Online Power and Time Allocation in MIMO
Uplink Transmissions Powered by RF
Wireless Energy Transfer

Kai Liang, Ligiang Zhao, Member;, IEEE, Kun Yang, Senior Member, IEEE, and Xiaoli Chu, Senior Member, IEEE

Abstract—Wireless energy transfer (WET) has been a promis-
ing technology to tackle the lifetime bottlenecks of energy-limited
wireless devices in recent years. In this paper, we study a WET-
enabled multiple-input multiple-output system including a base
station (BS) and a user equipment (UE), which has a finite bat-
tery capacity. We consider slotted transmissions, where each slot
includes two phases, namely, a downlink (DL) WET phase and an
uplink (UL) wireless information transmission (WIT) phase. In the
WET phase (a fraction 7 of a slot), the BS transfers energy and the
UE stores the received energy in the battery. In the WIT phase (a
fraction 1 — 7 of a slot), the UE transmits information to the BS by
using the energy in the battery. Considering the power sensitivity
« of the radio frequency to DC conversion circuits, the BS trans-
fers energy only if the UE received power is larger than «, and
the DL WET is formulated as a Bernoulli process. Based on the
formulation, we propose an online power and time allocation
algorithm to maximize the average data rate of UL WIT. We also
extend the proposed algorithm to multiple user systems. The nu-
merical results show that the proposed algorithm outperforms the
existing schemes in terms of average data rate, energy efficiency,
and outage probability.

Index Terms—Finite battery size, multiple-input multiple-
output (MIMO), online power and time allocation, wireless energy
transfer (WET).

1. INTRODUCTION

NERGY harvesting (EH) techniques can prolong the life-
I !‘,time and improve the scalability of some energy con-
strained networks by capturing energy from the surrounding
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environment, such as wind, solar, and radio frequency (RF) sig-
nals [1]. However, wind and solar energy availability is largely
limited by the environment and weather, and thereby cannot
provide wireless communication device with sustainable power
supply.

On these ground, wireless energy transfer (WET), which is
first carried out from Tesla’s experiment a century ago [2],
[3], has utilized to provide sustainable and controllable power
supply for wireless devices recently. In accordance with the
transmission distance, WET can be classified into two groups,
namely, near-field and far-field WET, respectively. Near-field
WET transmits energy through inductive coupling or magnetic
resonance coupling featured with high-power density and con-
version efficiency [4]. Nevertheless, the near-field WET is not
appropriate for mobile and remote devices. The reasons are two-
folds: first, the power strength of the near-field WET will be dra-
matically degraded with the increasing transmission distance
[5]; and second, the near-field WET needs aligned induction
coils or resonators at transmitters and receivers. In contrast,
by capturing the RF radiation and converting it into a direct
current (DC), RF WET, which is regarded as a far-field energy
transfer technique, can provide service to mobile and remote de-
vices. Hardware prototyping of RF-powered devices has been
mainly developed for low-power-consumption applications [4],
such as wireless sensor networks [6], health care and medical
applications [7], and RF identification tags [8]. More compli-
cated hardware design, which integrates information transmis-
sion technologies with RF WET, is urgently needed to testify
the performance of RF-powered communications. For the afore-
mentioned reasons, RF WET has attracted a lot of interest from
both academia and industry [3], [4] and we emphasize our efforts
on RF WET in this paper.

The offline power allocation for transmitters with finite capac-
ity batteries powered by renewable energy sources was studied
in [9] and [10]. These works indicated that the optimal offline
solution aims to hold the longest stretches of constant power
periods. Online energy management policies were studied for
peer-to-peer data transmissions with EH transmitters [10], for
hybrid energy supplies in point-to-point communications [11],
and for multiple-input multiple-output (MIMO) systems [12].
A suboptimal resource allocation algorithm for maximizing
energy efficiency in the orthogonal frequency division multi-
ple access downlink (DL) of hybrid EH base stations (BSs) was



proposed in [13], assuming the knowledge of average time be-
tween two adjacent events (such as channel changes and energy
arrivals).

A constant fractional power (FP) allocation policy for renew-
able energy powered single antenna transmissions was discussed
in [14], which assumes a Bernoulli energy arriving process [15]
with parameter p and fixed energy packet size E, without show-
ing the rationality of this assumption or providing the accurate
value of p.

Uplink (UL) wireless information transmission (WIT) pow-
ered by WET was studied in [16]-[20]. In [16], the massive
MIMO system powered by WET adopted slotted transmis-
sions, where each slot was divided into three phases for channel
estimation, DL power transmission, and UL data transmission,
respectively. In [17], a joint design of time allocation, energy
beamforming, and UL power allocation was proposed to achieve
rate fairness among users, where alternating optimization and
nonnegative matrix theory were adopted to solve the nonconvex
problem. The hybrid access point (H-AP) operating in full du-
plex mode was studied in [ 18], where H-AP transmits energy in
the DL and receives information in the UL simultaneously. In
[19], energy transferring nodes called power beacons (PBs) were
used to power UL transmissions, and the relationship between
the densities of BSs and PBs and the optimal UL transmission
power for a given outage probability were obtained under a
stochastic geometry model. Flint et al. [20] study three perfor-
mance metrics: the expected EH rate, power outage probability,
and transmission outage probability for performance analysis of
ambient RF EH.

