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Abstract

Arguably, one of the most elementary nonlinear lattice dynamical models is the discrete

nonlinear Schrödinger (DNLS) equation [1]. Particularly, the discrete system and lattice

solitons are the main objects of investigation in this work.

In this thesis, we consider a chain of dimers, that is modelled by linearly coupled

DNLS equations with gain and loss terms as analogues of Parity-Time (PT ) symmetric

systems. We construct fundamental bright discrete solitons of the systems and explore

their spectral stability. The perturbation theory is used to perform the analysis in the case

of weak coupling between the lattices, which is then verified by numerical calculations.

Such analysis is based on the concept of the so-called anticontinuum limit approach.

Also we consider an array of dual-core waveguides (which represent an optical realisa-

tion of a chain of dimers) with an active (gain-loss) coupling between the cores, opposite

signs of the discrete diffraction in the parallel arrays, and a sufficiently large phase-velocity

mismatch between them, which is necessary for the overall stability of the system. The

corresponding linear array provides an optical emulation of the Charge-Parity (CP) sym-

metry. The addition of the intra-core cubic nonlinearity, despite breaking theCP-symmetry,

gives rise to several families of fundamental bright discrete solitons, whose existence and

stability are explored here by means of analytical and numerical methods.

We study localised solutions in a (PT )-symmetric coupler composed by a chain of

dimers, that is modelled by linearly coupled DNLS equations with gain and loss terms and

with a cubic-quintic nonlinearity. We consider site-centered and bond-centered localised

solutions and show that the resulting bifurcation diagrams when a parameter is varied

form a snaking behaviour. Each localised solution has symmetric and antisymmetric
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configurations between the arms. We analyse the width of the snaking region and provide

asymptotic approximations in the limit of strong and weak coupling where good agreement

is obtained.
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Chapter 1

Introduction

1.1 History of soliton

The term soliton refers to a solitary wave propagating in a nonlinear system [2]. In [3, 4], it

is defined as a localised nonlinear wave. It is a special wave that is capable of travelling

without dispersion, forming a rare natural phenomenon. This enables it to flow without

any limitations as soon as it is formed. Soliton can be seen in both continuous and discrete

systems [2].

Scientifically, soliton was discovered in August 1834 by a Scottish engineer called Scott

Russell during an experiment to find design parameters for converting horse power to

steam through the identification of the best canal boats in order to measure the correlation

between the propelling power of the boat and its speed. In the experiment, the ropes

connecting the boat with the two horses were suddenly broken, causing the boat to stop.

Following this, he immediately mounted the horse to observe an extremely strange phe-

nomenon. What he noticed was a mass of water that started to roll ahead of the boat

1



1.1. History of soliton 2

with high velocity and continued with this movement for around two miles without any

alteration of either shape or speed [5], a wave that he later called Wave of Translation. Scott

Russell reported his observation on that day to a senior scientist named Sir John Herschel,

who did not take it seriously and presumed that it was one of many common and insignifi-

cant waves known at the time. To examine further the significance of his discovery, Russell

conducted a number of laboratory experiments to simulate the wave with shallow water

in a tank, which led him to the identification of the following properties:

1. Analytically, the solitary wave can be represented as a hyperbolic secant function.

2. Unlike normal waves, solitary waves can cross one another without any change,

except for a small displacement to each, i.e., phase-shift, as a result of their interaction.

This indicates that these waves have the capacity to interact with other similar waves

while maintaining both their shapes and speeds, with only a phase shift change. This

allows a large solitary wave to overtake a small one rather than merge with it, which

characterises the particle-like interaction property from which the name soliton was

coined in 1965, by [2].

3. Solitary waves are able to travel for long distances without dissipation.

4. The wave’s speed depends on its size and width and the depth of water.

5. Two or more independent solitary waves can be produced by a sufficiently large

initial mass of water.

6. In a shallow water channel of height h, a solitary wave of amplitude A travels at

a speed
√

g(A + h) (where g is the gravitational acceleration), implying that larger-
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amplitude solitary waves move faster than smaller ones, i.e. confirming a nonlinear

effect.

Throughout his life, Russell was convinced that his discovery was of great scientific

significance and it was not until 20th century when his work received acceptance. At that

time, his solitary waves could not be explained by the existing wave theory; it was believed

that waves either vanish or rise up until they break. In fact, it was only in 1870s when

solitary waves started to be theoretically investigated [6] and the most significant paper

that supported Russell’s discovery was written more than five decades later by Diederik J.

Korteweg and his PhD student G. de Vries in 1895 [7].

A nonlinear partial differential equation (PDE) which was derived mathematically by

Diederik J. Korteweg and G. de Vries and confirmed the existence of the hydrodynamic

solitary wave, known as the Korteweg-de Vries (KdV) equation, modelled the evolution of

waves in a shallow one-dimensional (1D) water channel, and was given by:

ηt + cηx + εηxxx + γηηx = 0, (1.1)

where η is a wave function, c =
√

gh is the velocity of small amplitude waves, ε =

c(h2/6−T/(2ρg)) represents the dispersive parameter, γ = 3c/(2h) is the nonlinear parameter,

T is the surface tension and ρ is the density of water. Korteweg and de Vries showed that Eq.

(1.1) had exact travelling localised solutions which agreed with Scott Russells observation.

It should be noted that although Eq. (1.1) was named for Korteweg and de Vries, it was

apparently first investigated (in the absence of surface tension) independently by [6].

Mathematically, the formation of a soliton in the KdV equation [7] can be explained as
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follows:

In the absence of dispersive and nonlinear terms, i.e.,when ε = γ = 0, the KdV equation

becomes a dispersionless linear wave equation and thus has a travelling wave solution for

any shape (including a localised form) at any velocity c. If one reinstates the dispersion term

only, i.e., by setting ε , 0 and γ = 0, different Fourier components of any initial condition

will propagate at different velocities, thus the wave profile will spread out (disperse). In

contrast, if one reinstates only the nonlinear term, i.e., when ε = 0 and γ , 0, the wave will

experience harmonic generation so that the crest of the wave moves faster than the rest; this

then leads to wave breaking. However, by considering both dispersion and nonlinearity,

there will be a situation such that the effect of dispersion is balanced by that of nonlinearity.

In the latter case, a solitary wave can form.

Although Korteweg and de Vries were able to model Russell’s solitary waves success-

fully, their work lost interest again due to their inability to find a general solution of their

equation.

The year 1955 witnessed the exploration of the dynamics of energy equipartition in

a slightly nonlinear mechanical system, i.e. a chain of equal mass particles connected by

slightly nonlinear springs, through the Los Alamos MANIAC computing machine, Enrico

Fermi, John Pasta and Stanislaw Ulam (FPU) [8]. It was expected that when introducing

all the energy in a single mode, the small nonlinearity would lead to energy redistribution

among all the modes (known as thermalisation). However, to their surprise, their numerical

results ascertained that all the energy returned almost periodically to the original inter-site

mode and a few nearby modes.

