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Abstract

In this thesis we consider isomorphisms amongst certain classes of cyclically presented
groups. We give isomorphism theorems for two families of cyclically presented groups,
the groups G,(h, k,p, q,1,5,1), and the groups G;,(m, k, h), which were introduced by Cavicchi-
oli, Repovs and Spaggiari. These families contain many subfamilies of cyclically presented
groups, we have results for two of them, the groups G,(m, k), which were introduced by
Johnson and Mawdesley, and the groups I',(k, [), which were introduced by Cavicchioli,
Repovs and Spaggiari.

The abelianization of the Fibonacci groups F(2,1) was proved by Lyndon to be finite and
its order can be expressed in terms of the Lucas numbers. Bardakov and Vesnin have
asked if there is a formula for the order of the abelianization of G,(m, k) groups that can
be expressed in terms of Fibonacci numbers. We produce formulas that compute the order
of Gpm(xgxmx;fl)ab, ka(xoxmx,:—'l)ab for certain values of p where m, k are coprime, and for the
groups I',(1, 5 — 1) (this formula is given in terms of Lucas numbers).

The values of the number of non-isomorphic G,(m, k) groups was conjectured by Cavic-
chioli, O’Brien and Spaggiari for n = p/, where p is prime and [ is a positive integer, we
show that these values provide an upper bound for the number of non-isomorphic G, (m, k)
groups. We also give lower bounds and upper bounds for the number of non- isomorphic
Gyu(m, k) and T',(k, [) groups for certain values of n. Similar to the investigation of the type
of isomorphisms of G,(m, k) groups for n < 27 that was carried by Cavicchioli, O'Brien and

Spaggiari, we perform a similar investigation for I',(k, [) groups for n < 29.
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Chapter 1

Introduction

1.1 Introduction

In this chapter, we give in Section 1.2 initial definitions and background material about
cyclically presented groups. In Section 1.3, we present some families of groups that we
have results about such as the family of groups G,(h, k,p,q,7,s, {) which were introduced
by Cavicchioli, Repovs, and Spaggiari in [CRS03], and the family of the groups G}, (m, k, h),
which were introduced by Cavicchioli, Repovs, and Spaggiari in [CRS05]. Both of theses
families contain various families of cyclically presented groups, such as the groups G,(m, k)
and I',(k, ) which we will consider in Sections 1.5 and 1.6. We give essential definitions
of circulant matrices in Section 1.4, which are important to understand the structure of

cyclically presented groups. Thesis outline will be given in Section 1.7.

1.2 Introduction to Cyclically Presented Groups

Cyclically presented groups is a rich source of interesting groups. It provides a wide range
of study as it is connected to many branches of mathematics. We study isomorphisms

amongst particular classes of cyclically presented groups.

Definition 1.2.1. Let G be a group generated by a set X = {xo,x1,...,x,-1}. Each element

of G can be expressed as a product of x¥!,0 < i < n — 1. such a product is called a word

i

@ = W(XQ, vrey Xp_1)-



1.3. Families of cyclically presented groups 2

Definition 1.2.2. A group F is said to be free on a subset X C F if, for any group G and any
mapping 0 : X — G, there is a unique homomorphism 6’ : F — G such that x,0" = x;0 for

all x; € X.

Definition 1.2.3. Let w = w(xy, ..., x,-1) be a cyclically reduced word in the free group F
with generators xy, ..., x,-1 and let O(x;) = x;;1 for each 0 < i < n — 1 (subscripts mod n). The

presentation

Gu(@) = (X0, X1, o0, Xp1 | @, O(@), ..., 0" (@))

is said to be a cyclic presentation, and the group G,(w) that defined by G,(w) is called a
cyclically presented group.

1.3 Families of cyclically presented groups

We present here two families and many subfamilies of cyclic presentations of groups which
we have results for.

[I] The family G,(h,k,p,q,1,s,€), which was introduced by Cavicchioli, Repovs and
Spaggiari in [CRS03].

r—1 s—1
Gu(h,k,p,q,1,5,¢) = G”((H x]-p)f(H xhﬂ-q)_k)

j=0 j=0
{
= (X0, X1, eves Xn1 | (XiXigpeo-Xigpo-1))” =

(xi+hxi+h+q---xi+h+q(s—1))kzi =0,..,n-1) (1.1)

wherer>1,s>1,0<p,q,h <n-1,¢k € Z, and all subscripts are taken modulo #.

This family contains many classes of cyclic presented groups, considered before by
different authors. These groups were studied in terms of their topological properties
in [CRS03], and they illustrated them as follow
(1) The groups Gy,(s,c,1,1,7,1,1) = G,(xox1...x,-1x; ), which were introduced in [JO94] and
denoted by F(r,s, c,n). This group is a generalization of the following groups

(@) The groups G,(r,1,1,1,7,1,1) = G,(xox; ..X,1x. 1), which were introduced in [JWW74]
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and denoted by F(r,n). They are called Fibonacci groups and in terms of isomorphisms
they give in [[WW?74] a table that is showing in most cases isomorphisms for n,7 < 7. They
were also studied by many authors, geometrically (see for example [HKM98]).

(b) The groups G,(r+k-1,1,1,1,,1,1) = Gn(xoxl...xr_lxr‘jk_l), which were introduced
in [CR75c] and denoted by F(r, n, k).

(2) The groups G,(¢, -1,k,0,2,1,1) = Gu(xoxxx,), which the groups we denote I';(k, £), which
were introduced in [CRS05], and studied further in [EW10].

(3) The groups G,(k-1,1,4,49,1,5,1) = G, ((H x]q)(SH Xk+jg) '), which were introduced in [Pri95]
and denoted by P(r,n,k,s,q). They generahze the followmg groups

(a) The groups R(r, n, k, h) = G,((r-1)h+k,1,h,0,r,1,1), which were introduced in [CR75a]
and denoted by R(r,n,k, h). They are called Fibonacci type groups and studied in terms of
isomorphisms by different people (see for example [CR75a]).

(b) The groups G,(k,1,m,1,2,1,1) = Gn(xoxmxlzl), which were were introduced in [JM75].
They are called Fibonacci type groups and subsequently studied in [BV03], [COS08], [Wil09],
see [Wil12] for survey of these groups G, (xox,x;'). They are generalizations of the Gilbert-
Howie groups defined in [GH95] as

H(n,m) = Gu(xoxux;") = Gu(m, 1).

(c) The groups G,(r,1,1,1,7,k, 1) = G,((x0X1.--%,-1) (X, Xy41.--X,+%) "}, which were introduced
in [CR75b] and denoted by H(r,n,k). These groups F(r, n,k), H(r,n, k) are present general-
izations of the Fibonacci groups F(r,n), and also have been studied topologically and
geometrically (see [BV03], [Od0o99] and [SV00]).

[II] The family G (m, k, h), which was introduced by Cavicchioli, Repovs and Spaggiari
in [CRS05]

Gi(m, k,h) = (x0, x1, .., Xp—1 | X7 x1+kxl+h+m = (X X)), 1=0,..,n—1) (1.2)

where ¢ = (a,b,1,5) € Z*,n > 2,m, k and h are taken modulo 7, and the integer parameters
m, k and h are taken modulo n.

This class of groups contains also well-known groups considered by different people,
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most of these groups are illustrated in [CRS05], including the following
(1) Ifa=b=s=1,r=2andh = 0, then the groups G;,(m, k, h) have defining relations
XiXirm = Xirr Of the groups G,(m, k) , as described above.
2Ifta=s=1b=-1,r=2,m=kk = {¢and h = 0, then the groups G;,(m, k, h) have
defining positive relators x;x;.x;s¢ of the groups I',(k, [), which described above.

Results about these two families of groups will be given in Chapter 2.

Definition 1.3.1. The abelianization of G,(w) group can be defined by

Gu(@)™® = (X0, X1, oy X1 | @, O@), ..., 0" N@), X% = xj%;,0 S i, j<m—1).  (1.3)

1.4 Circulant matrices
Circulant matrices play a role in understanding the structure of cyclically presented groups,
we give essential definitions of circulant matrices (see [Dav12])

Definition 1.4.1. The polynomial f(t) = f,.(t) associated with the cyclically presented
group G = G,(w) is given by

n-1
fHy =Y at (1.4)
i=0
where g; is the exponent sum of x; in 0,0 <i <n—1.

Since the n permutants of w under powers of 0 comprise a set of defining relators for

G, (w), it follows that the matrix

ag a, . . . 4y
aAy—1 g . . . Ay
C= (1.5)
aq a, . . . ag

is a relation matrix for G,(w)™. By [Dav12, Equation (3.2.14)], [Joh80, Page 77-Theorem 1],

its determinant is known.
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Theorem 1.4.2. [Joh80, Page 77-Theorem 1] With the notation of (1.4) and (1.5)

n-1
4et(C) = [ | f(wi), (16)
i=0

where w; ranges over the set of complex nth roots of unity.

n-1
Accordance with the theory of §6 of [Joh80] we can write [] f(0) = [] f(wi), and we
07=1 i=0
have

Theorem 1.4.3. [Joh80, Page 77-Theorem 2] If f is the polynomial associated with w, then
Gu(@)™ = 1T] £O). (17)
07=1
Therefore by (1.6),(1.7) we have.

Gu(@)™] = |det(C)!. (1.8)

det(C) = 0 (C is singular) is interpreted as G,(w)® is infinite, otherwise G, (w)® is finite.

Put
Ri(f) =[] f0). (1.9)
or=1

Now the following lemma is in [Dav12, Page (76)] and [Od099, Lemma 2.1], which will

be used in Chapter 3 in finding the order of the abelianization.

Lemma 1.4.4. [Dav12, Page (76)], [Odo99, Lemma 2.1] Let f(x) € Z[x], degf = k > 1, and
k

suppose that f(x) = c [ (x — B;) € Clx], where 0 # c € Z. Then
j=1

k
R(f) = (<) T] 6 - 0. (1.10)
=1

Definition 1.4.5. Any finitely generated abelian group is isomorphic to a group of the form Gy & ZF
where Gy is a finite abelian group and B is called the Betti number (or torsion-free rank of G,(w))

(see for example [Fra03, Theorem 2.11]). Therefore G,(w) is infinite if and only if f(G,(w)) > 1.
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The following method for calculating Betti number for cyclically presented groups was
observed in [Wil17].
Let g(t) = t" — 1, it is shown in the following [Ing56], [New83, Theorem 1] that the rank

of C can be expressed in terms of the polynomials f, g.

Theorem 1.4.6. [Ing56], [New83, Theorem 1] The rank of C is given by the formula

H(C) = n — deg(ged(f (), g(1)). (1.11)

and so

B(Gu(@)™) = deg(ged(f(1), g(1). (1.12)

In the following two sections we will pay attention to the groups G, (m, k), I'x(k, ).

1.5 Generalized Fibonacci Type Groups G,(m, k).

This class of cyclically presented groups G,(m, k) was introduced by Johnson and Mawdes-
ley in [JM75], and studied by Bardakov in [BV03], then by Cavicchioli, O’Brien, and
Spaggiari in [COS08], and Williams [Wil09], and revisited by Williams in [Wil12], and can
be defined as

Gu(m, k) = {x0, X1, o0y Xn1 | XiXigm = Xis1(0 1 <1 = 1)) (1.13)

The groups generalize various groups that have previously been studied such as: Gilbert
and Howie groups H(n,m) = G,(m, 1), see [GH95], Conway’s Fibonacci groups F(2,n) =
Gu(1,2) [CWLF67], and the Sieradski groups S(2,n) = G,(2,1) [Sie86]. As described in
Section 1.3 the groups G,(m, k) fit into the wider classes of cyclically presented groups
R(r,n, k, h) of [CR75Db], P(r,n,k,s, q) of [Pri95], G;(m, k, h) of [CRS05] and G,(h, k,p,q,1,s, ) of
[CRS03].

Definition 1.5.1. The presentation G,(m, k) is said to be irreducible if n, m, k satisfy

O<m<k<n-1, (n,mk)=1,
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and is strongly irreducible if it is irreducible and additionally
(n,k)y>1, (nk—m)>1.
Lemma 1.5.2. [BV03, Lemmal.2] The group G,(m, k) is isomorphic to the free product of (n, m, k)
copies of Gn(M, K) where N = n/(n,m, k), M = m/(n,m,k),K = k/(n,m, k).
Lemma 1.5.3. [BV03, Lemmal.2]
a. G,(m,0) =G,(m,m)=1;
b. G,(0,k) is isomorphic to the free product of (n,k) copies of Zon_1.

By Lemma 1.5.2 and Lemma 1.5.3 we may assume (and often will) that (1,m,k) = 1 and

l1<m#k<n-1.

1.5.1 Finiteness

Building on [GH95] and [Edj03], a classification of finite groups G, (m, k) was given in [Wil09]
with 2 exceptions. The groups are described in Section 4 of [Wil12] when n < 9, and when

n = 9 we have

Theorem 1.5.4. [Will2, Theorem4.4]Letn =9,1 <m #k <n—-1,(n,m, k) = 1. Then G,(m, k) is
isomorphic to exactly oneof F(2,9),5(2,9), H(9,3), H(9,4), H(9, 7). Thegroups F(2,9),5(2,9), H(9, 3)
are infinite; it is unknown whether H(9,4), H(9, 7) are finite or infinite.

For n > 10 the classification of finite groups G,(m, k) is given by the following theorem.

Theorem 1.5.5. ( [GH95], [Wil09]) Let n > 10,1 <m # k < n—1, and (n,m, k) = 1. Then
Gy(m, k) is finite if and only if 2k = 0 mod n or 2(k — m) = 0 mod n, in which case G,(m, k) = Z;

where s = 22 — (=1)"*3,

Lemma 1.5.6. [Wil09, Lemma 3] Suppose that (m,k) = 1,k # 0 mod n and either 2k = 0 or
2(k — m) = 0 mod n. Then G,(m, k) = Z; where s = 22 — (=1)"*2,
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1.5.2 Abelianization

We will apply different techniques on abelianization of groups in order to identify isomor-
phism types.

The survey article [Wil12] includes the following theorems. For the Fibonacci groups
F(2,n) the order of F(2,n)® is given by the following theorem, where L, denotes the nth

Lucas number where L,,.» = L,,1 +L,, Lo =2,L; = 1.

Theorem 1.5.7. (Lyndon, [CWLF67]) |[F(2,n)?®| = L, —1—(=1)". In particular, F(2,n)® is finite
for all n.

Theorem 1.5.8. (Bumby, [CWLF67])

Z,  ifn6)=1
Z,® 2y if (n,6) =2
Z;d7Z; if(n,6)=3
Z,®Zs if(n,6)=6

F2,n)* =

where s can be found from Theorem 1.5.7
For the Sieradski groups, the structure of S(2, n)" is given by the following theorem
Theorem 1.5.9. ([JO94], [COSO08])
1 if (n,6)=1
Zs if (n,6) =2

7,07, if(n,6)=3
Zo7Z if(n,6)=6

52, n)® =

1.5.3 Isomorphisms Problems of G,(m, k).

For any n > 2, let f(n) denotes the number of isomorphisms types among the irreducible
groups G,(m, k) and g(n) denotes the number of abelianization isomorphisms (note that
f(n) is different from f(t) in (1.4)). The general result on isomorphisms is the following

theorem, which is a corrected simplification of [BV03, Theorem 1.1]. Although developed
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independently, it is in fact a generalization of [GH95, Lemma 2.1] which deals with the

casek =k’ = 1.

Theorem 1.5.10. [COSO08, Theorem 2] Let G,(m, k) and G,(m’,k’) be irreducible groups and
assume that (n,k’) = 1,(n,m —k) = 1. If m’(m — k) = mk’ mod n then G,(m, k) is isomorphic to

Gu(m', k).
Lemma 1.5.11. [BVO03, Lemma 1.3]
G,(m, k) = G,(n —m,n —m+k).

By Lemma 1.5.11 we may also assume m < k.

Further isomorphisms are given in the following proposition.
Proposition 1.5.12. [COS08, Proposition 6.]

1. Gy(m, k) =G,(m,n+m—-k)=G,(n—m,n—m+k).

2. If (n,t) =1, then G,(m, k) = G,(mt, kt).

3. Gy(2h—1,2h = 2) = Go,(2h — 1,1) = Gy(1,2h — 1) = Gyi(1,2) = F(2, 2h).

The following tells us that in certain cases G,(m, k) is isomorphic to a Gilbert-Howie
group.
Lemma 1.5.13. [BVO03, Lemma 1.3.] - [Wil09, Lemma 3.4]

a. If (n, k) =1 then G, (m, k) = H(n, t) where tk = m mod n;

b. If (n,k —m) =1 then G,(m, k) = G,(t,1) = H(n, t) where t(k — m) = n — m mod n.

Similarly, if (n,m) = 1 then G,(m, k) = G,(1, k') where k' = kt where tm = 1 mod n.
The following conjecture was stated in [COS08]

Conjecture 1.5.14. [COS08, Conjecture 8] If n = p' for an odd prime p and positive integer I, then
fny =p' = E2p0D 1 If 1 > 2 then f(2) = 3(272),
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We will show in Chapter 6 that the values given in Conjecture 1.5.14 are upper bound

for f(n).
The following questions are from [BV03]

Question 1.5.15. [BV03, Question 2] Is it possible to compute the function f(n) which, given an

integer n > 3, yields the number of pairwise non isomorphic groups G, (m, k), where0 < m < k < n.

Question 1.5.16. [BV03, Question 5] Can groups G,(m,k) and G,(m’, k") be isomorphic for

n+n?

As in Theorem 1.5.7, the abelianization of the Fibonacci groups F(2, n) is finite and its
order is equal to L, — 1 — (-=1)", where L, is Lucas number and appears in [Joh80] in the

form f, — 1 - (=1)", where f, is a Fibonacci number.

Question 1.5.17. [BV03, Question 6] Does there exist a similar formula which gives the order of
an abelianization of G,(m, k) if the abelianization is finite? Can such a formula be given in terms of

numbers generalizing the fibonacci numbers?

Further results on isomorphisms of cyclically presented groups appear in [BP16]. We
give in Chapter 4 lower bounds for f(n) of G,(m, k) groups and for certain values of n. In
Chapter 5 we investigate when I',(k,[) = I',(k’,’) requires n = n’ and when it does not.
In Chapter 3 we produce formulas that compute the order of Gpm(xoxmxlfl)ab, ka(xoxmx;(—'l)ab
for certain values of p where (m,k) = 1. In Chapter 5 we produce a formula that compute

ITu(1, 5 — 1)?®| when n = 2 or 4 mod 6, the formula includes Lucas number. Also in Chapter

6 we give results about the number of non-isomorphic I',(k, I) groups.

1.5.4 Investigating G,(m, k) for small values of n

Cavicchioli, O’Brien and Spaggiari in [COS08] investigated isomorphisms among the ir-
reducible groups G,(m, k). They obtained the value of f(n) for all n < 27. They did this
by using isomorphism results to obtain an upper bound on f(n) and used invariants of
groups to obtain a lower bound on f(n). U(n) denotes the least upper bound they were
able to obtain, L(n) denotes the greatest lower bound they were able to obtain (so when

L(n) = U(n) we have f(n) = L(n) = U(n) ). For the cases n = 17,19, 21,23 they showed that
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f(17) =7 or8, f(19) =8 o0r9, f(21) = 15 or 16 and f(23) = 10 or 11, for all other cases they
gave the exact value of f(n).

They summarise their results in [COS08, Table 1], which we reproduce as Table 1.1, and
listed the unresolved cases in [COS08, Table 2], which we produce as Table 1.2.



1.5. Generalized Fibonacci Type Groups G,(m, k). 12

Table 1.1: Lower and upper bounds for f(n) for n < 27 ([COS08, Table 1]).

n | L(n) | U(n) Parameters (m, k)

3 1 1 (1,2)

41 2 | 2 (1,2),(2,3)

502 | 2 (1, )k € {2,3)

6| 5 5 (1,kk €1{2,3},(2,3),(3,4),(4,5)

71 3 3 (1,kk € {2,3,4}

8| 6 6 (1,kk €1{2,3,4},(2,3),(2,5),(4,5)

91| 5 5 (1,kk € {2,...,5},(3,4)

10| 8 8 (1,kke(2,..,5},(2,kk € {3,5},(4,7),(5,6)

11| 5 | 5 (1,kk € {2, ..., 6}

12| 12 12 (1,kke{2,..,6},2,kke{3,7},(3,kk € {4,5}, (4,k)k € {5,7},(6,7)

13| 6 6 (1,kkel2,..7)

14| 11 11 (1,kbkel2,..7},2,kke{3,57},4,9),(7,8)

15| 12 12 (1,kkef2,..,8},3,kke{4,5,7},(5,6),5,7)

16 | 12 12 (1,kke{2,..,8},2,kk e {3,5,9},(4,5),(8,9)

17| 7 8 (1,k)k € {2,...,9}

18 | 17 17 (1,kbkei2,..9},2,kke{3,57,9},3,kk € {4,7},(4,11),(6,7),(9,10)

19| 8 9 (1,k)k € {2,...,10}

20| 18 18 | (1,kke(2,..,10},(2,kk € {3,5,11}, (4, k)k € {5,7,11}, (5, 6), (5, 8), (10, 11)

21 15 | 16 1,k € {2,..,11},(3,k)k € {4,5,7,8},(7,8), (7,9)

22 | 17 17 (1,kk e {2,..,11},(2,k)k € {3,5,7,9,11}, (4,13),(11,12)

23| 10 | 11 1,k € {2,...,12)

24| 26 | 26 (1,k)k € {2, ..., 12}, (2, bk € {3,5,7,13}, (3, k)k € {4,5,8, 10},
(4,k)k € {5,7},(6,k)k € {7,13}, (8, k)k € {9,13},(12,13)

25| 14 14 (1,kk € {2,...,13},(5,6),(5,7)

26 | 20 | 20 (1,kk e {2,..,13},(2,k)k € {3,5,7,9,11,13}, (4, 15), (13, 14)

27 | 17 17 (1,kk € {2,...,14},(3,k)k € {4,5,10}, (9, 10)
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Table 1.2: Possible isomorphisms amongst G, (m, k) [COS08, Table 2].

n | Parameters (m, k)
17 (1,3), (1,4)
19 (1,3), (1,6)

),

),

21 (1,6), (1,9)
23 (1,3), (1,7)

1.5.5 Initial results

We interpreted [COS08, Table 1] and expressed in Table 1.4 as many of the groups as
possible as Gilbert and Howie groups H(n, m) = G,(m, 1) for n < 27. In order to obtain that
table, we applied isomorphism relations of [COS08] and [Wil14], also we used computer
program (Maple) to compute the abelianization of the groups. The table contains type of
groups whenever we know from previous studies, which group is finite or infinite and the
abelianization for each group, in addition to the values of f(n) and g(n). The unsolved
cases will appear in Table 1.3. We give here part of the table in Table 1.4 below and the
full table will appear in Table A.1 in the appendix. This table will be used in Chapter 4 in

counting G,(m, k) groups.

Table 1.3: Possible isomorphisms (unsolved cases) amongst G, (m, 1) = H(n, m).

n m

17 | 6,11
19 19,15
21 | 4,13
23 | 8,10
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Table 1.4: Isomorphisms classes of G, (m, k) groups for n < 27.

n | f(n) | g(n) | Groups | type of group Details Abelianization
3 1 1 H(3,2) - Qs 7,87,
4 2 2 H(4,2) S(2,4) SL(2,3) Z;
H(4,3) F(2,4) Zs Zs
5 2 | 2 | HG5,2) 52,5) SL(2,5) 1
H(5,3) F(2,5) 71, 71,
6 5 4 H(6,2) 5(2,6) infinite YAV
H (6, 3) - Z; ~ Z7 Z7
H(6,4) - Zg Zo
H(6,5) F(2,6) Infinite Z,®7Z,
Ge(1,3) - Z; Z;
71 3 | 3 | H72) 52,7) infinite 1
H(7,3) - infinite Zy®Z)® 2y
H(7,4) F(2,7) Zy9 Z9
8 6 6 H(8,2) 5(2,8) infinite Z;
H(8,3) - group of order 3'°.5 Zs
H(8,4) - infinite 75
H(8,5) - 27 27
H(8,6) - infinite Zs® 75075
H(8,7) F(2,8) infinite Zs® s
9 5 5 H(9,2) 5(2,9) infinite 7,87,
H(9,3) - infinite Z;
H(9,4) - Unknown Z19
H(9,5) F(2,9) infinite 7, ® Zsg
H(9,7) - Unknown Zs;
10| 8 5 | H(10,2) 5(2,10) Infinite Z;
H(10, 3) - Infinite Z:
H(10,4) - Infinite 233
H(10,5) - Infinite Z3
H(10,6) - 233 Zs3
H(10,7) - Infinite 71
H(10,9) F(2,10) Infinite 711 ®Zn
G1o(1,5) - VAS) Z3
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We record here the following propositions which were suggested by Table 1.4, and do
not seem to have been explicitly stated before. The main results of G, (m, k) that we obtained

will be shown in Chapters 3,4 and 5.

Proposition 1.5.18. Let n > 10,n = 2 mod 4 then the strongly irreducible group G,(1, 5) is not

isomorphic to H(n, m) forany 1 <m <n —1.

Proof. Lemma 1.5.6 implies that G,(1,%) = Z, where s = 2?2 — 1. Now assume that
G,(1,n/2) = H(n,m) = G,(m, 1) therefore G,(m, 1) is finite of the same order. If G,(m,1) is
finite then by Theorem 1.5.5, we have either 2k = 0 mod n (impossible since k = 1,1 > 10)
or 2(m —1) = 0 mod n. Since n = 2 mod 4 we have (m — 1) is odd, so m must be even.
Therefore by Theorem 1.5.5 we have that G,(m, 1) = Z, where s = 22 — (=1)"/2 = 212 + 1,

so G,(1,n/2) % G,(m,1). m|

Proposition 1.5.19. If G,(m, k) is strongly irreducible and finite then n = 2mod 4 and G, (m, k) =
zZ

oo,
22-1

Proof. Assume that G,(m, k) is strongly irreducible and finite then by Theorem 1.5.5 we
have that n is even and

Gu(m, k) = Z (1.14)

2% _(_1)m+%

In here we need to show that m + 3 is always even so that G,(m, k) = Z; . Now since that
n is even there are two cases

Case 1: n = 0mod 4
From Theorem 1.5.5, then either 2k = 0 mod n or 2(k — m) = 0 mod n. If 2k = 0 mod n, then
k = % (since m < k < n) and k is even, therefore m can not be even since if m is even, then
(n,m, k) = (2k, m, k) > 2 this is contradiction with G,(m, k) irreducible. Now if m is odd then
1=(n,mk) =2k m,k)=(mk)butl < (n,k—m) = (2k,k—m) = (k,k—m) = (k, m) = 1 which
is also contradiction since G,(m, k) is strongly irreducible.