However, none of the above-mentioned works has taken into
account the power sensitivity of RF-DC circuits. The received
RF signals cannot be converted into DC (i.e., energy transfer)
if their power level is lower than the power sensitivity of an
RF-DC circuit [21]. Thus, actually received energy would be
much lower than the theoretically predicted amount, leading
to a falsely higher data rate. Besides, none of these works has
considered the battery capacity, thus ignoring the possibility
of energy overflow or the opportunities for the user equipment
(UE) to optimize the use of harvested energy across UL WIT
slots. In [16]-[18], the UE allocated all the harvested energy
for the UL WIT in the current slot, and maximized single slot
performance (such as data rates). This approach has been shown
a lower data rate than the uniformly distributing energy between
energy arrivals [9], [10].

To the best of our knowledge, few works have studied a
WET-enabled communication system while considering both
the power sensitivity of RF-DC circuits and the finite capacity
battery. In this paper, we devise a power and time allocation
algorithm for the MIMO UL transmission powered by WET,
with the consideration of finite capacity batteries at the UE
and power sensitivity of RF-DC circuits over a block fading
channel. This algorithm is further expanded to multiple user
(MU) systems. The main contributions of this paper can be
summarized as follows.

1) We emphasize finite capacity batteries for the UL MIMO

data transmission powered by RF WET, which represent

—< >
[ < N It
BS
= - B ‘
UE

Fig. 1.

MIMO system model with energy harvester at UE.

more practical scenarios and offer more flexibility of dis-
tributing the harvested energy between energy arrivals
compared with existing works [16]-[18]. This system pre-
vents the limitation of the environment and weather as
renewable EH systems and prevents the artificially high
performance arisen from ignoring the energy overflow as
WET-enabled system with infinite capacity batteries.

2) We model the WET as a Bernoulli process with accurate
probability p while taking into account the sensitivity of
RF-DC circuits. We calculate the accurate WET proba-
bility p for given numbers of antennas at the BS and the
UE.

3) We propose a low complexity online power and time al-
location algorithm for WET-enabled MIMO UL com-
munications. Specifically, power allocation consists of
two steps, namely, constant fractional energy allocation
and conventional water-filling methods. One-dimensional
(1-D) search is used for time allocation.

Notation: All lower case and upper case boldface letters repre-
sent vectors and matrices, respectively. Let tr(X), det(X), X!,
and X¥ denote the trace, determinant, inverse, and Hermitian
of a symmetric matrix X, respectively. C**¥ and R**Y denote
the set of complex and real matrices of size x X y, respectively.
We use diag(xy, 23, ..., 2 ) to stand for an M x M diagonal
matrix with diagonal elements z1, x5, . . ., 2. E(+) denotes the
statistical expectation, Var(-) stands for the variance of the ran-
dom variable, and ~ stands for “distributed as.” I and 0 denote
an identity matrix and an all-zero vector with suitable dimen-
sions, respectively. All the log(-) functions are of base 2 by
default and In(-) stands for the natural logarithm.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a time division duplex MIMO system, as shown
in Fig. 1, where the number of antennas equipped at the BS and
at the UE is NV, and N,, respectively. The UE uses the energy
harvested from the BS WET to power its UL WIT, under the
assumption that the BS and the UE are perfectly synchronized.
The total capacity of battery storage in the UE is Q) ax.

A time slotted transmission pattern is considered, as shown
in Fig. 2. Each slot has a constant duration 7" and the total
transmission period is T'= N T/, where N denotes the total
number of slots. Each slot consists of two phases, namely, the DL
WET phase of duration 77", and the UL WIT phase of duration
(1- T)T,, where 0 < 7 < 1. The DL WET phase starts with
several control frames, including the preamble, frame control
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Fig. 2. Frame structure.

header, DL map, and UL map. These frames define transmission
parameters, such as coding schemes, available resources, the
duration of DL and UL transmission, and the WET probability
(which is defined in the following). Then, the BS transmits
energy to the UE through wireless energy beamforming. The
received power level and the energy harvested at the UE in slot
(I=1,...,N)are denoted by P, and E;. It is worth noting that
due to the power sensitivity of RF EH circuits, the UE cannot
harvest any RF energy if the received signal power P, is less than
acertain level. In order to avoid wasting BS transmission energy,
the BS will estimate the received power at the UE and will
transfer energy to the UE if the estimated received power level
P, is larger than a certain threshold « (e.g., —25 dBm). Thus, the
WET follows a Bernoulli process with parameter p, which stands
for the probability of delivering energy from BS. The UL WIT is
powered by the energy stored in the UE batteries. The duration
of each slot 7" should be less than channel coherence time. For
simplicity, we assume a normalized unit slot time in the sequel
and that the harvested energy is stored in the battery first, and
then used for UL information transmission, which is similar to
the approaches used in [16]. Note that since the length of control
frames is much smaller than that of DL WET and UL WIT,
we ignore the time duration of control frames in the following
analysis. We assume that the transmission distance between the
BS and the UE is fixed throughout the transmission duration 7'.
For a mobile UE, the BS updates the WET probability once the
distance is changed, thus forming a new WET Bernoulli process
with the updated parameter p.

Assuming the RF signals are transmitted on a single frequency
band, we consider a block flat fading channel [23] (i.e., which
means the channel remains constant in each slot). Denote H; €
CNt*Nr a5 the UL channel in the [th slot and we have

H =3°G, (1)

where G; € CVt*N denotes the Rayleigh fading coefficients
with entries [G]nk = gmk ~ CN(0, 1), and 3 is the path loss
between the BS and the UE. By exploiting the channel reci-
procity, the DL transmission channel can be obtained as Hf” . For

simplicity, we assume causal channel state information (CSI) is
available at both the BS and the UE.!

