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Abstract—Most games have, or can be generalised to have, a
number of parameters that may be varied in order to provide
instances of games that lead to very different player experiences.
The space of possible parameter settings can be seen as a
search space, and we can therefore use a Random Mutation
Hill Climbing algorithm or other search methods to find the
parameter settings that induce the best games. One of the hardest
parts of this approach is defining a suitable fitness function. In
this paper we explore the possibility of using one of a growing
set of General Video Game AI agents to perform automatic play-
testing. This enables a very general approach to game evaluation
based on estimating the skill-depth of a game. Agent-based play-
testing is computationally expensive, so we compare two simple
but efficient optimisation algorithms: the Random Mutation Hill-
Climber and the Multi-Armed Bandit Random Mutation Hill-
Climber. For the test game we use a space-battle game in order
to provide a suitable balance between simulation speed and
potential skill-depth. Results show that both algorithms are able
to rapidly evolve game versions with significant skill-depth, but
that choosing a suitable resampling number is essential in order
to combat the effects of noise.

Index Terms—Automatic game design, game tuning, optimisa-
tion, RMHC, GVG-AI

I. INTRODUCTION

Designing games is an interesting and challenging discipline
traditionally demanding creativity and insight into the types of
experience which will cause players to enjoy the game or at
least play it and replay it. There have been various attempts
to automate or part-automate the game generation process,
as this is an interesting challenge for AI and computational
creativity [1], [2], [3]. So far the quality of the generated games
(with some exceptions) do not challenge the skill of human
game designers. This is because the generation of complete
games is a more challenging task than the more constrained
task of generating game content such as levels or maps. Many
video games require content to be produced for them, and
recent years have seen a surge in AI-based procedural content
generation [4].

There is another aspect of AI-assisted game design which
we believe is hugely under-explored: automatic game tuning.
This involves taking an existing game (either human-designed
or auto-generated) and performing a comprehensive explo-
ration of the parameter space to find the most interesting game
instances.

Recent work has demonstrated the potential of this ap-
proach, automatically generating distinct and novel variants
of the minimalist mobile game Flappy Bird [5]. That work
involved using a very simple agent to play through each
generated game instance. Noise was added to the selected
actions, and a game variant was deemed to have an appropriate
level of difficulty if a specified number of players achieved a
desired score. For Flappy Bird it is straightforward to design
an AI agent capable of near-optimal play. Adding noise to the
selected actions of this player can be used to provide a less
than perfect agent that better represents human reactions. An
evolutionary algorithm was used to search for game variants
that were as far apart from each other in parameter space as
possible but were still playable.

However, for more complex games it is harder to provide
a good AI agent, and writing a new game playing agent for
each new game would make the process more time consuming.
Furthermore, a single hand-crafted agent may be blind to novel
aspects of evolved game-play elements that the designer of the
AI agent had not considered. This could severely inhibit the
utility of the approach. In this work we mitigate these concerns
by tapping in to an ever-growing pool of agents designed for
the General Video Game AI (GVG-AI) competition1. The idea
is that using a rich set of general agents will provide the basis
for a robust evaluation process with a higher likelihood of
finding skill-depth wherever it may lie in the chosen search
space of possible games. In this paper we use one of the
sample GVG-AI agents, varying it by changing the rollout
budget. This was done by making the game implement a
standard GVG-AI game interface, so that any GVG-AI agent
can be used with very little effort, allowing the full set of
agents to be used in future experiments.

Liu et al. [6] introduced a two-player space-battle game,
derived from the original Spacewar, and performed a study on
different parameter settings to bring out some strengths and
weaknesses of the various algorithms under test. A key finding
is that the rankings of the algorithms depend very much on
the details of the game. A mutation of one parameter may lead
to a totally different ranking of algorithms. If the game using
only a single parameter setting is tested, the conclusions could
be less robust and misleading.

1http://www.gvgai.net/



In this paper, we adapt the space-battle game introduced by
Liu et al. [6] to the GVG-AI framework, then uses the Random
Mutation Hill Climber (RMHC) and Multi-Armed Bandit
RMHC (MABRMHC) to evolve game parameters to provide
some game instances that lead to high winning rates for GVG-
AI sample MCTS agents. This is used as an approximate
measure of skill-depth, the idea being that the smarter MCTS
agents should beat unintelligent agents, or that MCTS agents
with a high rollout budget should beat those with a low rollout
budget.

