
Deploying Self-Organisation to Improve Task
Execution in a Multi-Agent Systems
Asia Al-Karkhi

School of Computer Science and Electronic
Engineering

University of Essex, UK
aasalk@essex.ac.uk

Maria Fasli
School of Computer Science and Electronic

Engineering
University of Essex, UK

mfasli@essex.ac.uk

 Abstract—This paper discusses how the performance of a network
of agents can be improved using a self-organisation technique. The
multi-agent network performance can be improved by organizing the
agents in clusters. Furthermore, principles of self-organisation can be
used to create agent organisations triggered when some of the agents
have high load. Hence, busy agents within the network may decide to
create an organisation to receive extra support from other less busy
agents in order to execute more tasks. The paper presents a
simulation based on Repast Simphony that has been used to develop
the proposed model and describes a set of experiments showing the
performance of the system with and without the self-organisation
technique.

1. INTRODUCTION
Multi-agent systems (MAS) have emanated from

distributed artificial intelligence. Agents are autonomous,
proactive, reactive entities and can work together with other
agents. A multi-agent system (MAS) is a loosely coupled
network which involves a collection of software components
that work together to solve complex questions beyond the
individual capabilities or knowledge of each entity [1]. Multi-
agent systems have been deployed within open environments to
solve complex problems in a range of areas that individual
agents would not be able to solve on their own. Agents may be
holding different resources, have different skills and expertise,
and can perform different tasks to maximise their resource
utilisation and improve the overall system performance. In this
manner, multi-agent frameworks can be seen as resembling a
human society where every agent has its own particular
objective and works with different agents to perform tasks and
accomplish individual and collective goals [2].

A self-organising system is one where the system can
dynamically change at whatever point the encompassing
circumstances require with no outside mediation [3]. The fields
that the self-organisation frameworks emerged from are
physics, social groups, and analysis of social insects. The
authors in [4] have encoded some of the principles/ behaviours
of these fields inside their applications. They consolidated
software engineering programming with a natural self-
organisation process to accomplish a decentralised self-
organised system. In their work, they have described the
challenges that they faced with building such an application.
For further details, see also [4]. Our work involves networks of
autonomous agents with their own resources capable of
executing tasks. A self-organisation is carried out by agents
that are busy, i.e. who have taken on more than a single task or
they have been receiving tasks one after the other. Hence, the

self-organisation process can be triggered when the busy agents
identify an issue with their workload and start to create groups
or clusters of agents. In this way, the workload will be
distributed over the newly created groups. In this paper, a self-
organisation process has been used to show the positive effect
of a local action performed by the individual agents to the
overall network to increase the task execution in the network;
hence, improve the overall network performance. Creating
dynamic organizations of agents and applying roles for the
organization members to improve their work as societies is the
target for many researchers [5]. Using organizations has been
demonstrated to provide reasonable solutions for many task
allocation problems in distributed environments. These
solutions could be used to minimise the resource allocation
costs and decrease unnecessary communications among agents
during their activities within the organization [6]. In addition,
the tasks have been defined to have similar structure or
different complex structure, further information is in [7, 8].

The rest of the paper is organised as follows. The next
section discusses the related work in the literature. Section 3
gives a description of the network of agents, the customer
agent and the task delegation protocol. Section 4 presents the
organization creation process, the agents’ roles in the created
organizations and the tasks executed by the organizations.
Section 5 introduces briefly the simulator that has been used in
this paper followed by the experimental work with and without
the self-organisation processes. Section 6 shows the effect of
agents essentially going offline. Finally, the paper ends with
the conclusions and avenues for future work.

2. RELATED WORK
 Agent-based and multi-agent systems have been widely used
to solve complex problems in distributed environments where
agents are independent and self-interested. Using an open
multi-agent system with no predefined static design is more
useful as the agents in a distributed environment can be
designed by different people and can satisfy different goals.
Agents in such systems however can suffer from unexpected
failures hence to ensure robust performance, the ability of the
system to self-organize is not only desirable but essential. A
self-organised system is one that can be changed dynamically
without any external intervention whenever the surrounding
circumstances demand. An example of a self-organised system
is ad-hoc networks that can freely discover the accessibility of
each other [3]. Many researchers argue that in a heterogeneous
multi-agent system environment, triggering an agent