A. DL Energy Transfer Phase

The BS delivers energy to the UE in the DL WET phase in
each slot. Assuming that the ambient channel noise energy can-
not be harvested. The received signal and the harvested energy
at the UE in the [th slot are given by

yt =H wis; + 2
E, =mn.P = Tm(,tr(quwlleH;) 3)

where n; € CN(0,021) is the N, x 1 channel noise vector,
w; is the N; x 1 BS beamformer, 7. is the RF-DC conversion
efficiency, P, is the received power at the UE, and s; is the
random information carrying signal from the BS in slot [ with
zero mean and unit variance.

Denote M = min(N;, N,) and B = max(N;, N, ). Then, the
reduced singular value decomposition of HY is given by HY =
Uz,HEllﬁEﬁH, where U,y € CN>M and &, 5 € CNoxM
(each consisting of orthogonal columns with unit norm), and
2;/}? € CM>*M js a diagonal matrix containing the singular
values of H{{ .Let W, = WZWZH and P, .« be the maximum
transmission power of the BS, then the optimal BS WET beam-
former is given by [24]

W, = Puax& & )

where & is the first column of =; ; and corresponds to the
maximum singular value of HZH . If there is only one antenna
at the UE, &, = HE—EH Note that the maximum transmission
power of the BS P, refers to the transmission power after
power amplification through the amplifier. The UL transmission
rate is directly related to P,y rather than the power before
amplification, so the energy consumption at the BS is omitted
for the sake of simplicity.

Accordingly, the instantaneous received power at the UE in
slot [ can be obtained as follows:

P =t (H{IWIW]HHZ)
1 1
S =H Ho= I oyrH
= Phaxtr (UZ.H Elz.H:l,Hfl,lgl,l‘:l,Hzlz,HUl‘H)
@ 1 H3
L Poatr (i yerel = )

= Rnax)\l,ma‘x (5)

where e, is the first column of the unit matrix I, (a) holds
because tr(AB) = tr(BA) and U7 U =1, and A 1ax is the
maximum eigenvalue of H;H/ .

IDue to the correlation between time slots, considering channel estimation
errors in multiple-slot optimization will dramatically increase the complexity,
as compared with single-slot optimization [16]. For tractability of analysis, we
assume perfect CSI in this paper. The proposed algorithm can be extended
to imperfect CSI scenarios by considering the ellipsoidal channel uncertainty
model and worst case resource allocation criterion [22], which will be studied
in our future work.



We can see from (5) that the instantaneous received power at
the UE is only related to the maximum BS transmission power
and the maximum singular value of the transmission channel.
In the following, we will derive the energy transfer probability
and the average received power based on (5).

The cumulative distribution function (CDF) of A; 1.« is given
by [25]

F)‘-l,mnx ()‘) = Kdet(A()‘))> (6)
where K is defined as
M
KM =T[(M - i) (B —i), (7)

i=1
and A(1) € CM*M g the Hankel matrix. The {i, j}th entity of
A () is given by
{A},j=B-M+i+j—-2)!-T(B-M+i+j—1,1),
®)

where the upper incomplete gamma function I'(s,z) =
[Tt e dt.

The probability density function (PDF) of A; .« can be
obtained as

d
Fu s (3) = K 2 det(A(3). ©
PDF in (9) can be simplified as follows [26]:
(B+M —2k)k
Frm (W) =K Z S dde™ 0)
k=1 j=B-M

where the coefficients d, ; in the DL WET phase in each slot
can be obtained easily when NN, and N, are fixed [26]. The
corresponding CDF is given by

/ f)nz max

(B+M —2k)k

*KZ 2

k=1 j=B-M

FM max

J+1,kA) (1D

]€1+l’7(

where the lower incomplete gamma function ~(s,z) =
Jo t* e dt.

Therefore, the average received power in slot [ and the power
transmitting probability p can be found as follows:

151 - Rnaxﬁ/ )‘f}\,_max ()\-)d)L

(B+M —=2k)k

dy
= WBKZ >, i+ (12)
k=1 j=B-M
p = Pr(Pnaxt > )
=
(B+M —2k)k d ok
_ k.j
kY Y r(iegt)
k=1 j=B-M max

where the gamma function I'(s) = [, z*'e *d.

The above analysis is based on the assumption of constant
RF-DC conversion efficiency, namely, a linear EH model is
used. However, in practical scenarios, the rectifier of the EH
receiver (circuit that converts RF to DC) is normally working on
the nonlinear model with the increasing input power level. The
above analysis is also suitable for the nonlinear case after some
modifications. The nonlinear model defined in [27] is used in
this paper. The received power is changed as follows:

1 F

b= 1 —=Q |1+ e 0(Puaxdmax—b) -,

(14)

where a and b are the parameters of the EH circuits, F' denotes

the maximum harvested power, and {2 is given by
1

—— € (0,1).

