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Abstract

This paper focuses on the estimation of the location of level breaks in time series whose shocks

display non-stationary volatility (permanent changes in unconditional volatility). We propose

a new feasible weighted least squares (WLS) estimator, based on an adaptive estimate of the

volatility path of the shocks. We show that this estimator belongs to a generic class of weighted

residual sum of squares which also contains the ordinary least squares (OLS) and WLS esti-

mators, the latter based on the true volatility process. For fixed magnitude breaks we show

that the consistency rate of the generic estimator is unaffected by non-stationary volatility. We

also provide local limiting distribution theory for cases where the break magnitude is either

local-to-zero at some polynomial rate in the sample size or is exactly zero. The former includes

the Pitman drift rate which is shown via Monte Carlo experiments to predict well the key fea-

tures of the finite sample behaviour of both the OLS and our feasible WLS estimators. The

simulations highlight the importance of the break location, break magnitude, and the form of

non-stationary volatility for the finite sample performance of these estimators, and show that

our proposed feasible WLS estimator can deliver significant improvements over the OLS esti-

mator under heteroskedasticity. We discuss how these results can be applied, by using level

break fraction estimators on the first differences of the data, when testing for a unit root in

the presence of trend breaks and/or non-stationary volatility. Methods to select between the

break and no break cases, using standard information criteria and feasible weighted information

criteria based on our adaptive volatility estimator, are also discussed. Simulation evidence sug-

gests that unit root tests based on these weighted quantities can display significantly improved

finite sample behaviour under heteroskedasticity relative to their unweighted counterparts. An

empirical illustration to U.S. and U.K. real GDP is also considered.
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1 Introduction

Breaks in the deterministic trend function appear prevalent in macroeconomic series; see, inter alia,

Stock and Watson (1996,1999,2005) and Perron and Zhu (2005). The impact of these on standard

unit root tests has been well known since Perron (1989) who treated the location of potential breaks

as known. Subsequent approaches have focused on the case where the break date is unknown and

is replaced by a break fraction estimator; see, inter alia, Perron (1997) and Perron and Rodŕıguez

(2003). Harris et al. (2009) and Carrion-i-Silvestre et al. (2009), among others, extend these

approaches to incorporate pre-test procedures for the presence of a trend break. Under a fixed

magnitude trend break the break fraction estimator used in these procedures needs to be consistent

at a rate faster than T−1/2, T denoting the sample size, for the resulting unit root test to be

asymptotically valid where a trend break occurs. As a result, the ordinary least squares [OLS]

level break estimator of Bai (1994) has tended to be applied to the first differences of the series

because it is consistent at rate T−1 for the true break fraction where a break occurs, while the

corresponding OLS-based estimator based on the levels is only consistent at rate T−1/2.

The aforementioned procedures do not allow for time-varying behaviour in the unconditional

volatility (often referred to as non-stationary volatility) of the driving shocks. This is an important

practical drawback given that a large number of empirical studies have reported a substantial

decline, often referred to as the Great Moderation, in the unconditional volatility of the shocks

driving macroeconomic series in the twenty years or so leading up to the Great Recession that

started in late 2007, with a subsequent sharp increase again in volatility observed after 2007; see,

inter alia, McConnell and Perez-Quiros (2000), Clark (2009), Stock and Watson (2012), and the

references therein. Cavaliere et al. (2011) refine the approach of Harris et al. (2009) to use

wild bootstrap unit root tests. However, their procedures are still based around applying the

OLS level break fraction estimator of Bai (1994) to the first differences and trend break pre-test,

each of which were developed for homoskedastic innovations. While they show that both of these

are asymptotically robust to time-varying volatility, their finite sample efficacy will clearly have

important forward implications for the behaviour of the resulting unit root tests.

Our principal aim here is to explore the properties of the OLS level break estimator of Bai

(1994) in cases where the shocks can display non-stationary volatility and to develop and explore

the properties of a corresponding feasible weighted least squares [WLS] level break estimator based

around the use of data which have been weighted by a non-parametric estimate of the volatility

path. We will consider a very general set-up for the volatility process which allows, for example,

single and multiple abrupt variance breaks, smooth transition variance breaks, and trending vari-

ances. The feasible WLS estimator we propose uses adaptive methods to estimate the volatility

path of the shocks. Adaptive methods have been successfully employed in a number of areas of the

literature including inference on the parameters of finite-order unconditionally heteroskedastic au-

toregressive models by Phillips and Xu (2006) and Xu and Phillips (2008), testing for ARCH effects

in unconditionally heteroskedastic autoregressive models by Patilea and Räıssi (2014), testing for

long memory in unconditionally heteroskedastic ARFIMA models by Harris and Kew (2017) and

adaptive testing for autocorrelation in Harris and Kew (2014), and for adaptive estimation of VAR

models in Patilea and Räıssi (2012, 2013). Of most relevance to this paper, Boswijk and Zu (2018)
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propose an adaptive estimator of the unconditional variance process in the context of testing for

a unit root in an autoregressive model driven by heteroskedastic errors, although no allowance is

made for the possibility of a trend break.

We establish the large sample properties of the OLS and feasible WLS break fraction estimators

under a variety of assumptions on the magnitude of the level shift. For level shifts of either fixed

(non-zero) magnitude or where the magnitude is local-to-zero at a rate slower than the Pitman rate

of T−1/2, we demonstrate the consistency of these estimators, and indeed those from a generic class

of residual sums of squares [RSS] based estimators. The consistency rate for the OLS and feasible

WLS estimators coincides and is unaffected by the location of the break or by time variation in

the volatility process. We also derive the asymptotic distributions of these estimators where the

magnitude of the level shift lies within a Pitman neighbourhood of zero. Elliott and Müller (2007)

argue that the finite sample behaviour of break fraction estimators such as those considered in this

paper is likely to be far better approximated for the sort of break magnitudes typically encountered

in practice by asymptotic theory based on the Pitman rate rather than a fixed magnitude break. Our

results accord with this view. Under Pitman drift the limiting distributions of the OLS and feasible

WLS estimators are shown to differ and to depend on the location and (local drift) magnitude of

the level break and, to differing extents, on the time path of the volatility process.

We investigate and compare the finite sample behaviour of the estimators using Monte Carlo

simulation. These agree closely with the qualitative predictions drawn from the limiting distribu-

tions under Pitman drift. In particular, they show that a break fraction estimator can be erroneously

drawn towards the most volatile parts of a time series, potentially away from a genuine level break.

They highlight that unmodelled heteroskedasticity can result in large bias and other distributional

distortions in break fraction estimation for various configurations of the break location and time

path of volatility, and that the consequences may be more severe than just loss of estimator effi-

ciency as occurs in more standard statistical settings. The results also show that the feasible WLS

estimator can deliver substantial improvements over the OLS estimator in certain heteroskedastic

environments, most notably where the level break occurs in a low volatility regime.

It would be unusual that a break fraction is the final quantity of interest in a time series

analysis rather than an input into subsequent inference. As an application, we also investigate to

what extent the improved behaviour of the feasible WLS estimator relative to the standard OLS

estimator of Bai (1994) when non-stationary volatility is present can effect improvements in the

finite sample behaviour of the unit root tests discussed above. Here we also propose model selection

methods based on the familiar Schwarz (1978) criterion to choose between the trend break and no

trend break models in the practically relevant case where it is unknown if a trend break is present.

We discuss such information criteria based on both OLS and feasible WLS model estimation, the

latter using the same adaptive estimator of the unconditional variance process as for the feasible

WLS break fraction estimator. Simulation evidence suggests that the use of these feasible weighted

quantities can deliver unit root tests with significantly improved finite sample behaviour in the

presence of non-stationary volatility relative to using their unweighted counterparts.

The paper is organised as follows. Our reference heteroskedastic level break model is outlined

in section 2. Section 3 details a generic RSS level break fraction estimator which contains the

2



standard OLS estimator of Bai (1994) and the infeasible WLS estimator as special cases. Here

we also show how a feasible version of the WLS estimator can be constructed, using an adaptive

estimator of the volatility path of the innovations. The large sample properties of these estimators

are compared for both fixed, local and zero magnitude level shifts. The relative finite sample

properties of these estimators in both homoskedastic and a variety of heteroskedastic environments

are explored. Section 4 discusses the application of level break estimation methods to the problem

of unit root testing when breaks in trend and/or volatility may be present. In section 5 we illustrate

the methods discussed in the paper with an application to U.S. and U.K. real GDP. For both series,

OLS estimation estimates a break early in the data in a high volatility period whereas the feasible

WLS estimator estimates a much later breakdate in a relatively low volatility regime. For the case

of the U.K. data, this alters the outcome of conventional unit root tests allowing the unit root

null hypothesis to be rejected when based on the trend break date estimate by the feasible WLS

estimator. Section 6 concludes. Supporting material, including mathematical proofs, is provided

in an on-line supplementary appendix.

In what follows, ‘⌊·⌋’ denotes the integer part and ‘1(.)’ denotes the indicator function. The

symbols ‘
d→’ and ‘

p→’ are used to denote convergence in distribution and probability respectively as

T → ∞. The maximum and minimum of a and b are denoted a∨ b and a∧ b, respectively. Finally,

D := D[0, 1] denotes the space of right continuous with left limit (càdlàg) processes on [0, 1].

2 The Heteroskedastic Level Break Model

We consider the time series process {yt} generated according to the following level break model,

yt = µ+ δT · 1t>⌊τ0T ⌋ + et, t = 1, ..., T (2.1)

et = σtεt. (2.2)

Equation (2.1) comprises a constant, a level shift at time ⌊τ0T ⌋, and a stochastic component et.

As is standard, for the purposes of the large sample results which follow, the level shift is taken to

occur at a fixed fraction of the sample size, τ0, with 0 < τL ≤ τ0 ≤ τU < 1.

We follow Elliott and Müller (2007) and parameterise the break magnitude parameter as δT :=

δT−d with δ a fixed constant and d ≥ 0. For a given value of T a level break exists in yt only if

δ 6= 0. No break occurs when δ = 0, regardless of d, while a level break of fixed magnitude δ occurs

when d = 0 and δ 6= 0. In the unconditionally homoskedastic case, where σt = σ for all t, Bai

(1997), shows that when δ 6= 0, then τ0 is consistently estimated by OLS for any 0 ≤ d < 1/2.1 In

particular, although the magnitude of the level break shrinks here as the sample size increases, the

level break is still sufficiently large for the location of the break, τ0, to be consistently estimated

and for consistent tests for a level break to exist. In contrast, d = 1/2 gives the Pitman drift rate

for this problem such that τ0 cannot be consistently estimated nor can a consistent test for the

presence of a level break be obtained. We will show that these consistency rates in d also hold in

the heteroskedastic case we focus on here.

1The consistency results given in Bai (1997) also hold in the case where σt displays a one-time break, provided it

occurs at the same break fraction, τ0, as the level break.
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To complete the specification of (2.1)-(2.2) the following conditions, collectively labelled As-

sumption A, will be assumed to hold on et.

Assumption A.

A1. The innovations {εt} form a martingale difference sequence with respect to the filtration

Ft, where Ft−1 ⊆ Ft for t = ...,−1, 0, 1, 2, ..., satisfying: (i) the global homoskedasticity condition:
1
T

∑T
t=1E

(
ε2t |Ft−1

) p→ 1, and (ii) E|εt|r < K < ∞ for some r ≥ 4;

A2. The volatility term σt satisfies σt = σ (t/T ), where σ (·) ∈ D is non-stochastic, bounded

above and below as 0 < σ ≤ σ(s) ≤ σ̄ < ∞ for all s, and satisfies a Lipschitz condition except at

a finite number of points of discontinuity.

Remark 2.1. The process {et} in (2.2) is formed as the product of two components, {εt} and

{σt}. The former is assumed to satisfy a relatively weak globally stationary martingale difference

assumption which allows for certain forms of conditional heteroskedasticity, such as that arising from

stationary GARCH models, in the errors; see Davidson (1994, pp.454-455) for further discussion.

It should be noted, however, that we will later require the additional assumption of conditional

homoskedasticity for the feasible WLS break fraction estimator considered in section 3.4. Notice

that, under Assumption A, et has mean zero and time-varying unconditional variance, σ2
t . �

Remark 2.2. Assumption A2 casts the dynamics of the disturbance variance in a quite general

framework, requiring it only to be non-stochastic, bounded and to be smooth in between a countable

number of jumps. A detailed discussion of the class of variance processes allowed under A2 is given

in Cavaliere and Taylor (2007). They show that this includes variance processes displaying multiple

volatility shifts, polynomially (possibly piecewise) trending volatility and smooth transition variance

breaks, among other things. In the case where volatility displays jumps, these are not constrained

to be located at the same point in the sample as the putative level shift, nor indeed are they required

to lie within the search set, Λ. The conventional unconditionally homoskedastic assumption that

σt = σ for all t, also satisfies Assumption A2, since here σ(s) = σ for all s. �

Remark 2.3. To focus our attention on the impact of non-stationary volatility on level break

estimation, we have omitted autocorrelation in the model for the disturbance et. We will, however,

discuss generalisations to allow for this at relevant points in the text. �

3 Level Break Fraction Estimation

3.1 Residual Sum of Squares Break Fraction Estimator

In what follows we define a generic RSS-based level break fraction estimator which contains weighted

and unweighted break fraction estimators as special cases. To that end, define the weights xt,

t = 1, ..., T , and a generic RSS-based estimator

τ̂ := arg min
τ∈[τL,τU ]

T∑

t=1

ê∗2τ,t (3.1)

where, for any τ ∈ [τL, τU ] ⊂ [0, 1], the residuals ê∗τ,t are obtained from the OLS regression

y∗t = µ̂τxt + δ̂τ (1t>⌊τT ⌋ · xt) + ê∗τ,t (3.2)
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where y∗t := xtyt.
2 Setting xt := 1 for t = 1, ..., T , in (3.2) yields the usual OLS estimator of τ0

considered in Bai (1994), while setting xt := 1/σt, t = 1, ..., T , yields the infeasible WLS estimator

that obtains with knowledge of σt. In what follows, where we wish to make reference to the OLS

and WLS estimators specifically, rather than the generic RSS-based estimator in (3.1), we will use

the notation τ̂OLS and τ̂WLS , respectively. The assumption of non-stochastic weights will be relaxed

in section 3.4 when we detail our feasible WLS estimator of τ0 based on adaptive estimation of σt.

3.2 Asymptotic Behaviour of τ̂ under Large Breaks

We first analyse the large sample behaviour of τ̂ in the case where the trend break magnitude is

“large” in that it can be either non-zero and fixed or is such that it is local-to-zero but at a rate

slower than the Pitman drift rate of T−1/2. We will show that the standard OLS estimator of τ0

retains the consistency property established under unconditional homoskedasticity in Bai (1997)

and that the rate also holds for the corresponding WLS estimator, and indeed for any of a wide

class of weights. These results are now formally stated in Theorem 1.

Theorem 1. Let yt be generated according to (2.1) with δT := δT−d and let Assumption A hold.

Moreover let the non-stochastic weights, xt = x(t/T ), t = 1, ..., T , used in constructing τ̂ of (3.1)

be such that x(.) satisfies the same conditions as σ(.) given in Assumption A2. Then if δ 6= 0 and

0 ≤ d < 1/2, it holds that τ̂
p→ τ0. Moreover, if δ 6= 0 and 0 < d < 1/2 then

Tδ2T
σ(τ0)2

(τ̂ − τ0)
d→ arg max

s∈(−∞,∞)
Z(s), (3.3)

where

Z(s) :=




W1(−s)− |s|

2 , s ≤ 0
√
φW2(s)− ξ |s|

2 , s > 0

in which W1 and W2 are independent standard Brownian motions each on [0,∞), and

φ :=
σ̄(τ0)

2x̄(τ0)
4

σ(τ0)2x(τ0)4
, ξ :=

(
x̄(τ0)

x(τ0)

)2

,

where σ̄(τ0) := limτ↓τ0 σ(τ), σ(τ0) := limτ↑τ0 σ(τ), x̄(τ0) := limτ↓τ0 x(τ) and x(τ0) := limτ↑τ0 x(τ).

Remark 3.1. Theorem 1 implies that τ̂ is a consistent estimator for τ0 at rate Op(T
−1δ−2

T ) for

any 0 < d < 1/2, irrespective of any conditional or unconditional heteroskedasticity present in σt

satisfying Assumption A, or the form of the weights, xt, used in its construction. Moreover, the non-

stationary volatility process σ(·) has no effect (other than scaling) on the asymptotic distribution of

τ̂ , with the exception of the situation where a jump (from σ(τ0) to σ̄(τ0)) occurs at τ0 and affects the

term φ in Z(s). When the break magnitude is “large”, only the single value of the variance process

σ(τ0) (or the two values σ(τ0) and σ̄(τ0), if they differ) features in this asymptotic approximation.

The intuition behind this is that the limit in (3.3) is derived from a functional central limit theorem

[FCLT] applied only to observations within a shrinking neighbourhood of τ0. The càdlàg assumption

2The form of estimated coefficients µ̂τ and δ̂τ obviously depend on the choice of xt but this is omitted from the

notation for brevity.
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on σ(·) therefore implies that all such observations will have (asymptotically) the same variance.

As we will see in section 3.3, this contrasts with the “small” breaks asymptotic approximation, in

which the asymptotic distribution of τ̂ depends on the entire sample path of the volatility function.

This turns out to be an important point of difference when evaluating the finite sample relevance

of the two asymptotic approximations. �

Remark 3.2. Theorem 1 extends the results of Bai (1994) to cover both weighted and unweighted

level break estimators and to allow for the general form of unconditional heteroskedasticity per-

mitted in σt under Assumption A2. Bai (1997) establishes the same Op(T
−1δ−2

T ) rate in regression

models (including (3.2)) allowing for weak dependence and conditional heteroskedasticity in the

shocks, the latter of a similar form to that allowed under Assumption A1. We specify martingale

difference disturbances here in to order to focus attention on the role of non-stationary volatility

in this model, but it can also be shown that the Op(T
−1δ−2

T ) consistency rate given in Theorem 1

continues to hold when et is autocorrelated. For example, if et = σtut where, as in equation (2) of

Bai (1994), ut is generated by a linear process ut = C(L)εt, where C(L) :=
∑∞

j=0 cjL
j satisfies the

standard summability condition (assumption B of Bai, 1994)
∑∞

j=0 j|cj | < ∞, and εt and σt again

satisfy the conditions in Assumption A, then the short run variance, σ(τ0)
2, in (3.3) would simply

need to be replaced by the corresponding long run variance, σ(τ0)
2C(1)2. �

Remark 3.3. The role of the weighting factor xt in Theorem 1 is qualitatively the same as that

of σt. The weights make no difference to the asymptotic distribution of τ̂ , but again with the one

exception where a break in x(s) occurs at τ0 and hence influences the parameters φ and ξ. �

To illustrate the single special case of Theorem 1 for which the form of heteroskedasticity

and weighting influence the asymptotic approximation, consider a volatility process of the form

σt = 1+1t>⌊Tτ0⌋, which has a break at the same time ⌊Tτ0⌋ as the level break, implying σ (τ0) = 2

and σ (τ0) = 1. The OLS estimator τ̂OLS of the level break fraction τ0 is defined by a continuous

weighting function xt = 1, and hence x̄(τ0) = x(τ0) = 1, which produces φ = 4 and ξ = 1 in

Theorem 1. The (infeasible) WLS estimator τ̂WLS has weighting function using xt = 1/σt which is

discontinuous at τ0, producing x̄(τ0) = 1/2, x(τ0) = 1 and hence φ = ξ = 1/4 in Theorem 1. Bai

(1997, Appendix B) shows that the density function g (x) of argmaxs Z (s) in (3.3) is

g(x) =




−1

2Φ
(
−1

2

√
|x|
)
+ 1

2 (1 + 2α) exp
(
1
2α (1 + α) |x|

)
Φ
(
−1

2 (1 + 2α)
√
|x|
)

if x ≤ 0

−1
2β

2Φ
(
−1

2β
√
x
)
+
(
ξ + β2

2

)
exp

(
1
2 (φ+ ξ)x

)
Φ
(
−
(√

φ+ β
2

)√
x
)

if x > 0

where α := ξ/φ and β := ξ/
√
φ. The density functions are plotted for τ̂OLS (solid line) and τ̂WLS

(dashed line) in Figure 1. Neither is symmetric around zero, with asymmetry induced when φ 6= 1

and/or ξ 6= 1. Note that any form of weighting that is discontinuous at τ0 will result in ξ 6= 1 and

hence an asymmetric asymptotic distribution. This will hold regardless of the magnitude or the

direction of the variance break, so long as the variance break occurs at τ0.

The foregoing analysis begins to reveal that heteroskedasticity has a different effect on break

fraction estimation (a non-standard statistical problem) than on the estimation of, for example, a

classical linear regression coefficient. In the latter standard situation, unmodelled heteroskedasticity

has no effect on the bias or asymptotic normality of least squares estimates but results only in loss

6



of relative efficiency. By contrast, the effect of heteroskedasticity and weighting on break fraction

estimation is not confined only to the variance of the estimator, but may affect various aspects of the

entire sampling distribution, including its mean and/or symmetry and/or overall shape. This will

be explained and illustrated in more detail once better asymptotic approximations are developed

in section 3.3.

If the variance break does not occur at τ0 (hence σ (τ0) = σ (τ0) and both weighting functions

are continuous at τ0), the limiting distributions of τ̂OLS and τ̂WLS are exactly the same and are

symmetric since φ = ξ = 1. Also they coincide under homoskedasticity with the expression given

in equation (5) of Jiang et al. (2018, p.158).

Figure 1: The density functions of argmaxs Z (s) in (3.3)

τ̂OLS (solid line), τ̂WLS (dashed line)

3.3 Asymptotic Behaviour of τ̂ under Small Breaks

Elliott and Müller (2007) argue that the asymptotic behaviour of break fraction estimators such

as τ̂ in (3.1) under “large” breaks is likely to provide a poor approximation to the finite sample

properties of the estimator for the sort of break magnitudes typically encountered in practice. They

argue that asymptotic theory based on the Pitman rate, T−1/2, is likely to provide more accurate

predictions for the behaviour of τ̂ in finite samples. They suggest that the asymptotics for d = 1/2

provides a continuous bridge between the no break case, δ = 0, and the fixed magnitude break case

considered in section 3.2. Accordingly, in Theorem 2 we now explore the asymptotic distribution

theory for τ̂ in cases where the break magnitude can be “small” (i.e. d ≥ 1/2) or, indeed, exactly

zero (δ = 0).

Theorem 2. Let the conditions of Theorem 1 hold. Then for d ≥ 0,

τ̂
d→ arg max

τ∈[τL,τU ]
Q(τ ;x(·), σ(·), δ, d) (3.4)
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where

Q(τ ;x(·), σ(·), δ, d) :=

(
10≤d≤ 1

2

δ

ω
(χ(τ0)(1− χ(τ0)))

1
2

(
χ1(τ ; τ0) ∧

1

χ1(τ ; τ0)

)

− 1d≥ 1
2

Bη(τ)− χ(τ)Bη(1)

(χ(τ)(1− χ(τ)))
1
2

)2

(3.5)

with ω2 := (
∫ 1
0 x(s)2ds)−2(

∫ 1
0 x(s)4σ(s)2ds), χ(τ) :=

∫ τ

0 x(s)2ds
∫ 1
0 x(s)2ds

, η(τ) :=
∫ τ

0 x(s)4σ(s)2ds
∫ 1
0 x(s)4σ(s)2ds

, and χ1(τ ; τ0) :=
(

χ(τ)/(1−χ(τ))
χ(τ0)/(1−χ(τ0))

)1/2
, where Bη(τ) = B(η(τ)), with B(·) a standard Brownian motion, is a variance-

transformed Brownian motion; see, for example, Davidson (1994).

