinity 35ppt); it was 

established that the time needed to acclimate to the mesocosms would only need to account for the 

stress induced during transportation.   

Each oxygen electrode was calibrated before any measurements on coral respiration or 

photosynthesis as per manufacturer instructions (Ocean Optics). RO water was saturated with nitrogen 

gas and probes were left to stabilize to 0% O2, i.e. the maximum fluorescence yield, and a tau (τ) 

value was set. In this experiment, tau represents fluorescence lifetime, i.e. the time taken for a 

molecule to remain in an excited state before returning to ground state. A second tau value was set at 

20.9% O2 in air saturated RO water, calibration was conducted at the measurement temperature 

(27.1oC). The oxygen probes were checked once per week throughout the 3 months of metabolic 

measurements, re- calibration was performed when required using the procedure as above.   

Before initiating coral measurements, each microcosm was filled with freshly made artificial 

seawater (made with RO water and H2Ocean pro+ reef salt). Water was heated and maintained at 

27.1oC using interconnecting water jackets attached via silicon tubes to a re- circulating water bath to 

buffer temperature fluctuations. Oxygen concentration (µmol) was measured using an optical oxygen 

electrode connected to a Neofox phase fluorimeter using bifurcated optical fibres and 21-02 splice 

bushing. A Neofox TP thermistor was also used to continuously measure temperature and used for 

real- time temperature compensation of oxygen readings. Neofox optode technology uses an 

encapsulated Ruthenium compound to measure fluorescence (defined as τ) which is converted to 

oxygen values using an algorithm (provided by the manufacturer). Dependence on oxygen quenching 



33 

 

of fluorescence means the optodes do not consume oxygen during measurements and is unaffected by 

flow speed, making them suitable candidates for coral metabolic investigations (Chu et al., 2011). 

According to the manufacturer, drift specifications at 0% oxygen is 0.003%/ hr and at 20% oxygen 

0.0015%/ hr. Replicate light equipment (4- tube T5 lightwave) was used to insure light intensity (250 

µmol photons m-2s-1) and light spectrum was consistent with that in the aquarium. 

Control measurements were taken for 15 minutes prior to coral measurements to confirm that 

the probes remained calibrated and to enable the water to reach experimental temperature. Individual 

colonies were transferred from the captive aquaria to experimental chambers with minimal handling 

time, inverted and placed into separate 500ml microcosms. The microcosms were fitted with lids 

designed to exclude air and eliminate gas exchange whilst accommodating both the oxygen and 

temperature probes. Each chamber was placed over a magnetic stirrer (Fischer Scientific Ltd, 

Loughborough, UK) with a magnetic stir bar at the base to maintain water movement throughout. All 

corals were acclimated for 15 minutes before the start of each experiment. Corals acclimate to new 

conditions via adjustments to their physiology through re-distribution of energy and nutrients (Levy et 

al., 2004). During this period measurements of metabolic processes would represent this re-allocation 

and not reflect true rates of oxygen consumption or production, hence time 0 was defined as the time 

point immediately after the acclimation period. Oxygen concentration (µmol) was automatically 

logged every 10 seconds using Neofox Viewer v2.20 (Ocean Optics, USA) and recorded for 30 

minutes. Immediately following light measurements, the microcosms were covered with opaque 

plastic bags and cardboard and 30 minutes of dark measurements were recorded to calculate enhanced 

post- illumination dark respiration (EPIR).  Corals were immediately transferred back to the main 

aquaria system and each microcosm was rinsed and refilled with fresh ASW in preparation for 

measurements on replica coral samples. Corals were randomly assigned to mesocosms to average out 

any artefacts from bench location.   

Between incubations, resting periods were incorporated (lasting 48 hours) to minimise any 

stress related artefacts resulting from the analysis. Measurements were taken at the same time of day 

for every repeat. Photosynthesis and respiration measurements were normalised to weight using the 
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buoyant weight method (Jokiel et al., 1978), all four corals used were of a similar size and maintained 

under the same aquaria conditions therefore it was assumed that they would have similar 

zooxanthellae densities and genotypes.  

 

Figure 6. Graph illustrating oxygen drift during photosynthesis and EPIR measurements, dotted lines 

indicate start points for measurements of photosynthesis (15 mins after acclimation period) 

and EPIR (corals covered in black bags).  

Oxygen evolution calculations 

Oxygen evolution was calculated using the following equations, where (F) is final measurement and (I) 

is the initial measurement. Time (hours) remained constant for each experiment. End point analysis 

was deemed appropriate as there was very little variability within any single time point and changes 

were linear over the time scale used (see Fig. 6). If high variability was encountered than regression 

analysis using all time measured would have been used and the resulting regression coefficient 

considered the rate of oxygen change.  

𝑁𝑒𝑡 𝑝ℎ𝑜𝑡𝑜𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 𝑟𝑎𝑡𝑒 (𝑃𝑁) =  
( 𝑂𝑥𝑦𝑔𝑒𝑛(𝐹) − 𝑂𝑥𝑦𝑔𝑒𝑛(𝐼) )

𝑇𝑖𝑚𝑒 
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𝐿𝑖𝑔ℎ𝑡 𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑 𝐷𝑎𝑟𝑘 𝑅𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 (𝑅𝐷) =  
( 𝑅𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛(𝐹) − 𝑅𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛(𝐼) )

𝑇𝑖𝑚𝑒 
 

 

𝐺𝑟𝑜𝑠𝑠 𝑃ℎ𝑜𝑡𝑜𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 (𝑃𝐺) =  𝑃𝑁 +  𝑅𝐷 

 

2.7.1 Buoyant weight technique  

 

After determining the changes in oxygen concentration, respiration and photosynthesis rates 

were standardized using the buoyancy weight method (as described in Jokiel et al., 1978). This 

technique follows Archimedes’ principle, which states “the weight of an object in air is equal to the 

object’s weight in a liquid medium plus the weight of the liquid displaced by the object”. To obtain 

values for volume and weight, each coral colony was independently placed on a small metal platform 

submerged in 2L of ASW maintained at 27oC. The platform was suspended from the underside of the 

scales and housed in a plastic storage container to restrict air flow and enable the scales to stabilize 

before being auto- zeroed. The density of seawater is dependent on salinity and temperature; both 

were accounted for to determine to density of ASW. Settlement plugs were also weighed individually 

and accounted for in the final calculations. Water displacement was used to determine the volume 

(VA) of the aragonite skeleton. Each coral was gently dried with a paper towel and submerged in 

500mL of ASW in a 1L container after which the displaced water was transferred and measured in a 

graduated cylinder and expressed in ml. The total dry weight (WD) was calculated using measured 

buoyant weight (WW), volume of coral skeleton and density of ASW (DSW), assuming VA ∙ 𝐷𝑆𝑊 is 

equal to the weight of displaced seawater:  

𝑊𝑒𝑖𝑔ℎ𝑡𝐷 =  𝑊𝑒𝑖𝑔ℎ𝑡𝑊 + ( 𝑉𝑜𝑙𝑢𝑚𝑒𝐴 ∙ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑆𝑊) 

Several assumptions are attached to this method of measuring buoyant weight. The first is that 

it assumes the density of tissue and mucus is equal to the density of seawater. Jokiel and Morrissey 

(1986) removed the mucus and tissue of Pocillopora damicornis and concluded near neutral buoyancy 
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in seawater. In addition, it assumes the liquid filled spaces within the calcareous skeleton are the same 

density as seawater. It also depends on the skeletal structure of the coral being completely aragonite; 

aragonite has a density three times that of seawater and in P. damicornis, at least, accounts for 99.9% 

of the skeletal material (Jokiel et al., 1986). The percentage of aragonite making up the skeleton of 

Favia fragum was not calculated but assumed to be close to that of P. damicornis. Lastly, it doesn’t 

account for the weight of burrowing and cryptic fauna that may affect the buoyant weight of the coral. 

F. fragum however, is a massive colonial coral and its morphology offers little to no habitable 

crevices for macro- organisms. Also, in other studies macro- organisms eg in Montipora, accounted 

for less than 0.16% of the buoyant weight, an insignificant value (Jokiel et al., 1978).  

 

2.8 Larval development using Light Sheet Fluorescence Microscopy (LSFM) 

 

Live imaging of scleractinian corals has been achieved at the University of Essex through 

modifications of light- sheet fluorescence microscopy (LSFM). The design aimed to diminish 

phototoxic impacts opening up the opportunity for long term repeated measures based on the 

following (Laissue et al., unpubl.).  

1. The organism remains in a consistent physiological state ensuring fluorescence is not 

influenced during imaging.  

2. Three spatial dimensions is acquired for full structural information, proximal taxonomic 

identification of scleractinian corals has been based on their calcareous exoskeleton for 

years and continues to provide information on their function and values (Gutiérrez-

Heredia et al., 2015).   

3. The skeleton, tissue and zooxanthellae can be optically separated and most importantly 

the organism is completely unharmed.  

Preliminary measurements were performed prior to experimental testing and adjustments 

were made (e.g. light intensity) accordingly to ensure corals were not physiologically stressed during 
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imaging. Visible signs of coral stress can be observed based on their reaction upon initial exposure to 

the light sheet. High light illumination used in laser- scanning confocal microscopy (LSCM) 

commonly induces tentacular retraction to protect from phototoxic effects (personal observation). 

Upon exposure of the light sheet, multiple corals tested maintained tentacle expansion, presenting no 

visible response to illumination levels. Favia fragum typically retract their tentacles during daylight 

hours however, reduced light levels during imaging triggered temporary expansion, the only retraction 

witnessed occurred during initial imaging and was attributed to transportation stress.  

Images were obtained in 5D (x, y, z- axes, time and wavelength) as the specimen was 

mechanically manoeuvred through the light sheet; movement in the x- axis provided focussed images 

across the width of the sample. The y- axis positioned the sample in the focal plane of the detecting 

objective whilst the z-axis enabled optical sectioning that were stacked together to form a 3D image. 

Image acquisition was repeated under emission filters consistent with the emitted wavelengths of GFP 

and chl-a and used to identify and differentiate coral host tissue from symbionts.  

Image acquisition 

A single beam (488nm wavelength) was emitted via a 20mW continuous- wave solid state 

frequency- converted diode laser (FCD488-020, JDS Uniphase Corporation, CA, USA) passed 

through a beam expander and reflected onto a rotating mirror (AN8248NSB, Panasonic Corporation, 

Osaka, Japan). The mirror created a uniform wavefront, the brushless motor was powered by a 375W 

linear DC variable voltage supply. During acquisition, between 6 to 10V were used resulting in 0.7ms 

to 1.1ms pulses. The beam was then evenly split via a beam splitter combined with a prism and each 

beam was passed through identical cylindrical lenses and recombined at right angles. The light sheet 

generated optical sections of 28 µm thickness. Vessels were customised to size to accommodate live 

imaging within the light sheet set-up, built with optical plastic and made water-tight with silicone gel. 

The vessel was filled with ASW and the slide placed on a 45% angle to reduce shadowing and 

maximise 3D information. Slides were individually stepped through the light sheet using a z-motor, 

the z-axis was limited by the 25mm travel of the motorized translation stage (Thorlabs Inc., Newton, 

New Jersey, USA).  
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Figure 7. Schematic of light sheet set- up: A laser beam (488 nm) is passed through a beam expander 

(BE) and reflected on to a rotating mirror (RM). A beam splitter (BS) combined with a prism 

(P) divided the beam into 2, each reflected onto a mirror (M) and passed through a 

cylindrical lens (CL1/ CL2) and recombined at a right angle to form a light sheet (LS). The 

sample (S) was manoeuvred on a motorised z stage through the LS.    

 

Images were acquired using a SZX16 stereomicroscope (Olympus KeyMed, Southend-on-

Sea, UK) with a 1x Plan Apochromatic objective and a Luca-R DL-604M-#VP electron multiplication 

(EM)- CCD camera (Andor Technology, Belfast, Northern Ireland). This quantitative digital camera 

was able to detect single protons and is ideal for high- speed, low-light fluorescence microscopy 

(Huisken and Stainier, 2009). The camera mount was modified to allow emission filters to be inserted. 