1 4 ead 0.1)

Before calculating the energy transfer probability, we will
first solve the inequality as follows:

Q= (15)

1 F
— FQ
1-Q ‘ 11 o=@ (Paniitmae D) >a
Al max > — ' - In eabl ifa>0
= IR ; (16)
Al max > — ln 7 ifa<O0
where D] = ﬁ and D2 = I%M Next, by
F I+eab I+eab — F

using the PDF of 4; 1.« in (9), we calculate the energy transfer
probability in nonlinear model as follows:

Pr{)\l.max > — 1 Del,,(,l} ifa 2 0
p =
Pr{}\l,max > — 1 De%,(,l} ifa<O
M (B+M —-2k)k dk
_ 13y Da-l
K Zl Z"[ k"7+11—‘( +1 1n Eub ))

1fa20

M (B+M-2k)k

Ky >

k=1 j=B-M

k.,j D,—1
er( 1, In 2 )

ifa < 0.
(17)

Note that the fundamental features of the proposed algorithm
(see Section III) are independent of the EH model (linear or
nonlinear). In fact, there are many state-of-the-art techniques
that can achieve a nearly constant conversion efficiency within
arange of received power level [28]. Thus, the linear model can
be used for the nonlinear case by choosing a specific received
power range wherein the conversion efficiency remains nearly
stable. The BS transmits energy only if the estimated received
power level falls in this range. For the tractability of analysis, we
only refer to the linear model unless stated otherwise. A com-
prehensive analysis of the RF-DC conversion efficiency model
and its impact on the EH receiver are beyond the scope of this

paper.

B. UL Information Transmission Phase

In the UL WIT phase of each slot, the UE uses the harvested
energy to power UL information transmission to the BS. The



received signal at the BS in the [th slot is given by

yt=Hvis, + 2 (18)

where v; is the N, x 1 UL transmission beamforming weight
vector, s} denotes random information carrying signal with
zero mean and unit variance, and the N; X 1 noise vector
zZ) ~ (0, 021).
The corresponding data rate (in bits/s/Hz) is given as
1
r; = log det (I + zHlvlleHfI> . (19)
o
Let HZHHZ = TZHAZTZ, where A; = diag()»lﬁl, . ,AZTA/[7
0,0,...) contains the M eigenvalues of H{{Hl. Then, (19)
can be rewritten as
r; = log det (I + AI/ZSZAI/Z) (20)
where Sl = TIV[Tl and Vl = VZVZ

matrix, tr(S;) = tr(Vy).
The energy allocated for UL WIT in the [th slot is given by

Since Y is a unitary

= (1 —7)te(Vy). (21)

Let n, and @Q; represent the efficiency of power amplifiers
and the amount of energy available in the battery at slot [. The
energy updating function is given as follows:

. qi-1
Ql = min (Qll + E; — e 7dex) (22)
where ’1’/ L stands for the energy consumption of UL WIT.

There are two constraints in the UL WIT phase: the energy
causality constraint and the battery storage constraint. Specifi-
cally, the energy causality constraint requires that the UL trans-

mission can only use the energy harvested at the current and
previous slots, i.e.

ZZ: [E _d= T)tr(Si)} > 0.

i=0 "l

(23)

The battery storage constraint indicates that the energy avail-
able at the UE cannot exceed the maximum battery capacity at
any time, i.e.

l+1

) < Qmax- (24)

an

C. Problem Formulation

We consider both the offline scenario with noncasual CSI and
the online scenario with casual CSI. Specifically, in the offline
scenario, CSI in all the slots is known at the BS and the UE
before the first slot starts, whereas the BS and the UE have only
CSI of the current and past slots in the online scenario. The
offline scenario is not practical, but it can be used to provide
some insights into the design of online power and time allocation
policy. In the following, optimization problems are formulated
for these two different scenarios.

1) Offline Scenario: The offline scenario aims to maximize
the number of information bits transmitted in IV slots subject
to the energy causality constraint, and the battery storage con-
straint. Using the optimal energy transmitting beamformer (4),
the optimization problem is formulated as

N

1i
arg max > (=m)n

=1
s.t. (23), (24).

The offline power allocation for renewable enabled commu-
nications has been well studied [9], [10], and [12]. What is
different in this paper is the need for time allocation.

Upon fixing the time allocation 7; = 7 forl =1,...,
can solve problem (25) by using Lagrangian methods.

The Lagrangian function of (25) is

(25)

N, we

N

1
L(S,a,pu) = E (1 —7)logdet <I+ UzAl‘/2S,A[l/2>
=1

N l (1—7)

—ZO&[Z l: tr(Si)—Ei]
=1 i=1 "l
N-1 I+1 (1—7)

> w Y E-Y tr(S;) — Qmax]
=1 i=1 i1 M

(26)

where o; and y; are the scalar Lagrange multipliers associated
with (23) and (24), respectively.
Then, upon applying the Karush—Kuhn-Tucker conditions to

(26) and setting % = 0, the optimal S; can be found as

1
S = — -

N N—1

Zi:z a; — Zi:l i

From (27), we can see that S} is a diagonal matrix with the
diagonal elements given by

o*A - 0. 27)

g — 1 o?
lj — N N—1 B )
! PO DA T
where [x]" = max(0, x) and the water level is
1
N N-T -
Dot i = Dy i
We can observe from (27)—(29) that the water level is constant
for different antennas in the same slot, because (29) is not related
to 7, the antenna element index. Thus, the power allocation for
different antennas can be obtained by traditional water-filling
algorithms. The spatial-temporal water-filling algorithm [12]
can be used to obtain the optimal offline power. The time allo-
cation can be found using 1-D search methods. Repeat power
allocation and time allocation iteratively until certain stopping
criterion is satisfied.
2) Online Scenario: Letr(q;) denote the UL data rate in slot

[ as a function of the allocated energy ¢; for UL transmission in
slot [. Notice that ¢; is a feasible online energy allocation policy

l<j<M (28

(29)

v =



when it satisfies

0<q <n.Q (30
Qi41 = min (Qz B — 7‘7’—1 Qmax) 31)
=o(l,{E}_)) (32)

where constraint (30) requires that the amount of energy allo-
cated for UL WIT is no less than zero and must be no more than
the energy available in the battery; (31) is the update function
for the energy available in the battery; and (32) is the causality
constraint, i.e., energy allocated in slot [ only depends on the
current and past WET process.