organisation process to reduce the complexity impact of a large
number of agents demands formal theories to design the
organisation structure as well as methods for the agents’
interaction, see [9]. In [10], the authors proposed a self-
organised resource allocation scheme based on Decentralised
Distributed Virtual Environments (DDVEs). The scheme is
functioning independently from the implicit topology of P2P
network. The authors presented a scheme based on the gossip
protocol to identify the users’ critical zone. They take the
advantage of the heterogeneous peers to make the use of the
potential ones which are the nodes in connection to reliability
and bandwidth to smooth data distribution by breaking off the
virtual peers. In our work the algorithm used by the Head to
create an organisation is based on the gossip protocol to search
for other potential agents in term of their state busy/ not busy to
join the Head’s organization. In [11], when the agents are
working in a big and complex system environment, giving a
role to the agents would be a better solution for them. A role
adds the ability to the agents to overcome issues like event or
process interruption and at the same time, gain the opportunity
to maximise their interest. Other researchers use agent
organisations in a distributed environment to enhance the
performance of such systems. In [12], they implemented a
simulator model for exploring recommendations inside the
connection of a network system of heterogeneous service
supplier and purchaser agents in an electronic market. They
introduced an agent-based model for recommendations as well
as decisions, using the principle of homophilic neighbourhood
choice. They implemented methods for selecting peers based
on their similarity and demonstrated the ability to self-organise
an overlay system. Their work shed some light on the agents’
capability for decision making and agents’ knowledge about
connected peers which is gained during the network evolution
process. In our work, a self-organisation technique has been
utilized to demonstrate the beneficial outcome of a
neighbourhood activity performed by the individual agents to
the overall network to expand the task execution; henceforth,
enhance the system performance. In addition, we have created
rules to trigger the creation of agent organisations. These rules
provide roles for the agents in the self-organization process
which hence provide a robust enhancement schemes to the
agents’ network. In [13], they proposed a theoretical method to
optimize the agents network. Their idea is to minimising the
number of agents who are chosen to be in charge in
organisations and increasing their connections to acquire
network coverage. They have compared and checked different
network types. However, their model is tested only on a small
number of organizations.

3. THE NETWORK MODEL AND CUSTOMER AGENT
 A scale free network has been implemented based on the
Barabasi-Albert (BA) model algorithm, as explained in [14].
The designed network grows gradually to be very large to
simulate networks such as the Internet, which is a scale free
network, see igure (1). There are two types of agents: the
customer agent and the task execution agents (simply referred
to as agents from now on). The agents in the created network
have heterogeneous resources and hence they have the
resources to execute different types of tasks that are issued
from the customer agent side. Each agent can sustain a

maximum number of connections, which may be a different
number from agent to agent. The implemented experiment, as
will be explained later, controls the number of connections for
each agent, and in this case, each agent has a number of
connections with a saturation condition (M). In each cycle, the
customer agent sends N messages (tasks) to a random set of
agents with this format (Task_ID, requested resources, (TTL),
deadline, required accuracy). Each task is sent to just one
random agent. Where:
Task_ID: the unique identifier used to identify each task sent
by the customer.
Requested Resources: the resources that are requested by the
customer to execute the customer task. This has been
modelled as a tuple <r1, r2, r3>, so it is a vector of three
randomly selected values within a range [0-4].

Figure 1-The implemented network of 1000 agents

TTL: Time To Live (TTL) for each task, which means the
maximum number of hops that a message can make within the
network and which is tracked in the search algorithms.
Deadline: in real world systems, a typical request for task
execution has a deadline by which the task execution result is
required by the requesting customer agent. When a customer
sends a task, it wants it to be finished within this deadline. To
simulate the deadline in our model, the customer sends a
deadline value with each task issued to the network of agents.
The deadline represents a specific value for the execution
period that the randomly selected agent in the network should
use for the execution of a task. It also indicates the number of
cycles as to how long the customer is willing to wait for the
execution result after the agent in the network has accepted the
task. So, within this value, the response from the agent to the
customer should be guaranteed.
Required Accuracy threshold: the matching value of the
accuracy for the requested resources. The customer sends each
task with a specific required accuracy value. Since, the
customer resources are between [0-4] as mentioned above, we
use Manhattan distance equation which produces accuracy
values within (0 to 12) so it is 13 Accuracy values. When a
task is received by an agent, it will use equation (1) to check
its ability to execute that task in terms of resources. If the
required accuracy is met, the agent will then execute the task.

 ………. (1)
Where:
 Customer R= requested resources from the customer side.
 = agent matching resource.