If 2(k —m) = O mod n, k —m = 7 and it is even so either m, k are even or odd. If m, k
are even then (n,m, k) = (2k,m, k) > 2 contradict the assumption. If m, k are odd then
1 < (nk) = 2%k —-m),k) =2k —m),(k—m),k) = (n,m k) =1 which also contradicts the

assumption. Therefore when n = 0 mod 4 there are no cases to consider.
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Case 2: n =2mod 4
If 2k = 0 mod n then k = 7 and it is odd, if m is even, k — m is odd and then by strong
irreducibility we have 1 < (1, k—m) = (2k,k—m) = (k, k—m), but (k,k—m) = (k,m) = 1 this is
a contradiction. Thus m is odd, so m + 7 is even and the results follows from equation (1.14).
If 2(k — m) = 0 mod n therefore k —m = 7 and it is odd so either k is even, m is odd
or vice versa. If k is odd, m is even then 1 < (n,k) = (2(k — m), k) = (k — m, k) = (m, k) but
1=(n,m,k)= 2%k —-m),mk) = (m,k) >1which contradicts the assumption. If k is even, m

is odd then m + 3 is even and G,(m, k) = Z,y .. O
Proposition 1.5.20. Let n be even, then H(n, 5 + 1) = Z; where s = 27 + 1.

Proof. By Lemma 1.5.6, since (m, k) = 1,k # 0 mod n,k # m mod n and 2(k —m) = 2(1 —
n/2 -1) = —n = 0 mod n then G,(m, k) = G,(n/2 +1,1) = H(n,n/2 + 1) = Z; where
s = 2M2 — (=1)™"2 Now since m +n/2 = n/2 +1+n/2 = n + 1 (which is odd) then

s=2M2 41, O

1.6 TI',(k, ) groups

We also continue an investigation that was carried by Edjvet and Williams in [EW10] into

the cyclic presentation
Pn(k/ l) = <x01 X1y oo Xn-1 | XiXivkXit] = 1/ i= O/ 1/ e = 1>
and the group I',(k,[), where 1 < k, I < n—1 and subscripts are taking mod n. They described
the groups’ structures, and stated their results in terms of the following conditions
(A) (A)n =0(mod3) and k + [ = 0 (mod 3).
(B) k+1=0(modn) or 2] —k =0(modn) or 2k — [ = 0 (mod n).
(C) 3l =0 (modn) or 3k = 0 (mod n) or 3(I — k) = 0 (mod n).

(D) 2(k +1) = 0(mod n) or 2(2] — k) = 0 (mod n) or 2(2k — I) = 0 (mod n).
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They summarized their results for (1, k,I) = 1, k # [ in terms of three conditions (A), (B), (C)
being true or false in [EW10, Table 1], which we reproduce as Table 1.5, (where a =
3(2"3 — (=1)"3),y = (2"% — (-1)"/3)/3)), and they denoted by co the group of infinite order
whose structure is unknown, Metacyclic denotes a metacyclic group of order s = 2" — (-1)"
(G is called metacyclic if it has a normal subgroup H such that both H and G/H are
cyclic), Large denotes a large group (that is, one that has a finite index subgroup that maps

homomorphically onto the free group of rank 2).

Table 1.5: Summary of structures of I'y(k,I) [EW10, Table 1]

(A) | (B) | (©) Aspherical | Abelianization Group
F | F | F Yes finite# 1 o0
F | F | T No Z, Metacyclic
F | T| F No Zs Zs
T | F | F |n#18 Yes 00 Large
T | F| F |n=18 No 72+ 2. %2 YAY AV AT
T F T No Z+2+2, Z+2+7Z,
T | T| F No 77 yAY/4
T | T | T No 77 yAY/4

The following lemma was proved in [EW10] and gives isomorphisms between I',(k, I)

groups
Lemma 1.6.1. [EW10, Lemma 2.1.] Let 1 <k, <n—1 then
1. T,(k, 1) =T,( -k, k).
2. Tk, ) =T, k).
3. Tk ) =T,(k—1,-1).
4. T,k 1) =T,k k-1.
5. If (k,n) = 1 then T',(k,I) = I',(1, Kl), where Kk = 1( mod n).
6. Ifnis even and (I,n) = 1 then I',(k,I) = T',(1, Lk + 1), where LI = —=1( mod n).

Corollary 1.6.2. [EW10, Corollary 5.2.] Suppose that (n,k,1) = 1,k # 1. If non of (B),(C), (D)

hold then T’ (k, ) contains a non-abelian free subgroup.
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1.7 Thesis outline

In Chapter 2, we generalize an isomorphism theorem for the class of groups G, (m, k), which
was proved in [BV03, Theorem 1.1.] and updated in [COS08, Theorem 2]. We generalize this
result to the class of groups G,(h, k, p,q,1,s, ) which were introduced in [CRS03]. We also
have identified a mistake in the proof of isomorphism theorem was asserted in [CRS05],
about the groups G;,(m, k, h), and we provide a new isomorphism theorem for that group.

In Chapter 3, we give an answer for the first part of Question 1.5.17. We produce
formulas that compute the order of Gpm(xoxmx;—'l)ab, ka(xoxmxlfl)ab for certain values of p
where (m, k) = 1. Similar formulas were given in [BW16, Corollary 4.5] for p € {4,6}. We
give formulas for p € {2, 3,4, 6,12}. We use these formulas in Chapter 4 to determine lower
bounds for the number of non-isomorphic G,(m, k) groups for certain values of 1, and in
Chapter 5 to compute [T,(1, 2 — 1)%].

In Chapter 4, we give an answer for Question 1.5.15. For certain values of n we calculate
lower bounds for the minimum number of generators of G,(m, k)®® and we use this with
the finiteness classification of G,(m, k) and the order of G, (m, k)?® to give lower bounds for
the number of non isomorphic G,(m, k) groups for certain values of n.

In Chapter 5, we give an answer for Question 1.5.15 when it considers T',(k, ) groups
instead of G,,(m, k). We count I',(k, ) groups, and give lower bounds of the number of non
isomorphic I',(k,I) groups for certain values of n. These results suggest that the groups
I',(1, 5 — 1) deserve further study. We obtain results concerning their abelianization, and in
relation to Question 1.5.17 we provide a formula for the order [T,,(k,[)*®| in terms of Lucas
numbers (where this abelianization is finite).

In Chapter 6, we prove that the values given in Conjecture 1.5.14 provide an upper
bound for f(n) of the groups G,(m, k) where n = p!, p is prime. We also give results about
the upper bound of f(n) of I',(k, 1) groups, for n = p*gf, and n = p*gfr’, where p,q and r
are distinct primes We carry out a similar study of G,(m, k) groups in [COS08] for I',(k, I)
groups. We produce a table similar to Table 1.1 for I',(k, I) groups for n < 29.



Chapter 2

Isomorphism Theorems

2.1 Introduction

Our starting point for this chapter is the following isomorphism theorem for the class of

groups G,(m, k), which is Theorem 1.5.10.

Theorem 2.1.1. [COS08, Theorem 2] Let G,,(m, k) and G, (m’, k') be irreducible groups and assume
that (n, k') = 1. If m’(m — k) = mk’ mod n then G,(m, k) is isomorphic to G,(m’, k).

A version of this result was initially proved in [BV03, Theorem 1.1.]. In [COS08, Theorem
2] it was observed that the hypothesis (1,k’) = 1 (missing from the original statement)
is necessary. Following a comment from the referee of [COS08] this formulation was
obtained. In Section 2.2, we generalize this result to the class of groups G,(h, k,p,q,1,5,?)
which were introduced in [CRS03]. In Section 2.3, we consider the groups G;(m, k, i) which
were considered in [CRS05]. We have identified a mistake in the proof of isomorphism
theorem [CRS05, Theorem 2.6.], we show why the proof is wrong, and we provide a
corrected version for these groups. More information about G,(h,k,p,q,1,s,), G;(m,k, h)

groups can be seen in Section 1.3.

19



2.2. Gy(h,k,p,q,1,5,€) groups 20

2.2 Guhk,p,q,1,5,{) groups

Recall from the introduction that, letr > 2,5 > 1,0 < p,q,h <n—-1,{,k € Z, we define the

group G,(h,k,p,q,1,5,€) to be the group

r—1 s—1
Gn((H ij)g(H Xnja) ™) = (X0, X1, wery Xt | (X peeXinp—1)’ =

j=0 j=0

k - _
(xi+hxi+h+q---xi+h+q(s—1)) ,i=0,.,n-1)

Note: unlike in [CRS03], we allow ¢,k < 0. We obtain a condition under which the
groups G,(h,k,p,q,1,5,0),G.(W,k,p’,q',1,5,{) are isomorphic.

It is convenient to express our result in terms of parameters A, B, A’, B" where
A=hB=-pr-1)+A+q(s-1),A =HW,B=-p'r-1)+A +4'(s-1) (2.1)

Our proof of the following theorem follows the method of the proof of Theorem 2.1.1 [CRS03,
BVO03].

Theorem 2.2.1. If (n,A) = 1,(n,B’) = 1, pA = —pB’ mod n, A = —qB’ mod n, then
Guh, k,p,q,1,5,0) = Gu(W, k, p', q', 1,5, 0).

Proof. Since (n,B’) = 1 there exist integers a, f € Z such that an + B’ = 1 therefore B’ =

mod n. Now by setting f = fp’, the condition p’A = —pB’ mod n implies that

fA =pp’A modn
= —ppB’ modn  byassumption

fA =—p modn, (2.2)
and

fB' =Bp'B’ modn  byassumption
fB" =p’ modn. (2.3)
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Similarly by setting ¢ = fq’,the condition g’A = —gB’ mod n implies that
gA = Bq’A modn
= —pgB’ modn  byassumption
gA = —qg modn, (2.4)
¢B’=¢'B’/f modn  byassumption
gB’ =4’ modn. (2.5)

We will use conditions (2.2), (2.3), (2.4), (2.5) to complete the proof. Now let us consider
the group

Gn (h/ k/ p/ q/ s, f) = <x0/ X1/ ey Xn—1 | (xixi+p---xi+p(7—l))€

(xi+Axi+A+q~--xi+A+q(s—1))k,i =0,..,n—-1)
Inverting the relations gives

~ -1 1 ~1\¢ _
= (X, X1, eery Xp-1 | (xl.+p(r_1)...xi+pxi =

-1 -1 -1k _
(xi+A+q(s_1)...xi+A+qxi+A) ,i=0,1,..,n—1)
-1

putc; = x;

= (0, €1y vves Cnet | (Cinpr—1)--CiapCi)* =
(CisArgs—1)---CirA+qCira), 1 =0,1,...,n — 1)
putj=i+p(r—1)
Gu(h, k,p,q,1,5,€) ={co,c1, ., Cn1 | (c]-...cj_p(r_z)cj_p(,_l))g
(Cjplr=1yrsqs=1)-+-Cmpo-tyea+eCip-1+a) s | = 0,1, m = 1)

o ¢
= (€0, C1y wves Cn1 | (€ sCimpr—2)Cipr-1))” =

(Cj+B---CiaB-qis-2)CitB—gs-1))', j = 0,1, ., m = 1)

Since (n,A) = 1 there exist C,6 € Z such that Cn + 6A = 1 mod n therefore 6A = 1 mod #,
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now foreach j=0,1,..,n—1setu =6jmod 150 ¢4 = C5j4 = Cjsa = ¢j. Now we write

Gu(h, k,p,q,1,5,€) = (Co, €1, ooy Cut | (Cune-Cunmpr—2)Cun—p(r-1))" =

(CuA+BCuA+B—g---Cur+B-q(s—2)CursB—gs—1) st = 0,1, ...,m — 1)
r—1 s—1
¢ k
= <COI C1yeer Cp—1 | ( H CuA—yp) = ( H CuA+B—yq) U= 0/ (Tl - 1)> (26)

y=0 y=0

Now let us consider the group

Gn(hl/ k/p,/ ql/ s, f) = <]/0/ ]/1/ weey ]/n—l | (yiyi+p""yl'+p/(r—l))€ =

(yi+A’yi+A’+q’---yi+A’+q’(s—1))kr i=0,.,n-1)

since (1, B’) = 1 then there exist a’, f’ € Z such that a’n + 'B’ = 1 therefore p’'B’ = 1 mod
n. Now foreachi =0,1,...,n—1setv = i mod 1 50 y,p = Ypip = Yigp = Yi. SO we could

write

Gl k0, ,1,5,0) = (Yo, Y1, s Yot | (YoB Yobrapr - Yobrap -1))" =

koo
(YoBr+ A YoBr+ A4 Yo+ A+ s-1)) 1= 0,...,n = 1)

r—1 s—1
= <]/0, yl/ (XY yn—l | (H va’+p’y)€ = (H va’+q’y+A’)k,v = O, (7’1 — 1)>
y=0

y=0
(2.7)

Now define a map as follow
D: {COI iy Cn—l} B {]/0/ iy ]/n—l}
acting on the set of generators {cjlj =0, ..., n — 1} = {c,alu = 0, ...,n — 1} by the rule

q)(CuA) = Yup
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Foreachy =0, .. r-1

D(cua—yp) = Dlcuatyfa) using (2.2)
= q)(c(u+yf)A)
= Yy pp
= YubB'+yfp’

= YuBr+yp using (2.3)
and foreachy =0,...,s - 1

D(CunsB—yg) = P(Cua—pr—1)+A+qs-1)+g74) using (2.1), (2.4)
= D(Cuas fAG-1)+A-gA(s-1)+gyA) using (2.2), (2.4)
= Q(Cut f(-1)+1-g(s-1)+g7)A)
= Yt fr-1)+1-g(s-1)+g7)B’
= YuB’'+fB'(r-1)+B'—gB’(s-1)+gB'y
= YuB'+p (=) —p (r=1)+ A’ +q' (s=1) = (s—1)+q'y using (2.3),(2.5),(2.1)

= YuB' +q'y+A’
YuB'+qy+A

Comparing presentations (2.6), (2.7) it is clear that for each 0 < y < (n — 1) that ® is an
epimorphism.

Now let us define a map as follow

O: {]/0/ Y yn—l} B {CO/ Y Cn—l}

acting on the set of generators {y;|j = 0,...,n — 1} = {yplv = 0,...,n — 1} by the rule

O(Yop') = Con
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Foreachy =0, .. r-1

OYop +yp7) = OYopr+y18) using (2.3)
= OY@+ypp)
= C+ynHa
= CoA+yfA

= CoA—py using (2.2)
and foreachy =0,...,s - 1

OWobr+qy+ar) = OYobr+By+B+p (r-1)-/(5-1)) using (2.5), (2.1)
= Oop gy b+ B/ (-1)-gB 1)) using (2.3), (2.5)
= O(Y(orgy+1+ f(r—1)-g(s-1)B")
= Clo+gy+1+f(r-1)-g(s-1)A
= CA+gAy+A+fA(r-1)—gA(s-1))
= CoA-qreA-pr-Drqis-1))  using (2.2),(2.4)

= CoA+B—qy using (2.1)

Comparing presentations (2.6), (2.7) it is clear that for each 0 <y < (n — 1) that

O: G, kyp,q,1s€) = G,hk,p,q,r1,5,{) is an epimorphism and ¢(O(y.z)) = P(cun) =

Yup and O(p(cua)) = O(yup) = cua, therefore ¢! = ©,07! = ¢. thus the composition of

epimorphisms G,(h,k,p,q,1,5, ) g G,(W,k,p',q,1,5,70) @) Gu(h,k,p,q,1,5,€) shows that
Gu(h, k,p,q,1,8,€) = G,(W,k,p’,q,1,5,0) m|

Now we will apply Theorem 2.2.1 to classes of cyclic presentations of groups which
were considered previously, and have been shown in [CRS03] as special cases of the groups

Gu(h,k,p,q,1,5,€). see Section 1.2 for definition of the groups in the following corollaries.
Corollary 2.2.2. Suppose (n,s) = 1, then F(r,s,c,n) = F(r,r —s—1,c,n).

Proof. F(r,s,c,n) = Gu(s,c,1,1,1,1,1) = Gu(xox3...x,-1x;), then from (2.1) we have A =5,B =

s—r+1. Similarly F(r,r—s-1,c,n) = G,(r-s—1,¢,1,1,1,1,1) = Gn(xox1---xr—1xr__c5_1), then from
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(21)wehave A’ =r—s—1,B" = (r—s—1)—(r—1) = —s, and in the notation G, (h, k,p, q,71,5, {)
wehavep =p’'=qg=¢"=1. since (n,A) =(n,s) =1,(n,B')=(n,—s) =land p’A =1s =
s,—pB’ = =1.(=s) =5, s0 p’A = —pB’ mod n, also A = 15 = 5,—qB’ = —=1.(=s) = 5, so
q'A = —gB’ mod n. Therefore Theorem 2.2.1 implies that F(r,s,c,n) = F(r,r —s —1,c,n). O

Corollary 2.2.3. Suppose (n,v +k—1) =1, then F(r,n, k) = F(r,n,1 —r — k).

Proof. F(r,n,k) = G,(r +k-1,1,1,1,7,1,1), then from (2.1) we have A = r+k—-1,B =
(r+k-1)—(r—-1) = k. Similarly F(r,n,1 -r —-k) = G,(-k,1,1,1,7,1,1), then from (2.1)
we have A’ = —k,B’ = (=k) — (r — 1) = 1 —r — k, and in the notation G,(h,k,p,q,1,s,{) we
havep =p" =g =¢4"=1. Since (n,A) = (n,r+k-1)=1,n,B") = (n,-(r+k-1)) =1
andp A=1(r+k-1)=r+k-1,-pB =-1(1-r—-k)=r+k—-1,s0p’A = —pB’ mod n,
alsoq A=1(r+k-1)=r+k-1,—gB =-1.(1-r-k)=r+k-1,s0qA = —qB’ mod n.
Theorem 2.2.1 implies that F(r,n, k) = F(r,n,1 —r — k). O

Corollary 2.2.4. Suppose (n,k—1)=1,(n, k' =1-q'(r—s)) =1,4'(k=1) = —g(k' =1 —-q'(r —s))
mod n, then P(r,n,k,s,q) = P(r,n,k',s,q’).

Proof. P(r,n,k,s,q) = G,(k—1,1,4,4,1,5,1), then from (2.1) wehave A =k—-1,B=—gq(r—1)+
k—1+4q(s—1) = k—q(r—s)—1. Similarly P(r,n,k’,s,q") = G,(k' = 1,1,9’,4’,71,s,1), then from
(21)wehave A’ =k'-1,B'=—q'(r-1)+k'=1+4'(s—1) = k' —=1—-q'(r —s). By assumptions
we have (n,A) =(n,k—-1)=1,n,B)=m,k -1-g'(r-s)) =land A =q'(k-1),—gB’ =
—q(k' =1—-¢g'(r—s)),so qA = —qB’ mod n, and since p = q,p’ = 4’ we have p’A = —pB’ mod
n, therefore Theorem 2.2.1 implies that G,(k-1,1,4,49,7,5,1) = G, (k' - 1,1,4’,4’,7,5,1) and
then P(r,n,k,s,q) = P(r,n,k',s,q’). O

LetK=k-1,K' =k'-1,q =m,q" = m’ In Corollary 2.2.4, then we have the following

corollary

Corollary 2.2.5. Suppose (n,K) =1, (n, K" —=m’(r —s)) = 1,m'K = -m(K" — m’(r — s)) mod n,
then

P(r,n,K+1,s,m) = P(r,n, K" +1,s,m’).

Now put 7 = 2,5 = 1 we get the following corollary
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Corollary 2.2.6. [COS08, Theorem 2] Suppose (n,K) =1, (n, K’ =m’) =1,m'K = —-m(K" —m’)
then G,(m, K) is isomorphic to G,(m’,K’).

Proof. G,(m,k) = P(2,n,K+1,1,m),and G,(m’, k") = P(2,n,K'+1,1,m’), so the result follows
by putting r = 2,s = 1 in Corollary 2.2.5. |

Corollary 2.2.7. [GH95, Lemma 2.1.] Let n,t be non-negative integers with n > t such that
(n,t —=1)=1. Let s satisfy 0 <s <nand t = (t — 1) s mod n then H(n, t) = H(n,s).

Proof. Since H(n,t) = G,(t,1) the proof follows from proof of Corollary 2.2.6, by setting

m=s,K=1m =t K =1. m|

Corollary 2.2.8. Suppose (n,l) = 1,(n,I' = k') = 1 and k'l = —k(I' — k') mod n, then T, (k,I)
r,,n).

IR

Proof. T\(k,1) = G,(I,-1,k,0,2,1,1) = l"n(xoxkxl), and by definition (2.1) we have A = [,B =
I-k,p=kq=0,wealsohavel',(k',I') = G,(I',-1,k,0,2,1,1) = [',(xoxpx,),and A" = I', B’ =
I'=kK,p" =k,q =0. By hypotheses we have (n,A) = (n,I) =1,(n,B’) = (n,I' = k') =1, and
since p’A = k'l, —=pB’ = —k(I' — k) therefore p’A = —pB’ mod n, also since g = q’ = 0 therefore
q'A = —qB’ mod n. Theorem 2.2.1 implies that I',(m, k) = I',(m’, k). O

2.3 Gi(m, k, h) groups

Recall from the introduction, we have the groups G:(m, k, h). For € = (a,b,7,5) € Z*,n > 2,

m, k and h are modulo n, the group G;,(m, k, h) defined to be

a

b
sz(m’ k/ h) = <x0/ X1y o0y X1 | x?xi+kxz+h+m

= (x,,x,,),1=0,.,n-1)

The following isomorphism theorem was asserted in [CRS05]

Theorem 2.3.1. [CRS05, Theorem 2.6.] Suppose that p = gcd(n, k —h — m) divides k' and there



2.3. Gi(m, k, h) groups 27

exist positive integers a, B, and 6 such that

a+pk—h-my=1-m modn,
y+6k—-h-m)y=1-h modn,
a+pk=1+m modn,

y+0k=1+K modn,

wherel <a,y <pand1<p,6 < %. Then G5(m,n — (h+m), h) = G5(m’,2(h" +m'), I).

We have identified a mistake in the proof of Theorem 2.3.1 given in [CRS05]. In the next
example we show why the proof is wrong, we consider the groups G(1,3,0), G{(3,4,0)
where ¢ = (1,1,2,1). This example was also used in [COS08] to highlight a mistake
in [BV03, Theorem1.1.].

Example 2.3.2. Letn =6,m =1,k=3,h=0n=6,m" =3,k =4, =0anda=>b =5 =
1,7 = 2 therefore ¢ = (a,b,7,5) = (1,1,2,1), p = (n,k — h — m) = 2 divides k’ and the integers
a=2,p=2,y=10=3satisfyl1 <a,y<pand1<p,6< %, and imply that

a+pk—h—-m)=1-mmodn
y+6k—-h-m)=1-hmodn
a+pk'=1+m modn

y+06k=1+h modn

Then [CRS05, Theorem 2.6.] gives that Gi(1,3,0) = G{(3,4,0), but that is wrong since it is
known that Z; = G¢(1,3,0) # G{(3,4,0) = Zg ~ Z;7, see example [COS08, Page 3]. We now
explain where the mistake in the proof in [CRS05] occurs.

The proof in [CRS05] starts as follow: The group G;(m,k,h) = Gi(1,3,0) has a finite
presentation with generators yy, ..., y5, and defining relations y;yi.s = yi» fori =0,2,...,5.
we set £ = % = 3. Then we separate the generators yy, ..., s into p = 2 sets A;,A, of £ =3
elements each, where A; = {yj, Yitk-h-m, - Yj+(t-1)k—n-m)} therefore Ag = {yo, y2, ya}, A1 =
{y1, 3, ys5}. This gives a partition of the relations into p = 2 sets Ry, R, of £ = 3 elements

each one, we got Ry = {]/03/5 = Y2, YoY1 = Ya, YalYs = ]/0}, Ry = {yll/o = Y3, YslY2 = Y5, YsYs = ]/1}
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Let us consider G;(m’,k’,h") = G¢(3,4,0) with generators z, ..., z5, and defining relations
ziziv3 = Zisa. Aswe did above we separate the generators zy, ..., zs into p = 2sets B, B,of £ = 3
elements each one, where B; = {z;, zj.x, ..., Zj+(e-1)k)} therefore By = {z¢, 24, 22}, B1 = {21, 25, z3},
we obtain a partition of the defining relations of G (m’,k’,h’) = G¢(3,4,0) into p = 2 sets
51,5, of £ = 3 elements each one, where Sy = {z0z3 = 24,2421 = 22,2025 = 2o}, S1 = {2124 =
Z5,25Z2 = 23,2320 = z1}. They define the correspondence W from G;,(m, k, h) = G((1, 3, 0) onto

G (m', k', 1) = G(3,4,0) by its action on the generators V(v (x-1-m)) = Zj+u therefore

‘I’(y j+21) = Zji4r

for0<j<land0 <1t <2, we got W(yo) = zo, V(y2) = 24, V(ys) = 22, V(y1) = z1, W(y3) =
z5, W(y5) = z3. In the proof given in [COS08, Theorem 1], it is claimed that W maps each
defining relation of G, (m, k, h) = Ge(1, 3, 0) to a defining relation of G; (m’, k', h’) = G¢(3,4,0),
but this is not the case here, for example W maps the relation v,y = y3 to the relation

2129 = zs5, but this is not a relation of G¢(3,4,0), so their claim is incorrect.

Now we provide a corrected and improved version of Theorem 2.3.1 for the group

G}, (m, k, h) as follows. Our proof combines methods from [CRS05] and [COS08].

