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Abstract

Recent changes in the regulatory framework for banking supervision increase

the regulatory oversight and minimum capital requirements for financial institu-

tions. In this thesis, we research active portfolio optimisation techniques with

heuristic algorithms to manage new regulatory challenges faced in risk manage-

ment.

We first study if heuristic algorithms can support risk management to find

global optimal solutions to reduce the regulatory capital requirements. In a bench-

mark comparison of variance, Value-at-Risk (VaR) and Conditional Value-at-Risk

(CVaR) objective functions combined with different optimisation routines, we show

that the Threshold Accepting (TA) heuristic algorithm reduces the capital require-

ments compared with the Trust-Region (TR) local search algorithm.

Secondly, we introduce a new risk management approach based on the Uncon-

ditional Coverage test to optimally manage the regulatory capital requirements,

while avoiding to over- or underestimate the portfolio risk. In an empirical anal-

ysis with TA and TR optimisation, we show that our new approach successfully

optimises the portfolio risk-return profile and reduces the capital requirements.

Next, we analyse the effect of different estimation techniques on the capital

requirements. More specifically, empirical and analytical VaR and CVaR estima-

tion is compared with a simulation-based approach using a multivariate GARCH

process. The optimisation is performed using the Population-Based Incremental

Learning (PBIL) algorithm. We find that the parametric and empirical distribu-

tion assumption generate similar results and neither of them clearly outperforms

the other. However, portfolios optimised with the simulation approach reduce the

capital requirements by about 11%.
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Finally, we introduce a global VaR and CVaR hedging approach with multi-

variate GARCH process and PBIL optimisation. Our hedging framework provides

a self-financing hedge that reduces transaction costs by using standardised deriva-

tives. The empirical study shows that the new approach increases the stability of

the portfolio while avoiding high transaction costs. The results are compared with

benchmark portfolios optimised with a Genetic Algorithm.
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Chapter 1

Introduction

In this chapter, we give a general introduction to the research work in this thesis.

We start with an overview of relevant research and market changes that lead to the

rationale of our study. Then, the research hypotheses and objectives are presented.

The last section of this chapter describes the thesis structure and our contributions

to the literature and practice.

1.1 Overview

Financial regulations have been subject to several key changes over the last years.

The major focus of these changes is to provide authorities with proper instru-

ments to ensure the stability of financial institutions and prevent them from cor-

porate bankruptcy. As learned from the financial crisis that started in 2007, the

bankruptcy of systemically important financial institutions can result in massive

disruptions in the entire economy and are thus, too expensive for authorities. The

only alternative is a public bailout, which creates moral hazard and does not cir-

cumvent banks from taking less risk.

Existing financial regulations did not provide regulators with the appropriate

instruments to intervene and to prevent bank failure. To improve the financial reg-
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ulatory oversight and to abolish several weaknesses in corporate risk management,

as revealed in the financial crisis, the Basel Committee on Banking Supervision

agreed on the revision of the so called Basel II framework. Thus, the Committee

introduced an enhanced regulatory framework, known as Basel III, which is to be

fully finalised by the end of 2019.

In general, the Basel III framework consists of three pillars that aim to provide

higher transparency, improve the banks’ risk management and the ability to ab-

sorb financial and economic market shocks. The first pillar regulates the minimum

capital a bank is required to provide for its Risk Weighted Assets (RWA). With

the latest revision of the Basel III framework, enhanced minimum capital, liquid-

ity and leverage requirements were introduced to pillar one. Pillar two provides

key principles of supervisory review and risk management guidance, while the

third pillar discusses enhanced disclosures. Significant changes in the regulatory

framework can be seen in pillar one and more specifically in the minimum capital

requirements for market risk framework and the regulation of “over-the-counter”

(OTC) derivatives, which are customised derivative contracts.

The minimum capital requirements for market risk framework regulates the

market risk charges a bank has to provide to cover losses arising from market

price movements in the trading and banking book. The Committee offers the

bank two general methodologies to determine its minimum capital requirements

for market risk: the standardised approach and the internal models approach.

For the standardised approach there are three main models that can be used: (i)

sensitivity bared model, (ii) default risk charge model and (iii) residual risk model.

The internal models approach is provided as an alternative to the standardised

approach. It offers banks the opportunity to use their own internal risk models to

calculate the minimum capital requirements for market risk and is therefore widely

used in practice and literature. For these reasons, Chapters 3 and 4 of this thesis

concentrate on the internal models approach. In the internal models approach
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the bank has to estimate potential losses for each risk factor for the trading book

(e.g. equity risk, interest rate risk, credit spread risk, foreign exchange risk and

commodities risk) and the banking book (e.g. foreign exchange risk and commodity

risk) instruments. The default risk needs separate modelling (Basel Committee on

Banking Supervision, 2016).

For the risk estimation process, the bank is required to calculate the Value-

at-Risk (VaR) and Conditional Value-at-Risk (CVaR), often also referred to as

Expected Shortfall, of the trading desks. The literature presents several research

papers that study VaR and CVaR backtesting models to determine the daily cap-

ital charges that need to be reported to the authorities. These papers study the

influence of estimation techniques and distribution assumptions on the daily VaR

and CVaR level (see Berkowitz and O’Brien, 2002; Kim et al., 2011; Weng and

Trück, 2011; Uylangco and Li, 2016; Kellner and Rösch, 2016).

The backtesting of VaR and CVaR models is an important procedure in fi-

nancial regulations, as the results are reported to the regulatory authorities to

determine the minimum capital requirements for market risk. Backtesting is an

important feature for post-trade analysis, however, it has no active influence on

the pre-trade portfolio composition.

In this thesis, we concentrate on another research path that studies portfolio

optimisation techniques to manage the regulatory minimum capital requirements.

We classify the existing literature in this research area into active and passive port-

folio optimisation techniques to manage the capital charges. Active methods are

(i) constraint and (ii) objective function based techniques that directly influence

the pre-trade portfolio composition.

The first set of active optimisation methods are constraint based and can easily

be added to the portfolio optimisation process. The effects of a regulatory VaR

constraint to the mean-variance efficient frontier are presented in the work of Sen-

tana (2003). Cuoco and Liu (2006) optimises the mean-variance utility function
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subject to a capital requirements constraint that is based on the internal models

approach capital charge calculation.

The second subsection of active regulatory based portfolio optimisation meth-

ods directly improve the capital charge for market risk via the portfolio objective

function. Santos et al. (2012) introduce a minimum regulatory capital objective

function that is a direct replication of the internal models approach minimum

capital charge for market risk formula. A Multi-Objective Evolutionary Algo-

rithms (MOEA) approach to minimise the regulatory capital requirements and

maximise the expected return of a trade portfolio is proposed by Drenovak et al.

(2017). However, optimisation methods that directly improve the minimum capi-

tal requirements of a portfolio give the risk manager no freedom over the primary

objective function.

The dynamic decision rule, as suggested by McAleer et al. (2010), is classified

as a passive approach to manage the regulatory capital charges for market risk of

a portfolio. The model is intended to assist risk managers to identify if the current

portfolio under- or overestimates the risk of the investment. However, it does

not directly influence the asset selection during the portfolio optimisation process

and assumes that the risk manager is willing to act more conservatively when

the number of daily VaR violations is high and to behave more aggressively when

the number of violations is small. The passive portfolio optimisation approach

gives the risk manager more freedom to decide on how to increase profitability and

reduce the risk of a trading portfolio. A drawback of such an approach, however,

is that it does not suggest how to change the portfolio composition to adjust it in

case of an under- or overestimation of risk. This thesis therefore concentrates on

the active regulatory portfolio management under consideration of an optimal risk

assessment.

The revision of the Basel III framework introduces significant reforms to the

OTC markets to reduce the systemic risk associated with OTC derivatives. The
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reforms concentrate on five points: (i) trade standardised OTC contracts on ex-

changes, (ii) clear standardised OTC derivatives through a central counterparty,

(iii) report OTC contracts to trade authorities, (iv) increase capital requirements

for non-centrally cleared derivatives, and (v) add new margin requirements for

non-centrally cleared contracts (Bank for International Settlements, 2015). Points

(iv) and (v) significantly increase the costs for non-standardised derivatives (Bank

for International Settlements, 2013) and therefore, led to a steep raise in standard-

ised OTC contracts volume (Financial Stability Board, 2016). OTC derivatives are

mainly used for the purpose of hedging a firms risk exposure against unfavourable

movements in assets prices, commodities prices, foreign exchange rates or interest

rates.

There are several hedging techniques proposed in the literature that can be cat-

egorised into local and global hedging strategies. Local hedging frameworks aim to

reduce the risk of a portfolio for (i) small changes in the underlying asset price (e.g.

delta hedging or delta-gamma hedging) or (ii) until the next time step. To deter-

mine an optimal hedging strategy, local hedging techniques estimate hedge ratios

using ordinary least squares (OLS) regression (Ederington, 1979), conditional het-

eroskedastic (see Cecchetti et al., 1988; Ortega, 2012; Badescu et al., 2014), error

correction (Dark, 2015) or random coefficient (Bera et al., 1997) methods. The

OLS estimation technique is criticised as it ignores the time varying structure of

conditional distributions. This issue is solved by the other estimation techniques.

However, as highlighted by Alexander et al. (2013), these local estimation methods

generate high margin and transaction costs and are therefore often too expensive to

implement in practice. This is especially true for GARCH estimated local hedging

strategies.

An alternative to local hedging techniques and focus of this thesis, are global

hedging methods. They optimise the risk associated with the terminal hedging

error of the portfolio and the hedging instrument over the entire hedging period.
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Several objective functions are discussed in the literature that can be used as risk

measure in the hedging process. Quadratic error hedging (Schweizer, 1995) and the

extended semi-quadratic error hedging (see Föllmer and Leukert, 2000; François

et al., 2014) are risk measures often used in the literature. Quantile hedging

(Föllmer and Leukert, 1999) maximises the probability that the terminal value does

not exceed a certain threshold. An intuitive risk measure to use in global hedging

is VaR, by definition (see Alexander et al., 2004; Cong et al., 2013). However,

there are some pitfalls associated with the use of VaR as an objective function e.g.

non-coherence and the disregard of losses exceeding the VaR confidence level. The

use of CVaR as a risk measure helps to prevent these drawbacks. One of the first

who apply a global CVaR hedge with linear optimisation algorithm to a multiple

asset optimisation problem are Alexander et al. (2004). A dynamic programming

solution to a global CVaR hedging function is proposed in Boda and Filar (2006).

Melnikov and Smirnov (2012) provide an one-dimensional optimisation approach

to a global CVaR hedge in continuous time by adopting a statistical hypothesis test

suggested in Föllmer and Leukert (1999). In a more recent study, Godin (2016)

minimises the CVaR of the terminal hedging error in discrete time, using a normal

inverse Gaussian distribution to capture fat tails in the return distributions.

Even though, the majority of local hedging strategies with GARCH processes

provide evidence that time-varying volatility models improve the efficiency of the

hedging strategies (see e.g. Kroner and Sultan, 1993; Chan and Young, 2006),

global hedging with conditional heteroskedastic processes is rarely discussed in the

literature. To our best knowledge, the first study that applies a GARCH process

to a global quadratic hedging problem is provided by Rémillard and Rubenthaler

(2013). The results presented in their work show that quadratic error hedging with

GARCH model outperforms delta-hedging strategies. The application of GARCH

processes in global VaR and CVaR hedging techniques, however, has not been

discussed so far and provides opportunities for further research.
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1.2 Research Hypotheses and Objectives

The aim of this study is to develop active portfolio optimisation techniques that

help the risk management of financial institutions to cope with challenges they

encounter with the introduction of new regulatory market and credit risk require-

ments under the new Basel III regulations. This raises several research opportuni-

ties that are of interest both for academia and practice. This thesis aims to answer

the following four research questions:

1. Complex VaR and CVaR objective functions can have multiple local ex-

tremes over the entire search space. Heuristic optimisation can be used to

find an approximate solution to the search problem when other optimisation

techniques fail to find an exact solution or are too slow. We are interested

if heuristic algorithms can help to improve the trading desk management

of a bank with respect to the regulatory minimum capital requirements for

market risk. We focus on the question where banks directly optimise their

portfolios for VaR and CVaR risk measures as they are part of the calculation

of the minimum capital requirements. We identify if heuristic search meth-

ods contribute to an optimal portfolio solution with better out-of-sample risk

and performance measures and regulatory capital requirements.

2. Banks are required to communicate their daily VaR estimates to the regula-

tory authorities to determine their regulatory capital charges. If the reported

VaR is much higher than the actual losses, the banks’ capital requirements

and thus, the capital costs are too high and the bank gives away the oppor-

tunity for potential profits. Respectively, if the reported VaR is too low and

the realised losses exceed the daily VaR level, the bank experiences higher

multiplication factors in the minimum capital calculation and potentially

a negative reputation in the public. Hence, we explore how a new active
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portfolio management approach that we develop, helps to optimally man-

age the portfolio composition under consideration of regulatory market risk

regulations.

3. How do different VaR and CVaR estimation techniques and underlying dis-

tribution functions in an active portfolio optimisation approach, influence

the number of daily VaR violations and the minimum capital requirements?

As highlighted by research papers on VaR and CVaR backtesting models to

determine the banks’ daily capital level, more advanced downside risk es-

timations methods have a high number of VaR and CVaR violations while

these violations are less extreme when they occur. So far, however, little

is known on how the risk measures, distribution functions and estimation

techniques in the portfolio optimisation process effect the banks’ regulatory

requirements.

4. The standardisation of OTC contracts and the increase of transaction costs

in derivatives trading caused by new credit risk regulations in the Basel III

framework, require risk managers to identify new hedging techniques that

can cope with these changes. Existing literature on local hedging shows

that the introduction of time-varying volatility processes to local hedging

methods outperform other estimation techniques. However, time-varying

methods increase the number of necessary transactions and thus, transaction

costs. We develop a new hedging approach with conditional heteroskedastic

process and investigate its potential to successfully secure an investment with

standardised derivatives while avoiding high regulatory capital charges and

transaction costs.

Our research work provides new insights into the optimal management of regu-

latory requirements in the portfolio optimisation process and offers some innovative

active optimisation techniques to cope with new challenges caused by the increased
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regulatory oversight. This research work is primarily interesting to risk, portfo-

lio and trade managers, who are concerned with portfolio optimisation questions

under consideration of new regulatory capital requirements for market and credit

risk.

1.3 Thesis Structure and Contributions

Following, we present the thesis structure to address the research objectives pre-

sented in the Section 1.2 and discuss our contributions to the literature.

In Chapter 2, we begin by outlining the methodology of relevant portfolio risk

measures and risk estimation techniques, and provide a hedging literature review.

Chapter 3 first analyses the effect of the Threshold Accepting heuristic algo-

rithm on reducing the minimum capital requirements for market risk for variance,

VaR and CVaR portfolio objective functions. The first part of Chapter 3 answers

the first research questions in Section 1.2. Related literature (see Sentana, 2003;

McAleer et al., 2010; Santos et al., 2012) apply local search algorithms to solve the

portfolio objective functions. The main contribution of this analysis is to study the

influence of heuristic optimisation on the regulatory capital requirements. In an

empirical study, the out-of-sample portfolio statistics of Threshold Accepting opti-

mised portfolios are compared with the Trust-Region local search algorithm. The

results highlight the superiority of Threshold Accepting meta-heuristic algorithm

to improve the efficiency of trading desk management with respect to regulatory

capital charges. Secondly, Chapter 3 introduces a new active portfolio optimisation

tool that addresses the second research question in Section 1.2. Our innovative

portfolio management tool is based on the Unconditional Coverage test. The Un-

conditional Coverage constraint avoids over- and underestimation of the portfolio

risk and maintains the number of daily VaR violations within optimal boundaries

for an efficient capital requirements management. Our contribution extends rele-
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vant literature, such as Sentana (2003), McAleer et al. (2010), Santos et al. (2012)

and Drenovak et al. (2017), by providing an active portfolio optimisation tool that

avoids the drawbacks of a VaR constraint and gives the risk manager control over

the primary objective function.

In Chapter 4, we investigate the effect of simulation-based VaR and CVaR esti-

mation with multivariate GARCH process on the daily VaR violations and capital

requirements. This chapter looks into the third research question in Section 1.2.

In their work, Winker and Maringer (2007) show that objective functions with un-

derlying empirical distribution, on average, exhibit a higher number of daily VaR

violations compared with portfolios with normal distribution assumption. More-

over, Winker and Maringer (2007) find that the magnitude of losses exceeding VaR

is higher for portfolios with empirical VaR objective function.

Chapter 4 first extends the analysis of Winker and Maringer (2007) to VaR

and CVaR objective functions. As a first contribution, we find that empirical

CVaR objective functions also have a higher number of daily VaR violations and

that these violations have a higher magnitude than losses of CVaR objective func-

tions with normal distribution. As a second contribution, our results in Chapter 4

show that we can reduce the average number and degree of daily VaR violations

for empirical VaR and CVaR objective functions, if a Monte Carlo simulation

with GARCH-DCC process is used. The portfolio optimisation is performed with

the Population-Based Incremental Learning heuristic algorithm, which in case of

simulation-based optimisation is more efficient than the Threshold Accepting al-

gorithm used in Chapter 3. The findings in this chapter help to identify the most

promising optimisation approach to manage the daily VaR violations and capital

requirements.

In Chapter 5, we introduce a global VaR and CVaR hedging approach with

multivariate GARCH process to address the forth research question in Section 1.2.

The first global hedging strategy with GARCH process is introduced by Rémillard



11

and Rubenthaler (2013) for a global quadratic hedging approach. They demon-

strate that global quadratic hedging with GARCH process is superior to a delta

hedging technique.

Chapter 5 extends the global VaR and CVaR hedging literature by introducing

a multivariate GARCH process to the optimisation approach. Our innovative ap-

proach contributes to the hedging literature by securing several instruments with

one put option using a time-varying covariance process. Another contribution to

the existing global hedging literature, such as Föllmer and Leukert (1999), Alexan-

der et al. (2004), Melnikov and Smirnov (2012), Cong et al. (2013), Rémillard and

Rubenthaler (2013), Cong et al. (2014) and Godin (2016), is the practical imple-

mentation of standardised derivatives in our hedging approach. Other hedging

strategies require options with a specific strike price and maturity to secure the

investment. Often, however, there is no standardised options with the exact spec-

ification, which has negative impacts on the existing hedging strategies. We show

that our hedging approach does not require the option to have specific properties.

We find that even larger deviations from the optimal option specifications have

no negative impact on the success of our hedging approach. As a third contribu-

tion, we provide a detailed comparison between the PBIL and a Genetic Algorithm

heuristic algorithm to solve the global VaR and CVaR hedging approach with mul-

tivariate GARCH process. Our research extends the existing PBIL literature by

applying the algorithm to an optimisation approach with derivatives instruments.

In our analysis, we find that the PBIL algorithm is more efficient than a commonly

used Genetic Algorithm.

Chapter 5 demonstrates that our global VaR and CVaR hedging approach with

multivariate GARCH process opens a promising new research path in global VaR

and CVaR hedging. We show that our hedging approach is capable to handle

increasing regulatory oversight and capital requirements in OTC markets.

Chapter 6 summarises the research done in this thesis, describes the contri-
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butions of the work in more detail and concludes with suggestions for further

research.



Chapter 2

Review of Risk Management and

Portfolio Optimisation

This chapter outlines the main risk management and portfolio optimisation tech-

niques used in this thesis. Firstly, we review portfolio risk measures that are used

throughout our research work. Then, we present methodology described in the

literature to evaluate risk. Finally, we present hedging strategies discussed in the

literature.

2.1 Risk Measures and Portfolio Optimisation

One of the most common methods used in risk management and portfolio optimi-

sation was introduced by Markowitz (1952). His idea is to measure portfolio risk

under consideration of diversification effects between assets. The portfolio risk is
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determined by minimising the portfolio standard deviation

σport =
√
wᵀΩw (2.1)

subject to the constraints

wilb ≤ wi ≤ wiub , ∀i

µport ≥ µtarget

κlb ≤ κ ≤ κub

wᵀ1 = 1

where w is an M × 1 vector of weights and M is the number of assets in the

investment universe. The asset weight wi has to maintain a lower wilb and upper

wiub bound constraint, where i = 1...M . Ω is a M ×M covariance matrix of the

assets returns and the portfolio return is given by µport = wᵀr, where r is anM×1

vector of expected asset returns. The target portfolio return is defined as µtarget.

Moreover, κ is the cardinality of the portfolio, that is, the number of instruments

in the portfolio. The cardinality is constrained within a lower (κlb) and upper

bound (κub). In this study, we consider long portfolios only and thus, the sum

of w has to be one. The short selling restriction as this changes the regulatory

minimum capital requirements for market risk calculation and makes search space

more complex.

Despite variance being probably one of the most common risk measures in

risk management, it is not always the most appropriate one to use. Variance

only measures the squared deviation of a variate from its mean. However, the

risk measure does not consider higher moments like skewness or kurtosis of the

underlying return distribution. It therefore can only provide a reliable estimation

of the risk if the returns are normally distributed. Several alternative risk measures
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are proposed in the literature (see e.g. Roy, 1952; Markowitz, 1959; Bawa, 1975)

to account for non-normal underlying distribution assumptions and to provide a

better measure of risk.

Another risk measure that became very popular in market regulations to risk

managers is VaR, commonly understood as the maximum loss in a risk position

not exceeded with a certain probability for a holding period. The calculation of

VaR relies on the assumption about the distribution of the returns. An intuitive

guess is to assume that the future returns are best described by the empirical return

distribution. This is often suggested in the quantitative risk management literature

(see e.g. Jorion, 2006; Pritsker, 1997; Lucas and Klaasen, 1998). The calculation of

VaR with an empirical distribution is easy to implement and has the advantage that

dependence across assets are already accounted for. The VaR objective function

with underlying empirical distributionH is simply the α-quantile of the empirically

distributed returns

V aRHα = QH(α) (2.2)

(Acerbi and Tasche, 2002a). Q denotes the quantile function.

Several alternative tail risk measures have been proposed in the financial lit-

erature (see e.g. Roy, 1952; Markowitz, 1959; Bawa, 1975; Acerbi and Tasche,

2002b) with CVaR being the most common expected tail risk measure in quanti-

tative risk management. CVaR is defined as the expected shortfall for all losses

exceeding VaR (Acerbi and Tasche, 2002a). Thus, the CVaR objective function

with empirical return distribution is

CV aRHα = E(µport|µport ≤ V aRHα). (2.3)

Future returns are not always best described by their empirical return distribu-

tion. Winker and Maringer (2007) show that bond portfolios optimised with VaR,
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based on an empirical distribution, have serious hidden risk in the out-of-sample

period. Portfolios optimised with empirical distribution violate an expected VaR

level more often than portfolios optimised with normal distribution. Winker and

Maringer (2007) conclude that empirical distributions are good in measuring VaR

but are not expedient for the optimisation process. An alternative is to assume

normally distributed returns for the VaR optimisation.