As an example, if the customer requests the resources <1,1,1>
with a required accuracy specified to be zero, and the recipient
agent resources are <1,1,1>, then an exact match has occurred
when applying equation (1). In another example, if the
customer asks for <4,4,4> with required accuracy 6 and the
recipient agent resources are <2,2,2>, in this case this agent
can execute the task. Otherwise, if the agent does not satisfy
the required accuracy, then the task is going to traverse the
network until it reaches an agent that can satisfy its required
accuracy value as long as the TTL has not been reached yet. If
the TTL has been reached, the task will be considered as
having failed.

3.1. TASK DELEGATION PROTOCOL
 After the agents are inserted into the environment, they start
receiving tasks from the customer agent and sending tasks to
each other when they cannot perform them on their own.
Within this dynamic system, the various agents may become
unavailable or very busy. Where, busy agent means an active
agent that currently executing an accepted task.
See algorithm (1), which explains the task delegation
algorithm for the tasks issued by the customer agent to the
network of agents. The agent may receive tasks but cannot
execute them for different reasons, such as the deadline for the
task is not sufficient for the agent or it does not have the
required accuracy, etc. To explain how the task delegation
protocol process works, suppose an agent receives a task. If
the agent cannot execute the task, it acts as an initiator and
starts searching the network by sending the task messages
which have been received in each cycle to their direct contacts
using the search algorithm. The messages then will traverse
the network depending on the TTL value and the network size.
Also, during the search, and if there are no more recipient
agents, the message will be with the last agent who received it.
The search procedure fails when the TTL is reached or when
the message is returned to the initiator; this means that it is a
failed task.

3.2. INDIVIDUAL AGENT BEHAVIOUR
 The agents are autonomous and self-interested with the
desire to make the maximum benefit for themselves. The
agents in the network have been encoded with rules that
enable them to create the network. So, each agent would have
partial knowledge about the network members by creating a
contact list containing the contact details of all the agents it
has a direct connection to. Furthermore, each agent in the

network has a queue called accepted task queue contains the
accepted tasks to be executed soon. Hence, when an agent in
the network accepts task, it means that the agent has met all
the crucial requirements for this task, and then its status will
become busy and will remain at this status until task been
executed will change to not busy. If its queue has tasks, then
the agent will become busy to execute the tasks in its queue.
After that the agent will change its status to not busy.

4. THE ORGANIZATION CREATION PROCESS
 The purpose of creating an organization as a virtual layer
above the existing agent network is to increase the number of
executed tasks and minimize the time required for accepting
and executing tasks. In other words, finding the exact agent
that can satisfy the requested task requirement with a single
hop or with as less hops as possible. To simplify matters, the
explanation below will only be about the process of a single
organisation. However, the system may contain more than one
organisation. The emergence of agent organisations, will
depend on a triggering condition resulting from the busiest
agent’s action. The busiest agent is a term given to a busy
agent that has satisfied extra conditions which are: currently
executing task, still receiving tasks from the customer and
already having tasks in its accepted tasks queue. Hence, the
accepted tasks in its queue may requires at least M cycles to
be fully executed, where M is an overall value related to the
deadline of each task, and it could be estimated within trial
and error experiments. This busiest agent can decide to create
an organisation and be the Head of that organization to receive
more help. Hence, the Head can send a multicast message to
other agents in the network to invite them to join its
organisation based on the gossip algorithm to propagate the
message. In algorithm (2), we used a similar method as in
[15], where the author in chapter 7 has clarified the essential
properties of gossip-based information dissemination and
showed how the gossip approach can be utilized not only in
human society but also in other domains such as networks. In
our implemented experiments, inside the network
environment, if a not busy agent accepts the invitation
message then it will send back an acceptance message “accept
to join” to the Head. If the message reaches a busy agent, then
the busy agent will act as a traverser for the Head’s message to
reach other parts of the network, see algorithm (2). A database
record will be added to the Head’s database for each agent
who joins the organisation. Each agent will also store the
required information for any organisation it has joined. The
construction of the organizations inside the agents’ network
environment is subject to triggering conditions. When the
triggering conditions are met, the Head starts to send messages
asking other agents to join its organization; any agent joining
the organization must satisfy a set of norms (obligations).
These norms are accepting to execute tasks or putting them in
the accepted tasks queue if the required accuracy is matched
and the agent is able to execute the tasks within the allocated
deadline. In practice, depending on how busy it is, an agent
can only be committed to a limited number of organizations at
any one time and this depends on its setting. However, a