Theorem 2.3.3. If(n,h+m) =1,(n, i + m’) = 1, and

m'(h+m) = m(h’ + m’) mod n,
(2.8)
W (h+m)=hh +m) mod n.

then Gi(m,n — (h +m), h) = GE(m', 2(W +m’),I), for any € = (a, b, 1,s) € Z*.
Proof. Since (n, (W' + m’)) = 1 there exist integers f,) € Z such that n + y(h' + m’) = 1

therefore y(h’ +m’) = 1 mod n. Now by setting f = ym’, the condition m’(h+m) = m(h’ +m’)

mod n implies that

f(h+m)=ym'(h+m) modn
= ym(h' +m’) modn by (2.8)

=m modn (2.9)
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and

fW +m')y=ym'(h +m’) modn

by (2.8)
=m’ modn (2.10)
Similarly by setting ¢ = yh’,the condition h’(h + m) = h(h’ + m’) mod n implies that
g(h+m) = yh'(h+ m) modn
= yh(h' + m’) modn by (2.8)
=h modn (2.11)

g +m’)y=yh'(h + m’) modn by (2.8)

=h" modn (2.12)

We will use conditions (2.9), (2.10), (2.11), (2.12) to complete the proof. Now let us consider
the group

. ~ b _ .
Gi(m,—(h +m),h) = (xo,x1, ..., Xp-1 | x?xi_(h+m)x?+(h+m) = (X X)), 1=0,..,n—1)
Inverting the relations gives
~ -1 -1 bia—1NE _ (ot AT S
= (X0, X1, oeey X1 | (xi+(h+m))”(xi_(h+m)) () = (x,,x.),i=0,..,n-1)
~ -1 - biv—1Na _ ({11
= (X0, X1 oy Xn1 | (xi+(h+m))u(x,'_l(h+m)) (xi )" = ((x;

Y)Y, i=0,.,n—1)
Putc; = xi_1

2 (€0, €1, +ver Cret | (Cinumy) " Cicgram))’(€)" = ((Cizm) (Cin) )i =0, ..,m — 1)
Putj =i+ (h+m).Then
Ga(m, —(h +m), h) = (o, €1, ey Cuct | (€] (Citrmy—grrmy) (€ j—(hemy)"”

= ((Cj=urmysm) Cj=tpemy+n) Y’ ] = 0,...,n = 1),

= (C0, 1y vy €t | (€))"(Cjaim))’ (Cittiam))”

= ((¢j-n)(¢j-m)')", ] =0,..,n=1)
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Since (n, —(h + m)) = 1 there exist 6, C € Z such that 6n + C.(—(h + m)) = 1 mod n therefore

C.(=(h+m)) =1 mod n, now foreach j =0,1,...,.n — 1 set u = {j mod n therefore

Cu(—(h+m)) = CCj(=(h+m)) = CjC.(~(h+m)) = Cj,

we can write

GE(m, —(h +m), 1) = {Co, €1, vor Cut | Coetrm) (Cort—remy)—205m)) Cors(—rm)—(sm))"
= ((Cu(=tr+my)-n) Cov(=ramp-m)" ), u =0, ...,n = 1)

(2.13)
Now let us consider the group
Gfl(m’/ 2(h, + ml)/ h,) = <y0/ Vi, Yna | y?yl‘h+2(h/+ml)y?+(h/+m/) = ((yi+h’)r(yi+m’)r)sli = 0, v, 1 — 1>

since (1, (W + m’)) = 1 there exist ¢’, (" € Z such that 8'n + C'(W + m’) = 1 mod n therefore

C'(W +m’)=1mod n. Now foreachi=0,1,...,n —1setv = (i mod n therefore

Yot +my = Yiw+m)y = Yic@w+m) = Yis

we can write

: ’ ~ b
G (', 2(0" +m"), 1) 2 Yo, Yar -wor Yt | Yogusm Yot rm o +m) Yot +mysr-sm)

= ((Yotw+my+ir) Yot +mrysm)' )Y, 0 =0, ..,n = 1) (2.14)
Now define a map as follow
D: {co, ..., Cno1} — Yo, s Yu-1}
acting on the set of generators {cj|j =0, ...,n — 1} = {cygmlu = 0,...,n — 1} by the rule

D(Coi.(=h+m))) = Yulw+m') (2.15)
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Foreachu =0, ...,n — 1, we will map all generators in (2.13) to generators in (2.14)

For the left hand side of (2.13) we have

O(Cou(-(hrm)) = Yur+my ~ using (2.15)

D(Cyy (—(rrm))-2(1+m)) = P(Cu+2).(~(r+m)))
= Yu+2) (i +m) using (2.15)

= Yu@ +my+2(h+m’)

DCui (~(r+my)~(r+m)) = P(Cur1).(~(hm))
= Y1)t +mr) using (2.15)

= Yu@+m)+(w+m)
For the right hand side of (2.13) we have

O(Cu(~hrmy)-h) = C(Cu(~rmy)+g.(~htmp) ~ using (2.11)
= D(Cautg)(~(r+m))
= Yurg)w+n)  using (2.15)
= Yu+m)+g(+m)

= yu(h/+m')+h' US]_ng (212)

D(Cut(~(temp)y-m) = PCu~remp+f.(~remp))  USING (2.9)
= D(Cu+ fy(~(r+m)))
= Y+ +m) using (2.15)
= Yu@ +m)+ f( +m)

= }/u(h’+m’)+m’ USlng (210)
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Since @ maps the u’th relators of (2.13) to the u’th relators of (2.14), it is clear that the
map D@ : G;,(m, k, h) — G,(m’,k’,I") is an epimorphism.

Now define a map as follow

O: {yOI ceey yn—l} - {CO/ seey Cn—l}

acting on the set of generators {y;|li =0, ...,n — 1} = {y.p|v = 0,...,n — 1} by the rule

OWor+m)) = Co(—(+m)) (2.16)

Foreachv =0, ...,n — 1, we will map all generators in (2.14) to generators in (2.13)

For the left hand side of (2.14) we have,

OWo(w+m)) = Co(~(rrm)) using (2.16)

®(]/(v(h’+m’)+2(h’+m'))) = ®(]/(v+2)(h’+m’))
= Co+2)(—(h+m)) llSil’lg (216)
= Co.(—(h+m))+2.(—(h+m))

= Co(=(h+m))=2(h+m)

OW i +m )+ +m)) = OW 1) +mr)
= Co+1)(—(h+m)) using (216)

= Co.(~(h+m))—(h+m)
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For the right hand side of (2.14) we have,

OW(w( +myi) = OWur+myrgw+nry))  using (2.12)
= O w+g)(r-+m))
= Corg)(-(r+m) ~ USING (2.16)
= Co(=(h+m))+g.(~(h+m))

= Co.(—(h+m))—h using (211)

OW o +my+m)) = OW (ol +my+ fw+mr)) using (2.10)
= O o+ )i +m))
= Clot f)(~(h+m) using (2.16)
= Co(~(h+m))+f.(~(h+m))

= Co(=(h+m))-m using (29)

Since ® maps the u’th relators of (2.14) to the u’th relators of (2.13), it is clear that for
each0 <y <(n-1)that®: G,(l",k,p’,q',1,5,€) = G,(h,k,p,q,7,5,{) is an epimorphism and
OOW.up)) = P(cua) = Yup and O(P(cua)) = O(Yup) = Cua, therefore ¢! = ©,07! = ¢. thus
the composition of epimorphisms G, (h, k, p, q,1,s, {) g G.(W,k,p',q' 1,570 @ Gu(h,k,p,q,1,5,0)
shows that

Gu(h, k,p,q,1,5,€) = G,(W,k, v, 9,15, O

According to [CRS05, page 42] we will consider classes of groups that can be defined
using definition of G;,(m, k, h) for chosen parameters

Fora=0,b=r=s=1,h =0 the groups G;(m, k, h) have defining relations x;X;,, = X
of the group G, (m, k) which was introduced in [JM75], and subsequently studied in [BV03],
[CRS03] (see Section 1.3 for more details).
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Corollary 2.3.4. Suppose (n,m) =1, (n,m’) = 1 then G,(m,n —m) = G,(m’,2m’) = G,(1,2) =
F(2,n).

Proof. Since G, (m,n—m) = G;(M, K, h) = Gn(xoxmx(‘nl_m)), where ¢ = (a,b,1,5) =(0,1,1,1),h =
0,M =m,K=mn-m,and G,(m’,2m") = G5(M',K’, ') = G,(xoxuwX,.,), where ¢ = (a,b,1,5) =
0,1,1,1), =0,M’ =m’,K’ =2m’. Since (n,h+m) = (n,m)=1,(n, i’ +m’) = (n,m’) = 1 and
m’(h+m) = m'm, m(h’ +m’) = mm’ therefore m’(h+m) = m(h’+m’) mod n and sinceh =’ =0
therefore h'(h+m) = h(h'+m’) mod n. Theorem (2.3.3) implies that G, (m, n—m) = G, (m’, 2m’)

and by [BV03, Lemma 1.4.] since (1, m’) = 1 we have G,(m’,2m’) = G,(1, 2). O



Chapter 3

Order of GpM(xO )ab

3.1 Introduction

In this chapter we produce a technical formula for the order of the abelianization of the
group GPM(xox?Axf() where 6 = +1,¢ = 1 and (M,K) = 1. This formula is in terms of
the parameters p, M, K, 6, ¢. By restricting to particular values of p we are able to obtain
numerical values of IGPM(xO )abl we apply it to give precise values for the order of
abelianization of Gpm(xoxmxk ), ka(xoxmxk ), and I'p(xoxrx;) when p € {2,3,4,6,12}. The
reason we have chosen these numbers is that we can carry out the relevant manipulations
with roots of unity in these cases but they are harder in others. This will be used in counting
Gy(m, k) groups (Chapter 4), and in counting I',(k, ) groups (Chapter 6). In Section 3.2 we
give in Theorem 3.2.3 the general formula for |Gpm(xoxx%)™|. In Section 3.3 we calculate
G (xoxpmx )| for p € {2,3,4,6,12} (Theorem 3.3.1), and apply it to obtain |Gy (xex,x; )™
(Corollary 3.3.2), and to obtain Ika(xoxkxl)“b | (Corollary 3.3.3). In Section 3.4 we calculate
G (xoxmx )| for p € {2,3,4, 6,12} (Theorem 3.4.1).

Thus the results of this chapter give for p € {2,3,4, 6,12}, formulas for the orders of the
groups Gpm (XoXmX")?, Gue(xoxmx; ), Gpi(xoxx1)*, Gpi(xoxix)™® (since by Lemma 1.6.1 (2)

we have ka(xoxkxl) = ka(xoxlxk) )

35
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3.2 The general formula

The following is equation (1.7)
Ga(@)™ =] | feO)I (3.1)
07=1
Let R,(f) = Il f(0) € Z. Recall the following Lemma from introduction Lemma 1.4.4 is.
0r=1

Lemma 3.2.1. Let f(f) = ¢ ﬁ (t— B;). Then R,(f) = ((—1)%)" ﬁ B - 1).
j=1 j=1

From now on we shall use the notation C, = e for any p > 1. (Note that we do not

required p to be prime).

Lemma 3.2.2. Let g(x) = x* — w. If (n,k) = 1 then n]:[lg(dl) = (-1)"(w" - 1).
j=0

0k
Proof. Let f(x) = x — w, from Lemma 3.2.1 we have R,(f) = ((—1)"0) I (ﬁ;? —1), and by
j=1

settingc =1,k =1,5; = w, then

n—1
Ro(f) = [ [ £@) = (-1)"@" - 1) (32)
j=0

and since (1,k) = 1 we have

n—

1 — . .
fay=11fe, u =, . . Y=(j=0,.,n-1={Cj=0,..,1-1)
j=0 :peu
n—1

= [ @
j=0

n-1

= [[s@

.Jj_:b

and the result follows from (3.2). O

The relation matrix of the cyclically presented group G,m(xox3,x%) is the n X n circulant

matrix where firstrowis (10...60...0¢0...0) where 6 is the M'th entry, and ¢ is K'th
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entry. So
f(t) =1+ 6t"M + et® (3.3)

Let
P (M, K) = ((1+6G)M = (—e)(T)) (34)

p-1
Theorem 3.2.3. Let (M, K) = 1 then |Gpm(xox3,x5)™| = | T] P}y (M, K)|
i=0

Proof. From (3.1), we have that IGPM(xOxMxlzl)”b | = |P| where

pM-1

P=T]r@w =1  f)=1+0t"+ e (3.5)
=0

j€S

Where S = {j|j =0,1,..,(pM - 1)}. Foreach0 <i<p-1letS;={pt+it=0,1,.. M—-1};
then S =S5,U... US, ;. We write P in the form

4@MM2WDQMMM)H@WMMmeWQ:HmM

]ES,‘
(3.6)

IfjeS,0<i<p-1thenj=pt+it=0,1,.,(M~-1)so
Qﬁmm:mﬂ%p

_ [ ] f(CptH
t O
M—l
_ (1 +6(Cpt+z)M+ (Cpt+z)1<)
-

= [ ](1+5@(@h) + e@an(Ciy)

M-1

= [T(+068) + e@cy)

=0
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M-1
= [ Jeecn (e + 60).Cik + ()
At/I:—Ol M-1
= [ Jeechn [ ] @ - (e + 68)55)
t=0 t=0

-1
= (eCh )MH<c — (—e(1+ 6C)CK)

= (T8 M[(-D)M((—e(1 + 5C)C KM ~ 1)) by Lemma 3.2.2
= MM DM((—eMA + MG~ 1)]
= MG DM (oM +60)MG ™ - 1))
= (145" = (=G
= P (M, K)

Corollary 3.2.4.
a. If (m, k) = 1 then |Gpu(xoxux;")™| = Ilif[:P},;g_l(m, k)| where P},;]_l(m, k) = (1+Cym — (Ch).
b. If (m, k) = 1 then |Gp(xoxux; )™ = |]‘£P " (k, m)| where P; “(k m) = (- 1)k((z;l —- 1) -
@) _
c. If (k1) = 1 then |Gy(xoxix)™| = @p};(k, )| where P;;(k, D=1+ + (1))
Proof. a. It follows from Theorem 3.2.3 by setting M =m,K=k,06 =1,¢ = -1.

b. Since Ika(xOxmxlzl)”b | = Ika(xoxlzlxm)“b |, therefore proof is done by setting M = k, K =
m,d =-1,& =1in Theorem 3.2.3.

c. It follows from Theorem 3.2.3 by setting M =k, K=1,0 =1,¢ = 1.

In the following lemma we calculate Pf’; (M, K) in some important cases

Lemma 3.2.5. P“(M K) = (1 + )M — (—e)M.
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2. PYS(M,K) = (1 = ) = (—e)M(-1).
3. Pflfjp(M, K) = P;?;(M, K) forany t > 1.
0, _ poe
4. P, (M K) = P% (M,K)
p—1 tp—1
5. Ift > 1 then [] Pf;‘(M, K) divides T] Pf'; (M, K).
i=0 ' i=0
6. PY(M,K).P" (M,K) = 24(1 + 5cos 24)" + 1~ Iy, where
hip = (CFQL+ GO+ G+ T)M)
Proof. By using (3.4) we have Pi}j (M, K) = (1 +6C )M = (=e)"(C)), and therefore
1.
Pg';(M, K)=(1+0M-(—e) (3.7)
2.
PYS(M,K) = (1+6G)" = (—e)M(T5)
= (1= = (—eM(-1)" (3.8)
3.
Py, (M K) = (1+6C3 )" = (=e)M(Cfy)"
= (1+ 60 )" = (=eM(@C)"
= p;jf;(M, K) (3.9)
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4.
P MK) = (14 G = (e
since (=1 then ()= and
P (M K) = (1+ GO = (G)¢
= Poip(MK) (3.10)

5. Since {0,¢,2¢,...,(p — 1t} €1{0,1,2,..., (tp — 1)} then

tp—1
6, . .. 6, . 6, .
[l Prmr divides [[Prmk= ] PrLMK)
i€(0,4,2t,...,(p-1)H) i=0 i€{0,1,2,... (tp—1))

and

H P (M, K) = H P (M, K)

i€{0,t,2¢,...,(p—1)t} i=t1,1€{0,1,2,...,(p—1)}
— 0,
= [] PrLmx

1€{0,1,2,...,(p-1)}

0,€
- H Py, (M, K)
1€{0,1,2,...,(p-1)}

Py (M, K).P; (M, K) = [(1+6C,)" = (=e)M(C) 1A + 6, ) — (=)™(C,)"]
= (1 +68)A +65))" = (=T + 65 + 5K+ 50)M) +1
= (24T, +65,7) —hyy+1,
where h;,, =(=)(CX(1 + 65, + G*(1 + 6C,)Y)

= (2 + 26 cos %)M +1-h,

= 2M(1 + 6 cos %)M +1-hy (3.11)
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3.3 Order of G,m(xoxmxs)*™ where p € {2,3,4,6,12}

Theorem 3.3.1. If (M, K) = 1 then

L. |Gam(xoxmxi)™] = I(=e)"(=1)* 12" = (=e)M)L.

2. |Gam(xroraxty) ] = |(2M = (—e)M)(2 — (=&)M2 cos EMT)).

3. 1Gam(xoxnxg)™] = I((—eM(=1)K1(2M — (—e)M)((2M + 1) = (~e)M(v2)M.2 cos HGLT),

4,

o)l = (=) (-2 - (-e/)(3" + 1 - (-)"(vB)" 20 T D)
(2 — (—e)M2 cos (2K ;M)n)l.
5.
[Gram (o) ™| = [(—=e)M(=1)1 (2" = (—e)¥)
((3M +1) - (—e)"(v/3)".2 cos (2K ;M)”)
(2~ (-e"2c0s 1T
(2" +1- ( M(y2)M.2 ¢ os 2K ;M)”)
0 1 )
(2va - (—e)M(M)M.z cos %Z_M)y
Proof.

1
1. From Theorem 3.2.3 we get that |Ga(xoxumx5)™| = [ P35 (M, K) = Py5(M, K).Py5(M, K),
i=0 7

and since

Pys(M,K) = 2" — (=e)" by (3.7)
P15(M,K) = (=e)"(=1)**! by (3.8)



3.3. Order of Gy (xoxpxi)™ where p € {2,3,4,6,12}

42

therefore

|Gam(oxmx)™| = [(=)M(=1)<*1 2" ~ (=e)")]

2
2. From Theorem 3.2.3 we get that |G, (xoxMxi)ab =11 P}’;l(M, K), and since
i=0

Pys(M,K) = 2" — (=e)" by (3.7)
Pri(MK) = (1+ )M = (=e)M(5) by (34)
Pyy(MK) = 1+ M - (™G ) by (3.4)

observe
1+C3—1+(— (ﬁ))_%
R PR AL

3
Al = Ce

o
3
R

Then

P15(M, K).Py5(M, K) = P5(M, K).PY} (M, K) by (3.10)

2
= 2"(1 + cos ?”) +1-h5 by (3.11)
1

= 24(1- )" + 1= oMk + G+ GO+ C)M)

=2 - (-a™M(G.GM+ GG by (3.12),(3.13)

=2 — (oMM + .G
—o_ (_E)M(CEZK—M) + C;(Zk—M))

(2K — M)271t
6

2K — M)t
3

=2 —(-e)M2cos

=2 — (—e)M2cos

Therefore

|G3M(x0xMx1€<)ab| = |(2M - (—g)M)<2 — (—&)M2 cos M)|

(3.12)

(3.13)

(3.14)
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3. From Theorem 3.2.3 we get that |G (xoxaxy )| = H P (M, K), and since

Py(M,K) = 2" — (=) by (3.7)

PYAMK) = (1+ C)M = (M) by (3.4)
Py{(M,K) = P5(M,K) = (=e)"(=1)*" by (3.9),(3.8)
Pyy(M,K) = (1+ G = (=e™() by (3.4)

observe

14CG=1+0+i)=1+i= \/2(% +i— \/2 = \2eF =205 (3.15)

1+C3—1+(O—1)—1—1—\/2(——1— = V2eF = 2¢;! (3.16)
Then

P1y(M, K).Py(M, K) = P4(M, K).PY; ,(M,K) by (3.10)

= ZM(l + cos %Tn) +1—-hya

=M+ 1 — (T + GO + R+ C)Y)
= 2M 41— (M (V28)™ + GR(V28)M) by (3.15),(3.16)
=2M+ 1 — (—eM(V2MCE™ + ¢ H M

= 2" +1) - (—e)™(v2)" 2 cos (2K = M)2m _8M)2n

= (2" +1) - ()" (¥2)".2 cos w (3.17)
therefore
Gt = - 1 (24~ (Y + 1) - () (32 2008 ZEZIT)
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4. From Theorem 3.2.3 we get that |Ggn(xoxaxy )| = H P (M K), and since

Pye(M,K) =2" - (=e)" by (3.7)

Pre(M,K) = (1+ G — (e)M(C§) by (3:4)

P,5(M,K) = P15 (M,K) = (1+ &)™ — (—e)"(C§) by (3.9)
Py(M,K) = P15 (M K) = (—=e)"(=1)"" by (3.9),(3.8)
P(M,K) = P, (M, K) = (1+ QM - (—e)"(G") by (3.9)
Pe(M,K) = (1+ M = (=o™(X) by (34)

observe

1+ =1+ (% + i(%)) = % + i% = /3( ﬁ —) = 3e® = 301 (3.18)

1+ =1+ (1—z<£»—3—1'?:\/3(@—11)—\/3—2 V3G, (319

Now let us calculate

Pe(M, K).Pys(M, K) = P¢(M,K).PY} (M,K) by Lemma3.2.5
2
= 2M(1 + cos ?n) +1-hye
1
= 2M(1+ E)M F 1= (oM + G + G+ o))
=3M+ 1 - (—e)M(CEBCH" + (F4/3C)) by (3.18),(3.19)

= 3"+ 1 - (—aM(VMCE T + Gy
(2K — M)2mt
12
(2K — M7
—

=B +1) - (—e)"(+/3)M.2 cos

=B +1) - (—e)"(+/3)M.2 cos
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Similarly we find

Pye(M, K).Pys (M, K) = P51 (M, K).P3(M,K) by Lemma 3.2.5. parts 3and 4.

(2K = M)m

=2 — (—&)M2cos by (3.14)

and Py; (M, K) = P15 (M,K) = (=e)(=1)F"! by (3.9), (3.8), therefore

|Gem(Xoxmx )| = [Py (M, K)Pyg (M, K)...Py s (M, K)|
(2K - M)m
)
(3.20)

= 1M1 (2"~ ()3 + 1) = (~e)(¥3)™ 2 cos

(2K — M)n)L

(2 — (—e&)M2 cos 3

11
5. From Theorem 3.2.3 we get that |G12M(x0xMx§<)“b| = H Pj,i_zl (M, K), and since

=0

Pyt (M, K) = 2 — (=) by (3.7)

PYo,(M,K) = (1+ G — (—e)M(CX) by (3.4)

Py (M, K) = P/ (MLK) = (1+Ce)™ — (—)M(CE) by (3.9)

Py
Py,(M,K) = P3H(M,K) = (1+ G)M = (=e)™(C5) by (3.9)

Py,(M,K) = (1 + 5™ = (e)"(C5) by (3.4)

PY,(M,K) = PY;' (M, K) = (=e(-1)*"1 by (3.9), (3.8)

(M,K) = P/ H(MK) = (1+ C)M = (=e)M(C) by (3.9)

Py,(MK) = (1+C)M = (CF,)" by (3.4)

Pyi,(M,K) = Py (M K) = (1+ )M = (GGF) by (39)
P;;Z(M,K) p1 LMK =1+3M- (S5 by (3.9)

Pio (M, K) = Py (ML K) = (1+ )Y = (C) by (3.9)
P (M K) = (1+ )M = (~eM(C;%) by (34)
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so by Lemma 3.2.5 we have

5
P, (M, K)Py %, (M, K)PYS (M, K)PL, (M, K)Py (M, )Py (M, K) = [ [ Pl M K)

i=0

= (—e)M(=1)F(2M = (=eM)(BY + 1) - (—e)"(¥3)™.2 cos W)
(2 — (—e)M2 cos M)
(3.21)
and
Py, (M, K)Py1,(M, K) = Py (M, K)P;'(M, k)
= 2M + 1) = (—eM(y/2)M.2 cos w by 3.17) (3.22)
Now observe
1+Cpp = \/6 V2 Cos, 1+4C, = \/6 V2 —0, (3.23)
1+ 8, ‘/6 V2 G 1405 = ‘/6 V2 a (3.24)

P (M, K)PY*

1,¢e 1,
v (M, K) = Py, (M, K)PY

112 (M,K) by Lemma 3.2.5

11,12 1,12

2
=2M(1 + cos %) +1-hy1, by Lemma3.2.5

=2M<1+§>M+1—( M(C + )M + T (1 + T)Y)
3 6 2
=2M(1+\/7)M+1 (—e M(‘/ +‘/ M(CH5 + GRE) by (3.23)

:2M(1+§)M+1_(_SM \/6+\/2M( 2KM+C(2KM))

zzM(1+§)M+1—( ‘/6 V21 ZCOSW
—oM(1 4 %)M +1- (—a)M(#)M.z cos w (3.25)
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We also have

Py, (M, K)P1,(M, K) = P, (M, K)PY% ,(M,K) by Lemma 325

10
= ZM(l + cos —n)M +1- h5,12

12
3
Py 1 - CoM(EE+ G+ G+ M)

V3

2

= 2M(1 — %)M +1-— (_g)M(@)M( EZK—SM 4 C;leK—SM))
1 (et LV 5 o 10T MD)

V3
2
V3 V6 — 2 52K — M)

=2M(1 -

6—+v2
=2"(1 - >M+1—(—s)M<%)M(c§’§cng+C;§K ;) by (3:24)

=2M(1 -

=2"(1 -
(3.26)

By using (3.21), (3.40), (3.43) and (3.44) we get

IGram(rox )] = I(=e)M(=1)F (2" — (—e))
B+ 1) — (—e)M(+/3)M.2 cos M)

(2K - M)n)

(

( 3

(24 +1 - (—e)(v2)" 2 cos M)
(

(

2 — (—e)M2 cos

V3 )M(@)M.z cos n(ZK——M))

2 12
V3 V6 =2 512K — M)
2M(1 — 7)M +1- (—e)M(T)MQ cos T)|

M+1—(-¢

Corollary 3.3.2. If (m, k) = 1 then
1. [Gaom(XoXmx )™ = [(=1)F1(27 = 1))
2. |Gam(xoxmx )™ = |27 = 1)(2 - 2 cos(E2my)|

3. |Guam(xoxmx )] = [(=1)*1(2" = 1)((2" + 1) — (v/2)".2 cos ZT)|
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4. |Gem(oxmx )™ = (=112 = 1)(3" + 1 — 2(+/3)" cos(Z5))(2 - 2 cos(F25Y)|
5.
G oty 1] = 1)1 (27 = 1)(37 + 1 203" cos 2 .
4
2"+ F)" +1 - ()" 2c0s )
\/3 m \/6 - \/2 m 5(2k — m)n
)l (——F—) .ZCOST>|

