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Abstract

In this thesis we consider isomorphisms amongst certain classes of cyclically presented

groups. We give isomorphism theorems for two families of cyclically presented groups,

the groups Gn(h, k, p, q, r, s, l), and the groups Gε
n(m, k, h), which were introduced by Cavicchi-

oli, Repovs and Spaggiari. These families contain many subfamilies of cyclically presented

groups, we have results for two of them, the groups Gn(m, k), which were introduced by

Johnson and Mawdesley, and the groups Γn(k, l), which were introduced by Cavicchioli,

Repovs and Spaggiari.

The abelianization of the Fibonacci groups F(2,n) was proved by Lyndon to be finite and

its order can be expressed in terms of the Lucas numbers. Bardakov and Vesnin have

asked if there is a formula for the order of the abelianization of Gn(m, k) groups that can

be expressed in terms of Fibonacci numbers. We produce formulas that compute the order

of Gpm(x0xmx±1
k )ab,Gpk(x0xmx±1

k )ab for certain values of p where m, k are coprime, and for the

groups Γn(1, n
2 − 1)ab (this formula is given in terms of Lucas numbers).

The values of the number of non-isomorphic Gn(m, k) groups was conjectured by Cavic-

chioli, O’Brien and Spaggiari for n = pl, where p is prime and l is a positive integer, we

show that these values provide an upper bound for the number of non-isomorphic Gn(m, k)

groups. We also give lower bounds and upper bounds for the number of non- isomorphic

Gn(m, k) and Γn(k, l) groups for certain values of n. Similar to the investigation of the type

of isomorphisms of Gn(m, k) groups for n ≤ 27 that was carried by Cavicchioli, O’Brien and

Spaggiari, we perform a similar investigation for Γn(k, l) groups for n ≤ 29.
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Chapter 1

Introduction

1.1 Introduction

In this chapter, we give in Section 1.2 initial definitions and background material about

cyclically presented groups. In Section 1.3, we present some families of groups that we

have results about such as the family of groups Gn(h, k, p, q, r, s, `) which were introduced

by Cavicchioli, Repovs, and Spaggiari in [CRS03], and the family of the groups Gε
n(m, k, h),

which were introduced by Cavicchioli, Repovs, and Spaggiari in [CRS05]. Both of theses

families contain various families of cyclically presented groups, such as the groups Gn(m, k)

and Γn(k, l) which we will consider in Sections 1.5 and 1.6. We give essential definitions

of circulant matrices in Section 1.4, which are important to understand the structure of

cyclically presented groups. Thesis outline will be given in Section 1.7.

1.2 Introduction to Cyclically Presented Groups

Cyclically presented groups is a rich source of interesting groups. It provides a wide range

of study as it is connected to many branches of mathematics. We study isomorphisms

amongst particular classes of cyclically presented groups.

Definition 1.2.1. Let G be a group generated by a set X = {x0, x1, ..., xn−1}. Each element

of G can be expressed as a product of x±1
i , 0 ≤ i ≤ n − 1. such a product is called a word

ω = ω(x0, ..., xn−1).

1



1.3. Families of cyclically presented groups 2

Definition 1.2.2. A group F is said to be free on a subset X ⊆ F if, for any group G and any

mapping θ : X → G, there is a unique homomorphism θ′ : F → G such that xiθ′ = xiθ for

all xi ∈ X.

Definition 1.2.3. Let ω = ω(x0, ..., xn−1) be a cyclically reduced word in the free group F

with generators x0, ..., xn−1 and let θ(xi) = xi+1 for each 0 ≤ i ≤ n − 1 (subscripts mod n). The

presentation

Gn(ω) = 〈x0, x1, ..., xn−1 | ω, θ(ω), ..., θn−1(ω)〉

is said to be a cyclic presentation, and the group Gn(ω) that defined by Gn(ω) is called a

cyclically presented group.

1.3 Families of cyclically presented groups

We present here two families and many subfamilies of cyclic presentations of groups which

we have results for.

[I] The family Gn(h, k, p, q, r, s, `), which was introduced by Cavicchioli, Repovš and

Spaggiari in [CRS03].

Gn(h, k, p, q, r, s, `) = Gn((
r−1∏
j=0

x jp)`(
s−1∏
j=0

xh+ jq)−k)

= 〈x0, x1, ..., xn−1 | (xixi+p...xi+p(r−1))` =

(xi+hxi+h+q...xi+h+q(s−1))k, i = 0, ...,n − 1〉 (1.1)

where r ≥ 1, s ≥ 1, 0 ≤ p, q, h ≤ n − 1, `, k ∈ Z, and all subscripts are taken modulo n.

This family contains many classes of cyclic presented groups, considered before by

different authors. These groups were studied in terms of their topological properties

in [CRS03], and they illustrated them as follow

(1) The groups Gn(s, c, 1, 1, r, 1, 1) = Gn(x0x1...xr−1x−c
s ), which were introduced in [JO94] and

denoted by F(r, s, c,n). This group is a generalization of the following groups

(a) The groups Gn(r, 1, 1, 1, r, 1, 1) = Gn(x0x1...xr−1x−1
r ), which were introduced in [JWW74]
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and denoted by F(r,n). They are called Fibonacci groups and in terms of isomorphisms

they give in [JWW74] a table that is showing in most cases isomorphisms for n, r ≤ 7. They

were also studied by many authors, geometrically (see for example [HKM98]).

(b) The groups Gn(r + k − 1, 1, 1, 1, r, 1, 1) = Gn(x0x1...xr−1x−1
r+k−1), which were introduced

in [CR75c] and denoted by F(r,n, k).

(2) The groups Gn(`,−1, k, 0, 2, 1, 1) = Gn(x0xkx`), which the groups we denote Γn(k, `), which

were introduced in [CRS05], and studied further in [EW10].

(3) The groups Gn(k−1, 1, q, q, r, s, 1) = Gn((
r−1∏
j=0

x jq)(
s−1∏
j=0

xk+ jq)−1), which were introduced in [Pri95]

and denoted by P(r,n, k, s, q). They generalize the following groups

(a) The groups R(r,n, k, h) = Gn((r−1)h+k, 1, h, 0, r, 1, 1), which were introduced in [CR75a]

and denoted by R(r,n, k, h). They are called Fibonacci type groups and studied in terms of

isomorphisms by different people (see for example [CR75a]).

(b) The groups Gn(k, 1,m, 1, 2, 1, 1) = Gn(x0xmx−1
k ), which were were introduced in [JM75].

They are called Fibonacci type groups and subsequently studied in [BV03], [COS08], [Wil09],

see [Wil12] for survey of these groups Gn(x0xmx−1
k ). They are generalizations of the Gilbert-

Howie groups defined in [GH95] as

H(n,m) = Gn(x0xmx−1
1 ) = Gn(m, 1).

(c) The groups Gn(r, 1, 1, 1, r, k, 1) = Gn((x0x1...xr−1)(xrxr+1...xr+k)−1, which were introduced

in [CR75b] and denoted by H(r,n, k). These groups F(r,n, k),H(r,n, k) are present general-

izations of the Fibonacci groups F(r,n), and also have been studied topologically and

geometrically (see [BV03], [Odo99] and [SV00]).

[II] The family Gε
n(m, k, h), which was introduced by Cavicchioli, Repovš and Spaggiari

in [CRS05]

Gε
n(m, k, h) = 〈x0, x1, ..., xn−1 | xa

i x
b
i+kx

a
i+h+m = (xr

i+hxr
i+m)s, i = 0, ...,n − 1〉 (1.2)

where ε = (a, b, r, s) ∈ Z4,n ≥ 2,m, k and h are taken modulo n, and the integer parameters

m, k and h are taken modulo n.

This class of groups contains also well-known groups considered by different people,
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most of these groups are illustrated in [CRS05], including the following

(1) If a = b = s = 1, r = 2 and h = 0, then the groups Gε
n(m, k, h) have defining relations

xixi+m = xi+k of the groups Gn(m, k) , as described above.

(2) If a = s = 1, b = −1, r = 2,m = k, k = ` and h = 0, then the groups Gε
n(m, k, h) have

defining positive relators xixi+kxi+` of the groups Γn(k, l), which described above.

Results about these two families of groups will be given in Chapter 2.

Definition 1.3.1. The abelianization of Gn(ω) group can be defined by

Gn(ω)ab = 〈x0, x1, ..., xn−1 | ω, θ(ω), ..., θn−1(ω), xix j = x jxi, 0 ≤ i, j ≤ n − 1〉. (1.3)

1.4 Circulant matrices

Circulant matrices play a role in understanding the structure of cyclically presented groups,

we give essential definitions of circulant matrices (see [Dav12])

Definition 1.4.1. The polynomial f (t) = fn,ω(t) associated with the cyclically presented

group G = Gn(ω) is given by

f (t) =

n−1∑
i=0

aiti (1.4)

where ai is the exponent sum of xi in ω, 0 ≤ i ≤ n − 1.

Since the n permutants of ω under powers of θ comprise a set of defining relators for

Gn(ω), it follows that the matrix

C =



a0 a1 . . . an−1

an−1 a0 . . . an−2

. . . . . .

. . . . . .

. . . . . .

a1 a2 . . . a0


(1.5)

is a relation matrix for Gn(ω)ab. By [Dav12, Equation (3.2.14)], [Joh80, Page 77-Theorem 1],

its determinant is known.
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Theorem 1.4.2. [Joh80, Page 77-Theorem 1] With the notation of (1.4) and (1.5)

det(C) =

n−1∏
i=0

f (ωi), (1.6)

where ωi ranges over the set of complex nth roots of unity.

Accordance with the theory of §6 of [Joh80] we can write
∏
θn=1

f (θ) =
n−1∏
i=0

f (ωi), and we

have

Theorem 1.4.3. [Joh80, Page 77-Theorem 2] If f is the polynomial associated with ω, then

|Gn(ω)ab
| = |

∏
θn=1

f (θ)|. (1.7)

Therefore by (1.6),(1.7) we have.

|Gn(ω)ab
| = |det(C)|. (1.8)

det(C) = 0 (C is singular) is interpreted as Gn(ω)ab is infinite, otherwise Gn(ω)ab is finite.

Put

Rn( f ) =
∏
θn=1

f (θ). (1.9)

Now the following lemma is in [Dav12, Page (76)] and [Odo99, Lemma 2.1], which will

be used in Chapter 3 in finding the order of the abelianization.

Lemma 1.4.4. [Dav12, Page (76)], [Odo99, Lemma 2.1] Let f (x) ∈ Z[x], deg f = k ≥ 1, and

suppose that f (x) = c
k∏

j=1
(x − β j) ∈ C[x], where 0 , c ∈ Z. Then

Rn( f ) =
(
(−1)kc

)n
k∏

j=1

(βn
j − 1). (1.10)

Definition 1.4.5. Any finitely generated abelian group is isomorphic to a group of the form G0⊕Zβ

where G0 is a finite abelian group and β is called the Betti number (or torsion-free rank of Gn(ω))

(see for example [Fra03, Theorem 2.11]). Therefore Gn(ω) is infinite if and only if β(Gn(ω)) ≥ 1.
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The following method for calculating Betti number for cyclically presented groups was

observed in [Wil17].

Let g(t) = tn
− 1, it is shown in the following [Ing56], [New83, Theorem 1] that the rank

of C can be expressed in terms of the polynomials f , g.

Theorem 1.4.6. [Ing56], [New83, Theorem 1] The rank of C is given by the formula

r(C) = n − deg(gcd( f (t), g(t))). (1.11)

and so

β(Gn(ω)ab) = deg(gcd( f (t), g(t))). (1.12)

In the following two sections we will pay attention to the groups Gn(m, k),Γn(k, l).

1.5 Generalized Fibonacci Type Groups Gn(m, k).

This class of cyclically presented groups Gn(m, k) was introduced by Johnson and Mawdes-

ley in [JM75], and studied by Bardakov in [BV03], then by Cavicchioli, O’Brien, and

Spaggiari in [COS08], and Williams [Wil09], and revisited by Williams in [Wil12], and can

be defined as

Gn(m, k) = 〈x0, x1, ..., xn−1 | xixi+m = xi+k(0 ≤ i ≤ n − 1)〉 (1.13)

The groups generalize various groups that have previously been studied such as: Gilbert

and Howie groups H(n,m) = Gn(m, 1), see [GH95], Conway’s Fibonacci groups F(2,n) =

Gn(1, 2) [CWLF67], and the Sieradski groups S(2,n) = Gn(2, 1) [Sie86]. As described in

Section 1.3 the groups Gn(m, k) fit into the wider classes of cyclically presented groups

R(r,n, k, h) of [CR75b], P(r,n, k, s, q) of [Pri95], Gε
n(m, k, h) of [CRS05] and Gn(h, k, p, q, r, s, `) of

[CRS03].

Definition 1.5.1. The presentation Gn(m, k) is said to be irreducible if n,m, k satisfy

0 < m < k < n − 1, (n,m, k) = 1,
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and is strongly irreducible if it is irreducible and additionally

(n, k) > 1, (n, k −m) > 1.

Lemma 1.5.2. [BV03, Lemma1.2] The group Gn(m, k) is isomorphic to the free product of (n,m, k)

copies of GN(M,K) where N = n/(n,m, k),M = m/(n,m, k),K = k/(n,m, k).

Lemma 1.5.3. [BV03, Lemma1.2]

a. Gn(m, 0) = Gn(m,m) = 1;

b. Gn(0, k) is isomorphic to the free product of (n, k) copies of Z2n−1.

By Lemma 1.5.2 and Lemma 1.5.3 we may assume (and often will) that (n,m, k) = 1 and

1 ≤ m , k ≤ n − 1.

1.5.1 Finiteness

Building on [GH95] and [Edj03], a classification of finite groups Gn(m, k) was given in [Wil09]

with 2 exceptions. The groups are described in Section 4 of [Wil12] when n < 9, and when

n = 9 we have

Theorem 1.5.4. [Wil12, Theorem 4.4] Let n = 9, 1 ≤ m , k ≤ n−1, (n,m, k) = 1. Then Gn(m, k) is

isomorphic to exactly one of F(2, 9),S(2, 9),H(9, 3),H(9, 4),H(9, 7). The groups F(2, 9),S(2, 9),H(9, 3)

are infinite; it is unknown whether H(9, 4),H(9, 7) are finite or infinite.

For n ≥ 10 the classification of finite groups Gn(m, k) is given by the following theorem.

Theorem 1.5.5. ( [GH95], [Wil09]) Let n ≥ 10, 1 ≤ m , k ≤ n − 1, and (n,m, k) = 1. Then

Gn(m, k) is finite if and only if 2k ≡ 0 mod n or 2(k − m) ≡ 0 mod n, in which case Gn(m, k) � Zs

where s = 2
n
2 − (−1)m+ n

2 .

Lemma 1.5.6. [Wil09, Lemma 3] Suppose that (m, k) = 1, k . 0 mod n and either 2k ≡ 0 or

2(k −m) ≡ 0 mod n. Then Gn(m, k) � Zs where s = 2
n
2 − (−1)m+ n

2 .
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1.5.2 Abelianization

We will apply different techniques on abelianization of groups in order to identify isomor-

phism types.

The survey article [Wil12] includes the following theorems. For the Fibonacci groups

F(2,n) the order of F(2,n)ab is given by the following theorem, where Ln denotes the nth

Lucas number where Ln+2 = Ln+1 + Ln, L0 = 2,L1 = 1.

Theorem 1.5.7. (Lyndon, [CWLF67]) |F(2,n)ab
| = Ln − 1− (−1)n . In particular, F(2,n)ab is finite

for all n.

Theorem 1.5.8. (Bumby, [CWLF67])

F(2,n)ab =



Zs i f (n, 6) = 1

Z2 ⊕Z2s i f (n, 6) = 2

Zs ⊕Zs i f (n, 6) = 3

Z2 ⊕Z5s i f (n, 6) = 6

where s can be found from Theorem 1.5.7

For the Sieradski groups, the structure of S(2,n)ab is given by the following theorem

Theorem 1.5.9. ( [JO94], [COS08])

S(2,n)ab =



1 i f (n, 6) = 1

Z3 i f (n, 6) = 2

Z2 ⊕Z2 i f (n, 6) = 3

Z ⊕Z i f (n, 6) = 6

1.5.3 Isomorphisms Problems of Gn(m, k).

For any n ≥ 2, let f (n) denotes the number of isomorphisms types among the irreducible

groups Gn(m, k) and g(n) denotes the number of abelianization isomorphisms (note that

f (n) is different from f (t) in (1.4)). The general result on isomorphisms is the following

theorem, which is a corrected simplification of [BV03, Theorem 1.1]. Although developed
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independently, it is in fact a generalization of [GH95, Lemma 2.1] which deals with the

case k = k′ = 1.

Theorem 1.5.10. [COS08, Theorem 2] Let Gn(m, k) and Gn(m′, k′) be irreducible groups and

assume that (n, k′) = 1, (n,m − k) = 1. If m′(m − k) ≡ mk′ mod n then Gn(m, k) is isomorphic to

Gn(m′, k′).

Lemma 1.5.11. [BV03, Lemma 1.3]

Gn(m, k) � Gn(n −m,n −m + k).

By Lemma 1.5.11 we may also assume m < k.

Further isomorphisms are given in the following proposition.

Proposition 1.5.12. [COS08, Proposition 6.]

1. Gn(m, k) � Gn(m,n + m − k) � Gn(n −m,n −m + k).

2. If (n, t) = 1, then Gn(m, k) � Gn(mt, kt).

3. G2h(2h − 1, 2h − 2) � G2h(2h − 1, 1) � G2h(1, 2h − 1) � G2h(1, 2) � F(2, 2h).

The following tells us that in certain cases Gn(m, k) is isomorphic to a Gilbert-Howie

group.

Lemma 1.5.13. [BV03, Lemma 1.3.] - [Wil09, Lemma 3.4]

a. If (n, k) = 1 then Gn(m, k) � H(n, t) where tk ≡ m mod n;

b. If (n, k −m) = 1 then Gn(m, k) � Gn(t, 1) = H(n, t) where t(k −m) ≡ n −m mod n.

Similarly, if (n,m) = 1 then Gn(m, k) � Gn(1, k′) where k′ = kt where tm ≡ 1 mod n.

The following conjecture was stated in [COS08]

Conjecture 1.5.14. [COS08, Conjecture 8] If n = pl for an odd prime p and positive integer l, then

f (n) = pl
−

(p−1)
2 p(l−1)

− 1. If l > 2 then f (2l) = 3(2l−2).
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We will show in Chapter 6 that the values given in Conjecture 1.5.14 are upper bound

for f (n).

The following questions are from [BV03]

Question 1.5.15. [BV03, Question 2] Is it possible to compute the function f (n) which, given an

integer n ≥ 3, yields the number of pairwise non isomorphic groups Gn(m, k), where 0 < m < k < n.

Question 1.5.16. [BV03, Question 5] Can groups Gn(m, k) and G′n(m′, k′) be isomorphic for

n , n′?

As in Theorem 1.5.7, the abelianization of the Fibonacci groups F(2,n) is finite and its

order is equal to Ln − 1 − (−1)n, where Ln is Lucas number and appears in [Joh80] in the

form fn − 1 − (−1)n, where fn is a Fibonacci number.

Question 1.5.17. [BV03, Question 6] Does there exist a similar formula which gives the order of

an abelianization of Gn(m, k) if the abelianization is finite? Can such a formula be given in terms of

numbers generalizing the fibonacci numbers?

Further results on isomorphisms of cyclically presented groups appear in [BP16]. We

give in Chapter 4 lower bounds for f (n) of Gn(m, k) groups and for certain values of n. In

Chapter 5 we investigate when Γn(k, l) � Γ′n(k′, l′) requires n = n′ and when it does not.

In Chapter 3 we produce formulas that compute the order of Gpm(x0xmx±1
k )ab,Gpk(x0xmx±1

k )ab

for certain values of p where (m, k) = 1. In Chapter 5 we produce a formula that compute

|Γn(1, n
2 − 1)ab

|when n ≡ 2 or 4 mod 6, the formula includes Lucas number. Also in Chapter

6 we give results about the number of non-isomorphic Γn(k, l) groups.

1.5.4 Investigating Gn(m, k) for small values of n

Cavicchioli, O’Brien and Spaggiari in [COS08] investigated isomorphisms among the ir-

reducible groups Gn(m, k). They obtained the value of f (n) for all n ≤ 27. They did this

by using isomorphism results to obtain an upper bound on f (n) and used invariants of

groups to obtain a lower bound on f (n). U(n) denotes the least upper bound they were

able to obtain, L(n) denotes the greatest lower bound they were able to obtain (so when

L(n) = U(n) we have f (n) = L(n) = U(n) ). For the cases n = 17, 19, 21, 23 they showed that
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f (17) = 7 or 8, f (19) = 8 or 9, f (21) = 15 or 16 and f (23) = 10 or 11, for all other cases they

gave the exact value of f (n).

They summarise their results in [COS08, Table 1], which we reproduce as Table 1.1, and

listed the unresolved cases in [COS08, Table 2], which we produce as Table 1.2.
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Table 1.1: Lower and upper bounds for f (n) for n ≤ 27 ( [COS08, Table 1]).

n L(n) U(n) Parameters (m, k)

3 1 1 (1, 2)

4 2 2 (1, 2), (2, 3)

5 2 2 (1, k)k ∈ {2, 3}

6 5 5 (1, k)k ∈ {2, 3}, (2, 3), (3, 4), (4, 5)

7 3 3 (1, k)k ∈ {2, 3, 4}

8 6 6 (1, k)k ∈ {2, 3, 4}, (2, 3), (2, 5), (4, 5)

9 5 5 (1, k)k ∈ {2, ..., 5}, (3, 4)

10 8 8 (1, k)k ∈ {2, ..., 5}, (2, k)k ∈ {3, 5}, (4, 7), (5, 6)

11 5 5 (1, k)k ∈ {2, ..., 6}

12 12 12 (1, k)k ∈ {2, ..., 6}, (2, k)k ∈ {3, 7}, (3, k)k ∈ {4, 5}, (4, k)k ∈ {5, 7}, (6, 7)

13 6 6 (1, k)k ∈ {2, ..., 7}

14 11 11 (1, k)k ∈ {2, ..., 7}, (2, k)k ∈ {3, 5, 7}, (4, 9), (7, 8)

15 12 12 (1, k)k ∈ {2, ..., 8}, (3, k)k ∈ {4, 5, 7}, (5, 6), (5, 7)

16 12 12 (1, k)k ∈ {2, ..., 8}, (2, k)k ∈ {3, 5, 9}, (4, 5), (8, 9)

17 7 8 (1, k)k ∈ {2, ..., 9}

18 17 17 (1, k)k ∈ {2, ..., 9}, (2, k)k ∈ {3, 5, 7, 9}, (3, k)k ∈ {4, 7}, (4, 11), (6, 7), (9, 10)

19 8 9 (1, k)k ∈ {2, ..., 10}

20 18 18 (1, k)k ∈ {2, ..., 10}, (2, k)k ∈ {3, 5, 11}, (4, k)k ∈ {5, 7, 11}, (5, 6), (5, 8), (10, 11)

21 15 16 (1, k)k ∈ {2, ..., 11}, (3, k)k ∈ {4, 5, 7, 8}, (7, 8), (7, 9)

22 17 17 (1, k)k ∈ {2, ..., 11}, (2, k)k ∈ {3, 5, 7, 9, 11}, (4, 13), (11, 12)

23 10 11 (1, k)k ∈ {2, ..., 12}

24 26 26 (1, k)k ∈ {2, ..., 12}, (2, k)k ∈ {3, 5, 7, 13}, (3, k)k ∈ {4, 5, 8, 10},

(4, k)k ∈ {5, 7}, (6, k)k ∈ {7, 13}, (8, k)k ∈ {9, 13}, (12, 13)

25 14 14 (1, k)k ∈ {2, ..., 13}, (5, 6), (5, 7)

26 20 20 (1, k)k ∈ {2, ..., 13}, (2, k)k ∈ {3, 5, 7, 9, 11, 13}, (4, 15), (13, 14)

27 17 17 (1, k)k ∈ {2, ..., 14}, (3, k)k ∈ {4, 5, 10}, (9, 10)
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Table 1.2: Possible isomorphisms amongst Gn(m, k) [COS08, Table 2].

n Parameters (m, k)

17 (1,3), (1,4)

19 (1,3), (1,6)

21 (1,6), (1,9)

23 (1,3), (1,7)

1.5.5 Initial results

We interpreted [COS08, Table 1] and expressed in Table 1.4 as many of the groups as

possible as Gilbert and Howie groups H(n,m) = Gn(m, 1) for n ≤ 27. In order to obtain that

table, we applied isomorphism relations of [COS08] and [Wil14], also we used computer

program (Maple) to compute the abelianization of the groups. The table contains type of

groups whenever we know from previous studies, which group is finite or infinite and the

abelianization for each group, in addition to the values of f (n) and g(n). The unsolved

cases will appear in Table 1.3. We give here part of the table in Table 1.4 below and the

full table will appear in Table A.1 in the appendix. This table will be used in Chapter 4 in

counting Gn(m, k) groups.

Table 1.3: Possible isomorphisms (unsolved cases) amongst Gn(m, 1) = H(n,m).

n m

17 6, 11

19 9, 15

21 4,13

23 8,10
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Table 1.4: Isomorphisms classes of Gn(m, k) groups for n ≤ 27.

n f (n) g(n) Groups type of group Details Abelianization
3 1 1 H(3, 2) - Q8 Z2 ⊕Z2

4 2 2 H(4, 2) S(2, 4) SL(2, 3) Z3

H(4, 3) F(2, 4) Z5 Z5

5 2 2 H(5, 2) S(2, 5) SL(2, 5) 1
H(5, 3) F(2, 5) Z11 Z11

6 5 4 H(6, 2) S(2, 6) infinite Z ⊕Z
H(6, 3) - Z3

2 o Z7 Z7

H(6, 4) - Z9 Z9

H(6, 5) F(2, 6) Infinite Z4 ⊕Z4

G6(1, 3) - Z7 Z7

7 3 3 H(7, 2) S(2, 7) infinite 1
H(7, 3) - infinite Z2 ⊕Z2 ⊕Z2

H(7, 4) F(2, 7) Z29 Z29

8 6 6 H(8, 2) S(2, 8) infinite Z3

H(8, 3) - group of order 310.5 Z5

H(8, 4) - infinite Z15

H(8, 5) - Z17 Z17

H(8, 6) - infinite Z3 ⊕Z3 ⊕Z3

H(8, 7) F(2, 8) infinite Z3 ⊕Z15

9 5 5 H(9, 2) S(2, 9) infinite Z2 ⊕Z2

H(9, 3) - infinite Z7

H(9, 4) - Unknown Z19

H(9, 5) F(2, 9) infinite Z2 ⊕Z38

H(9, 7) - Unknown Z37

10 8 5 H(10, 2) S(2, 10) Infinite Z3

H(10, 3) - Infinite Z11

H(10, 4) - Infinite Z33

H(10, 5) - Infinite Z31

H(10, 6) - Z33 Z33

H(10, 7) - Infinite Z11

H(10, 9) F(2, 10) Infinite Z11 ⊕Z11

G10(1, 5) - Z31 Z31
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We record here the following propositions which were suggested by Table 1.4, and do

not seem to have been explicitly stated before. The main results of Gn(m, k) that we obtained

will be shown in Chapters 3, 4 and 5.

Proposition 1.5.18. Let n ≥ 10 ,n ≡ 2 mod 4 then the strongly irreducible group Gn(1, n
2 ) is not

isomorphic to H(n,m) for any 1 ≤ m ≤ n − 1.

Proof. Lemma 1.5.6 implies that Gn(1, n
2 ) � Zs where s = 2n/2

− 1. Now assume that

Gn(1,n/2) � H(n,m) = Gn(m, 1) therefore Gn(m, 1) is finite of the same order. If Gn(m, 1) is

finite then by Theorem 1.5.5, we have either 2k ≡ 0 mod n (impossible since k = 1,n ≥ 10)

or 2(m − 1) ≡ 0 mod n. Since n ≡ 2 mod 4 we have (m − 1) is odd, so m must be even.

Therefore by Theorem 1.5.5 we have that Gn(m, 1) � Zs where s = 2n/2
− (−1)m+n/2 = 2n/2 + 1,

so Gn(1,n/2) � Gn(m, 1). �

Proposition 1.5.19. If Gn(m, k) is strongly irreducible and finite then n ≡ 2 mod 4 and Gn(m, k) �

Z
2

n
2 −1

.

Proof. Assume that Gn(m, k) is strongly irreducible and finite then by Theorem 1.5.5 we

have that n is even and

Gn(m, k) � Z
2

n
2 −(−1)m+ n

2
(1.14)

In here we need to show that m + n
2 is always even so that Gn(m, k) � Z

2
n
2 −1

. Now since that

n is even there are two cases

Case 1: n ≡ 0 mod 4

From Theorem 1.5.5, then either 2k ≡ 0 mod n or 2(k − m) ≡ 0 mod n. If 2k ≡ 0 mod n, then

k = n
2 (since m ≤ k ≤ n) and k is even, therefore m can not be even since if m is even, then

(n,m, k) = (2k,m, k) ≥ 2 this is contradiction with Gn(m, k) irreducible. Now if m is odd then

1 = (n,m, k) = (2k,m, k) = (m, k) but 1 < (n, k−m) = (2k, k−m) = (k, k−m) = (k,m) = 1 which

is also contradiction since Gn(m, k) is strongly irreducible.

If 2(k − m) ≡ 0 mod n, k − m = n
2 and it is even so either m, k are even or odd. If m, k

are even then (n,m, k) = (2k,m, k) ≥ 2 contradict the assumption. If m, k are odd then

1 < (n, k) = (2(k − m), k) = (2(k − m), (k − m), k) = (n,m, k) = 1 which also contradicts the

assumption. Therefore when n ≡ 0 mod 4 there are no cases to consider.
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Case 2: n ≡ 2 mod 4

If 2k ≡ 0 mod n then k = n
2 and it is odd, if m is even, k − m is odd and then by strong

irreducibility we have 1 < (n, k−m) = (2k, k−m) = (k, k−m), but (k, k−m) = (k,m) = 1 this is

a contradiction. Thus m is odd, so m+ n
2 is even and the results follows from equation (1.14).

If 2(k − m) ≡ 0 mod n therefore k − m = n
2 and it is odd so either k is even, m is odd

or vice versa. If k is odd, m is even then 1 < (n, k) = (2(k − m), k) = (k − m, k) = (m, k) but

1 = (n,m, k) = (2(k −m),m, k) = (m, k) > 1 which contradicts the assumption. If k is even, m

is odd then m + n
2 is even and Gn(m, k) � Z

2
n
2 −1

. �

Proposition 1.5.20. Let n be even, then H(n, n
2 + 1) � Zs where s = 2

n
2 + 1.

Proof. By Lemma 1.5.6, since (m, k) = 1, k . 0 mod n, k . m mod n and 2(k − m) = 2(1 −

n/2 − 1) = −n ≡ 0 mod n then Gn(m, k) = Gn(n/2 + 1, 1) = H(n,n/2 + 1) � Zs where

s = 2n/2
− (−1)m+n/2. Now since m + n/2 = n/2 + 1 + n/2 = n + 1 (which is odd) then

s = 2n/2 + 1. �

1.6 Γn(k, l) groups

We also continue an investigation that was carried by Edjvet and Williams in [EW10] into

the cyclic presentation

Pn(k, l) = 〈x0, x1, ..., xn−1 | xixi+kxi+l = 1, i = 0, 1, ...,n − 1〉

and the group Γn(k, l), where 1 ≤ k, l ≤ n−1 and subscripts are taking mod n. They described

the groups’ structures, and stated their results in terms of the following conditions

(A) (A)n ≡ 0 (mod 3) and k + l ≡ 0 (mod 3).

(B) k + l ≡ 0 (mod n) or 2l − k ≡ 0 (mod n) or 2k − l ≡ 0 (mod n).

(C) 3l ≡ 0 (mod n) or 3k ≡ 0 (mod n) or 3(l − k) ≡ 0 (mod n).