Under the assumption that the returns are standard normally distributed, VaR

is defined as the inverse of the standard normal distribution function at α

V aRNα = −µport + σportQN(α) (2.4)

(Danielsson, 2011).

For a CVaR objective function with underlying standard normal distribution

we calculate the density function (ϕ) for the α-quantile of a standard normal

distribution

CV aRNα = −µport + σport
1

α
ϕ(QN(α)) (2.5)

(Rockafellar and Uryasev, 2000).

A drawback of assuming normally distributed returns are specification errors.

However, Winker and Maringer (2007) show in their findings that the assumption

of normal return distribution in VaR optimisation reduces the hidden risk, which

is the risk of exceeding a defined VaR limit in the out-of-sample.

In the following chapters we use the downside risk measures VaR and CVaR

to improve the risk management of market portfolios. So far little research has

been done on how the underlying return distribution assumption influences the

risk management. Thus, we will concentrate on VaR and CVaR risk optimisation

with underlying normal and empirical distribution assumption.
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2.2 Risk Evaluation Methods

Modelling the volatility of a time-series is an important objective in regulation, val-

uation, portfolio and risk management. A good volatility forecast is an important

tool to improve decision making e.g. in reducing capital requirements, as Chap-

ter 4 demonstrates, or in hedging the expected loss of a portfolio, as Chapter 5

shows.

A basic statistical method for forecasting volatility and correlation of time

series is the equally weighted average method. It is one of the first methods used

to forecast average volatility over a number of days by simply calculating the

equally weighted average of the empirical asset returns. The equally weighted

average method can be very inaccurate if the sample size is short.

A better method to forecast volatility and correlation is the equally weighted

moving average. The forecast volatility is calculated by taking the equally weighted

average of a fixed sample size which is rolled through time. With each new return

the oldest data point drops out of the sample. One pitfall of this method, however,

is that jumps in the data can lead to an over- or underestimation of the long-term

volatility forecast. Moreover, by equally weighting the data and rolling the sample

forward through time, jumps in the data can effect the forecast volatility when they

enter and exit the sample. To avoid large changes in the forecast volatility and

correlation just because data points drop out of the sample by rolling through time,

Roberts (1959) introduced the exponentially weighted moving average (EWMA).

In his work, he proposes to give more weight on more recent observations and less

weight on old return. Thus, the impact of a jump in the data on the forecast

average volatility and correlation decreases in time.

The aforementioned moving average models assume the returns to be inde-

pendent and identically distributed (i.i.d.). Moreover, they assume volatility to
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be constant over time and only change depending on the estimated sample data.

However, as shown by the work of Mandelbrot (1963) or more recently by Cont

(2007), large changes in asset prices often cluster together as do small changes.

Thus, the volatility of financial asset returns is not i.i.d. but shows a clustering

behaviour.

To create dynamic volatility forecasts and to account for volatility clustering

behaviour, Engle (1982) introduced the autoregressive conditional heteroscedas-

ticity (ARCH) model. The model assumes that the variance depends on a lagged

squared white noise stochastic process which is conditional on the historical data,

with mean zero and uncorrelated variances. The ARCHmodel improves the quality

of the volatility forecast. However, it does not consider the empirical conditional

volatility and its impact on the forecast conditional volatility.

In his paper, Bollerslev (1986) proposes a generalisation of the ARCH model

named generalised autoregressive conditional heteroscedasticity (GARCH), which

allows past conditional volatility to influence the forecast conditional volatility.

Over the long-run, without jumps in the sample, the conditional volatility con-

verges back to the unconditional volatility of the GARCH model. The uncondi-

tional volatility corresponds to the long term average volatility of the conditional

volatility.

Several other GARCH variants are proposed in the literature. Glosten et al.

(1993) introduces the GJR-GARCH or Threshold GARCH (TGARCH) to forecast

volatility. This model accounts for asymmetric effects of price movements on

the forecast volatility. To avoid the possibility of negative variance forecasts and

to consider asymmetric effects, an alternative is to use the exponential GARCH

(EGARCH) model by Nelson (1991). Other non-linear (NGARCH) or non-linear

asymmetric (NAGARCH) models are proposed by Higgins and Bera (1992) and

Engle and Ng (1993), respectively. To list all GARCH variants is beyond the scope

of this thesis. We refer the interested reader to the work of Bollerslev (2009) for a
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detailed glossary to ARCH and GARCH models.

The aforementioned univariate volatility estimation models are used to capture

volatility clustering behaviour. In volatile market situations, however, correlation

between assets can also increase as prices tend to move in the same direction. To

capture these correlation clustering effects multivariate GARCH models can be

used.

In Chapters 4 and 5 we apply multivariate GARCH models to reduce the cap-

ital requirements and to hedge the expected absolute loss of a portfolio, respec-

tively. There are several multivariate GARCH models discussed in the literature.

A useful classification is provided by Silvennoinen and Teräsvirta (2009) who dis-

tinguishes between (i) direct multivariate extensions of univariate GARCH models;

(ii) factor and orthogonal models; (iii) conditional correlation models; (iv) semi-

or non-parametric models to estimate dependencies. An alternative classification

is given by Bauwens et al. (2006). Models in the first category directly model the

conditional covariance between assets. These models are multivariate extensions

of the univariate GARCH model. The most popular models in this category are

the VEC (Bollerslev et al., 1988) and BEKK (Engel and Kroner, 1995) models.

However, these models require to estimate a high number of unknown parameters

and thus, are rarely used to estimate the dependencies when there are more than

three series. An alternative to reduce the number of unknown parameters can be

factor and orthogonal models (see e.g. Engel et al., 1990). Factor and orthogonal

models are linear combinations of univariate GARCH processes, which, if they are

uncorrelated, represent different components that drive the returns. Correlated

factors are undesirable as they capture similar characteristics of the series. The

third category of multivariate models are conditional correlation models. The idea

is to first estimate the conditional variance and correlation before deriving the

conditional covariance matrix. The parameters of the model are independent form

the number of series to be analysed, which is an computational advantage to other
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multivariate GARCH models. However, this can also be a weakness if the number

of series is large, as the same parameters are used for all series to estimate the

conditional correlation matrix. The most common conditional correlation models

are the Constant Conditional Correlation (CCC) (Bollerslev, 1990) and Dynamic

Conditional Correlation (DCC) (Engle, 2002) model, which is an extension of the

CCC model. Semi- and non-parametric correlation models in category four, can be

used when there is no information about the structure of the data. Possible mis-

specification of the data structure can result in inconsistent estimator. A detailed

discussion of the recent developments in this category can be found in Linton et al.

(2009).

It is difficult or maybe impossible to identify which of the volatility and corre-

lation models have the best out-of-sample forecasting performance. This could be

an interesting topic for future research but it is beyond the scope of this thesis.

In the empirical analysis of Chapters 4 and 5, we use the DCC model as the

forecast conditional correlations are easy to estimate and have a natural interpre-

tation. The number of series used in the empirical analysis of this thesis does not

require to reduce the estimation parameters by using more generalised multivari-

ate GARCH models. In Chapter 4, we demonstrate how multivariate GARCH

models can be used to simulate index level movements to improve the portfolio

VaR and CVaR forecast to reduce the regulatory capital requirements of financial

institutions. Moreover, in Chapter 5 we propose a new hedging approach which

applies a multivariate volatility forecasting model and Monte Carlo simulation to

reduce the risk of a market portfolio.

2.3 Hedging Techniques

Managing the risk of a portfolio is not just important for banks to reduce their

regulatory capital requirements but also to reduce the uncertainty about the ex-
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pected portfolio value at some future point in time. This is of particular relevance

in volatile market situations as experienced during the financial crisis in 2008.

A common approach to secure the value of an equity investment at a certain

maturity is to use forwards or futures contracts. The value of the futures contract

is equal to the value of the underlying asset at the maturity of the futures contract.

Thus, the forward or futures contract perfectly hedges the change in the underlying

asset value, at maturity. An investor with a long position in an equity can simply

short a futures contract on this equity to secure the future value of his investment.

However, there are several drawbacks of using futures to hedge an underlying. This

strategy only works if there is a forward or futures market for the asset the investor

wants to hedge. The investor has to provide additional capital (e.g. initial and

variation margin) for the futures investment, which he might be unable to provide

if he faces a budget constraint. Moreover, selling futures as hedging strategy also

offsets upside potential of the hedge.

Johnson (1960) assumes that the hedger is not only concerned about securing

the investment value but also about its expected returns. He proposes a minimum

variance hedging approach using futures to reduce the risk of a portfolio while

maintaining upside potential. More sophisticated research on minimum variance

hedging has been done by Hill and Schneeweis (1982), Figlewski (1984) and many

others. The idea of minimum variance hedging with time-varying covariances was

first introduced to by Baillie and Myers (1991). They use the bivariate GARCH

model to estimate an optimal futures hedge ratio for some commodities. Several

other GARCH processes have been proposed for minimum variance hedging prob-

lems (see e.g. Kroner and Sultan, 1993; Ji and Fan, 2011). These papers conclude

that time-varying covariance models improve minimum variance hedging compared

with static covariance assumptions.

The use of minimum variance hedging as an effective strategy to reduce the

risk of a portfolio is only justifiable if the asset returns are normally distributed
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or the utility function of the investor is quadratic. These assumptions, however,

are questioned by several empirical studies (see e.g. Tang and Choi, 1998; Scott

and Horvath, 1980). Harris and Shen (2006) shows that minimum variance hedg-

ing can even increase negative skewness and kurtosis and thus, lead to portfolios

with higher VaR and CVaR measures. Alternative frameworks to overcome the

drawbacks of variance are quantile risk measures, which we discuss in more detail

in Chapter 5.

More recent literature questions the efficiency of minimum variance hedging

and quantile risk hedging using futures and time-varying volatility models (see

e.g. Poomimars et al., 2003; Alexander and Barbosa, 2007; Mattos et al., 2008).

Their research suggest that the introduction of transaction costs to time-varying

volatility hedges clearly reduces the opportunity costs of not hedging (Mattos et al.,

2008). The motivation to hedge is reduced even further when considering initial

and maintenance margin deposits for selling futures contracts.

Moreover, Alexander and Barbosa (2007) found that minimum variance hedg-

ing using futures contracts performs worse than a naive alternative because of

the maturity mismatch of the minimum variance hedge. Often, the maturity of

the futures does not match the hedging period. The options market, however,

offers several instruments with different maturities and thus, reduces the risk of a

maturity mismatch.

We address the issue of high transaction costs and low opportunity costs for not

hedging in Chapter 5 of this thesis where we propose a self-financing single-option

hedging approach to secure the value of an equity portfolio. Our proposed model

uses a single long index put option as hedging instrument as there is no margin

deposit required for long positions and we reduce the risk of a maturity mismatch.



Chapter 3

Balancing Profitability and Capital

Absorption with Heuristic

Optimisation and Unconditional

Coverage Constraint

In this chapter, we reduce the regulatory capital requirements for the market port-

folio of financial institutions using heuristic optimisation methods and a new risk

management approach. In particular, we examine how the objective functions de-

scribed in Section 2.1 can reduce the Basel III market risk capital requirements,

using Threshold Accepting (TA) heuristic algorithm. The heuristic optimisation

results are compared with the Trust-Region (TR) local search method. Moreover,

we propose a new optimisation approach based on the log-likelihood ratio for the

Unconditional Coverage (UC) test (LRUC) to manage the regulatory capital re-

quirements. Compared with methods introduced in recent literature, our approach

actively manages the portfolio minimum capital requirements while avoiding to

over- or underestimate the portfolio risk.

The results of the empirical analysis show that the TA search algorithm ap-
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plied to a CVaR objective function yields the lowest Basel III market risk capital

requirements, in comparison with several different objective functions combined

with different optimisation routines. Not only does the TA algorithm outmatch

the TR algorithm in all risk and performance measures, but when combined with

a 1% CVaR or VaR objective function, it also achieves the best portfolio risk

profile. Portfolios optimised with our new capital constraint successfully reduce

the Basel III market risk capital requirements. In general, portfolios with VaR

and CVaR objective functions and underlying standard normal distribution yield

better portfolio risk profiles and have lower capital requirements.

This chapter is organised as follows: Section 3.1 motivates heuristic optimi-

sation algorithms and our new constraint to minimise the regulatory capital re-

quirements. In Section 3.2, we introduce our advocated approach to manage the

capital requirements and review the optimisation algorithm and evaluation meth-

ods. Section 3.3 demonstrates the superiority of heuristic optimisation to reduce

the regulatory capital requirements of a market portfolio. In Section 3.4, we ap-

ply the proposed capital requirements approach in an empirical analysis. Finally,

Section 3.5 concludes.

3.1 Introduction

Recent financial crises have highlighted several weaknesses in the risk management

practices of financial institutions. To prevent future negative impacts on the finan-

cial market and the economy, financial regulators have enhanced the regulatory

framework with major focus on the capital and liquidity standards.

In 1995, the Basel Committee introduced the market risk rules on minimum

capital requirements (Basel Committee on Banking Supervision, 1995). The rules

were set to strengthen the stability of financial institutions. Thus, as a result

of the financial crisis in 2007, the Committee published a revision of the market
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risk framework in July 2009 (Basel Committee on Banking Supervision, 2009a),

which is now part of the 2010 Basel III framework (Basel Committee on Banking

Supervision, 2010).

The market risk framework requires banks to calculate their individual mini-

mum market risk capital requirements to cover potential losses that might arise

from their market activity (Basel Committee on Banking Supervision, 1996). The

internal model approach to calculate the minimum capital requirements, requires

the risk models to meet a series of quantitative and qualitative standards. One

essential criteria is to calculate the rolling one-day 1% VaR based on at least 250

days of empirical data (Basel Committee on Banking Supervision, 2009b).

The new Basel III framework increases the minimum capital requirements of

financial institutions. Hence, banks are increasingly interested to find ways to

decrease their capital requirements. Existing literature suggest to either maximise

the return for a given VaR or capital requirement constraint (see e.g. Sentana,

2003; Cuoco and Liu, 2006; Alexander et al., 2007) or to minimise the amount

of regulatory capital required to underlie a certain investment (see e.g. McAleer

et al., 2010; Santos et al., 2012; Drenovak et al., 2017). In this thesis, we follow

the latter approach.

Intuitive objective functions to reduce the capital requirements are downside

risk measures, i.e. VaR and CVaR. Often, however, downside risk measures lead

to complex optimisation problems with multiple local extremes over the entire

multidimensional search space. To find an approximate global solution to the

search problem, when other search methods are too slow, heuristic algorithms

can be used. Dueck and Winker (1992) proposed heuristic search algorithms in

portfolio optimisation and applied the TA algorithm, introduced in Dueck and

Scheuer (1990), to a bond portfolio optimisation problem.

In this chapter, we first apply the TA heuristic algorithm to a portfolio alloca-

tion problem and compare it against the TR local search method. In contrast to
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the existing literature, however, we analyse the Basel III market risk capital re-

quirements of the optimised portfolios. As a first contribution of this chapter, we

shed more light on the impact of the optimisation approach on the VaR backtesting

described by the Basel Committee. In particular, we examine how a combination

of TA optimisation algorithm and VaR and CVaR objective functions can reduce

the market risk capital requirements.

As a second contribution, we propose a new method based on the UC test to

reduce the regulatory capital requirements while optimising the portfolio for some

objective function, introduced in Section 2.1. The proposed optimisation process

minimises the capital requirements of a portfolio by avoiding to select a portfolio

that over- or underestimates the number of daily VaR violations. To determine the

optimal number of daily VaR exceedings we impose a LRUC constraint. To solve

this non-linear optimisation problem we apply the TA heuristic search method,

following the work of Lyra et al. (2015). We use a dynamic rolling window approach

for the optimisation of the portfolio weights.

This approach differs from related previous literature in several ways. McAleer

et al. (2010) proposes a dynamic decision rule based on the number of daily VaR

violations, to consult the risk manager on how conservative or aggressive the cur-

rent investment is in comparison with the estimated risk. This approach can be

classified as a passive risk management approach as the proposed decision rule

does not influence the portfolio weight compilation. An active risk management

approach to minimise the regulatory capital requirements is introduced by Santos

et al. (2012). The proposed objective function minimises the maximum of either

the last one day 1% VaR or the 60 days average daily 1% VaR, both for regular

and stressed VaR. To determine the optimal portfolio with minimum capital re-

quirements they provide an analytical solution by reformulating the optimisation

problem into a convex objective function with a limitation on the maximum num-

ber of daily VaR violations. The parameters of the applied GARCH models are
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calculated for one in-sample period and are adopted throughout the optimisation

process. A dynamic extension of this approach is presented by Drenovak et al.

(2017), who provide a non-linear multi-objective function to minimise the capital

requirements and maximise the expected portfolio return. The optimisation pro-

cess is performed using a Non-dominated Sorting Genetic Algorithm II (Deb et al.,

2002) run in a parallel framework developed by Ivanovic et al. (2015). However,

Drenovak et al. (2017) do not include a limitation on the number of daily VaR vi-

olations in the optimisation process. This can potentially cause optimal portfolios

to have a high number of VaR violations and ultimately can negatively affect the

financial stability of the bank.

Our advocated LRUC constraint optimisation approach differs from previous

literature as it assists the risk manager to determine the optimal portfolio that

avoids over- and underestimation of the portfolio risk and thus, optimises the min-

imum capital requirements for the portfolio. The new approach incorporates the

Basel backtesting rules via the application of the LRUC constraint. It is benefi-

cial for risk managers whose main objective is to optimise the regulatory capital

requirements for a given objective function.

In Section 3.3, the Minimum-Variance (MV) and downside risk measures VaR

and CVaR with underlying empirical distribution at 1% and 5% significance level

are used as objective functions. MV is a standard risk measure used in portfolio

optimisation literature. While VaR and CVaR with 1% and 5% significance level

have become important risk measures in quantitative risk management literature

and regulations (Basel Committee on Banking Supervision, 2009b).

Section 3.4 uses MV and downside risk measures VaR and CVaR with un-

derlying empirical and standard normal distribution at 1% significance level as

objective functions. We optimise the portfolios with the TA heuristic algorithm

and the common TR local search algorithm to compare our results and to check

that the proposed optimisation constraint does not heavily rely on the optimisation
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procedure used. Other popular heuristic methods proposed in the literature are

Particle Swarm Optimisation (Eberhart and Kennedy, 1995), or Ant Colony Op-

timisation (Dorigo et al., 1999). We refer the interested reader to Maringer (2005)

and Gilli et al. (2011) who give a good overview of the most common heuristic

search methods.

3.2 Methodology

In the following, we first review the optimisation algorithms used in the optimisa-

tion process in Section 3.2.1. Section 3.2.2 describes the evaluation method used in

this chapter before we introduce our capital requirements approach in Section 3.2.3.

3.2.1 Search Algorithms

Local search algorithms are standard optimisation processes that are widely used

in portfolio optimisation. A common and well known local search method is the

TR. The pseudo code for the TR algorithm given in Algorithm 1. To find the

local minimum of a constraint minimisation problem f(·) the objective function

is calculated for several trial steps s. The trial steps are drawn from a random

neighbourhood (N TA) around a current search point wc (Byrd et al., 1987). If

the objective function f(ws) is smaller than f(wc), then the current point wc is

updated to ws. If f(ws) is not smaller than f(wc) the current search point is not

updated. This process can cause f(wc) to get stuck at a local minimum when the

current solution is at a saddle point (Yuan, 2000).

The other optimisation method that we consider for our portfolio selection

problems is the TA algorithm. It was first introduced to portfolio optimisation by

Dueck and Winker (1992). The TA is a fast algorithm that even works well for

large problem instances. It can easily be implemented and provides robust results

for a variety of objective functions and constraints (Gilli and Këllezi, 2002).
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Algorithm 1 Trust-Region Algorithm
set nrounds
randomly generate initial current solution wc
for r = 1 : nrounds do
generate wnεN TR (wc)
compute 4 = f (wn)− f (wc)
if 4 < 0 then
wc = wn

end if
end for

The TA is a trajectory optimisation method that gradually changes the current

solution (Gilli et al., 2011). This is similar to the local search method. However,

the TA also accepts solutions that are inferior to the current solution. This is,

as long as the difference between the new solution and the current solution is less

than a certain threshold τ , where τ is a sequence of thresholds decreasing over

time (Gilli et al., 2006).

A neighbourhood function N TA is used to define new solution in a neighbour-

hood of the old one. First, a random current solution wc is set. Then the weight of

one asset wi is slightly reduced by a certain decimal factor. The weight of another

asset wj is selected and increased by the same decimal factor. If the asset weights

are within a defined upper and lower bound, the current solution wc is updated to

the new solution wn; otherwise wc is not updated.

The pseudo code for the TA algorithm given in Algorithm 2 is based on the

model presented by Gilli et al. (2011).

To ensure that the algorithms find an optimal solution, we restart the search

process several times. For our analysis, the parameters are set to six restarts, five

rounds and 5,000 steps for a total of 25,000 iterations per restart. The asset weights

are adjusted by a decimal factor of 0.005. The parameters are chosen after testing

several different parameter settings and examining the convergence of the objective

function value. In our analysis, the parameters chosen led to fast converging results
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Algorithm 2 Threshold Accepting Algorithm
set nrounds and nsteps
set threshold sequence τr
generate initial current solution wc
for r = 1 : nrounds do
for i = 1 : nsteps do
generate wnεN T A (wc)
compute 4 = f (wn)− f (wc)
if 4 < τr then
wc = wn

end if
end for

end for

and are the most computationally time efficient calibration. After 50% of the

iterations the TA algorithm approaches 86% of the optimal solution.

For the calculation of the threshold sequence we use five percentiles equally

distributed from 0.9 to 0. The threshold sequence is calculated as suggested by

Gilli et al. (2006). At each round we adjust the threshold to τr. As the objective

function outcomes are random, we restart the algorithm several times, starting

with an equally weighted portfolio, and take the best solution; ideally, the solution

should lead to a good out-of-sample result.

To minimise the objective function the TA algorithm can explore the set of

possible asset weights that satisfy the constraints. However, a faster approach

is to accept all solutions and penalise the ones that violate the constraints. To

find the optimal portfolio that satisfies the inequality target return constraint, we

extend the objective functions f(·) described in Equations (2.1-2.5) by a penalty

function p(·)

p(µport, µtarget) =


c if µtarget > µport

0 if µtarget ≤ µport
(3.1)

where c = exp(µtarget − µport)− 1 (Bertsekas, 1996). Thus, the optimisation prob-
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lem F (·) is defined as a combination of one of the risk measures defined in Equa-

tions (2.1-2.5) and the penalty function p(·)

F (w, µport, µtarget) = f(w) + p(µport, µtarget). (3.2)

3.2.2 Evaluation and VaR Backtesting

To determine the market risk capital requirements, the Basel III Committee re-

quires banks to backtest their market risk models. The Committee uses a traffic

light scheme to classify the backtested models into three zones depending on the

number of portfolio returns exceeding the one-day historical 1% VaR in the sam-

ple period. Each zone comes with a different multiplication factor that is used

to calculate the market risk capital requirements (Basel Committee on Banking

Supervision, 1996). The green zone indicates that the risk model is accurate and,

hence, models in this zone have the lowest multiplier. The accuracy of risk models

in the yellow zone is questionable. Models in the red zone are determined to be

flawed and therefore, have the highest multiplier. The multiplication factor ranges

from three in the green zone to four in the red zone. For the yellow zone the

multiplier lies between three and four. To determine the boundaries for the three

zones, the binomial probabilities are calculated for a given sample size and 99%

coverage ratio. The green zone extends up to a cumulated probability of 94.99%,

whereas the yellow zone starts at a cumulated probability of 95%. A cumulated

probabilty of 99.99% and above indicates the red zone. The regulatory market

risk capital requirements (CR) are the maximum of either the one-day 99% VaR

at day t before assessment or the last 60 days one-day 99% VaR average (V aR60)

times a multiplier m deduced from the traffic light scheme

CR = max{V aRt,m× V aR60} (3.3)
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(Basel Committee on Banking Supervision, 1996).