The paper is structured as follows: Section II provides a
brief review of the related work on automatic game design,
Section III describes the game engine, Section IV introduces
the two optimisation algorithms used in this paper, Section V
presents the experimental results, finally Section VI concludes
and discusses the potential directions in the future.

II. AUTOMATIC GAME DESIGN AND DEPTH ESTIMATION

Attempts to automatically design complete games go back
to Barney Pell, who generated rules for chess-like games [7].
It did not however become an active research topic until the
late 2000’s.

Togelius et al. [8] evolved racing tracks in a car racing
game using a simple multi-objective evolutionary algorithm
called Cascading Elitism. The fitness functions attempted to
capture various aspects of player experience, using a neural
network model of the player. This can be seen as an early
form of experience-driven procedural content generation [9],
where game content is generated through search in content
space using evolutionary computation or some other form
of stochastic optimisation. Similar methods have since been
used to generate many types of game content, such as particle
systems for weapons in a space shooter [10], platform game
levels [11] or puzzles [12]. In most of these cases, the fitness
functions measure some aspect of problem difficulty, with the
assumption that good game content should not make the game
too hard nor too easy.

While the research discussed above focuses on generating
content for an existing game, there have been several attempts
to use the search-based methods to generate new games by
searching though spaces of game rules. Togelius and Schmid-
huber [1] used a simple hill-climber to generate single-player
Pac-Man-like games given a restricted rule search space.
The fitness function was based on learnability of the game,
operationalised as the capacity of another machine learning
algorithm to learn to play the game.

This approach was taken further by Cook et al. [13], [3],
who used search-based methods to design rulesets, maps and
object layouts in tandem for producing simple arcade games
via a system called ANGELINA. Further iterations of this
system include the automatic selection of media sources, such
as images and resources, giving this work a unique flavour.
In a similar vein, Browne and Maire [2] developed a system
for automatic generation of board games; they also used
evolutionary algorithms, and a complex fitness function based
on data gathered from dozens of humans playing different

board games. Browne’s work is perhaps the only to result in a
game of sufficient quality to be sold as a stand-alone product;
this is partly a result of working in a constrained space of
simple board games.

A very different approach to game generation was taken by
Nelson and Mateas [14], who use reasoning methods to create
Wario Ware-style minigames out of verb-noun relations and
common minigame design patterns. Conceptnet and Wordnet
were used to find suitable roles for game objects.

Quite recently, some authors have used search-based meth-
ods to optimise the parameters of a single game, while keeping
both game rules and other parts of the game content constant.
In the introduction we discussed the work of Isaksen et al.
on generating playable Flappy Bird variants [5]. Similarly,
Powley et al. [15] optimise the parameters of an abstract
touch-based mobile game, showing that parameter changes to a
single ruleset can give rise to what feels and plays like different
games.

One of the more important properties of a game can be said
to be its skill depth, often just called depth. This property is
universally considered desirable by game designers, yet it is
hard to define properly; some of the definitions build on the
idea of a skill chain, where deeper games simply have more
things that can be learned [16]. Various attempts have been
made to algorithmically estimate depth and use it as a fitness
function; some of the research discussed above can be said to
embody an implicit notion of depth in their fitness functions.
Relative Algorithm Performance Profiles (RAPP) is a more
explicit attempt at game depth estimation; the basic idea is that
in a deeper game, a better player get relatively better result
than a poorer player. Therefore, we can use game-playing
agents of different strengths to play the same game, and the
bigger the difference in outcome the greater the depth [17].

In this paper we use a form of RAPP to try to estimate
the depth of variants of a simple two-player game. Using this
measure as a fitness function, we optimise the parameters of
this game to try to find deeper game variants, using two types
of Random-Mutation Hill-Climber. The current work differs
from the work discussed above both in the type of game used
(two-player physics-based game), the search space (a multi-
dimensional discrete space) and the optimisation method. In
particular, compared to previous work by Isaksen et al, the
current paper investigates a more complex game and uses a
significantly more advanced agent, and also optimizes for skill-
depth rather than difficulty. This work is, as far as we know, the
first attempt to optimize skill-depth that has had good results.