Interest in Russell’s solitary waves was restimulated again in the post-war era by virtue
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of rapid developments in digital computing. In mid 1960s applied scientists began to study

nonlinear wave propagation through utilising modern digital computers, which led to the

appreciation of Russell’s innovative idea of the ’Wave of Translation’.

In 1965, utilising a finite difference approach, Zabusky and Kruskal [2] investigated

solitary waves numerically and found out that such waves maintain their shape and speed

following collision, except for a very minor change in the phase shift. It was due to this

particular behaviour of these waves that the two authors decided to name such type of

waves ’soliton’.

The most significant discoveries in mathematics were achieved at the hands of Gardner,

Greene, Kruskal and Miura [9] in 1967. These scientists were able to find the exact solution

for the soliton phenomenon, including soliton solutions of the KdV equation. The method

they employed in their simulation study is known today as the inverse scattering method

(ISM). The ISM, which was initially used to interpret the KdV equation only, is now

implemented for generating exact soliton solutions in a variety of integrable nonlinear

PDEs.

In 1972, employing the ISM, Zakharov and Shabat were able to solve the nonlinear

Schrödinger equation (NLS) [10]:

iut + uxx ± β|u|2u = 0. (1.2)

where u is a wave function and i denotes the imaginary number
√
−1. They showed that

soliton solutions exist and are integrable. The ’plus’ and ’minus’ signs in the nonlinear-

ity term refer to the so-called focusing and defocusing nonlinearities, respectively. The
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Figure 1.1: The focusing NLS shown as in (a) and the defocusing NLS as in (b).

focusing NLS permits a pulse like soliton (see Fig. 1.1 (a)), while the defocusing one has

a kink-shaped soliton (see Fig. 1.1(b)). In nonlinear optics, these are known as bright and

dark solitons, respectively. For the full (time-dependant) NLS, the bright solitons solution

corresponds to zero boundary conditions as |x|−→ ∞, while dark solitons corresponds to

constant boundary conditions as |x|−→ ∞. The name of the NLS equation comes from

the similarity in form between its structure and the Schrödinger equation of quantum

mechanics [11]. The NLS equation can be found as an essential model in a variety of

applications. Examples include nonlinear envelope waves in hydrodynamics, nonlinear

optics, nonlinear acoustics and plasma waves [12].

Also, in 1973 Ablowitz, Kaup, Newell and Segur applied ISM for solving the sine-

Gordon (SG) equation [13]

θtt − θxx = sin(θ), (1.3)

and presented its soliton solutions as well, which admits kink and anti-kink solitons. The

SG equation is also evident in many physical applications, such as the propagation of

crystal defects and the propagation of quantum units of magnetic flux (called fluxons) on

long Josephson (superconducting) transmission lines [12].
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Since the mid 1970s, various integrable nonlinear equations exhibiting soliton solutions

have been investigated, both in continuous and discrete systems. These studies have iden-

tified the soliton phenomenon in a number of applied sciences. Despite this, examining

non-integrable equations (whether continuous or discrete) is also an interesting topic for

research. Apart from their distinct mathematical properties, these non-integrable equations

are of overriding importance due to the fact that they appear in various useful applica-

tions. This has inspired a number of researchers to observe solitons in such systems both

theoretically and experimentally.

After a delay of just less than two centuries, Scott Russell’s observations and research

have recently found the light in fibre-optic communication industry. The properties of

the soliton wave, i.e. the fact that it does not break up, spread out or lose strength

over distance, make this type of wave optimal for fibre-optic communications networks

where information is carried by billions of solitons per second down fibre circuits for cable

TV, telephone and computers. In recognition of his discovery, a fibre-optic cable linking

Edinburgh with Glasgow now runs beneath the tow-path from which John Scott Russell

had his first observations, and along the aqueduct which now bears his name.

It is noteworthy here that what we mean by a localised wave in this work is restricted to

the solution of having a peak with tails decaying exponentially to 0 as the spatial coordinate

x tends to ±∞, as can be seen in Fig. 1.1 (a). It is also important to highlight that the current

study is devoted to the investigation of solitons in lattice systems governed by discrete

nonlinear Schrödinger (DNLS) equations. Before discussing these lattice equations further,

particularly, we study the DNLS equations as analogues of the so-called Parity-Time (PT )

and Charge-Parity (CP) symmetric systems. The next sections will define and give some



1.2. An introduction to PT -symmetry with basic definitions 8

background about the Parity-Time (PT ) and Charge-Parity (CP) systems.

1.2 An introduction to PT -symmetry with basic definitions

Space-time reflection symmetry, or PT -symmetry, first suggested in quantum mechanics

in 1998 by Bender and Boettcher [14], has become an interesting topic for research in

fundamental physics.

PT -symmetric quantum mechanics is an extension of conventional quantum mechanics

into the complex domain. Hence, PT -symmetry is not in contradiction with conventional

quantum theory but is simply a complex generalisation of it. PT -symmetric quantum

mechanics was originally regarded as a purely mathematical breakthrough but with little

hope of real-life applications; however, since 2007 it has interestingly become a hot research

topic in experimental physics. It has now been studies experimentally in a variety of areas,

such as lasers, optical wave guides, optical resonators, superconducting wires, microwave

cavities, NMR, graphene, and metamaterials. Through utilising the techniques employed

in these studies, there seems to be a potential of using the PT -symmetry to develop new

ways to control light, perhaps even leading to a new generation of computers run by optical

beams rather than conventional electric wires. It is also possible to use it in formulating

new kinds of materials and to create more advanced communication devices [15].

By PT -symmetry we mean reflection in space, with a simultaneous reversal of time. A

Hamiltonian written in the form [16]

H = p2 + V(x), (1.4)
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will be PT -symmetric if

V∗(−x) = V(x). (1.5)

It can be seen that satisfies this constraint is satisfied by the Bessis and Zinn-Justin con-

jecture. In fact any polynomial potential will satisfy this constraint, with the condition

that any even power of x has a real coefficient and odd powers have purely imaginary

coefficients.

We can define the P and T operators separately. The P operator is defined as:

P :
x→ −x,

p→ −p,
(1.6)

while the T operator is defined as:

T :

x→ x,

p→ −p,

i→ −i,

(1.7)

the i → −i being there to keep the commutator [x, p] = i consistent. It can be noticed that

P
2 = T 2 = (PT )2 = 1.

The full PT transformation can be considered in terms of the real and imaginary parts

of x. We can see that under x = <(x) + i=(x) → −<(x) + i=(x) = −x∗. It appears that

Hamiltonians which are symmetric under this operator may have real energies. In fact,

it is true that if the eigenvectors of the Hamiltonian are also PT -symmetric, then the

eigenvalues are real. What follows shows why this should be the case.
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In 1998, Bender and Boettcher [14] revealed that quantum systems with a non-Hermitian

Hamiltonian can have a set of eigenstates with real eigenvalues (a real spectrum). In simpler

terms, they concluded that the Hermiticity of the Hamiltonian is not a necessary condition

for the realness of its eigenvalues, and the construction of new quantum mechanics is based

on such Hamiltonians [14, 17, 18].

The initial point of this construction can formulated as follows. Where there are real

eigenvalues of a non-Hermitian Hamiltonian, the modulus of the wave function for the

eigenstates of the system is conserved in time even in regions with a complex potential.