(D) 2(k + l) ≡ 0 (mod n) or 2(2l − k) ≡ 0 (mod n) or 2(2k − l) ≡ 0 (mod n).
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They summarized their results for (n, k, l) = 1, k , l in terms of three conditions (A), (B), (C)

being true or false in [EW10, Table 1], which we reproduce as Table 1.5, (where α =

3(2n/3
− (−1)n/3), γ = (2n/3

− (−1)n/3)/3)), and they denoted by∞ the group of infinite order

whose structure is unknown, Metacyclic denotes a metacyclic group of order s = 2n
− (−1)n

(G is called metacyclic if it has a normal subgroup H such that both H and G/H are

cyclic), Large denotes a large group (that is, one that has a finite index subgroup that maps

homomorphically onto the free group of rank 2).

Table 1.5: Summary of structures of Γn(k, l) [EW10, Table 1]

(A) (B) (C) Aspherical Abelianization Group
F F F Yes finite, 1 ∞

F F T No Zα Metacyclic
F T F No Z3 Z3

T F F n , 18 Yes ∞ Large
T F F n = 18 No Z ∗Z ∗Z19 Z ∗Z ∗Z19

T F T No Z ∗Z ∗Zγ Z ∗Z ∗Zγ

T T F No Z ∗Z Z ∗Z
T T T No Z ∗Z Z ∗Z

The following lemma was proved in [EW10] and gives isomorphisms between Γn(k, l)

groups

Lemma 1.6.1. [EW10, Lemma 2.1.] Let 1 ≤ k, l ≤ n − 1 then

1. Γn(k, l) � Γn(l − k,−k).

2. Γn(k, l) � Γn(l, k).

3. Γn(k, l) � Γn(k − l,−l).

4. Γn(k, l) � Γn(k, k − l).

5. If (k,n) = 1 then Γn(k, l) � Γn(1,Kl), where Kk ≡ 1( mod n).

6. If n is even and (l,n) = 1 then Γn(k, l) � Γn(1,Lk + 1), where Ll ≡ −1( mod n).

Corollary 1.6.2. [EW10, Corollary 5.2.] Suppose that (n, k, l) = 1, k , l. If non of (B), (C), (D)

hold then Γn(k, l) contains a non-abelian free subgroup.



1.7. Thesis outline 18

1.7 Thesis outline

In Chapter 2, we generalize an isomorphism theorem for the class of groups Gn(m, k), which

was proved in [BV03, Theorem 1.1.] and updated in [COS08, Theorem 2]. We generalize this

result to the class of groups Gn(h, k, p, q, r, s, `) which were introduced in [CRS03]. We also

have identified a mistake in the proof of isomorphism theorem was asserted in [CRS05],

about the groups Gε
n(m, k, h), and we provide a new isomorphism theorem for that group.

In Chapter 3, we give an answer for the first part of Question 1.5.17. We produce

formulas that compute the order of Gpm(x0xmx±1
k )ab,Gpk(x0xmx±1

k )ab for certain values of p

where (m, k) = 1. Similar formulas were given in [BW16, Corollary 4.5] for p ∈ {4, 6}. We

give formulas for p ∈ {2, 3, 4, 6, 12}. We use these formulas in Chapter 4 to determine lower

bounds for the number of non-isomorphic Gn(m, k) groups for certain values of n, and in

Chapter 5 to compute |Γn(1, n
2 − 1)ab

|.

In Chapter 4, we give an answer for Question 1.5.15. For certain values of n we calculate

lower bounds for the minimum number of generators of Gn(m, k)ab and we use this with

the finiteness classification of Gn(m, k) and the order of Gn(m, k)ab to give lower bounds for

the number of non isomorphic Gn(m, k) groups for certain values of n.

In Chapter 5, we give an answer for Question 1.5.15 when it considers Γn(k, l) groups

instead of Gn(m, k). We count Γn(k, l) groups, and give lower bounds of the number of non

isomorphic Γn(k, l) groups for certain values of n. These results suggest that the groups

Γn(1, n
2 − 1) deserve further study. We obtain results concerning their abelianization, and in

relation to Question 1.5.17 we provide a formula for the order |Γn(k, l)ab
| in terms of Lucas

numbers (where this abelianization is finite).

In Chapter 6, we prove that the values given in Conjecture 1.5.14 provide an upper

bound for f (n) of the groups Gn(m, k) where n = pl, p is prime. We also give results about

the upper bound of f (n) of Γn(k, l) groups, for n = pαqβ, and n = pαqβrγ, where p, q and r

are distinct primes We carry out a similar study of Gn(m, k) groups in [COS08] for Γn(k, l)

groups. We produce a table similar to Table 1.1 for Γn(k, l) groups for n ≤ 29.



Chapter 2

Isomorphism Theorems

2.1 Introduction

Our starting point for this chapter is the following isomorphism theorem for the class of

groups Gn(m, k), which is Theorem 1.5.10.

Theorem 2.1.1. [COS08, Theorem 2] Let Gn(m, k) and Gn(m′, k′) be irreducible groups and assume

that (n, k′) = 1. If m′(m − k) ≡ mk′ mod n then Gn(m, k) is isomorphic to Gn(m′, k′).

A version of this result was initially proved in [BV03, Theorem 1.1.]. In [COS08, Theorem

2] it was observed that the hypothesis (n, k′) = 1 (missing from the original statement)

is necessary. Following a comment from the referee of [COS08] this formulation was

obtained. In Section 2.2, we generalize this result to the class of groups Gn(h, k, p, q, r, s, `)

which were introduced in [CRS03]. In Section 2.3, we consider the groups Gε
n(m, k, h) which

were considered in [CRS05]. We have identified a mistake in the proof of isomorphism

theorem [CRS05, Theorem 2.6.], we show why the proof is wrong, and we provide a

corrected version for these groups. More information about Gn(h, k, p, q, r, s, `),Gε
n(m, k, h)

groups can be seen in Section 1.3.

19
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2.2 Gn(h, k, p, q, r, s, `) groups

Recall from the introduction that, let r ≥ 2, s ≥ 1, 0 ≤ p, q, h ≤ n − 1, `, k ∈ Z, we define the

group Gn(h, k, p, q, r, s, `) to be the group

Gn((
r−1∏
j=0

x jp)`(
s−1∏
j=0

xh+ jq)−k) = 〈x0, x1, ..., xn−1 | (xixi+p...xi+p(r−1))` =

(xi+hxi+h+q...xi+h+q(s−1))k, i = 0, ...,n − 1〉

Note: unlike in [CRS03], we allow `, k < 0. We obtain a condition under which the

groups Gn(h, k, p, q, r, s, `),Gn(h′, k, p′, q′, r, s, `) are isomorphic.

It is convenient to express our result in terms of parameters A,B,A′,B′ where

A = h,B = −p(r − 1) + A + q(s − 1),A′ = h′,B′ = −p′(r − 1) + A′ + q′(s − 1) (2.1)

Our proof of the following theorem follows the method of the proof of Theorem 2.1.1 [CRS03,

BV03].

Theorem 2.2.1. If (n,A) = 1, (n,B′) = 1, p′A ≡ −pB′ mod n, q′A ≡ −qB′ mod n, then

Gn(h, k, p, q, r, s, `) � Gn(h′, k, p′, q′, r, s, `).

Proof. Since (n,B′) = 1 there exist integers α, β ∈ Z such that αn + βB′ = 1 therefore βB′ ≡ 1

mod n. Now by setting f = βp′, the condition p′A ≡ −pB′ mod n implies that

f A ≡ βp′A mod n

≡ −βpB′ mod n by assumption

f A ≡ −p mod n, (2.2)

and

f B′ ≡ βp′B′ mod n by assumption

f B′ ≡ p′ mod n. (2.3)
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Similarly by setting g = βq′,the condition q′A ≡ −qB′ mod n implies that

gA ≡ βq′A mod n

≡ −βqB′ mod n by assumption

gA ≡ −q mod n, (2.4)

gB′ ≡ q′B′β mod n by assumption

gB′ ≡ q′ mod n. (2.5)

We will use conditions (2.2), (2.3), (2.4), (2.5) to complete the proof. Now let us consider

the group

Gn(h, k, p, q, r, s, `) � 〈x0, x1, ..., xn−1 | (xixi+p...xi+p(r−1))` =

(xi+Axi+A+q...xi+A+q(s−1))k, i = 0, ...,n − 1〉

Inverting the relations gives

� 〈x0, x1, ..., xn−1 | (x−1
i+p(r−1)...x

−1
i+px−1

i )` =

(x−1
i+A+q(s−1)...x

−1
i+A+qx

−1
i+A)k, i = 0, 1, ...,n − 1〉

put ci = x−1
i

� 〈c0, c1, ..., cn−1 | (ci+p(r−1)...ci+pci)` =

(ci+A+q(s−1)...ci+A+qci+A)k, i = 0, 1, ...,n − 1〉

put j = i + p(r − 1)

Gn(h, k, p, q, r, s, `) � 〈c0, c1, ..., cn−1 | (c j...c j−p(r−2)c j−p(r−1))` =

(c j−p(r−1)+A+q(s−1)...c j−p(r−1)+A+qc j−p(r−1)+A)k, j = 0, 1, ...,n − 1〉

� 〈c0, c1, ..., cn−1 | (c j...c j−p(r−2)c j−p(r−1))` =

(c j+B...c j+B−q(s−2)c j+B−q(s−1))k, j = 0, 1, ...,n − 1〉

Since (n,A) = 1 there exist ζ, δ ∈ Z such that ζn + δA ≡ 1 mod n therefore δA ≡ 1 mod n,
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now for each j = 0, 1, ...,n − 1 set u ≡ δ j mod n so cuA = cδ jA = c jδA = c j. Now we write

Gn(h, k, p, q, r, s, `) � 〈c0, c1, ..., cn−1 | (cuA...cuA−p(r−2)cuA−p(r−1))` =

(cuA+BcuA+B−q...cuA+B−q(s−2)cuA+B−q(s−1))k,u = 0, 1, ...,n − 1〉

� 〈c0, c1, ..., cn−1 |
( r−1∏
γ=0

cuA−γp

)`
=

( s−1∏
γ=0

cuA+B−γq

)k
,u = 0, ...(n − 1)〉 (2.6)

Now let us consider the group

Gn(h′, k, p′, q′, r, s, `) � 〈y0, y1, ..., yn−1 | (yiyi+p′ ...yi+p′(r−1))` =

(yi+A′yi+A′+q′ ...yi+A′+q′(s−1))k, i = 0, ...,n − 1〉

since (n,B′) = 1 then there exist α′, β′ ∈ Z such that α′n + β′B′ = 1 therefore β′B′ ≡ 1 mod

n. Now for each i = 0, 1, ...,n − 1 set v ≡ β′i mod n so yvB′ = yβ′iB′ = yiβ′B′ = yi. so we could

write

Gn(h′, k, p′, q′, r, s, `) � 〈y0, y1, ..., yn−1 | (yvB′yvB′+p′ ...yvB′+p′(r−1))` =

(yvB′+A′yvB′+A′+q′ ...yvB′+A′+q′(s−1))k, i = 0, ...,n − 1〉

� 〈y0, y1, ..., yn−1 |
( r−1∏
γ=0

yvB′+p′γ

)`
=

( s−1∏
γ=0

yvB′+q′γ+A′
)k
, v = 0, ...(n − 1)〉

(2.7)

Now define a map as follow

Φ : {c0, ..., cn−1} −→ {y0, ..., yn−1}

acting on the set of generators {c j| j = 0, ...,n − 1} = {cuA|u = 0, ...,n − 1} by the rule

Φ(cuA) = yuB′



2.2. Gn(h, k, p, q, r, s, `) groups 23

For each γ = 0, ..., r − 1

Φ(cuA−γp) = Φ(cuA+γ f A) using (2.2)

= Φ(c(u+γ f )A)

= y(u+γ f )B′

= yuB′+γ f B′

= yuB′+γp′ using (2.3)

and for each γ = 0, ..., s − 1

Φ(cuA+B−γq) = Φ(cuA−p(r−1)+A+q(s−1)+gγA) using (2.1), (2.4)

= Φ(cuA+ f A(r−1)+A−gA(s−1)+gγA) using (2.2), (2.4)

= Φ(c(u+ f (r−1)+1−g(s−1)+gγ)A)

= y(u+ f (r−1)+1−g(s−1)+gγ)B′

= yuB′+ f B′(r−1)+B′−gB′(s−1)+gB′γ

= yuB′+p′(r−1)−p′(r−1)+A′+q′(s−1)−q′(s−1)+q′γ using (2.3), (2.5), (2.1)

= yuB′+q′γ+A′

Comparing presentations (2.6), (2.7) it is clear that for each 0 ≤ γ ≤ (n − 1) that Φ is an

epimorphism.

Now let us define a map as follow

Θ : {y0, ..., yn−1} −→ {c0, ..., cn−1}

acting on the set of generators {y j| j = 0, ...,n − 1} = {yvB′ |v = 0, ...,n − 1} by the rule

Θ(yvB′) = cvA



2.2. Gn(h, k, p, q, r, s, `) groups 24

For each γ = 0, ..., r − 1

Θ(yvB′+γp′) = Θ(yvB′+γ f B′) using (2.3)

= Θ(y(v+γ f )B′)

= c(v+γ f )A

= cvA+γ f A

= cvA−pγ using (2.2)

and for each γ = 0, ..., s − 1

Θ(yvB′+q′γ+A′) = Θ(yvB′+gB′γ+B′+p′(r−1)−q′(s−1)) using (2.5), (2.1)

= Θ(yvB′+gB′γ+B′+ f B′(r−1)−gB′(s−1)) using (2.3), (2.5)

= Θ(y(v+gγ+1+ f (r−1)−g(s−1))B′)

= c(v+gγ+1+ f (r−1)−g(s−1))A

= c(vA+gAγ+A+ f A(r−1)−gA(s−1))

= c(vA−qγ+A−p(r−1)+q(s−1)) using (2.2), (2.4)

= cvA+B−qγ using (2.1)

Comparing presentations (2.6), (2.7) it is clear that for each 0 ≤ γ ≤ (n − 1) that

Θ : Gn(h′, k, p′, q′, r, s, `) → Gn(h, k, p, q, r, s, `) is an epimorphism and φ(Θ(yuB′)) = φ(cuA) =

yuB′ and Θ(φ(cuA)) = Θ(yuB′) = cuA, therefore φ−1 = Θ,Θ−1 = φ. thus the composition of

epimorphisms Gn(h, k, p, q, r, s, `) Φ
−→

Gn(h′, k, p′, q′, r, s, `) Θ
−→

Gn(h, k, p, q, r, s, `) shows that

Gn(h, k, p, q, r, s, `) � Gn(h′, k, p′, q′, r, s, `) �

Now we will apply Theorem 2.2.1 to classes of cyclic presentations of groups which

were considered previously, and have been shown in [CRS03] as special cases of the groups

Gn(h, k, p, q, r, s, `). see Section 1.2 for definition of the groups in the following corollaries.

Corollary 2.2.2. Suppose (n, s) = 1, then F(r, s, c,n) � F(r, r − s − 1, c,n).

Proof. F(r, s, c,n) = Gn(s, c, 1, 1, r, 1, 1) = Gn(x0x1...xr−1x−c
s ), then from (2.1) we have A = s,B =

s−r+1. Similarly F(r, r−s−1, c,n) = Gn(r−s−1, c, 1, 1, r, 1, 1) = Gn(x0x1...xr−1x−c
r−s−1), then from
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(2.1) we have A′ = r− s−1,B′ = (r− s−1)− (r−1) = −s, and in the notation Gn(h, k, p, q, r, s, `)

we have p = p′ = q = q′ = 1. since (n,A) = (n, s) = 1, (n,B′) = (n,−s) = 1 and p′.A = 1.s =

s,−pB′ = −1.(−s) = s, so p′A ≡ −pB′ mod n, also q′.A = 1.s = s,−qB′ = −1.(−s) = s, so

q′A ≡ −qB′ mod n. Therefore Theorem 2.2.1 implies that F(r, s, c,n) � F(r, r − s − 1, c,n). �

Corollary 2.2.3. Suppose (n, r + k − 1) = 1, then F(r,n, k) � F(r,n, 1 − r − k).

Proof. F(r,n, k) = Gn(r + k − 1, 1, 1, 1, r, 1, 1), then from (2.1) we have A = r + k − 1,B =

(r + k − 1) − (r − 1) = k. Similarly F(r,n, 1 − r − k) = Gn(−k, 1, 1, 1, r, 1, 1), then from (2.1)

we have A′ = −k,B′ = (−k) − (r − 1) = 1 − r − k, and in the notation Gn(h, k, p, q, r, s, `) we

have p = p′ = q = q′ = 1. Since (n,A) = (n, r + k − 1) = 1, (n,B′) = (n,−(r + k − 1)) = 1

and p′.A = 1.(r + k − 1) = r + k − 1,−pB′ = −1.(1 − r − k) = r + k − 1, so p′A ≡ −pB′ mod n,

also q′.A = 1.(r + k − 1) = r + k − 1,−qB′ = −1.(1 − r − k) = r + k − 1, so q′A ≡ −qB′ mod n.

Theorem 2.2.1 implies that F(r,n, k) � F(r,n, 1 − r − k). �

Corollary 2.2.4. Suppose (n, k− 1) = 1, (n, k′ − 1− q′(r− s)) = 1, q′(k− 1) ≡ −q(k′ − 1− q′(r− s))

mod n, then P(r,n, k, s, q) � P(r,n, k′, s, q′).

Proof. P(r,n, k, s, q) = Gn(k−1, 1, q, q, r, s, 1), then from (2.1) we have A = k−1,B = −q(r−1) +

k− 1 + q(s− 1) = k− q(r− s)− 1. Similarly P(r,n, k′, s, q′) = Gn(k′ − 1, 1, q′, q′, r, s, 1), then from

(2.1) we have A′ = k′− 1,B′ = −q′(r− 1) + k′− 1 + q′(s− 1) = k′− 1− q′(r− s). By assumptions

we have (n,A) = (n, k − 1) = 1, (n,B′) = (n, k′ − 1 − q′(r − s)) = 1 and q′A = q′(k − 1),−qB′ =

−q(k′ − 1 − q′(r − s)), so q′A ≡ −qB′ mod n, and since p = q, p′ = q′ we have p′A ≡ −pB′ mod

n, therefore Theorem 2.2.1 implies that Gn(k − 1, 1, q, q, r, s, 1) � Gn(k′ − 1, 1, q′, q′, r, s, 1) and

then P(r,n, k, s, q) � P(r,n, k′, s, q′). �

Let K = k − 1,K′ = k′ − 1, q = m, q′ = m′ In Corollary 2.2.4, then we have the following

corollary

Corollary 2.2.5. Suppose (n,K) = 1, (n,K′ − m′(r − s)) = 1,m′K ≡ −m(K′ − m′(r − s)) mod n,

then

P(r,n,K + 1, s,m) � P(r,n,K′ + 1, s,m′).

Now put r = 2, s = 1 we get the following corollary
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Corollary 2.2.6. [COS08, Theorem 2] Suppose (n,K) = 1, (n,K′ −m′) = 1,m′K ≡ −m(K′ −m′)

then Gn(m,K) is isomorphic to Gn(m′,K′).

Proof. Gn(m, k) = P(2,n,K+1, 1,m), and Gn(m′, k′) = P(2,n,K′+1, 1,m′), so the result follows

by putting r = 2, s = 1 in Corollary 2.2.5. �

Corollary 2.2.7. [GH95, Lemma 2.1.] Let n, t be non-negative integers with n > t such that

(n, t − 1) = 1. Let s satisfy 0 ≤ s < n and t ≡ (t − 1) s mod n then H(n, t) � H(n, s).

Proof. Since H(n, t) = Gn(t, 1) the proof follows from proof of Corollary 2.2.6, by setting

m = s,K = 1,m′ = t,K′ = 1. �

Corollary 2.2.8. Suppose (n, l) = 1, (n, l′ − k′) = 1 and k′l ≡ −k(l′ − k′) mod n, then Γn(k, l) �

Γn(k′, l′).

Proof. Γn(k, l) = Gn(l,−1, k, 0, 2, 1, 1) = Γn(x0xkxl), and by definition (2.1) we have A = l,B =

l−k, p = k, q = 0, we also have Γn(k′, l′) = Gn(l′,−1, k′, 0, 2, 1, 1) = Γn(x0xk′xl′), and A′ = l′,B′ =

l′ − k′, p′ = k′, q′ = 0. By hypotheses we have (n,A) = (n, l) = 1, (n,B′) = (n, l′ − k′) = 1, and

since p′A = k′l,−pB′ = −k(l′ − k′) therefore p′A ≡ −pB′ mod n, also since q = q′ = 0 therefore

q′A ≡ −qB′ mod n. Theorem 2.2.1 implies that Γn(m, k) � Γn(m′, k′). �

2.3 Gε
n(m, k, h) groups

Recall from the introduction, we have the groups Gε
n(m, k, h). For ε = (a, b, r, s) ∈ Z4,n ≥ 2,

m, k and h are modulo n, the group Gε
n(m, k, h) defined to be

Gε
n(m, k, h) = 〈x0, x1, ..., xn−1 | xa

i x
b
i+kx

a
i+h+m = (xr

i+hxr
i+m)s, i = 0, ...,n − 1〉

The following isomorphism theorem was asserted in [CRS05]

Theorem 2.3.1. [CRS05, Theorem 2.6.] Suppose that ρ = gcd(n, k − h − m) divides k′ and there
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exist positive integers α, β, γ and δ such that

α + β(k − h −m) ≡ 1 −m mod n,

γ + δ(k − h −m) ≡ 1 − h mod n,

α + βk′ ≡ 1 + m′ mod n,

γ + δk′ ≡ 1 + h′ mod n,

where 1 ≤ α, γ ≤ ρ and 1 ≤ β, δ ≤ n
ρ . Then Gε

n(m,n − (h + m), h) � Gε
n(m′, 2(h′ + m′), h′).

We have identified a mistake in the proof of Theorem 2.3.1 given in [CRS05]. In the next

example we show why the proof is wrong, we consider the groups Gε
6(1, 3, 0),Gε

6(3, 4, 0)

where ε = (1, 1, 2, 1). This example was also used in [COS08] to highlight a mistake

in [BV03, Theorem1.1.].

Example 2.3.2. Let n = 6,m = 1, k = 3, h = 0,n = 6,m′ = 3, k′ = 4, h′ = 0 and a = b = s =

1, r = 2 therefore ε = (a, b, r, s) = (1, 1, 2, 1), ρ = (n, k − h −m) = 2 divides k′ and the integers

α = 2, β = 2, γ = 1, δ = 3 satisfy 1 ≤ α, γ ≤ ρ and 1 ≤ β, δ ≤ n
ρ , and imply that

α + β(k − h −m) ≡ 1 −m mod n

γ + δ(k − h −m) ≡ 1 − h mod n

α + βk′ ≡ 1 + m′ mod n

γ + δk′ ≡ 1 + h′ mod n

Then [CRS05, Theorem 2.6.] gives that Gε
6(1, 3, 0) � Gε

6(3, 4, 0), but that is wrong since it is

known that Z7 � Gε
6(1, 3, 0) � Gε

6(3, 4, 0) � Z3
2 o Z7, see example [COS08, Page 3]. We now

explain where the mistake in the proof in [CRS05] occurs.

The proof in [CRS05] starts as follow: The group Gε
n(m, k, h) = Gε

6(1, 3, 0) has a finite

presentation with generators y0, ..., y5, and defining relations yiyi+5 = yi+2 for i = 0, 2, ..., 5.

we set ` = n
ρ = 3. Then we separate the generators y0, ..., y5 into ρ = 2 sets A1,A2 of ` = 3

elements each, where A j = {y j, y j+k−h−m, ..., y j+(`−1)(k−h−m)} therefore A0 = {y0, y2, y4},A1 =

{y1, y3, y5}. This gives a partition of the relations into ρ = 2 sets R1,R2 of ` = 3 elements

each one, we got R0 = {y0y5 = y2, y2y1 = y4, y4y3 = y0}, R1 = {y1y0 = y3, y3y2 = y5, y5y4 = y1}
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Let us consider Gε
n(m′, k′, h′) = Gε

6(3, 4, 0) with generators z0, ..., z5, and defining relations

zizi+3 = zi+4. As we did above we separate the generators z0, ..., z5 intoρ = 2 sets B1,B2 of ` = 3

elements each one, where B j = {z j, z j+k′ , ..., z j+(`−1)(k′)} therefore B0 = {z0, z4, z2},B1 = {z1, z5, z3},

we obtain a partition of the defining relations of Gε
n(m′, k′, h′) = Gε

6(3, 4, 0) into ρ = 2 sets

S1,S2 of ` = 3 elements each one, where S0 = {z0z3 = z4, z4z1 = z2, z2z5 = z0}, S1 = {z1z4 =

z5, z5z2 = z3, z3z0 = z1}. They define the correspondence Ψ from Gε
n(m, k, h) = Gε

6(1, 3, 0) onto

Gε
n(m′, k′, h′) = Gε

6(3, 4, 0) by its action on the generators Ψ(y j+τ(k−h−m)) = z j+τk′ therefore

Ψ(y j+2τ) = z j+4τ

for 0 ≤ j ≤ 1 and 0 ≤ τ ≤ 2, we got Ψ(y0) = z0,Ψ(y2) = z4,Ψ(y4) = z2,Ψ(y1) = z1,Ψ(y3) =

z5,Ψ(y5) = z3. In the proof given in [COS08, Theorem 1], it is claimed that Ψ maps each

defining relation of Gn(m, k, h) = G6(1, 3, 0) to a defining relation of Gε
n(m′, k′, h′) = Gε

6(3, 4, 0),

but this is not the case here, for example Ψ maps the relation y1y0 = y3 to the relation

z1z0 = z5, but this is not a relation of Gε
6(3, 4, 0), so their claim is incorrect.

Now we provide a corrected and improved version of Theorem 2.3.1 for the group

Gε
n(m, k, h) as follows. Our proof combines methods from [CRS05] and [COS08].

Theorem 2.3.3. If (n, h + m) = 1, (n, h′ + m′) = 1, and

m′(h + m) ≡ m(h′ + m′) mod n,

h′(h + m) ≡ h(h′ + m′) mod n.
(2.8)

then Gε
n(m,n − (h + m), h) � Gε

n(m′, 2(h′ + m′), h′), for any ε = (a, b, r, s) ∈ Z4.

Proof. Since (n, (h′ + m′)) = 1 there exist integers β, γ ∈ Z such that βn + γ(h′ + m′) = 1

therefore γ(h′+m′) ≡ 1 mod n. Now by setting f = γm′, the condition m′(h+m) ≡ m(h′+m′)

mod n implies that

f (h + m) ≡ γm′(h + m) mod n

≡ γm(h′ + m′) mod n by (2.8)

≡ m mod n (2.9)
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and

f (h′ + m′) ≡ γm′(h′ + m′) mod n by (2.8)

≡ m′ mod n (2.10)

Similarly by setting g = γh′,the condition h′(h + m) ≡ h(h′ + m′) mod n implies that

g(h + m) ≡ γh′(h + m) mod n

≡ γh(h′ + m′) mod n by (2.8)

≡ h mod n (2.11)

g(h′ + m′) ≡ γh′(h′ + m′) mod n by (2.8)

≡ h′ mod n (2.12)

We will use conditions (2.9), (2.10), (2.11), (2.12) to complete the proof. Now let us consider

the group

Gε
n(m,−(h + m), h) � 〈x0, x1, ..., xn−1 | xa

i x
b
i−(h+m)x

a
i+(h+m) = (xr

i+hxr
i+m)s, i = 0, ...,n − 1〉

Inverting the relations gives

� 〈x0, x1, ..., xn−1 | (x−1
i+(h+m))

a(x−1
i−(h+m))

b(x−1
i )a = (x−r

i+mx−r
i+h)s, i = 0, ...,n − 1〉

� 〈x0, x1, ..., xn−1 | (x−1
i+(h+m))

a(x−1
i−(h+m))

b(x−1
i )a = ((x−1

i+m)r(x−1
i+h)r)s, i = 0, ...,n − 1〉

Put ci = x−1
i

� 〈c0, c1, ..., cn−1 | (ci+(h+m))a(ci−(h+m))b(ci)a = ((ci+m)r(ci+h)r)s, i = 0, ...,n − 1〉

Put j = i + (h + m).Then

Gε
n(m,−(h + m), h) � 〈c0, c1, ..., cn−1 | (c j)a(c j−(h+m)−(h+m))b(c j−(h+m))a

= ((c j−(h+m)+m)r(c j−(h+m)+h)r)s, j = 0, ...,n − 1〉,

� 〈c0, c1, ..., cn−1 | (c j)a(c j−2(h+m))b(c j−(h+m))a

= ((c j−h)r(c j−m)r)s, j = 0, ...,n − 1〉
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Since (n,−(h + m)) = 1 there exist δ, ζ ∈ Z such that δn + ζ.(−(h + m)) = 1 mod n therefore

ζ.(−(h + m)) ≡ 1 mod n, now for each j = 0, 1, ...,n − 1 set u ≡ ζ j mod n therefore

cu(−(h+m)) = cζ j.(−(h+m)) = c jζ.(−(h+m)) = c j,

we can write

Gε
n(m,−(h + m), h) � 〈c0, c1, ..., cn−1 | (cu.(−(h+m)))a(cu.(−(h+m))−2(h+m))b(cu.(−(h+m))−(h+m))a

= ((cu.(−(h+m))−h)r(cu.(−(h+m))−m)r)s,u = 0, ...,n − 1〉

(2.13)

Now let us consider the group

Gε
n(m′, 2(h′ + m′), h′) � 〈y0, y1, ..., yn−1 | ya

i yb
i+2(h′+m′)y

a
i+(h′+m′) = ((yi+h′)r(yi+m′)r)s, i = 0, ...,n − 1〉

since (n, (h′ + m′)) = 1 there exist δ′, ζ′ ∈ Z such that δ′n + ζ′(h′ + m′) = 1 mod n therefore

ζ′(h′ + m′) ≡ 1 mod n. Now for each i = 0, 1, ...,n − 1 set v ≡ ζ′i mod n therefore

yv(h′+m′) = yζ′i(h′+m′) = yiζ′(h′+m′) = yi,

we can write

Gε
n(m′, 2(h′ + m′), h′) � 〈y0, y1, ..., yn−1 | ya

v(h′+m′)y
b
v(h′+m′)+2(h′+m′)y

a
v(h′+m′)+(h′+m′)

= ((yv(h′+m′)+h′)r(yv(h′+m′)+m′)r)s, v = 0, ...,n − 1〉 (2.14)

Now define a map as follow

Φ : {c0, ..., cn−1} −→ {y0, ..., yn−1}

acting on the set of generators {c j| j = 0, ...,n − 1} = {cu(h+m)|u = 0, ...,n − 1} by the rule

Φ(cu.(−(h+m))) = yu(h′+m′) (2.15)
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For each u = 0, ...,n − 1, we will map all generators in (2.13) to generators in (2.14)

For the left hand side of (2.13) we have

Φ(cu.(−(h+m))) = yu(h′+m′) using (2.15)

Φ(cu.(−(h+m))−2(h+m)) = Φ(c(u+2).(−(h+m)))

= y(u+2)(h′+m′) using (2.15)

= yu(h′+m′)+2(h′+m′)

Φ(cu.(−(h+m))−(h+m)) = Φ(c(u+1).(−(h+m)))

= y(u+1)(h′+m′) using (2.15)

= yu(h′+m′)+(h′+m′)

For the right hand side of (2.13) we have

Φ(cu.(−(h+m))−h) = Φ(cu.(−(h+m))+g.(−(h+m))) using (2.11)

= Φ(c(u+g)(−(h+m)))

= y(u+g)(h′+m′) using (2.15)

= yu(h′+m′)+g(h′+m′)

= yu(h′+m′)+h′ using (2.12)

Φ(cu.(−(h+m))−m) = Φ(cu.(−(h+m))+ f .(−(h+m))) using (2.9)

= Φ(c(u+ f )(−(h+m)))

= y(u+ f )(h′+m′) using (2.15)

= yu(h′+m′)+ f (h′+m′)

= yu(h′+m′)+m′ using (2.10)
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Since Φ maps the u’th relators of (2.13) to the u’th relators of (2.14), it is clear that the

map Φ : Gε
n(m, k, h)→ Gε

n(m′, k′, h′) is an epimorphism.