Chlorophyll- a (Chl-a) emits a primary peak at ~625nm and secondary peak at ~730nm (Mazel, 

1997), FPs exhibit typical emission peaks of 482- 609 nm (D’Angelo et al., 2008). GFPs excitation 

range partially overlaps with chlorophyll-a enabling simultaneous imaging of GFP and Chl-a within a 
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single excitation source (Treibitz et al., 2015).  Chl-a used a chromatic reflector at 665 nm and a long 

pass emission filter at 664 nm, GFP used a reflector at 505 nm and a single band emission filter at 

535/40 nm (Chroma Technology Corp., VT, USA). Exposure time (600 ms) and z-step size (20 µm) 

settings were kept identical for all acquired datasets; magnification was adjusted according to the 

sample size (typically x6/ x8). The top and bottom boundaries of the stage were set for individual 

image acquisition; focus was adjusted to achieve maximum 3D information.  

Slides were kept in ASW in an incubator at 27oC prior to imaging, during acquisition slides 

were exposed to room temperature for no longer than 5-10 minutes before being placed back into the 

temperature controlled aquaria. Samples were given 24 hours to recover from any stress incurred 

during transportation before being imaged the following day.  

 

2.9 Data analysis  

 

All statistical analyses were conducted using R (R Core Development Team, 2013). Prior to 

analysis, data was tested for normality and equal variance using Shapiro- Wilk’s test for normality 

and Levene’s test for equal variance and visually via histograms and qq- plots. No data was 

transformed instead non- parametric versions of analytical tests were preferred. Data that violated 

normality were analysed primarily via general linear models, using date and light conditions as fixed 

factors. Estimated means were compared using post-hoc contrasts with Bonferroni adjustment at 95% 

confidence levels. 

 To determine differences in larval counts between and within light treatment groups and 

phases of the moon (FM, FQ, NM, TQ), general linear models (GLM) with quasi- poisson distribution 

were used. Due to several days of ‘zero’ observations, larval counts did not meet the assumptions of 

parametric statistics and instead data was often over- dispersed. To determine the feasibility of quasi- 

models and meet the assumptions, data was tested for over- dispersion prior to GLM analysis, 

checking the variance was proportional to the mean (an assumption of quasi- distribution). When data 
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satisfied the assumptions, quasi models were preferred and predicted values were adjusted to account 

for over- dispersion. Larval count data was normalised to coral biomass, corals were weighed monthly 

using buoyant weight method. When significance was encountered (p< 0.05) multi- comparison post- 

hoc analysis was performed to distinguish which months/ groups were responsible for the differences. 

An independent t- test was used to determine whether corals under lunar/ non- lunar light produced 

more larvae overall.    

Circular statistics was preferred over ANOVA (or non- parametric equivalent Kruskal- Wallis) 

for analysis of circadian rhythmicity because the ANOVA only evaluates whether means are 

significantly different. Circular statistics are appropriate when data have distributions with no true 0 

and where any designation of high/ low values is purely arbitrary (eg, hours of the day). Data were 

normalised to the total number of larvae released by the colony for the entire lunar cycle. Lunar day 0 

corresponded to the start day of each month. Moore’s modification of Rayleigh’s test was used to test 

that the data was distributed uniformly during the time periods, i.e. lunar days and months. Circular 

statistic tests were used to calculate the temporal concentration of larvae released, i.e. whether the 

number of larvae released per day were concentrated (r is close to 1) or dispersed (r is close to 0) 

throughout the lunar cycle.  

To distinguish differences between the size of larvae produced between treatments and within 

lunar phases and differences in time periods of settlement rates, one -way ANOVA was performed (or 

non- parametric Welch t- test), followed by post- hoc analysis when appropriate.  

Differences in photosynthetic rates were determined using univariate one- way analysis of 

variance (ANOVA; F; α = 0.05) or non- parametric equivalent. Tukey’s honest significant difference 

(HSD) test (t; α = 0.05) was used for post- hoc comparison of means. To assess correlation between 

larval production and metabolic rate, Spearman’s rank correlation was performed. Images of 

metamorphic development were processed using Image J.  
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3.0 RESULTS  

3.1 Larval production patterns of Favia fragum across 10 lunar cycles in the presence and absence 

of lunar light  

3.1.1 Comparison of larval output between two light treatments  

 

 Maintaining Favia fragum in a constant new moon (CNM) phase for 4 months illustrated a 

decline in larval output by 93%. The average number of larvae produced reduced from 172 ± 37 to 12 

± 5 larvae colony-1 month-1 (mean ± SE), larval output ceased mid- way through the last month and no 

larvae were released following cessation for the remaining 14 days.  

 All colonies placed under lunar light began to release larvae 4 days post- exposure. After the 

first month total larval output increased by 9.3- fold, mean larval output across all 3 colonies 

increased from 19 ± 9 to 177 ± 45 larvae colony-1 month-1. The following two months larval output 

fluctuated falling by 51% then rising by 66% in the third month.  Similarly, colonies that remained in 

CNM increased larval output however, the number of larvae produced was significantly higher 

(increasing by 64-fold). Larval output remained high for the following two months, showing a slight 

increase with each month (26% and 10% respectively). The first 4 months were excluded from 

analysis due to problems encountered with tank acclimation post-transportation and spikes in nutrient 

concentrations with the tank due to equipment failure.  Statistical analysis confirmed colonies under 

CNM released significantly more larvae than colonies subjected to lunar (t (20) = 3.121, p<0.05). On 

average, colonies under new moon released 2.7 x more larvae than those under artificial lunar cycles 

(469 ± 91 compared to 172 ± 26 larvae colony-1 month-1 respectively), contradicting predicted 

outcomes.  
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Figure 8. Monthly larval output across 10- month experimental period compared between light 

treatments: constant new moon (grey bars) and lunar (white bars), dotted lines indicate 

where colonies were switched between tanks and exposed to opposite light treatments. Two 

groups of equal replicates were subjected to different treatment patterns, group 1 (top) 

exposed to longer lunar periods, group 2 (bottom) longer period of new moon. Larval 

counts were normalised to coral colony biomass (n= 3), bars represent group (mean ± SE 

presented)   
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3.1.2 Comparisons of larval output within the treatment groups  

 

Group 1 

Larval production was highly variable across the months (GLM with quasi- poisson errors, df 

= 9, n = 3, f = 20.145, p < 0.05). Significance in variability was explained by the transition between 

light treatments, post hoc analysis between repeated monthly measurements indicated larval output in 

November was significantly higher than the other months (see Table 4), averaging 33 ± 5 larvae 

colony-1 day-1 (mean ± SE). Total larval release increased by 46- fold from October to November, one 

month after colonies were switched from lunar to CNM. A lag effect on larval release was noted 

following the removal of lunar light (Sep- Oct) however, larval output was still significantly higher in 

October (increased by 22%) than September. Similarly, the second switch also illustrated significant 

differences however, larval output dropped by 74% when colonies were reverted from CNM to lunar. 

Unlike the transition from lunar to CNM in which increased rates of larval output were delayed for 

20- 30 days, declines in the rates of larval release occurred after immediate exposure to lunar. Despite 

the decline, average daily release remained high (10 ± 4 larvae colony-1 day-1). No significant 

differences occurred between the 3 months under lunar light despite fluctuations.  

 

 

 

 

 

 

  



44 

 

Table 3. Summary of GLM with quasi-poisson error in Group 1, fixed factors included Month and 

Coral Colony, *represents statistical difference at 5%.    

 

 

 

 

 

 

 

Table 4. Post hoc comparisons between Monthly lunar cycles within Group 1 using Tukey HSD test, 

*represents statistical difference at 5% in Tukey test.  

 

 

 

 

Treatment Variable Estimate St. Error T P 

CNM Intercept 1.0415 0.3748 2.779 0.00559 * 

 Mar 0.6992 0.4612 1.516 0.12992 

 May -2.0448 1.1075 -1.846 0.06521 

 Jun -1.5159 0.8834 -1.716 0.08656 

Lunar Jul 0.7138 0.4551 1.568 0.11715 

 Aug 0.5302 0.5276 1.005 0.31516 

 Sep 0.5611 0.4727 1.187 0.23561 

CNM Oct 0.9139 0.4562 2.003 0.04546 * 

 Nov 2.4624 0.3905 6.306 4.67e-10 * 

Lunar Dec 1.3055 0.4315 3.025 0.00256 * 

 Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Mean 5.701 2.833 0.366 0.622 5.784 4.814 4.966 7.066 33.244 10.453 

SE (±) 1.627 1.432 0.161 0.193 1.161 1.387 0.937 1.316 4.738 3.847 

Mar - - - - - - - - - - 

Apr 0.860 - - - - - - - - - 

May 0.205 0.659 - - - - - - - - 

Jun 0.173 0.747 1.000 - - - - - - - 

Jul 1.000 0.834 0.197 0.163 - - - - - - 

Aug 1.000 0989 0.325 0.329 1.000 - - - - - 

Sep 1.000 0.967 0.276 0.258 1.000 1.000 - - - - 

Oct 0.999 0.546 0.126 0.889 0.999 0.997 0.995 - - - 

Nov <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* - - 

Dec 0.716 0.060 0.041* 0.018* 0.715 0.685 0.494 0.971 <0.001* - 
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Group 2 

 Analysis confirmed significant differences between the months in group 2 (GLM with quasi- 

poisson errors, df = 9, n = 3, f = 42.701, p < 0.05). Larval output patterns were comparable to those of 

group 1, pairwise post- hoc testing indicated the variance was attributed to the months following a 

switch in light treatment. The greatest decrease in larval production occurred in November, larval 

output reduced by 84%, declines coincided with a switch from CNM to lunar and resulted in the 

lowest daily average rate (2 ± 1 larvae colony-1 day-1). However, synonymous with group 2 patterns, a 

lag in larval output decline of 20- 30 days occurred, the month immediately after the switch indicated 

insignificant reductions (decrease by 27% in October). The second switch illustrated a significant 

incline in larval output, larval release rate was 10.6 x higher in December compared to November 

after colonies were switched from lunar to CNM (averaging 21 ± 6 larvae colony-1 day-1).   

 Differences between the months of CNM were also significant, June to July represented the 

largest increase in larval output, production was 25- fold higher in July than June despite remaining 

under synonymous conditions. Output continued to steadily increase after July, a reversal of earlier 

planuation patterns in which larval production plunged in April, output declined by 96% one month 

after treatment under CNM. Therefore, corals exhibit a high degree in variability and adjust their 

reproductive output dependent on the treatment, releasing high numbers under CNM and reducing 

production under lunar.   
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Table 5. Summary of GLM with quasi-poisson error in Group 2, fixed factors included Month and 

Coral Colony, *represents statistical difference at 5%.    

 

 

 

 

 

 

 

Table 6. Post hoc comparisons using Tukey HSD test between months within Group 2, *represents 

statistical difference at 5% in Tukey test.  

 

 Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Mean 6.183 0.222 0.544 0.177 9.817 21.351 14.100 36.959 1.666 21.240 

SE (±) 2.117 0.100 0.287 0.064 1.395 5.647 2.369 4.267 0.615 5.495 

Mar - - - - - - - - - - 

Apr 0.806 - - - - - - - - - 

May 0.852 1.000 - - - - - - - - 

Jun 0.799 1.000 1.000 - - - - - - - 

Jul 0.990 0.156 0.193 0.150 - - - - - - 

Aug <0.01* <0.01* <0.01* <0.01* 0.119 - - - - - 

Sep 0.435 <0.01* <0.01* <0.01* 0.967 0.743 - - - - 

Oct 0.794 0.03* 0.04* 0.03* 0.999 0.529 1.000 - - - 

Nov 0.959 1.000 1.000 1.000 0.366 <0.01* 0.015* 0.096 - - 

Dec <0.01* <0.01* <0.01* <0.01* 0.058 1.000 0.644 0.412 <0.01* - 

 

 

 

 

Treatment Variable  Estimate St. Error T P 

CNM Intercept -1.5041 1.4395 -1.045 0.29638 

 Mar 3.3260 1.4660 2.269 0.02354 * 

 May 0.8961 1.7082 0.525 0.60001 

 Jun -0.2231 2.1592 -0.103 0.91771 

CNM Jul 3.7882 1.4551 2.603 0.00940 * 

 Aug 4.5652 1.4519 3.144 0.00172 * 

 Sep 4.1503 1.4508 2.861 0.00433 * 

Lunar Oct 4.0303 1.4547 2.771 0.00572 * 

 Nov 2.0149 1.5324 1.315 0.18893 

CNM Dec 4.5600 1.4485 3.148 0.00170 * 
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3.1.3 Larval output between colonies within treatment groups  

 

Group 1 

Larval output was highly variable across the colonies (GLM with quasi- poisson errors, df = 

2, n = 3, f = 5.111, p < 0.05) despite being of similar age and size. Across the entire 10-month period, 

C1’s contribution to total larval output was significantly higher than the other two, accounting for 

46% of all larvae released with an average monthly release of 293 ± 23 larvae month-1. The other 

colonies showed similar production rates.  