Indeed,

Ĥψk = Ekψk, (1.8)

for any eigenstate of the Hamiltonian. Substituting Eq.(1.8) in the time-dependent Schrödinger

equation, we obtain

i
∂ψk

∂t
= Ekψk. (1.9)

Obviously, for any real Ek, the modulus of ψk is conserved in time. However, the

eigenstates of such a Hamiltonian are not orthogonal, and the construction of self-consistent

quantum mechanics based on such Hamiltonians necessitates reformulating the definitions

of the scalar product and norm [19].

PT -symmetry is a fairly recent subject. Bessis and Zinn-Justin were the first to propose

the possibility that non-hermitian Hamiltonians could have a role to play. They inferred

that the spectrum of the eigenvalue problem:

(
−

d2

dx2 + ix3

)
ψ(x) = Eψ(x), ψ(x) ∈ L2(<), (1.10)
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is completely real and positive. The Hamiltonian is always Hermitian in conventional

quantum mechanics, which constrains the energy spectrum to be real on the assumption

of conventional boundary conditions. The non-Hermiticity of this potential implies that

it is not possible to use the usual arguments for the reality of the spectrum. Bender and

Boettcher [14] interpreted the reality of this spectrum to be a clue to its PT -symmetry.

In other words, the potential remains constant if we simultaneously reflect in space and

reverse time.

The possibility of finding real eigenvalues in a non-Hermitian Hamiltonian has stim-

ulated interest, particularly as the notion of PT -symmetry seems to lend itself more to

physical interpretation than the mathematical concept of hermiticity.

1.2.1 How classical physics developed into modern physics

To understand the literature onPT -symmetric quantum mechanics, it is important to recall

two novel findings in the early 20th century that transformed classical physics into what

is considered today as modern physics. One of these findings was quantum mechanics,

which deals with the nature of matter, the stability of atomic energy levels, the formation of

molecules from the binding of atoms, and the characteristics of materials, while the other

one was relativity, which is concerned with the geometry of space and time. Symmetries are

an essential part of physical laws, and these two findings possess fundamental symmetries.

However, while quantum mechanics has a discrete symmetry called Hermiticity, relativity

has a continuous symmetry, which is expressed in terms of the Poincare’ group.

The quantum interference phenomenon indicates the importance of complex num-

bers in interpreting physical observations in quantum mechanics. The complexity of the
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Schrödinger equation stems from the fact that quantum theory makes complex numbers

probabilistic rather than definite predictions. For instance, the mass of an unstable particle

is displayed as a pole at a specific point in the complex plane, but the remnant of this pole

is a probability distribution on the real axis, and we cannot be decisive on the mass of the

particle [15].

1.2.2 Symmetries

Despite the centrality of complex numbers in quantum mechanics, the symmetries of space

and time are confined to the real domain. The real four-dimensional vector (x, y, z, t)

represents any point in space-time. The continuous symmetry group of space-time, known

as the Poincare’ group, is ten-dimensional; it includes four translations, three rotations and

three possible ways of boosting the velocity. As for translations, the same experimental

result will be given when repeating an experiment in a laboratory located at different points

in space and time (x + a, y + b, z + c, t + d). In terms of rotations, these can be around the

x, y, and z axes. Hence, repeating an experiment in a laboratory that has been rotated in

space will also yield the same result. Finally, the velocity of rotation can be boosted in three

possible ways, along the x, y, or z axes. Again, repeating an experiment in a laboratory

that is moving at a constant velocity relative to the original laboratory will yield identical

results.

Along with the continuous transformations (i.e. from the Lorentz group rotations and

boosts), there are also two discrete transformations of space and time variables. The

first, which is called parity P, transforms the sign of the spatial part of the four-vector

P : (x, y, z, t) → (−x,−y,−z, t). This symmetry operation alters one’s right hand into
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one’s left hand; such a change cannot be accomplished by any rotation. The second,

which is called time reversal T , transforms the sign of the time component of the four-

vector T : (x, y, z, t) → (x, y, z,−t). In 1957, Lee and Yang were awarded a Nobel Prize

for demonstrating that parity is not a symmetry of nature, and another was awarded to

Cronin and Fitch in 1980 for showing that the same applies to time reversal. A left-handed

laboratory can yield different experimental results from a right-handed one and a laboratory

travelling backward in time can give different results from one travelling forward. After

these developments, it was accepted that the correct geometrical symmetry of nature must

include both P and T [15].

1.2.3 Gain and loss balanced

Typically, PT -symmetric systems possess complex potentials and, therefore, can be re-

garded as non-isolated systems that interact with their environment: a potential charac-

terised by having a positive-imaginary part and another with a negative-imaginary part.

While the former describes a system that receives energy from its environment, the latter

describes a system that loses energy to its environment. However, aPT -symmetric system

is unique in that the PT -symmetry condition implies an exact balance between gain and

loss. It is worth noting that a PT -symmetric system can be produced in a laboratory by

coupling two identical subsystems, one with gain and the other with loss. The result-

ing composite system is PT -symmetric due to the fact that space reflection P causes an

interchange in the subsystems and time reversal T alternates the roles of gain and loss.

This phase transition between regions of broken and unbroken PT -symmetry has been

observed in a number of experiments, especially in the area of optics [15].



1.3. What is CP violation? 14

The initial theoretical and mathematical work on PT -symmetric quantum mechanics

has led to the emergence of significant experimental work in various areas of physics. It is

worth mentioning that experimental work for decades in many other areas of physics, such

as string theory and super-symmetry, has not succeeded to date in stimulating worthwhile

experimentation. It seems that PT -symmetry will lead to significant and continuous

practical and commercial applications [15].

In Section 1.3, we will introduce the concept of CP violation, which forms part of the

experimental work in Chapter 4.

1.3 What is CP violation?

CP- can be defined as a discrete symmetry of nature comprising two essential symmetries:

charge conjugation C and parity P. Charge conjugation, which is the symmetry between

positive and negative charge, causes the transformation of a particle into the corresponding

anti-particle. For instance, if C is applied to an electron, a positron will be yielded; that is,

C juxtaposes matter with anti-matter.

A basic observation of our surroundings will show that everything is composed of

protons, neutrons and electrons, and these particles also form the different elements of

our space, such as planets, stars and atmosphere. In other words, in our cosmos, matter

exists more excessively than antimatter, conflicting the theoretical symmetry between them,

which is known to particle physicists as CP. This means that if matter and antimatter are

treated alike, then nature can be said to be CP-symmetric; on the contrary, if they are not

treated equally, then CP is violated. In other words, if we take a particle with a positive
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charge, it will be reversed into negative by C, and vice versa [20].

Figure 1.2: Matter if treated with antimatter alike, then nature can be said to be CP-symmetric

Figure 1.3: The interaction of the particles between positive and negative charge

It is worth noting that if we start with a neutral particle, C will have no charge and,

consequently, no effect.

