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Abstract

We conduct a laboratory experiment and provide evidence of learning spillovers within and across

equivalence classes of “structurally similar” games. These spillovers are inconsistent with existing theories

of learning in games.
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1 Introduction

How economic agents learn to make decisions in games has received a lot of attention by economists. In

many cases of interest agents learn across several different strategic situations, and the number of possi-

bilities is so vast that a particular situation is practically never experienced twice. A tacit assumption of

standard learning models is that players extrapolate their experience from previous interactions similar to

the current one. Which situations people perceive as similar and how they transfer knowledge between

“similar” situations, though, has received much less attention in the literature.1

In this paper we study learning spillovers across equivalence classes of “structurally similar” games.2

We consider two classes of games: games which are solvable through deliberative reasoning and, more

precisely, through iterated elimination of dominated strategies (henceforth IEDS) and coordination games

where, unlike IEDS games, deductive equilibrium analysis based on common knowledge of rationality alone

fails to determine a unique equilibrium strategy profile. Using those classes of games we can ask whether

the concepts of dominance solvability and coordination that we use in game theory might be recognizable

dimensions of similarity in the minds of participants or might at least be reflected in their choices.

We use a 3x2 design. In most treatments they play a sequence of two games: first 5 repetitions of

a variant of the so called ‘guessing game’ (either the IEDS version or the original coordination version

(Keynes,1936)) and afterwards ten repetitions of a 3x3 game, which is either an IEDS or coordination game.

In our control treatments participants play only the 3x3 normal form games.

We find evidence of learning spillovers within and across equivalence classes of “structurally similar”

games. Having played a structurally similar game before leads to faster convergence to Nash equilibrium

(or coordination) in the 3x3 game. On the other hand playing a structurally different game leads to less

Nash play (coordination), not only when compared to the situation where a similar game is played but also

compared to the baseline, where no other game is played before. These treatment differences are not easily

accommodated by standard models of learning in games, such as reinforcement learning, imitation or best

response learning.

There are few other papers in the experimental literature which look at learning transfers, extrapolation

or categorization. Haruvy and Stahl (2009) study learning transfer between ‘dissimilar’ symmetric normal

form games.3 They find that a model of experience-weighted attraction learning augmented with action

relabeling performs well in explaining the initial choices in each game. Grimm and Mengel (2012) study

learning in a multiple games environment, where participants face different normal form games randomly

drawn in each period. They demonstrate that learning spillovers occur whenever the complexity of the

environment increases. One of their findings is that people learn to treat strategically equivalent games in the

same way. Huck, Jehiel and Rutter (2011) also find evidence for categorical thinking based on belief learning

in an experiment and Cason et al (2012) find evidence for behavioral spillovers in Coordination games.

Several studies have found implicit evidence that there is learning transfer across games. Examples include

1For some theoretical work on this question see Gilboa and Schmeidler (1995), Jehiel (2005), Steiner and Stewart (2008) or

Mengel (2012). Experimental literature will be discussed below in detail.
2A formal definition of structural equivalence classes of normal form games is provided by e.g. Germano (2006). Equivalence

classes of games are defined by means of (i) discontinuities of the best response correspondence and (ii) relabeling of strategies

and/or players.
3For them the term dissimilar means that there is no re-labeling of actions which makes games monotonic transformations

of each other. This is true for all the games considered here, including those that we call ‘structurally similar’. See also Rankin

et al (2000).
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Rapoport et al. (2000), Cooper and Kagel (2003, 2008) or Chong et al. (2006) among others. Camerer et

al (1998) study learning transfers across IEDS guessing games with different parameters. Interestingly, Kuo

et al (2009) find that different brain regions are involved when participants play games that can be solved

via deliberative reasoning (such as dominance solvable games) as opposed to coordination games.4

The paper is organized as follows. In Section 2 we describe the experimental design. In Section 3 we

present the results. Section 4 concludes.

2 Design

336 students participated in one of the following treatments. In treatment IEDS3x3 (COR3x3) participants

were randomly matched in pairs for ten rounds to play the 3x3 game depicted on the left (right) in Table 1.