Let Q denote the set of feasible online energy allocation poli-
cies. We define the online optimization problem as maximiz-
ing the average UL WIT data rate while satisfying constraints
(30)—(32), i.e.

(33)

arg max

qEQP[j 71 N—o0

N
5 (= m)r(a)

=1
where 7(q;) = Z;}illog( + vy Pliteg), and By s
the transmit power allocated on the jth subchannel in slot [,
and we have S ; mﬂ je

The optimal online time and power allocation policy can be
solved by the dynamic programming (DP) method [29]. Specif-
ically, at the beginning of the first slot, the BS recursively cal-
culates the optimal time and power allocation policy via DP
from the N'th slot to the beginning slot. The optimal policy is
a function of H; and available energy in the battery ();, and
the BS records this function as a look-up table [11], [12]. At
each slot, the BS can perform the optimal power allocation
P, ;,j € [1,N,] and time allocation 7; based on the look-up ta-
ble by updating the H; and @);. However, as the computational
and storage requirements of DP increase exponentially with the
number of state variables, DP is inefficient and unsuitable for
online power and time allocation. In view of this, the compre-
hensive discussion on DP is beyond the scope of the current
paper. We will propose a reduced-complexity online power and
time allocation algorithm in the following section.

III. ONLINE POWER AND TIME ALLOCATION

In this section, we propose an online power and time alloca-
tion algorithm to maximize the average data rate of UL WIT
while satisfying constraints (30)—(32) for the online scenario
with causal CSI available only.

A. Power Allocation

The online power allocation is performed in two steps in each
slot. First, the optimal energy allocation is obtained by a con-
stant fractional energy allocation policy. Second, the traditional
water-filling algorithm is implemented to allocate the optimal
power to each antenna at the UE.

In the following, we will first focus on the case when
i, > Qmax, 1.€., the battery capacity Q. is no larger than
the amount of energy that can be harvested by the UE in slot [.

In this case, if the BS performs WET, the battery will be charged
to full, and the energy arrival process only depends on the bat-
tery size and the energy transfer probability p. If we define the
period between two adjacent energy arrivals as an epoch and
each epoch is independent, then the energy arrival process is a
Bernoulli process

max  W.D.
B - Q p-p
0 w.p. 1 —p

(34)
where w.p. means “with probability,” and p is given in (13).

Therefore, when 7,1, > Quax » the battery is fully charged,
and the power allocation policy is only dependent on the number
of slots from the last energy arrival slot to the current slot. Specif-
ically, let ¢, = ¢;, where i =1 — max{t|t <[, F; = Quax}-
The corresponding constraints on §; are given as follows:

Gi >0
o0
> a<Q
i—0

Following (35) and (36), ¢; clearly satisfies (30) and (31).
Since ¢; relies on the current and past slots” energy arrivals, it
also satisfies (32). Accordingly, the power allocation policy is
given by

(35)

(36)

max-

in :p(l _p)iné+1Qmax- (37)

Since the energy arrival process follows the Bernoulli process
with parameter p, the energy arriving interval time is a geomet-
rically distributed random with a mean value 1/p. Therefore,
the expected time interval between two adjacent energy arrivals
is 1/p. If in slot I, the UE knows exactly the number of slots ¢
that it has to wait until the next energy arrival, then the optimal
energy allocation policy can be obtained as 7,Q;/c, where @,
is the amount of available energy stored in the batteries in slot {.
This is because uniformly distributing the energy between
energy arrivals maximizes the data rate [9]. Since there is no
instantaneous knowledge about the next energy arrival time in
the online scenario, the expected time interval between two ad-
jacent energy arrivals 1/p is used. Thus, a fraction p of the
currently available energy is used for the UL WIT in the current
slot.

For the case of Tjan, < Quax, We can use the same method
as for the case of Tjan, > Qmax, except for replacing Q,ax
with the available energy in the battery. Let ¢; = §¢;, where i =
I — max{t|t <, E; > 0}, then the power allocation policy for
Tiam, < Qmax 18 given by

P)iﬁéﬂQi/

where i = max{t|t <, E; > 0}. The power allocation in (38)
can also be applied to the case of T;an, > Qmax because Q) =
(Qmax in that case.

After getting the energy allocated for the UL WIT in slot [,
the corresponding average transmission power is lz—lﬂ Then,
the power allocated to each antenna of the UE is determined

g =p(1 - (38)



using the traditional water-filling algorithm [30] as follows:

N, (1 —7)0? B -

B j=|vu-
’ q Al

(39)

N, o2(1-7)

q, UZ?

Since S ; I m
where v; is defined in (29).

P j, we have v =

B. Time Allocation

In this section, we will study the optimal time allocation pol-
icy. Because Q; € [0, Qmmax], the allocated time 7; must satisfy
the following:

0<n<d
Gues (1= 1

(40)

where § = min (1, is a function of 7;_;. As-

sume that ¢;, @;, and P, ; are all functions of 7; and can be
written as ¢; (1), @Q;(7), and P, ; (7;) , respectively. The optimal
time allocation policy can be obtained by solving the following
optimization problem:

M
q (1) Py (m)h
arg max (1 —7) » log| 14+ ——=——"=
TI jz::l N,-02(1 —Tl) (41)

st.0< 7 < (5(7‘171).
In the following, we show that the optimization prob-
lem in (41) is convex. Defining 7 ;(7) = (1 —7)log(1 +

%PZ, ;(11)Ar,;) and substituting (39) into it, we have

. Cym +C 1
’I’l’j(Tz) = (1 - Tz)lOg (1 + (1772 - ) kl,j)

1 —7 1
(42)
where C1 = - ; > and C, = . The first-order and
second-order derivatives of 7, ; (77) are given as follows:

er q/ 1)

)»L/(Cz‘i’ClTy)
dij(n) G+~ (G4 Gm)ln <T> (43)
dm - 1n2~(02+0177)
dsz- (7‘1) B (C] + 02)2 (44)
dr? (= 1D(Cy+Ci7)2In2’

We can see that 77 ;(7;) is a concave function because
(”’7’”) < 0for0 < 7; < 6. Thus, the problem (41) is a convex

problem and can be readily solved by using 1-D search methods
[31].