In Appendix A, we provide more details about the latest updates in the min-

imum regulatory capital requirements for market risk calculation and elaborate

more on why we apply the Basel II formula (Basel Committee on Banking Super-

vision, 1996) in our empirical analysis.

In this thesis, the international financial standards proposed by the Basel Com-

mittee on Banking Supervision (BCBS) and the Financial Stability Board (FSB)

are used in the optimisation and analysis. In essence, this is because these commit-

tees provide standardised approaches, methodology and quantification of financial

regulation across member countries. The implementation of these standards into

national law are carried out by the member countries. The national standards

can deviate to some extent from the standards proposed by the BCBS and FSB,

i.e., the United States regulations are often more restrictive than the standards

proposed by the BCBS and FSB. Fratianni and Pattison (2015) provide a detailed

comparison and discussion of Basel III implementation in the European Union and

the United States.

Unconditional Coverage Test

A very common test in quantitative risk management is the UC test proposed by

Christoffersen (1998). If the number of portfolio returns exceeding the daily VaR

estimates is less than a certain significance level, it would indicate that the risk

model overestimates risk. Otherwise, if the number of violations are more than

the expected number, the risk model is likely to underestimate risk. The UC test

is used to assess whether the risk model is acceptable or not.

The parameter ηt is used to determine whether a violation occurred on day t or

not. ηt is an i.i.d. Bernoulli sequence and, hence, can take the values 1 or 0. The

value 1 indicates a violation on day t and 0 implies no violation. The Bernoulli
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density function is

fBernoulli(θ) = θηt(1− θ)1−ηt (3.4)

where θ is the probability of failure (PF) (Christoffersen, 2003).

The PF can easily be estimated by

θ̂ =
υ1
WT

(3.5)

where υ1 is the total number of violations and WT is the number of observations

in the testing period (Danielsson, 2011). The likelihood function for θ̂ is

L(θ̂) = θ̂υ1
(

1− θ̂
)1−υ1

. (3.6)

The log-likelihood ratio for the UC test tests the hypothesis that the expected PF

θ equals the observed PF θ̂

LRUC = −2 log

(
θυ1(1− θ)1−υ1

θ̂υ1(1− θ̂)1−υ1

)
∼ χ2

1 (3.7)

(Danielsson, 2011). A χ2-test with one degree of freedom is used to test LRUC .

Independence and Conditional Coverage Test

The independence coverage (IND) test studies if the violations are independently

distributed over time. Based on the work of Christoffersen (1998), we calculate

the probability for two consecutive violations (θ11) and the probability of a non-

violation followed by a violation (θ01) on day t and t+ 1. A non-violation on day

t followed by a violation on day t+ 1 is represented by the subscript integers. The
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first-order Markov chain transition matrix is

Π1 =

1− θ01 θ01

1− θ11 θ11

 .
For a sample with WT observations the likelihood function is

L (Π1) = (1− θυ0001 )θυ0101 (1− θυ1011 )θυ1111 (3.8)

where υij is the number of observations where i and j are either 1 or 0 (Danielsson,

2011).

The probabilities of θ̂01 and θ̂11 are estimated with

θ̂01 =
υ01

υ00 + υ01

θ̂11 =
υ11

υ10 + υ11

(Christoffersen, 2003), which results in the estimated transition matrix

Π̂1 =

1− θ̂01 θ̂01

1− θ̂11 θ̂11

 .
It is preferable that a violation is not followed by another violation as this indicates

that the risk models is unable to adjust for new information. Hence, the probability

of a violation tomorrow should not depend on today’s observation. Under the

assumption of independence the null hypothesis that a violation tomorrow does not

depend on today being a violation, can be written as θ01 = θ11 = θ (Christoffersen,
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2003). This gives us the following transition matrix

Π̂0 =

1− θ̂ θ̂

1− θ̂ θ̂


where

θ̂ =
υ01 + υ11

υ00 + υ10 + υ01 + υ11

and the likelihood function for the null hypothesis is

L
(

Π̂0

)
= (1− θ̂)υ00+υ10 θ̂υ01+υ11 (3.9)

(Danielsson, 2011). Finally, the likelihood ratio test is given by :

LRIND = −2 log

[
L(Π̂0)

L(Π̂1)

]
∼ χ2

1 (3.10)

(Christoffersen, 2003). The independence coverage test is χ2 distributed with one

degree of freedom.

Furthermore, to test for violation clustering and whether the number of viola-

tions significantly deviate from the expected number of violations, we can use the

conditional coverage test (CC). The CC is a joint test of LRUC and LRIND. The

test statistic can be written as

LRCC = LRUC + LRIND ∼ χ2
2 (3.11)

resulting in LRCC being χ2 distributed with two degrees of freedom (Danielsson,

2011).
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3.2.3 Optimal Management of Capital Requirements

To reduce and optimally manage the regulatory capital requirements summarised

in Equation (3.3), we introduce a new inequality constraint based on the LRUC

ratio in Equation (3.7).

The minimisation problem can be rewritten as

min
w
F (·) (3.12)

subject to the constraints introduced in Section 2.1 and:

LRport
UC ≤ χ2

1

where LRport
UC is the LRUC ratio of portfolio set port that needs to be less then or

equal to the critical value of a χ2-test at one degree of freedom. For the LRport
UC

ratio daily VaR levels, based on the empirical distribution at a 1% significance

level, are calculated using a 250 days learning period. The inequality constraint

is implemented on the basis of a penalty function similar as the one introduced in

Equation (3.1). When the constraint is violated, c is defined as exp(LRport
UC − χ2

1).

3.3 Empirical Heuristic Optimisation Results

In this section, we first analyse the efficiency of heuristic optimisation for variance

and empirical VaR and CVaR objective functions at different significance levels,

to reduce the market risk regulatory capital requirements. Section 3.4 then builds

on this work and further investigates the effect of empirical and standard normal

based VaR and CVaR optimisation on the regulatory capital requirements.

The empirical analysis in this chapter and the entire thesis focuses on a portfolio

of the constituents of the Dow Jones Industrial Average (DJIA) index. The DJIA
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index is a highly liquid stock market with a long transaction history. Also, the

DJIA index is the underlying of several derivatives with different strike prices

and maturities, which is relevant for Chapter 5. We consider daily closing prices

sampled from 1st January 2003 to 1st January 2013 to cover periods with high

and low market volatility. Log-returns are computed for a total of T = 2610 days

and M = 30 equities.

We include data outliers caused by market shocks in our analysis, i.e., the stock

market crash in 2008. This follows the approach of related literature, e.g., Santos

et al. (2012), Uylangco and Li (2016), Kellner and Rösch (2016), who all include

crisis events in their optimisation and analysis. As we use a rolling window optimi-

sation approach the models are trained and tested for periods without (pre-crisis)

and with (post-crisis) data outliers. We include crisis events in our optimisation

as we are particularly interested in i) the algorithms ability to identify optimal

solutions that also hold in the event of a crisis, and ii) the ability of VaR and

CVaR objective functions to provide stable results in turbulent market cycles.

A common approach in the financial literature is to distinguish between in-

sample and out-of-sample periods (Bailey et al., 2014). The in-sample or learning

period, is used in the design of the strategy while in the out-of-sample period the

performance of the strategy is tested. In this section, the portfolio optimisation is

based on a 1250 days in-sample and tested in a 10 days out-of-sample period. On

a rolling window basis the portfolio weights are rebalanced at the end of the 10

days out-of-sample period using a rolled forward in-sample training period. With

a total of 2610 days and an in-sample period of 1250 days the entire out-of-sample

period consists of 1360 days. Furthermore, daily 2-weeks T-Bill rates from 1st

January 2003 to 1st January 2013 are considered as the risk-free interest rate. All

financial data are downloaded from DataStream.

For the optimisation we impose the asset weights constraint, target return

and short selling constraints proposed in Section 2.1. The out-of-sample risk and
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performance of the optimal portfolios are analysed using common statistical mea-

sures, e.g. mean return, standard deviation, kurtosis, skewness, maximum draw-

down. In addition, we calculate the modified Sharpe ratio proposed by Israelsen

(2005), which avoids the shortcoming of the traditional Sharpe ratio and provides

a consistent way of ranking portfolios. We compare all portfolio optimisation re-

sults against the actual performance of the DJIA index and the “naive” equally

weighted (EW) portfolio. The latter two are considered as benchmark models and

are included to assess potential outperformance of the optimised portfolios.

For the portfolio optimisation process, we use the TA heuristic optimisation

and the TR local search algorithm. We consider the latter as the benchmark

approach. The algorithms optimise the objective function F (·), which is either the

MV objective function (Equation 2.1), the VaR or CVaR function with underlying

empirical distribution (Equations 2.2 or 2.3) at a 1% and 5% significance level.

In Section 3.3.1, we first compare the local TR search algorithm with the

heuristic TA search algorithm. In Section 3.3.2, we then compare combinations of

the optimisation algorithms and objective functions with respect to their impact

on the portfolio performance. Finally, in Section 3.3.3, the optimisation models

are evaluated based on the Basel III market risk capital requirements.

3.3.1 Comparison of Search Algorithms

Figure 3.1 first compares the dynamic portfolio allocation (weight structure) re-

sulting from the 23 = 8 combinations of optimisation algorithms (TA - upper

panels, Trust Region - lower panels), empirical objective functions (CVaR - left

panels, VaR - right panels) and confidence level (1% or 5%). A colour map for

the portfolio weights is presented Figure 3.2. As discernible, the portfolio compo-

sition for CVaR optimised portfolios exhibits far less fluctuation than their VaR

analogues, regardless of the confidence level and the optimisation method used.
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Figure 3.1 Comparison of the dynamic portfolio weights for different combina-
tions of VaR and CVaR objective functions with empirical distribtion, TA and TR
optimisation algorithm and 1% and 5% significance level. A colour map for the
portfolio weights is presented in Figure 3.2.
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Figure 3.2 Colour map for portfolio weights in Chapter 3.
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Figure 3.3 Empirical VaR at 5% significance level of the V aRH5% portfolio for
TA and local search algorithm in the in-sample (3.3A) and out-of-sample period
(3.3B).

(The standard Markowitz optimisation is included in our analysis but not plotted

here as it is widely studied in the literature.)

Figure 3.3 compares the TA algorithm with the TR search algorithm for the

V aRH5% portfolio. The figure shows the historical VaR value of the portfolio at a

5% significance level. The optimised portfolios have a lower VaR in the in-sample

period than the index and EW portfolio. Moreover, the portfolio optimised with

the heuristic algorithm shows to have a lower VaR than the portfolio optimised

with the local search algorithm. This finding is observed not only for the in-sample

period (Figure 3.3A) but also for the out-of-sample period (Figure 3.3B).
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Figure 3.4 Standard deviation of the CV aRH1% portfolio for TA and local search
algorithm in the in-sample (3.4A) and out-of-sample period (3.4B).

Figure 3.4 compares the standard deviation of the CV aRH1% portfolio with TA

and TR search method. The optimised portfolios have a lower standard deviation

than the index and the EW portfolio in the in-sample and the out-of-sample period.

In the in-sample period the TA algorithm produces better statistical results than

the TR algorithm (see Figure 3.4A). However, in the out-of-sample period, the

difference between both algorithms is marginal (see Figure 3.4B). In general, the

TA optimised portfolios show slightly better or at least the same results than

the portfolios with local search algorithm. This is observed for CVaR and VaR

objective functions with empirical distribution at 1% and 5% significance level.

The better results of the TA algorithm compared with the local search method

can be explained by the TA’s ability to avoid getting stuck at a local optimum in

the search space. When solution transitions are successful, the threshold is reduced

to explore local optima. This is why TA optimised portfolios show better results,

in the in-sample and out-of-sample period.

In Figures 3.3A and 3.4A we see a large change of the VaR and standard

deviation measure in the optimised in-sample periods between periods 25 and 35.
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The change in the risk measures is explained by the stock market crash between

2008 and 2009, which was due to the great financial crisis that started in 2007.

All optimisation periods after the 25 in-sample period include this extreme event

in their time series. This is why the VaR and standard deviation values stay on

the changed post-crisis level, for all in-sample periods. As both Figures show,

the TA algorithm is less affected by the crisis event and provides much better

in-sample optimisation results, compared with the V aRH5% local search, EW and

index portfolio. The crisis event can also be seen in Figures 3.3B and 3.4B, for the

out-of-sample period. The VaR and standard deviation value quickly change back

to pre-crisis levels, in the out-of-sample period. We see that the TA optimised

portfolio provides better out-of-sample results before, during and after the crisis,

compared with the local search portfolio, EW and index. Thus, we can conclude

that the stock market crash in 2008 has no influence on the superiority of the

heuristic algorithm over the local search method.

3.3.2 Comparison of Objective Functions

In this section we analyse how the choice of the objective function influences the

portfolio statistics and performance measures. The statistics are calculated for

portfolios with TA and TR optimisation algorithm for the entire out-of-sample

period. The results are displayed in Table 3.1. For completeness, we also provide

the results for the index and the EW portfolio.

As expected, the optimised portfolios have a lower standard deviation than the

index or the EW portfolio. The lowest standard deviation with 16.45% is reported

for the TA algorithm with 5% CVaR objective function. The portfolio mean return

for the TA optimised portfolios are all significantly higher compared with their TR

optimised equivalents. The TA optimised portfolios also outperform the index and

the EW portfolio.
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The highest performance can be seen for the 1% VaR objective function fol-

lowed by the CV aRH1% and the CV aRH5% optimised portfolios. The portfolios

with TA algorithm and CVaR (1% and 5%) and 1% VaR objective function are

the only portfolios with a positive modified Sharpe ratio. All other portfolios

and benchmark models have a negative modified Sharpe ratio. The portfolio with

the worst modified Sharpe ratio and thus, ranked lowest, is reported for the EW

portfolio with the lowest mean return and highest standard deviation. Figure 3.5

shows the entire out-of-sample portfolio development (normalised) for TA opti-

mised portfolios and the two benchmark models.

All TA optimised portfolios have a positive skewness while only three of the

portfolios with TR optimisation are positively skewed. A very high skewness with

0.63 can be seen for the V aRH5% objective function with TA algorithm. The same

portfolio is strongly leptokurtical, with a kurtosis of over 20. The TA CV aRH1%

portfolio has with 14.57 the lowest kurtosis of all TA optimised portfolios. Major

differences kurtosis and skewness between TA and TR optimised portfolios can be

seen for the VaR objective functions. The lowest overall kurtosis can be seen for

the index with 10.25.

Figure 3.6A shows the maximum drawdown of the portfolios in the in-sample

period. All optimised portfolios have a better maximum drawdown in the in-

sample period compared to the index and the EW portfolio which have substan-

tially high draw-downs. For the out-of-sample period, the optimised portfolios

outperform the index and the EW portfolio as Table 3.1 shows. The highest max-

imum drawdown with -37.16% is observed for the TA algorithm with a 1% CVaR

objective function, followed again by the 5% CVaR and 1% VaR optimised port-

folio with TA algorithm. Again, we see the highest difference between TA and TR

optimised portfolios for portfolios with VaR objective functions.

Figure 3.6B displays the 1% empirical CVaR of the TA optimised portfo-

lios. In the in-sample period, the TA CV aRH1% portfolio clearly outperforms
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Figure 3.5 TA portfolio price development (normalised) in the out-of-sample
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the other portfolios. As discernible in Table 3.1 in the out-of-sample period the

TA CV aRH1% portfolio has the second lowest annualised empirical CVaR value

with -0.6670, following the CV aRH5% portfolio with -0.6660.

Table 3.1 shows that in general portfolios with the TA optimisation algorithm

have better statistics and performance measures compared with the TR search

method. The most significant difference for all values can be seen for VaR opti-

mised portfolios. The TA also clearly outperforms the benchmark models.

3.3.3 VaR Backtesting Results

The risk profile of the portfolios is evaluated by the results computed in the VaR

backtesting which calculates the daily empirical VaR values for a 1% significance

level based on a rolling 250 days interval, as required by the Basel Committee

(Basel Committee on Banking Supervision, 2009b). Hence, the first daily VaR

value is calculated 250 days after the in-sample period. The VaR values are cal-

culated based on the empirical distribution of each portfolio. The results are

evaluated using LRUC , LRIND and LRCC with a χ2
1 distribution and a 1% sig-

nificance level. In our study, the Basel III traffic light scheme (Basel Committee

on Banking Supervision, 1996), which is used to calculate the Basel III capital

requirements for financial institutions, serves as an assessment criterion.
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Table 3.2 displays the LRUC , LRIND and LRCC ratio and the capital require-

ment for a one-day 1% VaR risk model with underlying empirical distribution. The

relative difference of the capital requirements for TA and TR optimised portfolios

is reported in the last column of the table. The capital requirement values are cal-

culated for a portfolio value of one monetary unit, making the results comparable

and interpretable for any portfolio market value. The results differ based on the

portfolio optimisation method used, i.e. the combination of objective function,

significance level and algorithm. For a better comparison, we also provide the

backtesting results for the benchmark models (in parenthesis, as the results are

not obtained by optimisation).

The χ2 distribution with 1% significance level and one degree of freedom is

used for the LRUC and LRIND test. For the LRCC test a χ2 distribution with 1%

significance level and two degree of freedom is used. The critical values are 6.64

and 9.21, respectively. The null hypothesis that the fraction of observed violations

equals the expected number of violations at the significance level is rejected, if the

values in the table exceed the critical value.

As Table 3.2 shows, the backtesting model is below the critical LRIND and

LRCC value for all optimised portfolios. Thus, the backtested VaR model is not

rejected for any of these portfolios for the investigated sample period. However,

the null hypothesis for the LRUC test is rejected for the CV aRH1% and V aRH1%

portfolio with TA optimisation and for theCV aRH5% and V aRH1% portfolio with

TR algorithm. The average probability of a VaR violation in these portfolios ex-

ceeds the probability of violations we expect for the assumed distribution function

and significance level.

As Figure 3.7 shows, the daily negative portfolio returns for the portfolio with

1% VaR objective function are less extreme than for a V aRH5% objective function.

The EW optimised portfolio has the highest capital requirements with 0.3440,

which is even worse than the index with 0.3150. The lowest capital requirements



49

(A) TA with VaR 5%

2008 2009 2010 2011 2012

−0.06

−0.04

−0.02

0

Year

P
or

tfo
lio

 R
et

ur
n

 

 

(B) TA with VaR 1%

2008 2009 2010 2011 2012

−0.06

−0.04

−0.02

0

Year

P
or

tfo
lio

 R
et

ur
n

 

 

(C) TR with VaR 5%

2008 2009 2010 2011 2012

−0.08

−0.06

−0.04

−0.02

0

Year

P
or

tfo
lio

 R
et

ur
n

 

 

(D) TR with VaR 1%

2008 2009 2010 2011 2012

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

Year

P
or

tfo
lio

 R
et

ur
n

 

 

Figure 3.7 Daily VaR backtesting in the out-of-sample (blue bars = negative
returns, red line = daily VaR level).
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with 0.2045 is reported for the CV aRH5% portfolio with TA search algorithm.

The second lowest capital requirements with 0.2075 can be observed for the same

objective function but for the local search algorithm. This can be explained by two

reasons: i) CV aRH5% has the second lowest average number of VaR violations (3.80

and 4.05 for TA and TR optimisation, respectively) and ii) the lowest empirical

portfolio VaR values. The results show that the 5% significance level captures

the tail risk of the portfolio distribution better than the 1% significance level.

For portfolios with MV objective function, the capital requirements are slightly

lower when the TA algorithm is used (0.2140). The TR algorithm yields higher

capital requirements (0.2145). The greatest difference with 23.1%, between TA

and TR optimised portfolio, is seen for the empirical 5% VaR objective function.

For the V aRH5% portfolio with local search algorithm the capital requirements are

0.2750, while for the same portfolio with TA algorithm the capital requirements are

0.2220. In general, the capital requirements for market risk are lowest whenever

the TA algorithm is used for the portfolio optimisation process. This is true for

all objective functions and most significant for the VaR optimised portfolios.

3.4 Portfolio Optimisation with Optimal Capital

Requirements Constraint

In the previous section, we demonstrated the superiority of heuristic optimisation

compared with the TR local search method. In this section, we apply our proposed

indirect capital requirements constraint, described in Section 3.4.1, in an empirical

analysis. This is to demonstrate how financial institutions can select an optimal

portfolio while minimising the regulatory capital requirements by avoiding to over-

or underestimate the risk of their market portfolio.

The analysis is based on the same empirical dataset presented in Section 3.3.
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In this section, the portfolios are trained for an in-sample period of 1250 days and

tested in a 60 days out-of-sample period. At the end of the out-of-sample period

the in-sample period is rolled forward by 60 days. Hence, with an in-sample period

of 1250 days and a total of 1361 days our analysis has 22 in-sample and out-of-

sample periods.

In the empirical analysis in Section 3.3, transaction costs were not considered

in the optimisation of the portfolios. Besides the practical relevance, transaction

costs can have a considerable effect on the optimal portfolio weight allocation.

Thus, in this section we include proportional transaction costs of one basis point

in the optimisation process. Other forms of transaction costs are not included in

this analysis; we refer the interested reader to Mansini et al. (2015).

In this analysis, we set the asset weights upper bound to 20% and impose a

short selling restriction. Thus, the asset weights of the optimal portfolio have to

honour the following boundaries 0 ≤ wi ≤ 20% (see e.g. Mostowfi and Stier, 2013;

Braun et al., 2015). The asset weights must sum to one.

For the optimisation of the portfolios all objective functions described in Sec-

tion 2.1 are used. Moreover, we consider daily 3-month T-Bill rates from 30th May

2003 to 31st May 2013 as risk-free interest rates. The risk-free rate is also used as

target portfolio return in the optimisation process. We use the DJIA index and an

EW portfolio as benchmark models to compare the performance of the optimised

portfolios for potential outperformance. For the risk and performance analysis of

the portfolios, we use the same measures introduced in Section 3.3.