Parity, on the other hand, is slightly more difficult to describe, though more intuitive,

as a symmetry of spatial coordinates is encountered when we look into a mirror. If I am

right-handed, my reflection will be left-handed when I look into a mirror, which represents

in particle physics an exact analogy of the P-symmetry, where right-handed particles are

transformed into left-handed ones. This means that if P is carried out with an electron

moving with a positive velocity ~v from one direction to another, this electron will convert

the direction of the movement with a negative velocity −~v. In brief, parity gives the mirror

image of reality.
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Therefore, when an electron moving with a velocity ~v undergoes a CP transformation,

this will yield a positron moving with a velocity −~v. Therefore, the application of CP on

matter will result in the mirror image of its corresponding anti-matter.

Suppose we have a ”CP-mirror,” which is a device that returns the mirror image of the

anti-matter (see Fig. 1.5). When looking at our image in a standard mirror, what we see is

a parity transformation of ourselves.

Figure 1.4: Illustration of parity time and how a left handed one will be reflected as right handed

Figure 1.5: An illustration of what can be seen in a CP-mirror

The combination of C and P on a left-handed particle with a negative charge would

result in its transformation into a right handed particle with a positive charge.



1.4. Outline of the thesis 17

Figure 1.6: The combination of charge parity

Our intuitive expectation is that our ”anti-self” will wave back at us in the CP-mirror.

That is, CP is expected to be an effective symmetry of nature. But does this prove to be the

case?

CP was not discovered until 1964, when Fitch, Cronin and collaborators [21] were

studying the decays of neutral kaons, which are particles comprising a strange quark and

a down anti-quark. Despite the fact that the effect they noticed was tiny, only one part

in a thousand, it was extremely important, as it revealed that matter and anti-matter are

intrinsically different, and the researchers were awarded a Nobel Prize in 1980.

1.4 Outline of the thesis

We started our work in Chapter 1 by showing the history about solitons. Then, we gave an

introduction with definitions to the PT - and CP-symmetry.

An introduction to stationary solutions of the DNLS in 1D is going to be given in

Chapter 2 where their profile and stability analysis are studied and good agreements are

shown between the numerical and analytical calculations.

In Chapter 3, we study the existence and stability of fundamental bright discrete solitons

in a PT -symmetric coupler composed by a chain of dimers that is modelled by linearly

coupled DNLS with gain and loss terms. We use a perturbation theory for small coupling
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between the lattices to perform the analysis, which is then confirmed by numerical calcula-

tions. Such analysis is based on the concept of the so-called anticontinuum limit approach.

We consider the fundamental onsite and intersite bright solitons. Each solution has sym-

metric and antisymmetric configurations between the arms. The stability of the solutions is

then determined by solving the corresponding eigenvalue problem. We conclude that both

symmetric and antisymmetric onsite mode can be stable for small coupling, in contrast

to the reported continuum limit, where the antisymmetric solutions are always unstable.

The instability is either due to the internal modes crossing the origin or the appearance of

a quartet of complex eigenvalues. In general, the gain-loss term can be considered para-

sitic as it reduces the stability region of the onsite solitons. Additionally, we analyse the

dynamic behaviour of the onsite and intersite solitons when unstable, where typically it is

either in the form of travelling solitons or soliton blow-ups.

In Chapter 4, we also consider a chain of dimers with a complex coupling between the

arms modelling a dual-core optical waveguide with opposite signs of the group-velocity-

dispersion in the two cores, and a phase-velocity mismatch between them. The corre-

sponding linear system is an optical realisation of the CP-symmetry. The addition of the

intra-core cubic nonlinearity despite breaking the symmetry gives rise to fundamental

bright discrete solitons. Here, we explore their existence and spectral stability. Asymptotic

analysis in the case of weak coupling between the dimers as well as between the arms is

presented. We also present discrete solitons that have no corresponding solutions in the

continuum limit.

Snakes in a PT -symmetric chain of dimers are presented in Chapter 5. We study

localised solutions in a PT -symmetric coupler composed by a chain of dimers, which is
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modelled by linearly coupled DNLS with gain and loss terms and with a cubic-quintic non-

linearity. We consider site-centered and bond-centered localised solutions and show that

the resulting bifurcation diagrams when a parameter is varied form a snaking behaviour.

Each localised solution has symmetric and antisymmetric configurations between the arms.

The critical gain/loss coefficient above which the PT−symmetry is broken corresponds to

the overlapping bifurcation diagrams. We analyse the width of the snaking region and

provide asymptotic approximations in the limit of strong and weak coupling where good

agreement is obtained.

Finally, Chapter 6 summarises the main findings in the thesis and concludes with

suggestions for further research.



Chapter 2

Discrete nonlinear Schrödinger (DNLS)

equation in one-dimension

In the previous chapter, we have briefly discussed some properties and definitions of

solitons. In this chapter, we intend to give a brief introduction to DNLS, then to show some

previous results of the lattice solitary waves in the DNLS equation with cubic nonlinearity

in one-dimension (1D), in particular the profile and stability of fundamental bright discrete

solitons.

In physics, quantum mechanics or particle physics are used to describe discrete phe-

nomena, such as the interaction of the elementary particles of matter (e.g. electrons and

atoms). However, it is almost impossible to apply a quantum-mechanical approach to

most natural phenomena involving billions of such particles. This means that even mod-

ern state-of-art computers cannot perhaps explain all the interaction between these objects.

For this reason, macroscopic approaches of classical physics are utilised to account for most

natural phenomena, where a particular physical system is described by means of averaged

20
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macroscopic quantities. In spite of this, it is still possible to describe many macroscopic

systems by means of some type of a discrete model.

The year 1938 witnessed the first study of discrete dynamical systems by Frenkel and

Kontorova, who employed a discrete model for describing the motion of dislocations

inside a crystal [22]. Following this study, discrete models have been utilised in a variety

of systems in physics, biology and chemistry. For instance, they have been used to account

for the transfer of heat in lattices [8, 23], to justify vibrations in crystal lattices [24, 25], and

to examine the dynamic transitions of the structural phase in crystals [26,27]. Additionally,

discrete models have also been tapped into for predicting nonlinear localisation phenomena

in atomic lattices [28,29] and molecular chains [30]. In 2001, Abdullaev et. al. made use of a

discrete Schrödinger-like model in order to predict the existence of nonlinearly self-trapped

states in Bose-Einstain condensates [31], and these predictions were further experimentally

examined in [32].

In biology, on the other hand, discrete nonlinear models have been exploited to explain

the contraction of proteins [33, 34], and more recently the localisation and transport of

vibrational energy in DNA molecules [35].

Discrete periodic structures are becoming more significant in optics due to the fact that

they enjoy the distinct optical properties of photonic crystal fibres and coupled waveguide

arrays [36, 37]. An example of the development of a discrete model is the existence of

an array of weakly coupled identical waveguides. The propagation of an optical beam

in a waveguide array causes a a linear superposition of the Floquet-Bloch modes of the

structure [38], each of which has its specific propagation constant and profile [39]. The

problems in weakly coupled arrays can be handled in a more simplified way through
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making use of the fact that most of the energy in the first order band tends to localise to the

higher index waveguide regions. For this reason, the optical field can undergo a process of

decomposition into a superposition of discrete modes that are associated with individual

channels. In addition, it is often the case that the optical field can be approximated by

analysing the phase and amplitude of each mode [40]. The exchange in optical energy

among individual waveguides takes place as a result of the overlap of their modal fields

and is formed through introducing a coupling term into the discrete equations.