Algorithm (1): Task Delegation Protocol.
Start
 Note: Task ID. Each task sent from the customer agent to
random agents in each cycle has its unique ID.
Cycle i: agent ax receives Task ID; if it cannot execute it, and
TTL> 0, then ax sends a message with Task ID to contact ay and
updates TTL, new_TTL=TTL-1. Cycle i+1: agent ay receives a
delegated task; if it can accept, it, sends a “task accepted, Task
ID” message to the customer. If it cannot accept, but TTL>0, a
message is forwarded to contact az and new_TTL=TTL-1. If
TTL=0, sends message to customer = “task failed, Task ID”
End.

member of an organisation can execute additional tasks
beyond those delegated by the Heads of the organisations for
which it is a member of.

4.1. THE DESCRIPTION OF THE CREATED ORGANIZATIONS
 There are two variations in the creation of organisations
which we will term Version0 and Version1. In Version0, an
agent can join the created organizations depending on two
conditions. The first one is a setting parameter which is a
random value to specify the number of organizations the
agents can join within a range from 1 to N. The second
condition is that the agents can have the opportunity to decide
which organization to work with, based on the resources
matching process to create homogeneous organizations, see
equation 1 above.
While, the creation of an organization in Version1, any agent
can be a member of an organization if it is not currently a busy
agent and its maximum allowed number of organizations to
join has not been met yet. Subsequently, there is no restriction
for the required accuracy to be met as in Version0. The Head
has the following database information about its organization.
 Head_database = {Head_ID, Max_no_member, Member_ID,
Member resources, Required_Accuracy}
When an agent accepts to join an organization, it will create an
entry in its database. Our work is focusing on agents that can
have two roles within the self-organization process: that of the
Head which can start to organize its own organisation, and that
of the member which needs to have the reliability to act as a
service provider agent. However, when a member within an
organization receives a task from the customer and it has no
ability to execute it, then the member will send the task to
other organizations that the agent has joined.

4.2. TASK EXECUTION BY ORGANIZATIONS
 Using Version0 or Version1 the received task by the Head
follows the following procedure.
• The task will be executed if and only if the Head is not

busy and can accept the task depending on the required
accuracy matching criteria of the Manhattan distance and
task deadline value.

• The task will be queued in the Head’s accepted tasks
queue. This occurs when the task matches the required
accuracy of the Head’s resources and the Head can
execute the task within the pre-specified deadline, but the
Head is currently busy executing other tasks.

• Otherwise, the Head will send a message to ask its
Members whether they are able to accept and execute the
task or not.

5. EXPERIMENTAL WORK

5.1. REPAST SIMPHONY SIMULATOR FOR AGENT-BASED
MODELS

 In this part, we give a brief description of the Repast
Simphony simulator where the agent model has been
developed to study the self-organisation process. So, a set of
experiments has been designed and executed utilising Repast
Simphony in Eclipse IDE using Java programming. Repast
Simphony is an open source Agent-Based Simulator (ABS),
which is a desktop developing environment for Agent-Based
Models (ABM). An ABM can be used to explore issues in
heterogeneous environments and emergent systems, for more
details we refer the reader to [16-18]. There are many versions
of Repast modelling toolkits such as, Repast under java,
Repast python, Repast for Microsoft.NET and Repast
Simphony. Repast Simphony allows the developer to control
the number of agents as well as control the agents’ actions and
behaviour by using different scheduling methods, which can
be either continuous or discrete.

5.2. NETWORK PERFORMANCE WITH AND WITHOUT SELF-
ORGANISATION

 Several experiments have been implemented to demonstrate
the self-organization process. We aim mainly to see the
effectiveness of adding organizations on the performance of
the proposed system. The experiments have been implemented
on different agent network sizes (300, 500, 1000) with
maximum connection for each agent up to N=10 and time to
live for the task message being TTL=10. The simulator runs
for 3000 cycles. The results have been collected and used to
produce the graphs by repeating the run for 10 times to ensure
the robustness of the results. The experiments will also show
the effect of changing the task distribution on the performance
of the system with different network sizes. Table (1) shows the
values for tasks issued from the customer side using the
normal distribution to simulate the real-world problem when
variable number of tasks requests have been issued. Equation
2 has been used to produce Figures (2-14) except for Figure
(5) which has been produced using equation 3. The Average
Number of Successfully Executed Tasks Ratio (ASETR) is the
average number of successfully executed tasks with their
required accuracy divided by the total number of tasks issued
per required accuracy.