Group 2 

Similarly, in group 2 there was high variability between the colonies (GLM with quasi- 

poisson errors, df = 2, n = 3, f = 55.553, p < 0.05). 58% of the total number of larvae released over 10 

months was attained from C5, with a mean monthly total of 387 ± 21 larvae month-1. No significant 

differences were found between C2 and C3.    
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Figure 9. Larval output between colonies within treatment groups: Group 1 (top) and Group 2 

(bottom). Dotted lines indicate points colonies were switched between tanks. Blue shaded 

areas indicate periods under lunar illumination, white areas are periods under CNM, 

(means ± SE are presented)  
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3.2 Larval output between lunar phases 

3.2.1 Distribution of larval release between treatments    

 

It was hypothesized that corals exposed to lunar cues would have peaked production around a 

specific lunar phase, corals in a CNM phase would lose synchronicity and larval release would be 

uniform across the month.  

Coral subjected to lunar treatment consistently released larvae in clustered periods 

demonstrating peaked planulation patterns (Moore- Rayleigh, p < 0.05), supported by r values close to 

1 in most months (see Table 7). Peaked planulation typically lasted between 3 to 6 days and 

accounted for ca. 50% of the total larval release over the whole month. In between planulation peaks 

larvae were produced at low rates, larvae were released 59 ± 7% of days per month. Time periods 

between peaked planulation (taken from the end day of peaked larval release to the start of the 

preceding peak) varied from month to month (ranging from 9- 33 days).  

Corals under CNM produced larvae on 88 ± 7% of days throughout the month, indicating 

constant production. However, periods of peaked planulation were also present (p < 0.05) in most 

months. Synonymous with lunar corals, larvae released over peaked times contributed to ca. 50% of 

total larvae released and occurred over 3 to 6 days. Time periods between peaked planulation events 

were also highly variable, ranging from 14- 42 days. Although distributions of daily larval release 

across the month were insufficient to meet the assumptions of uniformity, mean resultant length (r) 

suggested releases rates were dispersed. Unlike lunar corals that had a clearly defined period of 

peaked larval release each month, daily larval release in CNM corals was highly variable with no 

fixed phase of peaked production as evidence by r values close to 0 (see Table 8).  

When switched from CNM to lunar, the % of days larvae were released dropped (from 80% 

to 51%), where as those switched from lunar to CNM increased the amount of days they released 

larvae (from 37% to 72%). Corals switched to lunar treatment immediately returned to peaked 

planulation patterns, the 5-day period of peaked release accounted for 83% of total larval output. 
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Corals switched to CNM retained peaked planulation patterns, associated with lunar synchronicity, 

but daily larval release became more variable with time as demonstrated by reduced r values (see 

Table 8). In both cases when corals were switched between treatments, results suggest lunar light has 

an immediate impact on planulation patterns, transforming dispersed larval production to peaked 

larval production over a few days. There appears to be a lag effect of CNM on larval release as corals 

retain peaked production patterns even after 2 months of no lunar cues.   

Table 7. Moore- Rayleigh test for uniformity of planulation distribution patterns within a lunar month 

for corals under lunar stimulation, r = mean resultant length (measure of temporal 

concentration of larvae released), z = test for circular uniformity, p = degree of significance 

against uniform distribution within one lunar cycle (significance level 0.05), bold 

highlighted= significant values, *corals swapped between treatments   

 

Month Peak day Peak duration 
Lunar Phase 

(+/- days) 
 

Z P r 

       

July 7 5 – 11 FQ - 1 0.271 0.016 0.287 

August 25 24 – 27 FM - 4 0.617 <0.001 0.620 

September 14 12 – 15 NM + 1 0.156 0.114 0.195 

October*  19 18 – 22 FQ - 1 0.521 <0.001 0.552 

November 19 17 – 20 FQ 0.540 <0.001 0.565 

December* 7 -  FM - 4 0.579 <0.001 0.600 
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Table 8. Moore- Rayleigh test for uniformity of planulation distribution patterns within a lunar month 

for corals under CNM, r = mean resultant length (measure of temporal concentration of 

larvae released), z = test for circular uniformity, p = degree of significance against uniform 

distribution within one lunar cycle (significance level 0.05), bold highlighted= significant 

values, *corals swapped between treatments   

 

Month Peak day Peak duration 
Lunar Phase 

(+/- days) 
 

Z P r 

       

July 26 23 -28 FQ + 2 0.204 0.055 0.217 

August 30 25 – 31 FM + 1 0.405 <0.001 0.409 

September 16 14 – 18 NM + 1 0.044 0.368 0.108 

October*  30 28 – 30 FM + 3 0.252 0.023 0.252 

November 4 1 – 6 TQ + 1 0.231 0.037 0.320 

December* 24 23 – 25 FM - 1 0.364 0.002 0.401 
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Figure 10. Timeline representing periods of maximum planulation across one month in corals under 

CNM (black) or lunar light (grey), lines represent the days of peak larval release, gaps 

indicate time periods between peak planulation events.  
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Figure 11. Percentage of days’ corals released larvae per month in either CNM (grey) or lunar light 

(white), means ± SE presented, n = 3.   

 

3.2.2 Synchronisation with lunar phases 

 

Synchrony in larval release among planulating colonies under lunar influence was not 

associated with any lunar phase, the timing of peaked planulation events varied between the months 

and no significant relationship was found between maximal larval output and lunar phase. Similarly, 

there no significant relationship between larval production and lunar phases for corals subjected to the 

CNM treatment.  

 Despite no significant differences (largely due to variability), in both treatments average 

larval release was higher at full moon (CNM: 201 ± 117, Lunar: 89 ± 65 colony-1 day-1) than new 

moon (CNM: 123 ± 44, Lunar: 66 ± 44 colony-1 day-1).   
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Figure 12a. Patterns of planulation periodicity in F. fragum under CNM (black) and lunar (grey), showing patterns of larvae released in each treatment group (n 

= 3) observed over 3 lunar cycles ( from left to right: Jul, Aug, Sep) where numbers around the circumference represent lunar days (July full moon= 

day 2 + 29.53 days thereafter), small circles on outskirts of circumference represent phases of moon (Clockwise from white filled circle: Full Moon, 

Third Quarter, New Moon, First Quarter), inner circles represent the scale as indicated by scale bars for each month & treatment.  
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Figure 12b. Patterns of planulation periodicity in F. fragum under CNM (black) and lunar (grey) (n = 3), showing pattern of larvae released in each treatment 

group observed over 3 lunar cycles ( from left to right: Octs, Nov, Decs, s = corals switched between treatments) where numbers around the 

circumference represent lunar days (July full moon= day 2 + 29.53 days thereafter), small circles on outskirts of circumference represent phases of 

moon (Clockwise from white filled circle: Full Moon, Third Quarter, New Moon, First Quarter), inner circles represent the scale as indicated by scale 

bars for each month & treatment.  
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3.3 Variations in larval sizes  

3.3.1 Larval size differences between and within treatment groups    

 

In addition to significant differences in larval output between the two treatment groups, 

significant differences occurred between the average size of larvae produced under different 

treatments (Welsh t- test:  t (1250) = 26.895, p < 0.001). Larval sizes averaged across 6 lunar cycles 

were significantly larger (ca. 32%) in corals subjected to lunar light compared to CNM, (CNM: 0.67 ± 

0.03 mm (mean ± SE), n = 586, Lunar: 0.89 ± 0.01 mm, n = 537 respectively).  

Despite some variation in larval size between daily planulation events, mean larval size did 

not differ across the months that corals were subjected to CNM nor did they differ over time when 

corals were subjected to lunar treatment. However, the range in sizes was much more apparent in 

CNM corals (see Figure 13: ranging from 0.1 to 0.99 mm). Changes in mean larval size were 

immediately evident when corals were switched from CNM to lunar. Average size measurements 

increased by 2-folds in the first month (from 0.46 ± 0.03 to 0.86 ± 0.03 mm) and 3-folds in the second 

month. Similarly, corals transferred from lunar to CNM exhibited a decrease in mean larval sizes 

(from 0.98 ± 0.01 to 0.65 ± 0.02 mm).  
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Figure 13. Distribution of larval sizes within and between corals under CNM (white) or lunar (grey), 

dotted lines indicate where colonies were swapped between treatments.  

 

3.3.2 Size variance between lunar phases  

 

No significant differences in larval size were found between phases, but mean larval size was 

lowest at full moon and was 40% higher at new moon (0.72 ± 0.01 and 1.01 ± 0.02 respectively). 

Similarly, mean larval size of CNM corals did not significantly differ between the phases.  
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Figure 14. Size distribution of larvae produced at different phases of the moon (+/-3 days) between 

larvae produced by corals under CNM (top- white) and lunar (bottom- grey).  

 

3.4 Larval settlement between treatments  

3.4.1 Settlement under different light treatments  

 

Analysis indicated no significant differences when comparing larval settlement between the 

two treatments due to the high variability in CNM corals however, the percentage settled within the 

first 12 hours is almost double in lunar corals when compared to CNM corals. Between the time 

periods settlement of larvae released under lunar light was significantly higher within 24 hours of 

release (Kruskal- Wallis: df = 6, p < 0.05), 60 ± 7% (mean ± SE) within 12 hours, 30 ± 4% within 24 

hours. In comparison, the time periods taken for larvae produced under CNM to settle was much more 

variable, although a significant proportion also settled within the first 24 hours of release (df = 6, p < 

0.05), 33 ± 4% within 12h, 38 ± 4% within 24h respectively.  
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Figure 15. Percentage settlement over 6+ days between larvae released via corals under lunar 

(white) or CNM (grey) conditions, means ± SE presented, n = 20.  

 

3.4.2 The effects of larval size on rates of settlement  

 

Significant differences were found when comparing larval settlement between small (>0.6mm) 

and large (<0.6mm) larvae (Kruskal-Wallis: df = 6, p < 0.05). ca. 93% of large larvae settled within 

12 to 24 hours of release, whereas small larvae had extended planktonic periods, typically over 6+ 

days. Only 14 ± 3% of small larvae had settled after 12 hours of release and 64 ± 10% of larvae 

remained unsettled 6 days post- release, some small larvae remained unsettled for > 30 days.  
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Figure 16. Percentage of larvae settled over 6+ days between two different sizes large (grey, >0.6 

mm) and small (white, <0.6 mm), means ± SE presented.   

 

3.5 Metabolic rate between treatments  

3.5.1 Patterns of metabolic rate under different treatments  

 

 Previous results indicated substantial differences in larval numbers released between corals 

under alternate nocturnal light regimes, therefore comparative analysis was performed to identify 

differences in metabolic rate between the two treatment groups. Results from an independent t- test 

identified significant differences between the metabolic rate of corals under lunar stimulation and 

those under CNM (t (168) = 3.326, p < 0.05).  
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Metabolic rate showed a steady sequential increase in corals (Figure 17) under CNM 

exhibiting a 2-fold average increase from July to September (0.057 ± 0.01 to 0.11 ± 0.01 mg O2 g-1 h-1, 

mean ± SE), larval output also increased by 1.4% (July: 304 ± 114, September: 424 ± 215 larvae 

colony-1 month-1). The metabolic rate of lunar exposed corals fluctuated between the months, 

decreasing from July to August before inclining to reach their highest average rates in the final month 

(0.08 ± 0.01 mg O2 g-1 h-1). Larval counts also fluctuated, declining in August and with only a slight 

increase in September (see Figure 8). Significant changes were identified between months in corals 

under lunar light (Kruskal- Wallis, df = 2, p < 0.05), but post-hoc pairwise comparisons suggested the 

significance lied only between August and September (Dunn’s test, p < 0.05). Differences also 

occurred in corals in CNM treatment (ANOVA, df = 2, f = 6.824, p < 0.05), further analysis revealed 

significance was only between September and July (Tukey’s test, p < 0.05).  