III. FRAMEWORK

We adapt the two-player space-battle game introduced by
Liu et al. [6] to the GVG-AI framework, then use RMHC and
MABRMHC to evolve game parameters to provide some game
instances that lead to high winning rate for GVG-AI sample
MCTS agents. The main difference in the modified space-
battle game used in this work is the introduction of weapon
system. Each ship has the choice to fire a missile after its
cooldown period has finished. From now on, we use the term



“game” to refer to a game instance, i.e. a specific configuration
of game parameters.

a) Spaceship: Each player/agent controllers a spaceship
which has a maximal speed, vs units distance per game
tick, and slows down over time. At each game tick, the
player can choose to do nothing or to make an action among
{RotateClockwise, RotateAnticlockwise, Thrust, Shoot}. A
missile is launched while the Shoot action is chosen and its
cooldown period is finished, otherwise, no action will be taken
(like do nothing). The spaceship is affected by a random recoil
force when launching a missile.

b) Missile: A missile has a maximal speed, vm units
distance per game tick, and vanishes into nothing after 30
game tick. It never damages its mother ship.

Every spaceship has a radius of 20 pixels and every missile
has a radius of 4 pixels in a layout of size 640*480.

c) Score: Every time a player hits its opponent, it obtains
100 points (reward). Every time a player launches a missile,
it is penalized by c points (cost). Given a game state s, the
player i ∈ {1, 2} has a score calculated by:

score(i) = 100× nbk(i)− c× nbm(i), (1)

where nbk(i) is the number of lives subtracted from the op-
ponent and nbm(i) indicates the number of launched missiles
by player i ∈ {1, 2}.

d) End condition: A game ends after 500 game ticks. A
player wins the game if it has higher score than its opponent
after 500 game ticks, and it’s a loss of the other player. If both
players have the same score, it’s a draw.

e) Parameter space: The parameters to be optimised are
detailed in Table I. There are in total 14,400 possible games in
the 5-dimensional search space. Fig. 1 illustrates briefly how
the game changes by varying only the cooldown time for firing
missiles.

TABLE I
GAME PARAMETERS. ONLY THE FIRST 5 PARAMETERS ARE OPTIMISED IN

THE PRIMARY EXPERIMENTS. THE LAST ONE (SHIP RADIUS) IS TAKEN
INTO ACCOUNT IN SECTION V-C.

Parameter Notation Legal values Dimension
Maximal ship speed vs 4, 6, 8, 10 4

Thrust speed vt 1, 2, 3, 4, 5 5
Maximal missile speed vm 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 10

Cooldown time d 1, 2, 3, 4, 5, 6, 7, 8, 9 9
Missile cost c 0, 1, 5, 10, 20, 50, 75, 100 8
Ship radius sr 10, 20, 30, 40, 50 5

The game is stochastic but fully observable. Each game
starts with the agents in the symmetric positions. The two
agents make simultaneous moves and in a fair situation. Thus,
changing the player id does not change the situation of any
player.

IV. OPTIMISERS

We compare a Random Mutation Hill-Climber to an Multi-
Armed Bandit Random Mutation Hill-Climber in evolving
instances for space-battle game described previously. This
section is organised as follows. Section IV-A briefly recalls

Fig. 1. .Space-battle game with high (left) and low (right) missile cooldown
time while fixing the other game parameters. It is more difficult to approach
to RAS in the latter case.

the Random Mutation Hill-Climber. Section IV-B presents the
Multi-Armed Bandit Random Mutation Hill-Climber and its
selection and mutation rules.

A. Random Mutation Hill-Climber

The Random Mutation Hill-Climber (RMHC) is a simple
but efficient derivative-free optimisation method mostly used
in discrete domains [18], [19]. The pseudo-code of RMHC
is given in Algorithm 1. At each generation, an offspring is
generated based on the only best-so-far genome (parent) by
mutating exactly one uniformly randomly chosen gene. The
best-so-far genome is updated if the offspring’s fitness value
is better or equivalent to the best-so-far.

B. Multi-Armed Bandit Random Mutation Hill-Climber

Multi-Armed Bandit Random Mutation Hill-Climber
(MABRMHC), derived from the 2-armed bandit-based RMHC
[20], [21], uses both UCB-style selection and mutation rules.
MABRMHC selects the coordinate (bandit) with the maximal
urgency (Equation 2) to mutate, then mutates the parameter
in dimension d to the value (arm) which leads to the maximal
reward (Equation 3).