))(2 — 2 cos(

(2'" +1-(2)".2cos ————

(2ma -

Proof. Proof is done by substituting M = m, K = k, ¢ = —1 in Theorem 3.3.1 O
Corollary 3.3.3. If (k,I) = 1 then

1. Tk, ] = [(=1)F*1(2" = (=1)")]

2. ek, )] = 128 = (=)@ = (=1) 2 cos F52))

3. [Tyl ] = |(=1)112F = (=12 + 1) = (~1)"(v/2)".2 cos E5))

4. [Tarlk, ] = [(1)FH1(25 = (=1))((3* + 1) = (=1)*(v3)".2 cos E52F)
[2 - (=1)*.2 cos E597]|

5.
|r12k(k, [)”hl — |(_1)k+l+1<2k _ (_1)k)(3k +1— (_1)](2(\/3);( cos (21 —6k)7'()
( - ( 1)k 2COS( )n)(Zk _ (_1)k(\/2)k2 cOS (21 - k)T()
(2k(1 + %) — (- 1)k \/6 + \/2 k9 cos (21 1—2k)7'()
V3 V6 \/2 521 — k)
(2k(1 - —Y +1-(-1)"(——=—)"2cos T)l

Proof. Proof is done by substituting M = k,K =, ¢ = 1 in Theorem 3.3.1 m|
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3.4 Order of Gy(xox,x,')® where p € {2,3,4,6,12)
Theorem 3.4.1. If (m, k) = 1 then

1. Ga(xoxn; Y| = |(= 1>k+1(2k—(—1>k+m)|.

(k, m),

2. |Gl ) = |(—1)1(3% + 1 = (—y/3)¥(2. cos T,
3. 1o ] = (=112 = (1)) (254 1 = (~y2)k 208 22))
4. |Ge(xoxmx )™l = |( 1)k+1(2k (-1 k+’”)(3k+1 (=/3)¥(2. cos n(k+4m)))(2 2. cos M= m>)|
5.
Grareoty )1 = (D7 - (2293 +1 - (-3 (2.cos ELA)
2k — 2
@-2.cos"E 0k 41— (2 2008 T,
3 2 —14/6
2k(1 + \/T)k +1-— \/ \/ 2COS 7’((5k1-|2' 2171)
3 6 2 11k -1
@1 - LBy yq - (YorN2 \/ 2 cos RUIK—10m)
2 12
Proof.
1
1. From Corollary 3.2.4 (b) we have |G (xox,x; )| = EJP;’l(k, m) = Pk, m).P; Y]
and since
Py5'(k,m) = (=1)*" by (3.7)
Py (k,m) = 2° = (=1)*™ by (3.8)
S0

Garoac )] = (1) (25 = (=1))]

(3.27)
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2
2. From Corollary 3.2.4 (b), we have IGg,k(xOxmxlzl)“bl =11 Pi_;’l (m, k), and since
i=0

Py (k,m) = (<11 by (3.7)
Pk m) = (-1 [(G - 1)F = C§)] by (3.4)
P¥ (e, m) = (1[G - 1)F - 3™] by (3.4)

Observe

T WY - N B N
C3—1—€ —1—74'1(7)—1—7+Z(7)——\/3C12

2ni -1 3 — 3
C%—lze‘T—1:7—1'(\/7)—1:73—1'(\/7):—\/3@12

Now let us calculate

|Gar(xoxmx; )™ = Py (k, m)Py 5 (m, k)P, 3 (k, m)]

= (=ML (=D - 1)F = TH(-DE - D= 8|

(3.28)

(3.29)

= (=D [(-V3C,) = GI(-v3C) - G"1I by (3.28),(3.29)

= [(=1)*(3° = (VMGG + T,0) + 1))
= (=1 (35 = (VMG + () + 1)
(

12
1i(k + 4m)
=)

= |(=D)F3* + 1 — (—/3)"(2. cos

= |(=1)Y(3% + 1 — (=/3)*(2. cos

(3.30)
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3
3. From Corollary 3.2.4 (b), we have |Gy (xox,,x; )| = [] Pl._i’l (m, k) where
i=0

Py (km) = (=1 Dby (3.7)

P Y (km) = (1) [(G - D =] by (3.4)
P,y (k,m) = Py (m k) = 2 = (=1)"™ Dby (3.8)
‘“(k m) = (- 1)k[<c4 -] by (34)

Observe

G-1=0+1)-1=-v25" (3.31)

G-1=0-i)—1=—v20s (3.32)
Now let us calculate

Py (k,m)P; ' (k,m) = Py (k,m)P_yy(k,m) by Lemma 3.2.5
= 2(1 - cos %T”) +1- (C1(C - D + G- 1))
=2 +1 - (—V2N(CC + GG by (331),(3.32)
1= (V2R + )

1 - (=v2)*.2 cos M
1 - (=+/2)".2cos M (3.33)
and from Lemma 3.2.5 and equation (3.27) we have
Py e, m)P, Yy (m, k) = Py (e, m)Pr Y (k, m) = (=128 = (-1)™) (3.34)

so by (3.33),(3.34) we have
1i(k + 2m) )|

a0 )] = (=1 (2° = (=DF7)(2° 4 1 = (—v2)F 2008 ——
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4. From b of Corollary 3.2.4, we have |Gex(xoxx, Lyab| = H P_1 A(m, k) where

Pyt (k,m) = (-1 by (3.7)
Ptk m) = ()G - 1 = ) by (3.4)
Py (k,m) = Py Y m, k) = (=DH((G - 1)F - 3)
Pyt (k,m) = P75 (m, k) = 2 = (=1)*" by (3.8)
P v (k, m) = P‘“<m B =)@ -1 - ")
Pyt km) = (-G -1 =) by (3.4)

(m k)P Ym, k)P Ym, k) = (m k)P Ym, k)P Ym, k)
= (_1)k+1(3k +1—(=3)"(2.cos W)) (3.35)
Observe
G-1=0G, -1=4" (3.36)
Now let us calculate
Pyt (m, k). ¢ (k,m) = P} ' (k,m).P_yy(k,m) by Lemma 3.2.5
2 _ m
= 2(1 —cos?n) 1= (OG- D + G - DY)
=1+1- (G "+ "T) by (3.36)
(C2k m oy C(:(Zk_m))
=2-2.cos w
=2-2.cos M (3.37)

3
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|Ger(xoxax; )| = Pyt (k,m).P ¢ (k,m)...P3 ¢t (k,m)

=K—D“%?—C4fWX3+1—QWBWZam”@24mBX2—zaB”Qg—mUL

(3.38)

5. From Corollary 3.2.4, we have that |Ga, (XXX yab| = H P (k, m) where

112(

Pk, m) = (1) by (3.7)
Pk, m) = (-1((Ci2 = DF = (C2)") by (3.4)
Py (k,m) = Pry(m, k) = (-1)}((Cs — ¥ - )
Py, (k,m) = Pzi'l(m, K) = (DN~ DF — ()™
P, m) = PV (m, k) = (-1)F(G - DF = &3)
Py (k,m) = (= 1) (&, - 1) = (&)™ by (3.4)
Pk, m) = Py (m, k) = (1" - (-2)° by (3.8)
Pk, m) = (—1)k[<ciz ~ 1) = ()" by (B4
Py, (k,m) = <m,k)=<—1>k(<c3 f - 3")
Py, m) = P, (m, k) = (-1 - DF = @)™
Pk, m) = P;,g (m, k) = (=D - 1)F - &™)
Piin(km) = (1Tl = D = (€)™ by (3.4)

so by Corollary 3.2.5 and equation (3.38) we have

Oummpmmm)Pzwm)P mmw wm)wam

10,1

ni(k + 4m) 72k — m)

= ()25 = (=)F")(3" + 1 = (—y3)(2. cos ))(2 - 2.cos ) (3:39)
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and

P, 1y (k,m).Py, (k,m) = PLy (k,m).Py ' (k,m) by (3.33)

2 k
| - (V2) 2 cos X2+ (3.40)
Now observe
\/2 \6 \/2 —4/6
ClZ -1= C24/ ClZ = 2 34 (341)
V6 ++2 \/2 V6 ++2
?2 -1= ) ;zlu C125 -1= 5 2411 (3.42)

Py (k,m).Py, (k,m) = Py (k,m)P_y1,(k,m) by Lemma 3.2.5

= 2"(1 + cos 2_7z) +1—hy1, by Corollary (2.2.)

12
3
=251 + \/T)k +1- ( C(Ch = 1 + G (Cia - 1)")
3
=21+ %)k +1- (‘/ VOt + GG
=21 + ?)k b1o (Y22 ‘/6)k(c5k+2m GOy by (341),(3.42)
e By ‘/2 V0 2 s 275K+ 2) (3.43)
2 24
512 'k, m)P7 b Yk, m) = 512 Y(m, k)P 2(k, m) by Lemma 3.2.5
1
= 2"(1 + cos %)k +1—hsqo
3
= 20 - By 1 (G - 1 + G - 1))
— 2k(1 _ %)k +1-— \/6 + \/z)k(c 11k mcllk
= 21 - ‘/3 +1— \/6 + Vz)k(c(m 10m) Gl (11k- 10m)y
ok _ﬁk ~ \/6+\/2k 2nt(11k — 10m)
=21 > Y +1—( > )".2 cos Y (3.44)



3.4. Order of G (xox,,x;')™® where p € {2,3,4,6,12} 55

using (3.39),(3.40), (3.43), (3.44) we get

|G12k(x0xmxk1)ab| = |P0 12 (k m)P1 12 (k m) P11 12(k m)

- (_1)k+1(2k 1)k+m)<3k — (=V3)"(2.co —n(k b 4m)))(2 —2.¢os —n(2k3— m))
((2 5 cos n(Zk m))(zk — (v2)F 2 cos M))
(21 + \/3 +1— (%) 9 cos @»
@a-Y 3 f+1- (@)k.z cos TEHEZ 10



Chapter 4

Counting Gy (m, k) groups.

41 Introduction

In this chapter we count G,(m, k) groups up to isomorphisms, in order to do this we use
classification of finite G,(m, k) groups in [Will2], the number of generators of G,(m, k)b
groups, and the order of G,(m, k)?®. In Section 4.2, we determine a lower bound for the
number of generators of G, (m, k) groups for certain values of n, by giving homomorphisms
from the groups whose number of generators we do not know to groups whose minimum
number of generators we do know (identified by Table A.1). In Section 4.3 we use methods
we mentioned above to give lower bounds for f(n) of G,(m, k) groups for certain values of

n.

4.2 Lowerbound for number of generators of G, (11, k)™ groups

Definition 4.2.1. For a group G let d(G) denotes the minimum number of generators of G*.

Lemma 4.2.2. If n = 0 mod q then G, (m, k) maps onto G,(m, k).
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Proof. Let - denotes the sujective homomorphism between two groups, then we have

Gaq(mr k) = <x01 X1/ ooy xaq—l | XiXitm = Xitks i= O/ 1/ e 0 = 1>
= (X0, X1, ooy Xag—1 | XiXigm = Xipk, Xi = Xing, 1 = 0,1,..., a9 — 1)

> <x01 X1y eees xq—l | XiXiem = Xitk, i= O/ 1/ e = 1> = Gq(m/ k)

In certain cases, we can use this to obtain lower bounds for d(G,,(m, k)).

Example 4.2.3. Let n = 0 mod 7 then d(H (n, 3)”b) > 3.

Proof. Suppose that n = 7q. By Lemma 4.2.2 we have that H(n,3) = G,(3,1) maps onto
H(7,3) = G5(3,1). Now from Table A.1 we have H(7,3)" = Z, ® Z> ® Z,, so d(H(7, 3)ﬂb) >3
hence d(H(n, 3)‘”’) > 3. O

Corollary 4.2.4.

(a) If n = 0 mod 7 then d(H(n, 3)) > 3.

(b) If n = 0 mod 12 then d(H(n, 8)) > 3.
(c) If n = 0mod 13 then d(G,(1,3)) > 3.
(d) If n = 0mod 15 then d(H(n,4)) > 4.
(e) If n = 0 mod 18 then d(H(n, 8)) > 3.
(f) If n = 0 mod 24 then d(H(n,3)) > 3.
(g) If n = 0 mod 24 then d(H(n, 8)) > 3.
(h) If n = 0 mod 30 then d(H(n,4)) > 4.
(i) If n = 0 mod 30 then d(H(n,8)) > 3.

Proof. From Lemma 4.2.2 and Table A.1 we have
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(@) H(n,3) » H(7,3) » H(7,3)" = Z, ® Z, ® Z,, therefore d(H(7,3)") = 3 and

d(H(n,3)) > 3.

(b) H(n,8) -» H(12,8) -» H(12,8)* = Z5 ® Z & Z, therefore d(H(12,8)") = 3 and

d(H(n,8)®) > 3.

(c) G,(1,3) » Gi3(1,3) » Gi3(1,3)" = Z3 ® Z5 & Zs, therefore d(G13(1,3)") = 3 and

d(G,(1,3)%) > 3 .

(d) H(n,4) » H(15,4) - H(15,4)" = Z, ® Z, ® Z ® Zy,, therefore d(H(15,4)") = 4

and d(H(n,4)™) > 4 .

(e) H(n,8) - H(18,8) - H(18,8)" = Z,9 ® Z & Z, therefore d(H(18,8)") = 3 and

H(n,8)%)>3.

(f) H(n,3) » H(24,3) » H(24,3)" = Z5 ® Z5 ® Zss, therefore d(H(24,3)") = 3 and

d(H(n,3)") > 3.

(g) H(n,8) - H(24,8) - H(24,8)" = Zss ® Z & Z., therefore d(H(24,8)") = 3 and

d(H(n,8)) > 3.

(h) H(n,4) - H(30,4) - H(30,4)" = Z, & Z4 & Z4 & Zss, then d(H(30,4)") = 4 and

d(H(n,4)™) > 4 .

(i) H(n,8) » H(30,8) - H(30,8)" = Z34 ® Z. & Z, therefore d(H(30,8)") = 3 and

d(H(30,8)") > 3 .

4.3 Lower bounds on f(n)

In here we give answer for Question 1.5.15, we give lower bounds for the number of non

isomorphic G,(m, k) groups for certain values of n. In order to do this we use lower bounds
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for the minimum number of generators of G, (m, k), the finiteness classification of G, (m, k)
and the order of G, (11, k)*, G(m, k)™ when p = 3.
From Corollary 3.3.2 and Theorem 3.4.1, we have

2k —
|Gam(x0xm2. )™ = 2™ — 1)(2 — 2 cos ﬂ) and
k+4
XoXX, =3"4+1-(— . COS —m)n .
Guelaumay ) = 3 41 - (+3)'2 cos ")
The following corollaries follow from this
Corollary 4.3.1.
3F+35+1 when k=0or4mod12
3k4+1 when k =5mod 12
3k—3% +1 when  k =60r10mod 12
| G3k(x0x1x;:1)ab I={ 3k—3% +1 when k=1or3mod12
3k—23% +1 when  k=8mod12
3K+23% +1 when k=2mod 12
3k +3% +1 when k=70r9mod12
Proof. From the fact that
3% when k=0or4mod12
0 when k=5mod12
—3% when k=60r10mod12
4+ k7 .
—(—+/3)".2cos % ={ 3% when  k=1or3mod12
—2.3: when  k=8mod12
2.35 when k=2mod 12
3% when k=70r9mod12
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Corollary 4.3.2.
32" -1) when m = 0or4mod6
b 2" —1 when m = 1lor3mod6
|G3m(x0xmx1 ) | =
0 when m = 2mod6
42" - 1) when m = 5mod 6
Proof. From the fact that
3 when m = 0ordmod6
-2 1 when m=1lor3mod6
2 —2cos u =
3 0 when m = 2mod 6
4 when m = 5mod6

O

Definition 4.3.3. See for example [NZMO08, pages 199 — 200] The Lucas sequence is defined

by
Ln = Ln—l + Ln—Z; Lg =2,L1L=1,L,=3,n>2. (41)

The first few Lucas number are 2,1,3,4,7,11,18,29, .... L, is determined by the relation

Li:(l-kyg)n+(1——yg)n @)

2 2
Recall from the Introduction Theorems 4.3.4 and 4.3.5 below, which will be used in

counting G,(m, k)" groups.

Theorem 4.3.4. [CWLF67, Lyndon] |[F(2,n)*®| = L, — 1 — (=1)" . In particular, F(2,n) is finite
foralln. Let m =n —1 then

Z,  if(n6) =1
Z,®Zs if (n,6)=2
7.7, if(n6)=3
Z,®7Zs if (n,6)=6

F2,n)* =

For the Sieradski groups, the structure of S(2, 1) is given by the following theorem
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Theorem 4.3.5. [JO94,COS08]

1 if(n6)=1
Zs  if(n,6)=2
2,07, if(n,6)=3
Z&Z if(n6)=6

52, n)® =

Lemma 4.3.6. If n = 0 mod 3 then | F(2,n)" | is even.

Proof. From Theorem 4.3.4, we have that | F(2,n)" |= L, — 1 — (=1)", to prove our claim we
need to prove that L, is even for n = 0 mod 3. Now let n = 3j therefore we will prove that
Ls; is even for any j > 1, ie L3; = 0 mod 2 for any j > 1. Now since Ly = 2,L; = 1 and

L,=L,1+ L, therefore

Liy3 =Ljy2 + Ljq (4.3)
:L]' + 2L]‘+1 (44)

therefore
L]'+3 = L] mod 2,80 Lg] = Lg(]'_l) = L3(]'_2)... = L6 = L3 = Lo =2=0mod?2

O

Theorem 4.3.7. For certain values of n lower bounds of isomorphisms classes will be as

follow
(@) If n =0mod 4, n > 8 then f(n) > 4.
(b) If n =2mod 4, n > 10 then f(n) > 5.
(c) If n =3 mod 6, n > 9 then f(n) > 4.
(d) If n =0mod 7 then f(n) > 3.
(e) If n = 0mod 12 then f(n) > 6.
(f) If n = 0 mod 13 then f(n) > 3.

(g) If n =0mod 15 then f(n) > 4.
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(h) If n = 0 mod 18 then f(n) > 8.
(i) If n = 0mod 24 then f(n) > 6.
(j) If n = 0 mod 30 then f(n) > 7.

Proof. In Table 4.1 we bound below the number of isomorphism classes of groups by ex-
hibiting various isomorphism classes of groups and showing none of them are isomorphic.
We identify groups by showing whether or not the group is finite, groups have different
values of d or different |G, (m, k)*|). Lower bounds of d come from Corollary 4.2.4, and the
orders of |G, (m, k)| are from Corollaries 4.3.1, 4.3.2 and Theorems 4.3.4, 4.3.5.

In here I will explain one case of the table and the argument will be similar for the
others. When n = 0 mod 4,7 > 8 we have 4 groups F(2,1),5(2,n),H(n,5) and H(n, 5 + 1),
the group H(n, 5 + 1) is the only group in this case which is finite while the others are
infinite, therefore it is not isomorphic to any of them. For the group F(2,n) we have that
d = 2,3 < |F(2,n)"| < oo, so it is not isomorphic to the group S(2,n) since S(2,n)" = Z; or
Z.® 7, and not isomorphic to H(n, 5) since H(n, 5 = Z,;  (d=1). Also S(2,n) # H(n, 3)
since they have different abelianization.
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Table 4.1: The lower bound of f(n) for certain values of n.

n Groups Finite Informations
(@) n= 0mod4 G.(1,2) = F(2,n) No d=2,3<|F2,n)%| < oo
,n>8
Gu(2,1) = S(2, 1) No S = Zsor ZeZ
Gu(2,1) = H(n, & No Hn, byt =7,
G2 +1,1) = Hn, 2 +1) | Z,y
(b) n=2mod 4 Ga(1,2) = F(2, 1) No d=2,3 < |F(2,n)" < co
,n>10
G.(1,2) = S(2,n) No S2n)?=ZsorZeZ
Gu(3,1) = H(n, %) No Hn, %" =27, .
Gu(2+1,1) = H(n,2+1) | Zy
Ga(1, 2 Z,
(c) n=3mod6 G.(1,2) = F(2,n) No d=2,|F2,n)% >4
;=9 4]|F(@2,m)™|
Gu(1,2) = S(2, 1) No SQ, )" = 7, ® Z,
Galrorix; ) No | | Gu(rori)” =35 +3 |
Gn(xoxsxy") No |Gu(xoxzxy )™ =25 - 1
(d) n=0mod?7 G.(1,2) = F(2,n) No d=1,FQ2,n)" >4
Ga(1,2) = S(2, 1) No |d=1,52n)"=1or=Z,®Z,
G.(3,1) = H(n,3) No d>3
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Gn(xoxlxél)

n Groups Finite Informations
(©) n=0mod12 Gu(1,2) = FQ, n) No |d=2,0<I|FQ,n)% < co,5||F(2,n)|
G.(1,2) = S, n) No SQn=ZeZ
Gu(2,1) = H(n, %) No Hn, 2y = 7,5
Gu(Z+1,1) = H(n, 2 +1) | Zy |
G,(8,1) = H(n, 8) No d>3,|H(n,8)% |=
Gn(xoxlx;) No |5/ |Gn(x0x1x?)”b| =33 -236+1
or 35 + 3¢ + 1(odd)
(f) n=0mod13|  G,(1,2)=F2,n) No d=1,IFQ,n)" >4
G.(1,2) = S(2, 1) No | d=1,|SQn)" =1or=2Z,67,
G,(1,3) No d>3
(¢) n= 0mod 15 Gn(1,2) = F(2,n) No d=2,F2,n) = Z>®Zss, s > 1
52, n) No d=2,152,n)" = Z, & Z»
G,(4,1) = H(n,4) No d>4,2||H(n,4)" < oo
Gu(xox2x7") No |Ga(xox a7 )| = 3(25 — 1) or oo
(h) n= 0mod 18 G.(1,2) = F(2,n) No d=2,0 < |F(2,n)%| < oco(even)
Gu(1,2) = S(2, 1) No SQnyt =77
Gu(2,1) = H(n, 2 No Hn, 2 = 7,y _
Gu(Z+1,1) = Hn, 2 +1) | Z s,
Gu(1, ) Z,
G,(8,1) = H(n,8) No d>3,|H(n,8)" = oo
Gu(xoxzx7!) No |Gu(xoxzxy)™| = 3(25 - 1)
No IGn(xoxlx?)”bl =33 +36+1
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n Groups Finite Informations
(1) n= 0mod 24 G,(1,2) = F(2,n) No d = 2,5||F(2,n)"| < oo
Gu(1,2) = S(2,n) No Snt=ZeZ
Gu(5,1) =H(n, 5 No H(n, %)" = Zy
Gu(3+1,1)=H(n,3+1) | Zy
G,(8,1) =H(n,8) No d>3,| H(n,8)" |= o
Gn(xoxlxél) No |5/ IGn(x0x1x§1)”b| =33 -236+1
or 35 + 36 + 1(odd)
(j) n= 0mod 30 Ga(1,2) = F(2,n) No d=2,|F2,n)" < oo
Gu(1,2) = S(2,n) No Snt=ZeZ
Gu(5,1)=H(n,} No H(n, %)™ = Zy .
Gu(5+1,1)=H(n, 5 +1) Zy .,
Gn(1,3 Zy
G,(8,1) = H(n,8) No d>3
[H(n,8)"| = oo
G,(4,1) =H(n,4) No d>4,

4| |H(n, 4)"| < oo




Chapter 5
Counting [';(k, [) groups.

In this chapter we count I',(k, [) groups up to isomorphism, our results are based on results
of Edjvet and Williams in [EW10]. Their results were stated in terms of three conditions
(A), (B), (C) being true or false, and have been summarised in [EW10, Table 1], which we
reproduce as Table 5.1 (this is Table 1.5). We study the groups in terms of the four conditions
(A),(B), (C), (D) being true or false, this gives 16 combinations.

Table 5.1: Summary of structures of I'y(k, 1) [EW10, Table 1]

(A) | (B) | (©) Aspherical | Abelianization Group
F | F | F Yes finite# 1 o0
F|F | T No Z, Metacyclic
F | T]| F No Z; Z;
T | F | F |n#18 Yes S Large
T | F| F |n=18 No ZXLX2yy |Z+Z 2y
T|F | T No ZXZLXZ, YAy RV
T | T]| F No ZxZ YR/
T T T No Z.X7Z Z+7Z

In Section 5.1, we show that the first 3 conditions are preserved under isomorphisms,
however we are unable to do so for the fourth condition (D).

In Section 5.2 we show that six out of the 16 combinations are impossible namely
FTTFE FTTT, TTTFE, TTFF,FTFF, FFTT. Furthermore the case TTTT occurs when n = 3 or
n = 6 and the case TFTT occurs when n = 12. These two cases will be studied in Chapter 6,
where we give information about I',,(k, [) for n < 29, for simplicity we consider n > 12 (the

cases when n < 12 are well understood).
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Now eight combinations are left to be studied FFFF, FFTF, FTFT, TFFF, TFTF, TTFT,
FFFT, TFFT.

In Section 5.3 we consider the six cases FFTF, FTFT, TFTF, TTFT,FFFT, TFFT. We show
that in each case there is exactly one group or no groups, we determine values of n for
which we get 1 group, and show that for other values of n the number of groups is 0. We

express our results by using the following definition

Definition 5.0.8. Let (1n,k,I) = 1,k # [,1 < k,1 < n— 1. We define f“(n) to be the number of
I'u(k, 1) groups up to isomorphism, where a,b,c,d € {T,F,—} and a,b, c,d denote to conditions

(A), (B), (C), (D)

a = T means (A) holds
a = F means (A) does not hold

a = — means there is no restriction on A

Similarly for b, c, d.

In the cases FFFF, TFFF we are unable to find the precise number of the groups, but
we are able to obtain lower bounds of I',(k, ) groups for certain values of 1, we do this in
Section 5.4.

It turns out (see Lemma 5.2.4) that in the cases FFFT and TFFT the groups I',(k,[) are
isomorphic to I',(1, 5 — 1), in [EW10, page 774] it was observed without proof that in the
case FFFT we have I'(k,I) = T),(1,5 — 1). In Lemma 5.2.4 we prove that observation and
extend it to include the case TFFT. We study this group in more detail in Section 5.5. We
show in Theorem 5.5.2 that in the case FFFT, the group has finite abelianization of order
IT.(1, 5 - 1)%| = 3(L% +1+ (—1)%), where L, is Lucas number of order n. In the case TFFT
the group is known to have infinite abelianization and we show in Theorem 5.5.1 that it
has torsion free rank 2. In Section 5.6, we investigate a question similar to question 1.5.16
which was about G,(m, k) groups. Our question is when does I',(k,[) = I',,(K',I’) imply
n=n’?