Theorem 2 establishes that τ̂ has a well-defined asymptotic distribution with support Λ :=

[τL, τU ] with its form depending on the increasing functions χ(·) : [0, 1] 7→ [0, 1] and η(·) : [0, 1] 7→
[0, 1]. The function χ(τ) is the cumulative weighting function associated with the weighted regres-

sion (3.2). As regards η(τ), where xt = 1, for all t, this function is the generalisation to weighted

estimation of the variance profile, (
∫ 1
0 σ(r)2dr)−1

∫ τ
0 σ(r)2dr, of Cavaliere and Taylor (2007).

The constant ω2 appearing in the first component of the right member of (3.5) is an asymptotic

measure of the scaled disturbance variance in the weighted regression (3.2) and relates to the

average level of the volatility in the weighted data. For xt = 1 (the unweighted OLS estimator)

it simplifies to ω2 :=
∫ 1
0 σ (r)2 dr which, by Assumption A2, equals the limit of T−1

∑T
t=1 σ

2
t , and

may therefore be interpreted as the (asymptotic) average innovation variance. For xt = 1/σt (the

infeasible WLS estimator), η(τ) = ω2
∫ τ
0 σ(r)−2dr and ω2 =

(∫ 1
0 σ(r)−2dr

)−1
. Notice that, for any

given σ(·), the arithmetic/harmonic mean inequality implies that ω2 is strictly greater for the OLS

estimator than it is for the WLS estimator, with the exception of the case where σ(s) = σ for all s,

as holds under homoskedasticity, where they are equal. However this inequality need not imply an

asymptotic efficiency gain for WLS relative to OLS, as it would in standard inference problems with

asymptotic normal distribution theory. In this case the distributions are non-normal with unknown

mean, so it is incomplete to consider only the variance as measure of estimator quality here. The

sampling distributions for break fraction estimators under heteroskedasticity are considerably more

complicated functions of nuisance parameters and such simple general conclusions cannot be drawn.

Nevertheless, it will be shown by simulation in section 3.5 below that WLS can have substantially

improved bias and general distributional properties than OLS under certain break location and

heteroskedasticity configurations. However there are also particular cases in which OLS can be

superior to WLS, even in the presence of heteroskedasticity, illustrating the complicated and non-

standard nature of the distribution theory in Theorem 2.

Remark 3.4. In the case of the OLS estimator, τ̂OLS , and under the Pitman drift rate, T−1/2, the

general result in Theorem 2 coincides under homoskedasticity with the expression given for τ̂OLS in

Theorem 3 of Harvey et al. (2012, p.154). Notice also that the limiting function Q(τ ;x(·), σ(·), δ, d)
appearing in Theorem 2 does not depend on any nuisance parameters arising from conditional

heteroskedasticity in et satisfying the conditions in Assumption A1. �

Remark 3.5. As discussed in Remark 3.2, it is straightforward to extend the DGP to allow

for autocorrelation in et. In that case the disturbances et = σtut satisfy a heteroskedastic FCLT
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as usual, and ω2 in Theorem 2 would become ω2 = (
∫ 1
0 x(s)2ds)−2(

∫ 1
0 x(s)4σ(s)2ds)C(1)2. The

implications of Theorem 2 are therefore qualitatively unchanged. �

Inspection of (3.5) shows that there are two components to the limiting Q(τ ;x(·), σ(·), δ, d)
function. The first is non-stochastic and involves the true break fraction, τ0, the ratio of the break

magnitude parameter δ to ω, and the cumulative weighting function χ(·). The second is stochastic

and depends on the variance transformed Brownian motion Bη(·) (and hence the full volatility

function σ(.)) and the cumulative weighting function, but not on either τ0 or δ. Heuristically

one may view these components as, respectively, the “signal” and the “noise” with respect to the

estimation of τ0. The relative importance of the two components of Q(τ ;x(·), σ(·), δ, d) depends on
the localisation rate, d, and the break magnitude parameter, δ. We will now outline the following

three possible cases of interest:

Case 1: 0 ≤ d < 1/2, δ 6= 0. This is a “large” break and hence the signal asymptotically domi-

nates the noise. Theorem 2 implies that τ̂ converges to the maximiser of
(
χ1(τ ; τ0) ∧ χ1(τ ; τ0)

−1
)2
,

which is τ0, which is the consistency result for τ̂ given in Theorem 1 for 0 ≤ d < 1/2.

Case 2: d = 1/2, δ 6= 0. The most interesting case is where the Pitman drift rate, d = 1/2, holds,

and the “signal” and “noise” components have equivalent orders of magnitude. Here τ0 cannot be

consistently estimated, precisely because the signal does not dominate the noise, even asymptoti-

cally. The Q(τ ;x(·), σ(·), δ, d) function captures the trade-off between the signal and noise, and it

is of course this trade-off that makes the Pitman-based local asymptotics useful for predicting the

finite sample behaviour of τ̂ . Now, because maxτ
(
χ1(τ ; τ0) ∧ χ1(τ ; τ0)

−1
)2

= χ(τ0; τ0)
2 = 1, we

may consider the scaling on the “signal” relative to the “noise” as being determined by the constant
δ
ω (χ(τ0)(1−χ(τ0)))

1
2 . In contrast to the “large” break asymptotics in section 3.2, the “small” break

asymptotics predicts that the efficacy of τ̂ is not only related to the break size δ, but also to the

average volatility across the whole sample (ω) (not just the level of volatility at the break location

σ(τ0)) and to the form of the weighting scheme that determines χ(τ). The constant χ(τ0)(1−χ(τ0))

is maximised for τ0 satisfying χ(τ0) =
1
2 , showing that the signal for weighted estimation of τ0 is

not necessarily highest at τ0 = 0.5, as it is for the unweighted estimator. Rather it is maximised

at the value of τ0 where the cumulative weighting reaches 0.5, i.e.
∫ τ0
0 x(s)2ds = 1

2

∫ 1
0 x(s)2ds.

In the supplementary appendix we provide calculations of these quantities for the two illustrative

examples of a linear trend in variance and a single break in variance, together with some associated

Monte Carlo simulation results for the latter example.

Case 3: d > 1/2 and/or δ = 0. Consider finally the case where no trend break occurs

(i.e. δ = 0), or that the break is so small that the signal disappears from Q(τ ;x(·), σ(·), δ, d)
asymptotically (i.e. d > 1/2). . Here the result in Theorem 2 implies that

τ̂
d→ arg max

τ∈[τL,τU ]
Q(τ ;x(·), σ(·), 0)

= arg max
τ∈[τL,τU ]

(Bη(τ)− χ(τ)Bη(1))
2

(χ(τ)(1− χ(τ)))
(3.6)

= arg max
τ∈[τL,τU ]

Bη(τ)
2

χ(τ)
+

(Bη(1)−Bη(τ))
2

1− χ(τ)
. (3.7)

9



The result in (3.7) coincides with the form of the distribution in part 1(a) of Theorem 3.1 of Nunes

et al. (1995) specialised to the case of a level shift and generalised to allow for heteroskedasticity.

The latter is also in the general form reported in Proposition 1 of Elliott and Müller (2007).

The OLS estimator, τ̂OLS , applies equal weighting (xt = 1) to the observations, implying χ(τ) = τ .

Under homoskedasticity (σt = σ) we have η(τ) = τ , in which case Q(τ ; 1, σ(·), 0) reduces to the

square of a standard Brownian Bridge B(τ)−τB(1) divided by its standard deviation process, (τ(1−
τ))1/2. This scaled Brownian Bridge has a marginal standard normal distribution for each τ . In

contrast, where unconditional heteroskedasticity is present, the limit Q(τ ; 1, σ(·), 0) in (3.6) involves

the square of (τ(1− τ))−1/2(Bη(τ)− τBη(1)) where η(τ) =
∫ τ
0 σ(s)2ds/

∫ 1
0 σ(s)2 now differs from

τ . Heuristically, this dependence suggests that the distribution of τ̂OLS will be significantly affected

by the presence of unconditional heteroskedasticity. The WLS estimator, τ̂WLS , applies weighting

of the form xt = 1/σt, implying that χ(τ) = η(τ) =
∫ τ
0 σ(s)−2ds

/ ∫ 1
0 σ(s)−2ds, and, hence, that

Q(τ ; 1/σ(·), σ(·), 0) is a function of the variance transformed Brownian Bridge Bη(τ) − η(τ)Bη(1)

divided by its standard deviation process, (η(τ)(1 − η(τ))1/2. As in the homoskedastic case, this

latter scaled process has a marginal standard normal distribution for each τ . Although formally the

asymptotic distribution of τ̂WLS depends on the joint distribution of Q(.; 1/σ(·), σ(·), 0) on [τL, τU ],

and, hence, will depend on σ(·) in some form, the marginal properties of the scaled process are

suggestive that τ̂WLS will be less affected by any unconditional heteroskedasticity present in et than

τ̂OLS . This conjecture is supported by the simulation evidence reported in section 3.5.

3.4 A Feasible WLS Break Fraction Estimator

The WLS estimator, τ̂WLS , outlined in section 3.1 is infeasible in practice because it requires

knowledge of the volatility process, σt, t = 1, ..., T . It can, however, be made operational by

replacing σt in the formulation of τ̂WLS by an estimate of σt. In practice the volatility process

could be estimated either parametrically or non-parametrically. The former could be useful where

the practitioner wishes to specify a particular model for the volatility process but of course has the

drawback that an incorrectly specified model will likely give a very poor estimate of the volatility

path. Given our focus in this paper is on setting up general assumptions on the heteroskedasticity

present in the shocks without assuming a parametric model for the volatility process, it is more

natural for us to consider a two-step approach based on a non-parametric (adaptive) estimator

of the volatility process. In this approach the volatility, σt, is first estimated using the residuals

from estimating the level break model as in (3.2) by standard OLS (i.e. treating the shocks as

homoskedastic) and then substituting σt in the expression for τ̂WLS by the the resulting estimator,

σ̂t, say. Our proposed estimator of σt is based on the approach developed in Hansen (1995) and Xu

and Phillips (2008), which has recently been adapted to the unit root testing context by Boswijk

and Zu (2018). We will demonstrate that the large sample behaviour of the resulting feasible

weighted estimator coincides with that of the infeasible WLS estimator.

To that end, let êτ̂ ,t := yt − µ̂τ̂ − δ̂τ̂1t>⌊τ̂T ⌋, t = 1, ..., T , denote the standard OLS residuals

which obtain from estimating (2.1) under the assumption that et is homoskedastic. In doing so

an initial estimate of the level break location is needed. This could be provided by any form of

the generic estimator τ̂ given in (3.1) such that the consistency result in Theorem 1 holds and a
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natural choice would be the simple OLS estimator, τ̂OLS . Next let K(·) be a kernel function, and

let Kh(t) := K(t/h) with h > 0 a bandwidth. Then, given the residuals êτ̂ ,t, and Kh(t), a kernel

smoothing estimator for σ2
t can be defined as

σ̂2
t :=

∑T
i=1Kh

(
t−i
T

)
ê2τ̂ ,i∑T

i=1Kh

(
t−i
T

) . (3.8)

By choosing different kernel functions one can obtain either one-sided or two-sided smoothing. We

will follow Xu and Phillips (2008) and set Kh(0) = 0, and also avoid the need for boundary value

adjustments to (3.8) of the type discussed in Hansen (1995) by assuming the use of two-sided

smoothing in what follows. In particular, we will assume that K(·) is a bounded non-negative

function defined on the real line and is such that
∫∞
−∞K(x)dx = 1 and 0 <

∫∞
0 K(x)dx < 1. The

bandwidth, h := h(T ), is assumed to satisfy the (standard) rate condition that h + (Th2)−1 → 0

as T → ∞. The practical implementation of the estimator σ̂2
t depends on the choice of kernel

function, K(·), and the bandwidth, h. Commonly used kernels which satisfy the stated conditions

include the uniform, Epanechnikov, biweight and Gaussian functions. The bandwidth condition

implies that h → 0 but at a slower rate than T−1/2. In practice bandwidth selection can be crucial

to performance, and cross-validation and plug-in rules can be defined for h. The latter is used in

the simulations in section 3.5 below.

If σ(s) was continuous in s ∈ [0, 1], then it would be possible to establish that σ̂2
t in (3.8) was

a uniformly consistent estimator for σ2
t . However, we do not want to impose continuity on σ(s)

and we will show below that even without doing so the resulting feasible weighted break fraction

estimator will have the same large sample properties as the infeasible estimator under the conditions

stated above for the kernel function and bandwidth.

Based on the adaptive estimate σ̂2
t we can define the corresponding feasible WLS estimator

τ̂FWLS := arg min
τ∈[τL,τU ]

T∑

t=1

ẽ∗2τ,t

where ẽ∗τ,t, t = 1, ..., T , are the OLS residuals from the weighted regression

yt
σ̂t

= µ̃τ
1

σ̂t
+ δ̃τ

(
1t>⌊τT ⌋ ·

1

σ̂t

)
+ ẽ∗τ,t. (3.9)

We now detail the large sample properties of the feasible WLS estimator, τ̂FWLS . As in Xu

and Phillips (2008), in order to do so we need to assume conditional homoskedasticity in εt and

appropriately strengthen the moment condition in part (ii) of Assumption A1.

Theorem 3. Let the conditions of Theorem 1 hold with d ≥ 0. Assume further that E(ε2t |Ft−1) =

1 and that Assumption A1(ii) is replaced by suptE(ε8t ) < ∞. If the kernel function K(·) and

bandwidth h satisfy the conditions stated below equation (3.8), then τ̂FWLS − τ̂WLS
p→ 0.

Remark 3.6. The result in Theorem 3 demonstrates that the feasible WLS level break estimator,

τ̂FWLS , based on the adaptive estimation of σt is asymptotically equivalent to the infeasible WLS

estimator τ̂WLS . �
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Remark 3.7. It is straightforward to show that the adaptive estimator for σt remains consistent

(except, as usual, at the points of discontinuity of σ(s)) in the presence of serial correlation in

et of the form mentioned in Remark 3.2. The result in Theorem 3 will continue to hold in such

cases. Boswijk and Zu (2018) also discuss the kernel estimation of variances in the presence of

autocorrelation in a related unit root testing context. �

Remark 3.8. Following equation (18) of Bai (1997, p.555), it is possible to use the result in

(3.3) of Theorem 1 to construct confidence intervals for the true break fraction, τ0, based on either

τ̂OLS or τ̂FWLS . For a generic break fraction estimator τ̂ equal to either τ̂OLS or τ̂FWLS , it is

straightforward to show that

σ̂2
⌊T τ̂⌋ :=

∑⌊T τ̂⌋
i=1 Kh

(
⌊T τ̂⌋−i

T

)
ê2τ̂ ,i

∑⌊T τ̂⌋
i=1 Kh

(
⌊T τ̂⌋−i

T

) and σ̂
2
⌊T τ̂⌋+1 :=

∑T
i=⌊T τ̂⌋+1Kh

(
⌊T τ̂⌋+1−i

T

)
ê2τ̂ ,i

∑T
i=⌊T τ̂⌋+1Kh

(
⌊T τ̂⌋+1−i

T

)

are consistent estimates of σ̄(τ0)
2 and σ(τ0)

2, respectively. The parameters φ and ξ can then be

estimated using a standard plug-in method. Letting c1 and c2 respectively denote the (α/2)th and

(1− α/2)th quantiles of argmaxs Z (s), computed from equations B.2 and B.3 of Bai (1997, p.563),

an approximate 100 (1− α)% confidence interval for τ0 can then be constructed as

τ̂ − c2

(
T δ̂2τ̂
σ̂2
⌊T τ̂⌋

)−1

− 1

T
, τ̂ − c1

(
T δ̂2τ̂
σ̂2
⌊T τ̂⌋

)−1

+
1

T




with δ̂τ̂ obtained from (3.2) with xt = 1 for τ̂OLS or xt = 1/σ̂t for τ̂FWLS .

3.5 Finite Sample Properties

We now provide a Monte Carlo comparison of the finite sample behaviour of the OLS and fea-

sible WLS break fraction estimators, τ̂OLS and τ̂FWLS respectively, from section 3 under both

homoskedasticity and a variety of heteroskedastic environments. We also explore how useful the

large sample results from the previous section are in predicting their finite sample behaviour.

All simulation results are based on 10,000 Monte Carlo replications programmed in Gauss 15

using the rndn random number generator. For both τ̂OLS and τ̂FWLS we set τL = 0.2 and τU = 0.8

in (3.1), thereby defining the set of possible breakpoints to be searched over as {T/5, ...., 4T/5}. For
the kernel variance estimator for τ̂FWLS we used a QS kernel and plug-in bandwidth h = sT−0.2

where s is the sample standard deviation of the regressor 1, . . . , T (see section 2.2.1 of Li and

Racine, 2007); the results were found to be quite insensitive to reasonable variations of this choice.

The Monte Carlo simulations reported in this section are based on the level break DGP:

yt = µ+ δ · 1t>⌊Tτ0⌋ + σtεt, t = 1, ..., T, with εt ∼ i.i.d.N(0, 1). (3.10)

Data were generated from this DGP allowing for both the no break case, δ = 0, and for level breaks

occurring at τ0 ∈ {0.3, 0.5, 0.7}. The volatility process, σt, was varied among the following models:

SD0 : σt = 1, t = 1, ..., T

SD1 : σt = 1 + κ · 1t>⌊Tλ0⌋, SD2 : σt = 1 + κ · 1t<⌊Tλ0⌋, with κ ∈ {1, 2} and λ0 ∈ {0.3, 0.5, 0.7}
SD3 : σt = 1 + κ · (1t<⌊Tλ0⌋ + 1t>⌊T (1−λ0)⌋), with λ0 = 0.3 andκ ∈ {1, 2}
SD4 : σt = 1 + κ · t/T, with κ ∈ {1, 2}.
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SD0 is the case of unconditional homoskedasticity. SD1 (SD2) allows for an increase (decrease) in

volatility at break fraction λ0 from 1 to (1 + κ) ((1 + κ) to 1). SD3 allows for a double change

in volatility from (1 + κ) to 1 at break fraction λ0 reverting back to (1 + κ) at (1 − λ0). Finally

SD4 generates a volatility process which follows a positive linear trend between 1 at the start of

the sample and (1 + κ) at the end of the sample.

Tables 1–4 report the mean and standard deviation and, when δ 6= 0, the root mean squared

error [RMSE] from the simulated distributions of τ̂OLS (Panel A) and τ̂FWLS (Panel B) for samples

of size 100 and 300 and for level break magnitudes δ ∈ {0, 0.5, 1}. Figures 2–5 report corresponding

plots of the empirical density functions of τ̂OLS and τ̂FWLS for samples of size 100, 200 and 300 and

break magnitudes δ ∈ {0, 0.5}, organised so that Figure 2 presents results for the no level break

case, while Figures 3, 4 and 5 present results for the case where a level break occurs at τ0 = 0.3,

0.5 and 0.7, respectively. A brief summary of the main conclusions is as follows.

(i) The efficacy of both τ̂OLS and τ̂FWLS in estimating τ0 improves with larger sample sizes

(and/or larger break magnitudes), illustrating the consistency property from Theorem 1.

(ii) There is a tendency for τ̂OLS to be drawn towards periods of high volatility in a time series,

regardless of the presence and location of a level break, which can produce substantial finite

sample bias in the estimator if the level break does not occur in such periods.

(iii) This tendency can be counteracted by using the weighted estimator τ̂FWLS , which down-

weights the data in periods of high volatility, and hence substantially reduces the finite sample

bias of τ̂OLS in the worst cases.

(iv) These latter two findings are not predicted by the asymptotic approximation of Theorem 1,

but can be reasonably well explained by the results in Theorem 2.

We now discuss the results and conclusions in more detail.

Finite sample properties: level break not present

Consider the results in Table 1 and Figure 2 where no level break occurs, δ = 0. Here we see that

for the homoskedastic case τ̂OLS and τ̂FWLS behave almost identically with a relatively uniform

empirical density across the search interval with slight pile-up effects at the ends of the search set,

τL = 0.2 and τU = 0.8. Both have an empirical mean of about 0.5.

When heteroskedasticity is present the two estimators behave quite differently. While the

behaviour of τ̂FWLS is seen to be relatively unchanged from the homoskedastic case in all of the

heteroskedastic cases considered, the behaviour of τ̂OLS varies considerably across the different

non-constant volatility cases. In particular we see that the mass of the distribution of the estimator

is redistributed towards high volatility periods vis-à-vis the homoskedastic case. This phenomenon

is most obviously seen in Figure 2(g) which relates to the case where the volatility increases by a

factor of 3 at λ0 = 0.7. Here we see that a large bulk of the mass of the empirical density of τ̂OLS is

now spread out across the high volatility period in the data, with the empirical mean of τ̂OLS now

very close to 0.8, the upper limit of the search set. In contrast, the empirical density of τ̂FWLS in

Figure 2(h) is seen to be almost unchanged from the homoskedastic case. This is of course to be
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expected as, by construction, τ̂FWLS down-weights the data in periods of high volatility, thereby

reducing the tendency of the break estimator to be drawn towards such periods.

Finite sample properties: level break present

When a level break occurs (δ 6= 0), the tendency of τ̂OLS to be drawn towards high volatility periods

in the data persists. Substantial bias can result, especially if the level break occurs during a low

volatility period. The weighting inherent in τ̂FWLS can ameliorate this bias. To illustrate, consider

Figures 3e and 3f relative to Figures 3a and 3b — in each case a level break of magnitude δ = 0.5

occurs at τ0 = 0.3. In Figures 3a and 3b, where volatility is constant, both τ̂OLS and τ̂FWLS are

centred on τ0 with the estimated densities becoming increasingly concentrated around τ0 as the

sample size increases. However, in Figures 3e and 3f where the volatility increases threefold at

λ0 = 0.5, although the density of τ̂FWLS is almost identical to that seen in Figure 3b, the density

of τ̂OLS is radically altered. A relative peak still exists at τ0, at least for the larger sample sizes,

but it can be observed that, as also happens when no level break is present (see Figure 2e), a large

mass of the density has shifted into the high volatility region with a relative peak seen at τU = 0.8.

Notice also that the performance of the τ̂OLS estimator is little improved between T = 100 and

T = 300 here. Further illustration of these effects can also be seen from the associated results in

Table 2, where the empirical mean of τ̂OLS is seen to be as high as 0.678 (relative to τ0 = 0.3) for

T = 100, an example of the substantial bias referred to above.

The results also show that the weighted estimator is not a panacea and can in some cases

display apparently inferior finite sample performance to τ̂OLS . This can occur in cases where the

level break occurs in a high volatility period of the data, and especially so where the period of high

volatility is short-lived. Where the level break occurs within an extended period of high volatility,

weighting is relatively innocuous and there is little difference seen between τ̂OLS and τ̂FWLS . This

phenomenon occurs because here, as we have already observed, some of the mass of the unweighted

τ̂OLS estimator is attracted to the high volatility regime, regardless of whether a level break occurs

or not. In contrast, τ̂FWLS down-weights the high volatility period and, as a result, where a level

break occurs within the high volatility regime τ̂FWLS will have less mass in the vicinity of the

level break than the τ̂OLS estimator. However, for τ̂OLS this mass will be spread across the high

volatility regime and so one will still see reduced performance relative to the homoskedastic case

(even where the level and volatility break locations coincide) and increasingly so the longer the

duration of the high volatility period. A good illustration of this phenomenon is seen in Figures

5a-5h relating to the case where a level break occurs at τ0 = 0.7. In the homoskedastic case, τ̂OLS

and τ̂FWLS perform similarly well. However, in cases where the volatility increases by a factor 3

at λ0 we see that the performance of both estimators deteriorates. For τ̂FWLS the performance is

roughly similar regardless of where in the sample the volatility break occurs. For τ̂OLS the pile up

of mass in the high volatility region is evident (see also Figures 2c, 2e and 2f) and so it has more

mass in the vicinity of the level break - increasingly so as λ0 increases, such that the duration of the

high volatility region decreases. Indeed, for the case of the longest period of high volatility where

this regime starts at λ0 = 0.3 the empirical densities of τ̂OLS and τ̂FWLS are relatively similar.