In treatment IEDS-IEDS3x3 participants were first matched in fixed groups of four to play the 70% (IEDS)

version of the guessing game over five rounds. In this game all group members have to simultaneously guess

a number between 0 and 100. The participant closest to 70% of the average guess wins five Euros and

ties are resolved randomly. Afterwards they were randomly rematched in pairs for ten rounds to play the

game shown on the left in Table 1. In COR-COR3x3 they were first matched in fixed groups of four to

play the 100% version of the guessing game over five rounds. In this game all group members have to

simultaneously guess a number between 0 and 100. The participant closest to the average guess wins five

Euros and ties are resolved randomly. Afterwards they were randomly rematched in pairs for ten rounds

to play the Coordination game shown on the right in Table 1. In IEDS-COR3x3 participants first played

the 70% version of the guessing game over five rounds and then the 3x3 Coordination game. In COR-

IEDS3x3, they first played the 100% version of the guessing game and then the 3x3 IEDS game. The

treatment structure is summarized in Table 2.

IEDS H M L

H 10, 10 8, 12 16, 8

M 12, 8 10, 10 6, 6

L 8, 16 6, 6 10, 10

;

COR H M L

H 10, 10 8, 5 6, 3

M 5, 8 12, 12 5, 3

L 3, 6 3, 5 15, 15

Table 1: Payoff Matrices 3x3 games.

Written instructions were distributed at the beginning of each phase. In treatments, where a sequence

of two games was played, participants knew at the start of phase 1 (guessing game) that there would be

a second phase in the experiment but did not know what it would look like.5 Participants were informed

that they were matched with the same group of participants as in the first phase and that they would be

randomly rematched with other participants in each of the periods of the second phase. This was done in

4Psychologists have studied how different isomorphic representations of the same problem or tasks can induce different

solution strategies and behavioural outcomes. This is often referred to as the “representation effect”, which is closely related

to “framing effects” more well known among economists (Tversky and Kahneman 1981; Chen and Holyoak, 1985; Novick 1990;

Zhang and Norman 1999). In some sense, those results are bad news for game theory. In this paper we show that there are also

some good news. Our participants face two different problems that are structurally the same, but very differently framed, and

we show that they seem to be able to learn structural properties.
5Sample Instructions for treatment IEDS-IEDS

3x3 can be found in Online Supplementary Material A.
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order to minimize the connection between the two phases. Actions H,M,L were labeled ‘High’, ‘Medium’ and

‘Low’ in the experimental instructions and were labeled as shown in Table 1 on the decision screens during

the experiment. This labeling was chosen in order to enable participants to draw a connection between the

action sets in the two games. It enables us to study the impact of learning which is based on action labels.

Table 2 shows the number of (independent) observations for each treatment.6

IEDS3x3 COR3x3

No first game IEDS3x3 (480, 6) COR3x3 (480, 6)

COR (100 percent) COR-IEDS3x3 (720, 6) COR-COR3x3 (720, 6)

IEDS (70 percent) IEDS-IEDS3x3 (720,6) IEDS-COR3x3 (360, 3)

Table 2: Treatments together with number of (independent) observations. For the guessing games we had

twice as many matching groups (independent observations).

At the end of each round of the guessing game participants were informed about the different guesses

made in their group and whether they had won or not. At the end of each round of the 3x3 game participants

were told their action choice and that of their match as well as their payoff. In addition to a show up fee

of 2 Euros, overall earnings were the sum of earnings from all rounds. Earnings from the first phase were

directly given in Euros. Earnings from the second phase were given in ECU (experimental currency unit)

and converted into Euros according to the exchange rate 1Euro=20ECU. The experiment was conducted

at the BEE-Lab at Maastricht University. It lasted between 35 (control treatments) and 60 minutes (main

treatments). Participants earned on average 12,30 Euros with a minimum of 6,40 Euros and a maximum of

34,20 Euros.

3 Results

Guessing Games Let us start by describing behavior in the guessing games. Figures (1) and (2) illustrate

the distribution of guesses in the 70% version and the 100% version of the game, respectively. While in the

70% version guesses are decreasing over time, there is no such time trend in the 100% version, where most

guesses are concentrated around 40-50 (see Table 3).

In the 70% version subjects’ behavior seems to converge over time towards the unique Nash equilibrium

where everyone guesses 0. The modal guess is 10. By period 5 more than 85% of guesses are below 12.

This is consistent with typical evidence from this game (Nagel, 1995). In the Keynes guessing game (100%

version) every profile where all four players choose the same number is a Nash equilibrium. The focal Nash

equilibrium seems to be to choose 50, which is the amount where most initial guesses are concentrated.