C. Power and Time Allocation Algorithm

In this section, we propose a simple online power and time
allocation algorithm for UL WIT powered by DL. WET. The
proposed algorithm includes an outer layer and an inner layer.
The outer layer is to get the optimal time allocation 7; by solving
problem (41) with the aid of the golden section search method
[31]. In the inner layer, a fraction p of the available energy @,
is allocated for UL WIT in slot [, and the power level F, ; is
allocated to the jth antenna at the UE following the water-filling
algorithm in (39). It is worth noting that if no energy is received
in slot [, then the algorithm sets 7; = 7;_;. The proposed online

Algorithm 1: Online Power and Time Allocation
Algorithm.
InplIt: Hl7 Rna)u Qlfh qi1—1
Output: Optimal power and time allocations P, ;, 7
1: if No energy is received in slot [ then

2 Setr, =711
3 Get power allocation by [P, ;(7)]}L, = ¥(7);
4: else
5 Set [a, b] = [0, 6] and initial time allocation points ¢
and d;
6: loop
7: Get [P;(c)]}L, = ¥(c) and
[P ()]}, = ¥(d);
M
8: Get r;(c) and r;(d) by r;(7;) = Zl ()
according to [P,;(c)] 7L, [P; (d)]}L;:
9: Compare 7;(c) and r;(d) and update a, b
according to the golden section search
method [31].
10: if certain stopping criterion is satisfied then
11: 7 =5%and [P (7 )}J L =Y(7);
12: Break
13: end if
14: end loop
15: end if

power and time allocation algorithm is presented in Algorithm 1,
where the inner layer is denoted as [P} ;(7)]}L, = ¥(n)

In general, the proposed online power and time allocation
algorithm can be implemented in slot [ as follows. First, the
BS calculates the WET probability p, power allocation P, ;,
and time allocation 7; following Algorithm 1. Second, the BS
broadcasts the values of p and 7; to the UE via control frames.
Finally, the UE calculates power allocation according to p, 7; by
allocating a fraction p of the available energy in the battery and
traditional water-filling algorithms.

The proposed algorithm actually always converges to the so-
lution. First, the time allocation has been proven to be a convex
problem and can always be solved by 1-D methods. Second,
the power allocation is composed of the p-fraction of available
energy and the traditional water-filling method, both of which
are convergent.

The complexity of the outer layer is O(log(1)), where ¢ is the
precision of the optimal time allocation. The computation of the
inner layer includes two parts: p-fraction of available energy, and
the traditional water-filling algorithm. The former involves only
1 multiplication, while the complexity of the latter is O(M?),
where M = min(N;, N,.). In this case, the total complexity of
the inner layer is O(M? + 1) ~ O(M?). Thus, the computa-
tional complexity of the proposed algorithm is O(M? log(é)).
Note that the complexity of the traditional water filling can
be reduced to O(M) through some improved water-filling
algorithms [34]. Accordingly, the total computational complex-
ity of the proposed algorithm is O(M log(1)).



IV. ONLINE SOLUTION FOR MU SYSTEMS

In this section, we expand our proposed algorithm to MU
systems. Since this paper emphasizes on the online algorithm
for a point-to-point link, we only provide two simple extension
methods for the MU system. More complex problems, such as
double near-far problems, user fairness, optimal power alloca-
tion, and energy beamforming at the BS for diverse users, are
also important for MU systems and remain the future works.

A. Time Division Method

The system includes a BS equipped with N; antennas and U
UEs each equipped with N, antennas. Each slot is divided into
U parts equally, and each part serves one UE. Thus, the rate per-
formance among UEs is independent and no MU interference is
caused. Therefore, for the uth UE in the [th slot, the online
solution can be obtained by solving the following problem:

N

1 1
Jim 5> 70

=1

arg max
Pl.u,jsTl.u

- Tl,u)r(m,u)
s.t. 0 S ql,u S ntLQl,u

. q,
Ql+1,u = min (Ql,u + El+1,u - anmax.u)

Qu = ¢(la U, {Ei,u }2:1)-

There is not much difference between (45) and (33), so we
can use the method in the previous section to solve this problem.