Finite sample properties and the asymptotic approximations

We can also use the results in Figures 2-5 and Tables 1-4 to explore further how well the finite
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sample behaviour of τ̂OLS and τ̂FWLS conform to the predictions of the large sample theory given

in Theorem 1 for level breaks of fixed magnitude and Theorem 2 for level breaks whose magnitude

is local-to-zero at the Pitman rate, d = 1/2. Recall that Theorem 1 predicts that both τ̂OLS and

τ̂FWLS will be consistent for τ0 regardless of the pattern of heteroskedasticity present. Looking at

the results for the constant volatility case in Table 2 and Figures 3-5 we see this prediction being

borne out for both τ̂OLS and τ̂FWLS with each of the empirical bias, standard deviation and RMSE

of the estimators decreasing, other things equal, the larger the sample size, T , for a fixed break

magnitude, δ. These quantities also all decrease as the break magnitude increases while keeping T

constant, as anticipated by the result in Theorem 2 when d = 1/2.

A key prediction from Theorem 2 is that for a level break whose magnitude is modelled as local-

to-zero at the Pitman rate, the asymptotic distributions of τ̂OLS and τ̂FWLS will differ from one

another, and that their form will depend on the pattern of unconditional heteroskedasticity present.

In contrast, Theorem 1 provides an asymptotic approximation based on a “large” break magnitude,

and this predicts that the two estimators will be identically behaved and that it is only the volatility

in the neighbourhood of the level break that matters for the efficacy of the estimators. That the

finite sample behaviour of τ̂OLS and τ̂FWLS differs significantly, and also varies according to the

form of heteroskedasticity, has been discussed in some detail above, and this clearly demonstrates

the superiority of the asymptotic approximation provided by Theorem 2. An implication of this is

that Theorem 1 would be practically unsound as a basis for any further research on formal inference

for break fractions, such as the confidence interval construction described in Remark 3.8, in the

presence of heteroskedasticity. Theorem 2 would be superior in its finite sample relevance, but

poses the challenging question of addressing its complicated nuisance parameter dependency.

Theorem 2 also predicts that the efficacy of the two estimators will depend on the break magni-

tude, δ, considered relative to the parameter ω. We recall from the discussion in section 3.3 that ω

provides a measure of the average volatility in the weighted data and is a function of the volatility

path σ(·) and of the weighting function used (and therefore differs between τ̂OLS and τ̂FWLS). To

illustrate the role of ω, consider Figures 3m-3p together with Table 4, which relate to the case

where a level break occurs at τ0 = 0.3 and the volatility displays an upward linear trend through

the sample (SD4). We can see that relative to the homoskedastic case (see Figures 3a and 3b and

Table 1) the efficacy of both τ̂OLS and τ̂FWLS is considerably reduced when a trend in volatility

is present, and increasingly so as the magnitude of the linear trend, κ, is increased. It is also seen

that the peaks in the empirical densities at τ0 are somewhat smaller for τ̂OLS than for τ̂FWLS .

Noting that ω increases as the magnitude of the linear trend increases and is higher for τ̂OLS than

for τ̂FWLS
3 and that the level break occurs near the start of the series (where the volatility at that

point is relatively small compared to the average volatility), we clearly see that the efficacy of the

estimators in finite samples is related to the average volatility across the whole sample rather than

just to the volatility level near the level break, and to the weighting function used in constructing

the level break fraction estimator, in each case as Theorem 2 predicts.

To illustrate further the usefulness of the asymptotic approximation provided by Theorem 2,

3In this example the parameter ω2 = 1 when κ = 0 (the homoskedastic case) for both τ̂OLS and τ̂(F )WLS , but for

τ̂OLS , ω
2 = 2 1

3
when κ = 1 and ω2 = 4 1

3
when κ = 2, while for τ̂(F )WLS , ω

2 = 2 when κ = 1 and ω2 = 3 when κ = 2.
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Figure 6 graphs simulations of the distribution of Q(τ ;x(·), σ(·), δ, d) with comparisons to the finite

sample distributions of τ̂OLS and τ̂FWLS from the same DGPs. Figure 6a shows, in the broken lines,

the simulated sampling distributions of τ̂OLS for T = 100, 200, 300 from a DGP with no level shift

(δ = 0) and heteroskedasticity of the form SD2 with κ = 2 and λ0 = 0.7. The solid line shows the

asymptotic approximation for this same DGP, obtained using a 2000 step discretisation. Clearly in

this case the distribution of τ̂OLS is seen to be essentially the same across these sample sizes. Figure

6b shows the same information for τ̂FWLS . The asymptotic approximation remains very accurate

here, other than a minor divergence around the time of the break in variance (λ0 = 0.7) arising

from the differences of the finite sample properties of the kernel variance estimator used for finite

T and the true variance process that is used in Q(τ ;x(·), σ(·), δ, d). These two figures illustrate

the applicability of the stochastic component of Q(τ ;x(·), σ(·), δ, d) for predicting the finite sample

behaviour of the estimators when no level shift occurs.

Figures 6c and 6d graph the simulated finite sample and asymptotic distributions when a level

shift of magnitude δT = δT−1/2 at τ0 = 0.5 is present. Both figures show that the approximation

provided by the asymptotic distribution given in Theorem 2 is very accurate where both a level

shift and unconditional heteroskedasticity are present in the DGP. The level shift magnitude in the

previous simulations was held fixed, while here it becomes smaller as T increases. Figure 4g and

4h show the finite sample distributions with fixed level shift magnitude of 0.5, and the asymptotic

approximations given in Figures 6c and 6d evidently match well with this for T = 300 in particular,

since for T = 300 the implied level shift magnitude δT = 8T−1/2 = 0.46 is close to 0.5.

4 An Application to the Unit Root Testing Problem

As we have shown, non-stationary volatility can affect the asymptotic and finite sample properties

of the OLS and (feasible) WLS estimators of a level break location. However, such estimation is

rarely the ultimate goal of the analysis of the data; rather, it is an input into subsequent inference.

We now illustrate the relevance of these findings for the case where the estimated level break is

used to date a possible trend break in a time series prior to running a unit root test.

4.1 Unit Root Tests allowing for a Possible Trend Break

Consider the time series process yt generated according to the following DGP,

yt =




µ0,0 + µ1,0t+ zt, t = 1, . . . , ⌊τ0T ⌋
µ0,1 + µ1,1t+ zt, t = ⌊τ0T ⌋+ 1, . . . , T

(4.1)

where

zt = φT zt−1 + et, (4.2)

and where et is generated according to (2.2) and is taken to satisfy the conditions of Assumption A.4

As is common in this literature, we assume that the initial condition satisfies T−1/2z0
p→ 0. In (4.2)

4 For simplicity we assume that et is serially uncorrelated. Where et admits serial correlation of the form given in

Remark 3.2, provided the standard invertibility condition that C(z) 6= 0 for all |z| ≤ 1 holds, this can be accounted

for in the usual way using an augmented DF statistic, whereby the right hand side of (4.5) is augmented with the

lagged differences, {∆ẑτ,t−j}
p
j=1, with p satisfying the rate condition that 1/p+ p3/T → 0, as T → ∞.

16



we will follow the convention in the unit root testing literature and focus on the near-integrated

autoregressive model, Hc : φT := 1 + c/T with −∞ < c ≤ 0. We will therefore be concerned with

testing the unit root null hypothesis, H0 : c = 0, against local alternatives, Hc where c < 0.

The observation equation in (4.1) allows for a linear trend in yt and a possible break in both

intercept and slope occurring at time ⌊τ0T ⌋. Following Harris et al. (2009) and Cavaliere et al.

(2011), among others, we will focus on the situation where the trend function is restricted to be

continuous at the break point, so that the coefficients satisfy µ0,0 + µ1,0⌊τ0T ⌋ = µ0,1 + µ1,1⌊τ0T ⌋.
In this case the trend specification can be written as5

yt = α+ µt+ δT 1t>⌊τ0T ⌋(t− ⌊τ0T ⌋) + zt (4.3)

with α := µ0,0, µ := µ1,0 and δT := µ1,1 − µ1,0 (allowing for the magnitude of the break to depend

on T as the previous sections). Taking first differences we obtain

∆yt = µ+ δT 1t>⌊τ0T ⌋ +∆zt, (4.4)

where ∆ := (1− L) denotes the first difference operator. Under the unit root null hypothesis, H0,

(4.4) can be seen to coincide with (2.1) on replacing yt by ∆yt in the latter. Consequently, the

results obtained in section 3 relating to the estimation of the level break location continue to apply

in this context, so that we estimate the trend break location via level break estimation applied to

the first differences of the data.

We will base our unit root test on Dickey-Fuller [DF] type statistics which model the trend

break. These statistics are based on a two step procedure whereby the data are de-trended in the

first step and in the second step a standard DF test is applied to the de-trended data. We will

follow the recent literature and use the quasi-difference [QD] de-trending approach of Elliott et al.

(1996) in what follows, although OLS de-trending could alternatively be used. For a generic trend

break location, τ , the QD de-trended data are given by ẑτ,t := yt − Xt (τ)
′ θ̂c̄, where Xt (τ) :=(

1, t, (t− ⌊Tτ⌋) · 1t>⌊Tτ⌋

)′
and θ̂c̄ the vector of OLS parameter estimates from the regression of

yc̄,t on Xc̄,t (τ), with yc̄,1 := y1, yc̄,t := yt − φ̄T yt−1, t = 2, ..., T ; Xc̄,1 (τ) := X1 (τ), Xc̄,t (τ) :=

Xt (τ) − φ̄TXt−1 (τ), t = 2, . . . , T , and where φ̄T := 1 + c̄/T , where c̄ is the QD parameter. The

QD de-trended data ẑτ,t can then be used to estimate the DF regression

ẑτ,t = φ̂τ ẑτ,t−1 + êτ,t (4.5)

and hence to obtain the usual DF t-statistic

tτ :=
φ̂τ − 1

s.e(φ̂τ )
. (4.6)

DF unit root tests can then be based on (4.6) evaluated at either the OLS break fraction estimate,

τ = τ̂OLS , or the corresponding WLS estimate, τ = τ̂FWLS . We will denote the resulting ADF tests

by the simplified notation tOLS and tFWLS in what follows. We will also consider the DF test that

5The imposition of continuity on the trend function makes the connection to the level shift results clear and

simple. The restriction is not compulsory, however, as without it the equation corresponding to (4.4) would be given

by ∆yt = µ + λ1t=⌊τ0T⌋ + γ1t>⌊τ0T⌋ + ∆zt, and the effect of the additional impulse dummy variable 1t=⌊τ0T⌋ is

asymptotically negligible.
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obtains when allowing only for a constant and linear trend in the QD de-trending, by replacing

Xt (τ) with Xt := (1, t)′ in the de-trending step; this statistic will be denoted t0 in what follows.

Theorem S.1 in the supplementary appendix derives the limiting distribution of tτ under the

local alternative Hc when evaluated at the true break fraction τ = τ0, and shows that for the case of

a “large” magnitude trend break, i.e. such that δT = δT−d, 0 ≤ d < 1/2, with δ 6= 0, this limit also

holds for tOLS and tFWLS .
6 The (common) limiting null distribution of tOLS and tFWLS , depends

on the volatility process, σ(·). Consequently ADF tests need to be based on either the simulated

critical value approach outlined in section 4.2 of Cavaliere and Taylor (2007) or a wild bootstrap

approach, the latter outlined for the t0 statistic in section 4.1 of Cavaliere and Taylor (2008a), and

for the trend break case in Algorithm 1 of Cavaliere et al. (2011, p.971). Further discussion on the

large sample validity of these methods is provided in the supplementary appendix.

In practice it will not be known for sure if a trend break has occurred. Allowing for a non-

existent trend break (and, hence, estimating a phantom break date) results in both tOLS and

tFWLS converging to limiting distributions whose form depends on the random outcomes of τ̂OLS

and τ̂FWLS , respectively, within the search set [τL, τU ]. In order to control asymptotic size the

tests must be based on the no break asymptotic critical value; using a critical value based on the

estimated break fraction leads to over-sized tests when no trend break occurs. This leads to a loss

in test power, even asymptotically, both where a break occurs because a conservative critical value

is being used, and where a break does not occur because the inclusion of a redundant trend break

regressor leads to a considerable power loss relative to the corresponding unit root test that does

not allow for trend break; see, for example, the numerical results presented in section 5 of Harris

et al. (2009) and sections 3.2 and 5 of Cavaliere et al. (2011).

In order to overcome these issues a modified version of the usual Schwarz (1978) criterion [SC]

can be used to select between the trend break and no trend break versions of the unit root tests.

Analogous procedures based on any consistent information criterion, such as Hannan-Quinn [HQ]

where log(T − 1) is replaced by 2 log log(T − 1) in the SC penalty functions outlined below, could

also be used and would have the same large sample properties as the SC-based procedures. To that

end, consider calculating the SC for break selection based on the representation for yt provided by

equations (4.2) and (4.3). For the calculation excluding the break, define the OLS residuals ẽ0,t

from an OLS regression of yt on an intercept, trend (t) and yt−1, with associated residual variance

s20 := (T − 1)−1
∑T

t=2 ẽ
2
0,t. The SC for the model excluding the trend break is therefore

SC0 := (T − 1) log(s20) + 3 log(T − 1) (4.7)

the “3” appearing in the penalty function derives from the estimation of the coefficients on the

intercept, trend and yt−1 regressors. Similarly the calculation for the model including a trend

break at break fraction τ involves the residuals ẽτ,t from an OLS regression of yt on an intercept,

trend (t), yt−1 and also the break regressors 1t>⌊τT ⌋ and 1t>⌊τT ⌋(t−⌊τT ⌋), giving residual variance

6For d = 1/2 results comparable to those given in section 5 of Harvey et al. (2012), but generalised by the non-

stationary volatility allowed for under Assumption A2, would be obtained. For d > 1/2, as discussed in Case 1 in

section 3.3, the magnitude of the trend break would be such that it would lead to trend break estimators which

behave asymptotically the same as in the no break case.
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s2τ := (T − 1)−1
∑T

t=2 ẽ
2
τ,t, and SC

SCτ := (T − 1) log(s2τ ) + 6 log(T − 1). (4.8)

The penalty of 6 presumes that the break fraction τ is an estimated parameter, as it will be in our

applications.7 If a fixed τ were used then the penalty would become 5. The SC decision rule is to

include a trend break at time t = ⌊τT ⌋ if SCτ < SC0, and to exclude the trend break otherwise.

We evaluate below an implementation of this decision rule with τ replaced by the OLS estimator

τ̂OLS , taking no account for heteroskedasticity.

The evidence of section 3 suggests that τ̂FWLS can be substantially superior to τ̂OLS under

certain forms of non-stationary volatility, and so we also consider its use in the SC. In addition in

this case, since weighting for heteroskedasticity was found to be effective for break point estimation,

we also consider its effectiveness for break selection by including weighting in the SC calculation.

The weighted residuals ẽ∗0,t are calculated from a regression of yt/σ̂t on 1/σ̂t, t/σ̂t and yt−1/σ̂t,

where σ̂2
t is defined in (3.8). Similarly the residuals ẽ∗τ̂FWLS ,t

are calculated from a regression of

yt/σ̂t on 1/σ̂t, t/σ̂t, yt−1/σ̂t, 1t>⌊τ̂FWLST ⌋/σ̂t and 1t>⌊τ̂FWLST ⌋(t−⌊τ̂FWLST ⌋)/σ̂t. The weighted SC

analogues of (4.7) and (4.8) are then given by

SC∗
0 := (T − 1) log(s∗20 ) + 3 log(T − 1), and SC∗

τ̂FWLS
:= (T − 1) log(s∗2τ̂FWLS

) + 6 log(T − 1),

respectively, where s∗20 := (T − 1)−1
∑T

t=2 ẽ
∗2
0,t and s∗2τ̂FWLS

:= (T − 1)−1
∑T

t=2 ẽ
∗2
τ̂FWLS ,t

.

We will use the unweighted and weighted SC decision rules outlined above to choose whether

or not to include a trend break in the de-trending regression used in the first step of computing

the unit root statistics outlined above. Our proposed weighted and unweighted SC-based DF test

statistics are then defined as,

tSC :=




t0 if SC0 < SCτ̂OLS

tOLS if SC0 ≥ SCτ̂OLS

and tWSC :=




t0 if SC∗

0 < SC∗
τ̂FWLS

tFWLS if SC∗
0 ≥ SC∗

τ̂FWLS

(4.9)

respectively, where we recall that t0 is the DF test that obtains when allowing only for a constant

and linear trend in the QD de-trending step.

Theorem S.2 in the supplementary appendix establishes the large sample properties of the

weighted and unweighted SC-based procedures, for the case were the trend break magnitude is

either zero or “large”. These results show that the tests from both SC procedures are asymptotically

correctly sized when using the appropriate asymptotic critical value, obtained using either the

simulated critical value approach of Cavaliere and Taylor (2007) or a wild bootstrap approach,

regardless of whether a trend break occurs or not. Moreover, the asymptotic local power of the SC

tests is identical to that of the (size-adjusted) infeasible test which assumes knowledge of whether

a break has occurred or not, and knowledge of the true break fraction, τ0, in the former case.

7It is also worth noting that both the unweighted and weighted SC penalties given above assign a penalty of 1

to the unknown breakpoint parameter. Theoretical results provided in Zhang and Siegmund (2007), Kurozumi and

Tuvaandorj (2011) and Kim (2012) suggest that a stricter penalty of 2 might be appropriate for this parameter.
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4.2 Finite Sample Simulations

We now use Monte Carlo simulation methods to investigate whether the superior finite sample

behaviour observed for the feasible weighted break fraction estimator, τ̂FWLS , over the unweighted

estimator, τ̂OLS , seen in the simulation results in section 3, carries over to the unit root test

procedures based on τ̂FWLS and the feasible weighted model selection criteria outlined above,

relative to unit root tests based on the corresponding unweighted quantities.

The results reported in this section are based on the DGP:

yt = α+ µt+ δ(t− ⌊τ0T ⌋) · 1t>⌊τ0T ⌋ + zt (4.10)

zt = φT zt−1 + σtεt, εt ∼ i.i.d.N(0, 1). (4.11)

We set α = µ = 0 in our experiments because all of the unit root tests considered are exact

invariant to these parameters. For the volatility process, σt, we considered the same set of models

as outlined in section 3.5. Again we report only a representative selection here with the full set

of results available from the authors on request. In particular, Figures 7 and 8 for T = 100 and

T = 200, respectively, report results for the homoskedastic case κ = 0, and for a one-time break in

volatility occurring at ⌊λ0T ⌋ for λ0 ∈ {0.3, 0.5, 0.7}. Results are reported for the no trend break

case, δ = 0, and where a trend break of magnitude δ = 0.5 occurs at ⌊τ0T ⌋ for τ0 ∈ {0.3, 0.5, 0.7}.
Figures 7 and 8 compare the empirical rejection frequencies, for φT := (1 + c/T ) with c ∈

{0,−1,−2, ...,−50}, of the tSC and tWSC SC-based unit root test procedures of (4.9), comparing

each with a number of benchmark tests that are also required in the definition of tSC and tWSC .

First t0, the DF test which does not allow for a trend break in the de-trending step and where we

used c̄ = −13.5 in the QD de-trending procedure. Second, in cases where a trend break occurs

in the DGP, tτ0 the infeasible DF test based on including a trend break in the de-trending step

at the true break fraction τ0. Finally, we also report tOLS and tFWLS , the DF tests which always

including a trend break located at τ̂OLS and τ̂FWLS , respectively, in the de-trending step. For all

of the tests which include a trend break we set c̄ in the QD de-trending procedure according to

the relevant entry from Table 1 from Cavaliere et al. (2011, p.964). In all cases the tests were run

at the nominal 5% level using the Gaussian wild bootstrap with 499 bootstrap replications. For

the tSC and tWSC procedures the SC rule with the penalties outlined in section 4.1 are used. Also

shown under the labels ‘SC’ and ‘WSC’, respectively, are the empirical frequencies with which the

unweighted and weighted SC decision rules select the model which allows for a trend break.

The finite sample properties of tSC relative to tWSC , and of tOLS relative to tFWLS generally

mirror the corresponding differences seen between the unweighted and weighted break fraction

estimators, τ̂OLS and τ̂FWLS , seen in the results for these models for σt in section 3. In all of the

Figures relating to a trend break, the differences between the weighted and unweighted SC decision

rules and tests are generally rather smaller, other things equal, for T = 200 than for T = 100. This

is to be expected, given that both approaches are consistent and δ is fixed and non-zero.

Consider first the homoskedastic cases in Figures 7a, 7e, 7i and 7m and Figures 8a, 8e, 8i and

8m. Here we see no discernible differences between the behaviour of tSC and tWSC and between

tOLS and tFWLS , even for T = 100. Where no trend break is present (Figures 7a and 8a), both the

weighted and unweighted SC decision rules select the no trend break model with high probability
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and, as a result, both tSC and tWSC lie very close to the (near-) efficient t0 test. Notice that a

degree of over-sizing is seen here for both tOLS and tFWLS and, as a consequence, also for tSC

and tWSC , although this is reduced for T = 200 vis-à-vis T = 100. The power gains from using

the SC-based tSC and tWSC tests, relative to the tOLS and tFWLS tests which always include a

trend break (at the fitted break fractions τ̂OLS and τ̂FWLS , respectively), when no break occurs

can also clearly be seen for both sample sizes. Where a trend break is present (Figures 7e, 7i and

7m and Figures 8e, 8i and 8m) the power of the t0 test is effectively zero, regardless of the value

of c. Consequently, we want the tSC and tWSC procedures to select the no break case, and hence

t0, as infrequently as possible. The results show that both the weighted and unweighted SC rules

perform well in this regard, with tSC and tWSC generally lying reasonably close to tOLS and tFWLS

respectively, the more so the later in the sample the trend break occurs, which in turn lie close to

the infeasible efficient benchmark tτ0 test. An interesting feature seen for both SC decision rules

is that their efficacy to select the trend break model improves the further the AR parameter φT

lies into the stationarity region (i.e. the bigger is c). This phenomenon is clearly beneficial to the

finite sample performance of the tSC and tWSC procedures, and is to be expected given that it is

well known that a trend break is more easily detected in stationary noise than it is in noise which

contains a unit root; see, for example, Harvey et al. (2009).

Consider next the cases where σt is heteroskedastic. Where no trend break occurs (δ = 0), it is

seen in Figures 7b, 7c and 7d and Figures 8b, 8c and 8d that although the weighted SC decision

rule is marginally more efficacious in selecting the no trend break model than the unweighted SC

rule, and increasingly so as λ0 increases, in selecting the no break model, there is almost nothing to

choose between the resulting tSC and tWSC procedures, each of which again performs well lying very

close to the t0 test, as in the homoskedastic case. However, where a trend break occurs (δ 6= 0) this

picture changes considerably. The most dramatic differences between the weighted and unweighted

tests are seen for precisely those cases where τ̂FWLS was observed in the simulations in section 3

to be significantly more efficacious than τ̂OLS . These are the cases where the trend break occurs

in a low volatility regime and correspond with Figures 7g, 7h and 7l and Figures 8g, 8h and 8l.