In fact in the Keynes version 75% of guesses are in the interval [40,60] already in period 1 and the modal

guess is 50. In Online Supplementary Material D we provide graphs separately for each of the 54 matching

groups (Figures D.2 - D.4). Those graphs show that also in each matching group (except for one group

in COR-COR3x3) guesses converge to about 50 in the coordination version and to about 10 in the IEDS

version.
6In Online Supplementary Material C we report results from additional treatments with a pure Coordination game as the

3x3 game. In this game coordination was near perfect in all treatments and reached 100 percent in the control group that only

played the 3x3 game.
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(a) IEDS Guessing Game (b) Coordination Guessing Game

Figure 1: Distribution of Guesses ‘IEDS guessing game’ (70% version) and ‘Keynes guessing game’ (100%

version). The dots depict actual guesses (data) while the line shows the guesses predicted by a linear OLS

regression.

guess 70% version 100% version

constant 51.738∗∗∗ 49.666∗∗∗

(2.697) (1.492)

period −11.962∗∗∗ −1.638

(1.497) (1.103)

period*period 0.7336∗∗∗ 0.121

(0.2243) (0.130)

ρ 0.3624 0.5164

Table 3: Random Effects OLS regression of Guesses on period. Standard errors clustered by matching

group. 480 (600) observations, 96 (120) individuals, 24 (30) clusters ∗∗∗ 1%,
∗∗ 5%,

∗ 10%. No stars means

not significant at the 10 percent level.

Based on these results we can conjecture what conventional learning models would predict regarding

spillovers.7 Outcome based models, such as reinforcement learning, would predict that agents, if there are

learning spillovers at all, are more likely to continue playing actions that were previously successful, i.e.

make “L” choices more often after playing the IEDS guessing game and “M” choices more often after the

playing the coordination version of the guessing game. Belief-based learning models, such as myopic best

response learning would predict more best responses to the belief that others choose L (M) after the IEDS

game (coordination game).

3x3 games We ask whether participants manage to reach the unique Nash equilibrium in the IEDS game

and whether and how fast they manage to coordinate in the Coordination games. Figure 2(a) illustrates the

share of M-choices (i.e. Nash choices) over time in the three IEDS treatments. The first thing to notice is that

while participants seem to learn the Nash equilibrium in treatments IEDS3x3 and IEDS-IEDS3x3, there is

no convergence in treatment COR-IEDS3x3. Figure 2(b) shows the analogous graph for the coordination

game. Here learning seems worse in IEDS-COR3x3 compared to COR3x3 or COR-COR3x3.

7We discuss these models in detail in Online Supplementary Material B.
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(a) IEDS Game (b) Coordination Game

Figure 2: Share of M Choices over time in the 3x3 IEDS game. Rate of Successful Coordination over time

in the 3x3 Coordination Game.

To understand the statistical significance of these observations, we ran logit regressions to explain the

frequency of M-choices in the IEDS game (the frequency of successful coordination in the 3x3 coordination

game) through the time period, treatment dummies as well as interaction terms. The period variable counts

from 6, ...15 and time period in the control treatments (baseline) is normalized to this count. The results

are presented in Table 4.8

(IEDS3x3) (COR3x3)

constant −0.1886∗∗ 0.4143∗∗

(0.0910) (0.2170)

similar −2.0137∗ −0.6095

(0.5604) (0.6787)

dissimilar 0.2065 1.5448∗∗

(0.3602) (0.5377)

period 0.2228∗∗∗ 0.1195∗∗

(0.0682) (0.0507)

period X similar 0.1093∗∗ 0.0300

(0.0628) (0.0959)

period X dissimilar −0.1328∗∗∗ −0.1734∗∗∗

(0.0346) (0.0540)

N 1440 1200

groups 15 15

Table 4: Random Effects Logit Regression (standard errors clustered at matching group level).
∗∗∗1%,

∗∗ 5%,
∗10%. ((Pr > X 2) < 0.0001).

The results of the regression confirm our intuition derived from Figure 2(a). The positive coefficient on

the variable ‘period’ indicates that over time people learn to play the equilibrium in the control treatments

8In Supplementary Material D we also report the results of multinomial logit regressions on the choice between H,M and L.