(45)

B. Space Division Method

The system includes one BS with [V, antennas and U UEs with
single antenna. For simplicity, we assume that the WET stage for
all UEs in the [th slot stands for 7; € (0, 1), the BS equally allo-
cates power for UEs, and the distance between the BS and each
UE is equal. Denote 3 and h, € C"*! are the path loss and
the UL channel between the BS and the uth UE, respectively.
The optimal power allocation and the optimal precoding design
at the BS remain future works. Let H; = [h; 1, hy5,... . hy /]
be the UL channel between the BS and U UEs. Assume enti-
ties of h; , follow CN(0,1). In the DL WET phase, we adopt
maximum ratio transmission precoding at the BS due to the low
computational complexity, which is given by

hl U
£, = . .
. th,u||2

(46)

The received signal at the uth UE in the [th slot is given by

y})b = \/ pﬁhﬁufl,u +

where P = Lwax Bax
UE is

U
PB Y hilfi;+mn

Jj=1j#u

47

. Therefore, the received power of the uth

= PBIu{, fi.[* + PB Z 1
Jj=1j#u

(48)

In the following, we calculate the WET probability. Define

Xy = Pﬂ|h/ B (49)
and
) U
Y, =P8 > |/ fi,[" (50)
j=1j#u
Since hfib_j ~CN(0,1),V1 < 5 < Ny, we have [32]
X, ~ Ga(Ny, PB) (1)

where Ga(k,b) denotes gamma distribution with shape param-
eter k and scale parameter b. The PDF of gamma distribution is
flz) = ka’le’f.

According to the second-order Gamma approximation in [33],
Y., follows the gamma distribution Ga (A1, A2), and the param-

eters Al and A2 are given by

Al = W =U-1, (52)
and
A2 = M = Pg. (53)
(E(Ya))

Thus, the received power follows gamma distribution, which
is given by
Py~ Ga(N;, +U — 1, PB), (54)
and the WET probability can be obtained by

p= Pr(P, > a,)

>~ 1 N+U-2_—35
= A TN, U 1)}35Nt+U71x e Pidr. (55)

In the UL WIT phase, the received signal associated with the
uth user at the BS is given by

hlusu + Z

j=Llj#u

Y}% = ‘PlUu hl Sy + 1y U (56)

where P is the UL transmit power of the uth UE in the /th
slot. '

The MU interference can be mitigated by signal detector
W, = [w;1,W;2,...,w; ] at the BS, such as zero forcing
(ZF) and maximum ratio combine (MRC) detectors

H; (H{{Hl)_l
l =
Hj!

for ZF
for MRC

(57)

After signal detecting, the detected signal associated with the
uth UE is

cUL

UL H
Siu = ]Dl,u 5wl,uhl«usu

UL H H
+ E P wl_’jhl,usj + w0 ..
Jj=1j#u

(58)



Thus, the UL rate of the uth UE can be calculated by

Tlu =

g (1 + PRl )
U
o2 \Wit Wil + 325 e B BIW [
(59)

Therefore, the online solution can be obtained by solving the
following problem:
| Y

s.it. 0< Qo < 7](1,Ql,u

. qai,
QlJrl’u = min (Ql,u + El+l,u - nanmax,u>
a

qlu = ¢(la u, {Eiﬁu }ézl)

where ¢, = 7, PL. This problem is similar to (33) and can be
solved by similar methods of Algorithm 1.

Note that in this section, we focus on single-cell MU-MIMO
transmissions and UL intracell interference cancelation. Inter-
cell interference (i.e., MU interference among adjacent cells)
can be eliminated by UL coordinated multipoint (CoMP) recep-
tion [35], where multiBSs jointly detect the received MU sig-
nals and eliminate the intercell MU interference. Our proposed
algorithm is compatible with UL CoMP reception.

(60)

V. NUMERICAL RESULTS

To testify the performance of the proposed algorithm, nu-
merical results are presented in this section. Throughout the
simulations, the following settings are used unless stated other-
wise. The BS and the UE are equipped with three and two anten-
nas, respectively. The BS has the unit power budget (Pa.x = 1
W). We set the bandwidth as 100 KHz and the density of
noise as —170 dBm/Hz, so the power of the channel noise
is U% = g2 = —120 dBm [16]. Let path loss follow the indoor
office scenario in “WINNER II channel models” [36], where
B(dB) = 201og,o(D[m]) + 51.4 + 20log,o(£1SM) | with the
propagation distance D = 10 m and the carrier frequency f, =
2.6 GHz. The battery storage capacity Q. = 5 X 1070 J, the
RF-DC conversion efficiency 7. = 0.4, and the power sensitiv-
ity of EH circuits o = 3 yW.2

For performance comparison with the proposed algorithm,
we include in the simulations the following existing power allo-
cation algorithms: the FP allocation algorithm [14], the constant
water level (CWL) algorithm [10], [12], and the energy adap-
tive (EA) algorithm [10], [12]. Combining with fixed or adaptive
time allocation, we will testify six online power and time alloca-
tion policies, namely, FP, CWL, and EA with adaptive or fixed
time allocation policies, respectively. For simplicity, we add

>The RF-DC conversion efficiency, the carrier frequency, and the power
sensitivity of EH circuits can take different values ranging from 10% to 90%,
from 450 MHz to 5.8 GHz, and from —40 dBm (0.1 W) to —10 dBm (10 W),
respectively, as given in [4, Table III] and in [28] and [37].
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Fig. 3.  Average rate versus UE battery capacity.

AT or FT at the end of each algorithm abbreviation to denote
whether it is with adaptive or fixed time allocation, respectively.
Therefore, the proposed algorithm is denoted as FPAT. Note that
the solution in [14] is originally provided for renewable energy
powered systems and cannot directly be used for the system
model of this paper. We compare our proposed algorithm with
a modified version of the solution in [14], called FPFT, which
incorporates a MIMO channel, energy beamforming, calcula-
tion of energy transfer probability, estimation of received power
level, and water-filling power allocation. Algorithms proposed
in [16] and [17] allocated all the harvested energy to the UL
WIT in the current slot, and thus belong to EA algorithms.