Algorithm (2): “Gossip method to initiate an agent
organisation based on the busiest agent(Head)”
 The Head agent searches for members for its
organisation using the following steps:

1. Transmitting to [N] random targets (agents),
choosing [N] from the local membership contact list.

2. If [N] are non-busy agents, then they will be
infected with the gossip message and they have the
option to join or not to the created organisation.

3. Otherwise, the busy agents will be used only to
transmit the message to their random peers.

4. The receiving agent in the last period will broadcast
the gossip message to its randomly selected peers.

5. End

ASETR= ………. (2)
Where:

: successfully executed tasks per required accuracy.
: total number of tasks issued per required accuracy.

Figure (2) shows the performance of the organization
Version0 and Version1 compared to the model without
organization. In general, the number of executed tasks with
organizations show better values compared to without
organization for all the required accuracy from (0-12). In
organization Version0, each created organization has the same
required accuracy specified by its Head, hence the number of
executed tasks has shown slight improvement in relation to the
agents’ network without organization. While in organization
Version1, each created organization is a cluster of agents
which can satisfy tasks with different required accuracy.
Hence, the results from this version shows more tasks being
executed than in Version0 for all ranges of the required
accuracies.

Figure 2- The ASETR for 300 Agents

By increasing the number of agents up to 500 agents as shown
in Figure (3) and keeping the same number of tasks, the
system shows that the organization Version0 and Version1
gave higher number of executed tasks than the system without
organizations especially for Version1. Now, it is worth
mentioning that when the size of the network has increased to
1000 agents, nearly all the tasks have been executed with the
required accuracies from (3 to 7) as it represents the highest
demanded accuracies from the customer side. And for the rest
of the accuracies, the system shows less executed tasks
because less demand had originally been issued. Since the aim
of the work is to create organizations in order to address the
inflation problem of the heavy requests from the customer(s)
in a system that does not have a very high number of agents,
increasing the number of agents slowed down the impact and
the effectiveness of the created organizations within the
system with the same demand from the customer side, and
Figure (4) shows nearly similar performance of the system
with the existence of organizations for both versions and

without organizations. To compute the number of successfully
executed tasks within the simulation cycles the following
formula has been used.

………. (3)
Where:

ANSET: is the Average Number of Successfully Executed
Tasks within simulation cycle.

: Number of runs = 10.
Figure (5) shows the performance of the system with the
number of successfully executed tasks within cycles by
applying equation 3. The organization Version1 shows a
higher efficiency in executing tasks than the other two models.
This is due to the variety in the agents’ resources in each
organization, so when any agent becomes unavailable there
are other agents that can accept and execute the tasks.

Figure 3-The ASETR for 500 Agents

Figure 4-The ASETR for 1000 Agents.

Figure 5-The ANSET for 300 Agents

Table -1- Task Distribution values
Network Size Task distribution Simulation Time

300 Mean=30, Variance=8 3000 Cycles
500 Mean=30, variance=8 3000 Cycles

1000 Mean=30, variance=8 3000 Cycles

6. DEALING WITH DISRUPTION IN AGENT SERVICE PROVISION
 This part of the work is examining how the system would be
able to deal with the disruption that would occur by agents in
the network losing their connectivity, i.e. being offline. To
model this, agents are equipped with a parameter that enables
them to be switched on/off for a period of time, in essence
creating the impression in the system that they are offline and
unable to execute tasks or respond to messages. This is applied
to both Version1 and Version0. The on/off parameter has been
applied using probability values of 0.9, 0.5 and 0.2.

6.1. EXPERIMENTAL WORK
 This experiment involves the creation of the organizations
using Version0 and Version1 as well as adding the offline
features to the agents with probability values of 0.9, 0.5 and
0.2 and with changing the agents’ network size being 300, 500
and 1000 accordingly. Figure (6) shows that Version1 has
improved the system performance and effectively deals with
the offline event due to having a variety of agent organizations
that can satisfy high percentage of requested tasks. In contrast
with Version0, which shows a negative effect in the network
because its organization structures are based on specific
required accuracies that could not easily overcome the issue of
agents being offline which leads to more failed tasks than even
the system without organizations.