Algorithm 1 Random Mutation Hill-Climber (RMHC).
Require: X : search space
Require: D = |X |: problem dimension (genome length)
Require: f : X 7→ [0, 1]: fitness function

1: Randomly initialise a genome x ∈ X
2: bestF itSoFar ← 0
3: M ← 0 . Counter for the latest best-so-far genome
4: N ← 0 . Total evaluation count so far
5: while time not elapsed do
6: Uniformly randomly select d ∈ {1, . . . , D}
7: y ← new genome by uniformly randomly mutating

the dth gene of x
8: Fitx ← fitness(x)
9: Fity ← fitness(y)

10: averageF itnessx ← bestF itSoFar×M+Fitx
M+1

11: N ← N + 2 . Update evaluation count
12: if Fity ≥ averageF itnessx then
13: x← y . Replace the best-so-far genome
14: bestF itSoFar ← Fity
15: M ← 1
16: else
17: bestF itSoFar ← averageF itnessx
18: M ←M + 1
19: end if
20: end while
21: return x

For any multi-armed bandit d ∈ {1, 2, . . . , D}, its urgencyd
is defined as

urgencyd =

min
1≤j≤Dim(d)

∆d(j) +

√
2 log(

∑Dim(d)
k=1 Nd(k))

Nd
+ ω

 ,

(2)
where Nd(k) is the number of times the kth value is selected
when the dth coordinate is selected; Nd is the number of
times the dth coordinate is selected to mutate, thus Nd =∑Dim(d)

k=1 Nd(k); ∆d(k) is the maximal difference between
the fitness values if the value k is mutated to when the dth

dimension is selected, i.e., the changing of fitness value; ω
denotes a uniformly distributed value between 0 and 1e−6

which is used to randomly break ties. Once the coordinate to
mutate (eg. d∗) is selected, the index of the value to mutated
to is determined by

k∗ = argmax
1≤k≤Dim(d∗)

(
∆̄d∗(k) +

√
2 log(Nd∗)

Nd∗(k)
+ ω

)
, (3)

where ∆̄d∗(k) denotes the average changing of fitness value if
the value k is mutated to when the dimension d∗ is selected.

The pseudo-code of MABRMHC is given in Algorithm 2.
In this work, we model each of the game parameter to

optimise as a bandit, and the legal values for the parameter
as the arms of this bandit. The search space is folded in the
sense that it takes far less computational cost to mutate and

Algorithm 2 Multi-Armed Bandit Random Mutation Hill-
Climber (MABRMHC). Dim(d) returns the number of possi-
ble values in dimension d. ω denotes a uniformly distributed
value between 0 and 1e−6 which is used to randomly break
ties.
Require: X : search space
Require: D = |X |: problem dimension (genome length)
Require: f : X 7→ [0, 1]: fitness function

1: Randomly initialise a genome x ∈ X
2: bestF itSoFar ← 0
3: M ← 0 . Counter for the latest best-so-far genome
4: N ← 0 . Total evaluation count so far
5: for d ∈ {1, . . . , D} do
6: Nd = 0
7: for k ∈ {1, . . . , Dim(d)} do
8: Nd(k) = 0, ∆d(k) = 0, ∆̄d(k) = 0
9: end for

10: end for
11: while time not elapsed do

12: d∗ = argmax
1≤d≤D

(
min

1≤j≤Dim(d)
∆d(j) +

√
2 log(

∑Dim(d)
k=1 Nd(k))

Nd
+ ω

)
. Select the coordinate to mutate (Equation 2)

13: k∗ = argmax
1≤k≤Dim(d∗)

(
∆̄d∗(k) +

√
2 log(Nd∗ )
Nd∗ (k)

+ ω
)

.

Select the index of value to take (Equation 3)
14: y← after mutating the element d∗ of x to the k∗ legal

value
15: Fitx ← fitness(x)
16: Fity ← fitness(y)
17: averageF itness← bestF itSoFar×M+Fitx

M+1
18: N ← N + 2 . Update the counter
19: ∆ = Fity − averageF itness
20: Update ∆d∗(k∗) and ∆̄d∗(k∗) . Update the statistic
21: Nd(k)← Nd(k) + 1, Nd ← Nd + 1 . Update the

counters
22: if ∆ ≥ 0 then
23: x← y . Replace the best-so-far genome
24: bestF itSoFar ← Fity
25: M ← 1
26: else
27: bestF itSoFar ← averageF itness
28: M ←M + 1
29: end if
30: end while
31: return x



evaluate every legal value of each parameter once than to
evaluate mutate and evaluate every legal game instance once.