We first analyse the influence of our new optimal capital constraint on the

optimisation process in Section 3.4.1. We then compare portfolios optimised with

and without LRUC constraint in Section 3.4.2. Finally, we evaluate the portfolios

based on their Basel III market risk capital requirements in Section 3.4.3.
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Figure 3.8 Optimisation results for the optimal V aRH1% portfolio in the first in-
sample period. The blue and red line in Figure 3.8A shows the development of the
LRUC value during the optimisation process and the critical χ2 value, respectively.
Figure 3.8B shows the development of the number of portfolio violations with
LRUC constraint (blue line) and without LRUC constraint (green line).

3.4.1 Capital Constraint Penalty Function Results

The parameters for the TA algorithm are set to six restarts, five rounds and 5,000

steps, yielding a total of 25,000 iterations per restart. This calibration led to fast

converging results.

As the number of daily VaR violations is discrete, the LRUC value increases in

discrete steps. Hence, in the optimisation process there can be several portfolio

sets with the same LRUC penalty value. However, there are no portfolio sets with

penalty values in the continuous space between the discrete penalty steps.

Figure 3.8 shows the optimisation results of the V aRH1% objective function

for the first in-sample period, which stands exemplary for all optimised portfolios.

The red line in Figure 3.8A represents the χ2
1 critical value of 6.6349. Portfolio sets

with LRUC values above this line are penalised. Figure 3.8B shows the number of

daily VaR-limit violations of the LRUC constraint V aRH1% portfolio for the first

in-sample period (blue line). The green line shows the number of daily VaR-limit

violations for the V aRH1% without LRUC constraint.

The LRUC constraint leads to portfolios with optimal number of violations for
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the in-sample period. Thus, the optimal portfolios cannot maximise the yield for

a given portfolio VaR value, as highlighted by Marshall and Prescott (2006) and

Winker and Maringer (2007), but is restricted to avoid high number of daily VaR

violations. On the other hand, the number of daily VaR violations are not below

an optimal level to avoid the portfolio from being to conservative. We extend the

analysis of portfolio results with and without the LRUC constraint in the next

section.

3.4.2 Comparison of Portfolio Performance

Figures 3.9 and 3.10 show the portfolio weights resulting from the TA optimisa-

tion process for the entire out-of-sample period. In each figure, we compare the

portfolios with and without LRUC constraint for the MV and VaR and CVaR ob-

jective function at 1% significance level with underlying empirical (Figure 3.9) and

normal distribution (Figure 3.10).

The portfolio weights for MV, VaR and CVaR standard normally distributed

portfolios without LRUC constraint are very similar. This is because the alpha

percentile of the standard normal is constant for all the cases analysed as it is the

value of the standard normal density function for the alpha percentile. However,

the portfolio weights of the same objective functions with LRUC constraint differ

to a greater extent. Which can be explained by the capital constraint adding more

non-linearity to the optimisation surface.

For portfolios with empirical VaR and CVaR objective function the difference is

even larger. The difference between objective functions with underlying standard

normal and empirical return distributed can be explained by their density func-

tion. Portfolios with standard normal VaR and CVaR, as well as MV objective

function assume standard normally distributed returns with expected skewness

and kurtosis of zero and three, respectively. However, the skewness and kurtosis
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Figure 3.9 Comparison of the dynamic portfolio weights for different combina-
tions of the VaR and CVaR objective function with underlying empirical distribu-
tion. A colour map for the portfolio weights is provided in Figure 3.2.
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(A) 1% CVaR normal with LRUC

2008 2009 2010 2011 2012
0

0.2

0.4

0.6

0.8

1

W
ei

gh
ts

Year

(B) 1% CVaR normal without LRUC

2008 2009 2010 2011 2012
0

0.2

0.4

0.6

0.8

1

W
ei

gh
ts

Year

(C) 1% VaR normal with LRUC

2008 2009 2010 2011 2012
0

0.2

0.4

0.6

0.8

1

W
ei

gh
ts

Year

(D) 1% VaR normal without LRUC

2008 2009 2010 2011 2012
0

0.2

0.4

0.6

0.8

1

W
ei

gh
ts

Year

(E) MV with LRUC

2008 2009 2010 2011 2012
0

0.2

0.4

0.6

0.8

1

W
ei

gh
ts

Year

(F) MV without LRUC

2008 2009 2010 2011 2012
0

0.2

0.4

0.6

0.8

1

W
ei

gh
ts

Year

Figure 3.10 Comparison of the dynamic portfolio weights for different combi-
nations of the MV, VaR and CVaR objective function with underlying normal
distribution. A colour map for the portfolio weights is provided in Figure 3.2.
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of the empirical return distribution can deviate from the standard values (Fama,

1965). In situations where the market volatility increases, the empirical return

distribution of the assets might change to a large extent. In contrast to the mini-

mum capital requirements approach suggested by Santos et al. (2012), our LRUC

constraint adds more volatility to the portfolio weight allocation compared with

portfolios without our regulatory constraint. The LRUC constraint increases the

risk taking of portfolios that overestimate risk, as can be seen for VaR, CVaR and

MV objective functions with normal distribution assumption (see e.g. mean re-

turn, standard deviation and modified Sharpe ratio in Table 3.3). If the portfolio

underestimates the portfolio risk, the LRUC constraint reduces the portfolio risk,

as observable for empirical VaR and CVaR objective functions.

For the optimisation process we use the TR local search and the TA heuristic

algorithm. The TA algorithm led to slightly better results. Table 3.3 shows the

TA portfolio measures for the entire out-of-sample period. For comparison, we

also provide the results for the benchmark models. For the entire out-of-sample

period, portfolios optimised with our new constraint have higher mean return

values than their equivalents without LRUC constraint. The only exceptions are

VaR and CVaR optimised portfolios with underlying empirical distribution. All

portfolios have a higher mean return than the index. The only portfolio, however,

with higher mean return than the EW portfolio is the V aRH1% portfolio without

capital constraint.

The lowest standard deviation is reported for the CV aRH1% portfolio without

LRUC constraint with 16.95%. Portfolios with MV objective function also report

some of the lowest standard deviations with 17.13% and 17.08% with and without

LRUC constraint, respectively. The highest standard deviations can be seen for

VaR optimised portfolios with underlying empirical distribution. All portfolios

have a lower standard deviation value than the benchmark models.
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The optimised portfolios have a higher modified Sharpe ratio than the bench-

mark portfolios and are therefore ranked better. This is mainly because of the

lower standard deviation of the optimised portfolios compared to the index and

the EW portfolio. The highest modified Sharpe ratio with 41.31% can be seen for

the portfolio with V aRH1% objective function and no LRUC constraint. As before,

portfolios optimised with capital constraint and VaR and CVaR objective func-

tion with underlying normal distribution or MV objective function, have higher

modified Sharpe ratios compared to their equivalents without LRUC constraint.

The LRUC constraint slightly increases the standard deviation and mean return of

the portfolios with normal distribution, as the portfolios without LRUC constraint

overestimate the portfolio risk and behave to conservative.

The V aRH1% portfolio with capital constraint has a higher historical VaR value

than the VaR portfolio without our new constraint. The same can not be ob-

served for the other objective functions. The optimised portfolios are better then

the benchmark, however, portfolios optimised with the LRUC constraint have the

same or slightly worse objective measures than their equivalents without LRUC

constraint. The reason is that the portfolio with LRUC constraint is not just op-

timised for the objective function but also for the number of daily VaR violations

in order to reduce the capital requirements. Since the calculation of the capi-

tal requirements is mainly based on the daily or 60 days daily average VaR level

(Equation 3.3), respectively, portfolios with LRUC constraint are expected to have

lower empirical VaR measures than their equivalent counterparts without the new

constraint. As Table 3.3 shows, this is true for all objective functions. Portfolios

optimised with our new LRUC constraint always have slightly lower empirical 1%

VaR values compared to their equivalents without capital constraint.

With respect to the performance of portfolios with LRUC constraint, Table 3.3

shows that the portfolio optimised with CV aRN1% has a higher mean return

value compared with its counterparts with underlying empirical distribution. The
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CaRN1% portfolio with LRUC constraint has the highest mean return closely fol-

lowed by the MV and V aRN1% portfolio. The lowest portfolio performance has the

CV aRH1% portfolio. In general, for this analysis portfolios with underlying empir-

ical distribution have lower mean return values than portfolios using the standard

normal distribution. The same observation can be made for the modified Sharpe

ratio.

The MV portfolio has the lowest standard deviation (17.13%) of all portfolios

with LRUC constraint, whereas the V aRH1% portfolio has the highest values with

18.17%. All LRUC constraint portfolios have better values than the benchmark

models. The optimised portfolios are positively skewed and highly leptokurtic. The

LRUC constraint portfolio with the highest kurtosis (20.49) and skewness (0.79)

is reported for the CV aRN1% objective function. The lowest kurtosis (16.22) and

skewness (0.47) is given by the V aRH1% portfolio with capital constraint. Both

benchmark models have lower kurtosis and skewness values than the optimised

portfolios. Objective functions with underlying standard normal distribution have

a higher kurtosis and lower skewness than portfolios optimised with empirical

distribution.

Compared to the portfolio with CV aRH1% objective function and LRUC con-

straint, the CV aRN1% portfolio with LRUC constraint has a better empirical and

normal 1% CVaR value. The same can be observed for the V aRN1% portfolio. The

empirical VaR for the V aRN1% portfolio (-0.5373) is higher than the V aRH1% port-

folio (-0.5819). For the normal 1% VaR, V aRN1% is also better than the V aRH1%

portfolio, as Table 3.3 shows.

3.4.3 VaR Backtesting Results

The portfolio risk profiles are evaluated based on the results generated by the

backtested VaR model. For all portfolios with and without LRUC constraint, the
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model calculates the daily VaR values for a 1% significance level based on the

empirical portfolio distribution. The VaR values are computed on a 250 out-of-

sample days rolling window basis, which is the time period used by the Basel

Committee to evaluate the VaR disclosures of the financial institutions. Hence,

the first value is calculated for the 251st day of the out-of-sample period.

We use the UC, IND and CC test (see Equations 3.7, 3.10 and 3.11) to identify

whether the portfolios under- or overestimate risk (Christoffersen, 2003). More-

over, the Basel III market risk capital requirements (Basel Committee on Banking

Supervision, 2009a) serve as a further assessment criterion.

Table 3.4 shows the backtesting results for all portfolios. For comparison pur-

poses, we also provide the backtesting results for the index and EW portfolio. The

capital requirements are calculated for one monetary unit to make the results com-

parable across different portfolio allocations and scalable for any portfolio market

value. The critical values for a χ2 test with 1% significance level and one and two

degrees of freedom are 6.64 and 9.21, respectively. The null hypothesis for the UC,

IND and CC test is rejected if the corresponding test value in Table 3.4 exceeds

the respective threshold.

As Table 3.4 shows, all portfolios have LRIND and LRCC values below the

critical values. The LRIND values for the portfolios are close to zero, which means

that the violations are independently distributed over the out-of-sample period.

The LRUC values indicate that the portfolios have an optimal average number

of VaR violations over the testing period. The only exception is the V aRH1%

portfolio without our LRUC constraint. With a LRUC value of 8.23 this portfolio

clearly exceeds the critical χ2 test value of 6.64. We find that this is caused by

a relatively high average number of violations with 4.20. By comparison, the

equivalent portfolio with our LRUC constraint has an average of 3.63 yearly VaR

violations over the entire testing period.
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Our results are similar to the once presented by Drenovak et al. (2017) who use

high and low volatile optimisation periods from 2007 to 2013 for 40 constituents

of the S&P 100 index. They report a maximum number of VaR violations for the

common mean-VaR portfolio and their mean-regulatory VaR portfolio of 7 and

4 violations in the high volatility sample, respectively. The average number of

violations for their proposed VaR optimisation model is 2.93. Even though these

results are not directly comparable with our findings, it shows that our model is

capable to generate similar results over a longer out-of-sample period and for a

lower number of assets considered in the optimisation.

All portfolios have lower capital requirements than the benchmark models. In-

terestingly, the EW portfolio has the highest capital requirements (0.2915). This

is even worse than the index (0.2835) but can be explained by the higher empirical

1% VaR value. Portfolios optimised with LRUC all yield lower capital require-

ments than the objective functions without our new constraint. Hence, we can

conclude that the new constraint successfully reduces the Basel III market risk

capital requirements.

The lowest capital requirement is reported for the MV portfolio (0.1921), fol-

lowed by the CV aRN1% portfolio (0.1924). Both portfolios use the LRUC con-

straint in their optimisation. The constraint portfolio with the highest capital

requirements (0.2081) uses the CV aRH1% objective function. However, this is still

2.2% better than the equivalent portfolio without capital constraint (0.2126).

The most significant difference between portfolios with and without LRUC con-

straint can be observed for the MV objective function. The capital requirements

of the portfolio with LRUC are 10.2% lower than the portfolio without constraint.

This is followed by the portfolio with the CV aRN1% objective function, where the

LRUC constraint reduces the capital requirements by 9.9%.

Surprisingly, the LRUC portfolios with VaR and CVaR objective function and

underlying empirical distribution have higher capital requirements than their coun-
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terparts with underlying normal distribution. Thus, the capital requirements for

the portfolio with CV aRN1% objective function is 8.1% lower compared with the

CV aRH1% portfolio. For the VaR objective function the portfolio with normal

distribution has 2.8% lower capital requirements.

Our new LRUC capital constraint reduces the Basel III market risk capital

requirements by up to 10.2% compared to portfolios that do not use the constraint.

The most significant improvement can be seen for the MV and the CV aRN1%

portfolio. However, it should be mentioned that minimising the regulatory capital

requirements, as proposed by Santos et al. (2012) and Drenovak et al. (2017), is

not the primary objective in our optimisation approach. The suggested LRUC

constraint aims to control the number of VaR violations to prevent portfolios from

entering the red zone of the Basel III traffic light scheme to avoid potential financial

instability and damaging effects on the banks reputation. On the other hand, the

LRUC constraint circumvents overestimation of the portfolio risk as this can have

negative effects on the banks social and economic factors.

We provide extended test results for the application of our LRUC constraint in

Table B.1. For a time series from 30th January 2006 to 29th January 2016, we com-

pare the out-of-sample results of V aRH1% portfolios with and without the LRUC

constraint for a 10-days and 1-day out-of-sample holding period. The results show

that the V aRH1% portfolio with LRUC constraint has on average lower minimum

capital requirements, a lower average number of daily VaR violations and a better

multiplication factor. The findings support the test results in Section 3.4.3 for an

updated time series and different investment horizons. Moreover, the results high-

light that our innovative constraint contributes to a better portfolios management

under consideration of regulatory requirements.
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3.5 Conclusion

In this chapter, we first examined how a combination of TA optimisation algorithm

and objective functions described in Section 2.1 can reduce the market risk capital

requirements. Then, we introduced a new risk management approach based on

the UC test to create portfolios that minimise the regulatory capital requirements

while avoiding to over- or underestimate the market portfolio risk.

The first part of our empirical analysis showed that the TA algorithm achieved

better risk measures than the TR local search algorithm whenever VaR or CVaR

objective functions with underlying empirical distribution is used. This can be

observed for 1% and 5% significance levels. The most significant improvement in

the risk measure can be seen for VaR based objective functions. Due to the non-

linear nature of VaR optimisation problems, the TA algorithm clearly finds better

optimal solutions than the TR search method for VaR optimised portfolios.

The portfolio risk profile can be improved when the TA search algorithm is

used with an empirical CVaR (1% or 5%) and 1% VaR objective function. For all

VaR and CVaR objective functions, the TA optimised portfolios have substantially

better risk measures than the TR optimised portfolios. The TA portfolios also

clearly outperform the benchmarks in any risk measure. The TA portfolio with

5% CVaR objective function exhibits a lower standard deviation than any other

portfolio. It also has a better standard deviation than the MV optimised portfolios.

In terms of reducing the probability of significant portfolio losses, the TA optimised

portfolios also have the lowest maximum drawdown. In both the in-sample and

out-of-sample period the TA portfolios with empirical CVaR (1% or 5%) and 1%

VaR objective functions clearly surpass the other portfolios. Furthermore, the best

portfolio performance in terms of price development in the out-of-sample period

is obtained when the empirical 1% VaR objective function or a CVaR objective
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function is used with heuristic algorithm.

Our empirical results show that the TA optimisation improves the capital re-

quirements for all portfolio objective functions in our study. We find that the

CV aRH5% portfolio with TA algorithm has the lowest capital charges. The most

significant improvement to TR optimised portfolios can be seen for the V aRH5%

portfolio with an improvement of almost 24%.

In the second part of our empirical analysis we studied the contribution of

our LRUC constraint to reduce the regulatory capital requirements of financial

institutions.

The results of our empirical study show that our new risk management ap-

proach reduces the empirical VaR level of a portfolio and optimises the portfolio

for the Basel III traffic light scheme. The capital constraint leads to better ob-

jective function measures compared with portfolios without LRUC constraint, in

the out-of-sample period. For portfolios optimised with empirical VaR or CVaR

objective function the results are about the same compared to their equivalents

without LRUC constraint. Portfolios with optimal capital constraint have better

empirical 1% VaR values than portfolios without LRUC constraint. Except for the

V aRH1% and CV aRH1% portfolio the results report higher modified Sharpe ratios

for portfolios optimised with our optimal capital constraint.

Even though our LRUC constraint does not aim to minimise the capital re-

quirements, our empirical results suggest that for all optimised portfolios we were

able to improve the results. Portfolios optimised with LRUC constraint reduce

the capital requirements by up to 10.2% compared to the same portfolio without

capital constraint, in the out-of-sample period. The most significant difference

between portfolios with and without LRUC constraint is seen for portfolios with

MV and CV aRN1% objective function. VaR and CVaR objective functions with

underlying standard normal distributions report lower capital requirements than

their counterparts with empirical distribution.
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Compared with the work of Santos et al. (2012) and Drenovak et al. (2017),

portfolios optimised with our proposed constraint achieve similar number of daily

VaR violations. However, a benefit of our advocated LRUC constraint is that it

manages the regulatory requirements while the risk manager can choose individual

objective functions to be optimised.

With the introduction of the new Basel III framework, banks are increasingly

interested to find ways to reduce their regulatory capital requirements. Imple-

menting our advocated LRUC based capital requirements approach is a valuable

method for financial institutions to optimally manage their market portfolio while

indirectly controlling the regulatory capital requirements. Moreover, heuristic op-

timisation methods provide better optimisation results compared with local search

methods and therefore, are useful tools to manage the risk of financial institutions.

In this chapter, we studied the efficiency of standard normal and empirical

VaR and CVaR optimisation to reduce the regulatory capital requirements. The

use of Monte Carlo simulation and multivariate volatility estimation can more-

over improve the risk management and thus the capital requirements of financial

institutions. In case of simulation-based optimisation, TA is a computationally

expensive optimisation approach as it needs a large number of function evalua-

tions to generate a single solution. Thus, fast converging heuristic optimisation

methods are to be preferred in this case.

In the next chapter, we will be examining the influence of simulation-based

VaR and CVaR estimation on the number of daily VaR violations and the capital

requirements. The results can have implications for the banks internal risk model

as it compares different optimisation processes and how they influence the capital

requirements.



Chapter 4

The Leverage of Simulation on

Regulatory Capital Requirements

In the previous chapter, we introduced a new risk management approach to con-

trol the capital requirements for a variety of objective functions, described in Sec-

tion 2.1. Moreover, we demonstrated how the TA heuristic algorithm can reduce

the regulatory capital requirements of financial institutions.

In this chapter, we extend the previous study by examining the influence of

simulation-based VaR and CVaR estimation on the number of daily VaR viola-

tions and the capital requirements. In their empirical analysis on VaR backtesting

models, Uylangco and Li (2016) found that more advanced VaR estimation mod-

els experience a higher average number of VaR violations but on average lower

capital charges. We study if this conclusion also holds for portfolios with more ad-

vanced optimisation models. Moreover, previous literature that focuses on capital

requirements focuses on empirical and analytical one-day ahead VaR estimation.

In this chapter, we examine the influence of several-days ahead VaR and CVaR

estimation methods with different underlying distribution assumptions.

The results of our empirical analysis support the findings of Uylangco and

Li (2016), who examined a higher average number of VaR violations for more
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advanced VaR estimation models with standard normal distribution assumption.

In addition to the work of Uylangco and Li (2016), we find that the average number

of VaR violations can be reduced for optimisation models with empirical VaR and

CVaR objective function when based on the simulated returns. The simulation-

based approach gives higher priority to more recent information and thus, provide a

better estimation of the future return distribution. In general, the average number

of VaR violations is higher for empirical objective functions (Equations 2.2 and

2.3) than for standard normal objective functions (Equations 2.4 and 2.5), which

supports the findings of Winker and Maringer (2007). Moreover, our results show

that with Monte Carlo simulation the V aRH1% portfolio has a lower number of

average VaR violations than the V aRN1% portfolio. With regard to the capital

requirements, all portfolios, except the V aRN1%, reduce the capital charges when

based on the simulated returns distribution. Objective functions with standard

normal optimisation have lower capital requirements than their equivalents with

empirical distribution. Again, the only exception is the V aRN1% portfolio. Thus,

we can conclude that our forecast based Monte Carlo simulation approach reduces

the capital requirements and average number of VaR violations, for most of the

portfolios.

This chapter is structured as follows. In Section 4.1, we describe purpose and

contributions of this chapter. Section 4.2 introduces the methodology used in the

empirical analysis, which follows in Section 4.3. In Section 4.4, we conclude the

results of the analysis.

4.1 Introduction

In recent years, VaR has become a popular risk measure in portfolio management

and market regulations. As major component of the Basel III mark risk capital

requirements formula, VaR directly influence the amount of regulatory capital
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requirements of a financial institution. It is also an indicator of how efficient the

risk model and hence, how stable a bank is. Therefore, it is of interest for financial

institutions to reduce the VaR value of their market risk portfolio.

The assumption about the distribution of the returns is an important decision

for the calculation of VaR or other downside risk measures, e.g. CVaR (Acerbi

and Tasche, 2002a). In his Modern Portfolio Theory Markowitz (1952) assumes

that the returns are normally distributed. However, Fama (1965) doubts this

assumption as returns are not well described with mean and variance only. A

common approach in the quantitative risk management literature is to use the

empirical return distribution (see e.g. Jorion, 2006; Lucas and Klaasen, 1998;

Pritsker, 1997). It is a common assumption that the empirical return distribution

best describes the future returns. However, an alternative to the parametric and

empirical distribution assumption is to generate future returns with Monte Carlo

simulation. To improve the quality of the simulated returns, autoregressive condi-

tional heteroscedasticity (ARCH) models such as the Generalised Autoregressive

Conditional Heteroscedasticity (GARCH) model (Bollerslev, 1986) and the multi-

variate Dynamic Conditional Correlation (DCC) model introduced by Engle (2002)

can be used.