 

Figure 17. Comparisons between the metabolic rate of corals under lunar simulation (black circles) 

with corals under constant new moon (white circles) over a 3- month period, means ± SE 

presented, n = 2. 
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3.5.2 Correlation between larval production and metabolic rate 

 

To assess whether increases in metabolic rate were associated with increases in larval production, 

rank correlation tests were performed. Results concluded opposite correlative patterns between the 

two treatment groups. A positive correlation with metabolism (rs = 0.399, df = 82, p < 0.05) occurred 

in corals under CNM however, a negative correlation was identified in corals under lunar simulation 

(rs = -0.252, df = 82, p < 0.05).  

 

 

Figure 18. Correlation of average daily larval counts against metabolic rates for each treatment 

group, lunar (black circles, dotted line) and CNM (white squares, solid line) over 3 months. 

.     

Both groups had similar metabolic rates in July despite CNM corals releasing almost double 

the number of larvae than lunar corals (304 ± 114 to 177 ± 45 larvae colony-1 month-1), suggesting 

other factors may have interfered with metabolism. A threshold may exist on the number of larvae 
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needed to be produced before energy supplies are depleted enough to cause a noticeable effect on 

metabolism, as evidence by an increase in metabolic rate in synchronicity with further increases in 

larval output.      

 

3.6 Metamorphic and post- settlement development in Favia fragum  

3.6.1 Using LSFM to develop a timeline of metamorphic stages 

 

Upon deciding on their final settlement site, coral larvae invert themselves to a position where 

their aboral axis is in full contact with the substrate and the oral axis extended towards the water 

column in a typical ‘bowling pin’ shape (Figure 19 1hps). This positioning prepares larvae for the 

onset of extensive tissue reshuffling and the formation of the primary polyp.  

The first initial days of metamorphism appear to indicate the largest physical changes. Within 

the first day of settlement six primary mesenteries (vertical partitions) become visible (Figure 19 

1dps), the mesenteries are the primary gastrodermal structures comprising the gastrodermis and 

mesoglea and are responsible for the aptly termed “pumpkin stage” as described by Hirose et al 

(2008). Secondary mesenteries form between each individual primary mesentery (Figure 19 2dps) 

subsequent to the organisation of gastrodermal cells. Although present from the start, the oral cavity 

increases in circumference and becomes more apparent throughout post- settlement. The formation of 

tentacular bumps at the top of each mesentery become detectable within 3 days of metamorphism 

(Figure 19 3dps), these form a circle surrounding the oral cavity and continue to develop until full 

tentacular extension is visible 6/7days post- settlement (Figure 19 7dps). Zooxanthellae are visible in 

every stage of the metamorphic process due to maternal infection pre- larval release and potential 

acquisition during the planktonic period (Hagedorn et al., 2015). Distribution of zooxanthellae 

appears even throughout the mesenteries and around the oral cavity (Figure 19 1-3dps) and is 

concentrated within the tentacles as they develop (Figure 19 6-7dps).  
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Larvae began to secrete a calcium carbonate exoskeleton within the first few days of 

settlement (Figure 19 1dps, 2dps). The exoskeleton is often termed the corallite consists of four 

fundamental components: basal plate, epitheca, septa and dissepiments (Todd, 2008). The septa grow 

upwards from the basal plate in multiples of six and are identifiable as the blade- like vertical panels 

that separate the mesenteries (Figure 19 1dps). 
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Figure 19. Transition from larva to primary polyp through metamorphic development stages in Favia 

fragum, from 1 – 7 days post- settlement (dps), imaged using LSFM. GFP (green) and 

zooxanthellae (red) distribution. Scale bar 0.25mm.  

 

 

 

 

 

 

 

 

 

Figure 20. Average height and width measurements during 7 days of metamorphic development, 

Width measured across base of polyp, height measured from base to top of mesentery. 
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Figure 21. Both Isolated settlement (A) v aggregated settlement (B) behaviour, new recruits settled in 

close proximity to conspecifics (C) and in some cases led to allogeneic fusion to form a 

new novel entity (D). Primary polyps were dividing within 3 months of settlement (E), 

observed visually with the development of two oral cavities (F). All images taken using 

LSFM, Scale: 0.25mm 
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 Figure 22. Newly settled polyp pre- (A) and post- (B) subjection to high nitrates early on in their 

development causing a rapid increase in internal Symbiodinium density, and temporary 

concentration of GFP abundance around the oral cavity during the stress period. Isolated 

primary polyp surrounded by algal mat within a days of settlement. Scale:0.25 mm.  

 

Fluorescent patterning  

 During the early stages through metamorphosis fluorescence was uniform with equal 

distribution of GFP’s across the polyp. Colony edges where the calcium carbonate skeleton is 

continuously laid down contained high densities of FPs as well as the tentacle tips and around the oral 

disk which upon retraction are suggested to form a “sun-screening polyp plug”. Further development 

and asexual division resulted in complementery fluorescences with concentrated patterns of GFP’s 

around specific anatomical features including the oral cavity and between the mesenteries (Figure 21 

E and F).  

Behavioural settlement patterns  

 Larvae often aggregated together in close proximity to conspecifics (Figure 21 B), isolated 

settlement was rare. Larvae were also observed settling in direct contact to others and in some cases 

led to fusion to form a single entity ( Figure 21 C and D).  

 Over a 6 month period < 1% of settled larvae survived and began to divide to form a colony 

of interconnecting polyps, irrespective of size or treatment. Most settled recruits died within 14 days 

of settling as a result of overgrowth from surround algae (Figure 22 C). A 7 day period of  nitrate 

contamination (ca. 80 ppm) led to visible colouration darkening indicating rapid increases in internal 

zooxanthellae densities (Figure 22 A and B) followed by mass mortality. 

C 
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4.0 DISCUSSION  

4.1 Larval output in Favia fragum with and without lunar cues  

 

The inability to detect lunar cues is suggested to cause serious disruption to coral reproductive 

patterns (Kaniewska et al., 2015). Larval output in Favia fragum under CNM (absent of lunar cues) 

was significantly higher than production in the presence of lunar cues, contradicting the predicted 

reduction in larval output driven by the loss of lunar stimulus (cue). However, larvae were released on 

an almost daily occurrence over 3 monthly reproductive cycles under CNM indicated complete loss of 

synchronisation to lunar periodicity. Differences in larval output between the two treatments support 

the strategies of bet-hedging; when the environment in which offspring are released cannot be 

anticipated within-clutch variation increases. In this study, corals increased the number of days larvae 

were released as a strategy to increase reproductive success. Most brooding corals time their larval 

production by some phase of the lunar cycle (Stephenson, 1933). The degree of synchronicity is not 

synonymous among species, and the scale of synchronicity appears to vary from a) no pattern 

(Harriott, 1983) to b) weak periodicity with low continuous levels of larval release and a monthly 

peak (Fan et al., 2002) and to c) tight synchrony with peak production occurring over just a few days 

each month (Johnson, 1992). Light is depicted as the overarching cue for regulating cyclic 

reproduction events in both broadcast and brooding species and maintaining the internal circadian 

rhythm (Boch et al., 2011; Kaniewska et al., 2015).  

Previous studies simulating specific lunar phases over extended periods noted shifts in 

spawning and planulation timing (eg Jokiel et al., 1985; Hunter, 1988). Jokiel et al (1985) noted a 

complete loss in synchronicity when colonies of Pocillopora damicornis were maintained under CNM 

and under constant full moon. Synonymous with this study, planulae were continuously released. 

Others suggest planulation patterns in brooding corals may be indirectly dependent on lunar phase by 

driving gametogenesis and fertilisation as opposed to a direct cue for larval release (Szmant- Froelich 

et al., 1985; Fan et al., 2002; Zakai et al., 2006). This may explain why larval release is dispersed over 
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the month rather than the tight synchronization (ie over a few days), observed in broadcast spawners 

(Harrison and Wallace, 1990).  

Over three lunar cycles (Jul- Sep), CNM corals released larvae almost daily, although number 

released fluctuated. Continuous larval release throughout the month in the absence of environmental 

rhythms may be achievable if conditions remain stable and optimal for reproduction. In equatorial 

regions it is suggested that marine organisms have protracted reproductive periods (Pearse, 1974). 

Synchronicity and seasonal spawning deteriorates as a result of reduced variability in environmental 

conditions, including temperature and tidal cycles that are closely associated with influencing the 

onset of spawning events. In Kenya broadcast spawning species of Acropora and Faviids have 

extended spawning seasons and release gametes over 5 to 7 months. Proximate cues were not detected 

as spawning occurred regardless of lunar phases, during spring and neap tides and across several 

temperature regimes (Mangubhai and Harrison, 2009). Within our study laboratory conditions were 

stabile for the entire duration of the experiment, reflecting similar conditions as those reported by 

Mangubhai and Harrison (2009) but very different to those experienced by our test species F fragum 

in situ. 

 

4.1.1 The effect of reproductive mode on reproductive patterns 

 

Continued reproduction in the absence of environmental stimuli may be attributed to the type 

of reproductive mode exhibited by F. fragum. Broadcasting spawners appear to exhibit a higher 

specificity for environmental conditions to induce the production of gametes in comparison to 

brooding species, likely due to their limited frequency and short spawning periods (1-2 per annum 

over 1-7 days, see Harrison, 2011). Brooding species appear to have a reduced specificity for 

environmental conditions that cue the production of larvae, possibly due to the characteristics 

associated with brooding that allow for flexibility such as internal fertilisation and vertical 

transmission of symbionts.  
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   In addition to mode, the production of larvae via asexual reproduction may have also 

influenced the fecundity of F. fragum under CNM and contributed to the resultant daily release of 

planulae observed in this study in the absence of lunar cues. Most corals reproduce asexually and 

sexually (Harrison, 2011) however, the factors driving each type are not well defined. Production of 

asexually derived larvae has previously been documented in F. fragum, Brazeau et al (1998) noted a 

34% self- fertilisation rate; later attributed to isolated geographic reef locations and turbid habitat 

conditions reducing the ability to detect lunar cues (Goodbody- Gringley et al, 2010). Gleason et al 

(2001) also noted F. fragum exhibited high rates of parthenogenesis under natural conditions. The 

evolutionary advantages of parthenogenesis are unknown, thus the drivers that promote the production 

of genetically identical larvae are also unknown. Microsatellite genotyping in P. damicornis indicated 

ca. 87% of larvae were produced parthenogenetically, irrespective of parental genotype, habitat or 

lunar day (Combosch and Vollmer, 2013). Few studies have assessed the factors driving the 

production of parthenogenetic larvae that is also unknown whether the laboratory aquaria conditions 

where favourable for asexual or sexual reproduction. Larvae produced in this study were not 

genotyped therefore, whether larvae were produced parthenogenetically could not be assessed nor 

whether the conditions within the aquaria promoted sexual or asexual reproduction. Furthermore, 

although parthenogenesis may allow for continuous larval release and the production of genetically 

identical larvae, corals under CNM still produced large variations in larval phenotype with potential 

implications on dispersal and developmental processes.  