Here the superior finite sample performance of tFWLS over tOLS is clearly seen with the former

lying very close to the infeasible efficient benchmark tτ0 test, while the latter lies some considerable

distance from this benchmark. As these tests differ only in the break fraction estimator used, the

power improvement of tFWLS over tOLS can be attributed to the superior properties of τ̂FWLS

in these situations. In particular, the results of Theorem 2 and the simulation results of section

3.5 document and explain the tendency of τ̂OLS to be potentially badly biased when the trend

break lies in a low volatility regime. It has been well known since Perron (1989) that not properly

accounting for a trend break results in unit root tests with very low power, and that fitting a trend

break at the wrong location is essentially no better than not fitting a trend break at all. Similarly,

the results of Theorem 2 and the simulation results of section 3.5 document and explain how the

weighting used in τ̂FWLS works to counteract the bias in τ̂OLS due to the heteroskedasticity.

It is also seen in the examples discussed above that the weighted SC decision rule is considerably

more efficacious than the unweighted SC decision rule in (correctly) selecting the trend break model

for the de-trending step. This is crucial to explaining the differences in the behaviour of tSC relative
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to tWSC . Too often in these cases, the unweighted SC rule wrongly selects the no break model and

hence selects the inappropriate no break t0 test and, as such, is heavily compromised. The superior

performance of both the weighted SC decision rule and the DF test based on the weighted break

fraction estimator translate into very significant power gains for tWSC over tSC in these cases,

especially so for T = 100. For example, in Figure 7g the empirical power of tWSC for T = 100

is around 90% for c = −40 while that of tSC is only about 35%. Interestingly, the weighted SC

decision rule often outperforms the unweighted SC rule, and tWSC accordingly outperforms tSC ,

even in cases where τ̂FWLS was seen to be no more efficacious than τ̂FWLS in the simulations in

section 3. Examples of this can be seen in Figures 7f and 7k and 8f and 8k where the location of

the trend and volatility breaks coincides. In these examples tFWLS also performs better than tOLS .

The intuition for the advantage of the weighted SC rule over the unweighted one is more traditional

than for the break fraction estimators – the SC method is essentially a likelihood ratio criterion for

break inclusion, except that a “penalty” term is applied in place of a critical value. The weighted

SC is effectively providing superior “power” for break detection, just as would be expected in a

standard formal hypothesis test in the presence of heteroskedasticity.

Finally, in those cases where τ̂FWLS performed least well relative to τ̂OLS , which are the cases

where the trend break lies in a high volatility regime (see Figures 7j, 7n and 7o and Figures 8j,

8n and 8o) the unweighted SC decision rule is seen to perform slightly better than the weighted

SC rule. In these examples tOLS correspondingly also performs slightly better than tFWLS as does

tSC over tWSC . However it is clear the cost of using the weighting methods in these cases is very

much smaller than the gains to using them in the preceding cases discussed, so that in general the

weighted methods are to be preferred for practice.

In unreported simulations we also explored corresponding procedures based on the HQ infor-

mation criterion, and procedures using the stricter double penalty on the estimated break fraction;

cf. footnote 7. These govern the strength of the penalty (the SC penalty is stricter than the HQ

penalty) imposed on including the trend break. The weaker the penalty, the higher the frequency

with which the trend break will be retained in the de-trending step, other things equal. As we

have seen, the break retention frequency affects the finite sample size and power properties of the

resulting unit root tests. We found that the stricter the penalty used the better the finite sample

size control of the information criteria based test procedures (so that, for example, using the SC

with a double penalty on the trend break reduced the over-sizing in tSC over tWSC relative to that

seen in Figures 7 and 8), but came at the expense of lower finite sample power where a trend break

is present. However, the qualitative conclusions drawn above regarding the relative finite sample

performance of the unweighted and weighted information criteria and associated unit root tests

were unaltered between these different possible penalties.

5 An Empirical Illustration to U.S. and U.K. GDP

We next provide an illustration of the methods discussed in this paper with a practical applica-

tion to data on GDP in the U.S. and the U.K. The inter-related questions concerning whether

GDP admits an autoregressive unit root and/or a broken deterministic linear trend date back to

at least Perron (1989). We revisit these questions using both standard methods and the corre-
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sponding (adaptive) weighted methods proposed here. The U.S. dataset we consider has previously

been analysed in Eo and Morley (2015) and constitutes a measure of quarterly real U.S. GDP,

obtained from the Bureau of Economic Analysis website. It was downloaded from James Morley’s

website, https://sites.google.com/site/jamescmorley/research/code. The quarterly U.K.

GDP dataset, obtained from the IMF Outlook, was downloaded from Benjamin Wong’s website,

https://sites.google.com/site/benjaminwongshijie/research and was previously analysed

in Kamber, Morley and Wong (2018). Full details on the construction of the U.S. and U.K. datasets

are provided in Eo and Morley (2015) and Kamber et al. (2018), respectively. Graphs of the log-

arithms of the U.S. and U.K. GDP series covering the sample periods considered, namely 1958Q3

to 2012Q1 and 1961Q3 to 2016Q2, respectively, are provided in Figure S.2 in the supplement.

To visualise the possible presence of unconditional heteroskedasticity in these data, part (a) of

Figures 9 and 10 plot the annualised quarterly real GDP growth rates for the U.S. and the U.K.,

respectively. Also plotted are the broken level functions for the growth rate series corresponding

to a level break estimated from the growth rate series by either the standard OLS estimator τ̂OLS

(the blue dashed line) or by our proposed FWLS estimator τ̂FWLS (the dashed red line); for both

τ̂OLS and τ̂FWLS we set τL = 0.1 and τU = 0.9 in (3.1). Part (b) of Figures 9 and 10 plot the

adaptive estimate σ̂2
t obtained according to (3.8) using exactly the same practical implementation

settings as used in the simulations in section 3.5. Part (c) of Figures 9 and 10 plots sample variance

profiles of the OLS residuals, denoted ε̃t, obtained from the regression of the first differences of

the log GDP series onto an intercept and 1t>⌊τ̂FWLST ⌋. The sample variance profiles, see Cavaliere

and Taylor (2008b), are plots of η̂ (u) := (
∑T

t=2 ε̃
2
t )

−1
∑⌊Tu⌋

t=2 ε̃2t against u ∈ [0, 1]. In large samples,

η̂ (u) ≈ (
∫ 1
0 σ2 (s) ds)−1

∫ u
0 σ2 (s) ds, which equals u when the unconditional volatility is constant;

that is, when there is no unconditional heteroskedasticity. Consequently, under conditional ho-

moskedasticity or, more generally, under stationary conditional heteroskedasticity, η̂(u) should be

close to the 45 degree line, and significant deviations of this function from the 45 degree line point

to the presence of persistent changes in volatility; in particular, in a period of relatively high (low)

volatility in the data the slope of η̂(u) will tend to exceed (be less than) 45 degrees. These devia-

tions, along with the corresponding 95% confidence bands8, are reported in part (d) of Figures 9

and 10. The pattern of a period of relatively high volatility followed by a decline in unconditional

volatility associated with the Great Moderation from the mid 1980s onwards, and a subsequent

increase in volatility again after the Great Recession, discussed in section 1, is apparent for both

the U.S. and U.K. GDP data in Figures 9 and 10.

To formally investigate for the presence of non-constant volatility, we report in Table 5 the HR,

HKS, HCvM, and HAD stationary volatility tests of Cavaliere and Taylor (2008b, p. 312) applied to

ε̃t for both the U.S. and U.K. real GDP series. These are tests of the null of stationary volatility,

i.e. allowing in particular for conditional heteroskedasticity under the null, against the alternative

of non-stationary volatility (unconditional heteroskedasticity). The results demonstrate that both

series display strong statistical evidence of unconditional heteroskedasticity.

8The confidence bands are obtained as suggested by Cavaliere and Taylor (2008b). This requires estimation of

the long-run variance of ε̃2t under the null hypothesis, which is done here using an autoregressive spectral density

estimator with lag length chosen by a standard SC starting from an initial maximum of 4 lags.
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Table 5: Application of the Stationary Volatility Tests

of Cavaliere and Taylor (2008b) to U.S. and U.K. real GDP

HR HKS HCvM HAD

U.S. 2.030∗∗∗ 1.860∗∗∗ 0.780∗∗∗ 3.541∗∗

U.K. 2.037∗∗∗ 1.946∗∗∗ 1.187∗∗∗ 5.375∗∗∗

Note: The superscripts ∗, ∗∗, and ∗∗∗ denote significance at the

10%, 5%, and 1% nominal (asymptotic) levels, respectively.

The OLS level break estimate τ̂OLS for the U.S. GDP growth rate series (graphed in Figure

9(a)) gives a break date of 1966Q1, while for U.K. GDP growth rates (graphed in Figure 10(a))

τ̂OLS implies a break date of 1973Q1. In each case a trend break at these dates is therefore implied

in the levels GDP series. In both cases these estimated trend breaks lie in a high volatility period of

the time series. Moreover, these locations are close to those found in earlier studies in the literature

based on OLS break date estimation; for example, Kim and Perron estimate a trend break in

U.S. GDP located at 1965Q2 (for a sample period of 1947Q1 to 2004Q2). In contrast, the FWLS

estimator, τ̂FWLS , places the trend breaks much later: for the U.S. at 2000Q2, and for the U.K. at

2005Q4, both of which lie in a relatively low volatility phase of the respective GDP series.

In order to investigate the significance of the magnitude of these estimated trend breaks we next

use the weighted and unweighted information criteria-based rules from section 4 to select between

the trend break and no trend break models for the U.S. and U.K. GDP series. In order to allow for

serial correlation of unknown order in the GDP series these criteria were generalised in the obvious

way (see Ng and Perron, 2005) to jointly minimise with respect to the autoregressive lag order and

between the break and no break models. To that end, in Table 6 we report the outcomes of the

unweighted SC-based criteria allowing for the no break and trend break models, SC0 and SCτ̂OLS
,

respectively, along with the corresponding weighted criteria, SC∗
0 and SC∗

τ̂FWLS
. We also report

the corresponding unweighted and weighted criteria based on the HQ penalty, denoted with an

obvious notation by HQ0, HQτ̂OLS
, HQ∗

0 and HQ∗
τ̂FWLS

. In each case the values reported in Table

6 are the most negative values that each of the criteria takes across all possible autoregressive lag

lengths up to a maximum lag length of pmax = ⌊16( T
100)

0.25)⌋. All of the entries in Table 6 have

been scaled by (T − pmax − 1) to aid readability.

Table 6: Standard and Adaptive SC and HQ Information Criteria for U.S. and U.K. real GDP for

selecting between trend break and no trend break models.

SC0 SCτ̂OLS
SC∗

0 SC∗
τ̂FWLS

HQ0 HQτ̂OLS
HQ∗

0 HQ∗
τ̂FWLS

U.S. -9.578 -9.504 -12.081 -12.061 -9.628 -9.584 -12.131 -12.141

U.K. -9.289 -9.216 -12.077 -12.058 -9.348 -9.305 -12.126 -12.137

We can see from the results in Table 6 that for both the U.S. and the U.K. the SC penalty

favours the no break model, regardless of whether the trend break is fitted at the location identified

by τ̂OLS or τ̂FWLS . When the HQ penalty is used there is also no evidence to accept the presence
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of a trend break at 1966Q1 for the U.S. or at 1973Q1 for the U.K., the dates implied by the τ̂OLS

estimates. However, the weighted IC with the HQ penalty favours the model with a trend break at

2000Q2 for the U.S. and the model with a trend break at 2005Q4 for the U.K., the dates implied

by the respective τ̂FWLS estimates.

Finally, to investigate if the differing estimates of the trend break location have an impact on

inference on the unit root hypothesis, we next consider the application of standard unit root tests to

the data, allowing for either no trend break, or for a trend break at the locations identified by τ̂OLS

and τ̂FWLS . In Table 7 we report results for the QD detrended augmented DF [ADF] (see footnote

4) tests t0, tOLS and tFWLS from section 4.1, together with the corresponding ADF tests based on

OLS detrending, which we denote by tols0 , tolsOLS and tolsFWLS , respectively. The autoregressive lag

length used in these ADF unit root tests was selected by the usual SC with a maximum lag length

of pmax = ⌊16( T
100)

0.25)⌋, and is reported under p̂. Wild bootstrap p-values for each test obtained

using the algorithms in Cavaliere and Taylor (2008a) and Cavaliere et al. (2011), in each case using

499 bootstrap replications, are reported in parentheses.

Table 7: Unit Root Tests for U.S. and U.K. real GDP

p̂ t0 tOLS tFWLS tols0 tolsOLS tolsFWLS

U.S. 2 -0.956 (0.886) -2.592 (0.249) -2.128 (0.465) -1.881 (0.679) -2.612 (0.325) -3.094 (0.351)

U.K. 3 -2.209 (0.247) -2.815 (0.247) -3.329 (0.038) -2.913 (0.251) -2.848 (0.361) -3.844 (0.046)

For U.S. GDP no evidence is found against the unit root null hypothesis at standard significance

levels, regardless of whether we allow for a trend break or not, and regardless of whether the break is

placed at the location identified by τ̂OLS or τ̂FWLS . Hence, although for the U.S. data the HQ-based

criterion favours the model with a trend break at 2000Q2, the omission of this trend break from the

unit root test procedure does not alter the decision to accept the unit root null hypothesis. In the

case of U.K. GDP, when either no trend break is included or a trend is included at 1973Q1 (the date

estimated by τ̂OLS) there is again no evidence against the unit root null hypothesis at standard

significance levels. However, when a trend break is included at 2005Q4 (the date estimated by

τ̂FWLS) both the QD and OLS detrended ADF tests now deliver significant rejections of the unit

root null hypothesis at the 5% level with p-values of 0.038 and 0.046, respectively. The evidence

therefore suggests that while the magnitudes of the trend breaks in U.S. and U.K. GDP are both

sufficiently large for the HQ-based criterion to select the trend break model, it is only in the case

of U.K. GDP that this break is of sufficient magnitude that failing to account for it in the unit root

test procedure alters the decision made on whether to accept the unit root null hypothesis or not.

6 Conclusions

We have investigated the properties of RSS-based estimators, including OLS and feasible WLS

estimators, the latter formed using a non-parametric kernel-based estimate of the volatility process,

for the location of a level break in series driven by shocks displaying non-stationary volatility.

Consistency rates were derived against breaks of fixed magnitude and shown to coincide with those
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obtained under homoskedasticity. Distribution theory for these estimators was also derived for

cases where the break magnitude was either local-to-zero or exactly zero. Under Pitman drift

these limiting distributions were shown to depend on nuisance parameters deriving from the non-

stationary volatility and on the location and magnitude of the level break and the bounds of the

search set. Monte Carlo evidence demonstrated that these Pitman limits closely predict the finite

sample behaviour of both the OLS and feasible WLS estimators, and highlighted the potential for

the feasible WLS estimator to deliver significant improvements over the OLS estimator in certain

heteroskedastic environments. The feasible WLS level break fraction estimator can be used in the

context of the problem of unit root testing when trend and/or volatility breaks may be present in

the data by applying it to the first differences of the data. This was shown to have the potential

to deliver significant improvements in the finite sample properties of the resulting unit root tests

relative to using an OLS break fraction estimate. We also discussed feasible weighted information

criteria, based on the same estimate of the volatility process, to select between the trend break and

no trend break models. Again these were shown to have the potential to deliver unit root tests

with considerably improved finite sample behaviour under heteroskedasticity relative to the use of

standard information criteria. An empirical illustration to U.S. and U.K. real GDP highlighted the

practical relevance of these methods. For both series, OLS estimation estimated an early break

date in a high volatility regime, whereas for both series the feasible WLS estimator estimated a

much later break date in a relatively low volatility regime. The positioning of the trend break was

shown to be important in the case of the U.K. data, with a rejection of the unit root null hypothesis

possible when based on feasible WLS break date, but not when based on the OLS break date.

Although our focus in this paper has been on a single level break, the ideas we have presented

naturally extend to the case of multiple level breaks and to structural breaks in the parameters

of more general time series regression settings. Moreover, the procedures we develop here should

extend to the multivariate case and so would be anticipated to improve inference on determining

the co-integration rank in the case of multiple time series potentially subject to breaks in both

trend and volatility. These issues are currently being investigated by the authors.
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Table 1: Finite Sample Properties of Break Fraction Estimators. No Level Break.
Volatility Models SD0-SD4.

T Mean SD Mean SD Mean SD

Panel A: τ̂OLS

SD1 : κ = 2
λ0 = 0.3 λ0 = 0.5 λ0 = 0.7

100 0.667 0.187 0.730 0.148 0.782 0.138
300 0.669 0.187 0.733 0.143 0.788 0.130

SD2 : κ = 2
λ0 = 0.3 λ0 = 0.5 λ0 = 0.7

100 0.229 0.148 0.277 0.146 0.336 0.182
300 0.215 0.134 0.270 0.146 0.332 0.185

SD3 SD4 SD0

κ = 2, λ0 = 0.3 γ = 2
100 0.359 0.281 0.699 0.201 0.509 0.272
300 0.341 0.276 0.707 0.196 0.502 0.275

Panel B: τ̂FWLS

SD1 : κ = 2
λ0 = 0.3 λ0 = 0.5 λ0 = 0.7

100 0.533 0.280 0.515 0.271 0.537 0.261
300 0.490 0.290 0.479 0.269 0.510 0.258

SD2 : κ = 2
λ0 = 0.3 λ0 = 0.5 λ0 = 0.7

100 0.478 0.263 0.505 0.270 0.493 0.282
300 0.493 0.258 0.525 0.268 0.519 0.290

SD3 SD4 SD0

κ = 2, λ0 = 0.3 κ = 2
100 0.486 0.261 0.549 0.269 0.510 0.272
300 0.492 0.251 0.523 0.275 0.504 0.275



Table 2: Finite Sample Properties of Break Fraction Estimators. Break size δ, Break fraction τ0.
Volatility Models SD0 and SD1.

Mean SD RMSE Mean SD RMSE Mean SD RMSE

δ T τ0 = 0.3 τ0 = 0.5 τ0 = 0.7

Panel A: τ̂OLS

SD0

0.5
100 0.375 0.195 0.209 0.502 0.166 0.166 0.633 0.188 0.200
300 0.312 0.094 0.094 0.500 0.084 0.084 0.687 0.094 0.095

1
100 0.309 0.074 0.074 0.500 0.064 0.064 0.694 0.067 0.067
300 0.300 0.019 0.019 0.500 0.019 0.019 0.700 0.020 0.020

SD1 : κ = 2, λ0 = 0.3

0.5
100 0.614 0.209 0.378 0.631 0.188 0.229 0.669 0.178 0.181
300 0.536 0.213 0.318 0.585 0.174 0.193 0.670 0.161 0.164

1
100 0.507 0.210 0.295 0.569 0.166 0.180 0.672 0.153 0.156
300 0.391 0.144 0.170 0.521 0.115 0.117 0.684 0.114 0.115

SD1 : κ = 2, λ0 = 0.5

0.5
100 0.678 0.193 0.425 0.694 0.155 0.248 0.722 0.140 0.142
300 0.590 0.230 0.370 0.646 0.146 0.207 0.715 0.122 0.123

1
100 0.543 0.235 0.338 0.626 0.141 0.189 0.709 0.118 0.119
300 0.371 0.164 0.179 0.563 0.097 0.116 0.702 0.086 0.086

SD1 : κ = 2, λ0 = 0.7

0.5
100 0.695 0.226 0.455 0.729 0.172 0.286 0.774 0.127 0.147
300 0.566 0.264 0.375 0.663 0.177 0.241 0.768 0.101 0.122

1
100 0.503 0.257 0.327 0.626 0.171 0.212 0.761 0.095 0.113
300 0.334 0.130 0.135 0.531 0.098 0.103 0.742 0.061 0.074

Panel B: τ̂FWLS

SD0

0.5
100 0.376 0.196 0.210 0.504 0.168 0.168 0.630 0.192 0.204
300 0.313 0.094 0.095 0.499 0.084 0.084 0.686 0.096 0.097

1
100 0.309 0.075 0.075 0.500 0.064 0.064 0.693 0.069 0.070
300 0.300 0.019 0.019 0.500 0.019 0.019 0.700 0.020 0.020

SD1 : κ = 2, λ0 = 0.3

0.5
100 0.491 0.260 0.323 0.525 0.254 0.255 0.555 0.264 0.302
300 0.414 0.219 0.247 0.503 0.221 0.221 0.568 0.253 0.285

1
100 0.420 0.205 0.238 0.517 0.196 0.197 0.609 0.222 0.240
300 0.347 0.109 0.119 0.505 0.124 0.124 0.657 0.159 0.164

SD1 : κ = 2, λ0 = 0.5

0.5
100 0.430 0.237 0.270 0.529 0.242 0.244 0.549 0.257 0.298
300 0.326 0.131 0.134 0.521 0.200 0.201 0.569 0.239 0.273

1
100 0.335 0.140 0.144 0.545 0.179 0.184 0.611 0.214 0.232
300 0.300 0.023 0.023 0.534 0.097 0.103 0.668 0.140 0.144

SD1 : κ = 2, λ0 = 0.7

0.5
100 0.416 0.222 0.250 0.522 0.199 0.200 0.574 0.250 0.280
300 0.318 0.106 0.108 0.496 0.107 0.107 0.603 0.226 0.246

1
100 0.320 0.105 0.107 0.503 0.101 0.101 0.642 0.204 0.212
300 0.300 0.019 0.019 0.499 0.021 0.021 0.700 0.117 0.117



Table 3: Finite Sample Properties of Break Fraction Estimators. Break size δ, Break fraction τ0.
Volatility Model SD2.

Mean SD RMSE Mean SD RMSE Mean SD RMSE

δ T τ0 = 0.3 τ0 = 0.5 τ0 = 0.7

Panel A: τ̂OLS

SD2 : κ = 2, λ0 = 0.3

0.5
100 0.233 0.132 0.148 0.277 0.170 0.281 0.314 0.228 0.448
300 0.230 0.101 0.123 0.337 0.177 0.241 0.437 0.264 0.372

1
100 0.244 0.104 0.118 0.384 0.168 0.205 0.510 0.252 0.316
300 0.256 0.062 0.076 0.469 0.098 0.103 0.664 0.134 0.139

SD2 : κ = 2, λ0 = 0.5

0.5
100 0.283 0.136 0.137 0.309 0.150 0.243 0.328 0.193 0.419
300 0.282 0.120 0.122 0.352 0.146 0.208 0.411 0.231 0.369

1
100 0.292 0.115 0.115 0.373 0.139 0.188 0.467 0.234 0.330
300 0.296 0.087 0.087 0.434 0.098 0.118 0.627 0.168 0.183

SD2 : κ = 2, λ0 = 0.7

0.5
100 0.335 0.173 0.177 0.371 0.183 0.224 0.387 0.204 0.374
300 0.326 0.161 0.163 0.415 0.173 0.193 0.462 0.213 0.319

1
100 0.330 0.152 0.155 0.432 0.162 0.176 0.493 0.206 0.291
300 0.313 0.113 0.114 0.477 0.114 0.117 0.607 0.146 0.173

Panel B: τ̂FWLS

SD2 : κ = 2, λ0 = 0.3

0.5
100 0.440 0.252 0.288 0.489 0.195 0.195 0.592 0.215 0.241
300 0.399 0.227 0.247 0.503 0.107 0.108 0.680 0.108 0.110

1
100 0.364 0.208 0.218 0.499 0.097 0.097 0.684 0.096 0.097
300 0.299 0.120 0.120 0.501 0.023 0.023 0.700 0.021 0.021

SD2 : κ = 2, λ0 = 0.5

0.5
100 0.468 0.258 0.308 0.487 0.241 0.241 0.586 0.229 0.256
300 0.432 0.239 0.273 0.479 0.200 0.201 0.671 0.135 0.138

1
100 0.397 0.217 0.238 0.463 0.177 0.181 0.673 0.127 0.130
300 0.332 0.143 0.146 0.465 0.099 0.105 0.700 0.023 0.023

SD2 : κ = 2, λ0 = 0.7

0.5
100 0.463 0.268 0.314 0.490 0.254 0.254 0.526 0.258 0.311
300 0.429 0.252 0.283 0.500 0.221 0.221 0.584 0.219 0.248

1
100 0.403 0.227 0.249 0.488 0.194 0.194 0.585 0.201 0.232
300 0.341 0.160 0.165 0.497 0.126 0.126 0.652 0.111 0.121



Table 4: Finite Sample Properties of Break Fraction Estimators. Break size δ, Break fraction τ0.
Volatility Models SD3 and SD4.