Now define a map as follow

Θ : {y0, ..., yn−1} −→ {c0, ..., cn−1}

acting on the set of generators {yi|i = 0, ...,n − 1} = {yvB′ |v = 0, ...,n − 1} by the rule

Θ(yv(h′+m′)) = cv.(−(h+m)) (2.16)

For each v = 0, ...,n − 1, we will map all generators in (2.14) to generators in (2.13)

For the left hand side of (2.14) we have,

Θ(yv(h′+m′)) = cv.(−(h+m)) using (2.16)

Θ(y(v(h′+m′)+2(h′+m′))) = Θ(y(v+2)(h′+m′))

= c(v+2)(−(h+m)) using (2.16)

= cv.(−(h+m))+2.(−(h+m))

= cv.(−(h+m))−2(h+m)

Θ(y(v(h′+m′)+(h′+m′))) = Θ(y(v+1)(h′+m′))

= c(v+1)(−(h+m)) using (2.16)

= cv.(−(h+m))−(h+m)
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For the right hand side of (2.14) we have,

Θ(y(v(h′+m′)+h′)) = Θ(y(v(h′+m′)+g(h′+m′))) using (2.12)

= Θ(y(v+g)(h′+m′))

= c(v+g)(−(h+m)) using (2.16)

= cv.(−(h+m))+g.(−(h+m))

= cv.(−(h+m))−h using (2.11)

Θ(y(v(h′+m′)+m′)) = Θ(y(v(h′+m′)+ f (h′+m′))) using (2.10)

= Θ(y(v+ f )(h′+m′))

= c(v+ f )(−(h+m) using (2.16)

= cv.(−(h+m))+ f .(−(h+m))

= cv.(−(h+m))−m using (2.9)

Since Θ maps the u′th relators of (2.14) to the u′th relators of (2.13), it is clear that for

each 0 ≤ γ ≤ (n−1) that Θ : Gn(h′, k, p′, q′, r, s, `)→ Gn(h, k, p, q, r, s, `) is an epimorphism and

φ(Θ(yuB′)) = φ(cuA) = yuB′ and Θ(φ(cuA)) = Θ(yuB′) = cuA, therefore φ−1 = Θ,Θ−1 = φ. thus

the composition of epimorphisms Gn(h, k, p, q, r, s, `) Φ
−→

Gn(h′, k, p′, q′, r, s, `) Θ
−→

Gn(h, k, p, q, r, s, `)

shows that

Gn(h, k, p, q, r, s, `) � Gn(h′, k, p′, q′, r, s, `) �

According to [CRS05, page 42] we will consider classes of groups that can be defined

using definition of Gε
n(m, k, h) for chosen parameters

For a = 0, b = r = s = 1, h = 0 the groups Gε
n(m, k, h) have defining relations xixi+m = xi+k

of the group Gn(m, k) which was introduced in [JM75], and subsequently studied in [BV03],

[CRS03] (see Section 1.3 for more details).
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Corollary 2.3.4. Suppose (n,m) = 1, (n,m′) = 1 then Gn(m,n − m) � Gn(m′, 2m′) � Gn(1, 2) =

F(2,n).

Proof. Since Gn(m,n−m) = Gε
n(M,K, h) = Gn(x0xmx−1

(n−m)), where ε = (a, b, r, s) = (0, 1, 1, 1), h =

0,M = m,K = n −m, and Gn(m′, 2m′) = Gε
n(M′,K′, h′) = Gn(x0xm′x−1

2m′), where ε = (a, b, r, s) =

(0, 1, 1, 1), h′ = 0,M′ = m′,K′ = 2m′. Since (n, h+m) = (n,m) = 1, (n, h′+m′) = (n,m′) = 1 and

m′(h+m) = m′m,m(h′+m′) = mm′ therefore m′(h+m) ≡ m(h′+m′) mod n and since h = h′ = 0

therefore h′(h+m) ≡ h(h′+m′) mod n. Theorem (2.3.3) implies that Gn(m,n−m) � Gn(m′, 2m′)

and by [BV03, Lemma 1.4.] since (n,m′) = 1 we have Gn(m′, 2m′) � Gn(1, 2). �



Chapter 3

Order of GpM(x0xδMxεK)ab

3.1 Introduction

In this chapter we produce a technical formula for the order of the abelianization of the

group GpM(x0xδMxεK) where δ = ±1, ε = ±1 and (M,K) = 1. This formula is in terms of

the parameters p,M,K, δ, ε. By restricting to particular values of p we are able to obtain

numerical values of |GpM(x0xδMxεK)ab
|, we apply it to give precise values for the order of

abelianization of Gpm(x0xmx−1
k ), Gpk(x0xmx−1

k ), and Γpk(x0xkxl) when p ∈ {2, 3, 4, 6, 12}. The

reason we have chosen these numbers is that we can carry out the relevant manipulations

with roots of unity in these cases but they are harder in others. This will be used in counting

Gn(m, k) groups (Chapter 4), and in counting Γn(k, l) groups (Chapter 6). In Section 3.2 we

give in Theorem 3.2.3 the general formula for |GpM(x0xδMxεK)ab
|. In Section 3.3 we calculate

|GpM(x0xMxεK)ab
| for p ∈ {2, 3, 4, 6, 12} (Theorem 3.3.1), and apply it to obtain |Gpm(x0xmx−1

k )ab
|

(Corollary 3.3.2), and to obtain |Gpk(x0xkxl)ab
| (Corollary 3.3.3). In Section 3.4 we calculate

|Gpk(x0xmx−1
k )ab
| for p ∈ {2, 3, 4, 6, 12} (Theorem 3.4.1).

Thus the results of this chapter give for p ∈ {2, 3, 4, 6, 12}, formulas for the orders of the

groups Gpm(x0xmx−1
k )ab, Gpk(x0xmx−1

k )ab, Gpk(x0xkxl)ab,Gpl(x0xkxl)ab (since by Lemma 1.6.1 (2)

we have Gpk(x0xkxl)ab � Gpk(x0xlxk)ab ).

35
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3.2 The general formula

The following is equation (1.7)

|Gn(ω)ab
| = |

∏
θn=1

f (θ)| (3.1)

Let Rn( f ) =
∏
θn=1

f (θ) ∈ Z. Recall the following Lemma from introduction Lemma 1.4.4 is.

Lemma 3.2.1. Let f (t) = c
k∏

j=1
(t − β j). Then Rn( f ) =

(
(−1)kc

)n k∏
j=1

(βn
j − 1).

From now on we shall use the notation ζp = e
2πi
p for any p ≥ 1. (Note that we do not

required p to be prime).

Lemma 3.2.2. Let g(x) = xk
− w. If (n, k) = 1 then

n−1∏
j=0

g(ζ j
n) = (−1)n(wn

− 1).

Proof. Let f (x) = x − w, from Lemma 3.2.1 we have Rn( f ) =
(
(−1)kc

)n k∏
j=1

(βn
j − 1), and by

setting c = 1, k = 1, β j = w, then

Rn( f ) =

n−1∏
j=0

f (ζ j
n) = (−1)n(wn

− 1) (3.2)

and since (n, k) = 1 we have

n−1∏
j=0

f (ζ j
n) =

∏
ϕ∈U

f (ϕ), U = {ζ0
n, ζ

1
n, ..., ζ

n−1
n } = {ζ

j
n| j = 0, ...,n − 1} = {ζ jk

n | j = 0, ...,n − 1}

=

n−1∏
j=0

f (ζ jk
n )

=

n−1∏
j=0

g(ζ j
n)

and the result follows from (3.2). �

The relation matrix of the cyclically presented group GpM(x0xδMxεK) is the n × n circulant

matrix where first row is (1 0 . . . δ 0 . . . 0 ε 0 . . . 0) where δ is the M′th entry, and ε is K′th
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entry. So

f (t) = 1 + δtM + εtK (3.3)

Let

Pδ,εi,p (M,K) =
(
(1 + δζi

p)M
− (−ε)M(ζiK

p )
)

(3.4)

Theorem 3.2.3. Let (M,K) = 1 then |GpM(x0xδMxεK)ab
| = |

p−1∏
i=0

Pδ,εi,p (M,K)|

Proof. From (3.1), we have that |GpM(x0xMx−1
K )ab
| = |P|where

P =

pM−1∏
j=0

f (ζ j
pM) =

∏
j∈S

f (ζ j
pM), f (t) = 1 + δtM + εtK (3.5)

Where S = { j| j = 0, 1, ..., (pM − 1)}. For each 0 ≤ i ≤ p − 1 let Si = {pt + i|t = 0, 1, . . .M − 1};

then S = S0 ∪ . . . ∪ Sp−1. We write P in the form

P = Qδ,ε
0,p(M,K)Qδ,ε

1,p(M,K)...Qδ,ε
(p−1),p(M,K) =

p−1∏
i=0

Qδ,ε
i,p (M,K),where Qδ,ε

i,p (M,K) =
∏
j∈Si

f (ζ j
pM)

(3.6)

If j ∈ Si, 0 ≤ i ≤ p − 1 then j = pt + i, t = 0, 1, ..., (M − 1) so

Qδ,ε
i,p (M,K) =

∏
j∈Si

f (ζ j
pM)

=

M−1∏
t=0

f (ζpt+i
pM )

=

M−1∏
t=0

(
1 + δ(ζpt+i

pM )M + ε(ζpt+i
pM )K

)
=

M−1∏
t=0

(
1 + δ(ζpMt

pM )(ζiM
pM) + ε(ζpKt

pM)(ζiK
pM)

)
=

M−1∏
t=0

(
(1 + δζi

p) + ε(ζKt
M)(ζiK

pM)
)
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=

M−1∏
t=0

(εζiK
pM)

(
ε(1 + δζi

p).ζ−iK
pM + (ζKt

M)
)

=

M−1∏
t=0

(εζik
pM)

M−1∏
t=0

(ζKt
M − (−ε(1 + δζi

p)ζ−iK
pM ))

)
= (εζik

pM)M
M−1∏
t=0

(ζKt
M − (−ε(1 + δζi

p)ζ−iK
pM ))

)
= (εζik

pM)M
[
(−1)M

(
(−ε(1 + δζi

p)ζ−iK
pM )M

− 1)
]

by Lemma 3.2.2

= εM(ζiKM
pM )

[
(−1)M

(
(−ε)M(1 + δζi

p)M(ζ−iKM
pM ) − 1

)]
= εM(ζiK

p )
[
(−1)M

(
(−ε)M(1 + δζi

p)M(ζ−iK
p ) − 1

)]
= (1 + δζi

p)M
− (−ε)M(ζiK

p )

= Pδ,εi,p (M,K)

�

Corollary 3.2.4.

a. If (m, k) = 1 then |Gpm(x0xmx−1
k )ab
| = |

p−1∏
i=0

P1,−1
i,p (m, k)| where P1,−1

i,p (m, k) = (1 + ζi
p)m
− (ζik

p ).

b. If (m, k) = 1 then |Gpk(x0xmx−1
k )ab
| = |

p−1∏
i=0

P−1,1
i,p (k,m)| where P−1,1

i,p (k,m) = (−1)k
(
(ζi

p − 1)k
−

(ζim
p )

)
.

c. If (k, l) = 1 then |Gpk(x0xkxl)ab
| = |

p−1∏
i=0

P1,1
i,p (k, l)| where P1,1

i,p (k, l) = (1 + ζi
p)k + (−1)k+1(ζi

p)l.

Proof. a. It follows from Theorem 3.2.3 by setting M = m,K = k, δ = 1, ε = −1.

b. Since |Gpk(x0xmx−1
k )ab
| = |Gpk(x0x−1

k xm)ab
|, therefore proof is done by setting M = k,K =

m, δ = −1, ε = 1 in Theorem 3.2.3.

c. It follows from Theorem 3.2.3 by setting M = k,K = l, δ = 1, ε = 1.

�

In the following lemma we calculate Pδ,εi,p (M,K) in some important cases

Lemma 3.2.5. 1. Pδ,ε0,p(M,K) = (1 + δ)M
− (−ε)M.
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2. Pδ,ε1,2(M,K) = (1 − δ)M
− (−ε)M(−1)k.

3. Pδ,εti,tp(M,K) = Pδ,εi,p (M,K) for any t ≥ 1.

4. Pδ,εp−i,p(M,K) = Pδ,ε
−i,p(M,K)

5. If t ≥ 1 then
p−1∏
i=0

Pδ,εi,p (M,K) divides
tp−1∏
i=0

Pδ,εi,tp(M,K).

6. Pδ,εi,p (M,K).Pδ,ε
−i,p(M,K) = 2M

(
1 + δ cos 2πi

p

)M
+ 1 − hi,p where

hi,p =
(
ζiK

p (1 + ζ−i
p )M + ζ−iK

p (1 + ζi
p)M

)
Proof. By using (3.4) we have Pδ,εi,p (M,K) = (1 + δζi

p)M
− (−ε)M(ζiK

p ), and therefore

1.

Pδ,ε0,p(M,K) = (1 + δ)M
− (−ε)M (3.7)

2.

Pδ,ε1,2(M,K) = (1 + δζ2)M
− (−ε)M(ζK

2 )

= (1 − δ)M
− (−ε)M(−1)k (3.8)

3.

Pδ,εti,tp(M,K) = (1 + δζti
tp)M
− (−ε)M(ζti

tp)K

= (1 + δζi
p)M
− (−ε)M(ζi

p)K

= Pδ,εi,p (M,K) (3.9)
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4.

Pδ,εp−i,p(M,K) = (1 + ζp−i
p )M

− (−ε)M(ζp−i
p )K

since ζp
p = 1 then ζp−i

p = ζ−i
p and

Pδ,εp−i,p(M,K) = (1 + ζ−i
p )M
− (ζ−i

p )K

= P−i,p(M,K) (3.10)

5. Since {0, t, 2t, ..., (p − 1)t} ⊆ {0, 1, 2, ..., (tp − 1)} then

∏
i∈{0,t,2t,...,(p−1)t}

Pδ,εi,tp(M,K) divides
tp−1∏
i=0

Pδ,εi,tp(M,K) =
∏

i∈{0,1,2,...,(tp−1)}

Pδ,εi,tp(M,K)

and

∏
i∈{0,t,2t,...,(p−1)t}

Pδ,εi,tp(M,K) =
∏

i=tı,ı∈{0,1,2,...,(p−1)}

Pδ,εi,tp(M,K)

=
∏

ı∈{0,1,2,...,(p−1)}

Pδ,εtı,tp(M,K)

=
∏

ı∈{0,1,2,...,(p−1)}

Pδ,εı,p (M,K)

6.

Pδ,εi,p (M,K).Pδ,ε
−i,p(M,K) = [(1 + δζi

p)M
− (−ε)M(ζi

p)K][(1 + δζ−i
p )M
− (−ε)M(ζ−i

p )K]

=
(
(1 + δζi

p)(1 + δζ−i
p )

)M
− (−ε)M

(
ζiK

p (1 + δζ−i
p )M + ζ−iK

p (1 + δζi
p)M

)
+ 1

=
(
2 + δζi

p + δζ−i
p

)M
− hi,p + 1,

where hi,p =(−ε)M
(
ζiK

p (1 + δζ−i
p )M + ζ−iK

p (1 + δζi
p)M

)
=

(
2 + 2δ cos

2πi
p

)M
+ 1 − hi,p

= 2M
(
1 + δ cos

2πi
p

)M
+ 1 − hi,p (3.11)

�
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3.3 Order of GpM(x0xMxεK)ab where p ∈ {2, 3, 4, 6, 12}

Theorem 3.3.1. If (M,K) = 1 then

1. |G2M(x0xMxεK)ab
| = |(−ε)M(−1)K+1(2M

− (−ε)M)|.

2. |G3M(x0xMxεK)ab
| = |

(
2M
− (−ε)M

)(
2 − (−ε)M2 cos (2K−M)π

3

)
|.

3. |G4M(x0xMxεK)ab
| = |

(
(−ε)M(−1)K+1

(
2M
− (−ε)M

)(
(2M + 1) − (−ε)M(

√
2)M.2 cos (2K−M)π

4

)
|.

4.

|G6M(x0xMxεK)ab
| = |(−ε)M(−1)K+1

(
2M
− (−ε)M

)(
3M + 1 − (−ε)M(

√
3)M.2 cos

(2K −M)π
6

)
(
2 − (−ε)M2 cos

(2K −M)π
3

)
|.

5.

|G12M(x0xMxεK)ab
| = |(−ε)M(−1)k+1

(
2M
− (−ε)M

)
(
(3M + 1) − (−ε)M(

√
3)M.2 cos

(2K −M)π
6

)
(
2 − (−ε)M2 cos

(2K −M)π
3

)
(
2M + 1 − (−ε)M(

√
2)M.2 cos

(2K −M)π
4

)
(
2M(1 +

√
3

2
)M + 1 − (−ε)M(

√
6 +
√

2
2

)M.2 cos
π(2k −M)

12

)
(
2M(1 −

√
3

2
)M + 1 − (−ε)M(

√
6 −
√

2
2

)M.2 cos
5π(2K −M)

12

)
|.

Proof.

1. From Theorem 3.2.3 we get that |G2M(x0xMxεK)ab
| =

1∏
i=0

P1,ε
i,2 (M,K) = P1,ε

0,2(M,K).P1,ε
1,2(M,K),

and since

P1,ε
0,2(M,K) = 2M

− (−ε)M by (3.7)

P1,ε
1,2(M,K) = (−ε)M(−1)k+1 by (3.8)
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therefore

|G2M(x0xMxεk)ab
| = |(−ε)M(−1)K+1(2M

− (−ε)M)|

2. From Theorem 3.2.3 we get that |G3m(x0xMxεK)ab
| =

2∏
i=0

P1,−1
i,3 (M,K), and since

P1,ε
0,3(M,K) = 2M

− (−ε)M by (3.7)

P1,ε
1,3(M,K) = (1 + ζ3)M

− (−ε)M(ζK
3 ) by (3.4)

P1,ε
2,3(M,K) = (1 + ζ2

3)M
− (−ε)M(ζ2K

3 ) by (3.4)

observe

1 + ζ3 = 1 + (
−1
2

+ i(
√

3
2

)) =
1
2

+ i
√

3
2

= ζ6 (3.12)

1 + ζ2
3 = 1 + (

−1
2
− i(
√

3
2

)) =
1
2
− i
√

3
2

= ζ−1
6 (3.13)

Then

P1,ε
1,3(M,K).P1,ε

2,3(M,K) = P1,ε
1,3(M,K).P1,ε

−1,3(M,K) by (3.10)

= 2M
(
1 + cos

2π
3

)M
+ 1 − h1,3 by (3.11)

= 2M
(
1 −

1
2

)M
+ 1 − (−ε)M

(
ζK

3 (1 + ζ−1
3 )M + ζ−K

3 (1 + ζ3)M
)

= 2 − (−ε)M(ζK
3 .ζ
−M
6 + ζ−K

3 .ζM
6 ) by (3.12), (3.13)

= 2 − (−ε)M(ζ2K
6 .ζ

−M
6 + ζ−2K

6 .ζM
6 )

= 2 − (−ε)M(ζ(2K−M)
6 + ζ−(2k−M)

6 )

= 2 − (−ε)M2 cos
(2K −M)2π

6

= 2 − (−ε)M2 cos
(2K −M)π

3
(3.14)

Therefore

|G3M(x0xMxεK)ab
| = |

(
2M
− (−ε)M

)(
2 − (−ε)M2 cos

(2K −M)π
3

)
|.
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3. From Theorem 3.2.3 we get that |G4M(x0xMxεK)ab
| =

3∏
i=0

P1,−1
i,4 (M,K), and since

P1,ε
0,4(M,K) = 2M

− (−ε)M by (3.7)

P1,ε
1,4(M,K) = (1 + ζ4)M

− (−ε)M(ζK
4 ) by (3.4)

P1,ε
2,4(M,K) = P1,ε

1,2(M,K) = (−ε)M(−1)K+1 by (3.9), (3.8)

P1,ε
3,4(M,K) = (1 + ζ3

4)M
− (−ε)M(ζ3K

4 ) by (3.4)

observe

1 + ζ4 = 1 + (0 + i) = 1 + i =
√

2(
1
√

2
+ i

1
√

2
) =
√

2e
2πi
8 =
√

2ζ8 (3.15)

1 + ζ3
4 = 1 + (0 − i) = 1 − i =

√
2(

1
√

2
− i

1
√

2
) =
√

2e
2πi
8 =
√

2ζ−1
8 (3.16)

Then

P1,ε
1,4(M,K).P1,ε

3,4(M,K) = P1,ε
1,4(M,K).P1,ε

−1,4(M,K) by (3.10)

= 2M
(
1 + cos

2π
4

)m
+ 1 − h1,4

= 2M + 1 − (−ε)M
(
ζK

4 (1 + ζ−1
4 )M + ζ−K

4 (1 + ζ4)M
)

= 2M + 1 − (−ε)M(ζK
4 .(
√

2ζ8)−M + ζ−K
4 .(
√

2ζ8)M) by (3.15), (3.16)

= 2M + 1 − (−ε)M(
√

2)M[ζ(2K−M)
8 + ζ−(2k−M)

8 ]

= (2M + 1) − (−ε)M(
√

2)M.2 cos
(2K −M)2π

8

= (2M + 1) − (−ε)M(
√

2)M.2 cos
(2K −M)π

4
(3.17)

therefore

|G4M(x0xMxεK)ab
| = |(−ε)M(−1)K+1

(
2M
− (−ε)M

)(
(2M + 1) − (−ε)M(

√
2)M.2 cos

(2K −M)π
4

)
|
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4. From Theorem 3.2.3 we get that |G6M(x0xMxεK)ab
| =

5∏
i=0

P1,−1
i,6 (M,K), and since

P1,ε
0,6(M,K) = 2M

− (−ε)M by (3.7)

P1,ε
1,6(M,K) = (1 + ζ6)M

− (−ε)M(ζK
6 ) by (3.4)

P1,ε
2,6(M,K) = P1,−1

1,3 (M,K) = (1 + ζ3)M
− (−ε)M(ζK

3 ) by (3.9)

P1,ε
3,6(M,K) = P1,−1

1,2 (M,K) = (−ε)M(−1)K+1 by (3.9), (3.8)

P1,ε
4,6(M,K) = P1,−1

2,3 (M,K) = (1 + ζ2
3)M
− (−ε)M(ζ2K

3 ) by (3.9)

P1,ε
5,6(M,K) = (1 + ζ5

6)M
− (−ε)M(ζ5K

6 ) by (3.4)

observe

1 + ζ6 = 1 + (
1
2

+ i(
√

3
2

)) =
3
2

+ i
√

3
2

=
√

3(
√

3
2

+ i
1
2

) =
√

3e
2πi
12 =
√

3ζ12 (3.18)

1 + ζ5
6 = 1 + (

1
2
− i(
√

3
2

)) =
3
2
− i
√

3
2

=
√

3(
√

3
2
− i

1
2

) =
√

3e
−2πi

12 =
√

3ζ−1
12 (3.19)

Now let us calculate

P1,ε
1,6(M,K).P1,ε

5,6(M,K) = P1,ε
1,6(M,K).P1,ε

−1,6(M,K) by Lemma 3.2.5

= 2M
(
1 + cos

2π
6

)M
+ 1 − h1,6

= 2M
(
1 +

1
2

)M
+ 1 − (−ε)M

(
ζK

6 (1 + ζ−1
6 )M + ζ−K

6 (1 + ζ6)M
)

= 3M + 1 − (−ε)M(ζK
6 .
√

3ζ−M
12 + ζ−K

6 .
√

3ζM
12) by (3.18), (3.19)

= 3M + 1 − (−ε)M(
√

3)M[ζ(2K−M)
12 + ζ−(2K−M)

12 ]

= (3M + 1) − (−ε)M(
√

3)M.2 cos
(2K −M)2π

12

= (3M + 1) − (−ε)M(
√

3)M.2 cos
(2K −M)π

6
.
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Similarly we find

P1,ε
2,6(M,K).P1,ε

4,6(M,K) = P1,−1
1,3 (M,K).P1,−1

−1,3(M,K) by Lemma 3.2.5.parts 3 and 4.

= 2 − (−ε)M2 cos
(2K −M)π

3
by (3.14)

and P1,−1
3,6 (M,K) = P1,−1

1,2 (M,K) = (−ε)M(−1)k+1 by (3.9), (3.8), therefore

|G6M(x0xMx−1
K )ab
| = |P1,−1

0,6 (M,K)P1,−1
1,6 (M,K)...P1,−1

5,6 (M,K)|

= |(−ε)M(−1)K+1
(
2M
− (−ε)M

)(
(3M + 1) − (−ε)M(

√
3)M.2 cos

(2K −M)π
6

)
(
2 − (−ε)M2 cos

(2K −M)π
3

)
|. (3.20)

5. From Theorem 3.2.3 we get that |G12M(x0xMxεK)ab
| =

11∏
i=0

P1,−1
i,12 (M,K), and since

P1,ε
0,12(M,K) = 2M

− (−ε)M by (3.7)

P1,ε
1,12(M,K) = (1 + ζ12)M

− (−ε)M(ζK
12) by (3.4)

P1,ε
2,12(M,K) = P1,−1

1,6 (M,K) = (1 + ζ6)M
− (−ε)M(ζK

6 ) by (3.9)

P1,ε
3,12(M,K) = P1,−1

1,4 (M,K) = (1 + ζ4)M
− (−ε)M(ζK

4 ) by (3.9)

P1,ε
4,12(M,K) = P1,−1

1,3 (M,K) = (1 + ζ3)M
− (−ε)M(ζK

3 ) by (3.9)

P1,ε
5,12(M,K) = (1 + ζ5

12)M
− (ε)M(ζ5K

12 ) by (3.4)

P1,ε
6,12(M,K) = P1,−1

1,2 (M,K) = (−ε)M(−1)K+1 by (3.9), (3.8)

P1,ε
7,12(M,K) = (1 + ζ7

12)M
− (ζK

12)7 by (3.4)

P1,ε
8,12(M,K) = P1,−1

2,3 (M,K) = (1 + ζ2
3)M
− (ζ2K

3 ) by (3.9)

P1,ε
9,12(M,K) = P1,−1

3,4 (M,K) = (1 + ζ3
4)M
− (ζ3K

4 ) by (3.9)

P1,ε
10,12(M,K) = P1,−1

5,6 (M,K) = (1 + ζ5
6)M
− (ζ5K

6 ) by (3.9)

P1,ε
11,12(M,K) = (1 + ζ11

12)M
− (−ε)M(ζ11K

12 ) by (3.4)
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so by Lemma 3.2.5 we have

P1,ε
0,12(M,K)P1,ε

2,12(M,K)P1,ε
4,12(M,K)P1,ε

6,12(M,K)P1,ε
8,12(M,K)P1,ε

10,12(M,K) =

5∏
i=0

P1,−1
i,6 (M,K)

= (−ε)M(−1)k+1
(
2M
− (−ε)M

)(
(3M + 1) − (−ε)M(

√
3)M.2 cos

(2K −M)π
6

)
(
2 − (−ε)M2 cos

(2K −M)π
3

)
(3.21)

and

P1,ε
3,12(M,K)P1,ε

9,12(M,K) = P1,ε
1,4(M,K)P1,ε

3,4(M, k)

= (2M + 1) − (−ε)M(
√

2)M.2 cos
(2K −M)π

4
by (3.17) (3.22)

Now observe

1 + ζ12 =

√
6 +
√

2
2

ζ24, 1 + ζ−1
12 =

√
6 +
√

2
2

ζ−1
24 (3.23)

1 + ζ5
12 =

√
6 −
√

2
2

ζ5
24, 1 + ζ−5

12 =

√
6 −
√

2
2

ζ−5
24 (3.24)

P1,ε
1,12(M,K)P1,ε

11,12(M,K) = P1,ε
1,12(M,K)P1,ε

−1,12(M,K) by Lemma 3.2.5

= 2M(1 + cos
2π
12

)M + 1 − h1,12 by Lemma 3.2.5

= 2M(1 +

√
3

2
)M + 1 − (−ε)M

(
ζK

12(1 + ζ−1
12 )M + ζK

12(1 + ζ12)M
)

= 2M(1 +

√
3

2
)M + 1 − (−ε)M(

√
6 +
√

2
2

)M
(
ζK

12ζ
−M
24 + ζ−K

12 ζ
M
24

)
by (3.23)

= 2M(1 +

√
3

2
)M + 1 − (−ε)M(

√
6 +
√

2
2

)M
(
ζ2K−M

24 + ζ−(2K−M)
24

)
= 2M(1 +

√
3

2
)M + 1 − (−ε)M(

√
6 +
√

2
2

)M.2 cos
2π(2K −M)

24

= 2M(1 +

√
3

2
)M + 1 − (−ε)M(

√
6 +
√

2
2

)M.2 cos
π(2K −M)

12
(3.25)
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We also have

P1,ε
5,12(M,K)P1,ε

7,12(M,K) = P1,ε
5,12(M,K)P1,ε

−5,12(M,K) by Lemma 3.2.5

= 2M(1 + cos
10π
12

)M + 1 − h5,12

= 2M(1 −
√

3
2

)M + 1 − (−ε)M
(
ζ5K

12 (1 + ζ−5
12 )M + ζ−5K

12 (1 + ζ5
12)M

)
= 2M(1 −

√
3

2
)M + 1 − (−ε)M(

√
6 −
√

2
2

)M
(
ζ5K

12 ζ
−5M
24 + ζ−5K

12 ζ5M
24

)
by (3.24)

= 2M(1 −
√

3
2

)M + 1 − (−ε)M(
√

6 −
√

2
2

)M
(
ζ10K−5M

24 + ζ−(10K−5M)
24

)
= 2M(1 −

√
3

2
)M + 1 − (−ε)M(

√
6 −
√

2
2

)M.2 cos
10π(2K −M)

24

= 2M(1 −
√

3
2

)M + 1 − (−ε)M(
√

6 −
√

2
2

)M.2 cos
5π(2K −M)

12
(3.26)

By using (3.21), (3.40), (3.43) and (3.44) we get

|G12M(x0xMx−1
K )ab
| = |(−ε)M(−1)K+1

(
2M
− (−ε)M

)
(
(3M + 1) − (−ε)M(

√
3)M.2 cos

(2K −M)π
6

)
(
2 − (−ε)M2 cos

(2K −M)π
3

)
(
2M + 1 − (−ε)M(

√
2)M.2 cos

(2K −M)π
4

)
(
2M(1 +

√
3

2
)M + 1 − (−ε)M(

√
6 +
√

2
2

)M.2 cos
π(2K −M)

12

)
(
2M(1 −

√
3

2
)M + 1 − (−ε)M(

√
6 −
√

2
2

)M.2 cos
5π(2K −M)

12

)
|

�

Corollary 3.3.2. If (m, k) = 1 then

1. |G2m(x0xmx−1
k )ab
| = |(−1)k+1(2m

− 1)|

2. |G3m(x0xmx−1
k )ab
| = |(2m

− 1)(2 − 2 cos( (2k−m)π
3 ))|

3. |G4m(x0xmx−1
k )ab
| = |(−1)k+1(2m

− 1)((2m + 1) − (
√

2)m.2 cos (2k−m)π
4 )|
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4. |G6m(x0xmx−1
k )ab
| = |(−1)k+1(2m

− 1)(3m + 1 − 2(
√

3)m cos( (2k−m)π
6 ))(2 − 2 cos( (2k−m)π

3 ))|

5.

|G12m(x0xmx−1
k )ab
| = |(−1)k+1

(
2m
− 1

)(
3m + 1 − 2(

√
3)m cos(

(2k −m)π
6

)
)(

2 − 2 cos(
(2k −m)π

3
)
)

(
2m + 1 − (

√
2)m.2 cos

(2k −m)π
4

)
(
2m(1 +

√
3

2
)m + 1 − (

√
6 +
√

2
2

)m.2 cos
(2k −m)π

12

)
(
2m(1 −

√
3

2
)m + 1 − (

√
6 −
√

2
2

)m.2 cos
5(2k −m)π

12

)
|

Proof. Proof is done by substituting M = m,K = k, ε = −1 in Theorem 3.3.1 �

Corollary 3.3.3. If (k, l) = 1 then

1. |Γ2k(k, l)ab
| = |(−1)k+l+1(2k

− (−1)k)|

2. |Γ3k(k, l)ab
| = |(2k

− (−1)k)(2 − (−1)k.2 cos (2l−k)π
3 )|

3. |Γ4k(k, l)ab
| = |(−1)k+l+1(2k

− (−1)k)((2k + 1) − (−1)k(
√

2)k.2 cos (2l−k)π
4 )|

4. |Γ6k(k, l)ab
| = |(−1)k+l+1(2k

− (−1)k)((3k + 1) − (−1)k(
√

3)k.2 cos (2l−k)π
6 )

[2 − (−1)k.2 cos (2l−k)π
3 ]|

5.

|Γ12k(k, l)ab
| = |(−1)k+l+1

(
2k
− (−1)k

)(
3k + 1 − (−1)k2(

√
3)k cos

(2l − k)π
6

)
(
2 − (−1)k.2 cos(

2l − k
3

)π
)(

2k + 1 − (−1)k(
√

2)k.2 cos
(2l − k)π

4

)
(
2k(1 +

√
3

2
)k + 1 − (−1)k(

√
6 +
√

2
2

)k.2 cos
(2l − k)π

12

)
(
2k(1 −

√
3

2
)k + 1 − (−1)k(

√
6 −
√

2
2

)k.2 cos
5(2l − k)π

12

)
|

Proof. Proof is done by substituting M = k,K = l, ε = 1 in Theorem 3.3.1 �
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3.4 Order of Gpk(x0xmx−1
k )ab where p ∈ {2, 3, 4, 6, 12}

Theorem 3.4.1. If (m, k) = 1 then

1. |G2k(x0xmx−1
k )ab
| = |(−1)k+1

(
2k
− (−1)k+m

)
|.