V. EXPERIMENTAL RESULTS

We firstly use the sample agent using a two-player Open-
Loop Monte-Carlo Tree Search algorithm provided by the
GVG-AI framework, which uses the difference of scores (Eq.
1) of both players as its heuristic (denoted as OLMCTS), as
player 1. No modification or tuning has been performed on
this sample agent. We implement a consistently rotate-and-
shoot agent (denoted as RAS) as the player 2. More precisely,
the RAS is a deterministic agent and, by Eq. 1, the OLM-
CTS aims at maximising (100× nbk(1)− c× nbm(1)) −
(100× nbk(2)− c× nbm(2)), where nbk(1) and nbk(2) are
the numbers of lives subtracted from the RAS and OLMCTS,
respectively; nbm(1) and nbm(2) indicates the number of
launched missiles by OLMCTS and RAS, respectively. Again,
this heuristic is already defined in the sample agent, not by
us. Basically, a human player could probably choose to play
the game in a passive way by avoiding the missiles and not
firing at all, and finally win the game.

The landscape of winning rate of OLMCTS against RAS is
studied in Section V-A. Section V-B presents the performance
of RMHC and MABRMHC with different resampling numbers
to generate games in the parameter space detailed previously
(Section III-0e) and Section V-C presents their performances
in a 5 times larger parameter space.

A. Winning rate distribution

We use a OLMCTS agent as the player 1 and a RAS agent
as the player 2. At each game tick, 10ms is allocated to each
of the agents to decide an action. The average number of
iterations performed by OLMCTS is 350. The time to return
an action for RAS is negligible.

The average winning rates over 11 and 69 repeated trials
of all the 14,400 legal game instances played by OLMCTS
against RAS are shown in Fig. 2. The winning rate over 69
trials of each games instance varies between 20% and 100%.
Among all the legal game instances, the OLMCTS does not
achieve a 100% winning rate in more than 5,000 games.

Fig. 3 demonstrates how the winning rate varies along with
the changing of each parameter. The maximal ship speed and
the thrust speed have negligible influence on the OLMCTS’s
average winning rate. Higher the maximal missile speed is
or shorter the cooldown time is, higher the average winning
rate is. But still, the average winning rate remains above 87%.
The most important factor is the cost of firing a missile. It is
not surprising, since the RAS fires successively missiles and
the number of missiles it fires during each game is constant
depending on the cooldown time. the OLMCTS only fires
while necessary or it is likely to slash its opponent.

B. Evolving games by RMHC and MABRMHC using different
resampling numbers

We use the same agents as described in Section V-A. RMHC
(Algorithm 1) and MABRMHC (Algorithm 2) are applied to

Fig. 2. Empirical winning rates for OLMCTS sorted in increasing order, over
11 trials (left) and 69 trials (right), of all the 14,400 legal game instances
played by OLMCTS against RAS. The standard error is shown by the shaded
boundary.

optimise the parameters of the space-battle game, aiming at
maximising the win probability for the OLMCTS against the
RAS. Since the true win probability is unknown, we need
to define the fitness of a game using some winning rate by
repeating the same game several times, i.e., resampling the
game. We define the fitness value of a game g as the winning
rate over r repeated games, i.e.,

fitness(g) =
1

r

r∑
i=1

GameV alue(g). (4)

The value of game g is defined as

GameV alue(g) =


1, if OLMCTS wins
0, if RAS wins
0.5, otherwise (a draw).

A call to fitness(·) is actually based on independent r
realizations of the same game. Due to the internal stochastic
effects in the game, each realization may return a different

2303



Fig. 3. Empirical winning rates over 69 trials of all the 14,400 legal game instances played by OLMCTS against RAS, classified by the maximal ship
speed, the thrust speed, the maximal missile speed, the cooldown time and the cost of firing a missile, respectively. The standard error is shown by the shaded
boundary.

game value. We aim at maximising the fitness f in this work.
The empirical winning rates shown in Fig. 2 are two example
fitness(·) with r = 11 (left) and r = 69 (right). The strength
of noise decreases while repeating the same game more times,
i.e., increasing r.

A recent work applied the RMHC and a two-armed bandit-
based RMHC with resamplings to a noisy variant of the One-
Max problem, and showed both theoretically and practically
the importance of choosing a suitable resampling number to
accelerate the convergence to the optimum [22], [20], [21]. As
the space-battle game introduced previously is stochastic and
the agents can be stochastic as well, it is not trivial to model
the noise or provide mathematically any optimal resampling
number. Therefore, in this work, some resampling numbers are
arbitrarily chosen and compared to give a primary idea about
the necessary number of resamplings.