To improve the VaR estimation and thus, to positively influence the amount of

regulatory capital required, several studies in recent literature applied univariate

and multivariate GARCH estimation models. McAleer et al. (2010) used several

variance estimation methods such as Equally Weighted Moving Average (EWMA),

GARCH, Exponential GARCH (EGARCH) and GJR GARCH to estimate VaR

for their passive dynamic decision rule to manage regulatory capital charges. San-

tos et al. (2012) also applies an EWMA approach as well as the multivariate

DCC model and a covariance estimation method based on the shrinkage estima-

tor of Ledoit and Wolf (2003) to optimise for their proposed minimum capital

requirements objective function. Moreover, Drenovak et al. (2017) examine how
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the univariate GARCH model reduces their multi-objective optimisation problem.

The optimisation model is based on the paper of Ranković et al. (2016) who use

an univariate and multivariate GARCH estimation approach.

Another more recent study by Uylangco and Li (2016), analyses different VaR

estimation techniques to generate more efficient VaR backtesting models to cal-

culate daily VaR exceeding. They find that Monte Carlo simulations, using the

static standard deviation of the empirical returns, and ARMA-GARCH backtest-

ing models show a relatively high percentage of VaR violations but a lower average

magnitude of the violations on the capital requirements. They conclude that more

sophisticated models improve the VaR estimation compared with empirical and

parametric backtesting models. The paper of Uylangco and Li (2016) does not

concentrate on portfolio optimisation to reduce the regulatory capital charges but

to improve the backtesting model. However, their observation supports the paper

of Winker and Maringer (2007), who find that objective functions with underlying

empirical distribution function on average have a higher number of VaR violations.

Objective functions with downside risk measures such as VaR or CVaR are

non-linear selection problems with multiple local extremes (Alexander et al., 2006).

Non-linear optimisation problems can be solved with heuristic methods. Dueck and

Winker (1992) were the first to apply the heuristic TA model (Dueck and Scheuer,

1990) to a portfolio optimisation problem. A more advanced heuristic method

is the PBIL algorithm (Baluja and Caruana, 1995). It can be classified under

the Estimation of Distribution Algorithms and is a hybrid of Genetic Algorithms

(GA) (Holland, 1975) and Competitive Learning (see e.g. Zell, 1994). Gosling

et al. (2005) provide a comparison between the GA and PBIL algorithm. More

heuristic methods are described in the work of Maringer (2005) and Gilli et al.

(2011).

In this chapter, we contribute to the existing literature in several ways; First,

we study if the observations by Uylangco and Li (2016) also apply to portfolio
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optimisation problems. This is, we examine if more advanced optimisation prob-

lems experience a higher average number of VaR violations but on average lower

capital charges. Second, related literature focuses on empirical and analytical one-

day ahead VaR estimation. This chapter adds additional knowledge on the ability

of CVaR based objective functions to optimally manage the regulatory capital

requirements. Moreover, we generate several-days ahead forecasts and simulate

multivariate distributed returns to provide a more realistic analysis, as daily trad-

ing might not be feasible due to transaction costs.

In an empirical analysis, the correlation between the assets is estimated with

the DCC model, as this model proved to successfully capture the dependencies

between instruments. We generate several-days ahead forecasts based on the for-

mula of Engle (2002), and compute daily variances and correlations between the

assets. Then Monte Carlo simulation and Cholesky decomposition is applied to

these forecasts to generate correlated asset returns. Agarwal and Mehra (2014)

shows that compared with other decomposition techniques such as QR Decom-

position, Singular Value Decomposition (SVD) and Lower-Upper Decomposition

(LU), Cholesky decomposition is the most efficient approach in terms of memory

storage, computational cost, speed and data reduction. To solve the non-linear

portfolio optimisation problems we use the PBIL heuristic algorithm.

The following Section 4.2 presents the methodology used for the empirical

study. We first describe the search algorithm used to optimise the objective func-

tions, before we continue with the introduction of the simulation process. Sec-

tion 4.3 examines the results of the computational study conducted on the empir-

ical sample. In Section 4.4 we conclude with a summary of the results.
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4.2 Methodology

In this section, we introduce the methodology used for the empirical analysis in

Section 4.3. We first describe the PBIL heuristic algorithm which is used in the

optimisation in Section 4.2.1. Then, Section 4.2.2 presents the simulation approach

to estimate VaR and CVaR risk measures.

4.2.1 Search Algorithms

For the optimisation process of the objective functions (see Equations 2.2-2.5) we

use the PBIL optimisation method introduced by Baluja and Caruana (1995).

The PBIL is a hybrid search method that works with a population of candidate

solutions. Each candidate solution is a binary vector of length N , where N is the

number of assets in the investment universe.

The population evolves over a number of generations using a probability vector.

Similar to a competitive learning algorithm, the values in the probability vector are

gradually shifted towards representing assets that generate optimal results (Baluja

and Caruana, 1995).

Compared to a common GA (Holland, 1992), the PBIL algorithm generates

more accurate results while it attains the results faster, both in terms of com-

putational time as well as the number of evaluations. This can be explained by

the algorithms ability to focus its search efforts in one region of the search space

much faster than the GA (Baluja and Caruana, 1995). Furthermore, the PBIL

is a very simple algorithm, which is easy parallelisable and does not need all the

subfunctions necessary for GA. This makes the PBIL an excellent search method

for our simulation-based portfolio selection problem. Figure 4.1 outlines the PBIL

optimisation process while Algorithm 3 provides a more detailed view of the PBIL

structure.
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begin

set starting probability

generate random population

compare each population vector
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create binary vector for
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stop
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stop
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end
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no
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Figure 4.1 PBIL flowchart
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Algorithm 3 Population-Based Incremental Learning Algorithm
set starting probability vector P
while stopping criteria not met do

generate G random probability vectors
create binary vector
for g = 1 to G do

compute objective function Fg = F (wg, µ
port, µtarget)

end for
select survivors Ssurvivor
for s = 1 to Ssurvivor do

update probability vector P for Ssurvivors

end for
end while

The first step is to define the starting probability vector. Similar to a compet-

itive learning algorithm, the values in the probability vector P = (P1, ..., PM) are

gradually shifted towards representing instruments that generate optimal results.

In the first run of the algorithm the probabilities in vector P are set to 50% as no

instrument is preferred over the other (Baluja and Caruana, 1995).

With each generation the algorithm generates a population set of G i.i.d. nor-

mal random probability vectors. In the literature, different methods have been

proposed to determine the optimal size of G (see e.g. Smith and Smuda, 1995;

Mühlenbein, 1989; Goldberg, 1989). Then, the PBIL algorithm generates a popu-

lation of binary vectors by comparing the random population sets with the proba-

bility vector. Each binary vector represents a candidate solution of lengthM . The

candidate solutions are given by setting all instrument positions in the population

sets equal to zero if the sample random probability is larger than the probability in

Pi, where i = 1, ...,M . If the probability of position i in the sample set is smaller

or equal to Pi the binary is set to one (Baluja and Caruana, 1995).

The cardinality constraint is easy to implement for the PBIL search method

as each candidate solution is represented by a binary vector. Binary vectors with

a sum between the cardinality lower and upper bound are considered for further

optimisation. To ensure that the algorithm uses the same population size at each
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generation, we propose to replace population sets that violate the cardinality con-

straint by another random probability vector.

To implement the portfolio weight constraints we normalise the probabilities

of the sample vectors to one, as the sum of the asset weights is one. Asset weights

violating the lower bound constraint are set to the value of the lower boundary.

Weights exceeding the upper bound constraint are set to the value of the upper

boundary. Changes in the asset weight allocation are summarised and equally

distributed between the assets that have not violated the constraints.

The objective function values are calculated for each constrained population

set wg, where g = 1, ..., G. The results are sorted descending in the result vector

F . For a number ssize of best binary vectors Ssurvivor the probability vector P is

updated, using Equation (4.1) (Baluja and Caruana, 1995).

Pi = Pi(1− LR) + Ssurvivors LR (4.1)

There are different ways to define the number of ssize, e.g. select a random

number or the number of best population sets for the α-Quantile of the solution

vector F . However, we found that the algorithm generates the best and most

stable results when ssize = 2. Increasing ssize makes the algorithm faster but the

results are not very stable.

The probability Pi of an instrument represented in a surviving candidate so-

lution is updated by Equation (4.1). The probability of an instrument not rep-

resented in the survivor set is decreased by the learning rate LR (Baluja and

Caruana, 1995). A high probability Pi increases the likelihood of an instrument

to have a binary value of one. Thus, the learning rate influences which part of

the function space is explored. If LR is too high the search space is narrowed too

fast and the algorithm is unable to exploit the entire function space. If LR is too

low the algorithm is unable to focus on the optimal solution space and find the
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best portfolio allocation (Baluja and Caruana, 1995). Folly and Venayagamoorthy

(2009) proposes different techniques to avoid LR from being too high or too low.

One way is to linearly increase the LR at every generation by a constant. The al-

gorithm repeats this process until all probabilities in P are below or above certain

thresholds (see e.g. Baluja, 1997; Shapiro, 2002).

To find the optimal portfolio that satisfies the inequality target return con-

straint, we implement the penalty function 3.1 described in Section 3.2.1. Thus,

the objective functions can be described using Equation 3.2.

4.2.2 Dynamic Conditional Correlation

To capture the dependencies between the assets to improve the quality of the sim-

ulated asset returns, we use the DCC model introduced by Engle (2002). The

optimisation of the objective functions described in Section 2.1 is based on empir-

ical and standard normal VaR and CVaR estimation. Chapter 3 analyses the two

estimation methods and the influence on the regulatory capital requirements. In

this chapter, we extend the previous research by analysing the influence of VaR

and CVaR calculation from simulation and how effects the portfolios performance,

risk profile and capital requirements. Specifically, we first estimate the volatility

(GARCH) and correlation (DCC) model for each asset’s daily return and the DJIA

daily return, then simulate future returns for the instruments. The VaR and CVaR

objective function with simulation is then estimated for the empirical and normal

distribution of the simulated returns.

We describe the process to estimate the dependencies between the assets and

simulate correlated return series. The model parameters are estimated for the

in-sample periods and used to simulate dependent price movements for the out-of-

sample periods. The DCC model estimates the conditional correlation between the

instruments. The forecast conditional correlations are used to simulate a number
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of correlated returns.

The conditional covariance matrix Ht at time t is given by Engle (2002)

Ht = DtRtDt (4.2)

Rt = diag(Ut)
−1/2Utdiag(Ut)

−1/2 (4.3)

Ut = (1− â− b̂)U + âεt−1εt−1
ᵀ + b̂Ut−1 (4.4)

where Rt is the conditional correlation matrix and Ut is an M × M matrix

of covariances. U is the unconditional covariance of the standardised correlated

residuals εt = D−1t rt. rt denotes the residuals at time t and Dt is an M × M

diagonal matrix of standard deviations
√
hit drawn from a univariate GARCH(1,1)

model

hit = γi + air
2
it−1 + bihit−1 (4.5)

for i = 1, ...,M instruments. As described in Engle (2002) the GARCH variances

must be stationary and non-negative. Also, the sum of ai and bi need to be less

than one and γi > 0.

The parameters â and b̂ control the influence of εt on Rt. Rt reverts back to

its long term average more slowly if b̂ is high. The influence of the latest εt on the

conditional correlation matrix increases with a lower b̂ value. To calculate Ut the

parameters â and b̂ need to be estimated. The sum of the DCC parameters â and

b̂ has to be less than one.

Parameter Estimation

Before we can simulate the dependent price movement of the instruments for the

PBIL optimisation we need to estimate the model parameters.

The estimation of the DCC parameters is performed in a two step process.

First, the GARCH parameters φ = (γ1, a1, b1, ..., γM , aM , bM) are estimated for
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each asset to calculate the conditional variances. Then, the residuals are stan-

dardised by their estimated conditional variances and used to estimate the pa-

rameters ψ = (â, b̂) of the DCC model. The estimation of the GARCH and DCC

parameters can be performed by quasi-likelihood L estimation (Engle, 2002). For

the discussion we want to mention an alternative method to estimate the model

parameters using heuristics, which is proposed by Winker and Maringer (2009).

However, in this research we use the standard quasi-likelihood function for the

parameter estimation. The GARCH quasi-likelihood function is

L1(φ|rt) =
N∑
i=1

T∑
t=2

(
log(hit) +

r2it
hit

)
. (4.6)

The final step is to maximise the likelihood function for the DCC process to

estimate ψ = (â, b̂) for the estimated parameters φ∗ in the first step

L2(ψ|φ∗, rt) = −1/2
T∑
t=1

(
M log(2π) + 2 log |Dt|+ log |Rt|+ εᵀtR

−1
t εt

)
. (4.7)

The estimated parameters are now used to calculate the conditional covariance

matrix (Equation 4.2).

Forecast and Simulation

The estimated parameters are used to forecast and simulate out-of-sample depen-

dent instrument price movements for the heuristic optimisation process.

The GARCH model generates volatility forecast for the next point in time t+1,

which implies Et (ht+1|φ) = ht+1. The same applies to the DCC model. Hence, for

t+ 1 the forecast of the conditional correlation is Et (Rt+1|ψ ) = Rt+1.

To generate s-step ahead forecasts of the conditional variance, where s > 1, a
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simple method is given by Engle (2002):

ht+s =
s−2∑
i=0

γ(a+ b)i + (a+ b)s−1ht+1, (4.8)

where a and b are the estimated GARCH parameters in Section 4.2.2.

For the DCC model there is no direct solution to forecast the conditional cor-

relation s-step ahead. This is because the DCC model is a non-linear process.

However, Rt+s can be forecast if U ≈ R and Et (Ut+1) ≈ Et (Rt+1) (Engle, 2002).

For this approximation, the forecast for t+ s is given by

Et (Rt+s) =
s−2∑
i=0

(1− â− b̂)R(â+ b̂)i + (â+ b̂)s−1Rt+1, (4.9)

where â and b̂ are the parameters estimated for the DCC model in Section 4.2.2.

The forecast of the conditional correlation matrix converges to the uncondi-

tional correlation of the residual, in the long run. Also, the influence of Rt+1 on

the forecast conditional correlation decays with ratio â+ b̂ (Engle, 2002).

In a next step, the forecast DCC matrices are used to generate a number

(Sim) of correlated random returns. A good method to decompose the forecast

correlation matrices is by Cholesky decomposition. Agarwal and Mehra (2014)

shows that Cholesky decomposition is superior compared with similar techniques

e.g. QR, SVD or LU decomposition. They conclude that Cholesky is the most

efficient technique in terms of memory storage, computational cost, speed and data

reduction. The decomposed matrices are transposed and multiplied by the i.i.d.

normal random variables.
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4.3 Out-of-Sample Results

In this section, we analyse the efficiency of the objective functions described

in Equations (2.2-2.5) with and without DCC simulation approach. First, Sec-

tion 4.3.1 compares the performance of VaR and CVaR objective functions with

underlying empirical and standard normal distribution for the entire out-of-sample

period. Then, Section 4.3.2 compares the backtesting results and capital require-

ments for portfolios with and without DCC simulated returns. The efficiency of

the VaR and CVaR estimation methods is compared using descriptive portfolio

statistics. Moreover, we report regulatory evaluation measures to compare the

portfolios performance. All results are compared to the “naive” EW portfolio and

the DJIA index.

For the computational study we use all constituents of the DJIA index with a

minimum of 2524 days of empirical data. This excludes the equity data for the

company Visa Inc. with a total of 2185 days of empirical observations, which

leaves 29 constituents in our empirical analysis. The period we analyse goes from

30th January 2006 to 29th January 2016. This is to test the portfolios for different

market cycles. For the same period, we consider daily 2-weeks T-Bill rates as

risk-free interest rates. The risk-free rate also serves as target portfolio return µT .

We use daily closing prices for a total of T = 2524 days of observations. In the

empirical analysis we use continuous returns. All empirical data is downloaded

from DataStream.

In the analysis, we use the same constraints introduced in Section 3.4. More-

over, we assume the risk manager considers cardinality constraints with a lower

bound of five and upper bound of 15 assets. Common proportional transaction

costs of one basis point is used in the optimisation. The in-sample and out-of-

sample period is selected as in Section 3.3. With a data set of 2524 days, we have
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Figure 4.2 Colour map for portfolio weights in Chapter 4.

127 in-sample and out-of-sample periods. We use a rolling window analysis to con-

struct out-of-sample ten days ahead forecasts of conditional correlations. For each

forecast day we generate 100,000 correlated returns using Cholesky decomposition.

The population size G of the PBIL algorithm is set to 300. The starting

learning rate is set to 0.1% and is gradually increased with each repetition by the

same rate. The algorithm stops if no probability in P is between 99% and 1%.

4.3.1 Portfolio Performance

For each in-sample period we calculate the optimal weight allocation for the ob-

jective functions. Figures 4.3 and 4.4 show the optimal weights for the objective

functions optimised with underlying empirical (Figure 4.3) and standard normal

(Figure 4.4) distribution function. Each figure compares the portfolio weight al-

location for VaR and CVaR estimation with and without simulation approach.

Figure 4.2 provides a colour map for the portfolio weights.

The visual analysis clearly shows that portfolios with simulation-based VaR and

CVaR estimation have high weight dynamics, regardless if empirically or standard

normally optimised. In the simulation approach the variance and covariance of

the assets changes more dynamically over time, as more weight is given to recent

information. Variance and covariance measures are computed using the GARCH

and DCC time-series models. In the forecast period, the simulated variances and
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Figure 4.3 Comparison of the dynamic portfolio weights for VaR and CVaR
objective functions with underlying empirical distribution at 1% significance level.
A colour map for the portfolio weights is presented in Figure 4.2.

correlation gradually move back to their long-term unconditional variance and cor-

relation. In contrast, the VaR and CVaR estimation without simulation only uses

the empirical and normal distribution function of the in-sample returns. As the

in-sample period rolls forward ten days, the distribution function rarely changes.

Therefore the weights of portfolios optimised without simulation change less fre-

quently and to a smaller extent.

The V aRN1% and CV aRN1% portfolio without simulation-based estimation

show very similar weight distributions. These objective functions have the same

standard normal density function value for the alpha percentile. Hence, the op-

timisation process computes almost identical portfolio weights for the objective

functions.

Interestingly, the CV aRH1% portfolio without simulation-based CVaR estima-
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(A) CVaR normal with simulation
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(C) VaR normal with simulation
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Figure 4.4 Comparison of the dynamic portfolio weights for VaR and CVaR
objective function with underlying normal distribution at 1% significance level. A
colour map for the portfolio weights is presented in Figure 4.2.

tion rarely rebalances its portfolio weights. For most in-sample periods the portfo-

lio allocates a maximum weight of 20% to the optimal assets. This indicates that

the algorithm would prefer to give more weight to one or more beneficial asset but

is constrained by the upper bound weight constraint of 20%. The combination of

only five to six assets seems to be preferred by the portfolio given the empirical

sample data. The V aRH1% portfolio rebalances the portfolio weights more fre-

quently than the CV aRH1% portfolio. By looking at these two portfolio weight

allocations we can see that the changes in the V aRH1% objective function are

more significant than in the CV aRH1% objective function. Thus, the mean of the

expected losses exceeding the empirical VaR estimate seem to remain relatively

constant while the VaR estimate changes to a greater extent.
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Table 4.1 shows the descriptive statistics and performance measures for the

objective functions, with and without simulation-based VaR and CVaR estimation.

The values are annualised and calculated for the entire out-of-sample period.

We found that portfolios with simulation-based VaR and CVaR estimation have

higher modified Sharpe ratios than their equivalents without simulation-based es-

timation, as the results in Table 4.1 demonstrate. Our findings show that this

difference can be explained by the higher mean return value of portfolios with sim-

ulation approach. The simulation-based portfolios outperform portfolios without

simulation by up to 4.06%. Our results show that the simulated asset returns pro-

vide a more precise distribution function of the future returns than the assumption

that the historical asset returns best describe the future returns.

The highest annualised modified Sharpe ratio with 72.74% can be seen for

the empirical CVaR objective function, followed by the empirical VaR portfolio

with 56.43%. The modified Sharpe ratio of the standard normal CVaR portfolio

with simulation-based estimation is a slightly higher than the Sharpe ratio of the

V aRN1% portfolio with simulation approach. This can be explained by the higher

mean return after transaction costs of the CV aRN1% portfolio.

An interesting observation can be made for the portfolio standard deviation,

empirical and normal VaR and CVaR value. Portfolios with standard normal distri-

bution assumption report better risk measures when the optimisation is not based

on the simulation, compared with the equivalent portfolio with simulation. On

the contrary, portfolios with empirical VaR and CVaR objective function perform

better with simulation-based estimation. This is because the simulation creates

VaR and CVaR estimates that are influenced by more recent information and the

empirical objective functions are capable to capture these changes in the return

distribution.

In general, all simulation-based VaR and CVaR optimised portfolios have higher

mean return and modified Sharpe ratios than their equivalents without simulation-
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based estimation and the benchmark models. Portfolios with simulation approach

and underlying empirical distribution function have better portfolio risk measures

than their counterparts without simulation-based VaR and CVaR estimation.

4.3.2 VaR Backtesting Results

In this section, we evaluate the efficiency of the portfolios based on the Basel III

capital requirements using Equation (3.3). To calculate the capital requirements

the portfolios need to be backtested and classified in one of the three zones of

the Basel III traffic light scheme. To backtest the portfolios, we compute daily

VaR levels at a 1% significance level based on a 250 days rolling standard normal

distribution of the portfolios.

The portfolios are evaluated using the LRUC , LRIND and LRCC test described

in Chapter 3.2.2. Moreover, the average and maximum violations and multipli-

cation factors, as well as the average daily capital requirements are used for the

analysis. Table 4.2 reports the respective backtesting results for the out-of-sample

period.

Table 4.2 reports the backtesting results for the out-of-sample period. For

each portfolio the table reports the average LRUC , LRIND and LRCC ratio (see

Chapter 3.2.2) and the average and maximum number of VaR violations and multi-

plication factors. The average daily capital requirements and the relative difference

between portfolios with and without simulation-based VaR and CVaR estimation

is reported in the last two columns.

On average, all optimised portfolios have LRUC , LRIND and LRCC values below

the critical values of 6.64 and 9.21, respectively. The simulation-based V aRH1%

portfolio has the highest test ratios, while the lowest LRCC ratio is reported for

the CV aRN1% portfolio with simulation-based estimation. The EW portfolio fails

the LRUC and LRCC test, which can be explained by its high average (4.69) and
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maximum (15) number of VaR violations. The simulation-based portfolios have an

average number of violations between 2.37 (V aRH1%) and 2.84 (CV aRH1%). This

is very similar to the portfolios without simulation approach which is between 2.27

(V aRN1%) and 2.86 (CV aRH1%).

The CV aRH1% without simulation is the only portfolio with a maximum num-

ber of eight violations and thus, a maximum multiplier of 4. For all portfolios

with simulation approach the average multiplication factor is in the range of

3.06 (V aRH1%) and 3.09 (CV aRN1%). The highest multiplication factor of the

simulation-based VaR and CVaR estimated portfolios is reported for the CV aRN1%

portfolio with 3.65. Portfolios with simulation-based VaR and CVaR estimation

give higher priority to more recent information and thus, provide a better estima-

tion of the future return distribution. For this reason portfolios with simulation

approach have a lower average number of VaR violations and thus, lower multipli-

cation factors.