Results are qualitatively robust.
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IEDS3x3 (COR3x3). There are less M -choices in IEDS-IEDS3x3 compared to IEDS3x3 initially. The

positive coefficient on periodXsimilar shows, however, that there is faster learning in IEDS-IEDS3x3

compared to IEDS3x3, i.e. more M-choices over time.9 On the other hand the negative coefficient on

periodXdissimilar shows that convergence to equilibrium is worse whenever a sequence of structurally

dissimilar games is played.

We ask next if we can detect any evidence for the importance of action labels, possibly in the first rounds

of play for the 3x3 IEDS game. Table 5 shows the percentages of M and L choices in the first period of the

3x3 game.

L M H L M H

IEDS3x3 0.04 0.54 0.42 COR3x3 0.62 0.04 0.34

IEDS-IEDS3x3 0.06 0.48 0.46 COR-COR3x3 0.69 0.17 0.14

COR-IEDS3x3 0.06 0.63 0.31 IEDS-COR3x3
0.88 0.00 0.12

Table 5: Action Labels - M and L choices in the first period of the 3x3 games.

In the IEDS game, there are few differences. There are more M-choices in COR-IEDS3x3 than in

IEDS3x3, which is intuitive since players coordinate on “medium” actions in the guessing game. However,

a Mann-Whitney test shows that the distribution of choices in the first round does not differ pairwise

across any two treatments (p > 0.1429), irrespective of whether we use individuals or matching groups

as independent units of independent observation. In the coordination game, participants seem to use the

modal outcome of the guessing game as a coordination device for the coordination game in treatment

COR-COR3x3. There are more M choices in the first period of the game in COR-COR3x3 compared to

COR3x3 (Mann-Whitney, p = 0.0046 using individuals as independent unit of observation).10 There are

also more L choices in IEDS-COR3x3 compared to COR3x3 (Mann-Whitney, p = 0.0289). Figure D.1 in

the Supplementary Material illustrates that agents with very low guesses in Period 5 (in treatment COR-

COR3x3 do not choose M in period 6. In fact the minimal guess in Period 5 out of those that choose M in

period 6 is 22 and the maximal guess 56.

4 Summary, Discussion and Conclusions

We conducted an experiment to study learning spillovers across equivalence classes of “structurally similar”

games. We found that playing a structurally different game hurts convergence to Nash equilibrium, while

playing a structurally similar game leads to better (faster) convergence in the second game. This is despite

the fact that a simple transfer of successful actions from the guessing games to the 3x3 games would induce

the opposite effect. There is one difference, though, in the impact of extrapolation on equilibrium play for

games which can be solved through deliberative reasoning, such as dominance solvable games, and games for

which some intuition is also needed in order to converge to a Nash equilibrium, such as coordination games.

While structural similarity is important for both, in coordination games there is an additional effect. In

9The size of the coefficients implies that starting from period 10 approximately (i.e. the 5th period of the 3x3 IEDS game)

there are more M− choices in IEDS-IEDS
3x3 compared to IEDS

3x3.
10Since we restrict attention to the first period of the 3x3 game each individual is indeed an independent observation in

treatments COR
3x3. In all other treatments the 6(12) matching groups from the guessing games are the independent units

of observation. However we did not want to compare a binary variable in one treatment with matching group averages from

another treatment. Hence we used individuals as independent unit of observation for all the Mann-Whitney tests reported here.
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these games players try to use the modal behavior in the first game as a coordination device for the second

game.

The results we observed cannot be explained by conventional outcome based or belief based learning

models, where agents learn about successful actions (e.g. reinforcement learning) or learn about their

opponents’ behaviour and try to best respond to it.

One possible explanation is that participants learn about the structural properties of the guessing games

and then try to apply this knowledge afterwards, leading to better convergence in IEDS-IEDS3x3 and

worse convergence in COR-IEDS3x3. On the other hand, playing a coordination game where intuition (or

some ‘gut-feeling’) is needed to reach a Nash equilibrium, may bring participants into the wrong ‘mode’ of

play when afterwards playing a game which is solvable through IEDS.11

These results can be very helpful to solve coordination problems, to make predictions about behaviour

under new institutions or laws or for the design of organizations. Understanding how knowledge is transferred

between games and how this depends on the type of strategic situation faced can also inform theoretical

models of learning across games and categorization. Most of the current literature on categorization or

learning across games focuses on categorization along action labels.12 Understanding structural learning

and improved learning via extrapolation of strategic context seems harder to model and to understand.

There is large scope for future research in this area.
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