Figs. 5 and 4 illustrate the overall performance of RMHC
and MABRMHC using different resampling numbers over
1,000 optimisation trials with random starting parameters. A
number of 5,000 game evaluations is allocated as optimisation
budget in each trial. In other words, given a resampling number
r, the fitness(·) (Eq. 4) is called at most 5, 000/r times.

RMHC and MABRMHC using smaller resampling number
achieve a faster move towards to the neighborhood of the
optimum at the beginning of optimisation, however, they do
not converge to the optimum along with time; despite the
slow speed at the beginning, RMHC and MABRMHC using
larger resampling number finally succeed in converging to the
optimum in the limited budget. A dynamic resampling number
which smoothly increases with the number of generations will

be favourable.
Using smaller budget, MABRMHC reaches the neighbor-

hood of the optimum faster than RMHC. While the current
best-so-far fitness is near the optimal fitness value, it’s not
surprising to see the jagged curves (Fig. 4, right) while the
game evaluation consumed is moderate. The drop to the valley
dues to the exploration of MABRMHC, then it manages
to return to the previous optimum found or possibly find
another optimum. Along with the increment of budget, i.e.,
game evaluations, the quality of best-so-far games found by
MABRMHC remains stable.

C. Evolving games in a larger search space

All the 5 parameters considered previously are used for
evolving the game rules. In this section, we expand the pa-
rameter space by taking into account a parameter for graphical
object: the radius of ship. The legal values for ship’s radius are
10, 20, 30, 40 and 50. Thus, the search space is 6-dimensional
and the total number of possible games is increase to 72,000
(5 times larger).

Instead of an intelligent agent and a deterministic agent, we
play the same OLMCTS agent (with 350 iterations), which
has been used previously in Section V-A and Section V-B,
against two of its instances: a OLMCTS with 700 iterations
and a OLMCTS with 175 iterations, denoted as OLMCTS700
and OLMCTS175 respectively. The same optimisation process
using RMHC and MABRMHC is repeated separately, using
1,000 game evaluation. The resampling numbers used are 5
and 50, the ones which have achieved either fastest conver-
gence at the beginning or provides the best recommendation
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Fig. 4. Average fitness value (left) with respect to the evaluation number over 1,000 optimisation trials by RMHC. The average winning rate of recommended
game instances at each generation are shown on the right. The standard error is shown by the shaded boundary.

Fig. 5. Average fitness value (left) respected to the evaluation number over 1,000 optimisation trials by MABRMHC. The average winning rate of recommended
game instances at each generation are shown on the right. The standard error is shown by the shaded boundary.

at the end of optimisation (after 1,000 game evaluations),
respectively. We aim at verifying if the same algorithms still
perform well in a larger parameter space and with smaller
optimisation budget.

Fig. 6 shows the average fitness value respected to the num-
ber of game evaluations over 11 optimisation trials. Resam-
pling 50 times (black curves in Fig. 6) the same game instance
guarantee a more accurate winning rate, while resampling 5
times (red curves in Fig. 6) seems to converge faster.

To validate the quality of recommendations, we play each
recommended game instance, optimised by playing OLMCTS
against OLMCTS175, 100 times using the OLMCTS175 and
a random agent, which uniformly randomly returns a legal
action. The idea is to verify that the game instances optimised
for OLMCTS, are still playable and beneficial for OLMCTS
instance with small number of iterations. The statistic is
summarised in Table II. The game instances recommended

by RMHC and MABRMHC after optimising for OLMCTS
with more iterations are still beneficial for the OLMCTS with
less iterations. The game is still very difficult for the random
agent.

TABLE II
AVERAGE WINNING RATE (%) OVER 11 RECOMMENDATIONS AFTER
OPTIMISATION USING 1,000 GAME EVALUATIONS, WITH DIFFERENT

RESAMPLING NUMBERS. EACH GAME HAS BEEN REPEATED 100 TIMES.