2. |G3k(x0xmx−1
k )ab
| = |(−1)k+1

(
3k + 1 − (−

√
3)k(2. cos π(k+4m)

6 )
)
|.

3. |G4k(x0xmx−1
k )ab
| = |(−1)k+1

(
2k
− (−1)k+m

)(
2k + 1 − (−

√
2)k.2 cos π(k+2m)

4

)
|.

4. |G6k(x0xmx−1
k )ab
| = |(−1)k+1

(
2k
− (−1)k+m

)(
3k + 1− (−

√
3)k(2. cos π(k+4m)

6 )
)(

2− 2. cos π(2k−m)
3

)
|.

5.

|G12k(x0xmx−1
k )ab
| = |((−1)2k+m

− (−2)k)(3k + 1 − (−
√

3)k(2. cos
π(k + 4m)

6
))

(2 − 2. cos
π(2k −m)

3
)(2k + 1 − (

√
2)k.2 cos

π(k + 2m)
4

)

2k(1 +

√
3

2
)k + 1 − (

√
2 −
√

6
2

)k.2 cos
π(5k + 2m)

12

(2k(1 −
√

3
2

)k + 1 − (
√

6 +
√

2
2

)k.2 cos
π(11k − 10m)

12
)|.

Proof.

1. From Corollary 3.2.4 (b) we have |G2k(x0xmx−1
k )ab
| =

1∏
i=0

P−1,1
i,2 (k,m) = P−1,1

0,2 (k,m).P−1,1
1,2 (k,m),

and since

P−1,1
0,2 (k,m) = (−1)k+1 by (3.7)

P−1,1
1,2 (k,m) = 2k

− (−1)k+m by (3.8)

so

|G2k(x0xmx−1
k )ab
| = |(−1)k+1

(
2k
− (−1)k+m

)
| (3.27)
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2. From Corollary 3.2.4 (b), we have |G3k(x0xmx−1
k )ab
| =

2∏
i=0

P−1,1
i,3 (m, k), and since

P−1,1
0,3 (k,m) = (−1)k+1 by (3.7)

P−1,1
1,3 (k,m) = (−1)k[(ζ3 − 1)k

− ζm
3 )] by (3.4)

P−1,1
2,3 (k,m) = (−1)k[(ζ2

3 − 1)k
− ζ2m

3 )] by (3.4)

Observe

ζ3 − 1 = e
2πi
3 − 1 =

−1
2

+ i(
√

3
2

) − 1 =
−3
2

+ i(
√

3
2

) = −
√

3ζ−1
12 (3.28)

ζ2
3 − 1 = e−

2πi
3 − 1 =

−1
2
− i(
√

3
2

) − 1 =
−3
2
− i(
√

3
2

) = −
√

3ζ12 (3.29)

Now let us calculate

|G3k(x0xmx−1
k )ab
| = |P−1,1

0,3 (k,m)P−1,1
1,3 (m, k)P−1,1

2,3 (k,m)|

= |(−1)k+1.(−1)k[(ζ3 − 1)k
− ζm

3 )].(−1)k[(ζ2
3 − 1)k

− ζ2m
3 )]|

= |(−1)k+1.[(−
√

3ζ−1
12 )k
− ζm

3 ][(−
√

3ζ12)k
− ζ2m

3 ]| by (3.28), (3.29)

= |(−1)k+1
(
3k
− (−
√

3)k(ζ−k
12ζ
−m
3 + ζk

12ζ
m
3 ) + 1

)
|

= |(−1)k+1
(
3k
− (−
√

3)k(ζ−(k+4m)
12 + ζ(k+4m)

12 ) + 1
)
|

= |(−1)k+1
(
3k + 1 − (−

√
3)k(2. cos

2π(k + 4m)
12

)
)
|

= |(−1)k+1
(
3k + 1 − (−

√
3)k(2. cos

π(k + 4m)
6

)
)
| (3.30)
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3. From Corollary 3.2.4 (b), we have |G4k(x0xmx−1
k )ab
| =

3∏
i=0

P−1,1
i,4 (m, k) where

P−1,1
0,4 (k,m) = (−1)k+1 by (3.7)

P−1,1
1,4 (k,m) = (−1)k[(ζ4 − 1)k

− ζm
4 )] by (3.4)

P−1,1
2,4 (k,m) = P−1,1

1,2 (m, k) = 2k
− (−1)k+m by (3.8)

P−1,1
3,4 (k,m) = (−1)k[(ζ3

4 − 1)k
− ζ3m

4 )] by (3.4)

Observe

ζ4 − 1 = (0 + i) − 1 = −
√

2ζ−1
8 (3.31)

ζ3
4 − 1 = (0 − i) − 1 = −

√
2ζ8 (3.32)

Now let us calculate

P−1,1
1,4 (k,m)P−1,1

3,4 (k,m) = P−1,1
1,4 (k,m)P−1,1

−1,4(k,m) by Lemma 3.2.5

= 2k
(
1 − cos

2π
4

)k
+ 1 −

(
ζm

4 (ζ−1
4 − 1)k + ζ−m

4 (ζ4 − 1)k
)

= 2k + 1 − (−
√

2)k(ζm
4 ζ

k
8 + ζ−m

4 ζ−k
8 ) by (3.31), (3.32)

= 2k + 1 − (−
√

2)k(ζk+2m
8 + ζ−(k+2m)

8 )

= 2k + 1 − (−
√

2)k.2 cos
2π(k + 2m)

8

= 2k + 1 − (−
√

2)k.2 cos
π(k + 2m)

4
(3.33)

and from Lemma 3.2.5 and equation (3.27) we have

P−1,1
0,4 (k,m)P−1,1

2,4 (m, k) = P−1,1
0,2 (k,m)P−1,1

1,2 (k,m) = (−1)k+1
(
2k
− (−1)k+m

)
(3.34)

so by (3.33),(3.34) we have

|G4k(x0xmx−1
k )ab
| = |(−1)k+1

(
2k
− (−1)k+m

)(
2k + 1 − (−

√
2)k.2 cos

π(k + 2m)
4

)
|
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4. From b of Corollary 3.2.4, we have |G6k(x0xmx−1
k )ab
| =

5∏
i=0

P−1,1
i,6 (m, k) where

P−1,1
0,6 (k,m) = (−1)k+1 by (3.7)

P−1,1
1,6 (k,m) = (−1)k

(
(ζ6 − 1)k

− ζm
6

)
by (3.4)

P−1,1
2,6 (k,m) = P−1,1

1,3 (m, k) = (−1)k
(
(ζ3 − 1)k

− ζm
3

)
P−1,1

3,6 (k,m) = P−1,1
1,2 (m, k) = 2k

− (−1)k+m by (3.8)

P−1,1
4,6 (k,m) = P−1,1

2,3 (m, k) = (−1)k
(
(ζ2

3 − 1)k
− ζ2m

3

)
P−1,1

5,6 (k,m) = (−1)k
(
(ζ5

6 − 1)k
− ζ5m

p

)
by (3.4)

P−1,1
0,6 (m, k)P−1,1

2,6 (m, k)P−1,1
4,6 (m, k) = P−1,1

0,3 (m, k)P−1,1
1,3 (m, k)P−1,1

2,3 (m, k)

= (−1)k+1
(
3k + 1 − (−

√
3)k(2. cos

π(k + 4m)
6

)
)

(3.35)

Observe

ζ6 − 1 = ζ3, ζ5
6 − 1 = ζ−1

3 (3.36)

Now let us calculate

P−1,1
1,6 (m, k).P−1,1

5,6 (k,m) = P−1,1
1,6 (k,m).P−1,1

−1,6(k,m) by Lemma 3.2.5

= 2k
(
1 − cos

2π
6

)k
+ 1 −

(
ζm

6 (ζ−1
6 − 1)k + ζ−m

6 (ζ6 − 1)k
)

= 1 + 1 − (ζm
6 ζ
−k
3 + ζ−m

6 ζk
3) by (3.36)

= 2 − (ζ2k−m
6 + ζ−(2k−m)

6 )

= 2 − 2. cos
2π(2k −m)

6

= 2 − 2. cos
π(2k −m)

3
(3.37)
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|G6k(x0xmx−1
k )ab
| = P−1,1

0,6 (k,m).P−1,1
1,6 (k,m)...P−1,1

5,6 (k,m)

= |(−1)k+1
(
2k
− (−1)k+m

)(
3k + 1 − (−

√
3)k(2. cos

π(k + 4m)
6

)
)(

2 − 2. cos
π(2k −m)

3

)
|.

(3.38)

5. From Corollary 3.2.4, we have that |G12m(x0xmx−1
k )ab
| =

11∏
i=0

P−1,1
i,12 (k,m) where

P−1,1
0,12 (k,m) = (−1)k+1 by (3.7)

P−1,1
1,12 (k,m) = (−1)k((ζ12 − 1)k

− (ζ12)m) by (3.4)

P−1,1
2,12 (k,m) = P−1,1

1,6 (m, k) = (−1)k((ζ6 − 1)k
− ζm

6 ))

P−1,1
3,12 (k,m) = P−1,1

1,4 (m, k) = (−1)k((ζ4 − 1)k
− (ζ4)m)

P−1,1
4,12 (k,m) = P−1,1

1,3 (m, k) = (−1)k((ζ3 − 1)k
− ζm

3 ))

P−1,1
5,12 (k,m) = (−1)k((ζ5

12 − 1)k
− (ζ5

12)m) by (3.4)

P−1,1
6,12 (k,m) = P−1,1

1,2 (m, k) = (−1)2k+m
− (−2)k by (3.8)

P−1,1
7,12 (k,m) = (−1)k[(ζ7

12 − 1)k
− (ζ7

12)m] by (3.4)

P−1,1
8,12 (k,m) = P−1,1

2,3 (m, k) = (−1)k((ζ2
3 − 1)k

− ζ2m
3 ))

P−1,1
9,12 (k,m) = P−1,1

3,4 (m, k) = (−1)k((ζ3
4 − 1)k

− (ζ3
4)m)

P−1,1
10,12(k,m) = P−1,1

5,6 (m, k) = (−1)k((ζ5
6 − 1)k

− ζ5m
6 ))

P−1,1
11,12(k,m) = (−1)k((ζ11

12 − 1)k
− (ζ11

12)m) by (3.4)

so by Corollary 3.2.5 and equation (3.38) we have

P−1,1
0,12 (k,m).P−1,1

2,12 (k,m)...P−1,1
10,12(k,m) = P−1,1

0,6 (k,m)P−1,1
1,6 (k,m)...P−1,1

5,6 (k,m)

= (−1)k+1
(
2k
− (−1)k+m

)(
3k + 1 − (−

√
3)k(2. cos

π(k + 4m)
6

)
)(

2 − 2. cos
π(2k −m)

3

)
(3.39)
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and

P−1,1
3,12 (k,m).P−1,1

9,12 (k,m) = P−1,1
1,4 (k,m).P−1,1

3,4 (k,m) by (3.33)

= 2k + 1 − (
√

2)k.2 cos
π(2m + k)

4
(3.40)

Now observe

ζ12 − 1 =

√
2 −
√

6
2

ζ−5
24 , ζ

−1
12 − 1 =

√
2 −
√

6
2

ζ5
24 (3.41)

ζ5
12 − 1 =

√
6 +
√

2
2

ζ11
24, ζ

−5
12 − 1 =

√
6 +
√

2
2

ζ−11
24 (3.42)

P−1,1
1,12 (k,m).P−1,1

11,12(k,m) = P−1,1
1,12 (k,m)P−1,1

−1,12(k,m) by Lemma 3.2.5

= 2k
(
1 + cos

2π
12

)k
+ 1 − h1,12 by Corollary (2.2.)

= 2k(1 +

√
3

2
)k + 1 −

(
ζm

12(ζ−1
12 − 1)k + ζ−m

12 (ζ12 − 1)k
)

= 2k(1 +

√
3

2
)k + 1 − (

√
2 −
√

6
2

)k(ζm
12ζ

5k
24 + ζ−m

12 ζ
−5k
24 )

= 2k(1 +

√
3

2
)k + 1 − (

√
2 −
√

6
2

)k(ζ5k+2m
24 + ζ−(5k+2m)

24 ) by (3.41), (3.42)

= 2k(1 +

√
3

2
)k + 1 − (

√
2 −
√

6
2

)k.2 cos
2π(5k + 2m)

24
(3.43)

P−1,1
5,12 (k,m)P−1,1

7,12 (k,m) = P−1,1
5,12 (m, k)P−1,1

−5,12(k,m) by Lemma 3.2.5

= 2k(1 + cos
10π
12

)k + 1 − h5,12

= 2k(1 −
√

3
2

)k + 1 −
(
ζ5m

12 (ζ−5
12 − 1)k + ζ−5m

12 (ζ5
12 − 1)k

)
= 2k(1 −

√
3

2
)k + 1 − (

√
6 +
√

2
2

)k(ζ5m
12 ζ

−11k
24 + ζ−5m

12 ζ11k
24 )

= 2k(1 −
√

3
2

)k + 1 − (
√

6 +
√

2
2

)k(ζ(11k−10m)
24 + ζ−(11k−10m)

24 )

= 2k(1 −
√

3
2

)k + 1 − (
√

6 +
√

2
2

)k.2 cos
2π(11k − 10m)

24
(3.44)
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using (3.39),(3.40), (3.43), (3.44) we get

|G12k(x0xmx−1
k )ab
| = |P−1,1

0,12 (k,m)P−1,1
1,12 (k,m)...P−1,1

11,12(k,m)

= (−1)k+1
(
2k
− (−1)k+m

)(
3k + 1 − (−

√
3)k(2. cos

π(k + 4m)
6

)
)(

2 − 2. cos
π(2k −m)

3

)
(
(2 − 2. cos

π(2k −m)
3

)(2k + 1 − (
√

2)k.2 cos
π(k + 2m)

4
)
)

(
2k(1 +

√
3

2
)k + 1 − (

√
2 −
√

6
2

)k.2 cos
π(5k + 2m)

12
)
)

(
2k(1 −

√
3

2
)k + 1 − (

√
6 +
√

2
2

)k.2 cos
π(11k − 10m)

12

)
|

�



Chapter 4

Counting Gn(m, k) groups.

4.1 Introduction

In this chapter we count Gn(m, k) groups up to isomorphisms, in order to do this we use

classification of finite Gn(m, k) groups in [Wil12], the number of generators of Gn(m, k)ab

groups, and the order of Gn(m, k)ab. In Section 4.2, we determine a lower bound for the

number of generators of Gn(m, k)ab groups for certain values of n, by giving homomorphisms

from the groups whose number of generators we do not know to groups whose minimum

number of generators we do know (identified by Table A.1). In Section 4.3 we use methods

we mentioned above to give lower bounds for f (n) of Gn(m, k) groups for certain values of

n.

4.2 Lower bound for number of generators of Gn(m, k)ab groups

Definition 4.2.1. For a group G let d(G) denotes the minimum number of generators of Gab.

Lemma 4.2.2. If n ≡ 0 mod q then Gn(m, k) maps onto Gq(m, k).

56
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Proof. Let� denotes the sujective homomorphism between two groups, then we have

Gαq(m, k) � 〈x0, x1, ..., xαq−1 | xixi+m = xi+k, i = 0, 1, ..., αq − 1〉

� 〈x0, x1, ..., xαq−1 | xixi+m = xi+k, xi = xi+q, i = 0, 1, ..., αq − 1〉

� 〈x0, x1, ..., xq−1 | xixi+m = xi+k, i = 0, 1, ..., q − 1〉 = Gq(m, k)

�

In certain cases, we can use this to obtain lower bounds for d(Gn(m, k)).

Example 4.2.3. Let n ≡ 0 mod 7 then d
(
H(n, 3)ab

)
≥ 3.

Proof. Suppose that n = 7q. By Lemma 4.2.2 we have that H(n, 3) = Gn(3, 1) maps onto

H(7, 3) = G7(3, 1). Now from Table A.1 we have H(7, 3)ab � Z2 ⊕Z2 ⊕Z2, so d
(
H(7, 3)ab

)
≥ 3

hence d
(
H(n, 3)ab

)
≥ 3. �

Corollary 4.2.4.

(a) If n ≡ 0 mod 7 then d(H(n, 3)) ≥ 3.

(b) If n ≡ 0 mod 12 then d(H(n, 8)) ≥ 3.

(c) If n ≡ 0 mod 13 then d(Gn(1, 3)) ≥ 3.

(d) If n ≡ 0 mod 15 then d(H(n, 4)) ≥ 4.

(e) If n ≡ 0 mod 18 then d(H(n, 8)) ≥ 3.

(f) If n ≡ 0 mod 24 then d(H(n, 3)) ≥ 3.

(g) If n ≡ 0 mod 24 then d(H(n, 8)) ≥ 3.

(h) If n ≡ 0 mod 30 then d(H(n, 4)) ≥ 4.

(i) If n ≡ 0 mod 30 then d(H(n, 8)) ≥ 3.

Proof. From Lemma 4.2.2 and Table A.1 we have
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(a) H(n, 3)� H(7, 3)� H(7, 3)ab � Z2 ⊕Z2 ⊕Z2, therefore d(H(7, 3)ab) = 3 and

d(H(n, 3)ab) ≥ 3 .

(b) H(n, 8)� H(12, 8)� H(12, 8)ab = Z5 ⊕Z ⊕Z, therefore d(H(12, 8)ab) = 3 and

d(H(n, 8)ab) ≥ 3 .

(c) Gn(1, 3)� G13(1, 3)� G13(1, 3)ab = Z3 ⊕Z3 ⊕Z3, therefore d(G13(1, 3)ab) = 3 and

d(Gn(1, 3)ab) ≥ 3 .

(d) H(n, 4)� H(15, 4)� H(15, 4)ab = Z2 ⊕Z2 ⊕Z2 ⊕Z22, therefore d(H(15, 4)ab) = 4

and d(H(n, 4)ab) ≥ 4 .

(e) H(n, 8)� H(18, 8)� H(18, 8)ab = Z19 ⊕Z ⊕Z, therefore d(H(18, 8)ab) = 3 and

H(n, 8)ab) ≥ 3 .

(f) H(n, 3)� H(24, 3)� H(24, 3)ab = Z5 ⊕Z5 ⊕Z35, therefore d(H(24, 3)ab) = 3 and

d(H(n, 3)ab) ≥ 3 .

(g) H(n, 8)� H(24, 8)� H(24, 8)ab = Z85 ⊕Z ⊕Z, therefore d(H(24, 8)ab) = 3 and

d(H(n, 8)ab) ≥ 3 .

(h) H(n, 4)� H(30, 4)� H(30, 4)ab = Z4 ⊕Z4 ⊕Z4 ⊕Z396, then d(H(30, 4)ab) = 4 and

d(H(n, 4)ab) ≥ 4 .

(i) H(n, 8)� H(30, 8)� H(30, 8)ab = Z341 ⊕Z ⊕Z, therefore d(H(30, 8)ab) = 3 and

d(H(30, 8)ab) ≥ 3 .

�

4.3 Lower bounds on f (n)

In here we give answer for Question 1.5.15, we give lower bounds for the number of non

isomorphic Gn(m, k) groups for certain values of n. In order to do this we use lower bounds
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for the minimum number of generators of Gn(m, k)ab, the finiteness classification of Gn(m, k)

and the order of Gpm(m, k)ab,Gpk(m, k)ab when p = 3.

From Corollary 3.3.2 and Theorem 3.4.1, we have

|G3m(x0xmx−1
k )ab
| = (2m

− 1)(2 − 2 cos
(2k −m)π

3
) and

|G3k(x0xmx−1
k )ab
| = 3k + 1 − (−

√
3)k(2. cos

(k + 4m)π
6

).

The following corollaries follow from this

Corollary 4.3.1.

| G3k(x0x1x−1
k )ab

|=



3k + 3
k
2 + 1 when k ≡ 0 or 4 mod 12

3k + 1 when k ≡ 5 mod 12

3k
− 3

k
2 + 1 when k ≡ 6 or 10 mod 12

3k
− 3

k+1
2 + 1 when k ≡ 1 or 3 mod 12

3k
− 2.3

k
2 + 1 when k ≡ 8 mod 12

3k + 2.3
k
2 + 1 when k ≡ 2 mod 12

3k + 3
k+1

2 + 1 when k ≡ 7 or 9 mod 12

Proof. From the fact that

−(−
√

3)k.2cos
(4 + k)π

6
=



3
k
2 when k ≡ 0 or 4 mod 12

0 when k ≡ 5 mod 12

−3
k
2 when k ≡ 6 or 10 mod 12

−3
k+1

2 when k ≡ 1 or 3 mod 12

−2.3
k
2 when k ≡ 8 mod 12

2.3
k
2 when k ≡ 2 mod 12

3
k+1

2 when k ≡ 7 or 9 mod 12

�
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Corollary 4.3.2.

|G3m(x0xmx−1
1 )ab
| =



3(2m
− 1) when m ≡ 0 or 4 mod 6

2m
− 1 when m ≡ 1 or 3 mod 6

0 when m ≡ 2 mod 6

4(2m
− 1) when m ≡ 5 mod 6

Proof. From the fact that

2 − 2 cos
(m − 2)π

3
=



3 when m ≡ 0 or 4 mod 6

1 when m ≡ 1 or 3 mod 6

0 when m ≡ 2 mod 6

4 when m ≡ 5 mod 6

�

Definition 4.3.3. See for example [NZM08, pages 199 − 200] The Lucas sequence is defined

by

Ln = Ln−1 + Ln−2, L0 = 2,L1 = 1,L2 = 3,n ≥ 2. (4.1)

The first few Lucas number are 2, 1, 3, 4, 7, 11, 18, 29, .... Ln is determined by the relation

Ln =
(1 +

√
5

2

)n
+

(1 −
√

5
2

)n
(4.2)

Recall from the Introduction Theorems 4.3.4 and 4.3.5 below, which will be used in

counting Gn(m, k)ab groups.

Theorem 4.3.4. [CWLF67, Lyndon] |F(2,n)ab
| = Ln − 1 − (−1)n . In particular, F(2,n)ab is finite

for all n. Let m = n − 1 then

F(2,n)ab =



Zs i f (n, 6) = 1

Z2 ⊕Z2s i f (n, 6) = 2

Zs ⊕Zs i f (n, 6) = 3

Z2 ⊕Z5s i f (n, 6) = 6

For the Sieradski groups, the structure of S(2,n)ab is given by the following theorem
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Theorem 4.3.5. [JO94, COS08]

S(2,n)ab =



1 i f (n, 6) = 1

Z3 i f (n, 6) = 2

Z2 ⊕Z2 i f (n, 6) = 3

Z ⊕Z i f (n, 6) = 6

Lemma 4.3.6. If n ≡ 0 mod 3 then | F(2,n)ab
| is even.

Proof. From Theorem 4.3.4, we have that | F(2,n)ab
|= Ln − 1 − (−1)n, to prove our claim we

need to prove that Ln is even for n ≡ 0 mod 3. Now let n = 3 j therefore we will prove that

L3 j is even for any j ≥ 1, ie L3 j ≡ 0 mod 2 for any j ≥ 1. Now since L0 = 2,L1 = 1 and

Ln = Ln−1 + Ln−2 therefore

L j+3 =L j+2 + L j+1 (4.3)

=L j + 2L j+1 (4.4)

therefore

L j+3 ≡ L j mod 2, so L3 j ≡ L3( j−1) ≡ L3( j−2)... ≡ L6 ≡ L3 ≡ L0 ≡ 2 ≡ 0 mod 2

�

Theorem 4.3.7. For certain values of n lower bounds of isomorphisms classes will be as

follow

(a) If n ≡ 0 mod 4, n ≥ 8 then f (n) ≥ 4.

(b) If n ≡ 2 mod 4, n ≥ 10 then f (n) ≥ 5.

(c) If n ≡ 3 mod 6, n ≥ 9 then f (n) ≥ 4.

(d) If n ≡ 0 mod 7 then f (n) ≥ 3.

(e) If n ≡ 0 mod 12 then f (n) ≥ 6.

(f) If n ≡ 0 mod 13 then f (n) ≥ 3.

(g) If n ≡ 0 mod 15 then f (n) ≥ 4.
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(h) If n ≡ 0 mod 18 then f (n) ≥ 8.

(i) If n ≡ 0 mod 24 then f (n) ≥ 6.

(j) If n ≡ 0 mod 30 then f (n) ≥ 7.

Proof. In Table 4.1 we bound below the number of isomorphism classes of groups by ex-

hibiting various isomorphism classes of groups and showing none of them are isomorphic.

We identify groups by showing whether or not the group is finite, groups have different

values of d or different |Gn(m, k)ab
|). Lower bounds of d come from Corollary 4.2.4, and the

orders of |Gn(m, k)ab
| are from Corollaries 4.3.1, 4.3.2 and Theorems 4.3.4, 4.3.5.

In here I will explain one case of the table and the argument will be similar for the

others. When n ≡ 0 mod 4,n ≥ 8 we have 4 groups F(2,n),S(2,n),H(n, n
2 ) and H(n, n

2 + 1),

the group H(n, n
2 + 1) is the only group in this case which is finite while the others are

infinite, therefore it is not isomorphic to any of them. For the group F(2,n) we have that

d = 2, 3 < |F(2,n)ab
| < ∞, so it is not isomorphic to the group S(2,n) since S(2,n)ab � Z3 or

Z ⊕Z, and not isomorphic to H(n, n
2 ) since H(n, n

2 )ab � Z
2

n
2 −1

(d=1). Also S(2,n) � H(n, n
2 )

since they have different abelianization.

�
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Table 4.1: The lower bound of f(n) for certain values of n.

n Groups Finite Informations

(a) n ≡ 0 mod 4 Gn(1, 2) = F(2,n) No d = 2, 3 < |F(2,n)ab
| < ∞

, n ≥ 8

Gn(2, 1) = S(2,n) No S(2,n)ab � Z3 or Z ⊕Z

Gn(n
2 , 1) = H(n, n

2 ) No H(n, n
2 )ab � Z

2
n
2 −1

Gn(n
2 + 1, 1) = H(n, n

2 + 1) Z
2

n
2 +1

(b) n ≡ 2 mod 4 Gn(1, 2) = F(2,n) No d = 2, 3 < |F(2,n)ab
| < ∞

, n ≥ 10

Gn(1, 2) = S(2,n) No S(2,n)ab � Z3 or Z ⊕Z

Gn(n
2 , 1) = H(n, n

2 ) No H(n, n
2 )ab � Z

2
n
2 −1

Gn(n
2 + 1, 1) = H(n, n

2 + 1) Z
2

n
2 +1

Gn(1, n
2 ) Z

2
n
2 −1

(c) n ≡ 3 mod 6 Gn(1, 2) = F(2,n) No d = 2, |F(2,n)ab
| > 4

, n ≥ 9 4 | |F(2,n)ab
|

Gn(1, 2) = S(2,n) No S(2,n)ab � Z2 ⊕Z2

Gn(x0x1x−1
n
3

) No | Gn(x0x1x−1
n
3

)ab
|= 3

n
3 ± 3

n
3 +1

2 + 1

Gn(x0x n
3
x−1

1 ) No |Gn(x0x n
3
x−1

1 )ab
| = 2

n
3 − 1

(d) n ≡ 0 mod 7 Gn(1, 2) = F(2,n) No d = 1,F(2,n)ab > 4

Gn(1, 2) = S(2,n) No d = 1,S(2,n)ab � 1 or � Z2 ⊕Z2

Gn(3, 1) = H(n, 3) No d ≥ 3
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n Groups Finite Informations

(e) n ≡ 0 mod 12 Gn(1, 2) = F(2,n) No d = 2, 0 < |F(2,n)ab
| < ∞, 5| |F(2,n)ab

|

Gn(1, 2) = S(2,n) No S(2,n)ab � Z ⊕Z

Gn(n
2 , 1) = H(n, n

2 ) No H(n, n
2 )ab � Z

2
n
2 −1

Gn(n
2 + 1, 1) = H(n, n

2 + 1) Z
2

n
2 +1

Gn(8, 1) = H(n, 8) No d ≥ 3, | H(n, 8)ab
|= ∞

Gn(x0x1x−1
n
3

) No 5 6 | |Gn(x0x1x−1
n
3

)ab
| = 3

n
3 − 2.3

n
6 + 1

or 3
n
3 + 3

n
6 + 1(odd)

( f ) n ≡ 0 mod 13 Gn(1, 2) = F(2,n) No d = 1, |F(2,n)ab
| > 4

Gn(1, 2) = S(2,n) No d = 1, |S(2,n)ab
| � 1 or � Z2 ⊕Z2

Gn(1, 3) No d ≥ 3

(g) n ≡ 0 mod 15 Gn(1, 2) = F(2,n) No d = 2, |F(2,n)ab
| = Z2 ⊕Z2s, s > 1

S(2,n) No d = 2, |S(2,n)ab
| � Z2 ⊕Z2

Gn(4, 1) = H(n, 4) No d ≥ 4, 2 | |H(n, 4)ab
| < ∞

Gn(x0x n
3
x−1

1 ) No |Gn(x0x n
3
x−1

1 )ab
| = 3(2

n
3 − 1) or∞

(h) n ≡ 0 mod 18 Gn(1, 2) = F(2,n) No d = 2, 0 < |F(2,n)ab
| < ∞(even)

Gn(1, 2) = S(2,n) No S(2,n)ab � Z ⊕Z

Gn(n
2 , 1) = H(n, n

2 ) No H(n, n
2 )ab � Z

2
n
2 −1

Gn(n
2 + 1, 1) = H(n, n

2 + 1) Z
2

n
2 +1

Gn(1, n
2 ) Z

2
n
2 −1

Gn(8, 1) = H(n, 8) No d ≥ 3, |H(n, 8)ab
| = ∞

Gn(x0x n
3
x−1

1 ) No |Gn(x0x n
3
x−1

1 )ab
| = 3(2

n
3 − 1)

Gn(x0x1x−1
n
3

) No |Gn(x0x1x−1
n
3

)ab
| = 3

n
3 ± 3

n
6 + 1
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n Groups Finite Informations

(i) n ≡ 0 mod 24 Gn(1, 2) = F(2,n) No d = 2, 5| |F(2,n)ab
| < ∞

Gn(1, 2) = S(2,n) No S(2,n)ab � Z ⊕Z

Gn(n
2 , 1) = H(n, n

2 ) No H(n, n
2 )ab � Z

2
n
2 −1

Gn(n
2 + 1, 1) = H(n, n

2 + 1) Z
2

n
2 +1

Gn(8, 1) = H(n, 8) No d ≥ 3, | H(n, 8)ab
|= ∞

Gn(x0x1x−1
n
3

) No 5 6 | |Gn(x0x1x−1
n
3

)ab
| = 3

n
3 − 2.3

n
6 + 1

or 3
n
3 + 3

n
6 + 1(odd)

( j) n ≡ 0 mod 30 Gn(1, 2) = F(2,n) No d = 2, |F(2,n)ab
| < ∞

Gn(1, 2) = S(2,n) No S(2,n)ab � Z ⊕Z

Gn(n
2 , 1) = H(n, n

2 ) No H(n, n
2 )ab � Z

2
n
2 −1

Gn(n
2 + 1, 1) = H(n, n

2 + 1) Z
2

n
2 +1

Gn(1, n
2 ) Z

2
n
2 −1

Gn(8, 1) = H(n, 8) No d ≥ 3

|H(n, 8)ab
| = ∞

Gn(4, 1) = H(n, 4) No d ≥ 4,

4| |H(n, 4)ab
| < ∞



Chapter 5

Counting Γn(k, l) groups.