The results in Table 4.2 show that the average daily capital requirements for

simulation-based VaR and CVaR estimated portfolios in general is better than

compared to their equivalents without simulation. The highest difference with -

4.67% can be seen for the CV aRH1% portfolios. This can be explained by the high

multiplier for the CV aRH1% portfolio without simulation. For the V aRH1% and

CV aRN1% the difference is -4.52% and -2.38%, respectively.

Similar to the results in Section 4.3.1, we can see that portfolios with empirical

VaR and CVaR optimisation perform better with simulation-based VaR and CVaR

estimation.
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4.4 Conclusion

This chapter researches different VaR and CVaR estimation techniques and their

influence on the Basel III market risk capital requirements. We extend the existing

literature (see e.g. McAleer et al., 2010; Santos et al., 2012; Uylangco and Li,

2016; Drenovak et al., 2017) which focuses on capital requirements by comparing

the ability of empirical, standard normal and simulation-based VaR and CVaR

portfolio optimisation problems to improve the risk and performance profile of

the portfolios. For our empirical analysis we simulate correlated returns for the

next ten days using the DCC forecast model and Cholesky decomposition. The

portfolio are optimised using the PBIL heuristic algorithm.

The results of the empirical study show that portfolios optimised based on

simulated correlated returns yield better portfolio risk profiles and reduce the

capital requirements by up to 4.67%.

All simulation-based portfolios have higher modified Sharpe ratios and mean

returns than the portfolios without simulation approach. In combination with

the simulation of the returns, the empirical VaR and CVaR optimised portfolios

perform better than the portfolios using standard normal VaR and CVaR calcula-

tion. Without simulation, portfolios with standard normal calculation outperform

the empirical distribution based portfolios. Thus, we can support Winker and

Maringer (2007) concluding that future returns are not always best described by

their empirical return distribution. However, it seems the simulation approach

improves the performance of objective functions with empirical distribution.

In their work, Uylangco and Li (2016) find that Monte Carlo simulations and

ARMA-GARCH backtesting models show a relatively high percentage of VaR vio-

lations but a lower average magnitude of the violations on the capital requirements.

We studied if this behaviour can also be observed when Monte Carlo simulation
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with GARCH-DCC is used in the optimisation rather than for the backtesting

model.

Our analysis shows that portfolios with Monte Carlo GARCH-DCC simulation

reduce the average capital requirements compared with their equivalents by up to

4.67%. This is true for all objective functions except for the V aRN1% portfolio.

We find that the most significant improvement can be seen for the empirical VaR

and CVaR optimised portfolios.

With regard to the average number of violations, our results show that we can

support the findings by Uylangco and Li (2016) for optimisation problems with

standard normal distribution assumption. We extend the work of Uylangco and Li

(2016) to objective functions with empirical distribution and found such objective

functions on average have a higher number of VaR violations. This observation

is similar to the work of Winker and Maringer (2007). However, we extend the

existing literature as the results of our empirical analysis show that these conclu-

sions cannot be applied to portfolios with Monte Carlo GARCH-DCC simulation

and empirical optimisation function. In our study, portfolios with simulated return

distribution reduce the average number of violations when objective functions with

empirical distribution are used. This can be observed both for VaR and CVaR ob-

jective functions. Interestingly, portfolios optimised with CVaR objective function

yield the highest number of average VaR violations of all objective functions with

and without simulation. This is true for portfolios with empirical and standard

normal distribution assumption.

The revision of the Basel II Minimum Capital Requirements for Market Risk

standards (Basel Committee on Banking Supervision, 2016), increase the regula-

tory oversight of OTC derivative contracts. In the next chapter, we introduce a new

hedging framework based on global VaR and CVaR hedging with GARCH-DCC

process, to reduce the transaction costs and regulatory constraints by avoiding

non-standardised derivatives.



Chapter 5

Reducing Regulatory Trading Costs

with Global VaR and CVaR

Hedging

In Chapter 4, we studied the influence of VaR and CVaR estimation methods on

the Basel III market risk minimum capital requirements and the number of VaR

violations. We found that Monte Carlo GARCH-DCC simulation with heuris-

tic optimisation improve the regulatory capital requirements of the firm. In this

chapter, we apply the same VaR and CVaR estimation method to a new hedging

framework to secure the investment in several underlying.

The revision of the Basel III framework (Basel Committee on Banking Su-

pervision, 2016) increases the regulatory oversight and transaction costs of OTC

contracts. OTC derivatives are often used in risk management for hedging an

investment against potential losses. The increasing costs and the standardisation

process of OTC contracts caused by the regulators requires firms to seek less per-

fect hedges. In this chapter, we provide a new self-financing global VaR and CVaR

hedging approach with GARCH-DCC process to secure a number of underlying

with a long put option. Our approach extends the existing literature of global
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quantile, VaR and CVaR hedging by introducing a multivariate GARCH process

to the hedging framework. Moreover, compared to the work of Alexander et al.

(2006), Annaert et al. (2007), Cong et al. (2013), Cong et al. (2014) and Godin

(2016), we hedge the underlying without having to define a hedging budget, an

optimal strike price or a specific maturity of the option. This study is the first that

demonstrates how one long put option can secure the investment in several un-

derlying with global VaR and CVaR hedging by using Monte Carlo GARCH-DCC

simulation and heuristic optimisation.

The results of the computational analysis show that our advocated hedging

approach is capable of securing the investment while reducing transaction costs.

The hedged portfolios yield better performance measures and improve the risk

profile of the loss distribution. For an empirical sample with a market maximum

drawdown of -52.90%, we test the hedging approach for a number of VaR and CVaR

objective functions with multiple constraints. Our results show that our approach

is capable to improve not only the maximum drawdown but also the maximum

drawdown duration for all hedging strategies. Moreover, the PBIL algorithm finds

optimal solutions much quicker than GA optimised hedging strategies.

This chapter is structured as follows. Section 5.1 discusses the contributions

and related literature of this chapter. In Section 5.2, we describe the methodol-

ogy and Section 5.3 shows the results of the computational analysis. Section 5.4

concludes.

5.1 Introduction

Derivative instruments are often used by risk management to protect the firm from

potential changes in prices and exchange rates. There are two major categories of

derivatives instruments: (i) “exchange-traded” derivatives, which are standardised

contracts and (ii) non-standardised OTC derivatives, which are customised con-
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tracts to a specific exposure. Before the financial crisis in 2007, OTC derivatives

were inexpensive instruments to manage the firms risk exposure.

However, after the crisis regulators identified the OTC market as one of the

main drivers that caused the financial crisis. In the following, major changes in

the regulation of OTC derivatives increased the costs and reporting requirements

for the hedging firm (Financial Stability Board, 2016).

An April 2015 survey of corporate and end-users by the International Swaps

Dealers Association (2015) shows that for more than 53% of firms the cost of hedg-

ing increased. Moreover, more than 61% of participants determined the increase

in cost of hedging as their biggest concern in risk management. The Bank for

International Settlements (2013) shows the impact of the regulatory requirements

introduced in 2013 by the Basel Committee on the OTC trading costs and capital

requirements.

The increase in trading costs for non-standardised OTC derivatives affects the

offering of non-standardised contracts by the banks. The increase in volume of

standardised OTC derivatives as shown by the Financial Stability Board (2016),

also indicates that firms use less perfect hedges to manage the risk of their com-

panies.

In the literature, several local and global hedging strategies are discussed to

manage different types of risk. Local hedging techniques aim to secure the portfolio

investment for small changes in the asset price or until the next time step. This

requires the estimation of a hedging ratio to secure the investment. Local hedging

often involves high transaction costs as they only hedge the portfolio risk for small

changes of price and time. In contrast, global hedging methods aim to minimise

the risk associated with the terminal hedging error for the entire hedging period.

Thus, in this chapter, we concentrate on global hedging techniques.

Several global hedging strategies with different objective functions are pro-

posed in the literature. A basic strategy is to minimise the quadratic error of the
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portfolio loss function (see Bouleau and Lamberton, 1989; Schweizer, 1995). A

generalisation of the formula presented by Schweizer (1995) is presented by Rémil-

lard and Rubenthaler (2013), who are the first to apply a GARCH process to the

global quadratic hedging problem in discrete time. They show that their proposed

quantile hedging framework yield superior results compared with a delta hedging

strategy. One disadvantage of quadratic hedging is that it equally penalises both,

profit and loss. An alternative are semi-quadratic models (see Föllmer and Leuk-

ert, 2000; François et al., 2014) that only penalise losses. The work of Föllmer

and Leukert (1999) and Sekine (2000) concentrate on quantile risk hedging, which

aims to maximise the probability of successful hedge. Quantile hedging is similar

to minimising the VaR of the hedging loss distribution. Alexander et al. (2004)

apply a VaR hedge on a derivatives portfolio with a number of options with dif-

ferent maturity and strike price (also see Alexander et al., 2006). Cong et al.

(2013) minimise the VaR of a hedge portfolio with one underlying and a bull

call spread option strategy. One of the main drawbacks of using VaR in a hedge

function is that it disregards extreme losses exceeding the VaR confidence level.

The CVaR risk measure captures the magnitude of losses exceeding VaR. In their

work, Alexander et al. (2004) also minimise the CVaR of a hedge distribution for

a portfolio of derivatives using the simplex linear programming algorithm to solve

the optimisation problem. A continuous-time CVaR hedging approach is proposed

by Melnikov and Smirnov (2012) who construct an optimal hedging strategy for

an insurance contract. Cong et al. (2014) provide an analytical solution to a

CVaR hedging problem under some more restrictive assumptions than Melnikov

and Smirnov (2012) and find that the CVaR hedging of one underlying is most

effective with a bull call spread strategy. Godin (2016) proposes a CVaR based

discrete-time hedging method with transaction costs and normal inverse Gaussian

return distribution to secure an European call option with an index investment.

As highlighted in the work of Alexander et al. (2004) and Cong et al. (2013),
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VaR and CVaR optimisation problems can be ill-posed when the decision universe

includes derivative contracts. The literature suggests different ways to solve the ill-

posed issue of VaR and CVaR optimisation problems. Cong et al. (2013) and Cong

et al. (2014) apply a number of constraints on the optimisation function to avoid ill-

posed optimisation problems. They assume i) the loss of the hedge function not to

exceed the portfolio risk that needs to be hedged, ii) non-negativity of the hedged

loss, and iii) the increment of the ceded loss not to exceed the increment of the

retained loss. Due to assumption iii) however, the hedger might miss more desirable

portfolio compositions, e.g. portfolios which are more robust with respect to model

error or portfolios with lower transaction costs. An alternative and more practical

approach is proposed by Alexander et al. (2004) and Alexander et al. (2006).

As demonstrated in their work, hedging functions with transaction costs solve

the problem of ill-posedness and create portfolios that are more robust to model

errors. Godin (2016) follows this approach by introducing proportional transaction

costs to the optimisation. We extend the cost function of Alexander et al. (2004),

Alexander et al. (2006) and Godin (2016) to include additional transaction costs

when the maturity of the option does not fit the length of the investment period.

In this chapter, we introduce a multivariate GARCH process to a global VaR

and CVaR hedging problem. This contributes to the existing literature in several

ways. We are the first who apply a multivariate conditional heteroskedastic method

to a global VaR and CVaR hedging problem. Our model extends the work of

Rémillard and Rubenthaler (2013), who apply a GARCH process to minimise

the quadratic error of the terminal value of an investment. Compared with their

model, our VaR and CVaR hedging approach with multivariate GARCH process

provides a way to optimise the risk of several underlying with one put option.

Moreover, the model we introduce can easily be modified for different distribution

assumptions. Our hedging approach adds a new path of research to the existing

global VaR and CVaR hedging literature (e.g. Föllmer and Leukert, 2000; Föllmer
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and Leukert, 1999; Alexander et al., 2004; Godin, 2016) where GARCH processes

have not been considered so far.

Another contribution to global hedging techniques proposed so far is that our

model neither requires an optimal strike price nor an optimal maturity of the

derivative to hedge the underlying. Cong et al. (2013) and Cong et al. (2014)

propose a VaR and CVaR hedging strategy that is independent form the market

model assumption. However, the model requires that options with specific strike

prices exist on the market. Godin (2016) assumes that the strike price of the option

matches the underlying level exactly. A drawback of strategies using specific strike

prices is that in practice it can be difficult to find an option with the optimised

strike price, if it is not determined via the OTC market. Moreover, our advocated

hedging framework reduces the difference between forecast and realised loss, as in

our self-financing hedging approach the option is not required to end in-the-money.

This is different to other hedging strategies, e.g. Föllmer and Leukert (1999) and

Melnikov and Smirnov (2012), which require additional constraints on the hedging

budget.

We demonstrate the application of our hedging approach for a large computa-

tional analysis based on empirical options and stock data. This is different to the

vast majority of literature, which uses simulated data to test their hedging strate-

gies. The results of our empirical analysis show that our global hedging approach

with multivariate GARCH process improves the stability and profitability of the

hedge portfolio after transaction costs.

Our proposed hedging framework is described in Section 5.2. The results of

the computational study are analysed and discussed in Section 5.3. Section 5.4

summarises the results of the empirical study and concludes.
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Figure 5.1 Hedging framework.

5.2 Methodology

The new Basel III framework increases the cost and regulatory requirements for

OTC traded derivative contracts. The augmented use of standardised derivative

contracts to hedge the firms risk exposure increases the need of less perfect hedging

strategies.

In this section, we describe the methods used for our proposed option hedging

framework to secure the invested capital against potential drawbacks in instru-

ment price developments. The hedging approach is visualised in Figure 5.1. The

emphasis of the framework is not to outperform alpha portfolio strategies but to

improve the stability of the portfolio value. We use one standardised long index

put option to hedge a number of equities. This is to reduce the transaction costs

and to increase the liquidity of the hedging approach. Similar hedging techniques

to reduce transaction costs with index futures are discussed in, i.e., Hull (2015).

The dependencies between the equities and the index put option are estimated



98

for the in-sample periods using GARCH-DCC volatility estimation methods (de-

scribed in Chapter 4). In Section 5.2.1 we show how we apply this process to

simulated option prices. The estimated parameters are then used to simulate out-

of-sample price movements of the equities and the index level and to calculate the

simulated index option value. In the hedging process the optimal weight allocation

between the equities and the index option is determined based on the simulated

data. In Section 5.2.2, we describe the hedging function and the risk measures used

for the optimisation process. The search methods are discussed in Section 5.2.3.

To compare the effectiveness of the different risk measures to secure the portfolio

value we introduce some evaluation measures in Section 5.2.4.

5.2.1 Simulation

The estimation of the optimal portfolio weight allocated to the put option is based

on simulated out-of-sample price movement of the investment instruments. To sim-

ulate the movements we estimate the univariate GARCH volatility and the DCC

to capture correlation clustering effects. We described this process in Section 4.2.2.

The simulated returns are used to calculate simulated instrument values. The

simulated index put option value V Put is calculated based on the simulated index

level Z. In our empirical analysis (see Section 5.3) we use European style index

options. The most common method to approximate the price of an European style
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option is the Black and Scholes (1973) formula

V Call(Z, t) = ZΦ(d1)−Ker
f (T−t)Φ(d2) (5.1)

V Put(Z, t) = Ke−r
f (T−t)Φ(−d2)− ZΦ(−d1) (5.2)

d1 =
ln(Z/K) +

(
rf + 1/2σ2

)
(T − t)

σ
√

(T − t)
(5.3)

d2 =
ln(Z/K) +

(
rf − 1/2σ2

)
(T − t)

σ
√

(T − t)
(5.4)

where Φ is the cumulative normal density function, rf the risk free interest rate,

K the option strike price and T the maturity of the option. In this chapter, we

follow the work of Alexander et al. (2004) by using the Black-Scholes formula to

estimate the prices of the European style options.

To forecast the price movement of the index option the parameter values can

be simulated and used to calculate s-step ahead option values. Parameters K and

T need not to be simulated as they remain the same for plain vanilla options,

until maturity. The index level Z can be simulated using the DCC model as

illustrated in Section 4.2.2. To forecast the volatility term σ a number of methods

are discussed in the literature (see e.g. Dumas et al., 1998; Hibbert et al., 2008).

For short time horizon τ , we assume rf to be constant as the expected change in

the parameter and thus, the option price is likely to be rather small, compared

with other risk factors. The literature suggests several methods to forecast interest

rates. Some of the most common are e.g. the Hull and White (1994b) one factor

model, Hull and White (1994a) two factor model and the Black and Karasinski

(1991) one factor model.

The sensitivity of the option price to a change in a parameter value can be

calculated by differentiating Equation (5.2) for each parameter. This analysis

can help to identify the parameters with the highest impact on the option price
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movement.

Existing literature usually assumes the instrument prices to be independent

from each other (see Alexander et al., 2004; Alexander et al., 2006). However,

forecasting dependences with multivariate GARCH models improves the portfo-

lio risk profile (Switzer and Omelchak, 2009). The model parameters are easy

to estimate and the same approach can be used for a large or small number of

instruments.

5.2.2 Hedge and Objective Functions

The simulated instrument values in Section 5.2.1 are used to calculate the simu-

lated portfolio values. In this section, we describe the hedging function and the

risk measures applied to find the optimal weight allocation to hedge the simulated

portfolio values.

For each out-of-sample period τ , the prices of the assets are simulated and

hedged with the simulated price movement of one long index put option. The

simulated loss of a portfolio in period τ is derived from the combination of the total

number of instruments M , which includes the assets and the derivative contract.

The simulated change in the instrument values for the out-of-sample period is

given by

δV τ = V τ − V τ0 , (5.5)

where V τ = [V τ
1 , ..., V

τ
M ] is a vector of instrument values at the end of each simu-

lated out-of-sample period and V τ0 is a vector of instruments values at the start

of the simulated out-of-sample period. The total number of out-of-sample periods

is denoted τ periods and thus, 1 ≤ τ ≤ τ periods.

The absolute change in the portfolio value Π without transaction costs for the
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simulated out-of-sample period τ is given by

δΠτ = wᵀ(δV )τ , (5.6)

where w = [w1, ..., wM ] is a vector of instrument weights. To account for propor-

tional transaction costs, expressed in basis points (bps), we extend Equation (5.6)

by the following cost function

cost =


bps× |wτ−1i − wτi | × V τ0

i if |wτ−1i − wτi | > 0

bps
(
wτ−1i × V τ−1

i + wτi × V τ0

i

)
if wτi is option

0 else

. (5.7)

If the magnitude of the difference between the optimal weight in instrument i

for the previous period τ − 1 and the estimated weight in instrument i for the

current period τ is greater than zero, then the absolute difference is multiplied

by the proportional transaction costs in bps and the instrument value V τ0

i at

the beginning of the current period. To hedge the instrument values we select

an at-the-money put option with maturity closest to the rebalancing period of

the portfolio. Often however, there is no option with an exact maturity match.

Therefore, the derivative is sold at the end of the previous period instrument price

and a new option is bought at the start of the current period.

The resulting absolute periodic change in the simulated portfolio value with

transaction costs is thus

δΠτ
cost = wᵀ(δV )τ − cost. (5.8)

We assume the optimal portfolio is subject to an inequality absolute target

constraint. This is, the absolute expected gain δΠτ
cost has to be equal or greater
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than an absolute target profit δΠτ
target

δΠτ
cost ≥ δΠτ

target, (5.9)

where δΠτ
target = Πτ0rτf . rτf represents a risk free rate of returns for period τ and

Πτ0 is the portfolio value at the beginning of period τ .

For the portfolio loss distribution in Equation (5.8), we calculate the normal

and empirical VaR and CVaR objective functions, subject to the portfolio con-

straints described in Section 2.1.

5.2.3 Search Algorithms

For some hedging problems it is possible to provide an analytical solution to the

optimisation problem (see e.g. Ahn et al., 1999; Li and Xu, 2008; Cong et al.,

2013; Cong et al., 2014). A linear programming technique is used by Alexander

et al. (2004) and Alexander et al. (2006), who apply a simplex linear programming

algorithm to solve VaR and CVaR objective functions of derivative portfolios with

linear constraints. Rémillard and Rubenthaler (2013) and Godin (2016) use dy-

namic programming (DP) to solve their hedging approach.

DP is easy to implement and can be a good algorithm to find an exact global

optimal solution to the hedging problem. However, the optimisation process uses

a lot of memory and computation time. In our advocated global VaR and CVaR

hedging approach with Monte Carlo simulated GARCH-DCC returns, we apply a

PBIL heuristic algorithm. The PBIL algorithm is a reasonable fast and memory

efficient heuristic optimisation approach that is able to handle the constraints

described in Section 5.2.2 in the hedging approach. To our best knowledge, this

study is the first that applies PBIL heuristic algorithm to a hedging approach

with VaR and CVaR objective functions. In the empirical analysis, we compare

the optimisation efficiency of PBIL with a standard GA optimisation. The PBIL
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Figure 5.2 Sensitivity of the absolute CV aRH objective function value to changes
in the learning rate and the population size.

algorithm is described in Section 4.2.1. In this section, the PBIL input parameters

are chosen using sensitivity analysis.

To find reasonable model calibration regions for the model configuration, we

conduct a sensitivity analysis from the learning rate and the population size. Fig-

ure 5.2 illustrates the CV aRH objective function value, expressed as expected

absolute loss, to different LR values and population sizes. In this example, we aim

to reduce the objective function value. Low objective function values are coloured

dark blue while high values have a red colour.

The results of the sensitivity analysis show that population sizes between 100

and 300 have relatively high objective function values for all LR values. Population

sizes from about 700 and higher generate better results for the observed hedging

strategy. In general, higher population sizes generate better results as it increases

the probability to find optimal candidate solutions. However, if LR is too low or

too high the algorithm does not find optimal solutions regardless of the population

size. The objective function value is relatively low if LR is between 2% and 8%.

To find an optimal LR value, Folly and Venayagamoorthy (2009) suggest to
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linearly increase LR by a constant value at every generation. This process is

repeated until the probabilities in P exceed a specific threshold (see e.g. Baluja,

1997; Shapiro, 2002). We set the starting learning rate LR to 0.1% and gradually

increase it by the same rate until no probability in P is between 1% and 99%.

In our analysis, the population size is set to 700 as the results of the sensitivity

analysis suggest this to be a good population size for all LR values.

To evaluate the performance of the PBIL algorithm we use GA optimisation as

a benchmark search method. The number of generations and the population size of

the GA is set to 700. The number of children generated is 500 and the mating pool

size is set to 450. The probability to undergo mutation is 20% and the algorithm

restarts six times. In our optimisation, this setting led to fast converging results.

5.2.4 Out-of-Sample Evaluation

To evaluate the effectiveness of the PBIL and GA optimisation method for the

hedging problems, we use standard portfolio measures like the modified Sharpe

ratio and standard deviation. In addition, we calculate the maximum drawdown

and the maximum drawdown duration of the portfolios to assess the algorithm’s

capability to secure the instrument values against potential losses.