The theoretical foundations of linear properties of light propagation in 1D waveguide

chains (known as linear discrete diffraction) were introduced in 1965 by Jones [41] and

then these properties were examined experimentally several years later in gallium arsenide

waveguide arrays [42]. Nonlinear optical properties of waveguide arrays were first studied

in 1988 by Christodoulides and Joseph, who proposed that light can trap itself in a nonlinear

waveguide array through the Kerr nonlinear effect, leading to the formation of discrete

soliton (DS) [43]. Discrete solitons in Kerr media were investigated experimentally for the

first time in 1998 by Eisenberg et. al. [44], which has stimulated extensive research in the

area. So far, discrete solitons have also been the subject of experimental observation in

media with photorefractive [45], quadratic [46] and orientational nonlinearities [47].

DNLS equation describes a particularly simple model for a lattice of coupled anhar-

monic oscillators. In this chapter, DNLS equation can be defined as any equation that can

be generated from a nonlinear Schrödinger (NLS) equation of general form [48]

i
∂u
∂t

+ ∆u + f (|u|2)u = 0, (2.1)



Chapter 2. Discrete nonlinear Schrödinger (DNLS) equation in one-dimension 23

through utilising finite-difference approximation to the operators acting on the space-time-

dependent continuous field. In Eq.(2.1), ∆ = ∇2 is the Laplace operator acting in one, two, or

three spatial dimensions, and f is a quite general function that, for most purposes, is taken

to be differentiable and with f (0) = 0. In the most well-known case of cubic nonlinearity,

f (|u|2) = ±|u|2, Eq. (2.1) is often referred to as the NLS equation, and is integrable with the

Inverse Scattering Method if the number of spatial dimensions is one. In this work, the

term DNLS equation is used to refer to the set of coupled ordinary differential equations

arising from discretising all spatial variables in Eq.(2.1), while keeping the continuity of

the time-variable t.

Some properties and analytical calculations on lattice solitary waves in the DNLS equa-

tion with cubic nonlinearity was studied in [49] in the presence of parametrically driving

(PDNLS) equation where the existence and stability of fundamental bright and dark dis-

crete solitons in the DNLS equation was considered.

The simplest and clearest example of a DNLS equation can be derived by replacing the

Laplacian operator in Eq.(2.1) with the corresponding discrete Laplacian. Thus, Eq.(2.1)

can alternatively be written in the following form which is in one spatial dimension where

our work will be began by considering the DNLS equation given by:

u̇n = iσ|un|
2un + iε∆2un, (2.2)

un = un(t), is a complex-valued wave function (complex mode amplitude of the oscillator)

at site n ∈ Z [48]. The index n is the range over the 1D lattice where the lattice can either be

infinite (n = 0,±1,±2, ...) or finite (n = −N,−N+1, . . . ,N). In the case of finite lattice, periodic
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boundary conditions, u−N−1 = uN and uN+1 = u−N are usually assumed. The overdot is the

time derivative, i =
√
−1, ε > 0 is the distance constant coefficient of the horizontal linear

coupling (coupling constant between two adjacent sites), ∆2un = (un+1 − 2un + un−1) is the

discrete Laplacian term in one spatial dimension. The nonlinearity coefficient is denoted

by σ ( anharmonic parameter), which can be scaled to +1 without loss of generality due to

the case of focusing nonlinearity that we consider. Bright discrete soliton solutions satisfy

the localisation conditions un → 0 as n→ ±∞.

This set of differential-difference equations with purely diagonal (”on-site”) nonlinearity

is sometimes referred to as the diagonal DNLS (DDNLS) equation, but since it is the most

studied example of a DNLS equation at all, it is often simply named as the DNLS equation.

It is worth mentioning here that discrete soliton was first studied in 1962 by Perring

and Skyrme (see [50]) who examined the discrete sine-Gordon equation derived originally

by Frenkel and Kontorova in 1939 (see [12, 51]). It is also noteworthy that in early DNLS

studies, when breathers in discrete systems were still obscure, these solutions were often

called solitons.

Stationary solutions of the DNLS equations are special solutions of the form

un(t) = Aneiωt, (2.3)

such that ω represents the light propagation constant (oscillation frequency) and An is the

stationary amplitude (independent of time).
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Substituting Eq.(2.3) into Eq.(2.2) gives an algebraic set of equations for An, i.e.

ωAn = A3
n + ε(An+1 − 2An + An−1). (2.4)

Despite the fact that the stationary DNLS Eq. (2.2) were found by Holstein in 1959 in

his significant work on polarons in molecular crystals [52], the first systematic study of

its single-peak breather solution as an exact solution to the fully discrete equations was

conducted by Scott and MacNeil in 1983 [53]. Later and independently, a more general

method was developed by Aubry, MacKay and co-workers along these lines to address the

breather problem in arbitrary systems of coupled oscillators [54, 55].

Due to the fact that the DNLS equation can be generally applied and exists in a variety of

physical fields, new researchers trying to investigate it have not always been aware of pre-

vious findings, which has caused many of its properties to be rediscovered independently

and appear in different contexts in the literature.

The feature of Eq. (2.4) makes the DNLS a relatively simple model to work with. For

small periodic lattices up to N = 4, the resulting equations can be solved exactly to obtain all

the families of stationary solutions as a function ofω and σ (for fixed N) with an interesting

bifurcation structure [56]. However, for a large or infinite lattice the solutions must be

found by numerical methods such as shooting or spectral methods. These solutions can

then be examined as a function of the parameters of the equation by means of numerical

continuation methods (see [57] for a complete list of solutions for N = 6). If σ is small

enough, localised solutions are found, which decay exponentially for large n. As these

solutions possess a periodic time behaviour (Aneiωt), they are conveniently called ”breather”
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solutions [48]. Another motivation is that the DNLS equation can be obtained from the

discrete Klein-Gordon equation, describing a lattice of coupled anharmonic oscillators, via

a multiscale expansion in the limits of small-amplitude oscillations and weak inter-site

coupling [58–60]. The discrete breathers of this lattice are then represented as stationary

solutions to the DNLS equation.

To find solutions to Eq.(2.4), many approaches exist. Iteratively, the time-independent

solutions can be calculated using Newton-Raphson method. In order to obtain the localised

solutions to Eq. (2.4) and hence find the discrete solitons governed by the DNLS equation,

we need to find

X = [A−N A−N+1 . . .A−N−1 AN]T for which [ f−N . . . fN]T = [0 . . . 0]T,

where we define

fn = A3
n − (2ε + ω)An + ε(An+1 + An−1),

f−N = A3
−N − (2ε + ω)A−N + ε(A−N+1 + AN) and fN = A3

N − (2ε + ω)AN + ε(AN−1 + A−N).