 

4.2 Production synchronicity with lunar patterns  

  

Corals under lunar light produced lower numbers of larvae per month and peak production 

occurred 3-6 days (per month). Brooding corals, including Favia fragum, pre-set their patterns of 

planulae release based on predictable periods of the lunar cycle. Szmant- Froelich (1985) was the first 

to describe continual monthly planulation throughout the year in F. fragum. Studies on the production 

rates of F. fragum are generally concordant with slight variation dependent on location within Atlantic 
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waters. In Puerto Rico (Goodbody-Gringley and Putron, 2009) and the US Virgin Islands (Carlon, 

2002) planulation occurred throughout the year with peak production 8-11 days after new moon 

(ANM). In Bermuda planulae were produced 3-4 days post ANM continuing for 16-19 days with peak 

rates between 6 and 12 days (Goodbody- Gringley and Putron, 2009) but planulation ceased during 

winter months between January and April. 

Factors driving corals to fine-tune release timings to a specific month, day and time are still 

under investigations. Previous explanations include reduced predation rates; this is often associated 

with brooding corals that release large conspicuous planulae and are thus more susceptible (Fabricius 

and Metzner, 2004). Close to new moon lunar illumination is at its lowest for predators that rely on 

visual detection (Morgan, 1995), hence the risk to larval mortality is reduced. Tidal cycles are closely 

coupled with the lunar cycle; varying tidal phases have huge implications on the dispersal potential of 

newly released gametes/ larvae. Spring tides promote long- distance dispersal whereas neap tides 

facilitate local retention (Goodbody- Gringley and Putron, 2009). In broadcast spawning corals the 

ultimate environmental driver is assumed to be related to optimising external fertilization of gametes 

released into the water column. Brooding species secure successful fertilisation before releasing 

larvae thus the factors driving planulation patterns are less clear cut. However, most studies illustrate 

peaked production in F. fragum occurs 1-2 weeks ANM during the neap tide facilitating local 

retention (Carlon, 2002, Goodbody-Gringley and Putron, 2009). Transference from CNM to lunar 

caused corals to tighten larval release and concentrate mass larval output to a few days suggesting 

advantages must be present to drive synchronicity between larval release and lunar periodicity.  

Corals under lunar cues concentrated larval release to just a few days within the lunar cycle 

exhibiting some form of synchronicity. However, larvae were also released sporadically at lower 

numbers throughout the month and the timing of peaked planulation differentiated each month and 

was not associated to a single lunar phase. In the field, F. fragum has been found to release larvae all 

year round (Szmant- Froelich et al., 1985) despite experiencing seasonal and diurnal fluctuations 

(Goodbody- Gringley and Putron, 2009) therefore, continuous larval release may be a species specific 
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trait with reduced sensitivity to environmental cues and is enhanced under stable optimal conditions 

such as those in the aquaria in this study.  

In this study, in the absence of cues the cyclic release of larvae weakened and became 

asynchronous. In their “free-running” state F. fragum exhibited a lottery mechanism releasing larvae 

continually throughout the month. On numerous occasions, corals were observed releasing larvae 

during daylight hours; predominantly when corals were placed within the respiration chambers and 

subjected to 30 minutes of darkness. Short exposure to darkness induced corals to expand their 

tentacles facilitating sporadic larval release however, only a few were released and no previous 

evidence of larval production during daylight hours has been observed suggesting this is not likely 

replicated in natural reefs. In addition to irregular time periods of planulation, corals were also 

observed expanding their tentacles in response to food addition during the day. These behavioural 

events suggest corals are able to deviate from their natural rhythm and acclimate to a new photocycle.  

  Manipulating daily light photoperiods resulted in altered spawning release times in 

broadcasting species (Brady et al., 2009). Previous studies mimicking phases of the lunar cycle and 

prolonging the period in which they would naturally occur also demonstrated a shift in the spawning/ 

planulation times (Jokiel et al., 1985). Others have proposed that the time of gamete/ larval release is 

a direct response to light as opposed to regulated by an internal circadian clock (Brady et al., 2009). 

This study partly supported the results of Brady et al (2009) as corals maintained under a simulated 

lunar cycle expressed stronger larval release patterns confined over a few days of the month and could 

fine-tune release timings on a daily scale. However, F. fragum can maintain planulation over a 7- 

month period in the absence of lunar stimuli indicating larval release is not an obligatory response to 

lunar light.  
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4.3 Fluctuating planulation patterns under constant new moon  

 

Lowest larval release occurred during June coinciding with a complete breakdown of 

circadian rhythmicity. Continual declines in reproductive output and weakened circadian rhythms 

during the first 4 months (Mar- Jun) were synonymous across all six colonies and initially attributed 

to the lack of lunar cues. As anticipated after 3 months under CNM, introduction of mimicked lunar 

phases triggered immediate larval release in corals placed under the new treatment, suggesting F. 

fragum are obligated to rely on lunar stimulation to initiate larval release. However, corals that 

remained under CNM also began to release large amounts of larvae despite continual deprivation of 

lunar cues for a further 3 months suggesting other factors were likely responsible for the initial 3- 

month decline.   

 

4.3.1 Influence of light pollution in reproduction  

 

Several factors were highlighted as potential artificial influences on the variation in 

planulation patterns observed between the first 3 months and the months that followed. Although 

significant steps were taken to ensure that conditions were maintained consistently over the length of 

the study, there were multiple limitations of the experimental set-up in this initial phase. Light 

pollution from background sources was a major concern, the position of the tank within the aquarium 

exposed it to several external light sources including a 24- hour security light located directly above 

the tank.  In addition, artificial light from adjacent laboratories did not consistently match the 

photoperiod of the tank lights and could have caused significant light pollution during the initial 4- 

month period. However, early implications of external light interference were detected within the first 

experimental weeks so and measures were taken to minimise possible light contamination and 

maintain irradiance levels at 0 µmol photons m-2 s-1 over 12 hours. Previous studies that examined 
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implications of prolonged night time cloud cover on larval production as a cause of changed 

periodicity (Jokiel et al., 1985).  A recent study suggested artificial skyglow (light pollution from 

urbanised areas) may interfere with synchronized spawning events on natural reef systems by masking 

lunar cues (Aubrecht et al., 2008). Davies et al (2014) suggested coral larvae became disorientated 

under light treatments mimicking skyglow and selected sub-optimal settlement sites. In addition, 

Kaniewska et al (2015) exposed Acorpora millepora to light conditions mimicking urban light 

pollution and found disruptions to cellular signalling processes which in turn prevented coral 

spawning.  

Although light pollution may cause serious interruptions to synchronisation patterns in 

broadcast spawners, there is a lack of evidence to suggest larval output would endure the same level 

of disruption in brooders.  

 

4.3.2 Influence of high nitrates on reproduction  

 

A rapid decline in larval release was observed in March with numbers remaining very low 

over the following 3 months. Regular water testing carried out during mid- March noted higher nitrate 

levels than had previously been recorded (ca. 20 ppm), measuring ca. 80 ppm. Although this value is 

only an approximate concentration (API test kits used are limited to colour scales), concentrations 

were substantially greater than would naturally occur in reef systems in the Caribbean (see Bruno et 

al., 2003) and high enough to significantly interrupt reproduction. Cessation of planulae production 

occurred in parallel to elevated nitrate levels, signs of reproductive recovery were not observed until 4 

weeks following the return to previous nitrate concentrations (ca. 20 ppm). During the month 

following the nitrate event (April) planulation occurred over just 4 days; the total number of larvae 

produced post- nitrate episode was 4-fold lower than the amount produced pre- high nitrates.  

Previous studies illustrated prolonged exposure to elevated nitrate levels (20 ppm) resulted in 

the production of smaller and fewer eggs in both Acropora longicyathus and A. aspera (Ward and 
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Harrison, 2000). In polluted water Porites porites was found to release fewer larvae and the male: 

female colony sex ratio was skewed 2:1 (Harrison and Ward, 2001). Others observed reduced egg size 

in Montipora annularis and failed planulation in P. damicornis after 4 months of exposure to 

increased ammonia levels (Cox and Ward, 2002). In this study nitrate contamination was detected 

early and F. fragum were subjected to short exposure of high nitrates (ca. 7 days) before returning to 

normal levels (20 ppm) via a series of 10% water changes to enable corals to re-adjust their 

physiology and prevent a significant large drop in nitrate concentration which may cause further stress 

to corals. 

Phosphate and nitrogen are key ingredients in many biological molecules including DNA, 

RNA and proteins (Hylkemaa et al., 2015). In oligotrophic waters these nutrients are universally low, 

concentrations of phosphate and inorganic forms of nitrogen (ammonia and nitrate) typically fall well 

below 0.5 µm/L (Furnas, 1991). The establishment and preservation of coral reefs in nutrient poor 

conditions is accredited to the tight association between coral and endosymbiotic algae (LaJeunesse et 

al., 2010). The unique symbiosis has for years been modelled as the epitome of a shared beneficial 

partnership, both with equivalent gains with the coral host providing protection and compounds 

required for photosynthesis to Symbiodinium and in return photosynthetic products being translocated 

to coral tissue (Baker, 1999). However, emerging research suggests that the symbiosis is based on 

equal exploitation in which either side, contingent on specific environmental conditions, can switch 

from beneficial to parasitic (Wooldridge, 2014; Wooldridge, 2016).  

An environment with enriched nitrates is suggested to tip the exploitation scale in favour of 

Symbiodinium with increased nutrient supply linked to enhanced photosynthetic rates, zooxanthellae 

density (Falkowski et al., 1993) and reduced calcification rates in the host coral (Marubini and 

Davies, 1996). No longer nutrient limited, zooxanthellae may retain photosynthates to invest in their 

own growth and development, reducing the amount of fixed carbon available to the coral host for 

biological processes including calcification and reproduction. Alternatively, corals and Symbiodinium 

use the same dissolved organic carbon sources (CO2, HCO3
-) for calcification and photosynthesis 

which may lead to competition between Symbiodinium and the host, in favour of Symbiodinium as 
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their densities increase (Marubini and Davies, 1996). Both theories result in an exponential growth in 

Symbiodinium above optimum population resulting in increased self- shading, light limitation and 

competition within and/or between Symbiodinium clades and negatively impacting photosynthetic 

rates. In situ and laboratory experiments have illustrated unanimous results, all of which concluded 

adverse consequences for corals when nutrient concentrations are increased (Muscatine et al., 1989; 

Dubinksy and Jokiel, 1994).   

Early indication of nutrient stress was initially detected in other species housed in the same 

aquaria used for this study, Pocillopora damicornis fragments along with Acroporid species were 

among the first corals to exhibit physical signs of stress. P. damicornis polyps, which typically remain 

expanded during daylight hours, darkened in colour indicating a rapid increase in zooxanthellae 

density inside the coral host tissue. Weaker individuals began to initiate polyp bail- out, an extreme 

response strategy to stress with the motive to escape incongruent localised conditions and disperse to 

more hospitable locations (Gleason and Hofmann, 2011). Despite disruptions to larval production, no 

behavioural/ physical indication of stress was observed in colonies of F. fragum. These corals are 

typically categorized amongst the more robust scleractinian species due to their preferred location on 

the back reefs and reef flats (Szmant-Froelich et al., 1985) where corals are regularly exposed to 

turbid waters and experience the largest fluctuations in diurnal environmental conditions (Goodbody-

Gringley and Putron, 2009). Thus, corals able to populate these areas have likely evolved a greater 

resistance to acute changes and can adjust their physiology and reproductive strategies to account for 

variations.  

Nevertheless, coral reproduction has a low stress tolerance and is often the first process to 

cease upon exposure to unfavourable conditions and the last process to return following the return to 

stable environmental settings (Ward and Harrison, 2000). In a state of stress, corals switch to survival 

mode and re-direct energy resources away from reproduction to repair mechanisms (Harrison and 

Ward, 2001). Similar to results reported by Cox and Ward (2002) within this study failed planulation 

occurred and levels of larval release did not fully recover until 3 months following a return to 

environmental norms. The decline in larval output is therefore attributed to high nitrate levels possibly 
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combined with light pollution, which collectively acted as antagonistic factors destabilizing 

reproduction patterns by driving changes in resource partitioning and interfering with circadian 

rhythms respectively. These results, although very preliminary, may serve to further demonstrate the 

potential impacts of environmental degradation on coral resilience.   