We determine here I'2°(1, £), in order to identify groups later in this chapter.
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Proposition 5.0.9. Let n be even then

If n=0mod4
If n=2mod4

NIB

n
rn 1/_11!1: -1
%)
+1

ZZ
ZZ

[ S1=]

Proof. Now by definition
n ..
T,(1, 5)‘”’ = (X0, X1, ooy X1 | XiXipaXivy = 1,305 = xj2;,0 <7, < — 1)®

We could now add to the previous presentation the relation x; = x;,» which come from

adding 4 to the index i in the relation

xixi+1xi+% =1 (51)
we get
xi+gxi+g+1xi =1 (52)

then by using abelianization in relations (5.1), (5.2) we get x;.1 = Xits+1 and by subtracting

1 from the index in relation we get x; = X;;.1.

n
b _ _ _ _ P
(1, 5)“ = X0, X1, wor X1 | X1 Xivn = 1,2 = Xjpn, 20 = x%;,0 < i, j <n — 1)
This allow us to write the presentation in this form
n

— 2 — H—
- <x0/ X1, ---/x%—l | XiXiy1 = 111 - OI 1/ ees E - 1>

_ 20 1 20 2 1.2 _
= (X, X1, ey X321 | xgx1 = 1,x7x% =1, oy Xy X1 = 1,x%_1x0 =1)

By eliminating x, = x%z_ , We get

n
-4 2 2
[, 5) =<, enxe g [ X5, x=Lxpe=1,.,x, 00 =1)
2 2 5 52772
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. . . _ -2
By eliminating xz_; = X,_, we get

n
I,.(1, E) = (X0, X1, ..y X3 | xg%_lxl =1,xx=1,.., x§_3x§_2 =1)
n., . n .. .
when n = 0 mod 4 therefore 5 Is even and by doing 5 1 eliminations we get

n -n n
Tu(1, E)ab =g == =)=2Z,

when n = 2 mod 4 therefore g is odd and by doing g — 1 eliminations we get

n n
I(1, E)ab =(x1 |37 % = 1)
= (0 |27 = 1)

=2y,

O

We summarise our results in Table 5.2, and we assume that (1, k,[) = 1,k # [. We record
here that [EW10, Theorem B (i)] stated that if k = [, in which case I = Z, where s = 2"—(-1)".
In Table 5.2 for the 6 cases FFTF, FTFT, TFTF, TTFT,FFFT, TFFT, f @bed)(17) = 1 for values of
n that appear in the table, and @) (n) = 0 for values of n that do not appear in the table.
f@d () > 1 for the cases FFFF, TFFF.

Table 5.2: (1n,k,I) =1,k # Lk # 0,1 # 0,n > 12,a = 3(2"3 — (=1)"/3),y = (2"/3 - (=1)/3)/3)

Values of n (A) | B) | (O | (D) | Aspherical Abelianization Group Tk, 1) = f (abed) (17

F F F F Yes finite# 1 00 Unknown >1
n=2or4dmod6 F|F|F | T Yes Tk, )| = S(L% +1+(-1)%) 0 (1,2 -1) 1
n=0mod3n>6 | F | F | T | F No Zy Metacyclic | T,(%, 3322) 1
n=1or2mod3 F T F T No Z3 Z3 T.(1,2) 1

T F F F Yes 00 Large Unknown >1
n=0mod6,n > 18 T F F T Yes oo hastorsion — free rank 2 00 r,(1,3-1) 1
n=0mod6,n=18 | T F F T No ZXZ X2 Z+Z+Zy | Tn(1,5-1) 1
n=3or6mod9 T F T F No ZXZXZ, VAY Y I, %) 1
n=0mod3n>9 T T F T No ZxZ Z+7Z I'n(1,2) 1

We recall from introduction the following lemma (Lemma 1.6.1), which gives isomor-

phisms between I', (k, I) groups



5.1. Preservation of conditions (A), (B), (C), (D) under isomorphisms 70

Lemma 5.0.10. [EW10, Lemma 2.1.] Let 1 <k,l <n —1 then
1. Tk, D) =T,(1-k, —k).
2. Tk, 1) =T, k).
3. Tk 1) =T,(k—1,-1).
4. T, k1) =T,k k-1.
5. If (k,n) = 1 then T',(k,I) = I',(1, Kl), where Kk = 1( mod n).

6. Ifniseven and (I,n) = 1 then I'y(k,1) = T',(1, Lk + 1), where LI = —1( mod n).

5.1 Preservation of conditions (A), (B), (C), (D) under isomor-
phisms
Here we consider the four conditions (A), (B), (C), (D), we prove the following theorem

Theorem 5.1.1. Suppose (n,ki,1;) = 1,1 <kg <n-11<5L <n-1k # 1, and (nky, ;) =
1,1<ky<n-1,1<Il, <n-1,ky # I, and suppose I',(k1,11) = I',(ka, I) then

(@) Ifn, ki, 1 satisfy (A) then n, ks, I, satisfy (A).
(b) If n,ky, 1y satisfy (B) then n, ky, I, satisfy (B).
(c) Ifn,kq, 1y satisfy (C) then n, ky, I satisfy (C).
(d) Ifn, ki, 1y satisfy (D) then one of the following holds

(i) n,ky, 1o satisfy (D).
(ii) n,kq,1; satisfy FFFT and n, ky, I, satisfy FFFF.

(iii) n,ky, 1y satisfy TFFT and n, ky, I, satisfy TFFF.

Proof.
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(a) Suppose n,ky, I, satisfy (A), then [EW10, Lemma2.2.] implies that |[,(k;, ;)| = oo. If
n,ky, I, does not satisfy (A), then |T,(ks, )| < oo, this contradicts Ty (ki, ;) = T,(ka, L),
therefore 1, k;, I satisfy (A).

(b) Suppose (n,ki,1;) satisty (B), then from Table 5.1, I',(k1,11) = T'y(ky, ) = Z + Z or Zs.

Suppose for contradiction that (1, k;, I,) does not satisfy (B), then one of the following hold

From line 1 in Table 5.1, [T,,(ky, [)| < oo, |T,(ks, )| = oo. Therefore I, (ky, I,) 2 Z3, and
since [(Z * Z)"| = oo, we get [',(ky, ) # Z * Z, a contradiction.

From line 2 in Table 5.1, [[,(ky, )| = 2" — (=1)". Therefore I, (ky, ) ¥ Z % Z, and
[(ky, 1) = Z3, only when n = 1 or n = 2, a contradiction.

From line 4 in Table 5.1, I',(k,, I») is large, so I',(ky, [») 2 Z3. Suppose for contradiction
that I',(ky, b)) = Z + Z, then the presentation P,(k,, I;) is an aspherical presentation of Z + Z
of deficiency zero, a contradiction.

From line 5 in Table 5.1, I',,(ky, ) = Z.« Z.+ Z.19 ¥ Z.* Z. or Z3, a contradiction.

From line 6 in Table 5.1, T (ky, ) = Z + Z* Z,,y = (2% — (~1)})/3. Therefore I',(ky, ) =
Z+2+2, %23k, b) =2+ 2Z+7Z,=7Z+7Zonly whenn =3 or n = 6, a contradiction.

(c) Suppose (1, ki,1;) satisfy (C), then from Table 5.1, either T, (k;, 1) = T,i(ka, o) = T,,(%, 1£22)

37 3

(this was conjectured in [EW10, Conjectur 3.4.] and proved in [BW17, Lemma 23 and
Corollary D.]), which is metacyclic of order 2" — (=1)" or I';(k1, [1) = T'(ky, L) = Z+ 2+ 2.,y =
25 —(-1)3/3, (note that it was stated in [EW10, page 761] that line 8 only occurs when 1 = 3
or 6, and we will give full proof for it in Lemma 5.2.3). Suppose for contradiction that
(n,ky, 1) does not satisfy (C), then one of the following hold

From line 1 in Table 5.1, [T, (ky, [)®| < ©o0,|T4(ks, )] = co. Therefore T, (k,,1,) is not
isomorphic to a Metacyclic group, and since [(Z + Z x Z,,)"| = oo, [(Z + Z)"| = o0, we get
Luko,b) # Z+Z % Z,, and Ty(ky, ;) ¥ Z + Z, a contradiction.

From line 3 in Table 5.1, |[',(kz, )| = Z3. Therefore I'y(k, 1) & Z.+ 7.+ 7., and T',,(kz, )
isomorphic to a metacyclic group only when n = 1 or n = 2, a contradiction.

From line 4 in Table 5.1, I',(k, I;) is large, so I',(ky, 5)is not isomorphic to a metacyclic
group. Suppose for contradiction that I'y(k;, ) = Z + Z % Z,,, then in both cases the
presentation P,(k;,») is an aspherical presentation of Z * Z % Z., of deficiency zero, a

contradiction (since def(Z » Z.+ Z,) = 2).
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From line 5 in Table 5.1, I, (k, ;) is not isomorphic to a metacyclic group, I',(kz, I») =
L2+l 22+ 2Z+7Z, (sincey # 19), a contradiction.
From line 7 in Table 5.1, I',(ky, ) = Z *+ Z is not isomorphic to a metacyclic group

Xulko, b)) = Z+Z % Z+Z+Z, (since y =1 when n = 3) , a contradiction.

(d) Suppose (1,k;,11) satisfy (D), then from Table 5.2 the group I',(k;, 1) can be one of the

following
1. If n = 2 or 4 mod 6, then |T',,(k1, )| < oo where |T',,(k1, ;)| = oo in line 2 (the case FFFT).
2. If n=1o0r2mod 3, then I',,(ky, ;) = Z3, in line 4 (the case FTFT).
3. If n = 0mod 6,1 # 18, then |T,,(ky, [1)| = o0, [T,.(k1,11)®| = o0, in line 6 (the case TFFT).
4. If n =18, then I',(ky, 1) = Z » Z. + Zy9, in line 7 (the case TTFT).
5. Ifn=0mod 3,n >9, thenT,(k;,[;) = Z*Z, in line 9 (the case TTFT).

Suppose for contradiction that (11, k;, [,) does not satisfy (D), then one of the following hold

Inline 1in Table 5.2 (the case FFFF), then |T,,(kz, 5)*| < o0, |T(k2, )| = 0. We do not know
if there any parameters n, ky, [;, ky, I, such that (n, k1, [;) satisfies FFFT (case 1) and (1, k, 1)
satisfies FFFF and T, (k, 1) = T, (ky, ). But I'y(ky, L) ¢ Z3 in case (2), a contradiction.
Also |T(ks, 1) # [Tu(ki, 1) in case (3), a contradiction. |T,(ky, L) # |T.(ki, )®] =
(Z X Z X Z19)™ in case (4), a contradiction. Similarly |T,,(k, [)™| # [Ty(ky, )™| = (Z X Z)*
in (5), a contradiction.

Inline 3in Table 5.2, when n = 0 mod 3, n > 6 (the case FFTF), then |[',(k,, )| = 2" —(-1)".
We only need to consider the groups in cases (3), (4), (5), as the value of n is different in cases
(1), (2). Now [['y(k1, I1)| = o0 in (3),(4), (5), and [Ty (ko, )| = 2" — (=1)". Tu(kz, o) % Tu(ke, [h), a
contradiction.

In line 5 in Table 5.2, this is TFFF, then I',(ky, 1) is large and has infinite abelianization.
We do not know are there any parameters n, ky, [1, k», I, such that (1, k;, ;) satisfies TFFT in
case (3) and (1, k, I,) satisfies TFFF and T, (ki,11) = T,(ko, ). But |T,(ky, 1)™| # [T,(ki, )™
in (1), a contradiction. Also I',(ky, ) # Zs in case (2), a contradiction. Now suppose for
contradiction that I';,(ky, ) = Z + Z * Z,9, then the presentation P,(k,, [;) is an aspherical

of deficiency zero, and since Z = Z * Z9 has a presentation of deficiency 2 (namely the
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presentation (x, v,z | z!9 = 1)), a contradiction. Suppose for contradiction that I',(k,, ;) =
Z + Z, then the presentation P, (k, l») is an aspherical presentation of Z = Z of deficiency
zero, and since Z * Z has a presentation of deficiency 2 (namely the presentation (x,y | )),
a contradiction.

Inline8in Table 5.2, whenn = 3or 6 mod 9 (the case TFTF), thenT,(ky, L) = Z+Z+Z.,,y =
(2% - (—1)§) /3. we only consider cases (3), (4), (5), since the value of n is different in cases
(1),(2). T'u(ky, I) does not imply cases (4) above, since P,(ki, [;) is aspherical presentation
of deficiency zero, now suppose for contradiction that I';(ki,[1) = [y(ky, 1) = Z + Z + Zy9,
then the presentation P,(k,, [;) is an aspherical presentation of Z = Z + Zy9 of deficiency
zero, and since Z * Z + Z19 has a presentation of deficiency 2 (namely the presentation
(x,y,z|z" = 1)), a contradiction. Also I',(ky, ) = Z+Z+Z.,, % Z.+Z.» Zyo in (4) since y # 19.
And T (ky, ) = Z*Z +Z, = Z + Z only when n = 6, a contradiction. O

In most of cases we showed that the condition (D) is preserved under isomorphisms, but
in case (ii) we do not know if there any parameters n, ky, I, k», I, such that (1, k;, ;) satisfies
FFFT and (n,ky, ) satisfies FFFF and I',(ky, 1) = I'y(k, I5). Since that both of the groups
T, (ki, 1), Tu(ks, 1) have infinite order and T,(k1, 1), T, (k2, 1,)™ have finite order. Also both

of presentations P, (ki, [1), P,(kz, I,) are aspherical. Similarly for part (iif).

5.2 Combinations of (A), (B), (C), (D) that are not possible for
n>12

Here we shall show why the eight combinations FITF,FTTT, TTTF, TTFF, FTFF, FFTT,
TTTT, TFIT are not possible when n > 12.

Lemma 5.2.1. Suppose that (n,k,1) = 1,k # I. Then the combinations FITF, TTTF, TTFF, FTFF

are not possible.
Proof. Since that when (B) holds then (D) holds, therefore proof is done. O

Lemma 5.2.2. Let n > 12, if (n,k,1) = 1,k # 1, and (C), (D) hold. Then (A) holds, and therefore
the combinations FFTT, FTTT are not possible.
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Proof. We shall show that when (C), (D) are true, then (A) is true. This is enough to show the
combination FFTT, FTTT are not possible. Now (C), (D) are T, this means that n = 0 mod 6
(tirst part of A holds). Assume for contradiction that second part of (A) does not hold
(k +1# 0mod 3). Now let n = 6m,m > 2. If C part one (3] = 0 mod 6m) holds, therefore

I =2m or | = 4m. Now by considering (D) is T, we have three cases for each value of |
o [ =2m

1. If 2(k + 1) = 0 mod 6m, therefore (k + 1) = 0 mod 3m, so (k+1I) = 0 mod 3, a

contradiction.

2. If 2(2] = k) = 0 mod 6m, therefore (2] — k) = 0 mod 3m, so k = 2] mod 3m then

k+1=3l=0mod 3, a contradiction.

3. If 2(2k —I) = 0 mod 6m, therefore (2k —I) = 0 mod 3m, so 2k =  mod 3m, therefore

k +1 =3k =0mod 3, a contradiction.
e [=4m
1. If 2(k + 1) = 0 mod 6m, therefore k + = 0 mod 3m, so k+1 = 0 mod 3, a

contradiction.

2. If 2(2l = k) = 0 mod 6m, therefore (2] — k) = 0 mod 3m, so k = 2] mod 3m,therefore

k+1=3l=0mod 3m, and then k + [ = 0 mod 3, a contradiction.

3. If 2(2k—1) = 0 mod 6m, therefore (2k —I) = 0 mod 3m, so 2k = [ mod 3m, therefore

k +1 =3k =0mod 3, and then k + [ = 0 mod 3, a contradiction.

If (C) part two (3k = 0 mod 6m) holds, therefore k = 2m or k = 4m, by similar argument
we used above we will get that (A) is T. If (C) part three (3( — k) = 0 mod 6m) holds, then
[ — k = 2m mod 2m, therefore

l—k=2am (a€Z). (5.3)
If (D) is T we have

1. If 2(k + ) = 0 mod 6m, then (k + [) = 0 mod 3m, so (k + [) = 0 mod 3, a contradiction.
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2. If 2(2] — k) = 0 mod 6m, then 2] — k = 0 mod 3m, therefore
21-k=3fm (B € 2). (5.4)
By (5.3), (5.4), we have k = (35 — 4a)m, | = (3 — 2a)m, therefore
k+1=6(-am
therefore k+1=0 mod 6m
k+1=0 mod 3.
A contradiction.
3. If 2(2k — I) = 0 mod 6m, then 2k — I = 0 mod 3m, therefore
2k—=1=3ym (y€Z). (5.5)
By (5.3), (5.5), we have k = (3y + 2a)m, | = (3y + 4a)m, therefore
k+1=6(y+am
=k+1=0 mod 6m
=k+l=0 mod3 a contradiction.
O

Now we show that the case TTTT only occurs when n = 3 or n = 6, and the case TFTT

only occurs when n = 12. We study these cases in more detail in Chapter 6.

The following lemma is stated without proof in [EW10, page 761, line 12]

Lemma 5.2.3. For n > 6 there are no values of k, 1,k # 1,(n,k,I) = 1,1 < k,I < n—1 such that

(A)(B)(C)(D) are TTTT.

Proof. (A)is T gives that n = 0 mod 3, and | = —k mod 3. Assume for contradiction that
n = 3m,m > 2. If 3|k then 3|l so 3|(n,k,I) = 1 contradiction, therefore 3 /k and 3 AL If (C)
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part one (3] = 0 mod 3m) hold, therefore I = m or [ = 2m. Now by considering (B) is T we
have three cases for each value of |

When | = m we have,

1. If k + 1 = 0 mod 3m, then k = 2m mod 3m. Therefore 1 = (n,k,I) = (3m,2m,m) = m, a

contradiction.

2. If 21 — k = 0 mod 3m, then k = 2m mod 3m. Therefore 1 = (n,k,1) = (3m,2m,m) =m, a

contradiction.

3. If 2k — I = 0 mod 3m, then 2k = m mod 3m. Therefore k = 2m mod 3m,so 1 = (n,k,[) =

(3m,2m, m) = m, a contradiction.
When [ = 2m we have

1. If k+1 = 0 mod 3m, then k = m mod 3m. Then 1 = (n,k,I) = 3m,m,2m) = m, a

contradiction.

2. If 2 — k = 0 mod 3m, then k = m mod 3m. Then 1 = (n,k,I) = (3m,m,2m) = m, a

contradiction.
3. If 2k — I = 0 mod 3m, then k = m mod 3m. Then 1 = (3m,m,2m) = m, a contradiction.

If (C) part two (3k = 0 mod 3m) hold, therefore k = m or k = 2m, by considering B and
using similar argument we used above we will get similar contradictions. If (C) part three

(3(I = k) = 0 mod 3m) hold, therefore I — k = m mod 3m , by considering B we have

1. If k+1 = 0mod 3m, and [ — k = m mod 3m, therefore | = 2m,k = m,so 1 = (n,k, 1) =

(3m, m,2m) = m contradiction m > 2.

2. If 2l —k = 0 mod 3m, and [ — k = m mod 3m, therefore [ = 2m,k = m,so 1 = (n,k,I) =

(3m, m,2m) = m contradiction m > 2.

3. If 2k — I = 0 mod 3m, and [ — k = m mod 3m, therefore [ = 2m,k = m,so 1 = (n,k,I) =

(3m, m,2m) = m contradiction m > 2.
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In [EW10, page 774] it was observed without proof that in the case FFFT we have
[k, 1) = T,(1,5 —1). The following Lemma gives a proof of that observation, and shows
that the observation also holds in particular for the case TFFT and in general for all cases

—F — T. This result will also be needed for the proof of Lemma 5.2.5
Lemma 5.2.4. If (n,k,I) = 1,k # I, and (D) hold and (B) does not hold then T',(k,I) = T',(1,5 — 1)
Proof. If (D) holds then n is even and we have three cases to consider

1. If2(2k—1) = 0 mod n then (2k —I) = 0 or 5 mod n but (B) is F therefore (2k —I) = 5 mod
nsol =%+ 2kmod n. Using part 4 of Lemma 5.0.10, we have I',(k, ) = I, (k, 5 + 2k) =
Lk, 5 = k).

2. If 2(2I = k) = 0 mod n then (2] — k) = 0 or § mod n but (B) is F therefore (2 — k) = %
mod 7 so k = 5 + 2¢ mod n, by using number (2), (4) in Lemma 5.0.10 we can see

Tk, 1) = Tu(% +21,1) = T, (1, 2 +21) = T, (1, 2 = 1) = Ty (ky, & — ky) where ky = L.

3. If 2(k + ) = 0 mod n then (k + ) = 0 or § mod n but (B) is F therefore (k +[) = 5 mod n

= [ =% — kmod n, so we can write I',(k,[) = I',(k, 5 — k).

It suffices to consider I'y(k,[) = T'y(k,5 — k). Now since 1 = (n,k,I) = (n,k, 5 — k) then
(n,k,5 —k) =1, and thus that (5, k) = 1. Letd = (n,k, 5 — k) therefore d|k + (5 — k) = 5 which
means d|(5, k) so (n,k, 5 —k)I(5,k) so (5,k) = (n,k, 5 —k) =1.

Suppose that k is even then since (5, k) = 1 we have that 7 is odd, let k; = § — k. Then
k; is odd, and by using number (2) in Lemma 5.0.10 we have I'y(k, 5 — k) = T',(5 — k, k) =
[u(k2, 5 — ko). But (ky, n) = 1,50 T'y(ky, 5 —k2) = T',(1, K(5 — 1)) by number (5) in Lemma 5.0.10
where Kk, = 1 mod 7, therefore I'y(kz, 5 — k) = T',(1,5 - 1).

So we may assume kis odd so (5,k) =1 = (n,k) = 1, and by using Lemma 5.0.10 we may
assume thatk = 1. Then T, (k,]) = I'y(k, 5 —k) = I',(ak, a(5 —k)) = I',(1, a(5 —k)) where ak = 1
mod 71, (n,a) = 1 which implies that a is odd, therefore I',(1, a(5 — k)) = I';,(1,a.5 = 1) =
I'w(1,5 —1). Thatis I'y(k,I) = T,(k, 5 —k) =T,(1,5 - 1) O

Lemma 5.2.5. Suppose that (n,k,1) = 1,k # I,k # 0 mod n, I # 0 mod n. If n # 12, then the

combination TFTT is not possible.
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Proof. (A),(D) are T, T give that n = 0 mod 6, and | = —k mod 3. Lemma 5.2.4 implies
that I'y(k,[) = I',(1,5 — 1). If n = 6, the only cases imply that (A) is T, and (n,k,I) = 1
are I'4(1,2),T6(1,5),Tc(2,1) ,T¢x(5,1) , this contradicts (B) is F. When n = 12, we have
I'12(1,5) implies that ABCD are TFTT. Now when n > 12 assume for contradiction that
n = 6m,m > 2. If 3k then 3|l so 3|(n,k,I) = 1 contradiction, therefore 3 fk and 3 /I If (C)

part one (3] = 0 mod n) hold, therefore | = 2m or | = 4m. Now by considering (D) is T, (B)

is F we have three cases for each value of /

When [ = 2m we have,

1. If 2(k + I) = 0 mod 6m, therefore (k + ) = 0 mod 3m, so k = m mod 3m.

1=(nkI) = (6m,m,2m)=m,a contradiction.

2. If 22l — k) = 0 mod 6m, therefore (2/ — k) = 0 mod 3m, so k = m mod 3m.

1=(n,k,I) = (6m,m,2m) =m,a contradiction.

3. If 22k — 1) = 0 mod 6m, therefore (2k — ) = 0 mod 3m, so k = m mod 3m.

1=(nkI) = (6m,m,2m) = m, a contradiction.

When [ = 4m we have,

1. If 2(k + I) = 0 mod 6m, therefore (k + 1) = 0 mod 3m, so k = 2m mod 3m.

1=(nkI) = (6m,2m,4m) = 2m, a contradiction.

2. If 2(2] — k) = 0 mod 6m, therefore (2I — k) = 0 mod 3m, so k = 2m mod 3m.

1=(nkI) = (6m,2m,4m) = 2m, a contradiction.

3. If 2(2k — I) = 0 mod 6m, therefore (2k —I) = 0 mod 3m, so k = 2m mod 3m.

1=(nkI) = (6m,2m,4m) = 2m, a contradiction.

Then

Then

Then

Then

Then

Then

If (C) part two (3k = 0 mod 6m) hold, therefore k = m or k = 2m, by considering (B) and

using similar argument we used above we will get similar contradictions. If (C) part three

hold, we have

3I-k)=0 mod 6m
=/-k=0 mod 2m

=I1-k=2ma (ae€Z)

(5.6)
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Now by considering (D) is T we have three cases

1. If

2k+1)=0 mod 6m

=>k+[/=0 mod 3m

= k+1=3mp (BecZ) (5.7)
Thus, substituting (5.6) from (5.7) gives k = G _22 “)m, and we know that k is an integer.
(Bp+2a)ym

Also adding (5.7) and (5.6) gives | =

>—, and we know that [ is an integer.

) = 1, a contradiction.

2. If

22I-k)=0 mod 6m
=2l-k=0 mod 3m
=2l-k=3mp’" (B €Z) (5.8)

Then (5.8) — (5.6) gives | = (3 — 2a)m, (5.8) — 2.(5.6) gives k = (3’ — 4a)m, therefore
m|(n, k,I) = (6m, (3 — 4a)ym, (3f" — 2a’)m) = 1, a contradiction.

3. If

2k-1)=0 mod 6m
=2k-1=0 mod 3m
=2k—-1=3mp"” (B” €Z) (5.9)

Then (5.9) + (5.6) gives k = (36" + 2a)m, (5.9) + 2.(5.6) gives | = (3" + 4a)m, therefore
m|(n, k,I) = (6m, (3 + 2a”)m, (3 + 4a’”)m) = 1, a contradiction.
O

Theorem 5.2.6. Suppose that (n,k,I) = 1,k # . If n > 12 then the following 8 combinations
FITE TTTFE, TTFE, FTFE, TTTT,FFTT,FITT, TFTT of (A)(B)(C)(D) being true or false, are not
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possible.