For 2N + 1 waveguide arrays, Newton-Raphson method can be written as follows:

Xk+1 = Xk − J−1
(2N+1)×(2N+1) [ f−N f−N+1 . . . fN]T, (2.5)

where J =



∂ f−N

∂A−N
. . ∂ f−N

∂AN

. . . .

. . . .

∂ f2N+1

∂A−N
. . ∂ f2N+1

∂AN


.
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The iteration (2.5) is performed until a convergent criterion is achieved.

Now, we need to consider the stability of the obtained solutions of the DNLS for Eq.

(2.2). The stability of such solutions in time can be investigated by looking at general

perturbations in the rotating frame of the solutions [61]. Once such discrete solitary-wave

solutions have been found, their linear stability is determined by solving a corresponding

eigenvalue problem. To do so, we introduce un = (An + ζBn(t))eiωt where |ζ| � 1, and

substitute it into Eq. (2.2) to obtain the following linearised equation:

Ḃn = i(A2
nBn + 2A2

nBn − (2ε + ω)Bn + ε(Bn+1 + Bn−1)), (2.6)

where Bn represents the conjugate of Bn and the overdot is the derivative with respect to

t. This reduces the linear stability problem to a study of a linear eigenvalue problem. It is

perhaps to be expected that the stability of a branch of stationary solutions can change at a

bifurcation point.

There are two fundamental solutions of the equations: single-site peaked (’site-centred’)

and two-site peaked (’bond-centred’). We present the plot the two types of solitons in

Fig.2.1.

For the case of an infinite lattice, both solutions in Fig. 2.1 can be smoothly continued

versus coupling ε (or, equivalently by rescaling, versus ω), without encountering any

bifurcations. As there are no bifurcations, the site-centred solution is stable and the bond-

centred unstable for all ε in the infinite chain. For ε → 0, the site-centred solution will

be completely localised at the central site with all other oscillator amplitudes being zero,

while the bond-centred solution becomes completely localised on the two central sites.
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Figure 2.1: A general representation for the profile of the site-centred and bond-centred solitons
with their spectrum for ω = 1 and ε = 1.

For ε → ∞, both solutions are smoothly transformed into the same soliton solution of the

continuous NLS.

To find the stability, write the Eq. (2.6) as

(
Ḃ−N ... ḂN Ḃ−N ... ḂN

)T

= M
(
B−N ... BN B−N ... BN

)T

, (2.7)

where M is the Jacobian matrix. The matrix M is written as follows:

M =


M11 M12

M21 M22

 ,
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where

M11 =



i(2A2
−N − c) ε 0 . . . ε

ε i(2A2
−N+1 − c) ε . . . 0

0 ε i(2A2
−N+2 − c) . . . 0

...
...

...
. . .

...

ε 0 0 . . . i(2A2
N) − c)


,

M12 =



iA2
−N 0 0 . . . 0

0 iA2
−N+1 0 . . . 0

0 0 iA2
−N+2 . . . 0

. . . . . . . . .
. . .

...

0 0 0 . . . iA2
N


, M21 =



−iA2
−N 0 0 0

0 −iA2
−N+1 0 0

0 0 −iA2
−N+2 0

. . . .

0 0 0 −iA2
N


,

M22 =



−i(2A2
−N − c) ε 0 . . . ε

ε −i(2A2
−N+1 − c) ε . . . 0

0 ε −i(2A2
−N+2 − c) . . . 0

. . . . . . . . .
. . .

...

ε 0 0 . . . −i(2A2
N − c)


, where c = −(2ε + ω).

From solving MB = λB, we obtain the eigenvalues of M. The stability of the solution un

is determined by the eigenvalues, i.e., un is stable only when the real part<(λ) ≤ 0 for all

eigenvalues λ [62].

2.1 Asymptotic analysis of localised solutions

Perturbation theory has been used in the field of nonlinear optics, i.e. lattice equation [63].

The evolution equation has been used to calculate a first-order correction by starting from

a zeroth-order solution. It is possible then to identify a parameter, say ε, such that the
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solution is available and it is simple to some extent for ε = 0. The parameter ε is used

to keep track of terms of different order. Then, the question is about how this solution

is different for non-zero but small ε. In this case, the variable of the system requires to

be non-dimensionalised, and then special cases that can function as a starting point for

approximating the solution in the neighbouring cases need to be found. These cases are

frequently obtained by setting some of the parameters equal to zero, which applies in our

case as the exact solutions of the lattice equations are available in the anticontinuum (AC)

limit ε = 0. Once an exact solution is achieved, the approximate solution can be generated

in the form of a perturbation expansion for the first few terms, and this operation can be

infinitely repeated.

We only focus here on the two fundamental localised solutions, i.e., the one-excited site

(onsite) and the in-phase two-excited site (intersite) bright solitons. In practice, perturba-

tion theory is rarely extended to the fourth order; usually for the first two or three terms.

A standard form of a perturbation expansion is in a power series of a small perturbation

parameter. The aim of this work is to study the existence and stability of the solitons. To

implement this, we can expand An in the stationary Eq. (2.4) as:

An = A(0)
n + εA(1)

n + ε2A(2)
n + . . . , (2.8)

where A(0)
n is the exact solution in the AC limit. Upon substituting the above expansion

into Eq.(2.4), by considering ω = 1 and collecting the terms in successive powers of ε, we

obtain a number of order equations from which the solutions A(1)
n ,A

(2)
n , etc. can be solved
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iteratively. For the onsite soliton, we set

A(0)
n =


0, if n , 0,

±1, if n = 0,

(2.9)

to obtain the leading order correction, A(1)
n :

A(1)
n =

∆2A(0)
n

(1 − 3A(0)2

n )
, (2.10)

from which we can get that:

A(1)
−1 = A(1)

0 = A(1)
1 = ±1.

However, for the intersite soliton, we set

A(0)
n =


0, if n , −1, 0,

±1, if n = −1, 0,

(2.11)

and we obtain:

A(1)
−2 = A(1)

1 = ±1,

and

A(1)
−1 = A(1)

0 = ±
1
2
.
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2.2 Stability analysis

Next, we will also determine the eigenvalues of the discrete solitons analytically using

asymptotic expansions. By substituting

An = A(0)
n + εA(1)

n + ε2A(2)
n + . . . , Bn(t) = Kn(t) + iLn(t), (2.12)

into Eq.(2.6), we obtain

K̇n(t) = (−(A(0)
n )2
− 2εA(0)

n A(1)
n + (2ε + ω))Ln(t) − ε(Ln+1(t) + Ln−1(t)),

L̇n(t) = (3(A(0)
n )2 + 6εA(0)

n A(1)
n − (2ε + ω))Kn(t) + ε(Kn+1(t) + Kn−1(t)),

(2.13)

which have to be solved for the eigenvalueλ and the corresponding eigenvector [{Kn}, {Ln}]T.

As the stability matrix of the eigenvalue problem (2.13) is real valued, λ and −λ are also

eigenvalues with corresponding eigenvectors [{Kn}, {Ln}]T and [{Kn}, {−Ln}]T .

The spectrum of Eq.(2.13) will consist of continuous spectrum and discrete spectrum

(eigenvalue). To investigate the former, we consider the limit n → ±∞, the procedure is

shown in the following section.