In this chapter we count Γn(k, l) groups up to isomorphism, our results are based on results

of Edjvet and Williams in [EW10]. Their results were stated in terms of three conditions

(A), (B), (C) being true or false, and have been summarised in [EW10, Table 1], which we

reproduce as Table 5.1 (this is Table 1.5). We study the groups in terms of the four conditions

(A), (B), (C), (D) being true or false, this gives 16 combinations.

Table 5.1: Summary of structures of Γn(k, l) [EW10, Table 1]

(A) (B) (C) Aspherical Abelianization Group
F F F Yes finite, 1 ∞

F F T No Zα Metacyclic
F T F No Z3 Z3

T F F n , 18 Yes ∞ Large
T F F n = 18 No Z ×Z ×Z19 Z ∗Z ∗Z19

T F T No Z ×Z ×Zγ Z ∗Z ∗Zγ

T T F No Z ×Z Z ∗Z
T T T No Z ×Z Z ∗Z

In Section 5.1, we show that the first 3 conditions are preserved under isomorphisms,

however we are unable to do so for the fourth condition (D).

In Section 5.2 we show that six out of the 16 combinations are impossible namely

FTTF,FTTT, TTTF,TTFF,FTFF, FFTT. Furthermore the case TTTT occurs when n = 3 or

n = 6 and the case TFTT occurs when n = 12. These two cases will be studied in Chapter 6,

where we give information about Γn(k, l) for n ≤ 29, for simplicity we consider n > 12 (the

cases when n < 12 are well understood).

66
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Now eight combinations are left to be studied FFFF,FFTF, FTFT, TFFF, TFTF, TTFT,

FFFT, TFFT.

In Section 5.3 we consider the six cases FFTF,FTFT, TFTF, TTFT,FFFT,TFFT. We show

that in each case there is exactly one group or no groups, we determine values of n for

which we get 1 group, and show that for other values of n the number of groups is 0. We

express our results by using the following definition

Definition 5.0.8. Let (n, k, l) = 1, k , l, 1 ≤ k, l ≤ n − 1. We define f (abcd)(n) to be the number of

Γn(k, l) groups up to isomorphism, where a, b, c, d ∈ {T,F,−} and a, b, c, d denote to conditions

(A), (B), (C), (D)

a = T means (A) holds

a = F means (A) does not hold

a = − means there is no restriction on A

Similarly for b, c, d.

In the cases FFFF,TFFF we are unable to find the precise number of the groups, but

we are able to obtain lower bounds of Γn(k, l) groups for certain values of n, we do this in

Section 5.4.

It turns out (see Lemma 5.2.4) that in the cases FFFT and TFFT the groups Γn(k, l) are

isomorphic to Γn(1, n
2 − 1), in [EW10, page 774] it was observed without proof that in the

case FFFT we have Γn(k, l) � Γn(1, n
2 − 1). In Lemma 5.2.4 we prove that observation and

extend it to include the case TFFT. We study this group in more detail in Section 5.5. We

show in Theorem 5.5.2 that in the case FFFT, the group has finite abelianization of order

|Γn(1, n
2 − 1)ab

| = 3
(
L n

2
+ 1 + (−1)

n
2

)
, where Ln is Lucas number of order n. In the case TFFT

the group is known to have infinite abelianization and we show in Theorem 5.5.1 that it

has torsion free rank 2. In Section 5.6, we investigate a question similar to question 1.5.16

which was about Gn(m, k) groups. Our question is when does Γn(k, l) � Γn′(k′, l′) imply

n = n′?

We determine here Γab
n (1, n

2 ), in order to identify groups later in this chapter.
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Proposition 5.0.9. Let n be even then

Γn(1,
n
2

)ab =

 Z2
n
2 −1 If n ≡ 0 mod 4

Z2
n
2 +1 If n ≡ 2 mod 4

Proof. Now by definition

Γn(1,
n
2

)ab = 〈x0, x1, ..., xn−1 | xixi+1xi+ n
2

= 1, xix j = x jxi, 0 ≤ i, j ≤ n − 1〉ab

We could now add to the previous presentation the relation xi = xi+ n
2

which come from

adding n
2 to the index i in the relation

xixi+1xi+ n
2

= 1 (5.1)

we get

xi+ n
2
xi+ n

2 +1xi = 1 (5.2)

then by using abelianization in relations (5.1), (5.2) we get xi+1 = xi+ n
2 +1 and by subtracting

1 from the index in relation we get xi = xi+ n
2
.

Γn(1,
n
2

)ab = 〈x0, x1, ..., xn−1 | xixi+1xi+ n
2

= 1, xi = xi+ n
2
, xix j = x jxi, 0 ≤ i, j ≤ n − 1〉

This allow us to write the presentation in this form

= 〈x0, x1, ..., x n
2−1 | x2

i xi+1 = 1, i = 0, 1, ...,
n
2
− 1〉

= 〈x0, x1, ..., x n
2−1 | x2

0x1 = 1, x2
1x2 = 1, ..., x2

n
2−2x n

2−1 = 1, x2
n
2−1x0 = 1〉

By eliminating x0 = x−2
n
2−1 we get

Γn(1,
n
2

) = 〈x1, ..., x n
2−1 | x−4

n
2−1x1 = 1, x2

1x2 = 1, ..., x2
n
2−2x n

2−1 = 1〉
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By eliminating x n
2−1 = x−2

n
2−2 we get

Γn(1,
n
2

) = 〈x0, x1, ..., x n
2−2 | x8

n
2−1x1 = 1, x2

1x2 = 1, ..., x2
n
2−3x n

2−2 = 1〉

when n ≡ 0 mod 4 therefore
n
2

is even and by doing
n
2
− 1 eliminations we get

Γn(1,
n
2

)ab = 〈x1 | x2
−n
2

1 x1 = 1〉 = 〈x1 | x2
n
2 −1

1 = 1〉 = Z
2

n
2 −1

when n ≡ 2 mod 4 therefore
n
2

is odd and by doing
n
2
− 1 eliminations we get

Γn(1,
n
2

)ab = 〈x1 | x2
n
2

1 x1 = 1〉

= 〈x1 | x2
n
2 +1

1 = 1〉

= Z
2

n
2 +1

�

We summarise our results in Table 5.2, and we assume that (n, k, l) = 1, k , l. We record

here that [EW10, Theorem B (i)] stated that if k = l, in which case Γ � Zs where s = 2n
−(−1)n.

In Table 5.2 for the 6 cases FFTF,FTFT, TFTF, TTFT,FFFT,TFFT, f (abcd)(n) = 1 for values of

n that appear in the table, and f (abcd)(n) = 0 for values of n that do not appear in the table.

f (abcd)(n) ≥ 1 for the cases FFFF,TFFF.

Table 5.2: (n, k, l) = 1, k , l, k , 0, l , 0,n > 12, α = 3(2n/3
− (−1)n/3), γ = (2n/3

− (−1)n/3)/3)

Values of n (A) (B) (C) (D) Aspherical Abelianization Group Γn(k, l) � f (abcd)(n)

F F F F Yes finite, 1 ∞ Unknown ≥ 1

n ≡ 2 or 4 mod 6 F F F T Yes |Γn(k, l)ab
| = 3

(
L n

2
+ 1 + (−1)

n
2
)

∞ Γn(1, n
2 − 1) 1

n ≡ 0 mod 3,n ≥ 6 F F T F No Zα Metacyclic Γn( n
3 ,

1+2n
3 ) 1

n ≡ 1 or 2 mod 3 F T F T No Z3 Z3 Γn(1, 2) 1

T F F F Yes ∞ Large Unknown ≥ 1

n ≡ 0 mod 6, n > 18 T F F T Yes ∞ has torsion − free rank 2 ∞ Γn(1, n
2 − 1) 1

n ≡ 0 mod 6, n = 18 T F F T No Z ×Z ×Z19 Z ∗Z ∗Z19 Γn(1, n
2 − 1) 1

n ≡ 3 or 6 mod 9 T F T F No Z ×Z ×Zγ Z ∗Z ∗Zγ Γn(1, n
3 ) 1

n ≡ 0 mod 3,n ≥ 9 T T F T No Z ×Z Z ∗Z Γn(1, 2) 1

We recall from introduction the following lemma (Lemma 1.6.1), which gives isomor-

phisms between Γn(k, l) groups
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Lemma 5.0.10. [EW10, Lemma 2.1.] Let 1 ≤ k, l ≤ n − 1 then

1. Γn(k, l) � Γn(l − k,−k).

2. Γn(k, l) � Γn(l, k).

3. Γn(k, l) � Γn(k − l,−l).

4. Γn(k, l) � Γn(k, k − l).

5. If (k,n) = 1 then Γn(k, l) � Γn(1,Kl), where Kk ≡ 1( mod n).

6. If n is even and (l,n) = 1 then Γn(k, l) � Γn(1,Lk + 1), where Ll ≡ −1( mod n).

5.1 Preservation of conditions (A), (B), (C), (D) under isomor-

phisms

Here we consider the four conditions (A), (B), (C), (D), we prove the following theorem

Theorem 5.1.1. Suppose (n, k1, l1) = 1, 1 ≤ k1 ≤ n − 1, 1 ≤ l1 ≤ n − 1, k1 , l1 and (n, k2, l2) =

1, 1 ≤ k2 ≤ n − 1, 1 ≤ l2 ≤ n − 1, k2 , l2 and suppose Γn(k1, l1) � Γn(k2, l2) then

(a) If n, k1, l1 satisfy (A) then n, k2, l2 satisfy (A).

(b) If n, k1, l1 satisfy (B) then n, k2, l2 satisfy (B).

(c) If n, k1, l1 satisfy (C) then n, k2, l2 satisfy (C).

(d) If n, k1, l1 satisfy (D) then one of the following holds

(i) n, k2, l2 satisfy (D).

(ii) n, k1, l1 satisfy FFFT and n, k2, l2 satisfy FFFF.

(iii) n, k1, l1 satisfy TFFT and n, k2, l2 satisfy TFFF.

Proof.
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(a) Suppose n, k1, l1 satisfy (A), then [EW10, Lemma2.2.] implies that |Γn(k1, l1)ab
| = ∞. If

n, k2, l2 does not satisfy (A), then |Γn(k2, l2)ab
| < ∞, this contradicts Γn(k1, l1) � Γn(k2, l2),

therefore n, k2, l2 satisfy (A).

(b) Suppose (n, k1, l1) satisfy (B), then from Table 5.1, Γn(k1, l1) � Γn(k2, l2) � Z ∗ Z or Z3.

Suppose for contradiction that (n, k2, l2) does not satisfy (B), then one of the following hold

From line 1 in Table 5.1, |Γn(k2, l2)ab
| < ∞, |Γn(k2, l2)| = ∞. Therefore Γn(k2, l2) � Z3, and

since |(Z ∗Z)ab
| = ∞, we get Γn(k2, l2) � Z ∗Z, a contradiction.

From line 2 in Table 5.1, |Γn(k2, l2)| = 2n
− (−1)n. Therefore Γn(k2, l2) � Z ∗ Z, and

Γn(k2, l2) � Z3, only when n = 1 or n = 2, a contradiction.

From line 4 in Table 5.1, Γn(k2, l2) is large, so Γn(k2, l2) � Z3. Suppose for contradiction

that Γn(k2, l2) � Z ∗Z, then the presentation Pn(k2, l2) is an aspherical presentation of Z ∗Z

of deficiency zero, a contradiction.

From line 5 in Table 5.1, Γn(k2, l2) � Z ∗Z ∗Z19 � Z ∗Z or Z3, a contradiction.

From line 6 in Table 5.1, Γn(k2, l2) � Z ∗Z ∗Zγ, γ =
(
2

n
3 − (−1)

n
3

)
/3. Therefore Γn(k2, l2) �

Z ∗Z ∗Zγ � Z3, Γn(k2, l2) � Z ∗Z ∗Zγ � Z ∗Z only when n = 3 or n = 6, a contradiction.

(c) Suppose (n, k1, l1) satisfy (C), then from Table 5.1, either Γn(k1, l1) � Γn(k2, l2) � Γn(n
3 ,

1+2n
3 )

(this was conjectured in [EW10, Conjectur 3.4.] and proved in [BW17, Lemma 23 and

Corollary D.]), which is metacyclic of order 2n
−(−1)n or Γn(k1, l1) � Γn(k2, l2) � Z∗Z∗Zγ, γ =

2
n
3 − (−1)

n
3 /3, (note that it was stated in [EW10, page 761] that line 8 only occurs when n = 3

or 6, and we will give full proof for it in Lemma 5.2.3). Suppose for contradiction that

(n, k2, l2) does not satisfy (C), then one of the following hold

From line 1 in Table 5.1, |Γn(k2, l2)ab
| < ∞, |Γn(k2, l2)| = ∞. Therefore Γn(k2, l2) is not

isomorphic to a Metacyclic group, and since |(Z ∗ Z ∗ Zγ)ab
| = ∞, |(Z ∗ Z)ab

| = ∞, we get

Γn(k2, l2) � Z ∗Z ∗Zγ and Γn(k2, l2) � Z ∗Z, a contradiction.

From line 3 in Table 5.1, |Γn(k2, l2)| � Z3. Therefore Γn(k2, l2) � Z ∗Z ∗Zγ, and Γn(k2, l2)

isomorphic to a metacyclic group only when n = 1 or n = 2, a contradiction.

From line 4 in Table 5.1, Γn(k2, l2) is large, so Γn(k2, l2)is not isomorphic to a metacyclic

group. Suppose for contradiction that Γn(k2, l2) � Z ∗ Z ∗ Zγ, then in both cases the

presentation Pn(k2, l2) is an aspherical presentation of Z ∗ Z ∗ Zγ of deficiency zero, a

contradiction (since de f (Z ∗Z ∗Zγ) = 2).



5.1. Preservation of conditions (A), (B), (C), (D) under isomorphisms 72

From line 5 in Table 5.1, Γn(k2, l2) is not isomorphic to a metacyclic group, Γn(k2, l2) �

Z ∗Z ∗Z19 � Z ∗Z ∗Zγ (since γ , 19) , a contradiction.

From line 7 in Table 5.1, Γn(k2, l2) � Z ∗ Z is not isomorphic to a metacyclic group

,Γn(k2, l2) � Z ∗Z � Z ∗Z ∗Zγ (since γ = 1 when n = 3) , a contradiction.

(d) Suppose (n, k1, l1) satisfy (D), then from Table 5.2 the group Γn(k1, l1) can be one of the

following

1. If n ≡ 2 or 4 mod 6, then |Γn(k1, l1)ab
| < ∞where |Γn(k1, l1)| = ∞ in line 2 (the case FFFT).

2. If n ≡ 1 or 2 mod 3, then Γn(k1, l1) � Z3, in line 4 (the case FTFT).

3. If n ≡ 0 mod 6,n , 18, then |Γn(k1, l1)| = ∞, |Γn(k1, l1)ab
| = ∞, in line 6 (the case TFFT).

4. If n = 18, then Γn(k1, l1) � Z ∗Z ∗Z19, in line 7 (the case TTFT).

5. If n ≡ 0 mod 3,n ≥ 9, then Γn(k1, l1) � Z ∗Z, in line 9 (the case TTFT).

Suppose for contradiction that (n, k2, l2) does not satisfy (D), then one of the following hold

In line 1 in Table 5.2 (the case FFFF), then |Γn(k2, l2)ab
| < ∞, |Γn(k2, l2)| = ∞. We do not know

if there any parameters n, k1, l1, k2, l2 such that (n, k1, l1) satisfies FFFT (case 1) and (n, k2, l2)

satisfies FFFF and Γn(k1, l1) � Γn(k2, l2). But Γn(k2, l2) � Z3 in case (2), a contradiction.

Also |Γn(k2, l2)ab
| , |Γn(k1, l1)ab

| in case (3), a contradiction. |Γn(k2, l2)ab
| , |Γn(k1, l1)ab

| =

(Z ×Z ×Z19)ab in case (4), a contradiction. Similarly |Γn(k2, l2)ab
| , |Γn(k1, l1)ab

| = (Z ×Z)ab

in (5), a contradiction.

In line 3 in Table 5.2, when n ≡ 0 mod 3,n ≥ 6 (the case FFTF), then |Γn(k2, l2)| = 2n
−(−1)n.

We only need to consider the groups in cases (3), (4), (5), as the value of n is different in cases

(1), (2). Now |Γn(k1, l1)| = ∞ in (3), (4), (5), and |Γn(k2, l2)| = 2n
− (−1)n. Γn(k2, l2) � Γn(k1, l1), a

contradiction.

In line 5 in Table 5.2, this is TFFF, then Γn(k2, l2) is large and has infinite abelianization.

We do not know are there any parameters n, k2, l1, k2, l2 such that (n, k1, l1) satisfies TFFT in

case (3) and (n, k2, l2) satisfies TFFF and Γn(k1, l1) � Γn(k2, l2). But |Γn(k2, l2)ab
| , |Γn(k1, l1)ab

|

in (1), a contradiction. Also Γn(k2, l2) � Z3 in case (2), a contradiction. Now suppose for

contradiction that Γn(k2, l2) � Z ∗ Z ∗ Z19, then the presentation Pn(k2, l2) is an aspherical

of deficiency zero, and since Z ∗ Z ∗ Z19 has a presentation of deficiency 2 (namely the
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presentation 〈x, y, z | z19 = 1〉), a contradiction. Suppose for contradiction that Γn(k2, l2) �

Z ∗ Z, then the presentation Pn(k2, l2) is an aspherical presentation of Z ∗ Z of deficiency

zero, and since Z ∗Z has a presentation of deficiency 2 (namely the presentation 〈x, y | 〉),

a contradiction.

In line 8 in Table 5.2, when n ≡ 3 or 6 mod 9 (the case TFTF), then Γn(k2, l2) � Z∗Z∗Zγ, γ =(
2

n
3 − (−1)

n
3

)
/3. we only consider cases (3), (4), (5), since the value of n is different in cases

(1), (2). Γn(k2, l2) does not imply cases (4) above, since Pn(k1, l1) is aspherical presentation

of deficiency zero, now suppose for contradiction that Γn(k1, l1) � Γn(k2, l2) � Z ∗ Z ∗ Z19,

then the presentation Pn(k2, l2) is an aspherical presentation of Z ∗ Z ∗ Z19 of deficiency

zero, and since Z ∗ Z ∗ Z19 has a presentation of deficiency 2 (namely the presentation

〈x, y, z | z19 = 1〉), a contradiction. Also Γn(k2, l2) = Z ∗Z ∗Zγ � Z ∗Z ∗Z19 in (4) since γ , 19.

And Γn(k2, l2) = Z ∗Z ∗Zγ � Z ∗Z only when n = 6, a contradiction. �

In most of cases we showed that the condition (D) is preserved under isomorphisms, but

in case (ii) we do not know if there any parameters n, k2, l1, k2, l2 such that (n, k1, l1) satisfies

FFFT and (n, k2, l2) satisfies FFFF and Γn(k1, l1) � Γn(k2, l2). Since that both of the groups

Γn(k1, l1),Γn(k2, l2) have infinite order and Γn(k1, l1)ab,Γn(k2, l2)ab have finite order. Also both

of presentations Pn(k1, l1),Pn(k2, l2) are aspherical. Similarly for part (iii).

5.2 Combinations of (A), (B), (C), (D) that are not possible for

n > 12

Here we shall show why the eight combinations FTTF,FTTT, TTTF,TTFF, FTFF,FFTT,

TTTT,TFTT are not possible when n > 12.

Lemma 5.2.1. Suppose that (n, k, l) = 1, k , l. Then the combinations FTTF, TTTF, TTFF, FTFF

are not possible.

Proof. Since that when (B) holds then (D) holds, therefore proof is done. �

Lemma 5.2.2. Let n > 12, if (n, k, l) = 1, k , l, and (C), (D) hold. Then (A) holds, and therefore

the combinations FFTT,FTTT are not possible.
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Proof. We shall show that when (C), (D) are true, then (A) is true. This is enough to show the

combination FFTT,FTTT are not possible. Now (C), (D) are T, this means that n ≡ 0 mod 6

(first part of A holds). Assume for contradiction that second part of (A) does not hold

(k + l . 0 mod 3). Now let n = 6m,m > 2. If C part one (3l ≡ 0 mod 6m) holds, therefore

l = 2m or l = 4m. Now by considering (D) is T, we have three cases for each value of l

• l = 2m

1. If 2(k + l) ≡ 0 mod 6m, therefore (k + l) ≡ 0 mod 3m, so (k + l) ≡ 0 mod 3, a

contradiction.

2. If 2(2l − k) ≡ 0 mod 6m, therefore (2l − k) ≡ 0 mod 3m, so k ≡ 2l mod 3m then

k + l ≡ 3l ≡ 0 mod 3, a contradiction.

3. If 2(2k− l) ≡ 0 mod 6m, therefore (2k− l) ≡ 0 mod 3m, so 2k ≡ l mod 3m, therefore

k + l ≡ 3k ≡ 0 mod 3, a contradiction.

• l = 4m

1. If 2(k + l) ≡ 0 mod 6m, therefore k + l ≡ 0 mod 3m, so k + l ≡ 0 mod 3, a

contradiction.

2. If 2(2l− k) ≡ 0 mod 6m, therefore (2l− k) ≡ 0 mod 3m, so k ≡ 2l mod 3m,therefore

k + l ≡ 3l ≡ 0 mod 3m, and then k + l ≡ 0 mod 3, a contradiction.

3. If 2(2k− l) ≡ 0 mod 6m, therefore (2k− l) ≡ 0 mod 3m, so 2k ≡ l mod 3m, therefore

k + l ≡ 3k ≡ 0 mod 3, and then k + l ≡ 0 mod 3, a contradiction.

If (C) part two (3k ≡ 0 mod 6m) holds, therefore k = 2m or k = 4m, by similar argument

we used above we will get that (A) is T. If (C) part three (3(l − k) ≡ 0 mod 6m) holds, then

l − k ≡ 2m mod 2m, therefore

l − k = 2αm (α ∈ Z). (5.3)

If (D) is T we have

1. If 2(k + l) ≡ 0 mod 6m, then (k + l) ≡ 0 mod 3m, so (k + l) ≡ 0 mod 3, a contradiction.
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2. If 2(2l − k) ≡ 0 mod 6m, then 2l − k ≡ 0 mod 3m, therefore

2l − k = 3βm (β ∈ Z). (5.4)

By (5.3), (5.4), we have k = (3β − 4α)m, l = (3β − 2α)m, therefore

k + l = 6(β − α)m

therefore k + l ≡ 0 mod 6m

k + l ≡ 0 mod 3.

A contradiction.

3. If 2(2k − l) ≡ 0 mod 6m, then 2k − l ≡ 0 mod 3m, therefore

2k − l = 3γm (γ ∈ Z). (5.5)

By (5.3), (5.5), we have k = (3γ + 2α)m, l = (3γ + 4α)m, therefore

k + l = 6(γ + α)m

⇒ k + l ≡ 0 mod 6m

⇒ k + l ≡ 0 mod 3 a contradiction.

�

Now we show that the case TTTT only occurs when n = 3 or n = 6, and the case TFTT

only occurs when n = 12. We study these cases in more detail in Chapter 6.

The following lemma is stated without proof in [EW10, page 761, line 12]

Lemma 5.2.3. For n > 6 there are no values of k, l, k , l, (n, k, l) = 1, 1 ≤ k, l ≤ n − 1 such that

(A)(B)(C)(D) are TTTT.

Proof. (A) is T gives that n ≡ 0 mod 3, and l ≡ −k mod 3. Assume for contradiction that

n = 3m,m > 2. If 3|k then 3|l so 3|(n, k, l) = 1 contradiction, therefore 3 6 |k and 3 6 |l. If (C)
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part one (3l ≡ 0 mod 3m) hold, therefore l = m or l = 2m. Now by considering (B) is T we

have three cases for each value of l

When l = m we have,

1. If k + l ≡ 0 mod 3m, then k ≡ 2m mod 3m. Therefore 1 = (n, k, l) = (3m, 2m,m) = m, a

contradiction.

2. If 2l − k ≡ 0 mod 3m, then k ≡ 2m mod 3m. Therefore 1 = (n, k, l) = (3m, 2m,m) = m, a

contradiction.

3. If 2k− l ≡ 0 mod 3m, then 2k ≡ m mod 3m. Therefore k ≡ 2m mod 3m, so 1 = (n, k, l) =

(3m, 2m,m) = m, a contradiction.

When l = 2m we have

1. If k + l ≡ 0 mod 3m, then k ≡ m mod 3m. Then 1 = (n, k, l) = (3m,m, 2m) = m, a

contradiction.

2. If 2l − k ≡ 0 mod 3m, then k ≡ m mod 3m. Then 1 = (n, k, l) = (3m,m, 2m) = m, a

contradiction.

3. If 2k − l ≡ 0 mod 3m, then k ≡ m mod 3m. Then 1 = (3m,m, 2m) = m, a contradiction.

If (C) part two (3k ≡ 0 mod 3m) hold, therefore k = m or k = 2m, by considering B and

using similar argument we used above we will get similar contradictions. If (C) part three

(3(l − k) ≡ 0 mod 3m) hold, therefore l − k ≡ m mod 3m , by considering B we have

1. If k + l ≡ 0 mod 3m, and l − k ≡ m mod 3m, therefore l = 2m, k = m, so 1 = (n, k, l) =

(3m,m, 2m) = m contradiction m > 2.

2. If 2l − k ≡ 0 mod 3m, and l − k ≡ m mod 3m, therefore l = 2m, k = m, so 1 = (n, k, l) =

(3m,m, 2m) = m contradiction m > 2.

3. If 2k − l ≡ 0 mod 3m, and l − k ≡ m mod 3m, therefore l = 2m, k = m, so 1 = (n, k, l) =

(3m,m, 2m) = m contradiction m > 2.

�
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In [EW10, page 774] it was observed without proof that in the case FFFT we have

Γn(k, l) � Γn(1, n
2 − 1). The following Lemma gives a proof of that observation, and shows

that the observation also holds in particular for the case TFFT and in general for all cases

−F − T. This result will also be needed for the proof of Lemma 5.2.5

Lemma 5.2.4. If (n, k, l) = 1, k , l, and (D) hold and (B) does not hold then Γn(k, l) � Γn(1, n
2 − 1)

Proof. If (D) holds then n is even and we have three cases to consider

1. If 2(2k− l) ≡ 0 mod n then (2k− l) ≡ 0 or n
2 mod n but (B) is F therefore (2k− l) ≡ n

2 mod

n so l ≡ n
2 + 2k mod n. Using part 4 of Lemma 5.0.10, we have Γn(k, l) = Γn(k, n

2 + 2k) �

Γn(k, n
2 − k).

2. If 2(2l − k) ≡ 0 mod n then (2l − k) ≡ 0 or n
2 mod n but (B) is F therefore (2l − k) ≡ n

2

mod n so k ≡ n
2 + 2` mod n, by using number (2), (4) in Lemma 5.0.10 we can see

Γn(k, l) = Γn(n
2 + 2l, l) � Γn(l, n

2 + 2l) � Γn(l, n
2 − l) = Γn(k1, n

2 − k1) where k1 = l.

3. If 2(k + l) ≡ 0 mod n then (k + l) ≡ 0 or n
2 mod n but (B) is F therefore (k + l) ≡ n

2 mod n

⇒ l ≡ n
2 − k mod n, so we can write Γn(k, l) = Γn(k, n

2 − k).

It suffices to consider Γn(k, l) = Γn(k, n
2 − k). Now since 1 = (n, k, l) = (n, k, n

2 − k) then

(n, k, n
2 − k) = 1, and thus that (n

2 , k) = 1. Let d = (n, k, n
2 − k) therefore d|k + (n

2 − k) = n
2 which

means d|(n
2 , k) so (n, k, n

2 − k)|(n
2 , k) so (n

2 , k) = (n, k, n
2 − k) = 1.

Suppose that k is even then since (n
2 , k) = 1 we have that n

2 is odd, let k2 = n
2 − k. Then

k2 is odd, and by using number (2) in Lemma 5.0.10 we have Γn(k, n
2 − k) � Γn(n

2 − k, k) =

Γn(k2, n
2 − k2). But (k2,n) = 1, so Γn(k2, n

2 − k2) � Γn(1,K(n
2 − 1)) by number (5) in Lemma 5.0.10

where Kk2 ≡ 1 mod n, therefore Γn(k2, n
2 − k2) � Γn(1, n

2 − 1).

So we may assume k is odd so (n
2 , k) = 1⇒ (n, k) = 1, and by using Lemma 5.0.10 we may

assume that k = 1. Then Γn(k, l) = Γn(k, n
2 −k) � Γn(αk, α(n

2 −k)) � Γn(1, α(n
2 −k)) where αk ≡ 1

mod n, (n, α) = 1 which implies that α is odd, therefore Γn(1, α(n
2 − k)) � Γn(1, α.n2 − 1) =

Γn(1, n
2 − 1). That is Γn(k, l) � Γn(k, n

2 − k) � Γn(1, n
2 − 1) �

Lemma 5.2.5. Suppose that (n, k, l) = 1, k , l, k . 0 mod n, l . 0 mod n. If n , 12, then the

combination TFTT is not possible.
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Proof. (A), (D) are T,T give that n ≡ 0 mod 6, and l ≡ −k mod 3. Lemma 5.2.4 implies

that Γn(k, l) � Γn(1, n
2 − 1). If n = 6, the only cases imply that (A) is T, and (n, k, l) = 1

are Γ6(1, 2),Γ6(1, 5),Γ6(2, 1) ,Γ6(5, 1) , this contradicts (B) is F. When n = 12, we have

Γ12(1, 5) implies that ABCD are TFTT. Now when n > 12 assume for contradiction that

n = 6m,m > 2. If 3|k then 3|l so 3|(n, k, l) = 1 contradiction, therefore 3 6 |k and 3 6 |l. If (C)

part one (3l ≡ 0 mod n) hold, therefore l = 2m or l = 4m. Now by considering (D) is T, (B)

is F we have three cases for each value of l

When l = 2m we have,

1. If 2(k + l) ≡ 0 mod 6m, therefore (k + l) ≡ 0 mod 3m, so k ≡ m mod 3m. Then

1 = (n, k, l) = (6m,m, 2m) = m, a contradiction.

2. If 2(2l − k) ≡ 0 mod 6m, therefore (2l − k) ≡ 0 mod 3m, so k ≡ m mod 3m. Then

1 = (n, k, l) = (6m,m, 2m) = m, a contradiction.

3. If 2(2k − l) ≡ 0 mod 6m, therefore (2k − l) ≡ 0 mod 3m, so k ≡ m mod 3m. Then

1 = (n, k, l) = (6m,m, 2m) = m, a contradiction.

When l = 4m we have,

1. If 2(k + l) ≡ 0 mod 6m, therefore (k + l) ≡ 0 mod 3m, so k ≡ 2m mod 3m. Then

1 = (n, k, l) = (6m, 2m, 4m) = 2m, a contradiction.

2. If 2(2l − k) ≡ 0 mod 6m, therefore (2l − k) ≡ 0 mod 3m, so k ≡ 2m mod 3m. Then

1 = (n, k, l) = (6m, 2m, 4m) = 2m, a contradiction.

3. If 2(2k − l) ≡ 0 mod 6m, therefore (2k − l) ≡ 0 mod 3m, so k ≡ 2m mod 3m. Then

1 = (n, k, l) = (6m, 2m, 4m) = 2m, a contradiction.

If (C) part two (3k ≡ 0 mod 6m) hold, therefore k = m or k = 2m, by considering (B) and

using similar argument we used above we will get similar contradictions. If (C) part three

hold, we have

3(l − k) ≡ 0 mod 6m

⇒ l − k ≡ 0 mod 2m

⇒ l − k = 2mα (α ∈ Z) (5.6)
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Now by considering (D) is T we have three cases

1. If

2(k + l) ≡ 0 mod 6m

⇒ k + l ≡ 0 mod 3m

⇒ k + l = 3mβ (β ∈ Z) (5.7)

Thus, substituting (5.6) from (5.7) gives k =
(3β−2α)m

2 , and we know that k is an integer.

Also adding (5.7) and (5.6) gives l =
(3β+2α)m

2 , and we know that l is an integer.

Therefore m|(n, k, l) = (6m, (3α−2β)m
2 ,

(3α+2β)m
2 ) = 1, a contradiction.