Proof. Lemma 5.2.1 shows that the combinations FI'TF, TTTF, TTFF, FTFF are not possible.
Lemma 5.2.3 shows that the combination TTTT is not possible. Lemma 5.2.2 shows that
the combinations FFTT, FITT are not possible. Lemma 5.2.5 shows that the combination

TFTT is not possible. ]

5.3 f@)(n) for the six cases FFTF FTFT, TFTE, TTET, FEFT, TFFT

The five cases FFTF,FTFT, TFTF, TTFT,FFFT have been studied in [EW10] (Information
can be seen in Table 5.1). The combination (FFTF) in Table 5.2 represents (FFT) in Table 5.1
(since FFTT is impossible see Lemma 5.2.2), we have the group I',(k, [) is metacyclic, and
Tk, )™ = Z,,a = 3(2"* — (-1)"3), and the presentation P,(k,]) is not aspherical. The
combination (FTFT) represents (FTF) (if B true D true), and we have the group I',(k,[) =
Zs, and T, (k, 1) = Z5, and the presentation P,(k,[) is not aspherical. The combination
(TFTF) represents (T'FT) (since TFTT is impossible see Lemma 5.2.5), we have the group
T,k 1) = Z+Z+Z,, and T,(k,)" = Z X Z X Z, where y = (23 = (-1)"3)/3), and the
presentation P, (k, I) is not aspherical. The combination (TTFT) represents (I TF) (since TTFF
is impossible see Lemmab.2.2), and we have the group I',(k, ) = Z+Z, and T',,(k, N ~7xZ,
and the presentation P, (k, [) is not aspherical. The combination TFFT has not been studied
in [EW10], but they studied a special case of it when n = 18, they showed that the group
is T1g(k,]) = Z + Z * Z19, and T1g(k, )" = Z X Z. X Z19, and the presentation Pig(k,[) is not
aspherical. We study the group I';(1, 5 — 1) in more detail in Section 5.5.

Lemma 5.3.1 below comes from Lemma 2.4. of [EW10].

Lemma 5.3.1. If (n,k,I) = 1,k # | and B holds then I',(k,1) = T',(1,2). If, in addition, (A) holds
thenT,(1,2) = Z. % Z,; otherwise I',(1,2) = Zs.

Here we record our results about f®)(n) of the six groups we mentioned above where

k+#1

Lemma 5.3.2.

f(TTFT)(n) _ 1 Ifn=0mod3, n>9

otherwise
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Proof. If n=0mod 3,n >9. Letk = 1,1 = 2, then (A), (B), (C), (D) are TTFT, so fTD(n) > 1,
but Lemma 5.3.1 implies that T, (k, ) = T,(1,2) = Z+Z, so fTTFD(n) < 1,therefore fTTFD(n) =
1. The reason we consider n > 9 is that I',,(k,[) = I',(1,2) contradicts (C) is false when n = 3

or 6. If n = 1,2 mod 3 this is a contradiction with A is T, therefore fTTFD(n) = 0. |

Lemma 5.3.3.
If n=1,2mod3

f(FTFT)(n) —
If n= 0mod3

Proof. If n =1,2mod 3 and let k = 1,1 = 2, then (A), (B), (C), (D) are FTFT, so ffTD(n) > 1,
but Lemma 5.3.1 implies that T, (k, ) = T,(1,2) = Z3,s0 f*TD(n) < 1, therefore fFTFD(n) = 1
. Suppose n = 0 mod 3. By Lemma 5.3.1 we have I, (k,[) = I',(1, 2), since I',(1,2) implies A
is T, therefore by Theorem 5.1.1 T, (k, [) implies A is T, this is a contradiction and f#7FD(n) =
0. m|

Lemma 5.3.4.

f(FFTF)(n) _ If n=0mod3,n>6

0 otherwise

Proof. Let n = 0 mod 3. Then let n = 3m,k = 1,1 = m and m = 0 or 1 mod 3 then
(A),(B),(C),(D) are FFTF, therefore f(n)ff™ > 1. But [EW10, Lemma 3.4] implies that
when (C) holds and (A) does not then T',(k,I) = B((2" — (-1)")/3,3,22"/3,1) of [BW17], so
f(n) < 1 therefore fF™(n) = 1. If n = 1,2 mod 3, then this contradicts C is T, therefore
F)FFTP = 0 O
Lemma 5.3.5.
£ gy = If n=3or6mod9
If n % 3or6 mod9
Proof. Letn=3 mod 9. Let k = 1, = § + 1, then (A),(B),(C),(D) are TFTF, therefore
f@)TFEH > 1. But [EW10, Lemma 2.5] implies that, when (B) does not hold and (A), (C)
both hold then I'y(k, ) = Z + Z + Z,, where y = (25 — (-1)5)/3, so fTTH(n) < 1, therefore
fTFH(n) = 1. Similarly when n = 6 mod 9, letk = 1,1 = £, then (A), (B), (C), (D) are TFTF,
therefore f(n)"™9 > 1. But [EW10, Lemma 2.5] implies that T(k,[) = Z x Z = Z,, where
y = (25 = (=1)3)/3, s0 fTFH(n) < 1, therefore fTF™(n) = 1. If n = 1,2,4,5,7 or 8 mod 9 that
contradicts (A) is T therefore fTFTD(n) = 0. |
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Lemma 5.3.6.

FIFFFD) (7) = If n=2,4mod6

0 otherwise
Proof. Letn =2,4mod 6, if k = 1,1 = & — 1 then (A), (B), (C), (D) are FFFT, so f**(n) > 1.
But Lemma 5.2.4 implies that when D holds and B does not then I',(k,[) = I',(1,5 — 1) so
fEFED (1) < 1 therefore fFFFD(n) = 1.
Suppose n = 0 mod 6 then 7 = 0 mod 3, if 2(k + ]) = 0 mod #, then (k + ) = 0 mod n/2
contradicts A is F. If 2(2k — ) = 0 mod 7 then

2k —1=0mod n/2

= [ = 2kmod n/2
= k+1= 3kmod n/2
= k+1= 3kmod 3

= k+1= 0mod 3 contradicts (A) is F

Similarly if 2(2] — k) = 0 mod n. Then k + I = 0 mod 3 which contradicts (A) is F, therefore
fEED() = 0. Then n = 1,3,5 mod 6, contradicts with D is T, therefore fFD (1) = 0. |

Lemma 5.3.7.

FUFFD () = 1 Ifn=0mod6, n>18

otherwise

Proof. If n = 0 mod 6 ,n > 18. Thenlet k = 1,/ = 5 — 1. Then (A), (B),(C), (D) are TFFT,
so f(n)TFD > 1. But Lemma 5.2.4 implies that where ABCD are TFFT then T,(k,[) =
[,(1,%-1)so fTFD(n) < 1 therefore fT¥D(n) = 1. The reason we consider n > 18 is
that I',(k,I) = T',(1,5 — 1) contradicts C is false for n = 6 or 12. If n = 1,3,5 mod 6, then
this gives a contradiction to D is T. If n = 2,4 mod 6 (this contradicts A is T), therefore

FIFFD () = 0, o

We combine these results in Table 5.2, where we can easily determine the number
of I',(k,I) groups for any value of n > 12. For the six combinations FFTF, FTFT, TFTF,
TTFT, FEFT, TFFT, we denote the number of groups by ¢ (1), which we define as follow
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Definition 5.3.8. Let
h(n) — f(TTFT)(n) +f(FTFT)(n) +f(FFTF)(n) +f(TFTF)(n) +f(FFFT)(n) +f(TFPT)(n) (510)

Lemmas 5.3.2, 5.3.3, 5.3.4, 5.3.5 give the values of fTTFD(n), fFTED(y), fFFTH(17) and
fTFTO(11), so the problem of calculating f@ (1) (in Definition 5.0.8) is reduced to calculating

FEFP() and fTFO(n), i.e., f(n) = h(n) + fEFFP(n) + FTFD(n).

5.4 f@<d)(y) for the cases (FFFF), (TFFF)

It has shown in [EW10] that in the case (FFFF), the group I',(k,[) is infinite, and has a finite
abelianization of order greater than one, and the presentation P,(k, /) is aspherical. In the
case (TFFF), the group I',(k, ) is large, and has an infinite abelianization, and the presenta-
tion P, (k, ) is aspherical. We are unable to obtain the exact value of f(n)D, f(n)TFHE but
we do obtain lower bounds for certain values of n. In Chapter 6 we obtain upper bounds
for f(n) when n has at most two distinct prime factors, and upper bounds for f(n) when n

has at most three distinct prime factors.

Lemma 5.4.1.

f(TFFF)(n) If n=0mod3, n>21

=0 otherwise

Proof. If n = 0 mod 3,n > 21. Then I',(1,5) implies that (A), (B),(C), (D) are TFFF, so

FIFED () > 1. If n = 1 or 2 mod 3, this contradicts A is T therefore fT5(n) = 0. |
Lemma 5.4.2. Ifn > 10 then f*#H(n) > 1.
Proof. 1. Letnbeevenifk=1,I =%, then (A)(B)(C)(D) are FFFF, then f**(n) > 1.

2. Let nbe odd if k = 1,1 = 3, then (A)(B)(C)(D) are FFFF, then f*ffH(n) > 1.

O

In the following lemma d denotes the minimum number of generators of T,(k, ) (see

Definition 4.2.1)

Lemma 5.4.3. Let n = 8q,q > 1, then d(T,,(1,3))®) > 3.
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Proof. We will prove that I',(1,3)*® maps to I's(1, 3)®, first lets suppose that n = 84,9 > 1

b~ - b
r8q(1/3)a = (X0, X1, -eer X8g—1 | xixi1xiv3, 1=0,1, ..., 8q -1)°

— - b

> (X0, X1, -y X8g-1 | XiXit1Xi43, X% = Xjyg, 1 =0,1,...,8q — 1)°

: b b
- <x0/ X1y w00y X7 | XiXiy1Xiy3, 1 = 0/ 1/ ey 7>a = 1—'8(11 3)a

Now since Tg(1,3)"” = Z3 ® Z3 ® Z3 (see Table 6.1) which generated by 3 elements, then
d(T,(1,3)%) > 3. O

Lemma 5.4.4. Ifn = 84,9 > 2 Then T,,(1,n/2) 2 T,,(1,3), so fEFEDm) > 2.

Proof. Letk =1, =n/2and k =1,/ = 3 then I',(1,n/2),T',(1,3) imply that (A), (B), (C), (D)
are (F,F,F, F). By Lemmas (5.0.9, 5.4.3) we know that I',(1,1/2)? = Z,,, m = 2"/2—1 therefore
d(T,(1,1n/2)™®) =1, and d(T,,(1,3)*) > 3, therefore I,,(1,1/2) % T,,(1,3), therefore fEFED (1) >
2. m|

Lemma 5.4.5. Let 4n,n # 0 mod 16, then T,,(1, %) # T,,(1, %) so, fEFFR(n) > 2.

Proof. T',(1,5),T,(1,%) imply that (A), (B), (C), (D) are FFFF, and since
Gpr(x026x1)™ = Gi(xx12)?. Then by Corollary 3.3.3 (1), (3) we have

a. [Co(xoxrx))™®| = [Tax(xoxpxi) | = [(=1)F**1(2¥ — (=1))], and then
ICs(1, )| = [Ty (xox122)™| = |(=1)2*1*1(2% — (=1)2)], since % is even, therefore

ITa(1, )] = |22 = 1] = (2% + 1)(2% — 1)|

b. [Ca(rorixn)®] = [Cae(xoxmo™] = [(~DF1 (25 = (1)@ + 1) = (-1)(v2)-2cos ZF)],
and then
Tu(L, )1 = [Fa(eoxixg) ] = (=121 = (DT +1) ~ (~1)¥(v2) 2 cos "]

To prove that [I',(1, 1yab| = |T,(1, £)2°| for given values of 1, we will consider the absolute

value of the abelianization and we have two cases

1. If n = 4 or 12 mod 16 then ¥ is odd so
Tu(L, )] = [[2% + 1][(2% + 1) + (v2)#.2 cos 527 and cos &% = £ so
n( S5l =28 + 1][(27 + 1) = 2.(v2)17'] |, and since i2.(\/2)1‘1 # F2 and hence
IC,(1, 5)°°] # [T,(1, %))
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2. If n =8 mod 16 then 7 is even so
IT.(1, 2] = [[2% — 1][2F + 1) - (v2)#.2 cos =27 ]| and cos “=2%
IT,(1, 2 = |[2% — 1][(27 + 1) + 2.(v/2)?]l, and since +2.(2)7 # 0 we have that
IT.(1,2)%®] # [T,(1,2)%®|, therefore T, (1,%) % I',(1,7). Note that when n = 0 mod
16, therefore cos = S)H = 0 and then |T,(1, )|
conclude that I',(1, %) # I'u(1, §).

= +1 implies that

IR

IT(1, %)™| = [22 — 1|, so we can not

O

From Proposition 5.0.9 we know that I[',(1,%)* = Z This leads us to leave the

27410
following question

Question. Is the group I, (1, £)* = =7, ,ornot?

Lemma 5.4.6. Let 12|n,% ¢ =0or4 mod 6, then I',(1,5),T,(1, %), Fn(l,%) are pairwise non-

isomorphic, so fFFED () > 3.

Proof. T',(1,%5),T(1,%),Tx(1, %) imply that (A), (B), (C), (D) are FFFF, and by using Corollary

3.3.3 (similar to proof of Lemma 5.4.5) we have
a. [Du(L,§)™ =128 - 1= (2¢ + (2% - 1)|

b. [T,(1, 2)%] = [[2% + (=1 #1[(2% + 1) + (-1)F+!(y/2)#.2 cos 22|

¢ ITu(L, £)®] = |[2% + (~1)F1J[3E + 1) + (~1)E+ (V3)# 2 cos L2E][2 + (1) +1 2 cos U522

We shall prove that I',(1, 5),I',(1, %), ,(1, £) are pairwise non-isomorphic for given values

of n. Working mod 8 we get,

T, g)ab| —2f-1=1 mod38 (5.11)

|rn(1/ Z)abl = |[2§ + (_1)%“][(2% + 1) + (—1)%“(\/2)%‘2 cos (Tl 168)71“
= |[2§ + (—1)%+1][(2§ +1)+ (_1)§+1(2)@ S (n 168)7'(“

=[0+(-1)i"][0+1+0] mod 8
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IT.(1, %)ab| = (-1)i*' mod 8, this gives (5.12)
IT,(1, Z)ﬂb| =1mod8 If n=12or36mod 48,1 > 24 (5.13)
IT.(1, g)"‘bl = 1mod8 If n=24mod 48 (5.14)
(1, 2701 = l12F + (DEIEE + 1)+ () (v3)f 2c0s T2 4 (-1 200 2T
= [0+ (=1)s"1[(1 + 1) + (-1)6*1.(1).2 cos %1{2 —2¢os %} mod 8
= —1.[2 - 2cos %1{2 ~2cos %1 mod 8
=4.[1 - cos %][1 — Cos %] mod 8 which is even
#+1 mod8 (5.15)

Then by (5.11),(5.12), (5.15), we have |T,y(1, 2)%°| # |Tu(1, 2)%°, [T,(1, )] # [T,(1, £)2°|, therefore
In(1,5) 2 Tu(1,3), Tn(1,5) 2 Tu(l, 7)

Now if 7 = 12 mod 24 then by (5.11),(5.12), we have [T,,(1, £)2| # [T,,(1, )|, therefore I',(1, 5)#
(1, ).

If n = 24 mod 48 then 7 is even, and

- 8 n n N+
cos = ™ 1o, Z)ab| — 2% —1][2% + 1) £ 257
,and since ¥ 25" # 0 = [T,(1, g)a‘ﬂ £ Ta(l, g)ab| (5.16)

Therefore I'y(1,7) # I'y(1,7). Note that when n = 0 mod 48, therefore cos <n1§>n = 0 and then

T,(1, %)abl =~ |1, %)abl = |22 — 1|, so we can not conclude that ', (1, 5) % I'u(1, 7) (here we can also

ask same question that we asked in Lemma 5.4.5). ]

5.5 ThegroupI',(1,5-1)

Lemma 5.2.4 shows that in the two cases TFFT, FFFT the groups I',,(k,[) = T',(1, 5 — 1). Here
we study this group in each case as part of our investigations into I',(k, [) groups.

The case TFFT requires that n = 0 mod 6, and [EW10, Lemma 2.2] implies that I',(1, 5 —
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1) is infinite. We prove the following theorem, and we will use in the proof the following
equation which is the equation (1.12), where B(G,(w)™) is a torsion-free rank of I',(1, % — 1)™

(see Definition 1.4.5).
B(Gu(w)™) = deg(ged(f(t), §(t))) (5.17)

Where f(t) is the polynomial associated with the abelianization of the group (see Defini-

tion 1.4.1), g(t) = t" - 1.
Theorem 5.5.1. If n = 0 mod 6 then the torsion-free rank of T,,(1,% — 1) is 2.

Proof. Letn = 6mthenT’, (1,5 — 1)" = Tg,(1,3m—1)", and now the associated polynomial of
Tom(1,3m—1)"is f(t) = 1+t + "1, By (5.17) we have B(T',(1, % — 1)) = deg(gcd(f(t), g(1))),
where g(t) = " — 1 = t® — 1. Now by simplifying f(t), g(t) we get

f=1+t+m"

=(1+t+2) PP - 6 T 4P+ 1)
f(t) = h(t).F(t) where
h(t) =1+t+ 1

F(t) = £33 — pdm=d 4 =6 _p3m=7 4 4+ -+ +1
Now F(t) can be simplified as follow

F(t) = 33 — pdm=d =6 _p3m=7 4 4+ - +1
=(t-1D)E" T+ "+ L+ P+ )+ 1

=(t-DAE" P 4 4P+ 1)+ 1
Since

B AP D)E+t+ D) =" P 4P+
N I L Ly
I L T e |

=1+t+2+.. + "0 4P
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SO

T+t4+ 24+ "0 4Pt
t2+t+1

E(t) = (t — DX

B (tSm—3 _ 1)t2
T ORP+t+1

)+1, P+t+1#1

+1, P+t+1+#1

Pl 2 22 b4 1

F(t) = , P+i+1#1
® 2+t+1 *
Pl 41
= P4t+1#1
2Z+t+1 *
g(t) =1 -1

= (144 222 —f0m=3  fom=> _fom=6 o _ P4t —-1)
= h(t).G(t) where

G(t) = o2 — fom=3 4 fbm=> _4bm=6 1 P 4t—-1

Therefore (f(t), §(t)) = h(t)(F(¥), G(1)).

Now G(t) has the roots A, = e%, q=0,1,..,6m—1, g # 2m,4m (since these values
give the roots of h(t) which are _1+T‘/31 =¥, 4%@ =e7). Now 1= |Aql = /L,A_q SO A;l = /\_q
Now assume for contradiction that A, is a root of F(t) therefore

A+ Ay +1
F(Aq) - 0 = 2— =
Ag+A,+1

= A4l +1=0= A =—(4,+1) (5.18)
Similarly we have

FA)=0= A"V =—(A1+1) (5.19)
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By multiplying (5.18) and (5.19) we get

1=1+A,+A"+1

-1 _
Ag+ A =-1
= e% + e_éqnm =-1
2qmi 2qmi -1
2 —_— = —1 = _
cos - cos - 5

therefore q = 2m or 4m (contradiction), so A, is not a root of F(t) so F(t), G(t) have no common
roots and the greatest common divisor of f(t), g(t) is 1 + ¢ + t? therefore the torsion-free rank

of I,(1, & — 1)% is 2. O

The case FFFT requires that n = 2 or 4 mod 6, and [EW10, Lemma 2.2] imply that
I,(1,% —1)" is finite. We provide in the following theorem a formula that computes
the order of abelianization of this group, which is similar to the formula that given in

Theorem 1.5.7 for computing the order of abeelianization of F(2, 1) groups.

Theorem 5.5.2. Let n = 2 or 4 mod 6, then |T,(1, 2 — 1)®| = 3<Lg +1+ (—1)%) where L, is Lucas

number for order n.

In order to obtain the order of I',(1,% — 1)®, we will use the following formula of

Corollary 3.2.4 (c) .

p-1
IT i (x0xix,)™| = 11 P}’;j where P};} (k) =1 +0) + (-1 (@) (5.20)
j=
where k,l aremodulon,1<j<n-1and (, = e For the proof we need

Lemma 5.5.3. Let n =2 or 4 mod 6, then

- 51
I Pj,n(l,g 1) = i_[ (1+2 sin(w»
j=0 a=0

jodd
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Proof.
n—1 n-1 -
I1 ]n(1 - =[](1+d+d%") byG20
j=0 j=1
jodd jodd

For j odd Ci(%) = -1 then

n—

_

(1+d-¢)

—_

]:

jodd
let j=2a+1
S o T 2n(2 + 1)
2100 _i(2)a ..
[1Pu0, 2 =1y = [T (1 + e i) - [ (1-+ 2isin (22E2ED))
i=0 a=0 a=0
jodd
And we need
n-1
Lemma 5.5.4. Let n =2 or 4 mod 6, then [] Pj,(1,5-1)=-1
=1
]']even
Proof.
n—-1 n -1
, i j jG-1)
[1Pma5-1 _[[a+d+de)
j=1 ] 1
jeven jeven
For j even Cj ® =1 then
n—1 n—1
[[Pua3 ]
Pj,n(1,§ 1+C +C
j=1 =1
jeven ]even
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n—1 n-1
B . 9
=[](&) ]](@+a +1)
=1 =1
jeven jeven
n—1 n-1

Il
—~
(@
S
~
—_—
| I
==
N—

j=1 J=1
jeven jeven
n-1 3j
n—1 J=1
_ —j\ Jeven
- | (C”) n-1 i
.](;:n H (Cn - 1)
) j=1
jeven

n = 2 or 4 mod 6 therefore (3,n) =1 andforj€{1,.,n—1}then3j € {1, .,

Ta-1
j=1

n _ - jeven
[[Pnaz-0=]]@) "7
J=1 J=1 [T -1
jeven jeven ]:1

jeven

so numerator and denominator above cancel and we get

=X )
n—1 " n—1 } j=1 )
- jeven
[Trua.5-v=T]()=c""" =¢>
j=1 j=1
jeven jeven

We also need the following equation which is equation (4.2)

1+ \/5),1 N (1 = \/5),1

L = ( 2 2

We can now proof Theorem 5.5.2

_1}

(5.21)

(5.22)
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Proof of Theorem 5.5.2. Setk =1,1 =3 —1,p = nin (5.20), we get

n-1
n n
Lu(L, 5 =0 =] [ P 5 - DI but
j=0

Pl 5 -1 =1+ + for j=01,..01-1)

Po,n(1,g—1)=1+1+1:3

SH

therefore |I',,(1, % - 1)%| = |3 ]n(l

n—1
n n
=B.] [Pt 5 -0 H Pin(l, 5 = 1)
=1 =2
jodd j]even
from lemmas (5.5.3), (5.5.4)

n
2

2mQa +1
=13.] ] (1 +2isin (M)( )|
a=0
1.1
Z 2m(a +1
=|-3. H 1+2151n 71( ar ))I
= [3.R] (5.23)
3
where  R=[[(1 +Zisin<w) (5.24)
a=0 n

Now the following relation is Equation (10) of [GRO8]

n—1

(1 +2isin —) =1+F,—2F,1 +(-1)"=1—L, + (-1)" (5.25)
]:0
where F,, is Fibonacci number of order n. Therefore

. 1 ) 1 .
1+Zzsm— ﬁ 1+2151n— i_[ 1+2151r1—)
=0

jodd ]vn

-1

=

j=0
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1

11
= [T (1 + 2isin (B2 T (1 + 2isin (3

)

a=0 n a=0 2

b 2na
=R. i by (5.

Rg(1+215m( 7 )) y (56.23)
n—1 .
I (1 +2isin %)

=0 L, -1-(-1)"
R = P = L -1- 1) by (5.25)

(1 + 2isin (27?“))

a=0

and since n = 2 or 4 mod 6, therefore

L,-2

gy ey (5.26)
By (5.22) we have
L,= (1 +2\/5)n + (1 _2\/5)ntherefore Ly = (1 +2\/5)% + (#)%
then [} = (“2—‘/5)” + (1 _2‘/5)” +2(-1)% = L, + 2(-1)? (5.27)

When n = 2 or 10 mod 12 therefore 2 = 1 or 5 mod 6, which is odd number. By substituting
(56.27) in (5.26) we get

= N

L,-2 L,-2

(5.28)

Ly—1-(-1)F Ly

NI=

]
NI= NI
Il
—~

When n = 4 or 8 mod 12 therefore 5 =2 or4mod 6, which is even number. By substituting

(5.27) in (5.26) we get

L,-2 L,-2+4-4
T Li—2 Lo —2

2 2
_(L,+2)-4

R

S D S (5.29)
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Now following on from (5.28), (5.29), when n = 2 or 4 mod 6, therefore

R=Ly+1+(-1)* (5.30)

5.6 When does I',(k,[) = I"(K',I') imply n = n'?

This is similar to Question 1.5.16, but here we consider I';,(k, [) instead of G, (m, k).
From Table 5.2 T, (k,I) = I';,(k’,I") implies n = n’ in the following cases

(a) For the case (FFFT), since if n = 2 or 4 mod 6, |T,(k, )®| = 3(L% +1+ (—1)5).

It is clear since Lucas numbers are increasing that 3(L§ +1+ (—1)%) = 3(L g+ 1+ (—1)%’)
impliesn = n'.

(b) The case (FFTF), since if n = 0 mod 3, I,,(k, [)** = Z,,,a = 3(2"/3 — (=1)"/3). It is clear
that (2"/3 — (=1)"/3)/3 = 2"/ = (-1)"/3)/3 implies n = n’.

(c) The case (TFTF), sinceif n = 3or 6 mod 9, T,y(k, )" = ZXZXZ,,y = (2" —(-1)"%)/3.
It is clear that (2% — (=1)"/3)/3 = (2"'/3 — (-1)"/%)/3 implies n = n’.
In the following cases I',(k,I) = I'(k’,I’) does not imply that n = n’

(a) The case (FTFT), for example I';(1,2) = I'14(1,2) = Zs.

(b) The case (TTFT), for example I'g(1,2) = T'15(1,2) = Z + Z.
In the other cases (TFFT), (FFFF), (TFFF), we donot know it I',(k,I) = I'(k’, ') implies n = n’

or not.