2.2.1 Continuous spectrum

We introduce a plane-wave expansion

Kn = k̂eλteikn, Ln = l̂eλteikn, (2.14)
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and substitute the above equations into Eq.(2.13), from which one can obtain the dispersion

relations

λk̂ = (2ε + ω)l̂ − 2εl̂ cos(k), λl̂ = −(2ε + ω)k̂ + 2εk̂ cos(k), (2.15)

which can be written in a matrix form as follows:

λ


k̂

l̂

 =


0 2ε(1 − cos(k)) + ω

−2ε(1 − cos(k)) − ω 0



k̂

l̂

 . (2.16)

By calculating the eigenvalues of the above matrix, this in turn shows that the continuous

band lies between ±i[ω,ω + 2ε].

2.2.2 Discrete spectrum

In this section, we are going to consider the inter-site soliton only, because there is no

eigenvalues bifurcating from the origin for small ε.

To solve Eq.(2.13) for the discrete spectrum, K̇n(t), L̇n(t) are replaced by λnKn and λnLn,

respectively. By using perturbation expansions, we write

Kn = K(0)
n +

√
εK(1)

n + εK(2)
n + . . . ,

Ln = L(0)
n +

√
εL(1)

n + εL(2)
n + . . . ,

λn = λ(0)
n +

√
ελ(1)

n + ελ(2)
n + . . . .

(2.17)

At leading orders, we obtain



2.2. Stability analysis 34

λ(0)K(0)
n = (−(A(0)

n )2 + ω)L(0)
n ,

λ(0)K(1)
n = (−(A(0)

n )2 + ω)L(1)
n − λ

(1)K(0)
n ,

λ(0)K(2)
n = (−(A(0)

n )2 + ω)L(2)
n − 2(A(0)

n A(1)
n − 1)L(0)

n − (L(0)
n+1 + L(0)

n−1)

− λ(1)K(1)
n − λ

(2)K(0)
n ,

(2.18)

and

λ(0)L(0)
n = (3A(0)

n )2
− ω)K(0)

n ,

λ(0)L(1)
n = (3A(0)

n )2
− ω)K(1)

n − λ
(1)L(0)

n ,

λ(0)L(2)
n = (3A(0)

n )2
− ω)K(2)

n + 2(3A(0)
n A(1)

n − 1)K(0)
n + (K(0)

n+1 + K(0)
n−1)

− λ(1)L(1)
n − λ

(2)L(0)
n .

(2.19)

We can re-write the above equations as:

λ(0)


K(0)

n

L(0)
n

 =


0 −(A(0)

n )2 + ω

3(A(0)
n )2
− ω 0



K(0)

n

L(0)
n

 , (2.20)

λ(0)


K(1)

n

L(1)
n

 =


0 −(A(0)

n )2 + ω

3(A(0)
n )2
− ω 0



K(1)

n

L(1)
n

 +


−λ(1) 0

0 −λ(1)



K(0)

n

L(0)
n

 , (2.21)
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and,

λ(0)


K(2)

n

L(2)
n

 =


0 −(A(0)

n )2 + ω

3(A(0)
n )2
− ω 0



K(2)

n

L(2)
n

 +


−λ(1) 0

0 −λ(1)



K(1)

n

L(1)
n


+


−λ(2)

−2(A(0)
n A(1)

n − 1)

2(3A(0)
n A(1)

n − 1) −λ(2)



K(0)

n

L(0)
n

 (2.22)

+


0 1

−1 0



K(0)

n−1

L(0)
n−1

 +


0 1

−1 0



K(0)

n+1

L(0)
n+1

 .

From Eq.(2.20), we obtain that

L(0)
n =



0, n , −1, 0,

C1, n = −1,

C2, n = 0,

and K(0)
n = 0.

From Eq.(2.21), we then obtain

L(1)
n =



0, n , −1, 0,

C3, n = −1,

C4, n = 0,
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and

K(1)
n =



0, n , −1, 0,

C1λ(1)

2 , n = −1,

C2λ(1)

2 , n = 0,

Now, from Eq.(2.22) and by using Fredholm alternative [64], we obtain

−(λ(1))2C1 + 2C1 + 2C2 = 0 and −(λ(1))2C2 + 2C2 + 2C1 = 0, implying that the next order

correction to the eigenvalue λ(0) = 0 is

λ(1) =


0,

∓2.

So, the eigenvalues of the intersite soliton is λ = ±2
√
ε + O(ε).

We have compared the numerical results of the eigenvalue with the analytic calculations

in Fig. 2.2. One can observe good agreement for small ε

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

(
)

Figure 2.2: Comparison between numerical and analytical calculations of the eigenvalue of the
intersite soliton (see Fig. 2.1 when ω = 1). The approximation is shown in the dashed
blue line.
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To conclude, a systematic method to determine the stability of discrete solitons by com-

puting the eigenvalues of the corresponding linear eigenvalue problem has been presented.

We have compared the analytical results with numerical computations, where good agree-

ment has been obtained. The method presented here will play an important part in the

analytical studies of Chapter 3, 4 and 5, where we extend it to coupled DNLS equations.



Chapter 3

Bright solitons in a PT -symmetric chain

of dimers

3.1 Introduction

A system of equations isPT -symmetric if it is invariant with respect to combined parity (P)

and time-reversal (T ) transformations. The symmetry is interesting as it forms a particular

class of non-Hermitian Hamiltonians in quantum mechanics [65], that may have a real

spectrum up to a critical value of the complex potential parameter, above which the system

is in the ’broken PT -symmetry’ phase [14, 18, 66].

The most basic configuration having PT -symmetry is a dimer, i.e. a system of two

coupled oscillators where one of the oscillators has damping losses and the other one

gains energy from external sources. Considerably dimers are also the most important

PT -systems as the concept of PT -symmetry was first realised experimentally on dimers

consisting of two coupled optical waveguides [67, 68] (see also the review [69] for PT -

38
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symmetry in optical applications). The experiments have been rapidly followed by many

other observations of PT -symmetry in different branches of physics, from mechanical to

electrical analogues (see the review [70]).

When nonlinearity is present in a PT - system, nontrivial behaviours may emerge that

cease to exist in the linear case, such as the presence of blow-up dynamics in the parameter

region of the unbroken phase in the linear counterpart [71–73]. When nonlinear dimers

are put in arrays where elements with gain and loss are linearly coupled to the elements

of the same type belonging to adjacent dimers, one can also obtain a distinctive feature

in the form of the existence of solutions localised in space as continuous families of their

energy parameter [74]. The system therefore has two arms with each arm described by a

discrete nonlinear Schrödinger equation with gain or loss. Here, we study the nonlinear

localised solutions, which loosely we also refer to as bright discrete solitons, and their

stability analytically and numerically.