2. If

2(2l − k) ≡ 0 mod 6m

⇒ 2l − k ≡ 0 mod 3m

⇒ 2l − k = 3mβ′ (β′ ∈ Z) (5.8)

Then (5.8) − (5.6) gives l = (3β − 2α)m, (5.8) − 2.(5.6) gives k = (3β′ − 4α)m, therefore

m|(n, k, l) = (6m, (3β − 4α)m, (3β′ − 2α′)m) = 1, a contradiction.

3. If

2(2k − l) ≡ 0 mod 6m

⇒ 2k − l ≡ 0 mod 3m

⇒ 2k − l = 3mβ′′ (β′′ ∈ Z) (5.9)

Then (5.9) + (5.6) gives k = (3β′′ + 2α)m, (5.9) + 2.(5.6) gives l = (3β′′ + 4α)m, therefore

m|(n, k, l) = (6m, (3β + 2α′′)m, (3β + 4α′′)m) = 1, a contradiction.

�

Theorem 5.2.6. Suppose that (n, k, l) = 1, k , l. If n > 12 then the following 8 combinations

FTTF,TTTF,TTFF,FTFF,TTTT,FFTT,FTTT,TFTT of (A)(B)(C)(D) being true or false, are not
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possible.

Proof. Lemma 5.2.1 shows that the combinations FTTF,TTTF,TTFF, FTFF are not possible.

Lemma 5.2.3 shows that the combination TTTT is not possible. Lemma 5.2.2 shows that

the combinations FFTT,FTTT are not possible. Lemma 5.2.5 shows that the combination

TFTT is not possible. �

5.3 f (abcd)(n) for the six cases FFTF,FTFT, TFTF, TTFT,FFFT,TFFT

The five cases FFTF,FTFT, TFTF, TTFT,FFFT have been studied in [EW10] (Information

can be seen in Table 5.1). The combination (FFTF) in Table 5.2 represents (FFT) in Table 5.1

(since FFTT is impossible see Lemma 5.2.2), we have the group Γn(k, l) is metacyclic, and

Γn(k, l)ab � Zα, α = 3(2n/3
− (−1)n/3), and the presentation Pn(k, l) is not aspherical. The

combination (FTFT) represents (FTF) (if B true D true), and we have the group Γn(k, l) �

Z3, and Γn(k, l)ab � Z3, and the presentation Pn(k, l) is not aspherical. The combination

(TFTF) represents (TFT) (since TFTT is impossible see Lemma 5.2.5), we have the group

Γn(k, l) � Z ∗ Z ∗ Zγ, and Γn(k, l)ab � Z × Z × Zγ where γ = (2n/3
− (−1)n/3)/3), and the

presentation Pn(k, l) is not aspherical. The combination (TTFT) represents (TTF) (since TTFF

is impossible see Lemma5.2.2), and we have the group Γn(k, l) � Z∗Z, and Γn(k, l)ab � Z×Z,

and the presentation Pn(k, l) is not aspherical. The combination TFFT has not been studied

in [EW10], but they studied a special case of it when n = 18, they showed that the group

is Γ18(k, l) � Z ∗ Z ∗ Z19, and Γ18(k, l)ab � Z × Z × Z19, and the presentation P18(k, l) is not

aspherical. We study the group Γn(1, n
2 − 1) in more detail in Section 5.5.

Lemma 5.3.1 below comes from Lemma 2.4. of [EW10].

Lemma 5.3.1. If (n, k, l) = 1, k , l and B holds then Γn(k, l) � Γn(1, 2). If, in addition, (A) holds

then Γn(1, 2) � Z ∗Z; otherwise Γn(1, 2) � Z3.

Here we record our results about f (abcd)(n) of the six groups we mentioned above where

k , l

Lemma 5.3.2.

f (TTFT)(n) =

 1 If n ≡ 0 mod 3, n ≥ 9

0 otherwise
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Proof. If n ≡ 0 mod 3, n ≥ 9. Let k = 1, l = 2, then (A), (B), (C), (D) are TTFT, so f (TTFT)(n) ≥ 1,

but Lemma 5.3.1 implies that Γn(k, l) � Γn(1, 2) � Z∗Z, so f (TTFT)(n) ≤ 1,therefore f (TTFT)(n) =

1. The reason we consider n ≥ 9 is that Γn(k, l) � Γn(1, 2) contradicts (C) is false when n = 3

or 6. If n ≡ 1, 2 mod 3 this is a contradiction with A is T, therefore f (TTFT)(n) = 0. �

Lemma 5.3.3.

f (FTFT)(n) =

 1 If n ≡ 1, 2 mod 3

0 If n ≡ 0 mod 3

Proof. If n ≡ 1, 2 mod 3 and let k = 1, l = 2, then (A), (B), (C), (D) are FTFT, so f (FTFT)(n) ≥ 1,

but Lemma 5.3.1 implies that Γn(k, l) � Γn(1, 2) � Z3, so f (FTFT)(n) ≤ 1, therefore f (FTFT)(n) = 1

. Suppose n ≡ 0 mod 3. By Lemma 5.3.1 we have Γn(k, l) � Γn(1, 2), since Γn(1, 2) implies A

is T, therefore by Theorem 5.1.1 Γn(k, l) implies A is T, this is a contradiction and f (FTFT)(n) =

0. �

Lemma 5.3.4.

f (FFTF)(n) =

 1 If n = 0 mod 3 ,n ≥ 6

0 otherwise

Proof. Let n = 0 mod 3. Then let n = 3m, k = 1, l = m and m ≡ 0 or 1 mod 3 then

(A), (B), (C), (D) are FFTF, therefore f (n)(FFTF)
≥ 1. But [EW10, Lemma 3.4] implies that

when (C) holds and (A) does not then Γn(k, l) = B((2n
− (−1)n)/3, 3, 22n/3, 1) of [BW17], so

f (n) ≤ 1 therefore f (FFTF)(n) = 1. If n ≡ 1, 2 mod 3, then this contradicts C is T, therefore

f (n)(FFTF) = 0 �

Lemma 5.3.5.

f (TFTF)(n) =

 1 If n ≡ 3 or 6 mod 9

0 If n . 3 or 6 mod 9

Proof. Let n ≡ 3 mod 9. Let k = 1, l = n
3 + 1, then (A), (B), (C), (D) are TFTF, therefore

f (n)(TFTF)
≥ 1. But [EW10, Lemma 2.5] implies that, when (B) does not hold and (A), (C)

both hold then Γn(k, l) � Z ∗ Z ∗ Zγ where γ = (2
n
3 − (−1)

n
3 )/3, so f (TFTF)(n) ≤ 1, therefore

f (TFTF)(n) = 1. Similarly when n ≡ 6 mod 9, let k = 1, l = n
3 , then (A), (B), (C), (D) are TFTF,

therefore f (n)(TFTF)
≥ 1. But [EW10, Lemma 2.5] implies that Γn(k, l) � Z ∗ Z ∗ Zγ where

γ = (2
n
3 − (−1)

n
3 )/3, so f (TFTF)(n) ≤ 1, therefore f (TFTF)(n) = 1. If n ≡ 1, 2, 4, 5, 7 or 8 mod 9 that

contradicts (A) is T therefore f (TFTF)(n) = 0. �
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Lemma 5.3.6.

f (FFFT)(n) =

 1 If n ≡ 2, 4 mod 6

0 otherwise

Proof. Let n ≡ 2, 4 mod 6, if k = 1, l = n
2 − 1 then (A), (B), (C), (D) are FFFT, so f (FFFT)(n) ≥ 1.

But Lemma 5.2.4 implies that when D holds and B does not then Γn(k, l) � Γn(1, n
2 − 1) so

f (FFFT)(n) ≤ 1 therefore f (FFFT)(n) = 1.

Suppose n ≡ 0 mod 6 then n
2 ≡ 0 mod 3, if 2(k + l) ≡ 0 mod n, then (k + l) ≡ 0 mod n/2

contradicts A is F. If 2(2k − l) ≡ 0 mod n then

2k − l ≡ 0 mod n/2

⇒ l ≡ 2k mod n/2

⇒ k + l ≡ 3k mod n/2

⇒ k + l ≡ 3k mod 3

⇒ k + l ≡ 0 mod 3 contradicts (A) is F

Similarly if 2(2l − k) ≡ 0 mod n. Then k + l ≡ 0 mod 3 which contradicts (A) is F, therefore

f (FFFT)(n) = 0. Then n ≡ 1, 3, 5 mod 6, contradicts with D is T, therefore f (FFFT)(n) = 0. �

Lemma 5.3.7.

f (TFFT)(n) =

 1 If n ≡ 0 mod 6, n ≥ 18

0 otherwise

Proof. If n ≡ 0 mod 6 ,n ≥ 18. Then let k = 1, l = n
2 − 1. Then (A), (B), (C), (D) are TFFT,

so f (n)(TFFT)
≥ 1. But Lemma 5.2.4 implies that where ABCD are TFFT then Γn(k, l) �

Γn(1, n
2 − 1) so f (TFFT)(n) ≤ 1 therefore f (TFFT)(n) = 1. The reason we consider n ≥ 18 is

that Γn(k, l) � Γn(1, n
2 − 1) contradicts C is false for n = 6 or 12. If n ≡ 1, 3, 5 mod 6, then

this gives a contradiction to D is T. If n ≡ 2, 4 mod 6 (this contradicts A is T), therefore

f (TFFT)(n) = 0. �

We combine these results in Table 5.2, where we can easily determine the number

of Γn(k, l) groups for any value of n > 12. For the six combinations FFTF,FTFT, TFTF,

TTFT,FFFT,TFFT, we denote the number of groups by g(abcd)(n), which we define as follow
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Definition 5.3.8. Let

h(n) = f (TTFT)(n) + f (FTFT)(n) + f (FFTF)(n) + f (TFTF)(n) + f (FFFT)(n) + f (TFFT)(n) (5.10)

Lemmas 5.3.2, 5.3.3, 5.3.4, 5.3.5 give the values of f (TTFT)(n), f (FTFT)(n), f (FFTF)(n) and

f (TFTF)(n), so the problem of calculating f (abcd)(n) (in Definition 5.0.8) is reduced to calculating

f (FFFF)(n) and f (TFFF)(n), i.e., f (n) = h(n) + f (FFFF)(n) + f (TFFF)(n).

5.4 f (abcd)(n) for the cases (FFFF), (TFFF)

It has shown in [EW10] that in the case (FFFF), the group Γn(k, l) is infinite, and has a finite

abelianization of order greater than one, and the presentation Pn(k, l) is aspherical. In the

case (TFFF), the group Γn(k, l) is large, and has an infinite abelianization, and the presenta-

tion Pn(k, l) is aspherical. We are unable to obtain the exact value of f (n)(FFFF), f (n)(TFFF), but

we do obtain lower bounds for certain values of n. In Chapter 6 we obtain upper bounds

for f (n) when n has at most two distinct prime factors, and upper bounds for f (n) when n

has at most three distinct prime factors.

Lemma 5.4.1.

f (TFFF)(n)

 ≥ 1 If n ≡ 0 mod 3, n ≥ 21

= 0 otherwise

Proof. If n ≡ 0 mod 3,n ≥ 21. Then Γn(1, 5) implies that (A), (B), (C), (D) are TFFF, so

f (TFFF)(n) ≥ 1. If n ≡ 1 or 2 mod 3, this contradicts A is T therefore f (TFFF)(n) = 0. �

Lemma 5.4.2. If n ≥ 10 then f (FFFF)(n) ≥ 1.

Proof. 1. Let n be even if k = 1, l = n
2 , then (A)(B)(C)(D) are FFFF, then f (FFFF)(n) ≥ 1.

2. Let n be odd if k = 1, l = 3, then (A)(B)(C)(D) are FFFF, then f (FFFF)(n) ≥ 1.

�

In the following lemma d denotes the minimum number of generators of Γn(k, l)ab (see

Definition 4.2.1)

Lemma 5.4.3. Let n = 8q, q ≥ 1, then d(Γn(1, 3))ab) ≥ 3.
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Proof. We will prove that Γn(1, 3)ab maps to Γ8(1, 3)ab, first lets suppose that n = 8q, q ≥ 1

Γ8q(1, 3)ab � 〈x0, x1, ..., x8q−1 | xixi+1xi+3, i = 0, 1, ..., 8q − 1〉ab

� 〈x0, x1, ..., x8q−1 | xixi+1xi+3, xi = xi+8, i = 0, 1, ..., 8q − 1〉ab

� 〈x0, x1, ..., x7 | xixi+1xi+3, i = 0, 1, ..., 7〉ab = Γ8(1, 3)ab

Now since Γ8(1, 3)ab � Z3 ⊕ Z3 ⊕ Z3 (see Table 6.1) which generated by 3 elements, then

d(Γn(1, 3)ab) ≥ 3. �

Lemma 5.4.4. If n = 8q, q > 2 Then Γn(1,n/2) � Γn(1, 3), so f (F,F,F,F)(n) ≥ 2.

Proof. Let k = 1, l = n/2 and k = 1, l = 3 then Γn(1,n/2),Γn(1, 3) imply that (A), (B), (C), (D)

are (F,F,F,F). By Lemmas (5.0.9, 5.4.3) we know that Γn(1,n/2)ab � Zm,m = 2n/2
−1 therefore

d(Γn(1,n/2)ab) = 1, and d(Γn(1, 3)ab) ≥ 3, therefore Γn(1,n/2) � Γn(1, 3), therefore f (F,F,F,F)(n) ≥

2. �

Lemma 5.4.5. Let 4|n,n . 0 mod 16, then Γn(1, n
2 ) � Γn(1, n

4 ) so, f (F,F,F,F)(n) ≥ 2.

Proof. Γn(1, n
2 ),Γn(1, n

4 ) imply that (A), (B), (C), (D) are FFFF, and since

Gpk(x0xkxl)ab � Gpk(x0xlxk)ab. Then by Corollary 3.3.3 (1), (3) we have

a. |Γ2k(x0xkxl)ab
| = |Γ2k(x0xlxk)ab

| = |(−1)k+l+1(2k
− (−1)k)|, and then

|Γn(1, n
2 )ab
| = |Γn(x0x1x n

2
)ab
| = |(−1)

n
2 +1+1(2

n
2 − (−1)

n
2 )|, since n

2 is even, therefore

|Γn(1, n
2 )ab
| = |2

n
2 − 1| = |(2

n
4 + 1)(2

n
4 − 1)|

b. |Γ4k(x0xkxl)ab
| = |Γ4k(x0xlxk)ab

| = |(−1)k+l+1(2k
− (−1)k)((2k + 1) − (−1)k(

√
2)k.2 cos (2l−k)π

4 )|,

and then

|Γn(1, n
4 )ab
| = |Γn(x0x1x n

4
)ab
| = |(−1)

n
4 +1+1[2

n
4 − (−1)

n
4 ][(2

n
4 + 1) − (−1)

n
4 (
√

2)
n
4 .2 cos (n−8)π

16 ]|.

To prove that |Γn(1, n
2 )ab
| , |Γn(1, n

4 )ab
| for given values of n, we will consider the absolute

value of the abelianization and we have two cases

1. If n ≡ 4 or 12 mod 16 then n
4 is odd so

|Γn(1, n
4 )ab
| = |[2

n
4 + 1][(2

n
4 + 1) + (

√
2)

n
4 .2 cos (n−8)π

16 ]| and cos (n−8)π
16 = ± 1

√
2 so

|Γn(1, n
4 )ab
| = |[2

n
4 + 1][(2

n
4 + 1) ± 2.(

√
2)

n
4−1]|, and since ±2.(

√
2)

n
4−1 , ∓2 and hence

|Γn(1, n
2 )ab
| , |Γn(1, n

4 )ab
|.
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2. If n ≡ 8 mod 16 then n
4 is even so

|Γn(1, n
4 )ab
| = |[2

n
4 − 1][(2

n
4 + 1) − (

√
2)

n
4 .2 cos (n−8)π

16 ]| and cos (n−8)π
16 = ±1 implies that

|Γn(1, n
4 )ab
| = |[2

n
4 − 1][(2

n
4 + 1) ± 2.(

√
2)

n
4 ]|, and since ±2.(

√
2)

n
4 , 0 we have that

|Γn(1, n
2 )ab
| , |Γn(1, n

4 )ab
|, therefore Γn(1, n

2 ) � Γn(1, n
4 ). Note that when n = 0 mod

16, therefore cos (n−8)π
16 = 0 and then |Γn(1, n

2 )ab
| � |Γn(1, n

4 )ab
| = |2

n
2 − 1|, so we can not

conclude that Γn(1, n
2 ) � Γn(1, n

4 ).

�

From Proposition 5.0.9 we know that Γn(1, n
2 )ab = Z

2
n
2 ±1

. This leads us to leave the

following question

Question. Is the group Γn(1, n
4 )ab � Z

2
n
2 −1

or not?

Lemma 5.4.6. Let 12|n, n
6 ≡ 0 or 4 mod 6, then Γn(1, n

2 ),Γn(1, n
4 ),Γn(1, n

6 ) are pairwise non-

isomorphic, so f (F,F,F,F)(n) ≥ 3.

Proof. Γn(1, n
2 ),Γn(1, n

4 ),Γn(1, n
6 ) imply that (A), (B), (C), (D) are FFFF, and by using Corollary

3.3.3 (similar to proof of Lemma 5.4.5) we have

a. |Γn(1, n
2 )ab
| = |2

n
2 − 1 = (2

n
4 + 1)(2

n
4 − 1)|

b. |Γn(1, n
4 )ab
| = |[2

n
4 + (−1)

n
4 +1][(2

n
4 + 1) + (−1)

n
4 +1(
√

2)
n
4 .2 cos (n−8)π

16 ]|

c. |Γn(1, n
6 )ab
| = |[2

n
6 + (−1)

n
6 +1][(3

n
6 + 1) + (−1)

n
6 +1(
√

3)
n
6 .2 cos (n−12)π

36 ][2 + (−1)
n
6 +1.2 cos (n−12)π

18 ]|

We shall prove that Γn(1, n
2 ),Γn(1, n

4 ),Γn(1, n
6 ) are pairwise non-isomorphic for given values

of n. Working mod 8 we get,

|Γn(1,
n
2

)ab
| = |2

n
2 − 1| ≡ 1 mod 8 (5.11)

|Γn(1,
n
4

)ab
| = |[2

n
4 + (−1)

n
4 +1][(2

n
4 + 1) + (−1)

n
4 +1(
√

2)
n
4 .2 cos

(n − 8)π
16

]|

= |[2
n
4 + (−1)

n
4 +1][(2

n
4 + 1) + (−1)

n
4 +1(2)

(n+8)
8 cos

(n − 8)π
16

]|

≡ [0 + (−1)
n
4 +1][0 + 1 + 0] mod 8
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|Γn(1,
n
4

)ab
| ≡ (−1)

n
4 +1 mod 8, this gives (5.12)

|Γn(1,
n
4

)ab
| ≡ 1 mod 8 If n ≡ 12 or 36 mod 48,n ≥ 24 (5.13)

|Γn(1,
n
4

)ab
| ≡ −1 mod 8 If n ≡ 24 mod 48 (5.14)

|Γn(1,
n
6

)ab
| = |[2

n
6 + (−1)

n
6 +1][(3

n
6 + 1) + (−1)

n
6 +1(
√

3)
n
6 .2 cos

(n − 12)π
36

][2 + (−1)
n
6 +1.2 cos

(n − 12)π
18

]|

≡ [0 + (−1)
n
6 +1][(1 + 1) + (−1)

n
6 +1.(1).2 cos

(n − 12)π
36

][2 − 2 cos
(n − 12)π

18
] mod 8

≡ −1.[2 − 2 cos
(n − 12)π

36
][2 − 2 cos

(n − 12)π
18

] mod 8

≡ 4.[1 − cos
(n − 12)π

36
][1 − cos

(n − 12)π
18

] mod 8 which is even

. ±1 mod 8 (5.15)

Then by (5.11),(5.12), (5.15), we have |Γn(1, n
6 )ab
| , |Γn(1, n

2 )ab
|, |Γn(1, n

6 )ab
| , |Γn(1, n

4 )ab
|, therefore

Γn(1, n
6 ) � Γn(1, n

2 ), Γn(1, n
6 ) � Γn(1, n

4 )

Now if n ≡ 12 mod 24 then by (5.11),(5.12), we have |Γn(1, n
2 )ab
| , |Γn(1, n

4 )ab
|, therefore Γn(1, n

2 ) �

Γn(1, n
4 ).

If n ≡ 24 mod 48 then n
4 is even, and

cos
(n − 8)π

16
= ∓1⇒ |Γn(1,

n
4

)ab
| = |[2

n
4 − 1][(2

n
4 + 1) ± 2

n+8
8 ]|

, and since ∓ 2
n+8

8 , 0⇒ |Γn(1,
n
2

)ab
| , |Γn(1,

n
4

)ab
| (5.16)

Therefore Γn(1, n
2 ) � Γn(1, n

4 ). Note that when n = 0 mod 48, therefore cos (n−8)π
16 = 0 and then

|Γn(1, n
2 )ab
| � |Γn(1, n

4 )ab
| = |2

n
2 − 1|, so we can not conclude that Γn(1, n

2 ) � Γn(1, n
4 ) (here we can also

ask same question that we asked in Lemma 5.4.5). �

5.5 The group Γn(1, n
2 − 1)

Lemma 5.2.4 shows that in the two cases TFFT,FFFT the groups Γn(k, l) � Γn(1, n
2 − 1). Here

we study this group in each case as part of our investigations into Γn(k, l) groups.

The case TFFT requires that n ≡ 0 mod 6, and [EW10, Lemma 2.2] implies that Γn(1, n
2 −
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1)ab is infinite. We prove the following theorem, and we will use in the proof the following

equation which is the equation (1.12), where β(Gn(ω)ab) is a torsion-free rank of Γn(1, n
2 −1)ab

(see Definition 1.4.5).

β(Gn(ω)ab) = deg(gcd( f (t), g(t))) (5.17)

Where f (t) is the polynomial associated with the abelianization of the group (see Defini-

tion 1.4.1), g(t) = tn
− 1.

Theorem 5.5.1. If n ≡ 0 mod 6 then the torsion-free rank of Γn(1, n
2 − 1)ab is 2.

Proof. Let n = 6m then Γn(1, n
2 −1)ab = Γ6m(1, 3m−1)ab, and now the associated polynomial of

Γ6m(1, 3m− 1)ab is f (t) = 1 + t + t3m−1. By (5.17) we have β(Γn(1, n
2 − 1)ab) = deg(gcd( f (t), g(t))),

where g(t) = tn
− 1 = t(6m)

− 1. Now by simplifying f (t), g(t) we get

f (t) = 1 + t + t3m−1

= (1 + t + t2)(t3m−3
− t3m−4 + t3m−6

− t3m−7 + ... + t3
− t2 + 1)

f (t) = h(t).F(t) where

h(t) = 1 + t + t2,

F(t) = t3m−3
− t3m−4 + t3m−6

− t3m−7 + ... + t3
− t2 + 1

Now F(t) can be simplified as follow

F(t) = t3m−3
− t3m−4 + t3m−6

− t3m−7 + ... + t3
− t2 + 1

= (t − 1)(t3m−4 + t3m−7 + ... + t5 + t2) + 1

= (t − 1)t2(t3m−6 + t3m−9 + ... + t3 + 1) + 1

Since

(t3m−6 + t3m−9 + ... + t3 + 1)(t2 + t + 1) = t3m−4 + t3m−7 + ... + t5 + t2

+ t3m−5 + t3m−8 + ... + t4 + t

+ t3m−6 + t3m−9 + ... + t3 + 1

= 1 + t + t2 + ... + t3m−5 + t3m−4
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so

F(t) = (t − 1)t2(
1 + t + t2 + ... + t3m−5 + t3m−4

t2 + t + 1
) + 1, t2 + t + 1 , 1

=
(t3m−3

− 1).t2

t2 + t + 1
+ 1, t2 + t + 1 , 1

F(t) =
t3m−1

− t2 + t2 + t + 1
t2 + t + 1

, t2 + t + 1 , 1

=
t3m−1 + t + 1

t2 + t + 1
, t2 + t + 1 , 1

g(t) = t6m
− 1

= (1 + t + t2)(t6m−2
− t6m−3 + t6m−5

− t6m−6 + ... − t3 + t − 1)

= h(t).G(t) where

G(t) = t6m−2
− t6m−3 + t6m−5

− t6m−6 + ... − t3 + t − 1

Therefore
(

f (t), g(t)
)

= h(t)
(
F(t),G(t)

)
.

Now G(t) has the roots λq = e
2qπi
6m , q = 0, 1, ..., 6m − 1, q , 2m, 4m (since these values

give the roots of h(t) which are −1+
√

3i
2 = e

2π
3 , −1−

√
3i

2 = e
4π
3 ). Now 1 = |λq| = λqλq so λ−1

q = λq.

Now assume for contradiction that λq is a root of F(t) therefore

F(λq) = 0⇒
λ3m−1

q + λq + 1

λ2
q + λq + 1

= 0

⇒ λ3m−1
q + λq + 1 = 0⇒ λ3m−1

q = −(λq + 1) (5.18)

Similarly we have

F(λ−1
q ) = 0⇒ λ−(3m−1)

q = −(λ−1
q + 1) (5.19)
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By multiplying (5.18) and (5.19) we get

1 = 1 + λq + λ−1
q + 1

λq + λ−1
q = −1

⇒ e
2qπi
6m + e

−2qπi
6m = −1

2 cos
2qπi
6m

= −1⇒ cos
2qπi
6m

=
−1
2

therefore q = 2m or 4m (contradiction), soλq is not a root of F(t) so F(t),G(t) have no common

roots and the greatest common divisor of f (t), g(t) is 1 + t + t2 therefore the torsion-free rank

of Γn(1, n
2 − 1)ab is 2. �

The case FFFT requires that n ≡ 2 or 4 mod 6, and [EW10, Lemma 2.2] imply that

Γn(1, n
2 − 1)ab is finite. We provide in the following theorem a formula that computes

the order of abelianization of this group, which is similar to the formula that given in

Theorem 1.5.7 for computing the order of abeelianization of F(2,n) groups.

Theorem 5.5.2. Let n ≡ 2 or 4 mod 6, then |Γn(1, n
2 − 1)ab

| = 3
(
L n

2
+ 1 + (−1)

n
2

)
where Ln is Lucas

number for order n.

In order to obtain the order of Γn(1, n
2 − 1)ab, we will use the following formula of

Corollary 3.2.4 (c) .

|Γpk(x0xkxl)
ab
| =

p−1∏
j=0

P1,1
j,p where P1,1

j,n (k, l) = (1 + ζ j
p)k + (−1)k+1(ζ j

p)l (5.20)

where k, l are modulo n, 1 ≤ j ≤ n − 1 and ζp = e
2πi
p . For the proof we need

Lemma 5.5.3. Let n ≡ 2 or 4 mod 6 , then

n−1∏
j=0
j odd

P j,n(1,
n
2
− 1) =

n
2−1∏
α=0

(
1 + 2i sin

(2π(2α + 1)
n

))
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Proof.

n−1∏
j=0
j odd

P j,n(1,
n
2
− 1) =

n−1∏
j=1
j odd

(
1 + ζ j

n + ζ
j( n

2−1)
n

)
by (5.20)

For j odd ζ j( n
2 )

n = −1 then

=

n−1∏
j=1
j odd

(
1 + ζ j

n − ζ
− j
n

)
let j = 2α + 1

n−1∏
j=0
j odd

P j,n(1,
n
2
− 1) =

n
2−1∏
α=0

(
1 + ei( 2π

n )(2α+1)
− e−i( 2π

n )(2α+1)
)

=

n
2−1∏
α=0

(
1 + 2i sin

(2π(2α + 1)
n

))

�

And we need

Lemma 5.5.4. Let n ≡ 2 or 4 mod 6, then
n−1∏
j=1

j even

P j,n(1, n
2 − 1) = −1

Proof.

n−1∏
j=1

j even

P j,n(1,
n
2
− 1) =

n−1∏
j=1

j even

(
1 + ζ j

n + ζ
j( n

2−1)
n

)
For j even ζ j( n

2 )
n = 1 then

n−1∏
j=1

j even

P j,n(1,
n
2
− 1) =

n−1∏
j=1

j even

(
1 + ζ j

n + ζ− j
n

)
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=

n−1∏
j=1

j even

(
ζ− j

n

)
.

n−1∏
j=1

j even

(
ζ j

n + ζ2 j
n + 1

)

=

n−1∏
j=1

j even

(
ζ− j

n

)
.

n−1∏
j=1

j even

(ζ3 j
n − 1

ζ j
n − 1

)

=

n−1∏
j=1

j even

(
ζ− j

n

)
.

n−1∏
j=1

j even

(ζ3 j
n − 1)

n−1∏
j=1

j even

(ζ j
n − 1)

n ≡ 2 or 4 mod 6 therefore (3,n) = 1 and for j ∈ {1, ..,n − 1} then 3 j ∈ {1, ..,n − 1}

n−1∏
j=1

j even

P j,n(1,
n
2
− 1) =

n−1∏
j=1

j even

(
ζ− j

n

)
.

n−1∏
j=1

j even

(ζ j
n − 1)

n−1∏
j=1

j even

(ζ j
n − 1)

(5.21)

so numerator and denominator above cancel and we get

n−1∏
j=1

j even

P j,n(1,
n
2
− 1) =

n−1∏
j=1

j even

(
ζ− j

n

)
= ζ

−(
n−1∑
j=1

j even

j)

n = ζ
−n(n−1)

2
n

=
(
ζ

n
2
n

)−(n−1)
= (−1)−(n−1) = −1

�

We also need the following equation which is equation (4.2)

Ln =
(1 +

√
5

2

)n
+

(1 −
√

5
2

)n
(5.22)

We can now proof Theorem 5.5.2
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Proof of Theorem 5.5.2. Set k = 1, l = n
2 − 1, p = n in (5.20), we get

|Γn(1,
n
2
− 1)ab

| = |

n−1∏
j=0

P j,n(1,
n
2
− 1)|, but

P j,n(1,
n
2
− 1) = 1 + ζ j

n + ζ
j( n

2−1)
n for j = 0, 1, ...(n − 1)

P0,n(1,
n
2
− 1) = 1 + 1 + 1 = 3

therefore |Γn(1,
n
2
− 1)ab

| = |3.
n−1∏
j=1

P j,n(1,
n
2
− 1)|

= |3.
n−1∏
j=1
j odd

P j,n(1,
n
2
− 1).

n−2∏
j=2

j even

P j,n(1,
n
2
− 1)|

from lemmas (5.5.3), (5.5.4)

= |3.

n
2−1∏
α=0

(
1 + 2i sin

(2π(2α + 1)
n

)
.(−1)|

= | − 3.

n
2−1∏
α=0

(
1 + 2i sin

(2π(2α + 1)
n

)
|

= |3.R| (5.23)

where R =

n
2−1∏
α=0

(
1 + 2i sin

(2π(2α + 1)
n

)
(5.24)

Now the following relation is Equation (10) of [GR08]

n−1∏
j=0

(
1 + 2i sin

2 jπ
n

)
= 1 + Fn − 2Fn+1 + (−1)n = 1 − Ln + (−1)n (5.25)

where Fn is Fibonacci number of order n. Therefore

n−1∏
j=0

(
1 + 2i sin

2 jπ
n

)
=

n−1∏
j=0
j odd

(
1 + 2i sin

2 jπ
n

)
.

n−1∏
j=0

j even

(
1 + 2i sin

2 jπ
n

)
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=

n
2−1∏
α=0

(
1 + 2i sin

(2π(2α + 1)
n

))
.

n
2−1∏
α=0

(
1 + 2i sin

(2πα
n
2

))
= R.

n
2−1∏
α=0

(
1 + 2i sin

(2πα
n
2

))
by (5.23)

R =

n−1∏
j=0

(
1 + 2i sin 2 jπ

n

)
n
2−1∏
α=0

(
1 + 2i sin

(
2πα

n
2

)) =
Ln − 1 − (−1)n

L n
2
− 1 − (−1) n

2
by (5.25)

and since n ≡ 2 or 4 mod 6, therefore

R =
Ln − 2

L n
2
− 1 − (−1) n

2
. (5.26)

By (5.22) we have

Ln =
(1 +

√
5

2

)n
+

(1 −
√

5
2

)n
therefore L n

2
=

(1 +
√

5
2

) n
2

+
(1 −

√
5

2

) n
2

then L2
n
2

=
(1 +

√
5

2

)n
+

(1 −
√

5
2

)n
+ 2(−1)

n
2 = Ln + 2(−1)

n
2 (5.27)

When n ≡ 2 or 10 mod 12 therefore n
2 ≡ 1 or 5 mod 6, which is odd number. By substituting

(5.27) in (5.26) we get

R =
Ln − 2

L n
2
− 1 − (−1) n

2
=

Ln − 2
L n

2

=
L2

n
2

L n
2

= L n
2

(5.28)

When n ≡ 4 or 8 mod 12 therefore n
2 ≡ 2 or 4 mod 6, which is even number. By substituting

(5.27) in (5.26) we get

R =
Ln − 2
L n

2
− 2

=
Ln − 2 + 4 − 4

L n
2
− 2

=
(Ln + 2) − 4

L n
2
− 2

=
L2

n
2
− 4

L n
2
− 2

= L n
2

+ 2 (5.29)
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Now following on from (5.28), (5.29), when n ≡ 2 or 4 mod 6, therefore

R = L n
2

+ 1 + (−1)
n
2 (5.30)

�

5.6 When does Γn(k, l) � Γ′n(k′, l′) imply n = n′?

This is similar to Question 1.5.16, but here we consider Γn(k, l) instead of Gn(m, k).