Figure 6-The ASETR with offline prob.0.9-300Agents.

By increasing the number of agents to 500, more tasks have
been executed especially with organization Version1 as shown
in Figure (7). Then, when increasing the network size to 1000
agents, the system shows moderate reaction for the models as
shown in Figure (8) which can be understood as the network
size needing more requested tasks to benefit from the facility
provided by the created organizations during the event of
agents being offline. Figures (9-11) illustrate the runs of the
system where the offline probability has been set to 0.5 with
different agent network sizes (300,500,1000) respectively.
These Figures show nearly the same trends as in the previous
Figures (6-8). While when the offline probability is 0.2, in
Version1, generally, the performance of the system has
increased and it can effectively cope with the case of agents
being offline due to having agent organizations that can satisfy
higher percentages of requested tasks. In contrast to Version0,
and due to its construction criteria, it shows a negative effect
in the network. It could not overcome agents being offline,

and that leads to more failed tasks than even the system
without organization, see Figures (12-14). To show the
number of created organizations with different network size
agents (300,500,1000), the network size with 300 agents has
been chosen as a representation case as shown in Figure (15).
Overall for the organization Version1 without agents going
offline (normal case, green colour), it is noticeable that the
average number of organizations rose dramatically during the
first chunk of cycles, then it levelled off at a certain value
where there is no demand to create more organizations for the
remaining simulation time cycles. while with the presence of
agent offline with different probability values (0.9,0.5,0.2), the
average number of created organizations increased steadily
with time and nearly follow the same trends for all the
simulation time cycles, thus the average number of created
organizations decreased as the probability of offline increased.
This behaviour is due to less agents being able to satisfy the
triggering condition with each time cycle to formulate
organizations.

Figure 7-The ASETR with offline prob.0.9-500Agents.

Figure 8-The ASETR with offline prob.0.9-1000Agents

Figure 9-The ASETR with offline prob. 0.5-300Agents

Figure 10-The ASETR with offline prob .0.5-500Agents

Figure 11-The ASETR with offline prob. 0.5-1000Agents

Figure 12-The ASETR with offline prob. 0.2-1000 Agents.

Figure 13-The ASETR with offline prob.-0.2-500Agents

Figure 14-The ASETR with offline prob. 0.2-300Agents

Figure 15- number of created organizations for 300 Agent with

different probability

7. CONCLUSIONS AND FUTURE WORK
 This paper has not only shown the system performance in a
distributed environment when agents are being delegated and
undertake tasks and are busy, but also has shown the
performance when agents within the system become
unavailable or drop out within a range of probability values.
The implemented models show that the proposed protocol and
ideas have delivered a model that could cope with the traffic in
distributed domains.
The first contribution of our work is in demonstrating the
creation of organizations of multiple agents to improve the
performance of a network of agents within which they may
unpredictably drop out or become unavailable; the proposed
protocols enable the system to avoid such disruption that may
occur when agents lose their connectivity. The second
contribution is that our work considers agents that have
heterogeneous resources in the created organizations. This is
in contrast with other works that have considered choosing
agents with similar ability to create homogeneous
organizations. As part of the experimental work, we show that
the average number of executed tasks in Version1 has been
improved in comparison to Version0 and the other related
work, see [19]. Hence, the developed organisation methods
and protocols that have been deployed in this paper to create
the organization based on the multi-cast gossip protocol can be
used as a solution for task recovery using organizations of
heterogeneous agents in distributed domains. The third
contribution is in providing the means for the distributed
system to create organizations that can emerge depending on

system demands. In our work, the emergence of organisations
is used to manage the problem of agents being busy for long
periods of time and this forms the triggering condition for the
organisation creation process. Agents can join many
organizations so that they can interact with others within these
to satisfy the request tasks. The forth contribution is that the
roles are a result of the triggering condition. The busiest agent
is the Head of the organization, so it starts to send a multicast
message to other agents in the network to join its organization
and provide services. Hence, the system contains two roles
one is the Head and the other is the Members and service
providers. In other related work as in [20], the agents are able
to join an organization at specific time of their life time and
can change their behaviour to join an organization to match
the requested role. As part of our work we have implemented
a set of experiments to compare the task delegation protocol
described in section (3.1) against the standard random search
algorithm. Although we do not include the results of these
experiments here due to lack of space, we note that Algorithm
1 shows higher number of executed tasks than the random
search. This is because the technique of random search is
based on randomly selecting neighbours for sending the
customer message during the delegation process, while the
delegation protocol (Algorithm 1) is based on heuristic choice
for the next agent to navigate the message, which decreases
the possibility of failing tasks compared to random search.
Our current and future work is to improve the performance of
the agents within the organizations. Hence, when agents are
offline or not responding within an organisation a new
protocol has been designed to tackle the problem of losing
tasks within the network.