Algorithm 5 samples 50 samples
RMHC 86.00 91.8182

MABRMHC 81.23 80.9545

D. But what are the evolved games actually like?

To understand the results of the optimisation process, we
visually inspected a random sample of games that had been
found to have high fitness in the optimisation process, and
compared these with several games that had low fitness.
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Fig. 6. Average fitness value respected to the evaluation number over 11 optimisation trials by RMHC (left) and MABRMHC (right) using different resampling
numbers. The games are played by OLMCTS with 350 iterations against OLMCTS with 700 iterations (top) or OLMCTS against OLMCTS with 175 iterations
(bottom). The standard error is shown by the shaded boundary.

We can discern some patterns in the high-fitness games. One
of them is to simply have a very high cost for firing missiles.
This is somewhat disappointing, as it means that the OLMCTS
agent will score higher simply by staying far away from the
RAS agent. The latter will quickly reach large negative scores.

A more interesting pattern was to have low missile costs,
slow missiles, fast turning speed and fast thrusters. This
resulted in a behaviour where the OLMCTS agent coasts
around the screen in a mostly straight line, most of the time
out of reach of the RAS agent’s missiles. When it gets close
to the RAS agent, the OLMCTS turns to intercept and salvo
of missiles (which typically all hit), and then flies past.

In contrast, several of the low-fitness games have low
missile costs and low cool-down times, so that the RAS
agent effectively surrounds itself with a wall of missiles. The
OLMCTS agent will occasionally attack, but typically loses
more score from getting hit and than it gains from hitting the
RAS agent. An example of this can be seen in Fig. 3.

It appears from this that the high-fitness games, at least

those that do not have excessive missile costs, are indeed
deeper games in that skilful play is possible.

VI. CONCLUSION AND FURTHER WORK

The work described in this paper makes several contribu-
tions in different directions. Our main aim in this work is to
provide an automatic game tuning method using simple but
efficient black-box noisy optimisation algorithms, which can
serve as a base-level game generator and part on an AI-assisted
game design tool, assisting a human game designer with tuning
the game for depth. The baseline game generator can also
help with suggesting game variants that a human designer can
build on. Conversely, instead of initialising the optimisation
with randomly generated parameters in the search space (as
what we have done in this paper), human game designers can
provide a set of possibly good initial parameters with their
knowledge and experiences.

The game instance evolving provides a method for auto-
matic game parameter tuning or for automatically designing
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new games or levels by defining different fitness function used
by optimisation algorithms. Even a simple algorithm such as
RMHC may be used to automate game tuning. The application
of other optimisation algorithms is straightforward.

The two tested optimisation algorithms achieve fast con-
vergence towards the optimum even with a small resampling
number when optimising for the OLMCTS against the RAS.
Using dynamic non-adaptive or adaptive resampling numbers
increasing with the generation number, such as the resampling
rules discussed in [23], to take the strength of both small and
big numbers of resamplings will be favourable.

Though the primary application of MABRMHC to the
space-battle game shows its strength, there is still more to ex-
plore. For instance, the selection between parent and offspring
is still achieved by resampling each of them several times
and comparing their average noise fitness value. However,
the classic bandit algorithm stores the average reward and
the times that each sampled candidate has been re-evaluated,
which is also a form of resampling. We are not making
use of this information while making the choice between
the parent and offspring at each generation. Using a better
recommendation policy (such as UCB or most visited) seems
like a fruitful avenue of future work. Another potential issue
is the dependencies between the parameters to be optimised in
some games or other real world problems. A N-Tuple Bandit
Evolutionary Algorithm [24] is proposed to handle such case.

The study of the winning rate distribution and landscape
over game instances helps us understand more about the
game difficulty. Another possible future work is the study of
fitness distance correlation across parameters. Isaksen et al. [5]
used Euclidean distance for measuring distance between game
instances of Flappy Bird and discovered that such a simple
measure can be misleading, since the difference between
game instances does not always reflect the difference between
their parameter values. We observe the same situation when
analysing the landscape of fitness value by the possible values
of individual game parameter (Fig. 3).

Though we focus on a discrete domain in this work, it’s
obviously applicable to optimise game parameters in con-
tinuous domains, either by applying continuous black-box
noisy optimisation algorithms or by discretising the continuous
parameter space to discrete values. Evolving parameters for
some other games, such as the games in GVG-AI framework,
is another interesting extension of this work.

The approach is currently constrained by the limited intelli-
gence of the GVG-AI agent we used, the proof of which is that
on many instances of the game a reasonable human player is
able to defeat both rotate-and-shoot (RAS) and the OLMCTS
players. This problem will be overcome over time as the set
of available GVG-AI agents grows.
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