From Table 5.2 Γn(k, l) � Γ′n(k′, l′) implies n = n′ in the following cases

(a) For the case (FFFT), since if n ≡ 2 or 4 mod 6, |Γn(k, l)ab
| = 3

(
L n

2
+ 1 + (−1)

n
2

)
.

It is clear since Lucas numbers are increasing that 3
(
L n

2
+ 1 + (−1)

n
2

)
= 3

(
L n′

2
+ 1 + (−1)

n′
2

)
implies n = n′.

(b) The case (FFTF), since if n ≡ 0 mod 3, Γn(k, l)ab � Zα, α = 3(2n/3
− (−1)n/3). It is clear

that (2n/3
− (−1)n/3)/3 = (2n′/3

− (−1)n′/3)/3 implies n = n′.

(c) The case (TFTF), since if n ≡ 3 or 6 mod 9, Γn(k, l)ab � Z×Z×Zγ, γ = (2n/3
−(−1)n/3)/3.

It is clear that (2n/3
− (−1)n/3)/3 = (2n′/3

− (−1)n′/3)/3 implies n = n′.

In the following cases Γn(k, l) � Γ′n(k′, l′) does not imply that n = n′

(a) The case (FTFT), for example Γ7(1, 2) � Γ14(1, 2) � Z3.

(b) The case (TTFT), for example Γ9(1, 2) � Γ12(1, 2) � Z ∗Z.

In the other cases (TFFT), (FFFF), (TFFF), we do not know if Γn(k, l) � Γ′n(k′, l′) implies n = n′

or not.



Chapter 6

Gn(m, k),Γn(k, l) groups when n has few

prime factors

The number of isomorphism types f (n) of the groups Gn(m, k),n = pl, p is prime, was

conjectured in [COS08, Conjecture 8] (restated as Conjecture 1.5.14). In Section 6.1, we

show that the values given in the conjecture are an upper bound for f (n). Results about

the upper bound of f (n) of Γn(k, l) groups, where n = pαqβ, and p, q are distinct primes, will

be seen in Section 6.2. In Section 6.3, we give in Table 6.1 the structure of the Γn(k, l) groups

for n ≤ 29, and the precise value of f (n). Finally in Section 6.4 (this section requires (A)

true), we give an upper bound for f (n) of Γn(k, l) groups, where n has at most three distinct

prime factors.

6.1 f(n) for Gn(m, k),n = pl, p is prime , l ≥ 1

The following proposition was stated in [COS08]

Proposition 6.1.1. [COS08, Proposition 6]

1. Gn(m, k) � Gn(m,n + m − k) � Gn(n −m,n −m + k).

2. If (n, t) = 1, then Gn(m, k) � Gn(mt, kt).

3. G2h(2h − 1, 2h − 2) � G2h(2h − 1, 1) � G2h(1, 2h − 1) � G2h(1, 2) � F(2, 2h).

95
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The following lemma is stated in [BV03], [Wil09]

Lemma 6.1.2. [BV03, Lemma 1.3], [Wil09, Lemma 7]

• If (n, k) = 1 then Gn(m, k) � H(n, t) = Gn(t, 1) where tk ≡ m mod n.

• If (n,m) = 1 then Gn(m, k) � Gn(1, k′) where k′ = kt where tm ≡ 1 mod n.

• If (n, k −m) = 1 then Gn(m, k) � H(n, t) where t(k −m) ≡ n −m mod n.

We recall the following conjecture from introduction, which is Conjecture 1.5.14.

Conjecture 6.1.3. If n = pl for an odd prime p and positive integer l, then f (n) = pl
−

(p−1)
2 p(l−1)

−1.

If l > 2 then f (2l) = 3(2l−2).

Theorems 6.1.4 and 6.1.5 show that the values given in Conjecture 6.1.3 are upper

bounds for f (n)

Theorem 6.1.4. If n = pl where p is an odd prime, and l is a positive integer, then Gn(m, k) is

isomorphic to Gn(1, k′) for some k′ ∈ {2, ..., pl+1
2 } or to Gn(t′p, 1) for some t′ ∈ {2, ..., pl−1

− 1}, and

hence f (n) ≤ pl
−

(p−1)
2 p(l−1)

− 1.

Proof. Case 1 If (pl,m) = 1 then Lemma 6.1.2 implies that Gpl(m, k) � Gpl(1, k′) for some

k′, 2 ≤ k′ ≤ pl
− 1. But if pl+1

2 ≤ k′ ≤ pl
− 1 then k′′ = pl + 1 − k′ satisfies 2 ≤ k′′ ≤ pl+1

2 .

Proposition 6.1.1 implies that Gpl(1, k′) � Gpl(1, pl + 1 − k′) = Gpl(1, k′′). So the isomorphism

types arise by choosing k′ ∈ {2, ..., pl+1
2 }, This gives pl

−1
2 isomorphism types.

Case 2 When (pl,m) > 1 then (pl, k) = 1 since (pl,m, k) = 1, therefore Lemma 6.1.2 implies

that Gpl(m, k) � Gpl(ti, 1) where tik ≡ m mod pl. Since p|m we have that p|tik but p does

not divides k therefore p|ti, therefore ti ∈ A = {ip, 1 ≤ i ≤ (pl−1
− 1)} (this contains an even

number of elements), this gives pl−1
− 1 isomorphism types. Now Proposition 6.1.1 implies

Gpl(ti, 1) � Gpl(ti, ti − 1).

Let αi = −(tl−1
i + tl−2

i + ... + t2
i + ti + 1) then

αi(ti − 1) = −(tl−1
i + tl−2

i + ... + t2
i + ti + 1)(ti − 1)

= (tl−1
i + tl−2

i + ... + t2
i + ti + 1)(1 − ti)

= 1 − tl
i

≡ 1 mod pl
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By Proposition 6.1.1, and since (pl, αi) = 1 we have Gpl(ti, ti − 1) � Gpl(αiti, α(ti − 1)) =

Gpl(αiti, 1), therefore

Gpl(ti, 1) � Gpl(αiti, 1) (6.1)

Let t j = αiti mod pl then t j ∈ A, and let α j = −(tl−1
j + tl−2

j + ... + t2
j + t j + 1), therefore similarly

α j(t j − 1) ≡ 1 mod pl (6.2)

Now define a function f : A −→ A by f (ti) = αiti mod pl then f (ti) = t j (by hypotheses). We

will show that f ( f (ti)) ≡ ti mod pl.

We have

t j ≡ αiti mod pl by hypotheses

⇒ t j ≡ αiti − αi + αi mod pl

⇒ t j ≡ αi(ti − 1) + αi mod pl

⇒ t j ≡ 1 + αi mod pl

⇒ t j − 1 ≡ αi mod pl (6.3)

therefore

f ( f (ti)) ≡ f (αiti) mod pl

≡ f (t j) mod pl

≡ α jt j mod pl by definition

≡ α jαiti mod pl

≡ α j(t j − 1)ti mod pl by (6.3)

≡ ti mod pl by (6.2)

Then f (t j) ≡ f ( f (ti)) ≡ ti mod pl, and f (ti) = t j mod pl. Now let Γ be a directed graph with

a set of vertices V = A and a set of edges E = {(ti, f (ti)), 1 ≤ i ≤ p(l−1)
− 1}. Then for each

vertex ti ∈ V, we have that the outdegree outdeg(ti) = 1, and we will show that the indegree

indeg(ti) = 1. Let tk ∈ A and αk = −(tl−1
k + tl−2

k + ... + t2
k + tk + 1), then αk(tk − 1) ≡ 1 mod pl.
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Suppose for contradiction that indeg(ti) ≥ 2. Then there are edges (t j, ti)(tk, ti), with t j . tk

mod pl. Then

f (tk) ≡ ti mod pl

⇒ αktk ≡ f (t j) mod pl

⇒ αktk ≡ α jt j mod pl

⇒ αktk − αk + αk ≡ α jt j − α j + α j mod pl

⇒ αk(tk − 1) + αk ≡ α j(t j − 1) + α j mod pl

⇒ 1 + αk ≡ 1 + α j mod pl

⇒ αk ≡ α j mod pl

⇒ αk(tk − 1) ≡ α j(tk − 1) mod pl

⇒ 1 ≡ α j(tk − 1) mod pl

⇒ α j(t j − 1) ≡ α j(tk − 1) mod pl

⇒ t j − 1 ≡ tk − 1 mod pl since (α j, pl) = 1

⇒ t j ≡ tk mod pl a contradiction

Therefore indeg(ti) = 1, and Γ consists of |A|/2 connected components, each has two vertices

{ti, f (ti)}. Further by (6.1) we have Gpl(ti, 1) � Gpl(αti, 1) = Gpl( f (ti), 1). Let S ⊂ A be a set

formed by taking one vertex from each components of Γ. Then |S| = |A|/2 =
pl−1
−1

2 , and

for any ti ∈ A, the group Gpl(ti, 1) � Gpl(s, 1) for some s ∈ S. Hence there are at most
pl−1
−1

2 isomorphisms types amongst the groups Gl
p(ti, 1), 1 ≤ i ≤ pl−1

− 1. From the first

part of the proof we have at most pl
−1
2 isomorphism types when (pl,m) = 1, and from

second part we have at most pl−1
−1

2 ones when (pl,m) > 1. Therefore there is at most
pl
−1
2 +

pl−1
−1

2 =
pl+pl−1

2 − 1 =
2pl
−pl+pl−1

2 − 1 = pl
−

(p−1)
2 p(l−1)

− 1 isomorphism types among the

irreducible groups Gpl(m, k). �

Theorem 6.1.5. If n = 2l where l is a positive integer, l > 2. Then f (2l) ≤ 3(2l−2).

Proof. Case 1 If m is odd, then Lemma 6.1.2 implies that G2l(m, k) � G2l(1, k′) for some k′,

2 ≤ k′ ≤ 2l
−1. But if 2l−1 +1 ≤ k′ ≤ 2l

−1 then k′′ = 2l +1−k′ satisfies 2 ≤ k′′ ≤ 2l
−2l−1 = 2l−1.

Proposition 6.1.1 implies that G2l(1, k′) � G2l(1, 2l + 1− k′) = G2l(1, k′′). So the isomorphisms
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types arise by choosing k′ ∈ {2, ..., 2l−1
}. This gives (2l−1

− 1) isomorphism types.

Case 2 When m is even then, (2l, k) = 1 since (2l,m, k) = 1, therefore Lemma 6.1.2 implies

that G2l(m, k) � G2l(ti, 1) where tik ≡ m mod 2l. Since 2|m we have that 2|tik but 2 does

not divides k therefore 2|ti, therefore ti ∈ A = {2i, 1 ≤ i ≤ (2l−1
− 1)} = {2, 4, ..., 2l

− 2} (this

contains an odd number of elements), this gives 2l−1
− 1 isomorphism types.

Now Proposition 6.1.1 implies G2l(ti, 1) � G2l(ti, ti−1). Let αi = −(tl−1
i + tl−2

i + ...+ t2
i + ti +1)

then

αi(ti − 1) ≡ −(tl−1
i + tl−2

i + ... + t2
i + ti + 1)(ti − 1) mod 2l

≡ (tl−1
i + tl−2

i + ... + t2
i + ti + 1)(1 − ti) mod 2l

≡ 1 − tl
i ≡ 1 mod 2l since 2|ti . (6.4)

That is, αi is the (unique) multiplication inverse of (ti − 1) mod n. By Proposition 6.1.1, and

since (2l, αi) = 1 we have G2l(ti, ti − 1) � G2l(αiti, α(ti − 1)) = G2l(αiti, 1), therefore

G2l(ti, 1) � G2l(αiti, 1) (6.5)

When ti = 2, then ti − 1 = 1, and by(6.4) then αi ≡ 1 mod 2l, therefore αiti = 1.2 = 2 = ti.

When ti = 2l−1, then ti − 1 = 2l−1
− 1 mod 2l and since

(2l−1
− 1)(2l−1

− 1) ≡ 22(l−1)
− 2l + 1 mod 2l

≡ 1 mod 2l

then αi = 2l−1
− 1 and

αiti ≡ (2l−1
− 1).2l−1 mod 2l

≡ 22(l−1)
− 2l−1 mod 2l

≡ 2l−1 mod 2l

≡ ti mod 2l .

When ti = 2l−1 + 2, then ti − 1 = 2l−1 + 1 and since

(2l−1 + 1)(2l−1 + 1) ≡ 22(l−1) + 2l + 1 mod 2l
≡ 1 mod 2l
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then αi = 2l−1 + 1 and

αiti ≡ (2l−1 + 1)(2l−1 + 2) mod 2l

≡ 22(l−1) + 2l + 2l−1 + 2 mod 2l

≡ 2l−1 + 2 mod 2l
≡ ti mod 2l .

Therefore the permutation αi takes the values of {2, 2l−1, 2l−1 + 2} to them self. Now we

chose all ti ∈ B = A − {2, 2l−1, 2l−1 + 2} (this group contains 2l−1
− 4 elements, which is even

number), we can consider the permutation αi as permuting B. Let t j = αiti mod 2l then

t j ∈ B, and let α j = −(tl−1
j + tl−2

j + ... + t2
j + t j + 1), therefore as before

α j(t j − 1) ≡ 1 mod 2l . (6.6)

Now define a function f : B −→ B by f (ti) = αiti mod pl then f (ti) = t j. We will show

that f ( f (ti)) ≡ ti mod 2l.

We have

t j ≡ αiti mod 2l by definition of t j

⇒ t j ≡ αiti − αi + αi mod 2l

⇒ t j ≡ αi(ti − 1) + αi mod 2l

⇒ t j ≡ 1 + αi mod 2l by (6.4)

⇒ t j − 1 ≡ αi mod 2l (6.7)
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therefore

f ( f (ti)) ≡ f (αiti) mod 2l

≡ f (t j) mod 2l

≡ α jt j mod 2l by definition

≡ α j f (ti) mod 2l

≡ α jαiti mod 2l

≡ α j(t j − 1)ti mod 2l by (6.7)

≡ ti mod 2l by (6.6)

Then f (t j) ≡ f ( f (ti)) ≡ ti mod 2l, and f (ti) ≡ t j mod 2l. Now let Γ be a directed graph with

a set of vertices V = B and a set of edges E = {(ti, f (ti)), 1 ≤ i ≤ 2(l−1)
− 1}. Then for each

vertex ti ∈ V outdeg(ti) = 1, and we will show that indeg(ti) = 1. Suppose for contradiction

that indeg(ti) ≥ 2. Then there are edges (t j, ti), (tk, ti), with t j . tk mod 2l, t j ∈ B, tk ∈ B. Let

αk = −(tl−1
k + tl−2

k + ... + t2
k + tk + 1), then

αk(tk − 1) ≡ 1 mod 2l . (6.8)
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Now

f (tk) ≡ ti mod 2l

⇒ αktk ≡ f (t j) mod 2l

⇒ αktk ≡ α jt j mod 2l

⇒ αktk − αk + αk ≡ α jt j − α j + α j mod 2l

⇒ αk(tk − 1) + αk ≡ α j(t j − 1) + α j mod 2l

⇒ 1 + αk ≡ 1 + α j mod 2l by (6.6), (6.8)

⇒ αk ≡ α j mod 2l

⇒ αk(tk − 1) ≡ α j(tk − 1) mod 2l

⇒ 1 ≡ α j(tk − 1) mod 2l by (6.8)

⇒ α j(t j − 1) ≡ α j(tk − 1) mod 2l by (6.6)

⇒ t j − 1 ≡ tk − 1 mod 2l since (α j, 2l) = 1

⇒ t j ≡ tk mod 2l a contradiction.

Therefore indeg(ti) = 1, and Γ consists of |B|/2 connected components, each has two vertices

{ti, f (ti)}. Further by (6.5) we have G2l(ti, 1) � G2l(αiti, 1) = G2l( f (ti), 1). Let S ⊂ B be a set

formed by taking one vertex from each components of Γ. Then |S| = |B|/2 = 2l−1
−4

2 = 2l−2
− 2,

and for any ti ∈ B, the group G2l(ti, 1) � G2l(s, 1) for some s ∈ S. Therefore for each ti ∈ A

the group G2l(ti, 1) is isomorphic to G2l(2, 1) or G2l(2l−1, 1) or G2l(2l−1 + 2, 1) or to G2l(s, 1) for

some s ∈ S. Hence there are at most 2l−2
− 2 + 3 = 2l−2 + 1 isomorphisms types amongst the

groups Gl
2(ti, 1), 1 ≤ i ≤ 2l−1

− 1. From the first part of the proof, we have that if m is odd

then G2l(m, k) is isomorphic to (at least) one of (2l−1
− 1) groups. From second part, we have

that if m even then G2l(m, k) is isomorphic to (at least) one of (2l−2 + 1) groups. Therefore

there is at most (2l−1
− 1) + (2l−2 + 1) = 2l−2(2 + 1) = 3.2l−2 isomorphism types among the

irreducible groups G2l(m, k). �
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6.2 f(n) of Γn(k, l) where n has at most two distinct prime

factors

We consider Γn(k, l) for n = pαqβ, where p, q are distinct primes and α ≥ 0, β ≥ 0. We apply

the isomorphisms identified in Lemma 5.0.10, to obtain an upper bound of f (n).

Lemma 6.2.1. If (n, k) = 1 or (n, l) = 1 or (n, k − l) = 1 then Γn(k, l) � Γn(1, l′) for some l′.

Proof. When (n, k) = 1, part (5) of Lemma 5.0.10 implies that Γn(k, l) � Γn(1, l′) for some l′.

When (n, l) = 1, then parts (2), (5) of Lemma 5.0.10 imply that Γn(k, l) � Γn(l, k) � Γn(1, l′)

for some l′. When (n, k − l) = 1, then parts (4), (2), (5) of Lemma 5.0.10 imply that Γn(k, l) �

Γn(k, k − l) � Γn(k − l, k) � Γn(1, l′) for some l′. �

Lemma 6.2.2. If n = pαqβ,where p, q are distinct prime and α ≥ 0, β ≥ 0, and (n, k, l) = 1 then

Γn(k, l) � Γn(1, l′) for some 2 ≤ l′ ≤ (n − 1).

Proof. We shall show that at least one of the following holds: (n, k) = 1, (n, l) = 1, (n, k−l) = 1.

For then the result follows Lemma 6.2.1. Suppose for a contradiction (n, k) > 1, (n, l) >

1, (n, k− l) > 1. Now (n, k) > 1 implies that p|k or q|k, and (n, l) > 1 implies that p|l or q|l, and

(n, k − l) > 1 implies that p|(k − l) or q|(k − l) . Since (n, k) > 1 we have p|k or q|k. Without

loss of generality suppose p|k then p 6 |l since (n, k, l) = 1, and then p 6 |(k − l). Therefore q|l

and q|(k − l), so q|k so q|(n, k, l) = 1, a contradiction. Therefore Γn(k, l) � Γn(1, l′) for some

2 ≤ l′ ≤ (n − 1). �

Lemma 6.2.3 is proved by using Lemma 5.0.10

Lemma 6.2.3. a. Suppose (n, l) = 1, then Γn(1, l) � Γn(1, l′) where l′l ≡ 1 mod n.

b. Suppose (n, l) = 1, then Γn(1, l) � Γn(1,n + 1 − l) where ll ≡ 1 mod n.

c. Suppose (n, l − 1) = 1, then Γn(1, l) � Γn(1, 1 + l) where (l − 1).l ≡ 1 mod n.

d. Suppose (n, l) = 1, then Γn(1, l) � Γn(1, l) where ll ≡ 1 mod n.

Proof. a. By using parts 2, 5 of Lemma 5.0.10 we get Γn(1, l) � Γn(l, 1) � Γn(l.l′, 1.l′) � Γn(1, l′).
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b. By using parts 2, 5, 4 of Lemma 5.0.10 we get Γn(1, l) � Γn(l, 1) � Γn(l.l, 1.l) � Γn(1, l) �

Γn(1, 1 − l) � Γn(1,n + 1 − l).

c. By using 1, 5, 4 of Lemma 5.0.10 we get Γn(1, l) � Γn(l − 1,−1) � Γn((l − 1)l,−1.l) �

Γn(1,−l) � Γn(1, 1 + l).

d. By using 2, 5 of Lemma 5.0.10 we get Γn(1, l) � Γn(l, 1) � Γn(l.l, 1.l) � Γn(1, l).

�

We give here an upper bound of f (n), for Γn(1, l)

Lemma 6.2.4. Let n = pαqβ, where p, q are distinct prime and α ≥ 0, β ≥ 0 then,

a. If n is even, we have two cases

1. If n ≡ 0 mod 4, then Γn(1, l) � Γn(1, l′′) for some 1 < l′′ ≤ n
2 , and there are at most n

2 − 1

isomorphisms types amongst the groups Γn(1, l).

2. If n ≡ 2 mod 4, n ≥ 10 then Γn(k, l) � Γn(1, l′′) for some 1 < l′′ ≤ n
2 , and there are at

most n
2 − 2 isomorphisms types amongst the groups Γn(1, l).

b. If n is odd we have two cases

1. If n ≡ 3 mod 6 and n ≥ 9, then Γn(1, l) � Γn(1, l′′) for some 1 < l′′ ≤ n−3
2 , and there are

at most n−5
2 isomorphisms types amongst the groups Γn(k, l).

2. If n ≡ 1 or 5 mod 6, n ≥ 11 then Γn(1, l) � Γn(1, l′′) for some 1 < l′′ ≤ n−3
2 , and there

are at most n−7
2 isomorphisms types amongst the groups Γn(1, l).

Proof. a. n even

If n
2 < l′ ≤ n − 1 then −n

2 > −l′ ≥ 1 − n, so (n + 1) − n
2 > (n + 1) − l′ ≥ (n + 1) + 1 − n.

Now let l′′ = (n + 1) − l′, then n
2 + 1 > l′′ ≥ 2, and then by Lemma 6.2.2 and (4) in

Lemma 5.0.10, we have Γn(k, l) � Γn(1, l′) � Γn(1, 1 − l′) = Γn(1,n + 1 − l′) = Γn(1, l′′),

therefore Γn(k, l) � Γn(1, l′′) for some 1 < l′′ ≤ n
2 , this gives at most n

2 − 1 isomorphism

types.

If n ≡ 2 mod 4 and n ≥ 10, then we can find one more isomorphism as follow. Since

1 < n+2
4 < n

2 − 1 < n
2 we have two cases
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1. When n ≡ 2 mod 8 (n+2
4 is odd), we shall show that Γn(1, n+2

4 ) � Γn(1, n
2 − 1),

therefore there are at most n
2 −2 isomorphisms types amongst the groups Γn(k, l).

Observe first (n+2
4 )(n+4

2 ) = n2+6n+8
8 = n.(n+6)

8 + 1 ≡ 1 mod n, therefore

Γn(1,
n + 2

4
) � Γn(1,n + 1 −

n + 4
2

) by part (b) of Lemma 6.2.3

� Γn(1,
2n + 2 − n − 4

2
)

� Γn(1,
n
2
− 1)

2. When n ≡ 6 mod 8 (n+2
4 is even), similarly we shall show that Γn(1, n+2

4 ) �

Γn(1, n
2 − 1), therefore there are at most n

2 − 2 isomorphisms types amongst the

groups Γn(k, l).

Observe that (n−2
4 )(n−4

2 ) = n2
−6n+8

8 = n.(n−6)
8 + 1 ≡ 1 mod n, therefore

Γn(1,
n + 2

4
) � Γn(1, 1 +

n − 4
2

) by part (c) of Lemma 6.2.3

� Γn(1,
n
2
− 1)

b. n odd

If n+1
2 ≤ l′ ≤ n− 1, therefore −(n+1

2 ) ≥ −l′ ≥ 1−n, and then (n + 1)− (n+1
2 ) ≥ (n + 1)− l′ ≥

(n + 1) + 1 − n. Now let l′′ = (n + 1) − l′, then n+1
2 ≥ l′′ ≥ 2, by Lemma 6.2.2 and (4) in

Lemma 5.0.10, we have Γn(k, l) � Γn(1, l′) � Γn(1, 1 − l′) = Γn(1,n + 1 − l′) = Γn(1, l′′),

therefore Γn(k, l) � Γn(1, l′′) for some 1 < l′′ ≤ n+1
2 .

When l′′ = n+1
2 , and by Lemma 6.2.3 we have that Γn(1, n+1

2 ) � Γn(1, 2), also when

l′′ = n−1
2 , and by (2), (5), (4) in Lemma 5.0.10 we have that Γn(1, n−1

2 ) � Γn(n−1
2 , 1) �

Γn(n−1
2 .(n − 2), 1(n − 2)) � Γn(1,n − 2) � Γn(1, 1 − (n − 2)) � Γn(1, 3), therefore Γn(k, l) �

Γn(1, l′′) for some 1 < l′′ ≤ n−3
2 , this gives at most n−3

2 − 1 = n−5
2 isomorphism types.

If n ≡ 1 or 5 mod 6, n ≥ 11, then we can find one more isomorphism as follow. There

are two cases

1. When n ≡ 1 mod 6, we shall show that Γn(1, n+2
3 ) � Γn(1, 3), therefore there are at
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most n−5
2 − 1 = n−7

2 isomorphisms types amongst the groups Γn(k, l).

Γn(1,
n + 2

3
) � Γn(1, 1 −

n + 2
3

) by (4) in Lemma 5.0.10

� Γn(1,
−n + 1

3
)

� Γn(1,
2n + 1

3
)

� Γn(1, 3) by part (d) of Lemma 6.2.3

2. When n ≡ 5 mod 6, we shall show that Γn(1, n+1
3 ) � Γn(1, 3), therefore there are at

most n−5
2 − 1 = n−7

2 isomorphisms types amongst the groups Γn(k, l).

Γn(1, 3) � Γn(1,
n + 1

3
) by part (d) of Lemma 6.2.3

�

Lemma 6.2.4 will allow us to obtain the upper bound of f FFFF(n), when n = pαqβ, where

p ≥ 5, q ≥ 5 are distinct primes

Lemma 6.2.5. Let n = pαqβ,n ≥ 11, p, q are distinct primes and p ≥ 5, q ≥ 5, α ≥ 0, β ≥ 0, then

f (F,F,F,F)(n) ≤ n−7
2 .

Proof. Lemmas( 6.2.2 and 6.2.4) showed that Γn(k, l) � Γn(1, l′) for some l′, and when n is

odd, then f (n) ≤ n−5
2 , so we consider Γn(1, l). Since p, q ≥ 5 therefore n . 0 mod 2 and

n . 0 mod 3, therefore A,B,C,D are always FFFF for 0 ≤ l ≤ n − 1, except when l = 2,

l = n−1 or l = n+1
2 then B holds, but Γn(1, 2) � Γn(1,n−1) � Γn(1, n+1

2 ) � Z3 by number 2, 4, 5

Lemma 5.0.10, so by excluding this isomorphism from the number of isomorphisms types

we get f (F,F,F,F)(n) = f (n) − f (F,T,F,F)(n) ≤ n−5
2 − 1 = n−7

2 . �

6.3 Investigating Γn(k, l) for n ≤ 29

The smallest number that has more than 2 distinct prime factors is 30, so we investigate

Γn(k, l) for n ≤ 29. This means n = pαqβ, for distinct primes p, q and α ≥ 0, β ≥ 0. We

present our results in Table 6.1 in terms of (A), (B), (C), (D) conditions, we give in that
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table the structure of the Γn(k, l) groups, and the precise value of f (n). The problem of

counting Γn(k, l) is reduced by Lemma 6.2.2 to counting Γn(1, l). In order to obtain this we

use Lemma 6.2.4 which gives an upper bound of f (n) of Γn(1, l), and it can be seen from the

table that the bounds in Lemma 6.2.4 are attained for n = 4, 6, 8, 9, 10, 11, 12, 13, 15, 21, 24,

therefore no cases of Lemma 6.2.4 can be directly improved. For other values of n we use

Lemma 5.0.10 (which is Lemma 2.1. of [EW10]), and Lemma 6.2.3 to obtain isomorphisms,

and we distinguish isomorphisms by calculating abelianization of group by using [GAP].

Sometimes the abelianization is not enough to distinguish two groups, so we use [GAP]

to calculate Γ′n(k,l)
Γ′′n (k,l) = (Γ′n(k, l))ab as well. For example Γ10(1, 3)ab = Z33,Γ10(1, 5)ab = Z33, but

(Γ′10(1, 3))ab = Z31, (Γ′10(1, 5))ab = Z5
9 ⊕Z61, therefore Γ10(1, 3) � Γ10(1, 5). By Lemma 6.2.4 we

have that Γn(k, l) � Γn(1, l′) for some l′ ∈ S, where

S =



{2, 3, ..., n
2 } when n when n ≡ 0 mod 4

{2, 3, ..., n
2 } \ {

n
2 − 1} when n ≡ 2 mod 4

{2, 3, ..., n−3
2 } when n when n ≡ 3 mod 6

{2, 3, ..., n−3
2 } \ {

n+2
3 } when n ≡ 1 mod 6

{2, 3, ..., n−3
2 } \ {

n+1
3 } when n ≡ 5 mod 6

For giving more information about the group, we use Corollary 1.6.2 to show when the

group contains free subgroup, which we denote in the table by free sbgp.

All isomorphisms indicated in Table 6.1 are a direct applications of Lemma 6.2.3, and

we give below full details.

• When n = 14, part (a) of Lemma 6.2.3 implies that Γ14(1, 3) � Γ14(1, 5).

• When n = 16, part (b) of Lemma 6.2.3 implies that Γ16(1, 3) � Γ16(1, 6) where l = 3, l = 11

, and implies that Γ16(1, 4) � Γ16(1, 5) where l = 5, l = 13.

• When n = 17, we have Γ17(1, 4) � Γ17(1, 5) � Γ17(1, 7). This holds because part (b)

of Lemma 6.2.3 implies that Γ17(1, 4) � Γ17(1, 5), where l = 4, l = 13, and part (c) of

Lemma 6.2.3 implies that Γ17(1, 7) � Γ17(1, 4), where l = 7, l = 3.

• When n = 18, part (b) of Lemma 6.2.3 implies that Γ18(1, 6) � Γ18(1, 7), where l = 7, l =

13.
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• When n = 19, We have Γ19(1, 4) � Γ19(1, 5) � Γ19(1, 6). This holds because part (a) of

Lemma 6.2.3 implies that Γ19(1, 4) � Γ19(1, 5), and part (b) of Lemma 6.2.3 implies that

Γ19(1, 6) � Γ19(1, 4), where l = 6, l = 16.

• When n = 20, part (a) of Lemma 6.2.3 implies that Γ20(1, 3) � Γ20(1, 7). Part (c) of

Lemma 6.2.3 implies that Γ20(1, 4) � Γ20(1, 8), where l = 4, l = 7.

• When n = 22, part (b) of Lemma 6.2.3 implies that Γ22(1, 3) � Γ22(1, 8) where l = 3, l =

15, and implies that Γ22(1, 4) � Γ22(1, 7) where l = 7, l = 19. Part (d) of Lemma 6.2.3

implies that Γ22(1, 5) � Γ22(1, 9) where l = 5, l = 9.