To evaluate the trading activity required to hedge the portfolios we compute

the turnover of each portfolio

Turnover = 1/τ periods
τperiods∑
τ=1

M∑
i=1

(
|wτi − wτ

0

i |
)
, (5.10)

where wτi is the portfolio weight in instrument i for period τ and wτ0i is the portfolio

weight before rebalancing. The defined turnover is the average fraction of wealth

traded in each period (DeMiguel et al., 2009).
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5.3 Empirical Results

In this section, we present a detailed empirical examination of the proposed hedg-

ing approach. The purpose of this analysis is to study if the hedging framework

discussed in Section 5.2 is able to reduce hedging costs and provide stability to the

portfolio investment. Moreover, we provide a comparative analysis for PBIL and

GA heuristic algorithm in option based portfolio optimisation problems. To evalu-

ate the effectiveness of the proposed hedging approach with the heuristic algorithm

we compare the results with unhedged portfolios with PBIL optimisation.

The empirical study uses daily closing prices provided by DataStream for the

DJIA index and ten randomly selected DJIA constituents (Verizon Communi-

cations, General Electric, Boeing, Microsoft, Travelers Cos., Walt Disney, 3M,

Hewlett-Packard, Home Depot, Bank of America). We reduce the investment

universe to ten assets due to computational time restrictions. Moreover, the em-

pirical DJIA index put option data is downloaded from OptionMetrics’ Ivy DB US

database. We consider the same data and computational approach as described in

Chapter 3 and Chapter 4.

The empirical data is divided in an in-sample and out-of-sample period. The

in-sample period consists of 1250 observations and is used to train the algorithm.

The estimated parameters of the in-sample period are tested in an ten days out-

of-sample period (Bailey et al., 2014). At the end of one test period the in-sample

period is rolled forward by ten days. For a total of 1750 observations the analysis

consists of 50 in-sample and out-of-sample periods.

5.3.1 Descriptive Statistics and Hedging Results

Figure 5.3 shows the evolution of the CV aRH hedging function value for the sim-

ulated data based on the first in-sample period using PBIL and GA optimisation



106

algorithms. The figure shows the best optimisation of the PBIL and GA algo-

rithm. The objective function with PBIL search method evolves much quicker to

its optimum compared with the GA optimisation. After 30 generations the PBIL

algorithm already finds 81% of the optimal objective function value while the GA

optimisation approach only finds 72%.

The PBIL optimisation process quickly concentrates on the most promising

weight allocations, as illustrated in Figure 5.4A. High asset weights are coloured

red while low asset weights are dark blue. The highest fluctuation of the asset

weights can be seen for the first generations in the PBIL optimisation. With

continuous optimisation the weights of the optimal portfolio stay almost constant.

The weight allocation for the GA optimisation process looks different. For entire

generations the weights of the assets constantly change, as shown in Figure 5.4B.

Table 5.1 shows the mean return, standard deviation, modified Sharpe ratio,

skewness and kurtosis of the hedged and unhedged portfolios, for the entire out-

of-sample period. Objective functions referenced with an asterisk (∗) indicate

unhedged PBIL optimised portfolios.

In general, we see that all hedged portfolios have better performance measures

than their unhedged equivalents. The unhedged portfolios have negative mean

return values between -3.29% and -14.79%, with the highest mean return for the

normal VaR and the lowest for the empirical VaR objective function. The hedged

portfolios have higher mean returns than the unhedged portfolios. On average,

the hedged portfolios with PBIL optimisation have an annualised mean return

of -1.00% and with GA algorithm -2.04%. The highest mean return is reported

for the normal VaR with PBIL algorithm with 3.23%. The same hedging strat-

egy with GA search method has a mean return of -3.07%. The CV aRN1% and

V aRH1% portfolio with GA optimisation have positive mean returns with 0.62%

and 0.18%, respectively. All other portfolios have negative mean returns. Of all

hedged portfolios the empirical CVaR with GA algorithm has the lowest mean
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Figure 5.3 Evolution of the absolute objective function value for the CV aRH

hedging strategy with GA and PBIL search method.
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Table 5.1 The table shows the descriptive statistics of the hedged and unhedged
(∗) portfolios, after transaction costs. The mean return, standard deviation, mod-
ified Sharpe ratio are annualised results and shown as percentage value.

Algorithm Objective Mean Standard Sharpe Skewness Kurtosis
Function Return Deviation Ratio

GA

CV aRH1% -5.90 19.12 -1.17 -1.66 11.62
CV aRN1% 0.62 18.33 2.23 -1.93 12.65
V aRH1% 0.18 18.46 -0.01 -1.10 9.78
V aRN1% -3.07 19.48 -0.64 -1.81 11.85

CV aRH1% -2.39 18.87 -0.49 -0.83 11.09
CV aRN1% -3.84 18.78 -0.76 -1.43 10.00
V aRH1% -0.82 19.02 -0.20 -1.01 9.70
V aRN1% 3.23 18.24 16.55 -1.50 11.43

PBIL
CV aR∗H1% -6.99 26.78 -1.93 -1.83 8.90
CV aR∗N1% -6.43 26.46 -1.76 -1.85 9.43
V aR∗H1% -14.79 26.74 -4.01 -1.82 8.76
V aR∗N1% -3.29 26.99 -0.94 -1.93 9.45

return with -5.90%.

Our proposed option based hedging approach reduces the standard deviation

for all hedge strategies compared with the unhedged portfolios. This is because

the option reduces the price fluctuation of the portfolios. The average standard

deviation of the hedged portfolios is 18.73% and 18.85% with PBIL and GA search

method, respectively. For the unhedged portfolios the average standard deviation

is 26.74%. Again, best standard deviation of the hedged portfolios is given by

the PBIL optimised normal VaR hedging strategy with 18.24%. The same hedg-

ing strategy with GA algorithm has the highest standard deviation of all hedged

portfolios with 19.48%. The normal CVaR portfolio with GA optimisation has the

second lowest standard deviation with 18.33%.

Due to the negative mean returns, only two optimised portfolios have positive

modified Sharpe ratios. The highest modified Sharpe ratio is given by the PBIL

optimised V aRN1% portfolio with 16.55%. The only other portfolio with positive
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modified Sharpe ratio is the normal CVaR portfolio with GA algorithm with 2.23%.

The modified Sharpe ratio of all other portfolios is negative. The portfolio with the

lowest rank and thus, the lowest modified Sharpe ratio is given by the unhedged

V aRH1% with -4.01%.

All portfolios are left-skewed with skewness between -1.93 for the unhedged

V aR∗N1% and -0.83 for the empirical CVaR hedged portfolio with PBIL algorithm.

The highest difference between a hedged and an unhedged portfolio can also be seen

for the empirical CVaR objective function. The skewness of the hedged CV aRH1%

portfolio with PBIL algorithm is 54.6% higher than for the unhedged CV aR∗H1%

portfolio, with -0.83 and -1.83 for the hedged and unhedged portfolio, respectively.

All hedged portfolios have a higher skewness than their unhedged equivalents. The

only exception is the GA optimised normal CVaR portfolio with -1.93. On average,

the skewness of PBIL optimised hedged portfolios is 36.0% and for portfolios with

GA algorithm 12.7% higher than the skewness of the unhedged portfolios.

The hedged portfolios have a higher kurtosis than the unhedged portfolios.

The kurtosis of the unhedged portfolios is in the range of 8.76 and 9.45 for the

V aR∗H1% and V aR∗N1%, respectively. The average kurtosis of the hedged portfolios

with PBIL algorithm is 15.6% higher than the kurtosis of the unhedged portfolios.

For GA optimised portfolios on average the kurtosis is 25.4% higher than for the

unhedged portfolios. The highest kurtosis of the hedged portfolios is reported

for the GA optimised normal CVaR hedging strategy with 12.65. The lowest

kurtosis is given by the PBIL V aRH1% portfolio with 9.70. The kurtosis of the GA

optimised portfolios is higher compared with the kurtosis of portfolios with PBIL

search method.

The annualised empirical and normal VaR and CVaR portfolio values at 1%

significance level for the hedging strategies and unhedged portfolios are shown in

Table 5.2. The maximum drawdown and the maximum drawdown duration is

shown in the last two columns of the table. The maximum drawdown is expressed
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Table 5.2 Annualised empirical and normal CVaR and VaR values for the heded
and unhedged (∗) portfolios, after transaction costs. The maximum drawdown
(DD) is the maximum percentage drop from a peak and the maximum drawdown
duration is the length of this drop period, expressed in days.

Algorithm Objective CVaR VaR Max DD Max DD
Function Historical Normal Historical Normal Duration

GA

CV aRH1% -0.89 -0.41 -0.66 -0.33 -22.66 138
CV aRN1% -0.88 -0.38 -0.59 -0.30 -20.19 138
V aRH1% -0.80 -0.38 -0.56 -0.30 -17.43 138
V aRN1% -0.91 -0.41 -0.66 -0.33 -22.59 138

CV aRH1% -0.82 -0.39 -0.57 -0.32 -17.33 138
CV aRN1% -0.84 -0.40 -0.58 -0.32 -22.44 138
V aRH1% -0.81 -0.39 -0.56 -0.31 -16.21 15
V aRN1% -0.83 -0.37 -0.58 -0.29 -17.06 89

PBIL
CV aR∗H1% -1.16 -0.57 -0.93 -0.46 -64.87 210
CV aR∗N1% -1.18 -0.56 -0.89 -0.45 -59.23 210
V aR∗H1% -1.17 -0.58 -0.95 -0.47 -65.68 210
V aR∗N1% -1.19 -0.56 -0.93 -0.45 -63.40 210

as cumulated return value and the maximum drawdown duration as number of

days. The statistics are calculated for the entire 500 days out-of-sample period.

As Table 5.2 shows, the proposed hedging approach significantly reduces the

objective function values of the hedged portfolios compared with the unhedged

portfolios. Furthermore, portfolios with PBIL algorithm have slightly better ob-

jective function values than their equivalents with GA search method. Only in

a few cases portfolios with GA optimisation perform better than portfolios with

PBIL algorithm. On average, the PBIL algorithm improves the objective function

values relative to the unhedged portfolios by 32.9%. The GA search method per-

forms slightly worse with an average improvement of the objective function values

by 30.2%. The most significant improvement in the objective function values can

be seen for the empirical VaR values with on average 38.1% and 33.2% for PBIL

and GA optimised portfolios, respectively.

A good indicator for the efficiency of our proposed single-option hedge is the
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maximum drawdown and the maximum drawdown duration of the portfolios. The

primary interest is to secure the investment from drawdowns in prices. Secondly,

we want to reduce the drawdown duration as long drawdown periods show that

the model is unable to adjust to new market situations. In the entire out-of-sample

period, the maximum drawdown of the index level is -52.90% with a maximum

drawdown duration of 221 days. All unhedged portfolios have about the same

maximum drawdown. The V aR∗H1% has the lowest maximum drawdown of all

portfolios, with -65.68%. This is even lower than for the index level. The maxi-

mum drawdown duration of the unhedged portfolios is 210 days long. Thus, even

though the unhedged portfolios are optimised for the objective functions given in

Equations (2.2-2.5) they cannot significantly reduce the maximum drawdown. This

is because of the transaction costs which reduce the performance of the optimised

portfolios. Moreover, in this optimisation we considered ten equity instruments

while the index consists of 30 constituents and thus, achieves a better diversifica-

tion effect.

All hedged portfolios are able to improve the maximum drawdown and the

drawdown duration. The most significant improvement in drawdown duration

can be seen for the PBIL optimised V aRH1% hedging strategy with a duration of

15 days. The second shortest maximum drawdown duration is reported for the

V aRN1% portfolio with PBIL algorithm with 89 days. All other hedged portfolios

have a maximum drawdown duration of 138 days.

The best maximum drawdown of the hedged portfolios can be seen for the

PBIL optimised empirical VaR hedging strategy with -16.21%. This is followed

by the normal VaR and the empirical CVaR hedge with PBIL optimisation with

-17.06% and -17.33%, respectively. The lowest maximum drawdown of the hedged

portfolios can be seen for the CV aRH1% and V aRN1% hedging strategy with GA

optimisation with -22.66% and -22.59%, respectively. On average, hedging strate-

gies with PBIL search method improve the maximum drawdown by 71.0%. Port-
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folios with GA optimisation on average reduce the maximum drawdown values by

67.2%.

Our empirical analysis provides a comparison between coherent and non-coherent

risk measures with combinations of empirical and normal distribution assumptions.

The results of our study add knowledge to the findings of Godin (2016) using a

CVaR objective function with normal inverse Gaussian return distribution. We

demonstrate that the VaR objective function with normal distribution assumption

and PBIL optimisation has the best portfolio risk-return profile, followed by the

empirical VaR hedging strategy. Both hedging strategies also have the highest

maximum drawdown and drawdown duration.

The PBIL and GA heuristic optimisation algorithms are able to provide a global

solution for convex and non-convex risk measures. Our optimisation approach even

allows for non-convex penalty functions and thus, provides an improvement to the

hedging approach introduced by Alexander et al. (2003). Our hedging framework

is easily applicable to other hedging problems with different objective functions

and hedging instruments. This is a clear advantage over the analytical VaR and

CVaR hedging solution provided by Cong et al. (2013) and Cong et al. (2014),

respectively.

5.3.2 Weight Allocation of the Hedged Portfolios

In this section, we analyse the weight allocation, turnover and transaction costs

of the hedged portfolios with GA and PBIL optimisation and compare them with

the unhedged PBIL optimised portfolios.

Figures 5.6 and 5.7 show the portfolio weight allocation for the entire out-of-

sample period with PBIL search method. The y-axes show the fractional weights

of the portfolio for a one unit investment. The colour map is given in Figure 5.5.

The x-axes show the out-of-sample years. Figure 5.6 shows the optimal weight
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Table 5.3 The table reports the portfolio turnover (in %) and transaction costs
(in bps) for GA and PBIL hedged and unhedged portfolios. The relative improve-
ment for portfolios with GA and PBIL algorithm over the unhedged portfolios is
displayed below the turnover rate and transaction costs, respectively.

Objective Function

CV aRH1% CV aRN1% V aRH1% V aRN1%

Turnover GA hedged 55.41 64.67 47.98 57.68

(in %) PBIL hedged 58.80 56.81 52.76 55.14
unhedged 52.13 50.34 51.81 50.86

Relative Difference GA to unhedged 6.29 28.47 -7.39 13.41
(in %) PBIL to unhedged 12.79 12.85 1.83 8.42

Transaction GA hedged 27 28 28 30
Cost PBIL hedged 30 29 28 28

(in bps) unhedged 26 25 26 25

Relative Difference GA to unhedged 3.84 12.00 7.69 20.00
(in %) PBIL to unhedged 15.38 16.00 7.69 12.00

allocation of portfolios with underlying empirical distribution assumption. The

weight allocation of portfolios optimised for Equations (2.2-2.5) are displayed in

Figure 5.7. Panels 5.6A, 5.6B, 5.7A and 5.7B show the portfolio weights for CVaR

hedged and unhedged portfolios with PBIL search method, respectively. Simi-

larly, Panels 5.6C, 5.6D, 5.7C and 5.7D illustrate the weights for VaR hedged and

unhedged portfolios with PBIL search method.

The turnover rates and transaction costs, expressed in percentage and bps,

respectively, are calculated for the optimised portfolios and reported in Table 5.3.

The second column of Table 5.3 shows the optimisation method and the first two

rows show the objective function as given by Equations (2.2-2.5). Rows three to

five report the turnover rates and rows six to eight the transaction costs of the

strategies, for the entire out-of-sample period.

The highest turnover of the unhedged portfolios is given by the empirical CVaR

and VaR portfolio with 52.13% and 51.81%, respectively. They also have the
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Figure 5.5 Colour map for portfolio weights in Chapter 5.
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Figure 5.6 Comparison of the dynamic weights for PBIL hedged and unhedged
(∗) portfolios with VaR and CVaR objective functions and underlying empirical
distribution. A colour map for the portfolio weights is provided in Figure 5.5.
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Figure 5.7 Comparison of the dynamic weights for PBIL hedged and unhedged
(∗) portfolios with VaR and CVaR objective functions and underlying normal dis-
tribution. A colour map for the portfolio weights is provided in Figure 5.5.
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highest transaction costs of the unhedged portfolios in the out-of-sample period

with 26 bps.

The turnover rate and transaction costs for hedging strategies with underlying

normal distribution are lower for the PBIL algorithm. Compared with the turnover

of the GA optimised portfolio the CV aRN1% and V aRN1% hedge with PBIL search

method reduces the turnover by 12.15% and 4.40%, respectively. The transaction

costs for the V aRN1% PBIL portfolio is reduced by 6.67% from 30 bps to 28 bps,

compared with its equivalent with GA optimisation. Only the transaction costs

for the CV aRN1% strategy are lower with GA search method. For the hedged

portfolios, the empirical CVaR and VaR portfolios with GA optimisation have the

lowest transaction costs and turnover rates.

The most significant increase in turnover rate and transaction costs compared

with the unhedged portfolios can be seen for the GA optimised CV aRN1% and

V aRN1% hedging strategy. The turnover rate for the CV aRN1% hedge increases

by 28.47% and the transaction costs for the V aRN1% hedge by 20.00%. Compared

with the unhedged portfolios the turnover rate and transaction costs for hedging

strategies with PBIL algorithm increase not as much as for the GA optimisation

method. The maximum increase in turnover rate and transaction costs is reported

for the CV aRN1% hedging strategy with 12.85% and 16.00% when the PBIL al-

gorithm is used. On average, the GA optimised hedging strategies increase the

turnover rate and transaction costs compared with the unhedged portfolios by

10.19% and 10.88%, respectively. With PBIL algorithm, the turnover rate in-

creases by 8.97% and the transaction costs by 12.77%.

Compared with the GA optimised hedges the transaction costs on average

increase by 2.85% when the PBIL algorithm is used. However, the average turnover

rate for hedging strategies with PBIL algorithm is reduced by 0.12% compared with

the turnover rate of GA optimised portfolios. As the results in Table 5.1 show,

the average mean return of portfolios with PBIL optimisation after transaction
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Table 5.4 The table shows the average number of instruments and the average
weight allocated to the option in percent for each hedging strategy and algorithm,
for the entire out-of-sample period.

Objective Function

CV aRH1% CV aRN1% V aRH1% V aRN1%

Average GA 7.34 6.92 8.14 7.02
Number PBIL 7.42 7.02 8.06 8.08
of Assets unhedged 5.24 5.24 5.30 5.24

Average Option GA 3.33 2.94 4.02 2.95
Weight (in %) PBIL 3.29 2.89 4 3.25

costs is higher than the average mean of all hedging strategies for GA optimised

portfolios.

The average number of instruments represented in each portfolio over the en-

tire out-of-sample period is reported in Table 5.4. Moreover, the table shows the

average weight allocated to the option for GA and PBIL hedged portfolios. The

optimal weight allocation of the hedged and unhedged portfolios with PBIL opti-

misation is shown in Figures 5.6 and 5.7.

The lowest average number of instruments represented in one of the hedging

strategies is reported for the GA optimised CV aRN1% portfolio with 6.92 instru-

ments on average. With PBIL algorithm the average number of instruments is

7.02 for the same hedging strategy. The empirical VaR hedging strategy has the

highest average number of instruments with 8.14 for GA and 8.06 for PBIL. The

average number of instruments in the unhedged portfolios is 5.30 for the empirical

VaR and 5.24 for the three remaining objective functions. The higher average

number of instruments in the hedged PBIL and GA portfolios can be explained

by the negative correlation between the equities and the index put option. The

underlying instrument of the option is the DJIA index. The index and the put

option have a high negative correlation. In our approach, we hedge a number of



118

DIJA constituents with the index put option. Thus, an optimal negative correla-

tion can be generated by replicating the index correlation with the equities in the

portfolio.

The average weight allocated to the put option differs by the hedging strategy

and algorithm. In the entire out-of-sample period, the empirical VaR hedging

strategy with GA algorithm has the highest average weight allocated to the option

with 4.02%. The equivalent hedging strategy with PBIL algorithm on average

allocates 4.00% to the option. The empirical CVaR hedging strategy requires the

second highest investment in the option both with GA and PBIL search method

with 3.33% and 3.29%, respectively. Hedging strategies with underlying normal

distribution have a lower share invested in the option. The normal VaR and CVaR

hedge on average allocate 2.95% and 2.94% for GA optimisation and 3.25% and

2.89% for the PBIL search method. In general, the hedging strategies with GA

algorithm have a higher share invested into the option than PBIL optimised hedges.

The only exception is the V aRN1% strategy.

The higher average option weight for the empirical VaR and CVaR hedging

strategy is caused by heavier tails assumed using the empirical distribution as-

sumption. The expected downside risk measures for the empirical distribution

are lower than for the normal distribution, in the in-sample periods. Thus, the

optimisation algorithm increases the average weight of the option for the empiri-

cal VaR and CVaR hedging strategy to improve the downside risk of the portfolio.

VaR and CVaR hedged portfolios with underlying normal distribution expect lower

downside risk and thus, allocate less weight to the option.

In contrast to the work of Alexander et al. (2004) and Godin (2016), we pro-

pose a transaction cost function that is more practically relevant if the maturity

of derivative hedging instrument does not match the length of the portfolio rebal-

ancing period. Our empirical analysis shows, that the proposed hedging approach

slightly increases the transaction costs compared with their unhedged equivalents.
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However, the results show that the hedge significantly improves the portfolio re-

sults after transaction costs. Compared with the papers presented by Ahn et al.

(1999) and Annaert et al. (2007), it is not necessary to determine the optimal

strike price of the option to find the optimal hedging ratio for the portfolio. The

optimal weight allocated to the put option is determined in the VaR and CVaR

optimisation process and the option is not required to end in-the-money.

The empirical results show that our proposed hedge is able to efficiently secure

a number of equities with a single long index put option. Instead of having to

create an OTC option with increasing costs, lower liquidity or trade volume, we

reduce the transaction costs by hedging all assets with a single long index put

option. The proposed hedging framework reduces the option pricing risk while

it increases the trade volume and market liquidity compared to an OTC option

hedge.

5.4 Conclusion

Recent surveys by the ISDA (International Swaps Dealers Association, 2015) show

that one of the major concerns in risk management is the increase in cost of hedg-

ing, caused by changes in the regulatory oversight of OTC derivatives contracts.

Moreover, the new Basel III framework for non-standardised OTC contracts re-

quires firms to find strategies to hedge their risk using standardised derivatives.

In this chapter, we contribute to the existing literature by introducing a self-

financing global VaR and CVaR hedging approach with multivariate GARCH pro-

cess. We extend the work of Rémillard and Rubenthaler (2013) and provide a

hedging approach that is able to secure a number of underlying with one put op-

tion. Our hedging model minimises the VaR and CVaR of the terminal value of

the portfolio by using a GARCH-DCC process to simulate the future hedging loss

distribution. This extends the existing global hedging literature like Föllmer and
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Leukert (2000), Föllmer and Leukert (1999), Alexander et al. (2004) and Godin

(2016), and opens a new research path for global hedging with GARCH processes.