8. REFERENCES
1. Bezek, A. and M. Gams, Comparing a traditional and a

multi-agent load-balancing system. Computing and
Informatics, 2012. 25(1): p. 17-42.

2. Metawei, M.A., et al., Load balancing in distributed multi-
agent computing systems. Ain Shams Engineering Journal,
2012. 3(3): p. 237-249.

3. De Wolf, T. and T. Holvoet. Emergence versus self-
organisation: Different concepts but promising when
combined. in International Workshop on Engineering Self-
Organising Applications. 2004. Springer.

4. Sudeikat, J., et al., Systematically engineering self-
organizing systems: The SodekoVS approach. Electronic
Communications of the EASST, 2009. 17.

5. Dignum, V., et al. An organizational-oriented model for
agent societies. in Proc. Int. Workshop on Regulated
Agent-Based Social Systems: Theories and Applications
(RASTA'02), at AAMAS, Bologna, Italy. 2002.

6. Corkill, D.D., D. Garant, and V.R. Lesser. Exploring the
effectiveness of agent organizations. in International
Workshop on Coordination, Organizations, Institutions,
and Norms in Agent Systems. 2015. Springer.

7. Miyashita, Y., M. Hayano, and T. Sugawara. Self-
organizational reciprocal agents for conflict avoidance in
allocation problems. in Self-Adaptive and Self-Organizing

Systems (SASO), 2015 IEEE 9th International Conference
on. 2015. IEEE.

8. Miyashita, Y., M. Hayano, and T. Sugawara. Formation of
Association Structures Based on Reciprocity and Their
Performance in Allocation Problems. in International
Workshop on Coordination, Organizations, Institutions,
and Norms in Agent Systems. 2015. Springer.

9. Dignum, V., The role of organization in agent systems.
Handbook of Research on Multi-Agent Systems:
Semantics and Dynamics of Organizational Models, 2009:
p. 1-16.

10. Botev, J. and I. Scholtes. A self-organized resource
allocation scheme for decentralized distributed virtual
environments. in Collaborative Computing: Networking,
Applications and Worksharing (CollaborateCom), 2010
6th International Conference on. 2010. IEEE.

11. Fasli, M. On commitments, roles, and obligations. in
International Workshop of Central and Eastern Europe on
Multi-Agent Systems. 2001. Springer.

12. Neville, B., M. Fasli, and J. Pitt, Utilising social
recommendation for decision-making in distributed multi-
agent systems. Expert Systems with Applications, 2015.
42(6): p. 2884-2906.

13. Zbieg, A., D. Batorski, and B. ak, How to Select Change
Agents in Organizations? A Comparison of the Classical
and Network Approaches. Problemy Zarzadzania, 2016.
14.

14. Barabási, A.-L. and E. Bonabeau, Scale-free networks.
Scientific American, 2003. 288(5): p. 50-59.

15. Serugendo, G.D.M., M.-P. Gleizes, and A. Karageorgos,
Self-organising software: From natural to artificial
adaptation. 2011: Springer Science & Business Media.

16. NORTH, M., et al., THE REPAST SIMPHONY
DEVELOPMENT ENVIRONMENT. 2005. Paper
extracted from Proceedings of the Agent 2005 Conference
on Generative Social Processes, Models, and Mechanisms.

17. North, M.J. and C.M. Macal, Managing business
complexity: discovering strategic solutions with agent-
based modeling and simulation. 2007: Oxford University
Press.

18. Macal, C. and M. North. Introductory tutorial: Agent-
based modeling and simulation. in Proceedings of the 2014
Winter Simulation Conference. 2014. IEEE Press.

19. Al-Asfoor, M.J.J., Resource discovery in self-organising
distributed systems. 2014, University of Essex.

20. Dastani, M., V. Dignum, and F. Dignum. Role-assignment
in open agent societies. in Proceedings of the second
international joint conference on Autonomous agents and
multiagent systems. 2003. ACM.

		2017-07-19T10:37:45-0400
	Preflight Ticket Signature