 

4.3.3 Influence of spectral composition on reproduction 

    

Rapid inclines in reproductive output from all six corals were observed from June to July at 

which point corals were separated into the two treatments (lunar and CNM); larval release remained 

high during August and September. Within the first few days of July corals in both treatments began 

to release small amounts of larvae on a daily basis, corals under lunar exhibited peaked production 

rates 7 days ANM for 10 days. As anticipated, exposure to lunar induced larval production in corals 

however, factors influencing a rapid increase in larval output in corals remaining under CNM were 

unknown. Although corals were transferred to smaller tanks at the beginning of the light treatment 

experiments and at a different bench location, all parameters were kept consistent with the previous 

tank and received the same ASW supply and filtration system. Initially, it was suggested tank location 

may have been the contributing factor to increased reproductive output. Both treatment tanks were 

adjacent to each other, leading to the possibility that light contamination from the artificial lunar 

system may have kick- started reproduction by providing corals under CNM with weak lunar cues. 

However, data collected from the HOBO logger confirmed light intensity remained at 0 µmol photons 

m-2 s-1 throughout the entire 3 months, discarding potential lunar light contamination.  

An alternative explanation may be linked to the variation in spectral composition between the 

two light sources during daylight hours. The lighting system was changed from T5 fluorescent tubes 

to an A1 LED lighting system that could replicate lunar light .  Although both light sources had 

identical light intensities, results from the spectroradiometer indicated the light spectrum between tank 

lights during the first 4 months and the lights used for the remaining experimental months had 
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noticeable differences in their spectral quality. The light spectrum of the T5 tubes used in the initial 

months peaked in the blue (436 nm) and green (546 nm) spectrum, with a third peak in the red (611 

nm). T5 fluorescent tubes use discharge mercury vapours with multiple peaks at different wavelengths 

and phosphors covering the bulbs to convert radiation to narrow bands of visible light resulting in a 

discrete spectrum (natural sunlight has a continuous spectrum (Riddle, 2009)). In comparison LED 

was shifted towards the blue spectra with only two significant peaks (452nm and 469 nm). 

Comparisons between T5 halide lights and LED’s illustrated significant differences in growth rates in 

Acropora formosa and Styllophora pistillata, with colonies maintained under LED exhibiting 99% 

and 18% increase in growth relative to conspecifics under T5 illumination (Rocha et al., 2013).  

Identification of multiple photoreceptors within scleractinian corals suggests varying wave 

bands within visible light are involved in sustaining clock harmonisation with the external 

environment, with predictable changes in spectral composition from sunrise to sunset (Roenneberg 

and Deng, 1997). In higher plants, red and blue have been highlighted as the primary wavelengths 

influencing clock synchronisation (Sorek and Levy, 2012). Given the presence of internal 

photosynthetic algae, similar mechanisms are suggested to exist in corals (Sorek and Levy, 2014). 

Results from previous studies suggest light can have wave-length specific effects on coral (Kinzie et 

al., 1984; Hennige et al., 2009; Szabo et al., 2014) influencing growth rates, protein content and the 

photochemical performance of its symbionts (Rocha et al., 2013; Kuhl et al., 1995). However, not 

every wavelength is equally utilised in physiological processes within scleractinian corals; red light 

has recently been linked to inhibitory effects and promoting increased tissue necrosis and mortality 

(Wijgerde et al., 2014). In contrast, blue light has been implicated to enhance multiple processes 

within corals including reproduction (Hoadley et al., 2011), calcification (Cohen et al., 2016), 

zooxanthellae density (Rocha et al., 2013), production of fluorescent proteins (D’Angelo et al., 2008) 

and protection against zinc-induced ROS (Wijgerde et al., 2014).  

Corals can detect lunar photon fluxes using blue- sensing cryptochromes and long-wave 

sensitive opsins (Levy et al., 2007). Cryptochromes have been implicated to play a role in entrained 

cnidarian behaviour (Dolatshad et al., 2009) and up-regulation may act as a trigger for coral spawning 
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(Gorbunov and Falkowski, 2002; Levy et al., 2007). Other studies suggest blue light can delay 

spawning times; Levy et al (2007) found corals isolated under blue light experienced shifts in 

spawning time relative to control corals. Kanieskwa et al (2015) also found coral spawning was 

delayed by 6-8 hours in A. millepora when subjected to blue light. However, they concluded detection 

of blue light was essential for gamete/ larval release. It is possible the increase in availability of blue 

light triggered larval output in corals under CNM.  

Concurrent with its coral host, Symbiodinium also exhibit varying responses to different 

wavelengths. Over millions of years, marine photosynthetic organisms have evolved mechanisms to 

enhance utilization of light, particularly of blue and violet wavelengths which penetrate best in the 

marine environment (Riddle, 2009). Zooxanthellae are primitive Pyrrophyta algae, their 

photosynthetic pigments are mainly chlorophyll a and c and carotenoid pigments (peridinine, 

xanthins) with strong absorption in the blue-green spectrum (Leletkin and Popova, 2005).    

Wang et al (2008) identified pure blue light and a mixture of blue, red and infrared promoted 

normal zooxanthellae reproductive cycles. Blue light was more effective than mixed wavelengths, but 

not significantly. The study also identified that blue light effectively promoted cell cycles and growth 

of Symbiodinium clade B, a clade commonly associated with wild populations of F. fragum (Savage et 

al 2002; Finney et al., 2010). It is possible in this study transference to lights with increased blue light 

enhanced the growth rate of Symbiodinium in the host corals and resultantly increased rates of 

photosynthates translocated to the host. Hence, promoting increased reproductive output by increasing 

energy supplies. Measurements of oxygen production increased by 2.5- fold from June to July 

suggesting an increase in photosynthetic activity from the symbionts and suggesting this is the likely 

the cause of larval release in corals under CNM.  
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4.4 ‘The other circadian clock’ – response of Symbiodinium with and without lunar cues   

 

Circadian rhythms in scleractinian corals are complicated by the presence of two circadian 

clocks, the hosts and its internal symbionts (Sorek et al., 2014). The duet between each clock requires 

synchronization of metabolic processes including algal photosynthesis and coral calcification, as well 

as other parallel processes. Circadian periodicity in photosynthesis, growth and fluorescence has been 

assessed in both free- living Symbiodinium (Hastings, 2007) and within scleractinian corals (Sorek 

and Levy, 2012). Moreover, tight integration between major physiological processes of Symbiodinium 

and their coral hosts have also been identified. Coral calcification rates oscillate simultaneously with 

changes in the carbonate chemistry associated with symbiont photosynthesis (Tambutte et al., 2015) 

and activity rates of antioxidant enzymes were also found to mimic photosynthetic rates (Allemand et 

al., 2011).    

Under 72 hours of constant illumination Symbiodinium (clade B), recently isolated from their 

host coral Euphyllia glabrescens, maintained natural reproductive phases for approximately 12 hours. 

Further analysis revealed the symbionts contained an abnormal number of chromosomes and 

exhibited abnormal division (Wang et al., 2008). As a mechanism of regulating internal symbiont 

population numbers, some scleractinian coral species expel symbionts cell entering the M phase 

(mitosis) in their reproductive cycle. Therefore, disruptions to the circadian rhythm of the symbionts 

could cause the host coral to unintentionally expel an excessive number of zooxanthellae leading to 

cascading consequences for the coral including severe disruptions to reproduction, depleted energy 

supplies, bleaching and death (Wang et al., 2008). It is unknown whether lunar periodicity has similar 

effects on the circadian rhythms of the coral’s symbiont. Differentiating and isolating the cues that 

govern each clock is vital to develop further understanding of the symbiosis and the influence that 

each partner exhibits over one another. Whether the host and symbiont’s clocks interact or run 

independently is unclear.  
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4.5 Bet- hedging reproductive strategies: larval size and settlement  

4.5.1 Larval size  

 

Despite total monthly release numbers that were double the amount produced by lunar corals, 

larvae produced under CNM showed the greatest size variations and on average were significantly 

smaller. In contrast the size of larvae produced under lunar treatment were always similar. Previous 

studies across multiple scleractinian corals species suggested larvae are not produced equally across 

the planulation period, within the same cohort or even on the same day of release (Edmunds et al., 

2001; Isomura and Nishihara, 2001; Cumbo et al, 2013). Variation in larval size, at least within- 

brood variations, likely stems from unequal distributions of energy investments from the maternal 

polyp. Micro- environmental conditions including light intensity (Salih et al., 2000) and oxygen 

concentration (Cumbo et al., 2013) differ depending on the location of the polyp within the colony 

and act as contributing factors to varying larval size.  

Previous studies typically conclude that selection favours uniform production with equal 

clutch sizes (Einum and Fleming, 2004).  Bet-hedging theories define strategies that organisms 

develop in an attempt to optimize their fitness in variable and unpredictable environments (Olofsson 

et al., 2009); hence specialization dependent on specific environmental conditions should be avoided. 

Traditionally, bet- hedging has been implicated in the trade- off between parental survival and 

reproduction as well as offspring quantity vs quality. Production patterns of varying clutch and 

offspring sizes within both treatment groups suggests, to varying degrees, that both groups exhibit 

bet- hedging strategies. Corals within a lunar cycle exhibit cyclic monthly production with significant 

peaks at particular times of the month, this strategy is often referred to as conservative or ‘play it safe’ 

aimed to minimise risks (Bishop, 2006). Corals under CNM appear to invest in a lottery mechanism, 

consistently producing varying amounts of larvae with large size variance both within and between 

clutches.  
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Adaptive bet-hedging strategies have been described under similar studies, Cumbo et al 

(2012) noted larvae released close to peak release were larger than those produced earlier/ later. 

Edmunds et al (2011) suggested brooding Pocilloporid species correspond peak larval release to 

maximised larval respiration rates with the intent that larvae released in warmer seas would have 

shorter planktonic durations due to enhanced metabolic rates, consequently settling close distances to 

parental colonies. Larvae released in periods of colder water would have longer dispersal stages due 

to reduced metabolic rates, contributing to reef connectivity by settling in reefs away from their 

source. Evidence of this strategy exists in Pocilloporids in the Red Sea, larvae released early March 

dispersed over much greater distances than those released in late June when sea temperatures are at 

their highest (Edmunds et al., 2011). 

Corals switched between treatments adjusted their reproductive strategy between either 

lottery or conservative. Investing in several reproductive strategies with similar output success is 

characterised as diversified bet- hedging. Demonstrating flexibility in reproductive strategies with 

rapid adjustment periods is crucial in environments that are unpredictable. Identifying whether corals 

can adjust their strategy may prove pivotal as global and local factors continue to influence 

environmental conditions forcing predictable cycles to become unpredictable (Frieler et al., 2015).  

However, whether flexibility in reproductive strategies is an isolated incident or widespread in other 

brooding and broadcasting species requires further investigations over long-term scales.      

It also remains unclear to define whether variation, at least within the same clutch, is a 

haphazard result of development or a consequence of an adaptive bet- hedging strategy. The 

challenges of inducing coral reproduction under laboratory conditions and maintaining a regular 

reproductive pattern has led to a lack of long- term investigations, hence results from previous studies 

are loosely comparable. Studies commonly combine larvae released over consecutive lunar days to 

obtain necessary replicates (Putnam et al., 2008; Edmunds et al., 2011, Cumbo et al., 2012). 

Variations in larvae produced between those days are therefore overlooked yet could have significant 

consequences for the planktonic stage and subsequent settlement and post- settlement survival. 

Cumbo et al (2013) found P. damicornis larvae released on varying days of the lunar cycle exhibited 



83 

 

different physiological response when exposed to elevated temperature and pCO2 rates; larvae 

produced on specific days exhibited increased sensitivity to temperature and depression at high pCO2.  

 

4.5.2 Larval settlement 

 

 Variations in reproductive output including quantity and quality of larvae released has 

consequences that cascade through every life history stage. In their natal reef environments, 

differences in larval sizes is often translated to differential survival and settlement success (Cumbo et 

al., 2012). In our study, the PLD of smaller larvae extended beyond the experimental period, often 

remaining unsettled for >30 days. Larvae produced under lunar conditions settled within hours of 

release. Others also noted rapid settlement in F. fragum, Peterson et al (2007) noted 40% of larvae 

released settled within 12h. Producing a range of phenotypes within a single planulation event 

increases the chance of some being suitable for natal reefs, whilst others can disperse to further reefs 

(Putnam et al., 2008; Szmant- Froelich and Meadows, 2006).  