As another contribution to the existing literature (Föllmer and Leukert, 1999;

Melnikov and Smirnov, 2012; Cong et al., 2013; Cong et al., 2014; Godin, 2016),

our global VaR and CVaR hedging model provides a more practical approach to

minimise the terminal value of the investments, as it requires no optimal strike

price and maturity of the option, which often is hard to find for standardised

derivatives. We provide a cost function that recognises such option selection is-

sues. The optimisation of our global hedging approach is performed using the more

computationally efficient PBIL algorithm compared with the dynamic program-

ming algorithm used by Rémillard and Rubenthaler (2013) and Godin (2016).

The results of our empirical analysis show that the self-financing hedge im-

proves the descriptive statistics of the portfolios after transaction costs. The

hedged portfolios have a higher mean return and lower standard deviation com-

pared with their unhedged equivalents. The best mean return and standard de-

viation is reported for the normal VaR hedging strategy with PBIL optimisation

algorithm.

Unhedged portfolios are much more left-skewed than their hedged equivalents.

The highest skewness is reported for the empirical CVaR hedging strategy and

PBIL optimisation. Compared with the hedged portfolios with GA search method,

all hedging strategies with PBIL algorithm have higher skewness values. In con-

trast, PBIL optimised hedging strategies have lower kurtosis values than portfolios

with GA algorithm. However, all hedging strategies increase the kurtosis compared

with the unhedged portfolios.

Our analysis shows that the proposed hedging approach successfully secures

the investment in the underlying. Compared with the unhedged portfolios the

hedging strategies significantly improve the normal and empirical VaR and CVaR

values. Moreover, the maximum drawdown and drawdown duration of the hedged
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portfolios ameliorate substantially. In general, the hedging strategies with PBIL

optimisation improve the maximum drawdown and drawdown duration slightly

more than GA optimised hedge functions.

The turnover rates of the PBIL optimised hedging strategies increases on av-

erage by 8.97% compared with the unhedged portfolios. However, compared with

GA optimised hedging strategies the turnover rate of portfolios with PBIL al-

gorithm decrease by 0.12%. VaR and CVaR hedging strategies with underlying

normal distribution and PBIL optimisation have up to 12.15% lower turnover rate

than their equivalents with GA search method.

The transaction costs for hedging strategies with PBIL optimisation are be-

tween 7.69 % and 16.00% higher compared with their equivalent unhedged objec-

tive functions. For hedging strategies with GA optimisation the transaction costs

range from 3.84% to 20.00%.

Our advocated global hedging approach secures a number of underlying with a

standardised index long put option. We show that with increasing regulatory re-

quirements and transaction costs for non-standardised OTC derivatives, our global

VaR and CVaR hedging framework is a cost efficient technique that improves sta-

bility and profitability of the investments, after transaction costs. The framework

is easily adoptable to other distribution and objective functions, and can be ap-

plied to hedge a variable number of instruments. Our self-financing global hedging

approach requires no additional budget constraints. A natural extension to the

proposed hedging approach is to use asymmetric conditional variance and correla-

tion models. More research has to be conducted on how different types of options

and option strategies can contribute to the hedging approach. Compared with the

GA search method the PBIL algorithm requires only a few number of model pa-

rameters for the optimisation process. Future studies could research mechanisms

to automatically set the parameters, e.g. based on the evolution of the underlying

objective function.



Chapter 6

Conclusive Remarks

The research in this thesis develops new portfolio optimisation tools in combina-

tion with heuristic optimisation methods to manage the increasing market risk

regulatory requirements of financial institutions under the Basel III regulations.

This chapter provides a summary of this study.

This final chapter is structured as follows. The presented work is recapitulated

in Section 6.1. We then list the contributions of this thesis in Section 6.2 before

looking at further research in Section 6.3.

6.1 Summary

The ongoing revision process of the Basel III framework and the thereby caused

changes to the regulatory requirements for financial firms, lead to increasing costs

and capital requirements for their risk management processes. In Chapter 1, we

discuss the changes in the regulatory environment and the need of financial insti-

tutions to actively manage their market risk exposure. This discussion leads to the

research objectives of this thesis. We outline relevant risk management literature

in Chapter 2 before proceeding with the research studies we have conducted to

contribute in this field of study.
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The research we undertake in this thesis provides new regulatory risk manage-

ment tools and aims to understand the influence of portfolio optimisation decisions

on the regulatory requirements. In all studies, multi-constraint portfolio optimisa-

tion problems with heuristic optimisation are carried out for an empirical sample

and conclusions about the influence on the financial regulatory requirements of the

company are made.

In the first research study, presented in Chapter 3, the effect of heuristic op-

timisation on the regulatory market risk capital requirements is examined in an

empirical analysis. We extend this optimisation problem to manage the regulatory

risk of the portfolio by proposing a new regulatory risk constraint to manage the

number of daily VaR violations of a portfolio.

The first part of research Chapter 3 analyses the Threshold Accepting (TA)

heuristic optimisation algorithm and its effect on reducing the market risk capital

requirements by finding better portfolio compositions for ill-posed VaR and CVaR

optimisation problems. The results are compared with the Trust-Region (TR)

local search method in an empirical analysis for the 30 constituents of the Dow

Jones Industrial Average (DJIA) index. Our computational experiment demon-

strates the superiority of the heuristic optimisation over the local search method

for ill-posed optimisation problems. Portfolios optimised with the TA algorithm

outmatch portfolios with TR search method in all risk and performance measures.

We identified the most promising objective function to be a CVaR risk measure

with underlying empirical distribution.

Based on the findings in the first part of Chapter 3, we propose a new regulatory

risk constraint that is based on the Unconditional Coverage (UC) log-likelihood

ratio. This methodology is discussed in the second part of Chapter 3. The purpose

of this new risk constraint is to avoid under- and overestimation of the regulatory

portfolio risk while optimising the portfolio for some objective function. We iden-

tify the regulatory portfolio risk as the number of daily VaR violations, as this has
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a direct effect on the portfolios market risk capital requirements. Our new risk

constraint is a unique approach that is able to manage the portfolio regulatory

requirements in the ongoing revision process of the Basel III framework. In an

empirical analysis of 30 DJIA constituents, we find that our new approach leads

to better objective function measures for all portfolios. The findings suggest that

portfolios with our constraint approach perform best with standard normal VaR

and CVaR risk measure. Interestingly, the empirical results suggest that for all

optimised portfolios we were able to improve the regulatory market risk capital

requirements.

The second research study is presented in Chapter 4. In this research work,

we examine the question if more advanced VaR and CVaR estimation methods

have a positive impact on the daily VaR violations and the capital requirements.

To answer this question, a Monte Carlo simulation approach is proposed that

uses GARCH and DCC modelling to create several-days ahead VaR and CVaR

estimates for different underlying distribution assumptions. The Monte Carlo ap-

proach uses Cholesky decomposition to generate correlated random variables. For

the optimisation we apply the PBIL heuristic algorithm. The results of our em-

pirical analysis on the DJIA constituents show that more advanced estimation

models are able to reduce the regulatory capital requirements for VaR and CVaR

objective functions. We find that the average number of VaR violations can be

reduced for optimisation models with empirical VaR and CVaR objective function

when the more advanced approach is used. Objective functions with standard

normal distribution assumption, however, have a higher average number of daily

VaR violations with the Monte Carlo GARCH-DCC simulation approach.

Chapter 5 presents the third research work of our thesis. In risk management,

firm often use OTC derivatives to hedge their exposure against potential losses.

With the Basel III framework, however, regulatory oversight and transaction costs

significantly increase for OTC contracts. Thus, firms seek new hedging strate-
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gies to reduce the regulatory and transaction costs. In this chapter, we provide a

new global hedging approach with multivariate GARCH process. We introduce a

GARCH-DCC process to the global VaR and CVaR hedging approach to model

future returns and find an optimal solution to the VaR and CVaR minimisation

problem. For the optimisation process, we use a PBIL heuristic algorithm. The

optimisation results of the PBIL algorithm are compared with a GA optimisation

algorithm, which we use as a benchmark for the PBIL search method. We ap-

ply our self-financing global hedging framework to several underlying and hedged

them with an index put option. In an empirical study of DJIA constituents and

DJIA index options, we test the models ability to secure the investment in sev-

eral underlying while reducing the transaction costs. The empirical examination

shows that portfolios hedged with our approach yield better performance measures

and improve the stability of the hedged portfolios. Moreover, our global hedging

model improves the maximum drawdown and maximum drawdown duration of

the secured portfolio. The results show that PBIL algorithm is capable to find

good solutions for option based downside risk hedging problems. In our setting,

the algorithm outperforms the GA search method in efficiency and quality of the

solution.

6.2 Contributions

This thesis contributes to the fields of heuristic optimisation, regulatory finance,

portfolio optimisation and hedging. We provide new active risk management tools

that use heuristic optimisation techniques to optimally manage new challenges in

risk and portfolio management that are caused by changes in the regulatory market

and credit risk requirements. The major contributions of this thesis are:

1. In Chapter 3, we provide the first empirical evidence for the significance

of applying heuristic optimisation algorithms to financial regulatory portfo-
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lio optimisation problems of trading desks. Our results show that heuristic

optimisation algorithms reduce the regulatory capital requirements for mar-

ket risk of ill-posed VaR and CVaR portfolio optimisation problems. The

findings highlight the importance to apply heuristic algorithms in regulatory

risk management. A Multi-Objective Evolutionary Algorithms (MOEA) ap-

proach to find a Pareto-optimal solution set that optimises for the regulatory

capital requirements and the expected portfolio return is applied by Dren-

ovak et al. (2017). The multi-objective portfolio optimisation problem is

solved by using a Non-dominated Sorting Genetic Algorithm II (Deb et al.,

2002) that is run under a parallel framework developed by Ivanovic et al.

(2015). We demonstrate that a meta-heuristic algorithm can efficiently solve

financial regulatory optimisation problems.

2. We provide a regulatory risk constraint that is based on the UC log-likelihood

ratio. This new constraint leads to an optimal number of daily VaR viola-

tions to avoid under- and overestimation of the regulatory portfolio risk.

By doing this, it incorporates the Basel III backtesting rules while the risk

manger is able to optimise for some preferred objective function. Compared

with the dynamic decision rule proposed by McAleer et al. (2010), our model

is an active risk management approach. The trader simply optimises for the

desired objective function while the constraint sets boundaries to keep the

model Basel III conform. This is different to the model by McAleer et al.

(2010) where the trader has to decide on a number of initial model param-

eters, which are difficult to estimate. Other than our UC constraint model

and the model presented by McAleer et al. (2010), Santos et al. (2012) di-

rectly minimise the capital requirements of the portfolio. They analytically

solve the minimum capital requirements objective function and provide a

convex solution with a daily VaR violations constraint. The UC constraint
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provides a more flexible optimisation approach and allows for different objec-

tive functions. The MOEA approach to minimise the capital requirements

and maximise the expected portfolio return proposed by Drenovak et al.

(2017) is an extension to the model presented by Santos et al. (2012). How-

ever, the missing constraint on the number of daily VaR violations can lead

to optimal portfolios with a high number of VaR violations. Each violation

of the daily VaR limit is a risk to the stability of the portfolio and the bank.

Our proposed UC constraint optimally manages the daily VaR violations

of the portfolio. It can even be applied to a MOEA portfolio optimisation

problem with several contradicting objective functions. With the most re-

cent changes in the regulatory framework the objective function provided by

Santos et al. (2012) and Drenovak et al. (2017) are outdated. Our UC con-

straint approach is applicable to all revised versions of the Basel III minimum

capital requirements for market risk estimations.

3. We demonstrate that more advanced VaR and CVaR estimation models re-

duce the regulatory portfolio capital requirements even for several-days ahead

forecasts. We show that the average number of daily VaR violations can be

reduced for empirical VaR and CVaR objective functions when a Monte

Carlo simulation approach is used. These findings can have implications on

the internal risk management approach of financial institutions. Our results

extend the findings of Sentana (2003), Cuoco and Liu (2006), Alexander

et al. (2007), McAleer et al. (2010), Santos et al. (2012) and Drenovak et al.

(2017) by examining the influence of more advanced VaR and CVaR estima-

tion models on the number of daily VaR violations and market risk capital

requirements.

4. We introduce a self-financing global VaR and CVaR hedging approach with

multivariate GARCH process. The introduction of GARCH processes in
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global VaR and CVaR hedging is a new research path that extends the

existing global hedging literature (see Föllmer and Leukert, 2000; Föllmer

and Leukert, 1999; Alexander et al., 2004; Godin, 2016). Our model extends

the global hedging approach of Rémillard and Rubenthaler (2013), who apply

a GARCH process to a global quadratic hedging approach. Compared with

their framework, our model aims to VaR and CVaR hedge several underlying

with one put option. We use a multivariate GARCH process to model the

future returns and find an optimal solution of the global hedging problem.

Our global hedging framework neither requires an optimal strike price nor an

optimal maturity of the derivative to hedge the underlying. This is different

to Cong et al. (2013), Cong et al. (2014) and Godin (2016), who assume an

option strike price that matches the price of the underlying. In practice how-

ever, it can be very difficult to find options with the exact strike price. Our

propose global VaR and CVaR hedging approach finds the optimal hedging

solution even when the maturity or strike price of the option is not optimal.

We can easily extend our model for different distribution and objective func-

tions. Moreover, we provide a more practical transaction costs function for

situations where the maturity of the option does not fit the length of the

investment period.

6.3 Future Research

The ongoing revision process of the Basel III framework creates several new re-

search needs to assist the decision process of firms risk management and financial

regulators. This thesis provides new methods and insights to regulatory portfolio

optimisation problems with heuristic algorithms. There is a wide range of opportu-

nities to carry out more research on these models and provide further contributions

to the literature.
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Given our research in portfolio optimisation with minimum capital require-

ments objective functions, we find that such models are difficult to apply in a

simulation-based optimisation approach. A natural extension to our proposed

optimal regulatory risk constraint and similar minimum capital requirements ob-

jective functions provided in the literature, is a simulation-based regulatory risk

constraint for portfolio optimisation.

Some recently proposed changes in the calculation of the minimum capital

requirements for market risk need further examination. A study introduced by

Kellner and Rösch (2016) shows that model risk increases with these changes. In

our future research we will introduce a Multi-Objective Evolutionary Algorithm

that reduces the model risk, based on findings by Skolpadungket et al. (2016) to

handle model risk in portfolio selection using Multi-Objective Genetic Algorithm

with Sharpe ratio errors.

Ranković et al. (2016) propose a different mean-VaR optimisation approach

that is based on the actual number of shares of an asset not on the portfolio

weight allocated to this asset. They argue their approach is more relevant to asset

managers facing regulatory VaR constraints. Drenovak et al. (2017) also apply this

approach in their minimum capital requirements framework with Multi-Objective

Evolutionary Algorithms portfolio optimisation. An extension to our study could

be to apply the active portfolio framework, proposed by Ranković et al. (2016), in

our optimisation process.

Ranković et al. (2016) and Drenovak et al. (2017) use the parallel NSGA-II

algorithm developed by Deb et al. (2002) and extended by Ivanovic et al. (2015).

As our research results in Chapters 4 and 5 demonstrate, PBIL is a valid alter-

native to Genetic Algorithm (GA) and can easily run in a parallel framework. A

parallel Multi-Objective PBIL (MO-PBIL) is introduced by Brown et al. (2014)

and extended by Carmona Cortes and Rau-Chaplin (2016). A more detailed anal-

ysis between the NSGA-II and MO-PBIL could provide new information on how
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efficient the algorithms are to solve optimisation problems with focus on regulatory

requirement.

Aside from studying the efficiency of NSGA-II and MO-PBIL, another research

path could be to improve these models even further. Both algorithms use k-means

clustering to determine Pareto-optimal sets to start the next generation. The

number of clusters is a constant that needs to be determined at the beginning of

the optimisation process. An extension could be to dynamically set the number of

clusters for the optimisation process. A dynamic k-means algorithm is proposed

by Tao et al. (2016) and could be used for such purpose.

An extension to our VaR and CVaR hedging approach with GARCH-DCC

estimation can be to model the error terms of the GARCH processes with non-

Gaussian distribution functions, as suggested in Godin (2016). Such distributions

might provide a better estimate of the returns distribution. Another option can be

Copula-GARCH models that show good performance for hedging equities in local

hedging frameworks (see Hsu et al., 2008; Lee, 2009).

Other research opportunities are related to the integration of regulatory instru-

ments and their effects on the economy. The majority of the literature focuses on

the costs and benefits of capital requirements. Papers such as Miles et al. (2013)

estimate the optimal capital requirements taking into account the costs and ben-

efits for both the institution and the economy. Also, there is some literature that

examines the impact of total loss-absorbing capital (TLAC) instruments, see e.g.

Prescott (2012) and Nguyen (2013). The pricing of TLAC instruments seems to

open up another interesting research path, see e.g. Berg and Kaserer (2015).

The introduction of liquidity capital requirements (LCR) to the Basel III frame-

work also gives rise to a new research path that studies the costs and benefits of

this new instrument to the stability of institutions and potential interactions with

the capital requirements. Covas and Driscoll (2014) and Cornett et al. (2011)

study the effects on the bank itself, while Perottia and Suarez (2011) examines the
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impact on the economy. Krause and Giansante (2012) address the issue of how

the minimum capital and liquidity requirements affect the systemic risk and the

likelihood of bank failures. They are the first who consider the network structure

of interbank loans as well as the balance sheet structure of individual banks.

Another research direction can be other supervisory tools (e.g. buffers and

macroprudential policies) that are introduced in the new Basel III framework and

which are to support the more complex capital and liquidity regulatory require-

ments. Van Den End and Kruidhof (2013) and Aiyar et al. (2016) are just two

exemplary papers that study the effectiveness of macroprudential policies. These

simpler rules are more pro-cyclical and can help to discourage arbitrage behaviour

by the bank, e.g. regulatory and tax arbitrage. The discussion on regulatory arbi-

trage is also connected to research work on the regulation of the shadow banking

system, see e.g. Lengwiler and Maringer (2015).
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Appendix A

Minimum Capital Requirements for

Market Risk

As specified in detail in Section 3.2.2, the Basel II formula for calculating the

minimum capital charge for market risk is given by

CR = max{V aRt,m× V aR60}. (A.1)

With the introduction of the Basel III accord (Basel Committee on Banking

Supervision, 2009b) the regulatory capital requirements for market risk formula

was extended by a stressed VaR (sV aR) calculation. The regulatory authorities

avoid to determine specific stress scenarios to calculate the sV aR term. With the

introduction of the new stressed VaR term, the firm’s minimum capital require-

ments for market risk is reformulated as

CR = max{V aRt,m× V aR60}+max{sV aRt,m× sV aR60}. (A.2)

The latest update of the Basel III accord (Basel Committee on Banking Super-

vision, 2016) led to significant changes in the calculation of the minimum regulatory
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capital requirements for market risk and is now mainly based on the portfolio’s

Expected Shortfall (ES), also referred to as Conditional Value-at-Risk (CVaR).

In this thesis, we focus on the modellable risk factors and thus, the regulatory

minimum capital charge for market risk is given by

CR = max{IMCCt,m× IMCC60}, (A.3)

where

IMCC = p(IMCC(C)) + (1− p)

(
R∑
i=1

IMCC(Ci)

)
, (A.4)

IMCC(C) = ESR,S ×
ESF,C
ESR,C

, (A.5)

and

IMCC(Ci) = ESR,S,i ×
ESF,C,i
ESR,C,i

. (A.6)

The value of p is 0.5 and is the relative weight assigned to the bank’s internal risk

model. The multiplication variable m can take values between 1.5 and 2.0. As

for the previous models, the multiplication factor is based on the outcome of the

backtesting of the bank’s daily 99% VaR based on the full set of risk factors (F )

in the current period (C). Variable R is the reduced set of risk factors. The ES

for the reduced set of risk factors (ESR,C) needs to explain a minimum of 75%

of the ES value with full set of risk factors (ESF,C). ESR,S is the portfolio-wide

stressed ES value for a reduced set of risk factors. ESR,C,i, ESF,C,i and ESR,S,i are

the respective ES values for each of the risk classes.

For the minimum capital charge calculation the regulatory liquidity-adjusted

ES with a 97.5th percentile is computed as follows (Basel Committee on Banking

Supervision, 2016):

ES =

√√√√(EST (P ))2 +
∑
j≥2

(
EST (P, j)

√
(LHj − LHj−1)

T

)2

, (A.7)
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where LHj is the liquidity horizon j = 1, 2, ..., 5 that varies by the type of portfolio

position P and can take the values LHj = [10, 20, 40, 60, 120]. Variable T is the

length of the base liquidity horizon. EST (P ) is the ES for portfolio positions with

shocks to all risk factors. The ES for portfolio positions with shocks for each

instrument is given by EST (P, j).

To our best knowledge, the latest Basel III update on the minimum capital

requirements for market risk formula has not been applied in relevant literature,

so far. Related research, conducted by Santos et al. (2012) and Drenovak et al.

(2017), apply Formula A.1 and A.2 in their work.

Drenovak et al. (2017) show that for their Multi-Objective Evolutionary Algo-

rithm (MOEA) optimisation problem the introduction of the stressed VaR term

has no effect on the model evaluation compared with models that use the Basel

II formula in Equation A.1. They find that stressed return series and volatilities

have no effect on the models risk and performance ranking. The only exception

are stress scenarios with significant shift in the correlation matrix. Drenovak et al.

(2017) highlight that the implementation of stressed VaR term into the optimisa-

tion model can be ignored, when stress tests without significant correlation changes

are included in the optimisation process. This reduces model complexity, compu-

tational time and improves the explanatory strength of the optimisation model.

The results of the analysis in Drenovak et al. (2017) support the findings in San-

tos et al. (2012). Santos et al. (2012) conclude that the implementation of the

stressed VaR in the capital requirements calculation has no effect on the general

model evaluation, when compared with models that apply Equation A.1. Their

conclusion even holds for large changes in the stressed correlation matrix.

In this thesis, we therefore implement the Basel II minimum capital require-

ment calculation for market risk formula, given in Equation A.1, and exclude the

stressed VaR term in the optimisation process. In our future research, we will in-

vestigate our advocated LRUC constraint for the new regulatory minimum capital
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requirement formula (Basel Committee on Banking Supervision, 2016), presented

in Equation A.3.



Appendix B

Extended Test Results to Chapter 3

Table B.1 Extended test results to Chapter 3 for V aRH1% portfolio with (+)
and without (-) LRUC constraint. The table shows the optimisation results for
portfolios with 10-days and 1-day investment horizon for a test period from 30th
January 2006 to 29th January 2016.

10-days 1-day
+ LRUC - LRUC + LRUC - LRUC

Mean CR 0.1903 0.2025 0.2797 0.2907
Mean Multiplier 3.42 3.55 3.33 3.42
Max Multiplier 4 4 4 4
Mean Violation 4.12 4.41 4.17 4.28
Max Violation 10 10 12 11
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