Fig. 3 demonstrates the average UL WIT rates versus the UE
battery size QQmax, Where 7 = 0.5 for fixed time allocation. We
can see that the average rate first increases dramatically with
Qmax and then converges to a constant value for large values of
Qumax- This is because a larger battery size enables more energy
stored into the battery and can thus support a higher data rate,
but when the battery size gets larger than its received energy, the
data rate becomes independent of the battery size. The proposed
FPAT algorithm shows the highest data rate among all these
algorithms. With adaptive time allocation, CWLAT allocates all
the available energy in the battery to the current slot, thereby
experiencing the same performance as EAAT. The battery with
small capacity (e.g., Qmax < 0.7 uW) will be fully charged once
there is energy received. In this case, the product of average DL
received power and fixed WET time duration is likely to be
larger than the battery’s capacity, so CWLFT shows the same
rate performance as EAFT. However, with the increasing battery
capacity, it has been shown that CWLFT outperforms EAFT in
terms of average data rate [10]. Therefore, there is an abrupt
increase at about Q,.x = 0.7 uW for the CWLFT.

Fig. 4 shows the average rate (the left vertical axis) versus
the EH power sensitivity of RF-DC circuits, where 7 = 0.5 for
fixed time allocation. The dash line denotes the energy transfer
probability (the right vertical axis). We can see that when «
increases from 0 to 107> W, the energy transfer probability
decreases from 1 toward 0. The average rate of each considered
algorithm decreases with «, because the UE harvested energy
decreases with the worsening sensitivity. The proposed FPAT



14 T T T T T 1
— — WET probability
409

Jos

J07

406

‘
S
&

WET probability

Average Rate (bits/s/Hz)
S
4

L
o
@

Jo0.2

40.1

N G
0 02 04 06 08 ki
Sensitivity of received power o (W) %10
Fig. 4.  Average rate versus EH power sensitivity.

80 g T T T T =N

i
I

— — WET probability

409
70

—<—FPFT 7=05 108
—&— CWLFT =05 [ |

60 -
—&— EAFT 7= 0.5 07

Jos

N
S

) )

ES o

WET probability

Energy Efficiency (bit/s/Hz/W)
s s
) =)
S @

i
=)

0 0.2 0.4 0.6 0.8 1
Sensitivity of received power o (W) %10

Fig. 5. Average energy efficiency versus EH power sensitivity.

algorithm has a higher rate than all the other algorithms for o
ranging from about 2 to 10 ¢ W. FPAT has the same performance
as CWLAT and EAAT for very small values of «, because the
energy transfer probability is closed to 1 in that case.

Fig. 5 shows the average energy efficiency versus the EH
power sensitivity of RF-DC circuits. The average energy effi-
ciency is defined as

1 Y (1 =7)r(q) ©1)
P, max 7]

where P, 7; is the energy cost at BS in slot [. We can see that
the energy efficiency of the proposed FPAT algorithm is much
higher than all the other considered algorithms, because of the
adaptive time allocation and the high rate performance of the
proposed algorithm.

Fig. 6 depicts the outage probabilities versus the EH power
sensitivity of the RF-DC circuits, where the threshold of re-
ceived SNR at the BS is 3 dB. We can see that the proposed FPAT
algorithm shows the best outage performance among all these
algorithms. Since CWLAT, EAAT, and EAFT will allocate all
the available energy in the UE battery for the current slot UL
transmission, resulting in energy shortage when no energy is
received in some slots, they have the highest outage probability.
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Fig. 6. Outage probability versus EH power sensitivity (threshold 3 dB).
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Because CWLFT does not take energy shortage into consider-
ation, its outage probability is also very high. Fig. 7 shows the
average number of iterations to obtain the solution under various
number of transmission antennas (three, four, and eight, respec-
tively). The precision of the optimal time allocation is 0.001.
We can find that the proposed algorithm can obtain solutions
within four iterations.

Fig. 8(a) and (b) compares the average rate of the proposed
FPAT and FPFT with different values of 7 versus the RF-DC
circuit power sensitivity and for different noise power 2. For
each considered noise power value and «, the proposed FPAT
algorithm always achieves the highest average rate among all
the considered algorithms. The average rate of FPFT varies
with different values of 7 and o2. For 02> = 10~!° W, FPFT with
7 = 0.3 achieves an average rate very close to that of FPAT,
while FPFT with 7 = 0.5 achieves an average rate very close to
that of FPAT for 0> = 10~!2 W. This indicates that a fixed time
allocation cannot always maximize the average data rate when
the communication environment changes, whereas the proposed
FPAT can adaptively allocate BS WET time and thereby get the
maximum average data rate.

Fig. 9 shows the average rate performance of MU systems by
the space division method versus EH power sensitivity of the
RF-DC circuits. There is one BS equipped with three antennas
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and two UEs each equipped with single antenna. The distance
between each UE and the BS is 10 m. ZF and MRC detectors
are used to mitigate the MU interference. The average rate of
using ZF detectors outperforms that of using MRC detectors.

VI. CONCLUSION

In this paper, we have studied the power and time allocation
for MIMO UL transmission powered by RF WET with finite
capacity batteries at the UE. After calculating the probability of
energy being transmitted from the BS to the UE, we propose
a simple online algorithm with a fraction p of available energy
allocated for UL WIT and adaptive time allocation in each slot.
The numerical results have shown that the proposed FPAT al-
gorithm achieves much better performance (i.e., higher average
data rate, higher energy efficiency, and lower outage probabil-
ity) as compared to the existing algorithms. We also provide two
methods to extend the proposed algorithm to MU systems with
the consideration of MU interference.
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