Even with the advantage of controlling external conditions, the mortality rate of newly settled 

corals was high. Only a few recruits over the course of this investigation progressed to primary polyp 

division, marking the first steps towards building a colony. Coral larvae can enhance their own 

survival ability by aggregating to other conspecifics, this key behavioural trait was a common 

observation. Successful settlement of individual larvae initiated mass settlement in remaining free- 

swimming larvae, which selected settlement sites within millimetres of the initiator. Despite idealistic 

growing conditions and adaptive behavioural traits to increase survival potential post- settlement, < 

1% of settled larvae survived. Percentage survival is comparable to wild rates in which Wilson and 

Harrison (2005) noted in three corals species at Solitary Island 0.2 – 6% of coral recruits survived the 

first year, similarly earlier studies noted 94% mortality of coral recruits in the same reef location 

(Fairfull and Harriott, 1999).  
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4.6 Alternate modes of asexual reproduction   

 

Alternate reproductive strategies were also observed in F. fragum, although all six colonies 

experienced synonymous tank conditions, only one colony exhibited polyp expulsion. It is important 

to define the differences between polyp expulsion and polyp- bail out. Polyp- bail out is a response 

associated with health- compromised corals, this process occurred instantaneously during acute high 

nitrate levels and is potentially a ‘last- resort’ strategy to escape deleterious conditions and salvage 

genetic diversity by releasing polyps from their calices to re- attach away from the parent colony. 

Polyp expulsion occurs in physiologically healthy corals, individual polyps still attached to their 

calices are elevated from the colony on extended calcareous stalks, the duration of this process was 

over 5 weeks before the polyp detached and was allowed to settle on a pre-treated CCA slide. 

Detached polyps are at an advanced stage of development compared to sexually and asexually derived 

larvae, they begin their benthic life at a juvenile stage by-passing the risks involved with larval 

dispersal, settlement and metamorphosis and thus reach sexual maturity at a faster rate. Observations 

in situ have only been observed in coral species isolated in physically challenging environments to 

sustain population existence in that area (Kramarsky- Winter et al., 1997). Increases in chronic 

disturbances may cause corals to increase their dependence on asexual reproductive strategies 

including polyp expulsion, with the chance of increasing genotypes with improved resiliency 

outweighing the loss of genetic diversity.  

Massive and encrusting corals, including F. fragum, contribute to reef structure in areas 

which are exposed to chronic disturbance from high rates of wave action and sedimentation increasing 

the levels of turbidity and reducing irradiance levels (Harrison and Wallace, 1990). Native recruitment 

success is likely jeopardized as freshly released larvae/ gametes are quickly dispersed and new 

recruits are dislodged or asphyxiated by sediment. In order to maintain localised population numbers 

in physically unstable environments, some corals adopt other reproductive strategies. Asexual 

reproduction via polyp expulsion has previously been observed in Favia favus and Oculina 
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patagonica off the coast of Israel, rates of polyp expulsion were most prominent during summer and 

autumn months when sea surface temperatures were highest (Kramarsky- Winter et al., 1997).  

Alternatively, increased budding has also been associated with periods of favourable 

environmental conditions. An increase in temperature combined with increased supply of zooplankton 

promoted higher budding rates in the temperate coral Cladocora caespitosa (Rodolfo- Metalpa et al., 

2007). In the present study one colony of F. fragum initiated signs of budding (i.e. individual polyps 

were lifted and extending away from the main colony) throughout the experiment. The first visible 

signs appeared shortly after the increase in nitrate concentrations within the aquaria system, budding 

also occurred three months later, when tank conditions had remained at constant levels. Therefore, it 

was not possible to distinguish the underlying factors that induced budding. It is also unclear why 

only one coral exhibited budding, all six corals experienced replicate conditions including equivalent 

heterotrophic feeding. Further studies are required to understand the drivers and advantages of 

budding.  

 

 

Figure 23. Polyp expelled from main colony re-attached to CCA slide and began secreting calcium 

carbonate skeleton (red arrow), new recruits readily settle on CCA slide (yellow arrows) 

and haphazardly on the tub floor (blue arrows). 
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4.7 Metabolic implications of reproduction   

 

Comparative analysis of oxygen evolution indicated metabolic fluctuations related to 

reproductive output, an increase in the number of larvae released resulted in higher metabolic rates. 

Increases in metabolic rate were a direct response to larval production, irrespective of light treatment. 

Further analysis indicated significant increases in metabolic rate were only present during peaked 

larval production, i.e. when large amounts were released, suggesting either significant rates of change 

require a minimal number of larvae before there is a compromise on coral metabolism or the 

sensitivity of the testing was low so only detectable when there were significant changes. In addition, 

it was assumed that corals would increase their metabolic rate pre- larval release; however, results 

suggest that the corals instead compensate for the loss of energy supply distributed to the larvae post-

larval release. Therefore, it would appear that corals up- regulate their metabolism as indicated by 

increases in respiration and photosynthetic rate post production to restore energy supplies. 

At the time of larval production reserved lipids are allocated to larvae and this depleted from 

the coral host (Norstrom and Sandstrom, 2010). The general assumption is that energy sources are 

partitioned between different biological functions including reproduction, growth and regeneration. 

Most studies suggest there is a trade- off between reproduction and other processes (Isomura and 

Nishihara, 2001; Bishop, 2006; Cumbo et al., 2013). However, there is conflicting evidence that 

suggests reproduction may also be independent of energy constraints. For example, growth rates in 

female colonies of Porites astreoides continually increased even during the onset of reproduction and 

larval release (Rinkevich et al., 2016). Muscatine et al (1984) observed carbon translocated in 

multiple shallow water scleractinian corals was > 140% of their daily energetic needs. This study 

suggested increases in metabolism only occurred above a certain threshold of larval release. Corals 

under CNM continuously produced larvae and maintained a stable metabolic rate, increasing only 

during days post- large quantities of larval production. Pressure on metabolic processes in corals 

under natural conditions is likely significantly enhanced due to fluctuating parameters and irregular 
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external food supplements. The metabolic demand under stable laboratory conditions is therefore 

likely underestimated.  

Although using respirometer chambers to measure oxygen evolution has continued to be the 

principal method both in laboratory and field studies, measurements are not representative of the 

complete metabolic processes within coral productivity (Chisholm and Gattuso, 1991). Studies 

suggest the evolution of oxygen is not synonymous with the rate of carbon fixation, this method is 

therefore limited as it cannot distinguish between oxygen production, consumption and/or carbon 

fixation (Schrameyer et al., 2014). Further measurements involving C14 isotopes would be needed to 

determine more precise measurements.   

 

4.8 Larval metamorphosis  

 

Metamorphosis is a critical process in corals linking one life stage to the next and defining the 

start point of a sessile benthic existence. Alterations to an advanced light sheet fluorescence 

microscopy technique has enabled real time identification and quantification of stages critical to a 

successful transition from larva to primary polyp, and has given further insight into the close 

interaction between larval conspecifics when determining settlement sites. Light sheet fluorescence 

microscopy (LSFM) was used to construct a timeline and distinguish the development of key 

anatomical features (outlined in results section 3.5).  

The complex process associated with settlement and metamorphosis is likely driven by the 

high level of specificity required in selecting settlement sites that optimize post- settlement survival 

and accommodate the photosynthetic demands of the coral host’s associated symbionts. The internal 

mechanism that mediates metamorphosis is likely similar across Cnidarian groups (Grasso et al., 

2011). In A. elegantissima and H. echinata neuropeptides of the LWamide family are released upon 

receiving appropriate settlement cues and are suggested to be involved in initiating metamorphosis 

(Muller and Leitz, 2002). Others suggest metamorphosis is linked to metabolic processes, a threshold 
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exists in which depletion of energy reserves induces spontaneous metamorphosis (desperate larva 

hypothesis, Bishop et al., 2006). The metamorphic process in marine invertebrates occurs at a much 

faster rate in comparison to terrestrial organisms that undergo similar metamorphic transformations 

(Hadfield et al., 2001), attributed to the possibility that brooded larvae are primed for settlement and 

this pre- established competence allows for quick transitions (Grasso et al., 2011). The time period for 

F. fragum larvae from permanent attachment to a heterotrophic primary polyp was approximately 7 

days. The developmental time-frame of anatomical features is concordant with the rate observed in 

Acropora bobilis and A. microphthalma (Hirose et al., 2008). 

 

4.8.1 The effects of larval size on rates of metamorphosis  

 

Despite CNM corals typically producing smaller larvae with significantly longer planktonic 

periods, no difference in the rate of metamorphic development was observed between larvae produced 

by lunar induced corals or corals maintained under constant new moon. Size appeared to have no 

effect on the rate of development, rates of metamorphosis of smaller larvae was similar to larger 

larvae and the same development processes were observed in both size categories.  Even in natural 

planulation events, larvae are often unequally distributed in size even from the same parental colony 

(Roth et al., 2013). Larvae of Seriatopora hystrix varied in size with smaller individuals hosting lower 

abundances of symbionts. Despite having lower photosynthetic rates, symbiont numbers rapidly 

increased and both larvae with originally low or high densities development at similar rates (Roth et 

al., 2013). Longer planktonic periods often result in depleted lipid reserves needed for metamorphosis, 

the presence of zooxanthellae may counteract the reduced amounts of lipid quantities between larger 

and smaller larvae by supplementing energy stores (Graham, 2012). Hence, enabling small larvae to 

metamorphose at the same rate.  
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4.8.2 Larvae- algae symbiosis  

 

The obvious disadvantage of pre- established symbiosis is the risk of transportation to 

environments in which the associated Symbiodinium clade is not optimal causing knock-on effects to 

the host larva. However, unlike adults that have formed mature associations with their symbiont 

communities, earlier life stages are assumed to lack or have a weaker Symbiodinium specificity 

(Coffroth et al., 2001). In previous cases, recently settled recruits were found to host a wider variety 

of symbiont populations than their adult conspecifics (Coffroth et al., 2001; Little et al., 2004). 

Furthermore, a number of studies found that juvenile corals change their dominant Symbiodinium 

clade dependent of the environment and growth stage (e.g. see Little et al., 2004). The dynamics of 

the symbiotic relationship at the larval or juvenile stage may therefore be different than the well 

documented mature colony associations however, generally studies are lacking with regards to the 

role of symbionts in developmental stages of juvenile corals and the importance of different drivers in 

changes in Symbiodinium density and assemblage structure are largely unknown .  

Recent research indicated that larvae brooded from P. damicornis obtain significantly less 

nutrition from their symbionts than in adult associations. Differences were attributed to substantially 

lower symbiont densities, lower basal metabolic rates and reduced translocation rates in larvae (Kopp 

et al., 2016). Comparisons of symbiont density of larvae  indicated that the average Symbiodinium 

density within the gastrodermis amounted to only 12.5% of the density in the gastrodermis of the 

coenosarc region in an adult coral (Kopp et al., 2016): only a small region at the boundary of the 

mesoglea and epiderm was identified to contain dinoflagellate densities comparable to those found in 

adult corals. Conversely, studies on 3- week old P. damicornis larvae indicated that ca.70% of 

photosynthetically fixed carbon was translocated to the host larval tissue (Gaither and Rowan, 2010), 

concurrent with rates recorded in adult corals (Muscatine et al., 1981). Therefore, the early stages of 

larval development appear to be heavily dependent on maternally derived resources. However the 

benefits of vertical transmission/ early establishment of symbiosis, may come more important further 

in to larval development and aid in extending planktonic periods, and thus increase dispersal ranges 
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and reef connectivity. The transition from larval to adult is metabolically costly and is critical to 

developmental and metamorphosis. Increased translocation rate enhances the amount of nutrition 

available for metabolic processes fundamental to larval survival and recruitment in to a mature 

ancestral polyp. The external environmental conditions at the time of release may have serious 

consequences on this process and should be a focus of future studies if recruitment is to play a 

significant role in recovering coral populations.      