Mean SD RMSE Mean SD RMSE Mean SD RMSE

δ T τ0 = 0.3 τ0 = 0.5 τ0 = 0.7

Panel A: τ̂OLS

SD3 : κ = 2, λ0 = 0.3

0.5
100 0.339 0.257 0.260 0.379 0.267 0.293 0.427 0.293 0.401
300 0.294 0.207 0.207 0.395 0.235 0.257 0.512 0.287 0.343

1
100 0.300 0.198 0.198 0.427 0.214 0.226 0.563 0.266 0.299
300 0.265 0.093 0.099 0.473 0.112 0.115 0.680 0.150 0.152

SD4 : κ = 1
0.5 100 0.527 0.252 0.339 0.592 0.204 0.224 0.670 0.193 0.195

300 0.403 0.203 0.227 0.543 0.150 0.156 0.689 0.140 0.140

1 100 0.377 0.178 0.194 0.532 0.130 0.134 0.691 0.121 0.122
300 0.307 0.053 0.054 0.505 0.052 0.052 0.701 0.057 0.057

SD4 : κ = 2
0.5 100 0.622 0.240 0.402 0.653 0.200 0.252 0.702 0.181 0.181

300 0.514 0.246 0.326 0.601 0.180 0.206 0.704 0.153 0.153

1 100 0.474 0.235 0.292 0.581 0.168 0.187 0.701 0.143 0.143
300 0.343 0.132 0.138 0.525 0.097 0.100 0.705 0.088 0.088

Panel B: τ̂FWLS

SD3 : κ = 2, λ0 = 0.3

0.5
100 0.449 0.252 0.293 0.493 0.210 0.210 0.547 0.250 0.293
300 0.402 0.224 0.246 0.501 0.121 0.120 0.633 0.195 0.206

1
100 0.372 0.213 0.225 0.501 0.121 0.121 0.647 0.187 0.194
300 0.301 0.122 0.122 0.500 0.026 0.026 0.708 0.064 0.064

SD4 : κ = 1
0.5 100 0.443 0.241 0.280 0.529 0.217 0.219 0.596 0.235 0.257

300 0.347 0.158 0.165 0.509 0.149 0.150 0.642 0.185 0.194

1 100 0.342 0.144 0.150 0.512 0.128 0.128 0.665 0.153 0.157
300 0.303 0.039 0.039 0.501 0.050 0.050 0.695 0.066 0.066

SD4 : κ = 2
0.5 100 0.478 0.255 0.310 0.539 0.238 0.241 0.576 0.251 0.280

300 0.374 0.195 0.208 0.514 0.189 0.190 0.601 0.228 0.249

1 100 0.375 0.185 0.200 0.524 0.172 0.173 0.634 0.201 0.212
300 0.308 0.067 0.067 0.504 0.087 0.087 0.678 0.124 0.126



Figure 2: Simulated Sampling Density Functions of τ̂OLS and τ̂FWLS . No Level Break.
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(h) τ̂FWLS : δ = 0, SD1, κ = 2, λ0 = 0.7
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Figure 2: continued ...

(i) τ̂OLS : δ = 0, SD3, κ = 1, λ0 = 0.3
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(j) τ̂FWLS : δ = 0, SD3, κ = 1, λ0 = 0.3
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(k) τ̂OLS : δ = 0, SD3, κ = 2, λ0 = 0.3
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(l) τ̂FWLS : δ = 0, SD3, κ = 2, λ0 = 0.3
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(m) τ̂OLS : δ = 0, SD4, κ = 1, λ0 = 0
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(o) τ̂OLS : δ = 0, SD4, κ = 2, λ0 = 0
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(p) τ̂FWLS : δ = 0, SD4, κ = 2, λ0 = 0
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Figure 3: Simulated Sampling Density Functions of τ̂OLS and τ̂FWLS . Level Break at τ0 = 0.3.

(a) τ̂OLS : δ = 0.5, τ0 = 0.3; SD0, κ = 0, λ0 = 0
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(b) τ̂FWLS : δ = 0.5, τ0 = 0.3; SD0, κ = 0, λ0 = 0
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(c) τ̂OLS : δ = 0.5, τ0 = 0.3; SD1, κ = 2, λ0 = 0.3
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(d) τ̂FWLS : δ = 0.5, τ0 = 0.3; SD1, κ = 2, λ0 = 0.3
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(e) τ̂OLS : δ = 0.5, τ0 = 0.3; SD1, κ = 2, λ0 = 0.5
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(f) τ̂FWLS : δ = 0.5, τ0 = 0.3; SD1, κ = 2, λ0 = 0.5
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(h) τ̂FWLS : δ = 0.5, τ0 = 0.3; SD1, κ = 2, λ0 = 0.7

0.2 0.3 0.4 0.5 0.6 0.7 0.8

T = 100

T = 200

T = 300



Figure 3: continued ...

(i) τ̂OLS : δ = 0.5, τ0 = 0.3; SD3, κ = 1, λ0 = 0.3
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(j) τ̂FWLS : δ = 0.5, τ0 = 0.3; SD3, κ = 1, λ0 = 0.3
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(k) τ̂OLS : δ = 0.5, τ0 = 0.3; SD3, κ = 2, λ0 = 0.3
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(l) τ̂FWLS : δ = 0.5, τ0 = 0.3; SD3, κ = 2, λ0 = 0.3

0.2 0.3 0.4 0.5 0.6 0.7 0.8

T = 100

T = 200

T = 300

(m) τ̂OLS : δ = 0.5, τ0 = 0.3; SD4, κ = 1, λ0 = 0
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Figure 4: Simulated Sampling Density Functions of τ̂OLS and τ̂FWLS . Level Break at τ0 = 0.5.

(a) τ̂OLS : δ = 0.5, τ0 = 0.5; SD0, κ = 0, λ0 = 0
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(b) τ̂FWLS : δ = 0.5, τ0 = 0.5; SD0, κ = 0, λ0 = 0

0.2 0.3 0.4 0.5 0.6 0.7 0.8

T = 100

T = 200

T = 300

(c) τ̂OLS : δ = 0.5, τ0 = 0.5; SD1, κ = 2, λ0 = 0.3
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(d) τ̂FWLS : δ = 0.5, τ0 = 0.5; SD1, κ = 2, λ0 = 0.3
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(e) τ̂OLS : δ = 0.5, τ0 = 0.5; SD1, κ = 2, λ0 = 0.5
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(f) τ̂FWLS : δ = 0.5, τ0 = 0.5; SD1, κ = 2, λ0 = 0.5
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(g) τ̂OLS : δ = 0.5, τ0 = 0.5; SD1, κ = 2, λ0 = 0.7
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(h) τ̂FWLS : δ = 0.5, τ0 = 0.5; SD1, κ = 2, λ0 = 0.7
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Figure 4: continued ...

(i) τ̂OLS : δ = 0.5, τ0 = 0.5; SD3, κ = 1, λ0 = 0.3
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(j) τ̂FWLS : δ = 0.5, τ0 = 0.5; SD3, κ = 1, λ0 = 0.3

0.2 0.3 0.4 0.5 0.6 0.7 0.8

T = 100

T = 200

T = 300

(k) τ̂OLS : δ = 0.5, τ0 = 0.5; SD3, κ = 2, λ0 = 0.3
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(l) τ̂FWLS : δ = 0.5, τ0 = 0.5; SD3, κ = 2, λ0 = 0.3
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(m) τ̂OLS : δ = 0.5, τ0 = 0.5; SD4, κ = 1, λ0 = 0

0.2 0.3 0.4 0.5 0.6 0.7 0.8

T = 100

T = 200

T = 300
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Figure 5: Simulated Sampling Density Functions of τ̂OLS and τ̂FWLS . Level Break at τ0 = 0.7.

(a) τ̂OLS : δ = 0.5, τ0 = 0.7; SD0, κ = 0, λ0 = 0
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(b) τ̂FWLS : δ = 0.5, τ0 = 0.7; SD0, κ = 0, λ0 = 0
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(c) τ̂OLS : δ = 0.5, τ0 = 0.7; SD1, κ = 2, λ0 = 0.3
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(d) τ̂FWLS : δ = 0.5, τ0 = 0.7; SD1, κ = 2, λ0 = 0.3
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(e) τ̂OLS : δ = 0.5, τ0 = 0.7; SD1, κ = 2, λ0 = 0.5
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(h) τ̂FWLS : δ = 0.5, τ0 = 0.7; SD1, κ = 2, λ0 = 0.7
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Figure 5: continued ...

(i) τ̂OLS : δ = 0.5, τ0 = 0.7; SD3, κ = 1, λ0 = 0.3
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(j) τ̂FWLS : δ = 0.5, τ0 = 0.7; SD3, κ = 1, λ0 = 0.3
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(k) τ̂OLS : δ = 0.5, τ0 = 0.7; SD3, κ = 2, λ0 = 0.3
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Figure 6: Simulated sampling density functions with δT = δT−1/2

(a) τ̂OLS : δ = 0, SD1, κ = 2, λ0 = 0.7
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(b) τ̂FWLS : δ = 0, SD1, κ = 2, λ0 = 0.7
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(c) τ̂OLS : δ = 8, SD1, κ = 2, λ0 = 0.7
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(d) τ̂FWLS : δ = 8, SD1, κ = 2, λ0 = 0.7
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Figure 7: Finite Sample Local Power Comparisons, T = 100

(a) δ = 0; κ = 0
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(b) δ = 0; κ = 2, λ0 = 0.3
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(c) δ = 0; κ = 2, λ0 = 0.5
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(d) δ = 0; κ = 2, λ0 = 0.7

−50 −40 −30 −20 −10 0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

c

●

●

●
●

●
●●●●●●

●

●
●

●●●●●●●●

(e) δ = 0.5, τ0 = 0.3; κ = 0
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(f) δ = 0.5, τ0 = 0.3; κ = 2, λ0 = 0.3
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Figure 7: continued ...

(g) δ = 0.5, τ0 = 0.3; κ = 2, λ0 = 0.5
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(h) δ = 0.5, τ0 = 0.3; κ = 2, λ0 = 0.7
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(i) δ = 0.5, τ0 = 0.5; κ = 0
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(j) δ = 0.5, τ0 = 0.5; κ = 2, λ0 = 0.3
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(k) δ = 0.5, τ0 = 0.5; κ = 2, λ0 = 0.5
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(l) δ = 0.5, τ0 = 0.5; κ = 2, λ0 = 0.7
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Figure 7: continued ...

(m) δ = 0.5, τ0 = 0.7; κ = 0
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(n) δ = 0.5, τ0 = 0.7; κ = 2, λ0 = 0.3

−50 −40 −30 −20 −10 0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

c

●
●●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

(o) δ = 0.5, τ0 = 0.7; κ = 2, λ0 = 0.5
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(p) δ = 0.5, τ0 = 0.7; κ = 2, λ0 = 0.7
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Figure 8: Finite Sample Local Power Comparisons, T = 200

(a) δ = 0; κ = 0
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(b) δ = 0; κ = 2, λ0 = 0.3
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(c) δ = 0; κ = 2, λ0 = 0.5
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(d) δ = 0; κ = 2, λ0 = 0.7
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(e) δ = 0.5, τ0 = 0.3; κ = 0
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(f) δ = 0.5, τ0 = 0.3; κ = 2, λ0 = 0.3
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Figure 8: continued ...

(g) δ = 0.5, τ0 = 0.3; κ = 2, λ0 = 0.5
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(h) δ = 0.5, τ0 = 0.3; κ = 2, λ0 = 0.7
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(i) δ = 0.5, τ0 = 0.5; κ = 0
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(j) δ = 0.5, τ0 = 0.5; κ = 2, λ0 = 0.3
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(k) δ = 0.5, τ0 = 0.5; κ = 2, λ0 = 0.5
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(l) δ = 0.5, τ0 = 0.5; κ = 2, λ0 = 0.7

−50 −40 −30 −20 −10 0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

c

●●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●●

t0

t
τ0

tOLS

tSC

tFWLS

tWSC

●

●

SC

WSC



Figure 8: continued ...

(m) δ = 0.5, τ0 = 0.7; κ = 0
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(n) δ = 0.5, τ0 = 0.7; κ = 2, λ0 = 0.3
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(o) δ = 0.5, τ0 = 0.7; κ = 2, λ0 = 0.5
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(p) δ = 0.5, τ0 = 0.7; κ = 2, λ0 = 0.7
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Figure 9: (a) Annualised quarterly U.S. real GDP growth rates with fitted OLS and FWLS level break path estimates; (b) estimated volatility
path; (c) estimated variance profile; (d) centered variance profile estimate.
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Figure 10: (a) Annualised quarterly U.K. real GDP growth rates with fitted OLS and FWLS level break path estimates; (b) estimated volatility
path; (c) estimated variance profile; (d) centered variance profile estimate.
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On-Line Supplementary Appendix

to

Level Shift Estimation in the Presence of Non-stationary Volatility with an

Application to the Unit Root Testing Problem

by

D. Harris, H. Kew and A.M.R. Taylor

Contents: Section S.1 provides some example calculations relating to Case 2 in section 3.3.

Section S.2 of this supplement reports the large sample properties of the unit root tests and IC-

based trend break selection procedures. Section S.3 contains graphs of the U.K. and U.S. real GDP

series considered in section 5. Section S.4 provides proofs of Theorems 1-3 and Theorems S.1 and

S.2. Additional references, where not cited within the main paper, are provided at the end of this

supplementary appendix.

S.1 Example Calculations Relating to Case 2 of Section 3.3

In this section we provide two numerical examples of the calculations discussed in Case 2 in section

3.3 relating to the Pitman rate local asymptotic distribution theory from Theorem 2. Example

1 relates to the case where the variance follows a linear trend path, while in Example 2 a one-

time change in volatility occurs. Some additional Monte Carlo simulations are also included to

investigate how well Theorem 2 predicts the finite sample behaviour of the τ̂FWLS estimator in this

regard.

Example 1: Consider the case where the weighted estimator is formed on the assumption that

the variance follows the linear trend path σ2
t = 1 + t/T . The corresponding weighted estimator

obtains setting xt = 1/(1 + t/T )1/2, and hence x(s) = (1 + s)−1/2 and χ(τ) = log(1+τ)
log 2 . Then

χ(τ0) = 1
2 gives τ0 =

√
2 − 1 ≈ 0.414. Consequently, when weighting is used appropriate for a

linear trend in the variance the position of a break fraction that maximises the asymptotic signal

in Q(τ ;x(·), σ(·), δ, d) is τ0 ≈ 0.414, rather than τ0 = 0.5. Notice that this result obtains regardless
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of whether this weighting leads to the true WLS estimator; that is, the result holds regardless of

the true variance process, σt. �

Example 2: As a second example, suppose that it is assumed that there is one-time change in

variance at time ⌊Tλ⌋; that is, under the assumption that σt = 1+κ1 t
T
>λ. Here xt = 1/σt, so that

x(s) =




1, s ≤ λ

(1 + κ)−1, s > λ
and, hence, χ(τ) =





τ
λ+(1+κ)−2(1−λ)

, τ ≤ λ

λ+(1+κ)−2(τ−λ)
λ+(1+κ)−2(1−λ)

, τ > λ.

In the homoskedastic case, where no break in variance occurs, such that κ = 0, the weighted and

unweighted estimators coincide. Solving here, χ(τ0) = 1
2 gives τ0 = 1

2 , as expected; that is, with

homoskedastic data the asymptotic signal in Q(τ ;x(·), σ(·), δ, d) is maximised for a break occurring

in the middle of the sample. However, in the case where λ = 0.3 and κ = 2, such that the volatility

increases threefold 30% of the way into the sample, then solving χ(τ0) = 1
2 yields τ0 ≈ 0.19.

Using the weights appropriate to this form of variance step function therefore results in the largest

“signal” for a break occurring at τ0 ≈ 0.19. In contrast if λ = 0.7 and κ = 2, such that the volatility

increases threefold 70% of the way into the sample, then solving χ(τ0) =
1
2 yields τ0 ≈ 0.40. We

therefore see, again noting that these results obtain regardless of whether or not these weightings

lead to the true WLS estimator in each case, that in these two examples the weighting based on

either the assumption of an early or late increase in variance results in the largest “signal” for a

break occurring in the lower variance regime of the sample, as seems intuitively reasonable. �

The discussion given in Example 2 can also be illustrated numerically. A simulation experiment

was carried out based on the DGP (3.10) with

σt =
(λ0(1 + κ)2 + (1− λ0))

1/2

1 + κ
(1 + κ · 1t>⌊λ0T ⌋).

The additional scaling of σt relative to that in Example 2 above is used so that ω2 = 1 for this

standard deviation process for any values of λ0 and κ, which allows meaningful comparisons to be

drawn across these two parameters. In particular, simulation can be used to obtain approximations

to the true value of the break fraction τ0 that can be more accurately estimated from a finite sample

data, based on different values of the standard deviation parameters. The analysis of the signal

given in Example 2 above suggested that the multiplier on the deterministic signal component of

Q(τ ;x(·), σ(·), δ, 1/2) would be maximised at τ0 = 1/2 for κ = 0 (homoskedasticity), at τ0 ≈ 0.19

for κ = 2 and λ0 = 0.3, and at τ0 ≈ 0.40 for κ = 2 and λ0 = 0.7. These calculations do not

constitute formal proof that these values of τ0 are those that can be most efficiently estimated

under these variance patterns. However, the simulation results summarised in Figure S.1 show that

they provide a good approximation in these cases at least. Figure S.1 gives plots, one for each of

the three variance processes discussed here, of the simulated RMSEs of τ̂FWLS for estimating each

of the indicated values of τ0 the horizontal axis, based on samples of size T = 200 and with break

size δT = 8T−1/2 (i.e. the same break size considered in Figure 6 for the purposes of comparison).

The values of τ0 that returned minimum RMSE of τ̂FWLS in each case were respectively τ0 = 0.49

(κ = 0), τ0 = 0.18 (κ = 2, λ0 = 0.3) and τ0 = 0.40 (κ = 2, λ0 = 0.7). Again we see that, even when

used heuristically, the asymptotic approximation provided by Q(τ ;x(·), σ(·), δ, 1/2) in Theorem 2

provides a very useful guide to finite sample properties.
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Figure S.1: Simulated RMSEs of τ̂FWLS . T = 200, δT = 8T−1/2.
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S.2 Limiting Distributions for Unit Root Tests and Model Selec-

tion

Theorem S.1 provides the limiting distribution under the local alternative Hc of tτ when evaluated

at the true break fraction τ = τ0. The theorem also shows that this limit is unchanged when τ0

is replaced by either the OLS break fraction estimate, τ̂OLS , or the corresponding feasible WLS

estimate, τ̂FWLS .

Theorem S.1. Let yt be generated according to (4.1)-(4.2) and with et generated according to (2.2),
and let the conditions of Assumption A hold. Let δT = δT−d, d ≥ 0. Then, under Hc:

(i) For any d ≥ 0, and regardless of whether δ = 0 or δ 6= 0,

tτ0
d→

1
2(Z(1; τ0, c, c̄, η)

2 − 1)
(∫ 1

0 Z(s; τ0, c, η)2ds
)1/2 := ξ(τ0, c, c̄, η) (S.1)

where

Z(s; τ, c, c̄, η) := Bc
η(s)−X(s; τ)′

(∫ 1

0
Xc̄(s; τ)Xc̄(s; τ)

′ds

)−1 ∫ 1

0
Xc̄(s; τ)dB

c
η(s; c̄)

and

Bc
η(s) :=

∫ s

0
exp(c(s− r))dBη(r), Bc

η(s; c̄) := Bc
η(s)− c̄

∫ s

0
Bc

η(r)dr,

with Bη(·) as defined in Theorem 2, and

X(s; τ) :=

(
s

(s− τ) ∨ 0

)
, Xc̄(s; τ) :=

(
1− c̄s

1− c̄((s− τ) ∨ 0)

)
.

(ii) For 0 ≤ d < 1/2, and provided δ 6= 0, it holds that: (a) tOLS − tτ0
p→ 0, and (b) provided the

additional conditions of Theorem 3 hold, tFWLS − tτ0
p→ 0.

Remark S.1. The results in part (ii) of Theorem S.1 might appear to contradict with Proposition

3 of Kim and Perron (2009,p.12) where it is shown that for some generic break fraction estimator,

τ̃ , the break fraction, τ0 must be consistently estimated at some rate greater than T 1/2 in order for

a DF test based on τ̃ , tτ̃ say, and tτ0 to be asymptotically equivalent. However, the result in Kim

and Perron (2009) relates only to the case where the trend break magnitude δT is fixed and non-zero

(see their Assumption 1 on page 3), and therefore corresponds to the specific case of d = 0 and δ 6= 0

in Theorem S.1. In this case we know from Theorem 1 that both τ̂OLS and τ̂FWLS are consistent

at rate Op(T
−1), which certainly satisfies the condition in Proposition 3 of Kim and Perron (2009,

p.4). In the more general set-up we consider here, the trend break magnitude and convergence rate

of τ̂OLS and τ̂FWLS change together; as the break magnitude slows, so commensurately does the

convergence rate of τ̂OLS , τ̂FWLS . In particular, where the trend break magnitude is of order T−d,

d ≥ 0, then, as shown in Theorems 1 and 3, respectively, (τ̂OLS − τ0) and (τ̂FWLS − τ0) are both of

Op(T
2d−1). However, this rate of consistency is still sufficiently fast for the asymptotic equivalence

results in part (ii) of Theorem S.1 to hold, precisely because the magnitude of the trend break is

shrinking commensurately with the reduced consistency rate. �
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Remark S.2. The result in Theorem S.1 relates to the “large” break case of section 3.2 where

0 ≤ d < 1/2 in the localisation of the trend break magnitude, such that the trend break location τ0

can be consistently estimated. Localisations which converge to zero at a faster rate, as considered

in section 3.3, including the Pitman drift rate where d = 1/2, are excluded. Our aim here is

not to provide a comprehensive treatment of the large sample properties of unit root tests in the

present setting but rather to explore how weighted trend break estimators can improve the finite

sample properties of unit root tests relative to standard OLS estimation. However, the results

could be extended to cover the case of d ≥ 1/2. For d = 1/2, results comparable to those given

in section 5 of Harvey et al. (2012), but generalised by the non-stationary volatility allowed for

under Assumption A2, would be obtained. For d > 1/2, as discussed in Case 1 in section 3.3, the

magnitude of the trend break would be such that it would lead to trend break estimators which

behave asymptotically the same as in the no break case. As a result, both tOLS and tFWLS would

converge to limiting distributions of a similar form to that given in (S.1) evaluated not at τ0 but

at the random outcomes of τ̂OLS and τ̂FWLS within the search set [τL, τU ]. �

Remark S.3. Theorem S.1 replicates the result given for the t(τ̄) statistic (which is based around

the OLS break fraction estimator, τ̂OLS) in part (ii) of Theorem 1 of Cavaliere et al. (2011, p.966)

which pertains to the case of a trend break of fixed magnitude, δ 6= 0 and d = 0. Theorem S.1 shows

that the result also holds for tFWLS , the DF statistic based on the feasible WLS break fraction

estimator, and that it continues to hold (for both break fraction estimators) for breaks which are

local to zero, provided the localisation rate is smaller than the Pitman rate, d = 1/2. �

Remark S.4. The (common) limiting null distribution of tOLS and tFWLS , which obtains on

setting c = 0 in (S.1), is seen to depend on the volatility process σ(·) through the presence of

the heteroskedastic Brownian motion Bη(·). This is also the case for the corresponding no-break

statistic, t0, defined in Remark 4.3, whose limiting distribution under Hc coincides with that given

for the MZt statistic in Theorem 1 of Cavaliere and Taylor (2008a, pp.49-50). Consequently for

pivotal inference on the unit root null hypothesis, H0, we will need to base these tests on either

the simulated critical value approach outlined in section 4.2 of Cavaliere and Taylor (2007) or a

wild bootstrap approach, the latter outlined for the t0 statistic in section 4.1 of Cavaliere and

Taylor (2008a), and for the trend break case in Algorithm 1 of Cavaliere et al. (2011, p.971). In

the no trend break case, δ = 0, the asymptotic validity of the simulated critical value and wild

bootstrap methods is established in Cavaliere and Taylor (2007) and Cavaliere and Taylor (2008a),

respectively. In the case where a trend break occurs, δ 6= 0, both approaches can be shown to

deliver asymptotically pivotal inference for tOLS and tFWLS under the conditions of Theorem S.1.