• When n = 23, we have Γ23(1, 4) � Γ23(1, 6) � Γ23(1, 9). This holds because part (a) of

Lemma 6.2.3 implies that Γ23(1, 4) � Γ23(1, 6), and part (a) of Lemma 6.2.3 implies that

Γ23(1, 9) � Γ23(1, 6), where l = 9, l = 18. We also have Γ23(1, 5) � Γ23(1, 7) � Γ23(1, 10).

This holds because part (b) of Lemma 6.2.3 implies that Γ23(1, 5) � Γ23(1, 10), where

l = 5, l = 14 , and part (d) of Lemma 6.2.3 implies that Γ23(1, 7) � Γ23(1, 10) where

l = 7, l = 10.

• When n = 25, we have Γ25(1, 4) � Γ25(1, 7) � Γ25(1, 8). This holds because part (b)

of Lemma 6.2.3 implies that Γ25(1, 4) � Γ25(1, 7) where l = 4, l = 19, and implies that

Γ25(1, 8) � Γ25(1, 4) where l = 8, l = 22, and also implies that Γ25(1, 5) � Γ16(1, 6) where

l = 6, l = 21.

• When n = 26, part (a) of Lemma 6.2.3 implies that Γ26(1, 3) � Γ26(1, 9), and part

(c) of Lemma 6.2.3 implies that Γ26(1, 4) � Γ26(1, 10) where l = 4, l = 9. part (b) of

Lemma 6.2.3 implies that Γ26(1, 5) � Γ26(1, 6) where l = 5, l = 21, and also implies that

Γ26(1, 8) � Γ26(1, 11) where l = 11, l = 19.

• When n = 27, part (a) of Lemma 6.2.3 implies that Γ27(1, 4) � Γ26(1, 7). We also

have Γ27(1, 5) � Γ27(1, 8) � Γ27(1, 11). This holds because part (c) of Lemma 6.2.3

implies that Γ27(1, 5) � Γ27(1, 8), where l = 5, l = 7, and part (b) of Lemma 6.2.3

implies that Γ27(1, 8) � Γ27(1, 11) where l = 8, l = 17. Part (c) of Lemma 6.2.3 implies

that Γ27(1, 6) � Γ27(1, 12) where l = 6, l = 11. Part (d) of Lemma 6.2.3 implies that

Γ27(1, 9) � Γ27(1, 10) where l = 9, l = 10.
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• When n = 28, Lemma 6.2.3 implies that Γ28(1, 3) � Γ28(1, 10) where l = 3, l = 19, and

implies Γ28(1, 4) � Γ28(1, 9) where l = 9, l = 25, and implies that Γ28(1, 5) � Γ28(1, 12)

where l = 5, l = 17, it is also implies that Γ28(1, 6) � Γ28(1, 11) where l = 11, l = 23.

• When n = 29, we have Γ29(1, 4) � Γ29(1, 8) � Γ29(1, 11). This holds because part (b)

of Lemma 6.2.3 implies that Γ29(1, 4) � Γ29(1, 8), where l = 4, l = 22, and part (d) of

Lemma 6.2.3 implies that Γ29(1, 8) � Γ29(1, 11), where l = 8, l = 11. We also have

Γ29(1, 5) � Γ29(1, 6) � Γ29(1, 7). This holds because part (a) of Lemma 6.2.3 implies that

Γ29(1, 5) � Γ29(1, 6) and part (a) of Lemma 6.2.3 implies that Γ29(1, 5) � Γ29(1, 7) where

l = 7, l = 25. We also have Γ29(1, 9) � Γ29(1, 12) � Γ29(1, 13). This holds because part

(c) of Lemma 6.2.3 implies that Γ29(1, 9) � Γ29(1, 12), where l = 9, l = 11, and part (d)

of Lemma 6.2.3 implies that Γ29(1, 9) � Γ27(1, 13), where l = 9, l = 13.
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Table 6.1: Γn(1, l) , l ∈ S

n A B C D f (n) l Γn(1, l)ab Γn(1, l) Γ′/Γ′′ = (Γ′)ab

3 T T T T 1 2 Z ⊕Z Z ∗Z

4 F T F T 1 2 Z3 Z3

5 F T F T 1 2 Z3 Z3

6 T T T T 2 2 Z ⊕Z Z ∗Z

F F T F 3 Z9 Metacyclic
7 F T F T 2 2 Z3 Z3

F F F F 3 Z2 ⊕Z2 ⊕Z6 Free sbgp
8 F T F T 3 2 Z3 Z3

F F F T 3 Z3 ⊕Z3 ⊕Z3 ∞

F F F F 4 Z15 Free sbgp
9 T T F T 2 2 Z ⊕Z Z ∗Z

F F T F 3 Z27 Metacyclic
10 F T F T 3 2 Z3 Z3

F F F T 3 Z33 ∞ Z31

F F F F 5 Z33 Free sbgp Z5
9 ⊕Z61

11 F T F T 2 2 Z3 Z3

F F F F 3 Z69 Free sbgp
12 T T F T 5 2 Z ⊕Z Z ∗Z

F F F F 3 Z117 Free sbgp
F F T F 4 Z45 Metacyclic
T F T T 5 Z5 ⊕Z ⊕Z Z5 ∗Z ∗Z

F F F F 6 Z63 Free sbgp
13 F T F T 3 2 Z3 Z3

F F F F 3 Z159 Free sbgp
F F F F 4 Z4

3 Free sbgp
14 F T F T 4 2 Z3 Z3

F F F F 3, 5 Z4 ⊕Z4 ⊕Z12 Free sbgp
F F F T 4 Z87 ∞

F F F F 7 Z129 Free sbgp
15 T T F T 5 2 Z ⊕Z Z ∗Z

F F F F 3 Z279 Free sbgp
F F F F 4 Z2 ⊕Z2 ⊕Z2 ⊕Z18 Free sbgp
T F T F 5 Z11 ⊕Z ⊕Z Z11 ∗Z ∗Z

F F T F 6 Z99 Metacyclic
16 F T F T 5 2 Z3 Z3

F F F F 3, 6 Z3 ⊕Z3 ⊕Z51 Free sbgp
F F F F 4, 5 Z255 Free sbgp Z16

2 ⊕Z
16
3 ⊕Z

2
7 ⊕Z

8
17 ⊕Z

16
19 ⊕Z

8

F F F T 7 Z7 ⊕Z21 ∞

F F F F 8 Z255 Free sbgp Z64
2 ⊕Z

26
4 ⊕Z

16
8 ⊕Z

12
13 ⊕Z

2
41

17 F T F T 3 2 Z3 Z3

F F F F 3 Z717 Free sbgp
F F F F 4, 5, 7 Z309 Free sbgp
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n A B C D f (n) l Γn(1, l)ab Γn(1, l) Γ′/Γ′′ = (Γ′)ab

18 T T F T 6 2 Z ⊕Z Z ∗Z

F F F F 3 Z999 Free sbgp
F F F F 4 Z513 Free sbgp Z4

7 ⊕Z
4
19 ⊕Z37

T F F T 5 Z19 ⊕Z ⊕Z Z19 ∗Z ∗Z

F F T F 6, 7 Z189 Metacyclic
F F F F 9 Z513 Free sbgp Z9

5 ⊕Z
4
7 ⊕Z

8
19 ⊕Z37 ⊕Z361⊕

Z7
130987 ⊕Z

7
100673737384483

19 F T F T 4 2 Z3 Z3

F F F F 3 Z1371 Free sbgp
F F F F 4, 5, 6 Z573 Free sbgp
F F F F 8 Z7 ⊕Z7 ⊕Z21 Free sbgp

20 F T F T 7 2 Z3 Z3

F F F F 3, 7 Z2013 Free sbgp
F F F F 4, 8 Z825 Free sbgp Z20

4 ⊕Z
20
7 ⊕Z

12
11 ⊕Z31 ⊕Z601

F F F F 5 Z825 Free sbgp Z25
5 ⊕Z

5
9 ⊕Z61 ⊕Z181

F F F F 6 Z1353 Free sbgp
F F F T 9 Z5 ⊕Z75 ∞

F F F F 10 Z1023 Free sbgp
21 T T F T 8 2 Z ⊕Z Z ∗Z

F F F F 3 Z2 ⊕Z2 ⊕Z774 Free sbgp
F F F F 4 Z1143 Free sbgp
T F F F 5 Z2 ⊕Z2 ⊕Z14 ⊕Z ⊕Z Free sbgp
F F T F 7 Z387 Metacyclic
T F T F 8 Z43 ⊕Z ⊕Z Z43 ∗Z ∗Z

F F F F 9 Z13 ⊕Z117 Free sbgp
22 F T F T 6 2 Z3 Z3

F F F F 3, 8 Z4623 Free sbgp
F F F F 4, 7 Z23 ⊕Z69 Free sbgp Z11

4 ⊕Z
23
23 ⊕Z67 ⊕Z463 ⊕Z22

F F F F 5, 9 Z23 ⊕Z69 Free sbgp Z11
2 ⊕Z

22
5 ⊕Z

24
23 ⊕Z67 ⊕Z859 ⊕Z22

F F F T 6 Z597 ∞

F F F F 11 Z2049 Free sbgp
23 F T F T 4 2 Z3 Z3

F F F F 3 Z47 ⊕Z141 Free sbgp
F F F F 4, 6, 9 Z2487 Free sbgp
F F F F 5, 7, 10 Z2073 Free sbgp
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n A B C D f (n) l Γn(1, l)ab Γn(1, l) Γ′/Γ′′ = (Γ′)ab

24 T T F T 11 2 Z ⊕Z Z ∗Z

F F F F 3 Z9 ⊕Z9 ⊕Z117 Free sbgp
F F F F 4 Z3285 Free sbgp
T F F F 5 Z5 ⊕Z5 ⊕Z5 ⊕Z ⊕Z Free sbgp
F F F F 6 Z9 ⊕Z9 ⊕Z63 Free sbgp
F F F F 7 Z7 ⊕Z7 ⊕Z63 Free sbgp
T F T F 8 Z85 ⊕Z ⊕Z Z85 ∗Z ∗Z

F F T F 9 Z765 Metacyclic
F F F F 10 Z5 ⊕Z585 Free sbgp
T F F T 11 Z9 ⊕Z9 ⊕Z ⊕Z ∞

F F F F 12 Z4095 Free sbgp
25 F T F T 5 2 Z3 Z3

F F F F 3 Z13953 Free sbgp
F F F F 4, 7, 8 Z4803 Free sbgp
F F F F 5, 6 Z3333 Free sbgp
F F F F 10, 11 Z4983 Free sbgp

26 F T F T 7 2 Z3 Z3

F F F F 3, 9 Z20829 Free sbgp
F F F F 4, 10 Z3 ⊕Z3 ⊕Z3 ⊕Z237 Free sbgp
F F F F 5, 6 Z3 ⊕Z3 ⊕Z3 ⊕Z159 Free sbgp
F F F T 7 Z1563 ∞

F F F F 8, 11 Z53 ⊕Z159 Free sbgp
F F F F 13 Z8193 Free sbgp

27 T T F T 6 2 Z ⊕Z Z ∗Z

F F F F 3 Z30699 Free sbgp
F F F F 4, 7 Z8829 Free sbgp
T F F F 5, 8, 11 Z271 ⊕Z ⊕Z Free sbgp
F F F F 6, 12 Z13203 Free sbgp
F F T F 9, 10 Z1539 Metacyclic

28 F T F T 9 2 Z3 Z3

F F F F 3, 10 Z8 ⊕Z8 ⊕Z696 Free sbgp
F F F F 4, 9 Z29 ⊕Z435 Free sbgp
F F F F 5, 12 Z8 ⊕Z8 ⊕Z120 Free sbgp
F F F F 6, 11 Z17139 Free sbgp
F F F F 7 Z14577 Free sbgp
F F F F 8 Z18705 Free sbgp
F F F T 13 Z13 ⊕Z195 ∞

F F F F 14 Z16383 Free sbgp
29 F T F T 5 2 Z3 Z3

F F F F 3 Z64731 Free sbgp
F F F F 4, 8, 11 Z17403 Free sbgp
F F F F 5, 6, 7 Z59 ⊕Z177 Free sbgp
F F F F 9, 12, 13 Z21579 Free sbgp
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6.4 f (n) of Γn(k, l) groups when n has three distinct prime

factors

Here only when A hold we give an upper bound for f (n) of Γn(k, l) where n = pαqβrγ,where

p, q and r are distinct primes

Lemma 6.4.1. Let n = pαqβrγ, where p, q and r are distinct primes and α ≥ 0, β ≥ 0, γ ≥ 0, and

(n, k, l) = 1, k , l, k , 0, l , 0. If (A) holds then Γn(k, l) � Γn(1, l′′) for some l′′, where

1. If n is even then l′′ ∈ {2, 5, 8, ..., n
2 − 1}, and there are at most n

6 isomorphism types.

2. If n is odd then l′′ ∈ {2, 5, 8, ..., n−1
2 }, and there are at most n−3

6 isomorphisms types amongst

the groups Γn(k, l).

Proof. We shall show that at least one of the following hold: (n, k) = 1, (n, l) = 1, (n, k− l) = 1.

For then the result follows Lemma 6.2.1. Suppose for contradiction (n, k) > 1, (n, l) >

1, (n, k− l) > 1.Now (A) holds so 3|n, therefore (p = 3, α ≥ 1) or (q = 3, β ≥ 1) or (r = 3, γ ≥ 1),

without loss of generality suppose r = 3, γ ≥ 1. Now (n, k) > 1 implies that p|k or q|k or r|k,

and (n, l) > 1 implies that p|l or q|k or r|l, and (n, k − l) > 1 implies that p|(k − l) or q|(k − l) or

r|(k − l). If 3|k then since (A) holds we have 3|l, so 3|(n, k, l) = 1, a contradiction. Therefore

3 6 |k. Similarly 3 6 |l, 3 6 |(k − l).

Since (n, k) > 1 we have p|k or q|k. Without loss of generality suppose p|k then p 6 |l

since(n, k, l) = 1, and then p 6 |(k − l). Therefore q|l and q|(k − l), so q|k so q|(n, k, l) = 1, a

contradiction. Therefore

Γn(k, l) � Γn(1, l′) (6.9)

for some 2 ≤ l′ ≤ (n − 1).

Therefore by Theorem 5.1.1, the parameters n, k′, l′ satisfy (A) so 1 + l′ ≡ 0 mod 3, so

l′ ≡ 2 mod 3, therefore l′ ∈ {2, 5, 8, ..., (n − 1)}which has n
3 isomorphism types.

Now suppose n is even, then l′ ∈ {2, 5, 8, ..., n
2 −1, n

2 +2, ...,n−1} (which has even numbers

of elements = n
3 ). If n

2 +2 ≤ l′ ≤ n−1 then−n
2 −2 ≥ −l′ ≥ 1−n, so (n+1)− n

2 −2 ≥ (n+1)− l′ ≥

(n+1)+1−n gives n
2−1 ≥ (n+1)−l′ ≥ 2. Now let l′′ = (n+1)−l′, then n

2−1 ≥ l′′ ≥ 2, and then by

part (4) in Lemma 5.0.10, we have Γn(k, `) � Γn(1, l′) � Γn(1, 1−l′) = Γn(1,n+1−l′) = Γn(1, l′′),
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therefore Γn(k, `) � Γn(1, l′′) for some 2 ≤ l′′ ≤ n
2 − 1, which means l′′ ∈ {2, 5, 8, ..., n

2 − 1} this

gives at most n
6 isomorphism types.

When n odd, l′ ∈ {2, 5, 8, ..., n−5
2 ,

n+1
2 ,

n+7
2 , ...,n − 1} (which has odd numbers of elements

= n
3 ). When l′ = n+1

2 , we have Γn(1, n+1
2 ) � Γn(1, 2) by number (2,5) in Lemma 5.0.10. Now if

n+7
2 ≤ l′ ≤ n−1, therefore−(n+7

2 ) ≥ −l′ ≥ 1−n, and then (n+1)−(n+7
2 ) ≥ (n+1)−l′ ≥ (n+1)+1−n.

Now let l′′ = (n + 1) − l′, then n−5
2 ≥ l′′ ≥ 2, and by (6.9) and (4) in Lemma 5.0.10, we have

Γn(k, l) � Γn(1, l′) � Γn(1, 1 − l′) = Γn(1,n + 1 − l′) = Γn(1, l′′), therefore Γn(k, l) � Γn(1, l′′) for

some 2 ≤ l′′ ≤ n−5
2 , which means l′′ ∈ {2, 5, 8, ..., n−5

2 } this gives at most n−3
6 isomorphism

types. �



Bibliography

[BP16] William A Bogley and Forrest W Parker. Cyclically presented groups with
length four positive relators. arXiv preprint arXiv:1611.05496, 2016.

[BV03] Valeriy Georgievich Bardakov and A Yu Vesnin. A generalization of Fibonacci
groups. Algebra and Logic, 42(2):73–91, 2003.

[BW16] William A Bogley and Gerald Williams. Efficient finite groups arising in the
study of relative asphericity. Mathematische Zeitschrift, 284(1-2):507–535, 2016.

[BW17] William A Bogley and Gerald Williams. Coherence, subgroup separability,
and metacyclic structures for a class of cyclically presented groups. Journal of
Algebra, 480:266–297, 2017.

[COS08] Alberto Cavicchioli, Eamonn A O’Brien, and Fulvia Spaggiari. On some
questions about a family of cyclically presented groups. Journal of Algebra,
320(11):4063–4072, 2008.

[CR75a] Colin M Campbell and Edmund F Robertson. A note on Fibonacci type groups.
Canad. Math. Bull, 18:173–175, 1975.

[CR75b] Colin M Campbell and Edmund F Robertson. On a class of finitely presented
groups of Fibonacci type. Journal of the London Mathematical Society, 2(2):249–255,
1975.

[CR75c] Colin M Campbell and Edmund F Robertson. On metacyclic Fibonacci groups.
Proceedings of the Edinburgh Mathematical Society (Series 2), 19(03):253–256, 1975.
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Table A.1: Isomorphisms classes of Gn(m, k) groups for n ≤ 27

.

n f (n) g(n) Groups type of group Finite or infinite G/G′

3 1 1 H(3, 2) - Q8 Z2 ⊕Z2

4 2 2 H(4, 2) S(2, 4) SL(2, 3) Z3

H(4, 3) F(2, 4) Z5 Z5

5 2 2 H(5, 2) S(2, 5) SL(2, 5) 1
H(5, 3) F(2, 5) Z11 Z11

6 5 4 H(6, 2) S(2, 6) infinite Z ⊕Z
H(6, 3) - Z3

2 o Z7 Z7

H(6, 4) - Z9 Z9

H(6, 5) F(2, 6) Infinite Z4 ⊕Z4

G6(1, 3) - Z7 Z7

7 3 3 H(7, 2) S(2, 7) infinite 1
H(7, 3) - infinite Z2 ⊕Z2 ⊕Z2

H(7, 4) F(2, 7) Z29 Z29

8 6 6 H(8, 2) S(2, 8) infinite Z3

H(8, 3) - group of order 310.5 Z5

H(8, 4) - infinite Z15

H(8, 5) - Z17 Z17

H(8, 6) - infinite Z3 ⊕Z3 ⊕Z3

H(8, 7) F(2, 8) infinite Z3 ⊕Z15

9 5 5 H(9, 2) S(2, 9) infinite Z2 ⊕Z2

H(9, 3) - infinite Z7

H(9, 4) - Unknown Z19

H(9, 5) F(2, 9) infinite Z2 ⊕Z38

H(9, 7) - Unknown Z37

10 8 5 H(10, 2) S(2, 10) Infinite Z3

H(10, 3) - Infinite Z11

H(10, 4) - Infinite Z33

H(10, 5) - Infinite Z31

H(10, 6) - Z33 Z33

H(10, 7) - Infinite Z11

H(10, 9) F(2, 10) Infinite Z11 ⊕Z11

G10(1, 5) - Z31 Z31
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n f (n) g(n) Groups type of group Finite or infinite G/G′

11 5 4 H(11, 2) S(2, 11) Infinite 1
H(11, 3) - Infinite Z23

H(11, 4) - Infinite Z23

H(11, 6) F(2, 11) Infinite Z199

H(11, 8) - Infinite Z67

12 12 10 H(12, 2) S(2, 12) Infinite Z ⊕Z
H(12, 3) - Infinite Z35

H(12, 4) - Infinite Z45

H(12, 5) - Infinite Z8 ⊕Z8

H(12, 6) - Infinite Z63

H(12, 7) - Z65 Z65

H(12, 8) - Infinite Z5 ⊕Z ⊕Z
H(12, 9) - Infinite Z91

H(12, 10) - Infinite Z117

H(12, 11) F(2, 12) Infinite Z8 ⊕Z40

G12(1, 3) - Infinite Z35

G12(1, 4) - Infinite Z91

13 6 6 H(13, 2) S(2, 13) Infinite 1
H(13, 3) - Infinite Z53

H(13, 4) - Infinite Z79

H(13, 5) - Infinite Z131

H(13, 6) - Infinite Z3 ⊕Z3 ⊕Z3

H(13, 7) F(2, 13) Infinite Z521

14 11 8 H(14, 2) S(2, 14) Infinite Z3

H(14, 3) - Infinite Z4 ⊕Z4 ⊕Z4

H(14, 4) - Infinite Z87

H(14, 5) - Infinite Z4 ⊕Z4 ⊕Z4

H(14, 7) - Infinite Z127

H(14, 8) - Z129 Z129

H(14, 9) - Infinite Z29

H(14, 10) - Infinite Z4 ⊕Z4 ⊕Z12

H(14, 11) - Infinite Z29

H(14, 13) F(2, 14) Infinite Z29 ⊕Z29

G14(1, 7) - Z127 Z127
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n f (n) g(n) Groups type of group Finite or infinite G/G′

15 12 12 H(15, 2) S(2, 15) Infinite Z2 ⊕Z2

H(15, 3) - Infinite Z77

H(15, 4) - Infinite Z2 ⊕Z2 ⊕Z2 ⊕Z22

H(15, 5) - Infinite Z2 ⊕Z62

H(15, 6) - Infinite Z217

H(15, 7) - Infinite Z61

H(15, 8) F(2, 15) Infinite Z2 ⊕Z682

H(15, 10) - Infinite Z31

H(15, 11) - Infinite Z2 ⊕Z122

H(15, 12) - Infinite Z2 ⊕Z2 ⊕Z2 ⊕Z14

H(15, 13) - Infinite Z341

G15(1, 6) - Infinite Z271

16 12 9 H(16, 2) S(2, 16) Infinite Z3

H(16, 3) - Infinite Z85

H(16, 4) - Infinite Z255

H(16, 5) - Infinite Z17 ⊕Z17

H(16, 6) - Infinite Z3 ⊕Z3 ⊕Z51

H(16, 7) - Infinite Z3 ⊕Z15

H(16, 8) - Infinite Z255

H(16, 9) - Z257 Z257

H(16, 10) - Infinite Z7 ⊕Z21

H(16, 11) - Infinite Z85

H(16, 12) - Infinite Z255

H(16, 15) F(2, 16) Infinite Z21 ⊕Z105

17 7 or 8 7 H(17, 2) S(2, 17) Infinite 1
H(17, 3) - Infinite Z103

H(17, 4) - Infinite Z307

H(17, 5) - Infinite Z409

H(17, 9) F(2, 17) Infinite Z3571

H(17, 12) - Infinite Z613

H(17, 6) � - Infinite Z137

H(17, 11)? - Infinite Z137
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n f (n) g(n) Groups type of group Finite or infinite Abelianization
18 17 10 H(18, 2) S(2, 18) Infinite Z ⊕Z

H(18, 3) - Infinite Z133

H(18, 4) - Infinite Z513

H(18, 5) - Infinite Z4 ⊕Z76

H(18, 6) - Infinite Z189

H(18, 7) - Infinite Z703

H(18, 8) - Infinite Z19 ⊕Z ⊕Z
H(18, 9) - Infinite Z511

H(18, 10) - Z513 Z513

H(18, 11) - Infinite Z4 ⊕Z76

H(18, 13) - Infinite Z703

H(18, 15) - Infinite Z259

H(18, 16) - Infinite Z999

H(18, 17) F(2, 18) Infinite Z76 ⊕ Z76

G18(1, 3) - Infinite Z133

G18(1, 4) - Infinite Z259

G18(1, 9) - Z511 Z511

19 8 or 9 8 H(19, 2) S(2, 19) Infinite 1
H(19, 3) - Infinite Z191

H(19, 4) - Infinite Z647

H(19, 5) - Infinite Z761

H(19, 7) - Infinite Z1483

H(19, 8) - Infinite Z419

H(19, 10) F(2, 18) Infinite Z9349

H(19, 9) � - Infinite Z229

H(19, 15)? - Infinite Z229

20 18 13 H(20, 2) S(2, 20) Infinite Z3

H(20, 3) - Infinite Z275

H(20, 4) - Infinite Z825

H(20, 5) - Infinite Z1271

H(20, 6) - Infinite Z1353

H(20, 7) - Infinite Z275

H(20, 9) - Infinite Z11 ⊕Z11

H(20, 10) - Infinite Z1023

H(20, 11) - Z1025 Z1025

H(20, 12) - Infinite Z5 ⊕Z75

H(20, 13) - Infinite Z671

H(20, 14) - Infinite Z2013

H(20, 15) - Infinite Z775

H(20, 16) - Infinite Z825

H(20, 17) - Infinite Z671

H(20, 19) F(2, 20) Infinite Z55 ⊕Z275

G20(1, 5) - Infinite Z1271

G20(1, 6) - Infinite Z775
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n f (n) g(n) Groups type of group Finite or infinite Abelianization
21 15 or 16 15 H(21, 2) S(2, 21) Infinite Z2 ⊕Z2

H(21, 3) - Infinite Z2 ⊕Z2 ⊕Z98

H(21, 5) - Infinite Z2 ⊕Z2 ⊕Z2 ⊕Z2 ⊕Z86

H(21, 6) - Infinite Z1421

H(21, 7) - Infinite Z127

H(21, 8) - Infinite Z2 ⊕Z1094

H(21, 9) - Infinite Z7 ⊕Z49

H(21, 10) - Infinite Z2 ⊕Z2 ⊕Z86

H(21, 11) F(2, 21) Infinite Z2 ⊕Z12238

H(21, 14) - Infinite Z2 ⊕Z254

H(21, 15) - Infinite Z2107

H(21, 16) - Infinite Z463

H(21, 19) - Infinite Z2 ⊕Z2 ⊕Z758

G21(1, 7) - Infinite Z2269

H(21, 4) � - Infinite Z1247

H(21, 13)? - Infinite Z1247

22 17 10 H(22, 2) S(2, 22) Infinite Z3

H(22, 3) - Infinite Z23 ⊕Z23

H(22, 4) - Infinite Z23 ⊕Z69

H(22, 5) - Infinite Z1541

H(22, 6) - Infinite Z597

H(22, 7) - Infinite Z1541

H(22, 8) - Infinite Z4623

H(22, 9) - Infinite Z1541

H(22, 11) - Infinite Z2047

H(22, 12) - Z2049 Z2049

H(22, 13) - Infinite Z199

H(22, 14) - Infinite Z23 ⊕Z69

H(22, 15) - Infinite Z23 ⊕Z23

H(22, 17) - Infinite Z199

H(22, 19) - Infinite Z1541

H(22, 21) F(2, 22) Infinite Z199 ⊕Z199

G22(1, 11) - Z2047 Z2047
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n f (n) g(n) Groups type of group Finite or infinite G/G′

23 10 or 11 9 H(23, 2) S(2, 23) Infinite 1
H(23, 3) - Infinite Z691

H(23, 5) - Infinite Z3313

H(23, 6) - Infinite Z2347

H(23, 12) F(2, 23) Infinite Z64079

H(23, 16) - Infinite Z6533

H(23, 18) - Infinite Z1151

H(23, 4) - Infinite Z47 ⊕Z47

H(23, 14) - Infinite Z47 ⊕Z47

H(23, 8) � - Infinite Z599

H(23, 10)? - Infinite Z599

24 26 22 H(24, 2) S(2, 24) Infinite Z ⊕Z
H(24, 3) - Infinite Z5 ⊕Z5 ⊕Z35

H(24, 4) - Infinite Z3285

H(24, 5) - Infinite Z16 ⊕Z272

H(24, 6) - Infinite Z9 ⊕Z9 ⊕Z63

H(24, 7) - Infinite Z9 ⊕Z585

H(24, 8) - Infinite Z85 ⊕Z ⊕Z
H(24, 9) - Infinite Z6643

H(24, 10) - Infinite Z5 ⊕Z585

H(24, 11) - Infinite Z16 ⊕Z80

H(24, 12) - Infinite Z4095

H(24, 13) - Z4097 Z4097

H(24, 14) - Infinite Z9 ⊕Z9 ⊕Z ⊕Z
H(24, 15) - Infinite Z9 ⊕Z315

H(24, 16) - Infinite Z765

H(24, 17) - Infinite Z80 ⊕Z80

H(24, 18) - Infinite Z7 ⊕Z7 ⊕Z63

H(24, 19) - Infinite Z7 ⊕Z455

H(24, 20) - Infinite Z5 ⊕Z5 ⊕Z5 ⊕Z ⊕Z
H(24, 21) - Infinite Z1547

H(24, 22) - Infinite Z9 ⊕Z9 ⊕Z117

H(24, 23) F(2, 24) Infinite Z144 ⊕Z720

G24(1, 3) - Infinite Z5 ⊕Z5 ⊕Z35

G24(1, 4) - Infinite Z1547

G24(1, 9) - Infinite Z6643

G24(1, 10) - Infinite Z9 ⊕Z315



Appendix A. Table of isomorphisms classes of Gn(m, k) groups for n ≤ 27 125

n f (n) g(n) Groups type of group Finite or infinite G/G′

25 14 13 H(25, 2) S(2, 25) Infinite 1
H(25, 3) - Infinite Z1111

H(25, 4) - Infinite Z4411

H(25, 5) - Infinite Z4681

H(25, 6) - Infinite Z6101

H(25, 7) - Infinite Z3851

H(25, 8) - Infinite Z2761

H(25, 9) - Infinite Z14311

H(25, 10) - Infinite Z3131

H(25, 11) - Infinite Z1951

H(25, 12) - Infinite Z1151

H(25, 13) F(2, 25) Infinite Z167761

H(25, 16) - Infinite Z5801

H(25, 21) - Infinite Z1151

26 20 14 H(26, 2) S(2, 26) Infinite Z3

H(26, 3) - Infinite Z3 ⊕Z3 ⊕Z159

H(26, 4) - Infinite Z3 ⊕Z3 ⊕Z3 ⊕Z237

H(26, 5) - Infinite Z6943

H(26, 6) - Infinite Z3 ⊕Z3 ⊕Z3 ⊕Z159

H(26, 7) - Infinite Z521

H(26, 8) - Infinite Z53 ⊕Z159

H(26, 9) - Infinite Z3 ⊕Z3 ⊕Z159

H(26, 11) - Infinite Z3 ⊕Z3 ⊕Z393

H(26, 12) - Infinite Z1563

H(26, 13) - Infinite Z8191

H(26, 14) - Z8193 Z8193

H(26, 15) - Infinite Z521

H(26, 17) - Infinite Z79 ⊕Z79

H(26, 18) - Infinite Z20829

H(26, 19) - Infinite Z3 ⊕Z3 ⊕Z393

H(26, 21) - Infinite Z6943

H(26, 23) - Infinite Z79 ⊕Z79

H(26, 25) F(2, 26) Infinite Z521 ⊕Z521

G26(1, 13) - Z8191 Z8191
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n f (n) g(n) Groups type of group Finite or infinite G/G′

27 17 17 H(27, 2) S(2, 27) Infinite Z2 ⊕Z2

H(27, 3) - Infinite Z1897

H(27, 4) - Infinite Z9253

H(27, 5) - Infinite Z2 ⊕Z6194

H(27, 6) - Infinite Z5299

H(27, 7) - Infinite Z6031

H(27, 9) - Infinite Z511

H(27, 10) - Infinite Z19927

H(27, 11) - Infinite Z2 ⊕Z4538

H(27, 13) - Infinite Z2071

H(27, 14) F(2, 27) Infinite Z2 ⊕Z219602

H(27, 16) - Infinite Z4033

H(27, 17) - Infinite Z2 ⊕Z4142

H(27, 19) - Infinite Z19441

H(27, 21) - Infinite Z6433

H(27, 22) - Infinite Z8227

H(27, 25) - Infinite Z30007