Chapter 6

Gn(m, k), I'y(k, ) groups when n has few

prime factors

The number of isomorphism types f(n) of the groups G,(m,k),n = pl,p is prime, was
conjectured in [COS08, Conjecture 8] (restated as Conjecture 1.5.14). In Section 6.1, we
show that the values given in the conjecture are an upper bound for f(n). Results about
the upper bound of f(n) of T'y(k, I) groups, where n = p*gf, and p, g are distinct primes, will
be seen in Section 6.2. In Section 6.3, we give in Table 6.1 the structure of the I',(k, [) groups
for n < 29, and the precise value of f(n). Finally in Section 6.4 (this section requires (A)
true), we give an upper bound for f(n) of I',(k, ) groups, where n has at most three distinct

prime factors.

6.1 f(n) for G,(m, k),n = p',pis prime, [ > 1
The following proposition was stated in [COS08]
Proposition 6.1.1. [COS08, Proposition 6]

1. G,(m, k)= G,(m,n+m—-k)=G,(n—m,n—-m+k).

2. If (n,t) = 1, then G,(m, k) = G, (mt, kt).

3. Go(2h = 1,21 — 2) = Gyu(@h — 1,1) = Go(1, 2 — 1) = Ga(1,2) = F(2, 2h).

95
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The following lemma is stated in [BV03], [Wil09]
Lemma 6.1.2. [BV03, Lemma 1.3], [Wil09, Lemma 7]

o If (n,k) = 1then G,(m, k) = H(n,t) = G,(t, 1) where tk = m mod n.
o If (n,m) =1 then G,(m, k) = G,(1,k") where k' = kt where tm =1 mod n.

o If (n,k —m) =1 then G,(m, k) = H(n, t) where t(k — m) = n — m mod n.
We recall the following conjecture from introduction, which is Conjecture 1.5.14.

Conjecture 6.1.3. If n = p' for an odd prime p and positive integer I, then f(n) = p' = Z2pt=D -1,
IF1 > 2 then f(2) = 3(2"2).

Theorems 6.1.4 and 6.1.5 show that the values given in Conjecture 6.1.3 are upper

bounds for f(n)

Theorem 6.1.4. If n = p' where p is an odd prime, and 1 is a positive integer, then G,(m,k) is
isomorphic to G,(1,k’) for some k' € {2, ..., plTH} or to G,(t'p, 1) for some t' € {2, ...,pl‘l — 1}, and
hence f(n) < p' — @p(l‘n —1.

Proof. Case 1 If (p',m) = 1 then Lemma 6.1.2 implies that Gp(m, k) = Gu(1,k’) for some
kK,2 <k <p -1 Butif’D’T+1 <k <p' —1thenk” = p' + 1 — K satisfies 2 < k" < ”]TH.
Proposition 6.1.1 implies that G(1, k') = sz(l,pl +1-k') = Gu(1,k”). So the isomorphism
types arise by choosing k’ € {2, ..., pZTH}, This gives plT_l isomorphism types.

Case 2 When (¢!, m) > 1 then (¢, k) = 1 since (p', m, k) = 1, therefore Lemma 6.1.2 implies
that sz(m, k) = sz(ti, 1) where t;k = m mod pl. Since plm we have that p|tk but p does
not divides k therefore plt;, therefore t; € A = {ip,1 < i < (p"' — 1)} (this contains an even
number of elements), this gives p'~! — 1 isomorphism types. Now Proposition 6.1.1 implies
Gpl(ti, 1) = sz(ti, L — 1)

Leta; = —(H' + 72+ .+ 2+ t; + 1) then

ai(ti—=1) = -t + 12+ L+ B+ 1) - 1)
e (o A S ey P DT )|
=1-1

=1 mod pl
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By Proposition 6.1.1, and since (¢/,®;) = 1 we have Gu(ti, ti — 1) = Gulaiti, alti — 1)) =
Gy(aiti, 1), therefore
Gpl(tl', 1) = sz(aiti, 1) (6.1)

Lett; = a;t; mod p' then t; € A, and let o} = —(t;‘1 + t;‘z 4ot t? +tj + 1), therefore similarly
ai(t;—1)=1mod p' (6.2)

Now define a function f : A — A by f() = a;t; mod p' then f(t;) = t; (by hypotheses). We
will show that f(f(t)) = t; mod p'.

We have
ti=ait; modp' by hypotheses
= tj =wit; —a; + modpl
=>ti=aiti-1)+w modpl
=t=1+a; modp
=>ti-1l=uw modpl (6.3)
therefore

f(ft) = f(ait) modp!
= f(t) modp'

= ajt; mod pl by definition

aja;t;  mod pl

ajtj—-1t; modp' by (6.3)

=t; modp' by (6.2)

Then f(t)) = f(f(t;)) = t; mod p', and f(t;) = t; mod p". Now let I be a directed graph with
a set of vertices V = A and a set of edges E = {(t;, f(1;)),1 < i < p'"D — 1}. Then for each
vertex t; € V, we have that the outdegree outdeg(t;) = 1, and we will show that the indegree

indeg(t;) = 1. Letty € Aand ay = —(5' + £ + .. + £ + t + 1), then ay(fx — 1) = 1 mod p'.
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Suppose for contradiction that indeg(t;) > 2. Then there are edges (t;, t;)(t, t;), with t; # t;
mod p'. Then

f(t) =t; mod p'
= aty = f(t;) mod p'
= axtx = a;t; mod pl
= apty — o + o = ajt; — a; + aj mod pl
= ax(ty — 1) + ax = aj(t; — 1) + a;j mod pl
=1+a=1+a;modp
= ax = a; mod p'
= ap(te — 1) = aj(t — 1) mod p'
= 1= aj(te — 1) mod p'
= aj(tj—1) = aj(ty — 1) mod pl
=t;-1=t—1modp' since (a;p) =1

=tj=t modp' acontradiction

Therefore indeg(t;) = 1, and I consists of |A|/2 connected components, each has two vertices
{t;, f(t:)}. Further by (6.1) we have G,(t;, 1) = Gu(ati, 1) = Gu(f(t:),1). Let S C A be a set
formed by taking one vertex from each components of I. Then [S| = |A|/2 = pHT_l, and

for any t; € A, the group G,(f;, 1) = Gp(s, 1) for some s € S. Hence there are at most
1-1_
2

p

isomorphisms types amongst the groups Gi,(ti,l), 1 <i<p™ -1 From the first
part of the proof we have at most ’717_1 isomorphism types when (p',m) = 1, and from

I-1_
second part we have at most ;72_1 ones when (p!,m) > 1. Therefore there is at most

) -1 Iy -1 ! ! -1
p-1  pm -l P 2ppp 4 D) -1
> T3 2 1 2 1=p 4

— 1 isomorphism types among the

irreducible groups G,,(m, k). m|
Theorem 6.1.5. If n = 2! where | is a positive integer, | > 2. Then f(2') < 3(2"2),

Proof. Case 1 1If m is odd, then Lemma 6.1.2 implies that Gy (m, k) = Gy(1,k’) for some k’,
2<k <2'—1.Butif2"'+1 <k’ <2'—1thenk” = 2! +1 -k satisfies 2 < k" < 2! -2-1 = 2I-1,
Proposition 6.1.1 implies that Gx(1,k’) = Gx(1,2' +1—k’) = Gy(1,k”). So the isomorphisms
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types arise by choosing k’ € {2, ...,2""1}. This gives (2! — 1) isomorphism types.

Case 2 When m is even then, (2, k) = 1 since (2!, m, k) = 1, therefore Lemma 6.1.2 implies
that Gy (m, k) = Gu(t;, 1) where tk = m mod 2. Since 2|m we have that 2|tk but 2 does
not divides k therefore 2|t;, therefore t; € A = {2i,1 <i < 2" =1)} = {2,4,...,2" — 2} (this
contains an odd number of elements), this gives 2/~! — 1 isomorphism types.

Now Proposition 6.1.1 implies Gy(t;, 1) = Gu(t;, ti—1). Leta; = —(E ' + 72+ .+ 2 +1;+1)
then

aiti—1)=-E "'+ H2+ .+ £ +H+1)(H-1) mod 2
=t + 42+ L+ 2+ +1)(1-t) mod 2

=1- tf =1 mod?2 since 2|t; . (6.4)

That is, a; is the (unique) multiplication inverse of (t; — 1) mod n. By Proposition 6.1.1, and

since (2, a;) = 1 we have Gu(t;, t; — 1) = Gau(ait;, a(t; — 1)) = Gyu(ajt;, 1), therefore
Gy(ti, 1) = Gy(aiti, 1) (6.5)

When t; = 2, then t; — 1 = 1, and by(6.4) then @; = 1 mod 2/, therefore a;t; = 1.2 = 2 = ¢,.
When t; = 21 then t; — 1 = 271 — 1 mod 2! and since

et -1)=22Y_2'4+1 mod2'=1 mod?2
then a; = 2" — 1 and

aiti= (271 =1)2"" mod 2’
= 220-D) _ 21 mod 2’
=2"1 mod 2/
=t mod?2.
When t; =271 +2, then t; — 1 = 271 + 1 and since

T+ DR +1) =22 +2'+1 mod2'=1 mod 2
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then o; =21 + 1 and
aiti= 271+ )27 +2) mod 2’
=220 4 24 21 4 2 mod 2!

=2"142 mod2' =t mod?2.

Therefore the permutation a; takes the values of {2, 2/-1 2171 1 2} to them self. Now we
choseall t; € B = A —{2,271,2"1 + 2} (this group contains 2'-! — 4 elements, which is even
number), we can consider the permutation a; as permuting B. Let f; = a;t; mod 2' then

t;€B,and leta; = —(té.‘1 + t;‘z + ot t]2. +t; + 1), therefore as before
aj(t;—1) =1 mod 2! (6.6)

Now define a function f : B— B by f(t;) = a;t; mod p' then f(t;) = t;. We will show
that f(f(#)) = t; mod 2".
We have

ti = a;t; mod 2! by definition of ¢;
>t =ait;—a; +a; mod 2!
=>ti=aiti—1)+a; mod 2!
=t =1+a mod2 by (64)
=t -1=qa mod?2 (6.7)
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therefore

f(ft)) = f(ait;) mod?2'
= f(tj)) mod 2!

= ajt; mod 2/ by definition

Oéjf(tz‘) mod Zl

a]-aiti mod Zl

ajtj—-1t; mod2' by (6.7)
=t mod?2 by (6.6)

Then f(t)) = f(f(t;)) = ti mod 2, and f(t;) = t; mod 2". Now let I be a directed graph with
a set of vertices V = B and a set of edges E = {(t;, f(t:)),1 < i < 2"V — 1}. Then for each
vertex t; € V outdeg(t;) = 1, and we will show that indeg(t;) = 1. Suppose for contradiction
that indeg(t;) > 2. Then there are edges (t;,t;), (t, t;), with t; # , mod 2! tj € B, ty € B. Let

ap=—(E + 172+ ..+ £+t + 1), then

ar(ty —1) =1 mod 2. (6.8)
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Now

f(t) = t; mod 2'
= axtx = f(t;) mod 2!
= axtx = a;t; mod 2!
= ate — ax + a = ajtj — aj + @y mod 2/
= ap(te — 1) + ax = a;(tj — 1) + @; mod 2’
= 1l+a=1+a;mod?2 by (6.6),(6.8)
= ay = aj mod 2!
= a(ty — 1) = aj(t — 1) mod 2!
= 1=a;(t— 1) mod 2' by (6.8)
= a;(tj — 1) = a;(t — 1) mod 2! by (6.6)
=ti—1=t—-1mod 2! since (01]-,21) =1

= t; =  mod 2! acontradiction.

Therefore indeg(t;) = 1, and I consists of |B|/2 connected components, each has two vertices
{ti, f(t;)}. Further by (6.5) we have Gy(t;, 1) = Gu(ait;, 1) = Gu(f(ti),1). Let S C B be a set
formed by taking one vertex from each components of I'. Then |S| = |B|/2 = 21-17—4 =22_2,
and for any t; € B, the group Gu(t;, 1) = Gy(s, 1) for some s € S. Therefore for each t; € A
the group G(t;, 1) is isomorphic to Gx(2,1) or Gx(2"1,1) or Gu(2""! + 2,1) or to Gy(s, 1) for
some s € S. Hence there are at most 22 — 2 + 3 = 2/-2 + 1 isomorphisms types amongst the
groups Gh(t;,1),1 < i < 2" — 1. From the first part of the proof, we have that if m is odd
then G,/(m, k) is isomorphic to (at least) one of (2-! — 1) groups. From second part, we have
that if m even then G, (m, k) is isomorphic to (at least) one of (22 + 1) groups. Therefore
there is at most (27! —= 1) + (22 + 1) = 2722 + 1) = 3.2'"2 isomorphism types among the

irreducible groups Gy(m, k). O
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6.2 f(n) of I';(k,]) where n has at most two distinct prime

factors

We consider I',(k, I) for n = p*qf, where p, g are distinct primes and a > 0,8 > 0. We apply

the isomorphisms identified in Lemma 5.0.10, to obtain an upper bound of f(n).
Lemma 6.2.1. If (n,k) =1or (n,I)=1o0r (n,k—1)=1then T (k1) = T,(1,1") for someI'.

Proof. When (n,k) = 1, part (5) of Lemma 5.0.10 implies that I',(k,I) = I',(1,1") for some I'.
When (n,1) = 1, then parts (2),(5) of Lemma 5.0.10 imply that I',(k,[) = I',(l, k) = I',(1,1)
for some I'. When (n,k —I) = 1, then parts (4), (2), (5) of Lemma 5.0.10 imply that I',(k,[) =
Ikk-0)=T,(k—-1k) =T,(1,l') for some /. O

Lemma 6.2.2. If n = p*gf, where p, g are distinct prime and & > 0,8 > 0, and (1,k,[) = 1 then
I,(k,)=T,1,I') forsome2 <I' < (n-1).

Proof. We shall show that atleast one of the following holds: (n,k) =1,(n,1) = 1,(n, k-1) = 1.
For then the result follows Lemma 6.2.1. Suppose for a contradiction (n,k) > 1,(n,1) >
1,(n,k—=1) > 1. Now (n,k) > 1 implies that plk or gk, and (n,[) > 1 implies that p|l or 4|/, and
(n,k — 1) > 1 implies that p|(k — I) or g|(k —I) . Since (n,k) > 1 we have plk or glk. Without
loss of generality suppose plk then p /I since (n,k,I) = 1, and then p f(k — I). Therefore g|!
and g|(k —I), so glk so g|(n,k,I) = 1, a contradiction. Therefore I',(k,I) = I',(1,1) for some

2<I'<(n-1). O
Lemma 6.2.3 is proved by using Lemma 5.0.10

Lemma 6.2.3. a. Suppose (n,1) =1, thenT',(1,1) = T',,(1,1") where I'l =1 mod n.

b. Suppose (n,1) =1, thenT',(1,1) =T,(1,n+1 - 7) where Il = 1 mod n.

c. Suppose (n,l—1) =1, thenT',(1,I) =T,(1,1 + 7) where (I — 1).? = 1 mod n.

d. Suppose (n,1) =1, then T',(1,1) = I’n(l,i) where Il = 1 mod n.

Proof. a. By using parts2,5of Lemma5.0.10wegetI',(1,1) =T',([,1) = I',(L.I', 1.I') = T,(1,1').
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b. By using parts 2,5,4 of Lemma 5.0.10 we get I',(1,]) = I',([,1) = Fn(lj, 1.?) = Fn(l,i)
I,(1,1-)=T,1,n+1-10.

IR

c. By using 1,5,4 of Lemma 5.0.10 we get I',(1,]) = I',(l = 1,-1) = I, (( - 1)1, -1.0)
T,(1,=1) = T,(1,1+]).

[N

d. By using 2,5 of Lemma 5.0.10 we get T,(1,1) = T,,(, 1) = T,,(L, 1.1) = T,,(1,]).

We give here an upper bound of f(n), for I',(1,1)

Lemma 6.2.4. Let n = p*gf, where p, g are distinct prime and a > 0,8 > 0 then,

a. If n is even, we have two cases

1. If n = 0mod 4, then T',(1,]) = T',(1,1”) for some 1 < [” < 7, and there are at most 5 — 1

isomorphisms types amongst the groups I',(1,1).

2. Ifn=2mod 4, n >10thenT,(k[)=T,(1,1”)forsomel <[” < 7, and there are at

most 5 — 2 isomorphisms types amongst the groups I',(1, ]).
b. If n is odd we have two cases

1. fn=3mod6andn > 9, then I',(1,]) = T,(1,1”) for some 1 < [” < ”7_3, and there are

at most %52 isomorphisms types amongst the groups I, (k, I).

2. Ifn=1lor5mod6, n>11thenl,(1,])=T,(1,l”)forsomel <[’ < ”7_3, and there

are at most %57 isomorphisms types amongst the groups I',(1, ).

Proof. a. neven

If2<l'<n-1then-3>-I'>1-nsomn+1)-5>m+1)-I'>2n+1)+1-n.
Now let[” = (n+1) -1, then 5 +1 > [” > 2, and then by Lemma 6.2.2 and (4) in
Lemma 5.0.10, we have I',(k,]) = T,(1,I')) = T,1,1 -1 =T,0,n+1-1) =T,(1,1"),
therefore I',(k, 1) = I',(1,1”) for some 1 < I” < 7, this gives at most 5 — 1 isomorphism
types.

If n =2 mod 4 and n > 10, then we can find one more isomorphism as follow. Since

1< ™2 <2 -1 <2 wehave two cases
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1. When n = 2 mod 8 (”TJr2 is odd), we shall show that T,(1, 22) = I,(1,5-1),
therefore there are at most 5 — 2 isomorphisms types amongst the groups I',.(k, [).

Observe first (42)(%4) = ”2+g”+8 = ”'(?6) +1 =1 mod n, therefore

2 4
l“n(l,n;; )El“n(l,n+1—%) by part (b) of Lemma 6.2.3
2n+2-n-4
=210, —————
n
=T,(1,=--1
a5 -1

2. When n = 6 mod 8 (”%2 is even), similarly we shall show that T',(1, %2) =

I',(1,5 — 1), therefore there are at most § — 2 isomorphisms types amongst the

groups I',(k, ).

Observe that (32)(%2) = ”z_g’“g = "'(’;_6) + 1 =1 mod n, therefore

+2 -4
r,1,2 ) =T,00,1+ ”T) by part () of Lemma 6.2.3
n
=T,(1,% -1
51

b. nodd

If 1 <" <n—1, therefore —(%1) > -’ > 1-n,and then (n+1) - (%) > (n+1) - I' >
(m+1)+1-n Nowlet!” =mn+1)-1", then "%1 > 1" >2,by Lemma 6.2.2 and (4) in
Lemma 5.0.10, we have I',(k,[) = T',(1,')) = T,,Q,1-0')=T,1,n+1-1) =T,01,1"),

therefore I',,(k,[) = T',,(1,1”) for some 1 < [ < ”T“

When I = 2, and by Lemma 6.2.3 we have that I',(1, 1) = T,(1,2), also when
I” = %1, and by (2),(5), (4) in Lemma 5.0.10 we have that I',(1, %5) = I,(%1,1) =
Fn(”—;l.(n -2),1n-2)=T,A,n-2)=T,(1,1-n-2)) =T,01,3), therefore I',(k,[) =
I,(1,1”) for some 1 < 1” < %53, this gives at most %52 — 1 = %52 isomorphism types.

If n =1o0r5mod 6, n > 11, then we can find one more isomorphism as follow. There

are two cases

1. When n = 1 mod 6, we shall show that I',,(1, 22) = T',,(1, 3), therefore there are at
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most 22 — 1 = 7 jsomorphisms types amongst the groups I',(k, ).

2 2
1“,1(1,’“3r )2T,(1,1-27%) by @) in Lemma5.0.10
-n+1
=T,.q1,
1,755
2n+1
=T,.(1,
1,25

=T,(1,3) by part (d) of Lemma 6.2.3

2. When 1 = 5 mod 6, we shall show that I',(1, ) = T, (1, 3), therefore there are at
most %52 — 1 = &7 isomorphisms types amongst the groups I, (k, I).

n+1

I,1,3)=T,q1,
(1,3) =T,(1, =

) by part (d) of Lemma 6.2.3

O

Lemma 6.2.4 will allow us to obtain the upper bound of fff(n), when n = p*gf, where

p > 5,q > 5 are distinct primes

Lemma 6.2.5. Let n = p*qP,n > 11, p, q are distinct primes and p > 5,4 > 5,a > 0,8 > 0, then

EEEF n=7
f( )(n) < s

Proof. Lemmas( 6.2.2 and 6.2.4) showed that I',(k,I) = I',(1,I’) for some /', and when # is
odd, then f(n) < ”7‘5, so we consider I',(1,). Since p,q > 5 therefore n # 0 mod 2 and
n # 0 mod 3, therefore A, B,C,D are always FFFF for 0 <[ < n -1, except when [ = 2,
I=n-1orl= "1 then Bholds, butT,(1,2) = T,(1,n—1) = T,(1, %) = Z; by number 2,4, 5
Lemma 5.0.10, so by excluding this isomorphism from the number of isomorphisms types

we get fEFFN(n) = f(n) - fETFD(n) < 558 — 1 = 27, .

6.3 Investigating I',(k,[) forn <29

The smallest number that has more than 2 distinct prime factors is 30, so we investigate
[,(k,1) for n < 29. This means n = p*qf, for distinct primes p,q and @ > 0,8 > 0. We

present our results in Table 6.1 in terms of (A), (B), (C), (D) conditions, we give in that
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table the structure of the I',(k,[) groups, and the precise value of f(n). The problem of
counting I',(k, [) is reduced by Lemma 6.2.2 to counting I',(1,). In order to obtain this we
use Lemma 6.2.4 which gives an upper bound of f(n) of I',(1, ), and it can be seen from the
table that the bounds in Lemma 6.2.4 are attained for n = 4,6,8,9,10,11,12,13, 15,21, 24,
therefore no cases of Lemma 6.2.4 can be directly improved. For other values of n we use
Lemma 5.0.10 (which is Lemma 2.1. of [EW10]), and Lemma 6.2.3 to obtain isomorphisms,
and we distinguish isomorphisms by calculating abelianization of group by using [GAP].
Sometimes the abelianization is not enough to distinguish two groups, so we use [GAP]
to calculate % = ([(k,1))" as well. For example T1o(1,3)" = Zs3,T10(1,5)" = Zs3, but
(I (1,3)" = Zsy, (I",(1,5))" = Z3 ® Zgy, therefore I'o(1,3) 2 T'1p(1,5). By Lemma 6.2.4 we
have thatT',(k,I) = T',,(1,!’) for some I’ € S, where

{2,3,...,5} when n when n = 0 mod 4
{2,3,... 51\ {5 =1} whenn =2 mod 4
S=1 {2,3,.., %52} when n when n = 3 mod 6
{2,3,..., 52\ {2} when n = 1 mod 6
{2,3,.., ”2;3} \ {”T”} when n =5 mod 6

For giving more information about the group, we use Corollary 1.6.2 to show when the
group contains free subgroup, which we denote in the table by free sbgp.
All isomorphisms indicated in Table 6.1 are a direct applications of Lemma 6.2.3, and

we give below full details.
e When n = 14, part (a) of Lemma 6.2.3 implies that I'14(1, 3) = I'14(1, 5).

e Whenn = 16, part (b) of Lemma 6.2.3 implies thatI'1¢(1,3) = I'i¢(1,6) wherel = 3,2 =11
, and implies that I';¢(1,4) = I'1¢(1,5) where | = 5,7 =13.

e When n = 17, we have I'17(1,4) = I';7(1,5) = I'i7(1,7). This holds because part (b)
of Lemma 6.2.3 implies that I'17(1,4) = I';7(1,5), where | = 4,7 = 13, and part (c) of
Lemma 6.2.3 implies that I'7(1,7) = I'17(1,4), where | = 7,? =3.

e When n = 18, part (b) of Lemma 6.2.3 implies that I';5(1,6) = I'13(1,7), where [ = 7,1 =
13.
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e When n = 19, We have I'i9(1,4) = I'19(1,5) = I'19(1,6). This holds because part (a) of
Lemma 6.2.3 implies that I';9(1,4) = I';9(1,5), and part (b) of Lemma 6.2.3 implies that
T10(1,6) = T19(1,4), where | = 6,1 = 16.

e When n = 20, part (a) of Lemma 6.2.3 implies that I'»(1,3) = I'yo(1,7). Part (c) of
Lemma 6.2.3 implies that I';0(1,4) = I'x(1,8), where | = 4,? =7.

e When n = 22, part (b) of Lemma 6.2.3 implies that I';5(1,3) = I'x(1, 8) where [ = 3,Z =
15, and implies that I'»(1,4) = I'n(1,7) where | = 7,? = 19. Part (d) of Lemma 6.2.3
implies that I'(1,5) = I'»(1,9) where [ = 5,1=09.

e When n = 23, we have I'3(1,4) = I'x3(1,6) = I';3(1,9). This holds because part (a) of
Lemma 6.2.3 implies that I';3(1,4) = I';5(1, 6), and part (a) of Lemma 6.2.3 implies that
T2(1,9) = T'xs(1,6), where I = 9,1 = 18. We also have I'»(1,5) = Tas(1,7) = T's(1, 10).
This holds because part (b) of Lemma 6.2.3 implies that I'3(1,5) = I'x3(1,10), where
| =51=14,and part (d) of Lemma 6.2.3 implies that I'»3(1,7) = I'»3(1,10) where
[=7,1=10.

e When n = 25, we have I';5(1,4) = I'»5(1,7) = I';5(1,8). This holds because part ()
of Lemma 6.2.3 implies that T',5(1,4) = T55(1,7) where [ = 4,1 = 19, and implies that
I5(1,8) = I')5(1,4) where [ = 8,? = 22, and also implies that I';5(1,5) = I';4(1, 6) where
I=6,1=21.

e When n = 26, part (1) of Lemma 6.2.3 implies that I';s(1,3) = I'x(1,9), and part
(c) of Lemma 6.2.3 implies that I'y(1,4) = I'x(1,10) where | = 4,1 = 9. part (b) of
Lemma 6.2.3 implies that I';¢(1,5) = I')s(1,6) where I = 5,1 = 21, and also implies that
Ta(1,8) = T'p(1,11) where [ = 11,1 = 19.

e When n = 27, part (1) of Lemma 6.2.3 implies that I';;(1,4) = I'»(1,7). We also
have I'y;(1,5) = I'ny(1,8) = I'zy(1,11). This holds because part (c) of Lemma 6.2.3
implies that I';;(1,5) = I'y;(1,8), where | = 5,Z = 7, and part (b) of Lemma 6.2.3
implies that I'y7(1,8) = I'»;(1,11) where | = 8,1 = 17. Part (c) of Lemma 6.2.3 implies
that I'y;(1,6) = I'yy(1,12) where | = 6,1 = 11. Part (d) of Lemma 6.2.3 implies that
T27(1,9) = Iy (1,10) where I = 9,1 = 10.
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e When n = 28, Lemma 6.2.3 implies that I';5(1,3) = I'»s(1,10) where | = 3,? =19, and
implies I'xg(1,4) = I'ng(1,9) where I = 9,? = 25, and implies that I';3(1,5) = I'xs(1,12)
where [ = 5,7 = 17, it is also implies that I'x3(1, 6) = I';3(1,11) where [ = 11,? = 23.

e When n = 29, we have I'y9(1,4) = I'n9(1,8) = I'n(1,11). This holds because part (b)
of Lemma 6.2.3 implies that I';9(1,4) = I'ng(1,8), where [ = 4,7 = 22, and part (d) of
Lemma 6.2.3 implies that I'y(1,8) = I'y(1,11), where [ = 8,1 = 11. We also have
I'29(1,5) = I'x9(1,6) = I'y(1,7). This holds because part (a) of Lemma 6.2.3 implies that
I'29(1,5) = I'n(1,6) and part (a) of Lemma 6.2.3 implies that I';9(1,5) = I'(1,7) where
1 =7,1 =25 We also have I'29(1,9) = I'g(1,12) = I'9(1,13). This holds because part
(c) of Lemma 6.2.3 implies that I'y(1,9) = I'ng(1,12), where | = 9,? = 11, and part (d)
of Lemma 6.2.3 implies that I'y9(1,9) = I'xs(1,13), where [ = 9,f =13.