For the wild bootstrap approach, the proof of asymptotic validity follows directly from Cavaliere

et al. (2011), noting the asymptotic equivalence of tOLS and tFWLS . The asymptotic validity of

the simulated critical value approach follows using the same arguments as are given in section 4 of

Cavaliere and Taylor (2007). �

Remark S.5. The heteroskedastic Brownian motion Bη appearing in Theorem S.1 is the same as

that in Theorem 2. The results in Theorem 2 directly provide the asymptotic distribution theory

for break fraction estimators under the unit root null hypothesis. Under the near-integrated local

alternatives that we also allow for in Theorem S.1, the asymptotic distribution theory for the break
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fraction estimators can, in the usual way, be shown to obtain by replacing the heteroskedastic

Brownian motion Bη in Theorem 2 with the corresponding heteroskedastic near-integrated process

Bc
η defined in Theorem S.1. The general conclusions given in section 3.3 about the properties

of the break fraction estimators for “small” breaks under the unit root null therefore also apply

qualitatively unchanged under local alternatives. The conclusion of most practical relevance from

this is that the break fraction estimator will tend to be drawn towards periods of high variance in

the time series, regardless of whether the unit root null hypothesis or the near-integrated alternative

hypothesis holds. �

In Theorem S.2 we now establish the large sample properties of the weighted and unweighted

SC-based procedures.

Theorem S.2. Let yt be generated according to (4.1)-(4.2) with et generated according to (2.2),
and let the conditions of Assumption A hold. Let δT = δT−d, 0 ≤ d < 1/2. Then, under Hc, and
in each case as T → ∞:

(a) For the unweighted SC-based procedure:
(i) if δ 6= 0, then Pr(SCτ̂OLS

≤ SC0) → 1; (ii) if δ = 0, then Pr(SCτ̂OLS
> SC0) → 1.

(b) For the weighted SC-based procedure, and provided the additional conditions of Theorem 3 hold:
(i) if δ 6= 0, Pr(SC∗

τ̂FWLS
≤ SC∗

0 ) → 1; (ii) if δ = 0, Pr(SC∗
τ̂FWLS

> SC∗
0 ) → 1.

Remark S.6. Theorem S.2 shows that for both the unweighted and weighted SC procedures the

probability of selecting the trend break model converges to one (zero) when a trend break is (is

not) present in the DGP, in each case as the sample size diverges. As a result, as the sample

size diverges, both tSC and tWSC converge (in probability) to t0 when no trend break is present,

while when a trend break is present tSC converges to tOLS and tWSC converges to tFWLS , both

of which coincide with the known τ0 limiting distribution in (S.1). Consequently, the tests from

both SC procedures will be asymptotically correctly sized when using the appropriate asymptotic

critical value, obtained as outlined in section 4 using either the simulated critical value approach

of Cavaliere and Taylor (2007) or the wild bootstrap approach in Algorithm 1 of Cavaliere et al.

(2011), regardless of whether a trend break occurs or not. Moreover, the asymptotic local power of

the SC tests will be identical to that of the (size-adjusted) infeasible test which assumes knowledge

of whether a break has occurred or not, together with knowledge of the true break fraction, τ0, in

the former case. �

Remark S.7. Observe that the unweighted SC decision rule can be equivalently expressed in terms

of the (pseudo) likelihood ratio test based decision rule to include the trend break if T (log(s20) −
log(s2τ̂OLS

)) ≥ 3 log T and, similarly, for the weighted SC rule if T (log(s∗20 )− log(s∗2τ̂FWLS
)) ≥ 3 log T .

This is therefore seen to be analogous to testing for the presence of a trend break at the random

fraction τ̂OLS and τ̂FWLS for the unweighted and weighted SC rules, respectively, and as such is

related to a sup-LR type statistic in the spirit of Andrews (1993), but where the decision rule

is based not on a fixed critical value but on a Schwarz-type penalty. These are then essentially

pre-tests for the presence of a trend break both of which, by design, have size which shrinks to zero

as the sample size diverges; the same requirement is needed on the trend break pre-tests used in
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the univariate testing analogue of the problem considered here in Harris et al. (2009) and Carrion-

i-Silvestre et al. (2009). Because the weighted SC approach corresponds to a test based on feasible

WLS estimation, is it anticipated that it will be more efficacious than the unweighted SC approach

in selecting between the trend break and no trend break models in the presence of non-stationary

volatility. �

S.3 Time Series Plots of U.S. and U.K. real GDP Series

These graphs appear on the next page of the supplement.

S.4 Proofs

This section contains proofs for the theorems stated in the main text. Section S.4.1 contains some

preliminary results. Proofs of the results in Theorems 1-3 and Theorems S.1 and S.2 are then

provided in Section S.4.2.

S.4.1 Preliminary Results

The following Lemmas are useful for the proofs of Theorems 1 and 2. The first provides a general

representation of the weighted least squares criterion, and the second the heteroskedastic FCLT

results required for the theorems.

The estimator of τ0 defined in (3.1) minimises the sum of squared residuals from regressions (3.2)

estimated over the range of τ , which can equivalently be expressed as regressions of y∗t := ytxt on

xt1t≤⌊τT ⌋ and xt1t>⌊τT ⌋ for τ ∈ [τL, τU ]. For any τ such a regression can be represented

y∗t = µ̂1,τ (xt1t≤⌊τT ⌋) + µ̂2,τ (xt1t>⌊τT ⌋) + ê∗τ,t,

where

µ̂1,τ :=

∑⌊τT ⌋
t=1 y∗t xt∑⌊τT ⌋
t=1 x2t

, µ̂2,τ :=

∑T
t=⌊τT ⌋+1 y

∗
t xt∑T

t=⌊τT ⌋+1 x
2
t

are the OLS coefficient estimates.

Lemma S.1. For any weights xt, τ̂ defined in (3.1) can be represented as

τ̂ = arg max
τ∈[τL,τU ]

QT (τ),

where

QT (τ) :=

∑⌊τT ⌋
t=1 x2t

∑T
t=⌊τT ⌋+1 x

2
t∑T

t=1 x
2
t

(µ̂2,τ − µ̂1,τ )
2 ,

and where

µ̂2,τ − µ̂1,τ = δT

(∑⌊τ0T ⌋
t=1 x2t∑⌊τT ⌋
t=1 x2t

∧
∑T

t=⌊τ0T ⌋+1 x
2
t∑T

t=⌊τT ⌋+1 x
2
t

)

−
∑T

t=1 x
2
t∑⌊τT ⌋

t=1 x2t
∑T

t=⌊τT ⌋+1 x
2
t




⌊τT ⌋∑

t=1

etx
2
t −

∑⌊τT ⌋
t=1 x2t∑T
t=1 x

2
t

T∑

t=1

etx
2
t


 . (S.2)
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Figure S.2: (a) Log U.S. real GDP
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Figure S.2: (b) Log U.K. real GDP
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Proof of Lemma S.1

For any τ , standard least squares algebra gives the sum of squared residuals

T∑

t=1

ê∗2τ,t =
T∑

t=1

y∗2t −


µ̂2

1,τ

⌊τT ⌋∑

t=1

x2t + µ̂2
2,τ

T∑

t=⌊τT ⌋+1

x2t


 . (S.3)

Similar algebra for a regression of y∗t on xt alone gives the sum of squared residuals

T∑

t=1

ê∗2t =

T∑

t=1

y∗2t − µ̂2
T∑

t=1

x2t (S.4)

where µ̂ := T−1
∑T

t=1 xt. Subtracting (S.4) from (S.3) gives

T∑

t=1

ê∗2τ,t =

T∑

t=1

ê∗2t +
(
∑T

t=1 xty
∗
t )

2

∑T
t=1 x

2
t

− (
∑⌊τT ⌋

t=1 xty
∗
t )

2

∑⌊τT ⌋
t=1 x2t

−
(
∑T

t=⌊τT ⌋+1 xty
∗
t )

2

∑T
t=⌊τT ⌋+1 x

2
t

.

Substituting
∑T

t=1 xty
∗
t =

∑⌊τT ⌋
t=1 xty

∗
t +

∑T
t=⌊τT ⌋+1 xty

∗
t , expanding and rearranging gives

T∑

t=1

ê∗2τ,t =

T∑

t=1

ê∗2t −
∑⌊τT ⌋

t=1 x2t
∑T

t=⌊τT ⌋+1 x
2
t∑T

t=1 x
2
t

(µ̂2,τ − µ̂1,τ )
2

=
T∑

t=1

ê∗2t −QT (τ),

so that argminτ
∑T

t=1 ê
∗2
τ,t is identical to argmaxτ QT (τ).

Next consider µ̂2,τ − µ̂1,τ . Using

y∗t = µxt + δT (xt · 1t≥⌊τ0T ⌋) + xtet

in the expressions for µ̂1,τ and µ̂2,τ gives

µ̂1,τ = µ+ δT

∑⌊τT ⌋
t=⌊τ0T ⌋+1 x

2
t

∑⌊τT ⌋
t=1 x2t

+

∑⌊τT ⌋
t=1 x2t et∑⌊τT ⌋
t=1 x2t

(the second term being zero for ⌊τT ⌋ ≤ ⌊τ0T ⌋) and

µ̂2,τ = µ+ δT

∑T
t=⌊(τ∨τ0)T ⌋+1 x

2
t∑T

t=⌊τT ⌋+1 x
2
t

+

∑T
t=⌊τT ⌋+1 x

2
t et∑T

t=⌊τT ⌋+1 x
2
t

.

To calculate µ̂2,τ − µ̂1,τ , note that

∑T
t=⌊(τ∨τ0)T ⌋+1 x

2
t∑T

t=⌊τT ⌋+1 x
2
t

−
∑⌊τT ⌋

t=⌊τ0T ⌋+1 x
2
t

∑⌊τT ⌋
t=1 x2t

=





∑T
t=⌊τ0T ⌋+1 x

2
t∑T

t=⌊τT ⌋+1 x
2
t

, if ⌊τT ⌋ ≤ ⌊τ0T ⌋

∑⌊τ0T ⌋
t=1 x2t∑⌊τT ⌋
t=1 x2t

, if ⌊τT ⌋ > ⌊τ0T ⌋

=

∑⌊τ0T ⌋
t=1 x2t∑⌊τT ⌋
t=1 x2t

∧
∑T

t=⌊τ0T ⌋+1 x
2
t∑T

t=⌊τT ⌋+1 x
2
t

,

[S.9]



and that straightforward rearrangements give

∑T
t=⌊τT ⌋+1 x

2
t et∑T

t=⌊τT ⌋+1 x
2
t

−
∑⌊τT ⌋

t=1 x2t et∑⌊τT ⌋
t=1 x2t

=

∑T
t=1 x

2
t∑⌊τT ⌋

t=1 x2t
∑T

t=⌊τT ⌋+1 x
2
t




⌊τT ⌋∑

t=1

etx
2
t −

∑⌊τT ⌋
t=1 x2t∑T
t=1 x

2
t

T∑

t=1

etx
2
t


 ,

and together these imply the result in (S.2). �

Lemma S.2. Let et be generated by (2.2) under the conditions of Assumption A, and let xt =
x(t/T ) be non-stochastic weights such that the function x(·) satisfies the same conditions as σ(·) in
Assumption A2. Then,

ω−1
xe T

−1/2

⌊·T ⌋∑

t=1

x2t et
d→ Bη(·) (S.5)

where Bη(s) := B(η(s)), with B(·) a standard Brownian motion, and where η(s) := ω−2
xe

∫ s
0 x(r)4σ(r)2dr

with ω2
xe :=

∫ 1
0 x(r)4σ(r)2dr. Moreover,

sup
τ∈[τL,τU ]

T−1/2

⌊τT ⌋∑

t=1

etx
2
t = Op(1) (S.6)

Proof of Lemma S.2

Equation (S.5) follows directly from Lemma 4 of Cavaliere and Taylor (2007). The maximal in-

equality in equation (S.6) follows by noting that
∣∣∣∣∣∣

sup
τ∈[τL,τU ]

T−1/2

⌊τT ⌋∑

t=1

etx
2
t

∣∣∣∣∣∣
≤ max

b∈[1,T ]
T−1/2

∣∣∣∣∣

b∑

t=1

etx
2
t

∣∣∣∣∣ ,

and then, since
∑b

t=1 etx
2
t is a martingale indexed by b, Doob’s inequality (result 15.15 of Davidson,

1994) implies that

E


 max

b∈[1,T ]

(
T−1/2

∣∣∣∣∣

b∑

t=1

etx
2
t

∣∣∣∣∣

)2

 ≤ 4T−1E

(
T∑

t=1

etx
2
t

)2

= 4T−1
T∑

t=1

σ2
t x

4
t = O(1).

�

S.4.2 Main Proofs

Proof of Theorem 1

The argument for consistency follows Bai (1994, 1997) and especially Theorem 3.1 of Nunes et al.

(1995). The assumptions on the weights xt imply that

∑⌊τT ⌋
t=1 x2t∑T
t=1 x

2
t

→
∫ τ
0 x(s)2ds
∫ 1
0 x(s)2ds

=: χ(τ),

with χ : [0, 1] 7→ [0, 1] being an increasing function (exactly analogous to the variance-profile η

constructed from the variance sequence σ2
t ). Thus, for example,

∑⌊τT ⌋
t=1 x2t∑T
t=1 x

2
t

∑T
t=⌊τT ⌋+1 x

2
t∑T

t=1 x
2
t

→ χ(τ)(1− χ(τ)).

[S.10]



and ∑⌊τ0T ⌋
t=1 x2t∑⌊τT ⌋
t=1 x2t

∧
∑T

t=⌊τ0T ⌋+1 x
2
t∑T

t=⌊τT ⌋+1 x
2
t

→ χ(τ0)

χ(τ)
∧ 1− χ(τ0)

1− χ(τ)
.

Applying (S.2), it follows that for δ 6= 0 and 0 ≤ d < 1/2

T d(µ̂2,τ − µ̂1,τ ) = δ

(∑⌊τ0T ⌋
t=1 x2t∑⌊τT ⌋
t=1 x2t

∧
∑T

t=⌊τ0T ⌋+1 x
2
t∑T

t=⌊τT ⌋+1 x
2
t

)

− T d− 1
2

T
∑T

t=1 x
2
t∑⌊τT ⌋

t=1 x2t
∑T

t=⌊τT ⌋+1 x
2
t


T− 1

2

⌊τT ⌋∑

t=1

etx
2
t −

∑⌊τT ⌋
t=1 x2t∑T
t=1 x

2
t

T− 1
2

T∑

t=1

etx
2
t




p→ δ

(
χ(τ0)

χ(τ)
∧ 1− χ(τ0)

1− χ(τ)

)
,

uniformly in τ on [τL, τU ], and, hence,

T 2d

∑T
t=1 x

2
t

QT (τ)
p→ Q(τ) := δ2χ(τ)(1− χ(τ))

(
χ(τ0)

χ(τ)
∧ 1− χ(τ0)

1− χ(τ)

)2

. (S.7)

For τ ∈ [τL, τ0]

Q(τ) = δ2(1− χ(τ0))
2 χ(τ)

1− χ(τ)

is an increasing function with maximum value at τ = τ0 of Q(τ0) = χ(τ0)(1−χ(τ0)). For τ ∈ [τ0, τU ]

Q(τ) = δ2χ(τ0)
2 1− χ(τ)

χ(τ)

is a decreasing function with maximum value of Q(τ0) at τ = τ0. So Q(τ) has a unique maximum

at τ = τ0 and, since the convergence in (S.7) is uniform in τ , it therefore follows that

τ̂ = arg max
τ∈[τL,τU ]

T 2d

∑T
t=1 x

2
t

QT (τ)
p→ arg max

τ∈[τL,τU ]
Q(τ) = τ0.

The asymptotic distribution of τ̂ follows by the same arguments as Bai (1997), except that

it is necessary to check for any effect that unconditional heteroskedasticity satisfying Assumption

A2 has on the form of the distribution. In particular, using Bai’s notation in the proof of his

Proposition 3, we will verify that the following two convergence results from Bai (1997) still hold

under our assumptions:

(a) vT
∑k

t=k0+1 ztǫt
d→ B1(s) and

(b) v2T
∑k

t=k0+1 ztz
′
t → sQ2,

where B1(s) is Brownian motion on [0,∞) with variance sΩ2, and k is defined as a function of s to

be k := k0 + ⌊sv−2
T ⌋. Note that both limits, being simple functions of s, reflect the unconditional

homoskedasticity assumed in Bai (1997). Under the form of heteroskedasticity assumed in this

paper, it might have been expected that the corresponding B1 would be a heteroskedastic Brownian

Motion (as in, for example, Cavaliere and Taylor, 2007), but we will show that this is not the case.

To translate the notation of Bai (1997) notation into our own, his zt (the regressor(s) whose

coefficient(s) break) is the same as our xt, ǫt = xtet, vT = δT and k = ⌊τ0T ⌋ + ⌊sδ−2
T ⌋. This

[S.11]



specification of k is relevant for the scaled criterion function for values of τ above the true value

τ0. In our equivalent to (a), as T → ∞ the term

δT

⌊τ0T ⌋+⌊sδ−2
T

⌋∑

t=⌊τ0T ⌋+1

x2t et

can straightforwardly be shown to satisfy the heteroskedastic FCLT in Lemma 4 of Cavaliere and

Taylor (2007), indexed by s, but as in their proof we need to explicitly derive the form of the

marginal distribution for given s. In particular the variance is

var


δT

⌊τ0T ⌋+⌊sδ−2
T

⌋∑

t=⌊τ0T ⌋+1

x2t et




= δ2T

⌊sδ−2
T

⌋∑

i=1

x4⌊τ0T ⌋+iσ
2
⌊τ0T ⌋+i

= s

⌊sδ−2
T

⌋∑

i=1

∫ (i+1)/⌊sδ−2
T

⌋

i/⌊sδ−2
T

⌋
x

(
⌊τ0T ⌋+ ⌊r⌊sδ−2

T ⌋⌋
T

)4

σ

(
⌊τ0T ⌋+ ⌊r⌊sδ−2

T ⌋⌋
T

)2

dr

= s

∫ 1+1/⌊sδ−2
T

⌋

1/⌊sδ−2
T

⌋
x

(
⌊τ0T ⌋+ ⌊r⌊sδ−2

T ⌋⌋
T

)4

σ

(
⌊τ0T ⌋+ ⌊r⌊sδ−2

T ⌋⌋
T

)2

dr

→ s

∫ 1

0
x̄(τ0)

4σ̄(τ0)
2dr = s x̄(τ0)

4σ̄(τ0)
2,

with the convergence in the second last step following because δ−2
T /T → 0 for 0 < d < 1/2 and

from the assumed càdlàg property of both the x(·) and σ(·) functions. The limits from above

x̄(τ0) := limτ↓τ0 x(τ) and σ̄(τ0) := limτ↓τ0 σ(τ) may differ from x(τ0) and σ(τ0) if either function

has a jump at τ = τ0. Similarly for our equivalent to (b) above,

δ2T

⌊τ0T ⌋+⌊sδ−2
T

⌋∑

t=⌊τ0T ⌋+1

x2t → s x̄(τ0)
2.

Similarly for values of τ below τ0 we find

var


δT

⌊τ0T ⌋−1∑

t=⌊τ0T ⌋−⌊sδ−2
T

⌋

x2t et


→ s x(τ0)

4σ(τ0)
2

and

δ2T

⌊τ0T ⌋−1∑

t=⌊τ0T ⌋−⌊sδ−2
T

⌋

x2t → s x(τ0)
2.

where x(τ0) := limτ↑τ0 x(τ) and σ(τ0) := limτ↑τ0 σ(τ).

The rate of δ−2
T when 0 < d < 1/2, being less than T , is such that the effect of the weighting

function x(τ) and the volatility process σ(τ) drop out of these limits for all values of τ other than

τ0. For a “large” break magnitude (one for which the break fraction can be consistently estimated)

the asymptotic distribution of the break fraction is determined by the behaviour of the criterion
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function in a diminishing interval around τ0, such that in the limit it is only the variance properties

at τ0 that enter the FCLT results.

With these expressions in hand, the proof follows each step of Bai’s (1997) Proposition 3 to

reach the analogous result in this theorem. The equivalences in the notation are Bai’s Q1 and

Q2 with x(τ0)
2 and x̄(τ0)

2 here, and Bai’s Ω1 and Ω2 with limτ↑τ0 var(x
2
t et) = x(τ0)

4σ(τ0)
2 and

limτ↓τ0 var(x
2
t et) = x̄(τ0)

4σ̄(τ0)
2, respectively. �

Proof of Theorem 2

For δ 6= 0 and d = 1/2, the representation in (S.2) can be written

T
1
2 (µ̂2,τ − µ̂1,τ )

= δ

(∑⌊τ0T ⌋
t=1 x2t∑⌊τT ⌋
t=1 x2t

∧
∑T

t=⌊τ0T ⌋+1 x
2
t∑T

t=⌊τT ⌋+1 x
2
t

)

− ωxe

T−1
∑T

t=1 x
2
t

∑T
t=1 x

2
t∑⌊τT ⌋

t=1 x2t

∑T
t=1 x

2
t∑T

t=⌊τT ⌋+1 x
2
t


ω−1

xe T
− 1

2

⌊τT ⌋∑

t=1

etx
2
t −

∑⌊τT ⌋
t=1 x2t∑T
t=1 x

2
t

ω−1
xe T

− 1
2

T∑

t=1

etx
2
t




d→ δ

(
χ(τ0)

χ(τ)
∧ 1− χ(τ0)

1− χ(τ)

)
− ω

Bη(τ)− χ(τ)Bη(1)

χ(τ)(1− χ(τ))

=
ω

(χ(τ)(1− χ(τ)))1/2

(
δ

ω
(χ(τ0)(1− χ(τ0)))

1
2

(
χ1(τ ; τ0) ∧

1

χ1(τ ; τ0)

)
− Bη(τ)− χ(τ)Bη(1)

χ(τ)(1− χ(τ))

)

where

ω2 =
ω2
xe(∫ 1

0 x(s)2ds
)2 =

∫ 1
0 x(s)4σ(s)2ds
(∫ 1

0 x(s)2ds
)2 .

Hence,

T

ω2
∑T

t=1 x
2
t

QT (τ) =

∑⌊τT ⌋
t=1 x2t

ω
∑T

t=1 x
2
t

∑T
t=⌊τT ⌋+1 x

2
t∑T

t=1 x
2
t

T (µ̂2,τ − µ̂1,τ )
2

d→
(
δ

ω
(χ(τ0)(1− χ(τ0)))

1
2

(
χ1(τ ; τ0) ∧

1

χ1(τ ; τ0)

)
− Bη(τ)− χ(τ)Bη(1)

χ(τ)(1− χ(τ))

)2

=: Q(τ ;x(·), σ(·), δ, 1
2
).