  

4.8.3 Patterns of GFPs in larvae to understand their function/s   

 

Due to their abundance and ability to survive under experimental conditions coral larvae act as ideal 

models for studying the function of green fluorescent proteins (GFPs) and underpinning genetic 

mechanisms (Kenkel et al., 2011). GFPs were present throughout larval development in F. fragum 

however, varying forms of fluorescent patterning occurred during post-settlement growth. Two 

prominent patterns of fluorescence have been described in corals: uniform fluorescence in which 

GFPs are distributed equally across the coral polyp with no specificity and complementary 

fluorescence in which GFPs are targeted specifically to anatomical regions (Gruber et al., 2008). In 

this study, larvae transitioned from uniform to complementary in parallel with asexual division of the 

primary polyp.  

Re-distributing GFPs during juvenile development indicates multiple functionality. Gruber et 

al (2008) suggested the majority of corals exhibit complementary fluorescence, with the highest 

abundance distributed to features most vulnerable to light exposure. Salih et al (2000) found tissue 

regions with dense populations of GFPs coincided with areas of high cell division and reproductive 

organs. Colony edges where the calcium carbonate skeleton is continuously laid down contained high 

densities of GFPs as well as the tentacle tips and areas around the oral disk which upon retraction may 

form a “sun-screening polyp plug” (Salih et al., 2000). Many other studies support this research 

concluding that GFPs are concentrated around specific areas particularly the oral cavity (Gruber et al., 
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2008, Salih et al., 2000) but also in “growing areas” including branching tips (Palmer et al., 2008), the 

growing edge of the colony base (D’Angelo et al., 2008) as well as in regions that have recently been 

damaged  and are undergoing repair (Palmer et al., 2009).  

The distribution of GFPs has previously led researchers to propose their photo-protective 

function. Consequently, GFPs are most commonly associated with stabilizing the internal light 

microenvironment within the coral tissue, suggesting that expression may be associated with 

zooxanthellae distribution within the gastrodermal cells. In low light conditions or shade- adapted 

corals they may enhance the availability to zooxanthellae by acting as channels to direct light 

(Verkhusha and Lukyanov, 2004) or via they may transform incoming light to concentrate 

wavelengths more suitable for photosynthesis (Dove et al., 2000). Hence, GFPs are distributed 

between or below dinoflagellates. In high light conditions, conducive with shallow reef environments, 

GFPs may act in synergy with UV shielding mycosporin- like amino acids (MAAs) as photo-

protectants. In high light adapted corals GFPs are localised above zooxanthellae dissipating excess 

light energy via fluorescence and scattering (Salih et al., 2000).   

In this study, images of larvae at the beginning of their metamorphic transformation indicated 

enhanced expression at the oral end. Comparable morphological patterning was observed in Favities 

pentagona also displaying increased amounts of GFPs around the mouth in adult corals (Gruber et al., 

2008). GFPs concentrated in this area have previously been associated with the establishment of the 

cnidarian- Symbiodinium symbiosis in azooxanthellate larvae (Hagedorn et al., 2015). The ‘beacon 

hypothesis’ suggests free-living zooxanthellae are directed by GFPs generated around the mouthparts 

of larvae (Hagedorn et al., 2015). Dispersing larvae heavily deplete maternally derived energy stores 

during the planktonic period and the metamorphic process, therefore a critical step is to generate a 

rapid association with Symbiodinium (Norstrom and Sandstrom, 2010). The concentration of free 

living Symbiodinium achieves the greatest densities in reef sediments (1000- 4000 cells/ml), numbers 

in the water column are substantially diluted (80 cells/ml) (Takabayashi et al., 2012). It is possible 

most larvae commit to horizontal transmission upon interaction with surface sites and have developed 

a mechanism to enhance the onset of their symbiotic relationship. Increasing the abundance of GFPs 
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around the oral cavity, the site at which zooxanthellae enter the host, enhances the signal strength to 

attract and direct dinoflagellates towards the coral (Haegdorn et al., 2015). Results from this study 

appear to support this theory.  

In larvae, such as F. fragum, symbiosis is already well established before planulation. For 

larvae that disperse and settle at neighbouring reefs, away from parental colonies, where conditions 

may be inimical for host and associated symbionts,  GFPs may assist in horizontal transfer and 

switching of symbionts to establish a symbiotic assemblage stemming from free-living symbionts that 

are able to survive in these new environments. Further, underdeveloped recognition systems and/ or 

during the early stages of symbiosis larvae are “promiscuous”, acquiring multiple Symbiodinium types 

(Rodriguez- Lanetty et al., 2004; Dunn and Weis, 2009; Cumbo et al., 2013). Acropora millepora and 

A. tenuis larvae acquired up to four different Symbiodinium types upon exposure to sediments 

containing 6 different clades (Cumbo et al., 2013). Associating with different Symbiodinium clades 

enables juvenile corals to form symbiosis distinguishable from their parent colonies and to optimise 

physiological processes require symbionts best adapted to surrounding environment.  

 

4.8.4 Aggregated settlement patterns  

 

Throughout settlement experiments, F. fragum larvae commonly aggregated together on one 

location of the CCA slides. Given the opportunity coral larvae will amass together and settle within 

close proximity of each other. The allogeneic histocompatibility immune response of adult corals 

appears to be supressed in early life stages and instead of rejecting one another, conspecific recruits 

settle together to form aggregated colonies (Rinkevich, 2004). Gregarious behaviour is not an isolated 

characteristic of F. frgaum and has previously been described in other scleractinian coral species 

(Hidaka, 1985; Amar et al., 2008), as well as soft corals (Barki et al., 2002) and sponges (Ilan and 

Loya, 1990). Factors driving this early life behaviour have been attributed to enhanced inter-specific 

competition, increased growth and post- settlement survival rate, reduced time scale to achieve 
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reproductive size, increased genetic repertoire and expression of heterosis, securing potential mates 

for future sexual reproduction (Rivera and Goodbody-Gringley, 2014).   

Fusion of juvenile coral recruits in nature has previously been observed (Sammarco, 1982). 

Frank et al (1997) observed frequent aggregation spats of S. pistillata. They noted upon encounter, 

conspecific larvae either fused together and established a chimera or failed to fuse. The same coral 

species, under laboratory settings, also exhibited high rates of fusion with 61% of interactions 

resulting in successful fusion (Amar et al., 2008). Aggregation rates were not a focus of this study, 

therefore no measurements were recorded. However, accumulation of recruits to one settlement site 

was regularly observed, both with fusion and non-fusion (see Fig. 21). Larvae rarely settled in isolated 

spots and those that settled first appeared to act as a beacon for other larvae, indicating favourable 

settlement sites. However, the frequency of cumulative settlement in laboratory settings is not 

representative of natural occurrence rates. The 5 x 5 cm larval settlement tubs may have exaggerate 

this behavioural trait by forcing groups of larvae to remain in close contact and providing minimized 

settlement areas. Gregarious behaviour on natural reef substrate likely occurs at much lower 

frequency due to multiple physical barriers, such as ocean currents (Gleason and Hofmann, 2011), 

limiting encounters with conspecifics (Koehl and Hadfield, 2004). Despite this, it appears that larvae 

have maintained this evolutionary tactic and utilize it opportunistically, selectively choosing to fuse 

with individuals of similar genetics to itself or at least settle close by.  

An immediate advantage of close settlement is an enhanced defensive capability (Rivera and 

Goodbody- Gringley, 2014). Newly settled corals notoriously get outcompeted by other benthic 

organisms for prime reef space due to their weak ability to compete and slow growth rates (Arnold 

and Steneck, 2011). This was evident even under laboratory conditions; new recruits would be 

surrounded by algae or smothered by a cyanobacteria mat within a few days of settlement. 

Accumulating into groups acts as a ‘safety in numbers’ mechanism to increase the chance of post- 

settlement survival. Corals that invest in allogeneic fusion have an added advantage by fast 

forwarding their rate of growth at this earliest and most vulnerable stage of colony development. 

Brickner et al (2006) indicated solitary polyps may provide metabolites to neighbouring injured 
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polyps despite a connective tissue bridge, transferred through mucus or living cells during contact 

between expanded polyps. Rinkevich and Loya (1983) previously suggested isolated allogeneic 

colonies of Stylophora pistillata could translocate photosynthates between individuals however, they 

suggested cells transferred derived from competition between con-specifics. Hence resource sharing 

may occur between aggregated recruits to further enhance the benefits of this behavioural 

characteristic and prolong survivorship. Previous settlement studies found corals remaining smaller 

than 3mm in diameter for 2 to 3 months possess only a 20% chance of survival (Rylaarsdam, 1983) 

therefore, aggregate behaviour would be highly selected.  

The benefits attached to fusing with conspecifics may be amplified under current and future 

environmental conditions. Cumulating the genetic variability between two individuals to form a novel 

organism has the potential to heighten its physiological capabilities to adjust and tolerate fluctuating 

conditions. Recently, Rinkevich et al (2016) found chimeric derived colonies asexually produce 

larvae with genetic combinations more diverse than that of sexually produced larvae. Further, 

chimeric derived larvae were able to alter their somatic constituents and customised their genetic 

components in response to unfavourable external conditions. In this experiment larvae from all 3 

colonies per treatment were combined and pooled into the same tub. Therefore, it is unknown whether 

larvae from different colonies fused or only those from the same colony.  
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5.0 CONCLUSION  

 

Restricted long generation times in most scleractinian corals limit their ability to adapt their 

physiology to changes in ocean temperatures and acidification within the necessary time-frame 

(Frieler et al., 2015; Stap et al., 2016); flexibility in reproductive patterns that enable corals to 

strategize larval/ gamete release that optimize recruitment success within unpredictable environmental 

conditions may be a vital element in the future persistence of corals. Corals rely on external 

environmental conditions to predict the environment that larvae will be exposed to however, when 

conditions undergo rapid changes corals may dependent on  bet-hedging reproductive strategies. 

Anthropogenic impacts are reducing sub-cryptic settlement sites and inhibiting settlement cues 

reducing reproductive success (Halpern et al., 2008). 

 Favia fragum exhibited dynamic bet-hedging strategies and adjusted reproductive patterns 

rapidly in response to exposure/ absent lunar cues. Under CNM, corals distributed larval output across 

the whole month with high variation in larval sizes. Under lunar treatment, corals exhibited peaked 

larval production with little variation in larval sizes. Under conditions where lunar cues with absent, 

the production of a range of larval phenotypes may increase the chance of some individuals recruiting 

successfully by varying dispersal time. Under predictable lunar periodicity, corals optimize survival 

and successful recruitment by producing one mean phenotype of high  quality which ensures 

reproductive success.  F. fragum produced large larvae with short PLD supporting retention and re-

population of local reefs.  

Life- history traits can significantly influence reproductive strategies, F. frgaum exhibits 

several characteristics that may enhance persistence to future oceanic conditions. The ability of larval 

recruits to adhere to aggregate settlement, enhancing survival by increasing inter- specific competitive 

ability and, for those that form genetic chimeras, a reduction in time needed to achieve sexual 

maturity which  may prove critical for future reef resilience (Birell et al., 2008). Despite variations in 
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larval size, the metamorphic rate between size classes was the same indicating the benefits and 

disadvantages associated with different sizes occurs relate to the pelagic and thus dispersal phase.  

Species survival has long been dependent on the ability to successfully recruit as a method to 

safeguard their genetic variability and maintain population demography. Predictable environmental 

cycles, particularly lunar cycles, have enabled corals to entrain their reproductive patterns to release 

larvae/ gametes during the specific lunar  phases thus optimizing external fertilization success, 

appropriate larval dispersal and efficient coral recruitment. The ability of F. fragum to bet- hedge as it 

concerns reproductive strategies has important consequence for the future persistence of corals in 

changing environmental conditions. Further research is needed to determine whether bet- hedging 

reproduction is prevalent in scleractinian corals or restricted to certain species or reproductive modes.   
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7.0 APPENDIX  

1. Data from HOBO loggers: light intensity and temperature measurements in lunar treatment tank 

(top) recorded for 6 months, and CNM treatment tank (bottom) recorded for 3 months 
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