6.3. Investigating I',,(k,[) for n <29

110

Table 6.1: T',(1,]),l € S

n | AB|C|D]|fn I IL(1,D)% (1,0 /T = (I')*
3|T|T|T|T]| 1 2 707 Z+Z
4 |F|T|F|T| 1 2 Zs Zs
5| F|T|F|T]| 1 2 Zs Zs
6 |T|T|T|T]| 2 2 77 Z+Z
F|F|T|F 3 Z, Metacyclic
7| F|T|F|T]| 2 2 Zs Zs
F|F|F|F 3 2,072,067 Free sbgp
8| F|T|F|T]| 3 2 Zs Zs
F|F|F|T 3 Z3®Zs®Zs o0
F|F|F|F 4 Zis Free sbgp
9| T|T|F|T]| 2 2 767 Z+Z
F|F|T|F 3 Zy Metacyclic
10|F|T|F|T| 3 2 Zs Zs
F|F|F|T 3 Zs 00 Z3
F|F|F|F 5 Zss Free sbgp Z5 & Zg
11 F|T|F|T| 2 2 Zs Z5
F|F|F|F 3 Zg Free sbgp
12| T|T|F|T| 5 2 787 Z+Z
F|F|F|F 3 Zyy Free sbgp
F|F|T|F 4 Zys Metacyclic
T|F|T|T 5 Z:0Z07Z Zs+Z+Z
F|F|F|F 6 Zes Free sbgp
13/F|T|F|T| 3 2 Zs Zs
F|F|F|F 3 Zi50 Free sbgp
FIF|F|F 4 z: Free sbgp
14/ F|T|F|T| 4 2 Zs Z5
F|F|F|F 3,5 2,02, Zyp Free sbgp
F|F|F|T 4 Zs, o
F|F|F|F 7 Zix Free sbgp
15| T|T|F|T| 5 2 787 Z+Z
F|F|F|F 3 Zy Free sbgp
F|F|F|F 4 | Z,eZ,02,07 | Free sbgp
T|F|T]|F 5 71,0287 21+ Z+ 7.
FIF|T|F 6 Zso Metacyclic
16 | F | T|F|T| 5 2 Z; Z5
F|F|F|F 3,6 2,020 Zs Free sbgp
FIF|F|F 4,5 Zyss Free sbgp | zleztez7ie 7 0 2o 2
F|F|F|T 7 Z;®Zn o0
F|F|F|F 8 Zyss Free sbgp VAV Y ANV ALY A
17| F|T|F | T| 3 2 Z; Zs
F|F|F|F 3 Zny Free sbgp
F|F|F|F 4,5,7 Zo Free sbgp
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n |A|[B|C|D]| fmn ! (1, 1y L1, 1) /T = (I")®
18| T | T|F|T]| 6 2 ZoZ Z+7Z
F|F|F|F 3 Zoo Free sbgp
F|F|F|F 4 Zs3 Free sbgp Z:eZ o Zsy
T|F|F|T 5 2o ZSOZ Zyg+Z+Z
FIF|T|F 6,7 Ziso Metacyclic
FIF|F|F 9 Zss Free sbgp 2202028, ® L & Zss:®
ZZSO‘J87 ® ZZOO673737384483
19/ F | T|F|T]| 4 2 Z, 7,
F|F|F|F 3 Zisn Free sbgp
F|F|F|F 4,5,6 Zsys Free sbgp
F|F|F|F 8 2,02, 62y Free sbgp
20|F|T|F|T| 7 2 Z, Z;
F|F|F|F 3,7 Zoyis Free sbgp
F|F|F|F 4,8 Zs»s Free sbgp 72072 22 & Zy © Zen
F|F|F|F 5 Zss Free sbgp 2P O 70 Ze & Zis:
F|F|F|F 6 Zi3s Free sbgp
F|F|F|T 9 Zs ® Zs 00
FIF|F|F 10 Zio Free sbgp
21| T\ T F|T/| s 2 VAV z+Z
F|F|F|F 3 2,02, Zrn Free sbgp
FIF|F|F 4 Ziw Free sbgp
T|F|F|F 5 | Z,eZ,9ZueozZoz | Freesbgp
F|F|T|F 7 Zsgy Metacyclic
T|/F|T|F 8 230267 Zy+Z+Z
F|F|F|F 9 2130 Zny; Free sbgp
2| F|T|F|T| 6 2 Z; Zs
FI|F|F|F 3,8 Ziss Free sbgp
F|F|F|F 4,7 Zy® L Free sbgp 2} ©ZE & L ® Ly 27
F|F|F|F 59 Zy®Zo Free sbgp | zl' @ 72 & 7% © Zg & Zss0 & 27
F|F|F|T 6 Zs97 oo
F|F|F|F 11 Zooso Free sbgp
23| F|T|F|T| 4 2 Z, Z;
F|F|F|F 3 247 ® Zan Free sbgp
F|F|F|F 4,6,9 Zossy Free sbgp
F|F|F F 5,7,10 Zoo3 Free sb gp
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n | A B|C|D]| fn l T,(1, 0% r.(1,10) /T = @)%
24|\ T|T|F|T| 1 2 VAV Z+Z
F|F|F|F 3 Zo®Zo®Z117 Free sbgp
F|F|F F 4 23385 Free Sbgp
T|F|F|F 5 7507502970 Z | Free sbgp
F|F|F|F 6 Zo®Zo® Zs3 Free sbgp
F|F|F|F 7 Z;©Z; & Zes Free sbgp
T|F|T]|F 8 Zgs @27 @7 Zgs* 2.+ 7.
F|F|T|F 9 Zes Metacyclic
F|F|F F 10 Zs5 ® Zsss5 Free Sbgp
T/ F|F|T 11 Zo®Zo®Z SZ I
F|F|F|F 12 Z4095 Free sbgp
25| F|T|F|T]| 5 2 Z, Z,
F|F|F|F 3 Zq3953 Free sbgp
F|F|F|F 4,7,8 Zys03 Free sbgp
F|F|F|F 5,6 Zs333 Free sbgp
F|F|F|F 10,11 Z1o83 Free sbgp
26| F|T|F|T| 7 2 Z, Z,
F|F|F|F 3,9 Zos29 Free sbgp
F|F|F|F 4,10 Zs©Z3®Z3®Zyy; | Free sbgp
F|F|F|F 5,6 Zy0Z3;0Z3®Z5 | Free sbgp
F F F T 7 21563 oo
F|F|F|F 8,11 Zs3 ® Zas9 Free sbgp
F|F|F|F 13 Zg193 Free sbgp
27| T|T|E|T| 6 2 Z&Z Z+Z
F|F|F|F 3 Z30699 Free sbgp
F|F|F|F 4,7 Zgso Free sbgp
T F|F|F 5,8,11 Zyn©ZeZ Free sbgp
F|F|F|F 6,12 Z1303 Free sbgp
F|F|T|F 9,10 Z1539 Metacyclic
280 F|T|F|T]| 9 2 Zs Zs
F|F|F|F 3,10 Zs ®Zg ® Zoos Free sbgp
F|F|F F 4,9 29 ® 2435 Free Sbgp
F|F|F|F 5,12 Zs®Z3® Zno Free sbgp
F|F|F|F 6,11 Zanzo Free sbgp
F|F|F|F 7 Zss77 Free sbgp
F|F|F|F 8 Zas705 Free sbgp
F F|F T 13 213 ® 2195 00
F|F|F F 14 Z16383 Free Sbgp
29|/F|T|F|T| 5 2 Z; Z;
F F|F F 3 Zearn Free Sbgp
F|F|F F 4,8,11 217403 Free Sbgp
F|F|F|F 5,6,7 Zs9 & Za7; Free sbgp
F|F|F|F 9,12,13 Z1579 Free sbgp
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6.4 f(n) of I',(k,I) groups when n has three distinct prime

factors

Here only when A hold we give an upper bound for f(n) of T',(k,[) where n = p*gfr”, where

p,q and r are distinct primes

Lemma 6.4.1. Let n = p*qPr?, where p, q and r are distinct primes and a > 0,8 > 0,y > 0, and

(n,k,1)=1,k+#1,k+0,l#0. If (A) holds then I,,(k,I) = T',(1,1") for some I, where
1. Ifniseventhenl” € {2,5,8, ..., 5 — 1}, and there are at most g isomorphism types.

2. Ifnis odd then I” € {2,5,8, ..., 51}, and there are at most =2 isomorphisms types amongst

the groups I, (k, I).

Proof. We shall show that at least one of the following hold: (n,k) =1,(n,1) =1, (n,k-1) = 1.
For then the result follows Lemma 6.2.1. Suppose for contradiction (n,k) > 1,(n,[) >
1, (n,k—1I) > 1. Now (A) holds so 3|n, therefore (p = 3,0 > 1)or (g =3, > 1)or (r=3,y > 1),
without loss of generality suppose r = 3, > 1. Now (n,k) > 1 implies that pl|k or glk or rlk,
and (n,1) > 1 implies that p|l or glk or r|l, and (1, k — I) > 1 implies that p|(k — ) or g|(k — I) or
r|(k —I). If 3]k then since (A) holds we have 3|, so 3|(n,k,I) = 1, a contradiction. Therefore
3 Jk. Similarly 3 fI,3 [(k —1).

Since (n,k) > 1 we have plk or glk. Without loss of generality suppose plk then p /I
since(n, k,I) = 1, and then p /(k —I). Therefore g|l and g|(k —I), so glk so g|(n,k,I) =1, a
contradiction. Therefore

Tk, 1) = T,(1,7) (6.9)

forsome2 <I' < (n-1).

Therefore by Theorem 5.1.1, the parameters n,k’,I" satisfy (A) so 1+ /" = 0 mod 3, so
I =2mod 3, therefore I € {2,5,8, ..., (n — 1)} which has § isomorphism types.

Now supposeniseven, thenl’ € {2,5,8, ..., 5 -1, 5 +2,...,n—1} (which has even numbers
ofelements=%). If J+2</"<n-1then-5-2>-I'>1-nso(n+1)-5-2>2n+1)-I' 2
(n+1)+1-ngives5—1 > (n+1)-I' > 2. Now let!” = (n+1)-I',then5—-1 > I” > 2, and then by
part (4) in Lemma 5.0.10, wehaveI',(k, ) = I',(1,I') = T,(1,1-I") =T,(1,n+1-1I") = T,(1,1"),
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therefore I',(k, £) = I',(1,1”) for some 2 < I” < 2 — 1, which means I € {2,5,8, ..., 5 — 1} this
gives at most £ isomorphism types.

When n odd, I € {2,5,8,..., 52,21 27 5 — 1} (which has odd numbers of elements
=1). When!" = 21 we have I',(1, %) = T,(1,2) by number (2,5) in Lemma 5.0.10. Now if
7 < ' < n—1, therefore —(%£2) > —I' > 1-n, and then (n+1)—(%2) > (n+1)-I' > (n+1)+1-n.
Now let!” = (n+1) —I’, then ”7_5 > 1" > 2, and by (6.9) and (4) in Lemma 5.0.10, we have
r,knH=r,Q,"=r,q,1-r=r,0,n+1-1r)=r,@1,1"”), therefore I',(k,I) = T',(1,1"”) for

some 2 < I” < %2, which means I” € {2,5,8, ..., %52} this gives at most %22 isomorphism

types. O
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Table A.1: Isomorphisms classes of G, (m, k) groups for n < 27

n | f(n) | g(n) | Groups | type of group | Finite or infinite G/G

3 1 1 H(3,2) - Qs 7,87,

4 2 2 H(4,2) 5(2,4) SL(2,3) Zs
H(4,3) F(2,4) Zs Zs

5 2 2 H(5,2) 5(2,5) SL(2,5) 1
H(5,3) F(2,5) 711 711

6 5 4 H(6,2) 5(2,6) infinite YASY/A
H (6, 3) - Zg ~ Z7 Z7
H(6,4) - Zg Zg
H(6,5) F(2,6) Infinite Z,®7Z,
Ge(1,3) - Z; Z;

7 3 3 H(7,2) 5(2,7) infinite 1
H(7,3) - infinite Zo®Z)® 2y
H(7,4) F(2,7) Z9 Z59

8 6 6 H(8,2) 5(2,8) infinite Z;
H(8,3) - group of order 3.5 Zs
H(8,4) - infinite 75
H(8,5) - 217 27
H(8,6) - infinite Z3® 723075
H(8,7) F(2,8) infinite Z3® 25

9 5 5 H(9,2) 5(2,9) infinite 7,07,
H(9,3) - infinite Z;
H(9,4) - Unknown Z19
H(9,5) F(2,9) infinite 7, ® Zsg
H(,7) - Unknown Zs3;

10| 8 5 | H(10,2) 5(2,10) Infinite Zs
H(10,3) - Infinite 711
H(10,4) - Infinite Z3
H(10,5) - Infinite Z3
H(10,6) - Z33 233
H(10,7) - Infinite 711
H(10,9) F(2,10) Infinite 711 ®Zn
G1o(1,5) - Z3 23




Appendix A. Table of isomorphisms classes of G,(m, k) groups for n < 27

120

n | f(n) | g(n) | Groups | type of group | Finite or infinite G/G

1] 5 4 H(11,2) 5(2,11) Infinite 1
H(11,3) - Infinite Zy3
H(11,4) - Infinite 753
H(11,6) F(2,11) Infinite Z.199
H(11,8) - Infinite Zg;

12| 12 | 10 | H(12,2) 5(2,12) Infinite 77
H(12,3) - Infinite 235
H(12,4) - Infinite 245
H(12,5) - Infinite Zg®Zs
H(12,6) - Infinite Zg3
H(12,7) - Zes Zes
H(12,8) - Infinite VAN YA A
H(12,9) - Infinite Zn
H(12,10) - Infinite Z117
H(12,11) F(2,12) Infinite Zg® Ly
G12(1,3) - Infinite Zss5
Glz(l, 4) - Infinite Zgl

13| 6 6 H(13,2) 5(2,13) Infinite 1
H(13,3) - Infinite Zs;
H(13,4) - Infinite Z79
H(13,5) - Infinite 713
H(13,6) - Infinite 78750 Zs
H(13,7) F(2,13) Infinite Zsn

14 | 11 8 H(14,2) 5(2,14) Infinite Z;
H (14:, 3) - Infinite Z4 & Z4 & Z4
H(14,4) - Infinite Zg;
H(14,5) - Infinite 72,87,07Z4
H(14,7) - Infinite Z1y7
H(14,8) - Z129 Z129
H(14,9) - Infinite Z9
H(14,10) - Infinite 2,240 21>
H(14,11) - Infinite Zg
H(14,13) F(2,14) Infinite 2o ® oo
G1(1,7) - 2127 227
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n | f(n) | gn) | Groups | type of group | Finite or infinite G/G
15| 12 12 H(15,2) 5(2,15) Infinite 7,®7Z,
H(15,3) - Infinite Zs;
H(15,4) - Infinite Lo ®Ly® Lo ® Lo
H(15,5) - Infinite Zo ® L
H(15,6) - Infinite 27
H(15,7) - Infinite Zs
H(15,8) F(2,15) Infinite Z)® Zes>
H(15,10) - Infinite Zx
H(15,11) - Infinite Zy® Ly
H(15,12) - Infinite Lo ®Ly® Lo ® Ly
H(15,13) - Infinite 23y
G15(1, 6) - Infinite Zz71
16 | 12 9 H(16,2) 5(2,16) Infinite Z;
H(16,3) - Infinite Zsgs
H(16,4) - Infinite 2555
H(16, 5) - Infinite Zl7 & Zl7
H(16,6) - Infinite Z3® 230 Zs
H(16,7) - Infinite 75 25
H(16,8) - Infinite Z 55
H(16,9) - 257 257
H(16,10) - Infinite Z;®Zx
H(16,11) - Infinite Zgs
H(16, 12) - Infinite Zz55
H(16,15) F(2,16) Infinite Zy & L5
17 | 7o0r8 | 7 H(17,2) 5(2,17) Infinite 1
H(17,3) - Infinite 73
H(17,4) - Infinite 2307
H(17,5) - Infinite Z 409
H(l 7, 9) P(Z, 17) Infinite 23571
H(17,12) - Infinite Zs13
H(17, 6) = - Infinite Z137
H(17, 1 1)7 - Infinite Z137
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n | f(n) | gn) | Groups | type of group | Finite or infinite | Abelianization
18 17 10 H(18,2) 5(2,18) Infinite 7.7

H(18,3) - Infinite Za33
H(18,4) - Infinite Zs513
H(18,5) - Infinite 24® Ly
H(18, 6) - Infinite Zlgg
H (18 ’ 7) - Infinite Z703
H(18,8) - Infinite Zio®2Z 7
H(18,9) - Infinite Zs11
H(18,10) - Zs13 Zs13
H(18,11) - Infinite 2y ® Ly
H(18,13) - Infinite Z703
H(18, 15) - Infinite Zz59
H (18 , 16) - Infinite Zggg
H(18,17) F(2,18) Infinite Z76® Zye
Glg(l, 3) - Infinite Zl33
Glg(l, 4:) - Infinite 2259
Gi5(1,9) - Zs11 Zs11
19 [8o0r9 | 8 H(19,2) 5(2,19) Infinite 1
H(19,3) - Infinite Z191
H (19 P 4) - Infinite Z(,47
H(19,5) - Infinite Z761
H(19, 7) - Infinite Zl483
H(19,8) - Infinite Z.419
H(19,10) F(2,18) Infinite Z.9349
H(19,9) = - Infinite 29
H(19,15)? - Infinite Zy9
20 18 13 H(20,2) 5(2,20) Infinite Z3
H (20 y 3) - Infinite Zz75
H (20, 4) - Infinite ZBZS
H(ZO, 5) - Infinite 21271
H(ZO, 6) - Infinite 21353
H(20,7) - Infinite Zo7s
H(20,9) - Infinite 21 @ 211
H(ZO, 10) - Infinite ZlOZB
H(20,11) - 2025 25
H(20,12) - Infinite Zs5® Zys
H(20,13) - Infinite Zen
H(20, 14) - Infinite 22013
H(ZO, 15) - Infinite Z775
H(20,16) - Infinite Zsys
H (20 , 17) - Infinite Z671
H(20,19) F(2,20) Infinite 255 ® Zoyys
Gzo(l, 5) - Infinite 21271
ng(l, 6) - Infinite Z775
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n f(n) | gn) | Groups | type of group | Finite or infinite Abelianization
21 | 150r16 | 15 H(21,2) 5(2,21) Infinite Zr® 72,

H(21,3) - Infinite Zo® Lo ® Log
H(21,5) - Infinite Lo ®Ly® Lo DLy D Lsgs
H(21, 6) - Infinite Z1421
H(21,7) - Infinite Zayy
H(21, 8) - Infinite Zz ® Z]094
H(21,9) - Infinite Z;® Ly
H(21,10) - Infinite Zo® 2o ® s
H(21,11) F(2,21) Infinite 2o ® Zaxss
H(21, 14:) - Infinite Zz ©® 2254
H (21 ’ 15) - Infinite 22107
H(21,16) - Infinite 2463
H(21,19) - Infinite Zoy®Zo® Liyss
G21 (1 ’ 7) - Infinite 22269
H (21 , 4) = - Infinite 21247
H(21, 13)7 - Infinite 21247
22 17 10 H(22,2) 5(2,22) Infinite Z3
H(22,3) - Infinite Loz @ Lo
H(22,4) - Infinite o3 ® Lo
H (22 y 5) - Infinite Zl 541
H(22,6) - Infinite Zs97
H (22 , 7) - Infinite Zl 541
H (22 ’ 8) - Infinite Z4623
H (22 ’ 9) - Infinite Zl 541
H(ZZ, 1 1) - Infinite 22047
H(22,12) - Zos9 Zoos9
H(ZZ, 13) - Infinite Zlgg
H(22,14) - Infinite o3 ® Lo
H(22,15) - Infinite L3 ® L3
H(22,17) - Infinite Z199
H(ZZ, 19) - Infinite Zl541
H(22,21) F(2,22) Infinite Z199 ® 2199
Goo(1,11) - 2047 2047
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n f(n) | gn) | Groups | type of group | Finite or infinite G/G’
23 | 10or11 | 9 H(23,2) 5(2,23) Infinite 1
H(23,3) - Infinite Z91
H(23, 5) - Infinite Z3313
H (23 , 6) - Infinite 22347
H(23,12) F(2,23) Infinite 264079
H(23, 16) - Infinite 26533
H(23, 18) - Infinite 21151
H(23,4) - Infinite Ly ® Ly
H(23,14) - Infinite Ly ® Ly
H(23,8) = - Infinite 599
H(23,10)? - Infinite 2599
24 26 22 H(24,2) 5(2,24) Infinite 7.&7Z
H(24,3) - Infinite Zs® s ®2Lss
H (24 y 4) - Infinite Zgzgg)
H (24:, 5) - Infinite Z16 ® 2272
H(24,6) - Infinite Zo® 2o ® s
H(24,7) - Infinite Zy ® Zsgs
H(24,8) - Infinite VYA YA
H (24 y 9) - Infinite Z6643
H(24,10) - Infinite Zs5 ® Lsss
H(24, 11) - Infinite Z16 ©® Zgo
H (24 s 12) - Infinite Z4095
H(24,13) - 24097 2 4097
H(24,14) - Infinite ZoDLo®Z BZ
H(24,15) - Infinite Zo ® 2315
H(24,16) - Infinite 765
H(24,17) - Infinite Zsgy ® gy
H(24,18) - Infinite Z;®2;® L
H(24, 19) - Infinite Z7 ® Z455
H(24,20) - Infinite Zs®Zs®lsDZ D7
H (24: , 21 ) - Infinite Zl 547
H(24,22) - Infinite Zo®Zo® L1y
H(24,23) F(2,24) Infinite 244 B L
G7_4(1, 3) - Infinite Z5 ¥ Z5 ® 235
G24(1 ’ 4) - Infinite Z1 547
G24(1 s 9) - Infinite Z6643
G24(1, 10) - Infinite Zg @b 2315
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n | f(n) | g(n) | Groups | type of group | Finite or infinite G/G

25| 14 13 | H(25,2) 5(2,25) Infinite 1
H(25, 3) - Infinite lell
H(25, 4) - Infinite Z4411
H(25, 5) - Infinite Z4681
H(25, 6) - Infinite Z6101
H(25, 7) - Infinite 23851
H(25, 8) - Infinite ZZ761
H(25, 9) - Infinite Zl4311
H(25, 10) - Infinite Z3131
H(25, 11) - Infinite 21951
H(25, 12) - Infinite 21151
H(25,13) F(2,25) Infinite Zas7761
H (25 ’ 16) - Infinite Z5801
H(25, 21) - Infinite Z]151

26 | 20 14 | H(26,2) 5(2,26) Infinite Z3
H(26,3) - Infinite 23 ® 3@ Lis9
H(26,4) - Infinite Z3®Ls®Ls® Loy
H(26, 5) - Infinite Z6943
H(26,6) - Infinite Z3®2s®2Zs® 25
H(26,7) - Infinite Zs5n
H(26,8) - Infinite 253 ® 59
H(26,9) - Infinite Zs®Zs® Lo
H(26,11) - Infinite Z3® 25 ® Zays
H(26, 12) - Infinite 21563
H(26, 13) - Infinite Zg191
H(26,14) - 2193 Zg193
H(26,15) - Infinite Zsn
H(26,17) - Infinite L9 ® Loy
H(26, 18) - Infinite Zzogzg
H(26,19) - Infinite Z3® 23 ® Zays
H(26, 21) - Infinite Z6943
H(26,23) - Infinite L9 ® Ly
H(26,25) F(2,26) Infinite Zsy ® Zsn
Gas(1,13) - Zg191 Zg191
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n | f(n) | g(n) | Groups | type of group | Finite or infinite G/G
27 [ 17 | 17 | H(27,2) S2,27) Infinite Z, &7,
H(27, 3) - Infinite Zlgg7
H(27, 4) - Infinite 29253
H(27, 5) - Infinite Zz ® Z6194
H(27, 6) - Infinite Z5299
H(27, 7) - Infinite Z6031
H(27,9) - Infinite Zs11
H(27, 10) - Infinite 219927
H(27,11) - Infinite Zy ® 24538
H (27, 13) - Infinite 22071
H(27, 14) F(Z, 27) Infinite Zz ©® ZZl%OZ
H(27, 16) - Infinite Z4033
H(27, 17) - Infinite Zz @b Z4142
H(27, 19) - Infinite 219441
H(27, 21) - Infinite Z6433
H(27, 22) - Infinite ZSZZ7
H(27, 25) - Infinite Z30007