If d > 1/2 then the representation in (S.2) is

T
1
2 (µ̂2,τ − µ̂1,τ )

= T 1/2−dδ

(∑⌊τ0T ⌋
t=1 x2t∑⌊τT ⌋
t=1 x2t

∧
∑T

t=⌊τ0T ⌋+1 x
2
t∑T

t=⌊τT ⌋+1 x
2
t

)

− ωxe

T−1
∑T

t=1 x
2
t

∑T
t=1 x

2
t∑⌊τT ⌋

t=1 x2t

∑T
t=1 x

2
t∑T

t=⌊τT ⌋+1 x
2
t


ω−1

xe T
− 1

2

⌊τT ⌋∑

t=1

etx
2
t −

∑⌊τT ⌋
t=1 x2t∑T
t=1 x

2
t

ω−1
xe T

− 1
2

T∑

t=1

etx
2
t




d→ − ω
Bη(τ)− χ(τ)Bη(1)

χ(τ)(1− χ(τ))
,

so that

τ̂ = arg max
τ∈[τL,τU ]

T

ω2
∑T

t=1 x
2
t

QT (τ)
d→ arg max

τ∈[τL,τU ]

(Bη(τ)− χ(τ)Bη(1))
2

(χ(τ)(1− χ(τ)))
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which is the arg max of Q(τ ;x(·), σ(·), δ, d) with d > 1/2 as required. Clearly this latter results

also holds when δ = 0 (in which case the value of d is irrelevant).

For d < 1/2 (and δ 6= 0), the result follows immediately as an implication of equation (S.7)

established in the proof of Theorem 1.

�

Proof of Theorem 3

For clarity we write σ̂2
τ̂ ,t :=

∑T
i=1wtiê

2
τ̂ ,i, where wti := Kh

(
t−i
T

)
/
∑T

i=1Kh

(
t−i
T

)
, instead of σ̂2

t and

QT (τ ;xt) instead of QT (τ) defined in Lemma A.1 in the rest of the proof of this Theorem. We

prove the result separately for Case 1 : d ≥ 1/2 and Case 2: 0 ≤ d < 1/2.

Proof of Theorem 3, Case 1 : d ≥ 1/2

By Theorem 2,

τ̂WLS = arg max
τ∈[τL,τU ]

T

ω2
∑T

t=1 σ
−2
t

QT

(
τ ;σ−1

t

) d→ arg max
τ∈[τL,τU ]

Q (τ ; 1/σ (.) , σ (.) , δ, d)

and

τ̂FWLS = arg max
τ∈[τL,τU ]

T

ω2
∑T

t=1 σ
−2
t

QT

(
τ ; σ̂−1

τ̂ ,t

)
.

Let

RT (τ ; σ̂τ̂ ,t, σt) :=
T

ω2
∑T

t=1 σ
−2
t

(
QT

(
τ ; σ̂−1

τ̂ ,t

)
−QT

(
τ ;σ−1

t

))
.

Theorem 3 can be established by showing that

τ̂FWLS = arg max
τ∈[τL,τU ]

T

ω2
∑T

t=1 σ
−2
t

QT

(
τ ;σ−1

t

)
+RT (τ ; σ̂τ̂ ,t, σt)

d→ arg max
τ∈[τL,τU ]

Q (τ ; 1/σ (.) , σ (.) , δ, d) ,

(by appealing to the continuous mapping theorem for argmax functionals; see Kim and Pollard,

1990, Theorem 2.7), where

sup
τ∈[τL,τU ]

|RT (τ ; σ̂τ̂ ,t, σt)|
p→ 0. (S.8)

Because T−1
∑T

t=1 σ
−2
t →

∫ 1
0 σ (s)−2 ds, to show (S.8) we need to show that the following two

results hold:

sup
τ∈[τL,1]

∣∣∣∣∣∣
T−1/2

⌊τT ⌋∑

t=1

etσ̂
−2
τ̂ ,t − etσ

−2
t

∣∣∣∣∣∣
p→ 0 (S.9)

and

sup
τ∈[τL,1]

∣∣∣∣∣∣
T−1

⌊τT ⌋∑

t=1

σ̂−2
τ̂ ,t − σ−2

t

∣∣∣∣∣∣
p→ 0. (S.10)

Similar arguments apply for the 0 ≤ d < 1/2 case (see the proof of Theorem 1), which also requires

the above two results as will be done below in Case 2.

To prove (S.9), observe first that

sup
τ∈[τL,1]

∣∣∣∣∣∣
T−1/2

⌊τT ⌋∑

t=1

etσ̂
−2
τ̂ ,t − etσ

−2
t

∣∣∣∣∣∣
≤ T−1/2

T∑

t=1

∣∣∣et
(
σ̂−2
τ̂ ,t − σ−2

t

)∣∣∣ . (S.11)
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Define σ̃2
t :=

∑T
i=1wtie

2
i . Then, following Robinson (1987), to prove that the right hand side of

(S.11) is op(1), it is sufficient, by virtue of results in the proof of Theorem 2 of Xu and Phillips

(2008) (specifically their equation (20) and part (a) on page 276) and in Lemma A of Xu and

Phillips (2008), for us to show that

T∑

t=1

∣∣σ̂2
τ̂ ,t − σ̃2

t

∣∣2 p→ 0. (S.12)

Similarly, to prove (S.10), it is sufficient, by virtue of the results in part (d) of the proof of Theorem

2 of Xu and Phillips (2008, p.277), for us to show that

max
1≤t≤T

∣∣σ̂2
τ̂ ,t − σ̃2

t

∣∣ p→ 0. (S.13)

For simplicity we set d = 1/2 now, as the results for d > 1/2 are essentially a special case and along

exactly the same lines. We will now establish the validity of the results in (S.12) and (S.13). To

show (S.12), write

T∑

t=1

∣∣σ̂2
τ̂ ,t − σ̃2

t

∣∣2

≤ sup
τ∈[τL,τU ]

T∑

t=1

∣∣σ̂2
τ,t − σ̃2

t

∣∣2

≤ sup
τ∈[τL,τU ]

T∑

t=1




⌊τ0T ⌋∑

i=1

wti

(
ê2τ,i − e2i

)
+

⌊τT ⌋∑

i=⌊τ0T ⌋+1

wti

(
ê2τ,i − e2i

)
+

T∑

i=⌊τT ⌋+1

wti

(
ê2τ,i − e2i

)



2

=: sup
τ∈[τL,τU ]

T∑

t=1

(Aτ,t +Bτ,t + Cτ,t)
2 . (S.14)

Throughout this proof, in the interest of brevity, we will only discuss the case where ⌊τT ⌋ > ⌊τ0T ⌋,
as the results for the case where ⌊τT ⌋ ≤ ⌊τ0T ⌋ follow along exactly the same lines.

For the Aτ,t term in (S.14), in which i = 1, ..., ⌊τ0T ⌋,

êτ,i = yi − µ̂1,τ = µ+ ei − ⌊τT ⌋−1

⌊τT ⌋∑

t=1

(
µ+ δT · 1t>⌊τ0T ⌋ + et

)
= ei + αT,τ + ēτ (S.15)

where αT,τ := δT−dτ−1 (τ − τ0) and ēτ := ⌊τT ⌋−1
∑⌊τT ⌋

t=1 et.

For the Bτ,t term in (S.14), with i = ⌊τ0T ⌋+ 1, ..., ⌊τT ⌋,

êτ,i = yi − µ̂1,τ = µ+ δT + ei − ⌊τT ⌋−1

⌊τT ⌋∑

t=1

(
µ+ δT · 1t>⌊τ0T ⌋ + et

)
= ei + βT,τ + ēτ (S.16)

where βT,τ := δT−dτ−1τ0.

For the Cτ,t term in (S.14), in which i = ⌊τT ⌋+ 1, ..., T,

êτ,i = yi − µ̂2,τ = µ+ δT + ei −
1

T − ⌊τT ⌋

T∑

t=⌊τT ⌋+1

(
µ+ δT · 1t>⌊τ0T ⌋ + et

)
= ei − ē(T−⌊τT ⌋)

[S.15]



where ē(T−⌊τT ⌋) := (T − ⌊τT ⌋)−1∑T
t=⌊τT ⌋+1 et.

In what follows, we will only deal with the Aτ,t and Bτ,t terms. The expressions for êτ,i above

imply that the arguments when dealing with the Cτ,t term follow similarly because it does not

feature αT,τ and βT,τ , and because ē(T−⌊τT ⌋) = ē1 − ēτ .

The following results will prove useful: (i) supτ∈[τL,τU ]

∣∣T 1/2ēτ
∣∣ = Op (1), which holds because

sup
τ∈[τL,τU ]

∣∣∣T 1/2ēτ

∣∣∣ = sup
τ∈[τL,τU ]

∣∣∣∣∣∣
τ−1T−1/2

⌊τT ⌋∑

t=1

et

∣∣∣∣∣∣
≤ τ−1

L sup
τ∈[τL,τU ]

∣∣∣∣∣∣
T−1/2

⌊τT ⌋∑

t=1

et

∣∣∣∣∣∣
= Op (1)

by Lemma A.2; (ii) supτ∈[τL,τU ] |αT,τ | = supτ∈[τL,τU ]

∣∣δT−dτ−1 (τ − τ0)
∣∣ = O(T−d), which holds

because supτ∈[τL,τU ] |αT,τ | ≤ δT−dτ−1
L supτ∈[τL,τU ] |τ − τ0| ≤ cT−d for some c > 0; and (iii)

sup
τ∈[τL,τU ]

|βT,τ | = sup
τ∈[τL,τU ]

∣∣∣δT−dτ−1τ0

∣∣∣ = O(T−d). (S.17)

We will now show that supτ∈[τL,τU ]

∑T
t=1A

2
τ,t = op (1) in (S.14). Using (S.15), we have that

T∑

t=1

A2
τ,t =

T∑

t=1




⌊τ0T ⌋∑

i=1

wti

(
α2
T,τ + ē2τ − 2eiαT,τ − 2eiēτ − 2αT,τ ēτ

)



2

. (S.18)

Consider the first term in (S.18). We have (because d = 1/2)

sup
τ∈[τL,τU ]

T∑

t=1




⌊τ0T ⌋∑

i=1

wtiα
2
T,τ




2

= sup
τ∈[τL,τU ]

|αT,τ |4
T∑

t=1




⌊τ0T ⌋∑

i=1

wti




2

≤ sup
τ∈[τL,τU ]

|αT,τ |4
T∑

t=1

(
T∑

i=1

wti

)2

= sup
τ∈[τL,τU ]

|αT,τ |4 T = Op

(
T−1

)
.

For the second term in (S.18), we have

sup
τ∈[τL,τU ]

T∑

t=1




⌊τ0T ⌋∑

i=1

wtiē
2
τ




2

= sup
τ∈[τL,τU ]

∣∣∣T 1/2ēτ

∣∣∣
4
T−2

T∑

t=1




⌊τ0T ⌋∑

i=1

wti




2

≤ sup
τ∈[τL,τU ]

∣∣∣T 1/2ēτ

∣∣∣
4
T−2

T∑

t=1

(
T∑

i=1

wti

)2

= Op

(
T−1

)
.

Before we consider the third term, note that

T−1
T∑

t=1




⌊τ0T ⌋∑

i=1

wtiei




2

= Op

(
1

Th

)
(S.19)

[S.16]



because

T−1
T∑

t=1

E




⌊τ0T ⌋∑

i=1

wtiei




2

= T−1
T∑

t=1

⌊τ0T ⌋∑

i=1

w2
tiσ

2
i

≤ σ̄2T−1
T∑

t=1

⌊τ0T ⌋∑

i=1

w2
ti

≤ σ̄2

(
max
t,i

wti

)
T−1

T∑

t=1

⌊τ0T ⌋∑

i=1

wti

≤ σ̄2

(
max
t,i

wti

)
T−1

T∑

t=1

T∑

i=1

wti = O

(
1

Th

)
,

since maxt,iwti = O (1/Th); see Lemma A(d) of Xu and Phillips, 2008. Consequently, for the third

term in (S.18), we have that

sup
τ∈[τL,τU ]

T∑

t=1




⌊τ0T ⌋∑

i=1

wtieiαT,τ




2

= T sup
τ∈[τL,τU ]

α2
T,τ · T−1

T∑

t=1




⌊τ0T ⌋∑

i=1

wtiei




2

= Op

(
1

Th

)
.

For the fourth term in (S.18), we have that

sup
τ∈[τL,τU ]

T∑

t=1




⌊τ0T ⌋∑

i=1

wtieiēτ




2

≤ sup
τ∈[τL,τU ]

∣∣∣T 1/2ēτ

∣∣∣
2
T−1

T∑

t=1




⌊τ0T ⌋∑

i=1

wtiei




2

= Op

(
1

Th

)
.

Finally, for the fifth term in (S.18), we have that

sup
τ∈[τL,τU ]

T∑

t=1




⌊τ0T ⌋∑

i=1

wtiαT,τ ēτ




2

≤ sup
τ∈[τL,τU ]

∣∣∣T 1/2ēτ

∣∣∣
2

sup
τ∈[τL,τU ]

|αT,τ |2 T−1
T∑

t=1

(
T∑

i=1

wti

)2

= Op

(
T−1

)
.

The cross-product terms in (S.18) are all of op (1) uniformly in τ ∈ [τL, τU ] by the application of

the Cauchy-Schwarz inequality.

The term Bτ,t in (S.14) follows similarly since supτ∈[τL,τU ] |βT,τ | = O
(
T−1/2

)
; see (S.17). All of

the cross-product terms are again of op (1) by the Cauchy-Schwarz inequality. This completes the

proof for (S.12).

We next prove (S.13). We have

max
1≤t≤T

∣∣σ̂2
τ̂ ,t − σ̃2

t

∣∣ ≤ max
1≤t≤T

sup
τ∈[τL,τU ]

∣∣σ̂2
τ,t − σ̃2

t

∣∣ ≤ max
1≤t≤T

sup
τ∈[τL,τU ]

|Aτ,t +Bτ,t + Cτ,t| .

We will only show that max1≤t≤T supτ∈[τL,τU ] |Aτ,t| = op (1) since the term Bτ,t follows similarly as

just noted. We have

|Aτ,t| =

∣∣∣∣∣∣

⌊τ0T ⌋∑

i=1

wti

(
α2
T,τ + ē2τ − 2eiαT,τ − 2eiēτ − 2αT,τ ēτ

)
∣∣∣∣∣∣
. (S.20)

[S.17]



For the first term in (S.20), we have that

max
1≤t≤T

sup
τ∈[τL,τU ]

∣∣∣∣∣∣

⌊τ0T ⌋∑

i=1

wtiα
2
T,τ

∣∣∣∣∣∣
≤ sup

τ∈[τL,τU ]
|αT,τ |2 max

1≤t≤T

∣∣∣∣∣∣

⌊τ0T ⌋∑

i=1

wti

∣∣∣∣∣∣

≤ sup
τ∈[τL,τU ]

|αT,τ |2 max
1≤t≤T

∣∣∣∣∣

T∑

i=1

wti

∣∣∣∣∣

= sup
τ∈[τL,τU ]

|αT,τ |2 = Op

(
T−1

)
.

For the second term in (S.20),

max
1≤t≤T

sup
τ∈[τL,τU ]

∣∣∣∣∣∣

⌊τ0T ⌋∑

i=1

wtiē
2
τ

∣∣∣∣∣∣
≤ sup
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∣∣∣T 1/2ēτ

∣∣∣
2
max
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∣∣∣∣∣∣

⌊τ0T ⌋∑

i=1

wti

∣∣∣∣∣∣

≤ sup
τ∈[τL,τU ]

∣∣∣T 1/2ēτ

∣∣∣
2
max
1≤t≤T

∣∣∣∣∣

T∑

i=1

wti

∣∣∣∣∣ = Op

(
T−1

)
.

Before turning to the third term, we note that T−1
∑T

i=1 |ei| = Op (1). using this result, for the

third term in (S.20) we have that,

max
1≤t≤T

sup
τ∈[τL,τU ]

∣∣∣∣∣∣

⌊τ0T ⌋∑

i=1

wtieiαT,τ

∣∣∣∣∣∣
≤ sup

τ∈[τL,τU ]
|αT,τ | max

1≤t≤T

∣∣∣∣∣∣

⌊τ0T ⌋∑

i=1

wtiei

∣∣∣∣∣∣

≤ T sup
τ∈[τL,τU ]

|αT,τ | max
1≤t≤T
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⌊τ0T ⌋∑

i=1

wti |ei|

≤ T sup
τ∈[τL,τU ]

|αT,τ |
(
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t,i
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)
T−1

⌊τ0T ⌋∑
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|ei|

≤ T sup
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|αT,τ |
(
max
t,i

wti

)
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T∑
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|ei|

= Op

(
1√
Th

)
= op (1) .

Next, for the fourth term in (S.20) we have that,

max
1≤t≤T

sup
τ∈[τL,τU ]

∣∣∣∣∣∣
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(
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(
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[S.18]



Finally, for the fifth term in (S.20) we have that,

max
1≤t≤T

sup
τ∈[τL,τU ]

∣∣∣∣∣∣

⌊τ0T ⌋∑

i=1

wtiαT,τ ēτ

∣∣∣∣∣∣
≤ sup

τ∈[τL,τU ]

∣∣∣T 1/2ēτ

∣∣∣ sup
τ∈[τL,τU ]

|αT,τ |T−1/2 max
1≤t≤T

∣∣∣∣∣∣

⌊τ0T ⌋∑

i=1

wti
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≤ sup
τ∈[τL,τU ]

∣∣∣T 1/2ēτ

∣∣∣ sup
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wti

∣∣∣∣∣

= Op

(
T−1

)
.

This completes the proof of the theorem for the d ≥ 1/2 case.

Proof of Theorem 3, Case 2 : 0 ≤ d < 1/2

We now consider 0 ≤ d < 1/2 and prove that (S.12) and (S.13) also hold here. To ease notation we

will simply use τ̂ to denote τ̂OLS in the remainder of this proof.

To show (S.12), we write, for any τ ,

T∑

t=1

∣∣σ̂2
τ,t − σ̃2

t

∣∣2 =
T∑

t=1

|Aτ,t +Bτ,t + Cτ,t|2 . (S.21)

We now evaluate each term in (S.21) at τ = τ̂ where τ̂ − τ0 = Op

(
T−1+2d

)
. To that end, we first

note that

|αT,τ̂ | =
∣∣∣δT−dτ̂−1 (τ̂ − τ0)

∣∣∣ = Op

(
T−1+d

)

because |αT,τ̂ | = δT−d
∣∣τ̂−1

∣∣ |τ̂ − τ0| ≤ δτ−1
L T−d |τ̂ − τ0| . Moreover, |βT,τ̂ | = δT−d

∣∣ τ0
τ̂

∣∣ = Op

(
T−d

)
.

Let us first deal with the Aτ,t term in (S.21). To that end, recall first that

T∑

t=1

A2
τ,t =

T∑

t=1




⌊τ0T ⌋∑

i=1

wti

(
α2
T,τ + ē2τ − 2eiαT,τ − 2eiēτ − 2αT,τ ēτ

)



2

. (S.22)

We now evaluate every term in (S.22) at τ = τ̂ . For the first term,
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2
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2
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T∑
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T∑
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)2
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(
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)
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For the second term,
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t=1




⌊τ0T ⌋∑
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wtiē
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≤ sup
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∣∣∣
4
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wti

)2
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(
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)
.

For the third term, recalling equation (S.19),
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(
1
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)
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For the fourth term,
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Finally, for the fifth term,

T∑
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⌊τ0T ⌋∑
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wtiαT,τ̂ ēτ̂
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≤ sup
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2
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(
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)
= op (1) .

We next deal with Bτ,t term in (S.21). Using (S.14) and (S.16), we have that

T∑

t=1

B2
τ,t =

T∑

t=1




⌊τT ⌋∑

i=⌊τ0T ⌋+1

wti

(
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)



2

. (S.23)

We will need to evaluate each term at τ = τ̂ . For the first term we have that
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wtiβ
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For the second term
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≤ sup
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(
1
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)
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To deal with the third term in (S.23), define

V⌊τT ⌋,t :=

⌊τT ⌋∑

i=⌊τ0T ⌋+1

wtiei

for t = 1, . . . , T. Since τ̂ − τ0 = Op

(
T−1δ−2

T

)
we consider values of τ in the set

KT (M) :=
{
τ : ⌊τ0T ⌋+ 1 ≤ ⌊τT ⌋ ≤ ⌊τ0T ⌋+ vδ−2

T for all 0 ≤ v ≤ M
}
,

for M < ∞, which is an interval above τ0. (The corresponding interval below τ0 is handled

identically, see the proof of Theorem 1 of Bai (1994) for the same approach.) Since V⌊τT ⌋,t is a

martingale indexed by ⌊τT ⌋, Doob’s inequality implies

E


 sup
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∣∣∣∣∣∣
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∣∣∣∣∣∣

vδ−2
T∑

i=1
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uniformly in t (in view of the uniform boundedness of wti over t). Hence, uniformly in t,

∣∣V⌊τ̂T ⌋,t

∣∣ ≤ sup
τ∈KT (M)

∣∣V⌊τT ⌋,t
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(
1
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)
. (S.24)

Therefore the third term in (S.23) is such that
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.

For the fourth term in (S.23) we have that,
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.

Finally, for the fifth term in (S.23) we have that,

T∑

t=1




⌊τ̂T ⌋∑

i=⌊τ0T ⌋+1

wtiβT,τ̂ ēτ̂




2

≤ sup
τ∈[τL,τU ]

∣∣∣T 1/2ēτ

∣∣∣
2
T−1 |βT,τ̂ |2

T∑

t=1




⌊τ̂T ⌋∑

i=⌊τ0T ⌋+1

wti




2

≤ sup
τ∈[τL,τU ]

∣∣∣T 1/2ēτ

∣∣∣
2
T−1 |βT,τ̂ |2

(
max
t,i

wti

)2

T (T (τ̂ − τ0))
2

= Op

(
1

T 2−2dh2

)
.

Next, to show (S.13), we write, for any τ ,

max
1≤t≤T

∣∣σ̂2
τ,t − σ̃2

t

∣∣ ≤ max
1≤t≤T

|Aτ,t +Bτ,t + Cτ,t| . (S.25)

For Aτ,t, we recall that

|Aτ,t| =

∣∣∣∣∣∣

⌊τ0T ⌋∑

i=1

wti

(
α2
T,τ + ē2τ − 2eiαT,τ − 2eiēτ − 2αT,τ ēτ

)
∣∣∣∣∣∣
. (S.26)

We therefore need to evaluate each term in (S.26) at τ = τ̂ . For the first term, we have that

max
1≤t≤T

∣∣∣∣∣∣

⌊τ0T ⌋∑

i=1

wtiα
2
T,τ̂

∣∣∣∣∣∣
≤ |αT,τ̂ |2 max

1≤t≤T

∣∣∣∣∣∣

⌊τ0T ⌋∑

i=1

wti

∣∣∣∣∣∣

≤ |αT,τ̂ |2 max
1≤t≤T

T∑

i=1

wti = Op

(
T−2+2d

)
= op (1) .

[S.21]



For the second term in (S.26) we have that

max
1≤t≤T

∣∣∣∣∣∣

⌊τ0T ⌋∑

i=1

wtiē
2
τ̂

∣∣∣∣∣∣
≤ |ēτ̂ |2 max

1≤t≤T

∣∣∣∣∣∣

⌊τ0T ⌋∑

i=1

wti

∣∣∣∣∣∣

≤ sup
τ∈[τL,τU ]

∣∣∣T 1/2ēτ

∣∣∣
2
T−1 max

1≤t≤T

∣∣∣∣∣

T∑

i=1

wti

∣∣∣∣∣ = Op

(
T−1

)
.

For the third term in (S.26) we have that

max
1≤t≤T

∣∣∣∣∣∣

⌊τ0T ⌋∑

i=1

wtieiαT,τ̂

∣∣∣∣∣∣
≤ |αT,τ̂ | max

1≤t≤T

∣∣∣∣∣∣

⌊τ0T ⌋∑

i=1

wtiei

∣∣∣∣∣∣

≤ T |αT,τ̂ | max
1≤t≤T

T−1

⌊τ0T ⌋∑

i=1

wti |ei|

≤ T |αT,τ̂ |
(
max
t,i

wti

)
T−1

⌊τ0T ⌋∑

i=1

|ei|

≤ T |αT,τ̂ |
(
max
t,i

wti

)
T−1

T∑

i=1

|ei|

= Op

(
1

T 1−dh

)
= op (1) .

For the fourth term in (S.26) we have that

max
1≤t≤T

∣∣∣∣∣∣

⌊τ0T ⌋∑

i=1

wtieiēτ̂

∣∣∣∣∣∣
≤ |ēτ̂ | max

1≤t≤T

∣∣∣∣∣∣

⌊τ0T ⌋∑

i=1

wtiei

∣∣∣∣∣∣

≤ sup
τ∈[τL,τU ]

∣∣∣T 1/2ēτ

∣∣∣T−1/2 max
1≤t≤T

⌊τ0T ⌋∑

i=1

wti |ei|

≤ sup
τ∈[τL,τU ]

∣∣∣T 1/2ēτ

∣∣∣T 1/2

(
max
t,i

wti

)
T−1

⌊τ0T ⌋∑

i=1

|ei|

= Op

(
1√
Th

)
.

Finally, for the fifth term in (S.26) we have that

max
1≤t≤T

∣∣∣∣∣∣

⌊τ0T ⌋∑

i=1

wtiαT,τ̂ ēτ̂

∣∣∣∣∣∣
≤ |ēτ̂ | |αT,τ̂ | max

1≤t≤T

∣∣∣∣∣∣

⌊τ0T ⌋∑

i=1

wti

∣∣∣∣∣∣

≤ sup
τ∈[τL,τU ]

∣∣∣T 1/2ēτ

∣∣∣ 1√
T
|αT,τ̂ | max

1≤t≤T

∣∣∣∣∣

T∑

i=1

wti

∣∣∣∣∣

≤ |αT,τ̂ | sup
τ∈[τL,τU ]

∣∣∣T 1/2ēτ

∣∣∣ 1

T 1/2
max
1≤t≤T

T∑

i=1

wti = Op

(
T d−3/2

)
.

Turning next to the Bτ,t term in (S.25), we have that

|Bτ,t| =

∣∣∣∣∣∣

⌊τT ⌋∑

i=⌊τ0T ⌋+1

wti

(
β2
T,τ + ē2τ − 2eiβT,τ − 2eiēτ − 2βT,τ ēτ

)
∣∣∣∣∣∣

[S.22]



and we will again need to evaluate each term at τ = τ̂ . The first term is of op (1) because

max
1≤t≤T

∣∣∣∣∣∣

⌊τ̂T ⌋∑

i=⌊τ0T ⌋+1

wtiβ
2
T,τ̂

∣∣∣∣∣∣
≤ |βT,τ̂ |2 max

1≤t≤T

∣∣∣∣∣∣

⌊τ̂T ⌋∑

i=⌊τ0T ⌋+1

wti

∣∣∣∣∣∣

≤ |βT,τ̂ |2
(
max
t,i

wti

)
|T (τ̂ − τ0)| = Op

(
1

Th

)
.

The second term is of op (1) because

max
1≤t≤T

∣∣∣∣∣∣

⌊τ̂T ⌋∑

i=⌊τ0T ⌋+1

wtiē
2
τ̂

∣∣∣∣∣∣
≤ |ēτ̂ |2 max

1≤t≤T

∣∣∣∣∣∣

⌊τ̂T ⌋∑

i=⌊τ0T ⌋+1

wti

∣∣∣∣∣∣

≤ sup
τ∈[τL,τU ]

∣∣∣T 1/2ēτ

∣∣∣
2
T−1

(
max
t,i

wti

)
T (τ̂ − τ0)

= Op

(
1

T 2−2dh

)
.

For the third term, we note first that from part (d) of the proof of Theorem 2 of Xu and Phillips

(2008, p.277), as Xt−1 = 1 in their notation, (S.25) becomes T−1
∑T

t=1 |Bτ,t|. Using (S.24), we

therefore have that

T−1
T∑

t=1

∣∣∣∣∣∣

⌊τ̂T ⌋∑

i=⌊τ0T ⌋+1

wtieiβT,τ̂

∣∣∣∣∣∣
≤ |βT,τ̂ |T−1

T∑

t=1

∣∣∣∣∣∣

⌊τ̂T ⌋∑

i=⌊τ0T ⌋+1

wtiei

∣∣∣∣∣∣
= Op

(
1

Th

)
.

Similarly for the fourth term,

T−1
T∑

t=1

∣∣∣∣∣∣

⌊τ̂T ⌋∑

i=⌊τ0T ⌋+1

wtieiēτ̂

∣∣∣∣∣∣
≤ |ēτ̂ |T−1

T∑

t=1

∣∣∣∣∣∣

⌊τ̂T ⌋∑

i=⌊τ0T ⌋+1

wtiei

∣∣∣∣∣∣

≤ T−1/2 sup
τ∈[τL,τU ]

∣∣∣T 1/2ēτ

∣∣∣T−1
T∑

t=1

∣∣∣∣∣∣

⌊τ̂T ⌋∑

i=⌊τ0T ⌋+1

wtiei

∣∣∣∣∣∣

= Op

(
1

T 3/2−dh

)
= op (1) .

Finally, the fifth term is also of op (1) because

max
1≤t≤T

∣∣∣∣∣∣

⌊τ̂T ⌋∑

i=⌊τ0T ⌋+1

wtiβT,τ̂ ēτ̂

∣∣∣∣∣∣
≤ |ēτ̂ | |βT,τ̂ | max

1≤t≤T

∣∣∣∣∣∣

⌊τ̂T ⌋∑

i=⌊τ0T ⌋+1

wti

∣∣∣∣∣∣

≤ sup
τ∈[τL,τU ]

∣∣∣T 1/2ēτ

∣∣∣T−1/2 |βT,τ̂ |
(
max
t,i

wti

)
T (τ̂ − τ0)

= Op

(
1

T 3/2−dh

)
.

This completes the proof for the 0 ≤ d < 1/2 case.

�

Proof of Theorem S.1

[S.23]



For any τ , define Xt(τ) := (1, t, 1t>⌊τT ⌋(t− ⌊τT ⌋))′. The DGP in (2.1) can then be expressed as

yt = Xt(τ0)
′θ + zt,

= Xt(τ)
′θ − dt(τ)δT + zt (S.27)

where θ := (α, µ, δT )
′, and dt(τ) := 1t>⌊τT ⌋(t−⌊τT ⌋)− 1t>⌊τ0T ⌋(t−⌊τ0T ⌋). Applying QD to (S.27)

for any c̄ gives

yc̄,t = Xc̄,t(τ)
′θ − dc̄,tδT + zc̄,t, (S.28)

where zc̄,t := ∆zt − c̄T−1zt−1,

Xc̄,t(τ) :=




1t=1 + 1t>1(−c̄/T )

1− c̄(t− 1)/T

1t>⌊τT ⌋(1− c̄(t− ⌊τT ⌋ − 1)/T )


 ,

and

dc̄,t(τ) := 1t>⌊τT ⌋

(
1− c̄

t− ⌊τT ⌋ − 1

T

)
− 1t>⌊τ0T ⌋

(
1− c̄

t− ⌊τ0T ⌋ − 1

T

)
. (S.29)

Therefore, using equation (S.28), the estimated QD coefficient vector satisfies

θ̂c̄(τ) =

(
T∑

t=1

Xc̄,t(τ)Xc̄,t(τ)
′

)−1 T∑

t=1

Xc̄,t(τ)yc̄,t

= θ +

(
T∑

t=1

Xc̄,t(τ)Xc̄,t(τ)
′

)−1 T∑

t=1

Xc̄,t(τ)(zc̄,t − dc̄,tδT ),

and the QD residuals are

ẑc̄,t(τ) := yt −Xt(τ)
′θ̂c̄(τ)

= zt − dt(τ)δT −Xt(τ)
′(θ̂c̄(τ)− θ)

= zt −Xt(τ)
′

(
T∑

t=1

Xc̄,t(τ)Xc̄,t(τ)
′

)−1 T∑

t=1

Xc̄,t(τ)zc̄,t (S.30)

−


dt(τ)δT −Xt(τ)

′

(
T∑

t=1

Xc̄,t(τ)Xc̄,t(τ)
′

)−1 T∑

t=1

Xc̄,t(τ)dc̄,tδT


 . (S.31)

The asymptotic distribution of the DF t-statistic calculated using ẑc̄,t(τ̂) for either τ̂ = τ̂OLS or

τ̂ = τ̂FWLS follows from applying the FCLT results in (S.30) and showing that (S.31) (which

captures the estimation effect of τ̂ for τ0) is asymptotically negligible.

In (S.30) we make use of the heteroskedastic FCLT for zt = φT zt−1+ et with φ := 1+ c/T , such

that

ω−1
e T−1/2z⌊sT ⌋ = ω−1T−1/2

⌊sT ⌋∑

t=1

et
d→ Bc

η(s) :=

∫ s

0
exp(c(s− r))dBη(r)

where ω2
e :=

∫ 1
0 σ(r)2dr. It also then follows that

ω−1
e T−1/2

⌊sT ⌋∑

t=1

zc̄,t = ω−1
e T−1/2

⌊sT ⌋∑

t=1

(∆zt − c̄T−1zt−1)
d→ Bc

η(s)− c̄

∫ s

0
Bc

η(r)dr =: Bc
η(s; c̄).

[S.24]



Defining DT := diag(1, T−1/2, T−1/2), standard calculations (cf. Perron and Rodŕıguez, 2003, and

Cavaliere et al., 2011) give the following limits, in each case uniformly in τ ∈ [τL, τU ],

D−1
T T−1/2X⌊sT ⌋(τ) →




0

s

(s− τ) ∨ 0




T∑

t=1

D−1
T Xc̄,t(τ)Xc̄,t(τ)

′D−1
T →



1 0 0

0
∫ 1
0 (1− c̄s)2ds

∫ 1
τ (1− c̄s)(1− c̄(s− τ))ds

0
∫ 1
τ (1− c̄s)(1− c̄(s− τ))ds

∫ 1
τ (1− c̄(s− τ))2ds




ω−1
e

T∑

t=1

D−1
T Xc̄,t(τ)zc̄,t

d→




zc̄,1∫ 1
0 (1− c̄s) dBc

η(s; c̄)∫ 1
τ (1− c̄(s− τ)) dBc

η(s; c̄)


 .

Defining

X(s; τ) :=

(
s

(s− τ) ∨ 0

)
and Xc̄(s; τ) :=

(
1− c̄s

1− c̄((s− τ) ∨ 0)

)

the FCLT applied to (S.30) can be expressed

ω−1
e T−1/2z⌊sT ⌋ − T−1/2X⌊sT ⌋(τ)

′D−1
T

(
T∑

t=1

D−1
T Xc̄,t(τ)Xc̄,t(τ)

′D−1
T

)−1

ω−1
e

T∑

t=1

D−1
T Xc̄,t(τ)zc̄,t

d→ Bc
η(s)−X(s; τ)′

(∫ 1

0
Xc̄(s; τ)Xc̄(s; τ)

′ds

)−1 ∫ 1

0
Xc̄(s; τ)dB

c
η(s; c̄)

=: Z(s; τ, c, c̄, η). (S.32)

If τ is evaluated at an estimator τ̂ that is consistent for τ0 then the continuous mapping theorem

applies to ω−1
e T−1/2ẑc̄,⌊sT ⌋(τ̂) to deduce that the limiting process is Z(s; τ0, c, c̄, η). The derivation

of the asymptotic distribution of the DF t-statistic from the derived behaviour of this partial sum

process is then entirely standard.

Now consider (S.31), scaled by T−1/2 commensurately with (S.32), written as

r⌊sT ⌋(τ) = T−1/2d⌊sT ⌋(τ)δT − a⌊sT ⌋(τ)
′bT (τ)

where

a⌊sT ⌋(τ) := T−1/2D−1
T X⌊sT ⌋(τ)

bT (τ) :=

(
T∑

t=1

D−1
T Xc̄,t(τ)Xc̄,t(τ)

′D−1
T

)−1 T∑

t=1

D−1
T Xc̄,t(τ)dc̄,tδT .

Then

max
s∈[0,1]

|r⌊sT ⌋(τ)| ≤ max
s∈[0,1]

T−1/2|δTd⌊sT ⌋(τ)|+ max
s∈[0,1]

(
a⌊sT ⌋(τ)

′a⌊sT ⌋(τ)
)1/2

(bT (τ)
′bT (τ))

1/2 (S.33)

[S.25]



The first term includes

dt(τ) =





0 if t ≤ ⌊Tτ0⌋, t ≤ ⌊Tτ⌋
−(t− ⌊Tτ0⌋) if ⌊Tτ0⌋ < t ≤ ⌊Tτ⌋
t− ⌊Tτ⌋ if ⌊Tτ⌋ < t ≤ ⌊Tτ0⌋
−(⌊Tτ⌋ − ⌊Tτ0⌋) if t > ⌊Tτ0⌋, t > ⌊Tτ⌋

so that |dt(τ)| ≤ |⌊Tτ⌋ − ⌊Tτ0⌋| for every t, and hence

max
s∈[0,1]

T−1/2|δTd⌊sT ⌋(τ)| ≤ T 1/2δT

∣∣∣∣
⌊τT ⌋
T

− ⌊τ0T ⌋
T

∣∣∣∣ . (S.34)

For the second term in (S.33) we have

a⌊sT ⌋(τ) = T−1/2D−1
T X⌊sT ⌋(τ) =




T−1/2

⌊sT ⌋/T
((⌊sT ⌋ − ⌊τT ⌋) ∨ 0)/T


 ≤



1

1

1


 ,

so

max
s∈[0,1]

(
a⌊sT ⌋(τ)

′a⌊sT ⌋(τ)
)1/2 ≤

√
3.

For the last term in (S.33), we have shown above that
(∑T

t=1D
−1
T Xc̄,t(τ)Xc̄,t(τ)

′D−1
T

)−1
is a well-

behaved bounded matrix, and therefore we focus on
∑T

t=1D
−1
T Xc̄,t(τ)dc̄,t(τ)δT . The structure of

dc̄,t(τ) can be seen from (S.29) to be

dc̄,t(τ) =





0, if t ≤ ⌊τT ⌋, t ≤ ⌊τ0T ⌋(
1− c̄ t−⌊τT ⌋−1

T

)
, if ⌊τT ⌋ < t ≤ ⌊τ0T ⌋

−
(
1− c̄ t−⌊τ0T ⌋−1

T

)
, if ⌊τ0T ⌋ < t ≤ ⌊τT ⌋

c̄
(
⌊τT ⌋
T − ⌊τ0T ⌋

T

)
if t > ⌊τT ⌋, t > ⌊τ0T ⌋.

Taking τ0 ≤ τ (the reverse follows similarly and gives the same inequality)

T−1
T∑

t=1

|dc̄,t(τ)|

= T−1

⌊τT ⌋∑

t=⌊τ0T ⌋+1

∣∣∣∣1− c̄
t− ⌊τ0T ⌋ − 1

T

∣∣∣∣+ T−1
T∑

t=⌊τT ⌋+1

|c̄|
∣∣∣∣
⌊τT ⌋
T

− ⌊τ0T ⌋
T

∣∣∣∣

≤ (1 + |c̄|)
∣∣∣∣
⌊τT ⌋
T

− ⌊τ0T ⌋
T

∣∣∣∣+ |c̄|T−2

⌊τT ⌋−⌊τ0T ⌋−1∑

t=1

t

= (1 + |c̄|)
∣∣∣∣
⌊τT ⌋
T

− ⌊τ0T ⌋
T

∣∣∣∣+
|c̄|
2

(⌊τT ⌋
T

− ⌊τ0T ⌋
T

)(⌊τT ⌋
T

− ⌊τ0T ⌋
T

− 1

T

)

≤
∣∣∣∣
⌊τT ⌋
T

− ⌊τ0T ⌋
T

∣∣∣∣
(
1 +

3|c̄|
2

)
.

Considering

T∑

t=1

D−1
T Xc̄,t(τ)dc̄,t(τ)δT =




δT−d
∑T

t=2

(
− c̄

T

)
dc̄,t(τ)

δT−d−1/2
∑T

t=1

(
1− c̄ t−1

T

)
dc̄,t(τ)

δT−d−1/2
∑T

t=⌊τT ⌋+1

(
1− c̄ t−⌊τT ⌋−1

T

)
dc̄,t(τ)


 . (S.35)

[S.26]



it follows that
∣∣∣∣∣T

−d
T∑

t=2

(
− c̄

T

)
dc̄,t(τ)

∣∣∣∣∣ ≤ |c̄|T−dT−1
T∑

t=1

|dc̄,t(τ)| ≤ |c̄|
(
1 +

3|c̄|
2

)
T−d

∣∣∣∣
⌊τT ⌋
T

− ⌊τ0T ⌋
T

∣∣∣∣

and
∣∣∣∣∣T

−d−1/2
T∑

t=1

(
1− c̄

t− 1

T

)
dc̄,t(τ)

∣∣∣∣∣ ≤ (1 + |c̄|)T−d+1/2T−1
T∑

t=1

|dc̄,t(τ)|

≤ (1 + |c̄|)
(
1 +

3|c̄|
2

)
T−d+1/2

∣∣∣∣
⌊τT ⌋
T

− ⌊τ0T ⌋
T

∣∣∣∣

and a bound of the same order applies to the third term. Putting these together gives

(bT (τ)
′bT (τ))

1/2 ≤ k2T
−d+1/2

∣∣∣∣
⌊τT ⌋
T

− ⌊τ0T ⌋
T

∣∣∣∣

for some finite constant k (depending on the various constants involving c̄ above), and combining

this with (S.34) in (S.33) gives

max
s∈[0,1]

|r⌊sT ⌋(τ)| ≤ kT−d+1/2

∣∣∣∣
⌊τT ⌋
T

− ⌊τ0T ⌋
T

∣∣∣∣

for another finite constant k.

If we now consider the evaluation of this at τ = τ̂ , where τ̂ = τ̂OLS or τ̂ = τ̂FWLS , the rate of

consistency τ̂ − τ0 = Op(T
2d−1) implies that

∣∣∣∣
⌊τ̂T ⌋
T

− ⌊τ0T ⌋
T

∣∣∣∣ = Op(T
2d−1),

and, hence, that

max
s∈[0,1]

|r⌊sT ⌋(τ̂)| ≤ kT−d+1/2

∣∣∣∣
⌊τ̂T ⌋
T

− ⌊τ0T ⌋
T

∣∣∣∣ = Op(T
d−1/2).

This is therefore of op(1) for all d < 1/2. �

Proof of Theorem S.2

The two equations of the DGP

yt = α+ µt+ δT 1t>⌊τ0T ⌋(t− ⌊τ0T ⌋) + zt

zt = φT zt−1 + et

can be combined to give

yt = X ′
1,tβ1,T +X2,t(τ0)

′β2,T + et

= X ′
1,tβ1,T +X2,t(τ)

′β2,T + eT,t(τ)

where

X1,t :=




1

t

yt−1


 , β1,T :=



µφT + α(1− φT )

µ(1− φT )

φ
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and

X2,t(τ) :=

(
1t>⌊τ0T ⌋

1t>⌊τ0T ⌋(t− ⌊τ0T ⌋)

)
, β2,T := δT

(
φT

1− φT

)

and

eT,t(τ) := et − (X2,t(τ)−X2,t(τ0))
′β2,T .

The compound disturbance eT,t(τ) includes the DGP disturbance term et and also (X2,t(τ) −
X2,t(τ0))

′β2,T , which captures the effect of τ differing from τ0, if applicable. When τ is replaced by

a consistent estimator, e.g. τ̂OLS or τ̂FWLS , the asymptotic negligibility of this latter term follows

by similar arguments to those used to the same effect in the proof of Theorem 4. It is convenient

to stack the observations as

y :=




y2
...

yT


 , X1 :=




X ′
1,2
...

X ′
1,T


 , X2,T :=




X2,2(τ)
′

...

X2,T (τ)
′


 ,

and to define the orthogonal projection matrix P̄1 := IT−1 −X1(X
′
1X1)

−1X ′
1, so that

s20 = (T − 1)−1y′P̄1y

s2τ = (T − 1)−1(y′P̄1y − y′P̄1X2,τ (X
′
2,τ P̄1X2,τ )

−1X ′
2,τ P̄1y).

The difference between the resulting SC statistics can be written

SCτ − SC0 = (T − 1) log

(
s2τ
s20

)
+ 2 log(T − 1)

= (T − 1) log

(
1−

y′P̄1X2,τ (X
′
2,τ P̄1X2,τ )

−1X ′
2,τ P̄1y

y′P̄1y

)
+ 2 log(T − 1)

= (T − 1) log

(
1−

β̂2(τ)
′X ′

2,τ P̄1X2,τ β̂2(τ)

y′P̄1y

)
+ 2 log(T − 1). (S.36)

When a trend break is present in the DGP (δ 6= 0) and 0 ≤ d < 1/2, standard but tedious least

squares derivations show that with τ = τ0

β̂2(τ0) = T−dδb2,T + op(T
−d)

with b2,T := (1,−c/T )′. This is essentially the consistency of the OLS estimator of the regression,

which can be shown to hold in the presence of heteroskedasticity of the form allowed in Assumption

A. Hence

(T − 1) log

(
1−

β̂2(τ0)
′X ′

2,τ0
P̄1X2,τ0 β̂2(τ0)

y′P̄1y

)
≈ −T 1−2dδ2

b′2,TX
′
2,τ0

P̄1X2,τ0b2,T

y′P̄1y

which diverges to −∞ at rate T 1−2d for 0 ≤ d < 1/2, because the ratio of quadratic forms in this

expression is Op(1). This in turn implies that the terms in SCτ0 − SC0 have orders −Op(T
1−2d) +

O(log T ), and hence that SCτ0 − SC0 also diverges to −∞. The conclusion is that the probability

that the model with the break (i.e. including X2,t(τ0)) is chosen converges to one when δ 6= 0

and 0 ≤ d < 1/2. The same results follow similarly when τ0 is replaced by a consistent estimator,
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such as τ̂OLS or τ̂FWLS . It also turns out that the same rates of convergence, and hence consistent

detection of a break, can also be found for sequences of τ not converging to τ0, although in that

case the expression for b2,T will differ and the finite sample properties would presumably be inferior

to when a consistent estimator is used for τ0.

When a trend break is absent in the DGP (δ = 0), the estimator β̂2(τ0) converges to zero; i.e.,

it is a consistent estimator of β2,T = 0 in this case. Moreover it can be shown to be Op(T
−1/2) in

the usual way, so that the first term in (S.36) satisfies

(T − 1) log

(
1−

β̂2(τ0)
′X ′

2,τ0
P̄1X2,τ0 β̂2(τ0)

y′P̄1y

)
≈ (T − 1) log(1−Op(T

−1)) ≈ Op(1),

from which it follows that SCτ −SC0 ≈ Op(1)+2 log(T − 1) → +∞. Thus when a break is absent,

the probability that it is excluded by the SC comparison converges to 1.

The preceding arguments apply without substantial change when the regressions used for the SC

calculations are weighted to allow for unconditional heteroskedasticity of the form given in A2. �
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