In the continuous limit, the coupled equations without gain-loss have been studied

in [75–78], where it has been shown that the system admits symmetric, antisymmetric and

asymmetric solitons between the arms. Unstable asymmetric solutions bifurcate from the

symmetric ones through a subcritical symmetry breaking bifurcation, which then become

stable after a tangent (saddle-center) bifurcation. When one adds a gain and loss term in

each arm, one obtains PT -symmetric couplers, which have been considered in [79–83]. In

the presence of the linear-gain and loss terms, asymmetric solitons cease to exist, while

antisymmetric solitons are always unstable [82], even though those with small amplitudes

can live long due to weak underlying instability [79]. Symmetric solitons can be stable in

a similar fashion to those in the system without gain-loss [82].
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The stability of bright discrete solitons inPT -symmetric couplers was discussed in [74]

using variational methods, where it was shown that symmetric onsite solutions can be

stable and there is a critical solution amplitude above which the PT -symmetry is broken.

The case when the polarity of the PT -symmetric dimers is staggered along the chain is

considered in [84]. The same equations without gain and loss were considered in [85] where

the symmetric soliton loses its stability through the symmetry-breaking bifurcation at a

finite value of the energy, similarly to that in the continuous counterpart [75–78]. Recently

a similar PT -chain of dimers with a slightly different nonlinearity was derived [86] to

describe coupled chains of parametrically driven pendula as a mechanical analogue ofPT -

symmetric systems [87]. The stability of bright discrete solitons was established through

the applications of the Hamiltonian energy and an index theorem. The nonlinear long-time

stability of the discrete solitons was also established using the Lyapunov method in the

asymptotic limit of a weak coupling between the pendula [88].

In this work, we determine the eigenvalues of discrete solitons in PT -symmetric cou-

plers analytically using asymptotic expansions. The computation is based on the so-called

method of weak coupling or anti-continuum limit. The application of the method in the

study of discrete solitons was formulated rigorously in [54] for conservative systems. It

was then applied to PT -symmetric networks in [89, 90]. However, no explicit expression

of the asymptotic series of the eigenvalues for the stability of discrete solitons has been

presented before. Here, in addition to the asymptotic limit of weak coupling between the

dimers, we also propose to consider expansions in the coefficient of the gain-loss terms. In

this case, explicit computations of the asymptotic series of the eigenvalues become possible.

This chapter is outlined as follows. In Section 3.2, we present the mathematical model.
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In Section 3.3, we use perturbation theory for small coupling to analyse the existence of

fundamental localised solutions. Such analysis is based on the concept of the so-called

anticontinuum limit approach. The stability of the solitons is then considered analytically

in Section 3.4 by solving a corresponding eigenvalue problem. In this section, in addition to

small coupling, the expansion is also performed under the assumption of small coefficient

of the gain-loss term due to the non-simple expression of the eigenvectors of the linearised

operator. The findings obtained from the analytical calculations are then compared with

the numerical counterparts in Section 3.5. We also produce stability regions for all the

fundamental solitons numerically. In this section, we present the typical dynamics of

solitons in the unstable parameter ranges by direct numerical integrations of the governing

equation. We present the conclusion in Section 3.6.

3.2 Mathematical model

The governing equations describing PT -symmetric chains of dimers are of the form [74]

u̇n = iσ|un|
2un + iε∆2un + γun + ivn,

v̇n = iσ|vn|
2vn + iε∆2vn − γvn + iun.

(3.1)

Figure 3.1: Sketch of the govering Eq. (3.1). The integrable dimers are indicated in the light blue
box.
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The derivative with respect to the evolution variable (i.e., the propagation distance,

if we consider their application in fiber optics) is denoted by the overdot, un = un(t),

vn = vn(t) are complex-valued wave function at site n ∈ Z, ε > 0 is the constant coefficient

of the horizontal linear coupling (coupling constant between two adjacent sites), ∆2un =

(un+1 − 2un + un−1) and ∆2vn = (vn+1 − 2vn + vn−1) are the discrete Laplacian term in one

spatial dimension, the gain and loss acting on complex variables un, vn are represented by

the positive coefficient γ, i.e. γ > 0. The nonlinearity coefficient is denoted by σ, which can

be scaled to +1 without loss of generality due to the case of focusing nonlinearity that we

consider. Bright discrete soliton solutions satisfy the localisation conditions un, vn → 0 as

n→ ±∞.

The focusing system has static localised solutions that can be obtained from substituting

un = Aneiωt, vn = Bneiωt, (3.2)

into (3.1) to yield the equations

ωAn = |An|
2An + ε(An+1 − 2An + An−1) − iγAn + Bn,

ωBn = |Bn|
2Bn + ε(Bn+1 − 2Bn + Bn−1) + iγBn + An,

(3.3)

where An, Bn are complex-valued and the propagation constant ω ∈ R.

3.3 Solutions of weakly coupled equations

In the uncoupled limit, i.e. when ε = 0, the chain (3.1) becomes the equations for the dimer.

The static Eq. (3.3) has been analysed in details in [89,91], where it was shown that there is
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a relation between ω and γ above which there is no time-independent solution to (3.3) (see

also the analysis below). When ε is nonzero, but small enough, the existence of solutions

emanating from the uncoupled limit can be shown using the Implicit Function Theorem.

The existence analysis of [86] can be adopted here despite the slightly different nonlinearity

as the Jacobian of our system when uncoupled shares a rather similar invertible structure

(see also [89, 90] that have the same nonlinearity in the governing equations but different

small coupling terms). However, below we will not state the theorem and instead derive

the asymptotic series of the solutions.

Using perturbation expansion, solutions of the coupler (3.3) for small coupling constant

ε can be expressed analytically as

An = A(0)
n + εA(1)

n + . . . , Bn = B(0)
n + εB(1)

n + . . . . (3.4)

By substituting the above expansions into Eq. (3.3) and collecting the terms in successive

powers of ε, one obtains from the equations at O(1) and O(ε), respectively

A(0)
n = B(0)

n (ω − B(0)
n B∗(0)

n − iγ), B(0)
n = A(0)

n (ω − A(0)
n A∗(0)

n + iγ), (3.5)

and

A(1)
n = B(1)

n (ω − 2B(0)
n B∗(0)

n − iγ) − B(0)
n

2
B∗(1)

n − ∆2B(0)
n ,

B(1)
n = A(1)

n (ω − 2A(0)
n A∗(0)

n + iγ) − A(0)
n

2
A∗(1)

n − ∆2A(0)
n .

(3.6)

It is well-known that there are two natural fundamental solutions representing bright
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discrete solitons that may exist for any ε, from the anticontinuum to the continuum limit,

i.e. an intersite (two-excited-site) and onsite (one-excited-site) bright discrete mode. Here,

we will study these two fundamental modes.

3.3.1 Intersite soliton

In the uncoupled limit, the mode structure A(0)
n , B(0)

n for the intersite soliton is of the form

A(0)
n =


â0eiφa n = 0, 1,

0 otherwise,

B(0)
n =


b̂0eiφb n = 0, 1,

0 otherwise,

(3.7)

with [91]

â0 = b̂0 =

√
ω ∓

√
1 − γ2, sin(φb − φa) = γ, (3.8)

which is an exact solution of Eq. (3.5). Note that (3.8) will have no real solution when |γ| > 1.

This is the broken region of PT -symmetry. The parameter φa can be taken as 0, due to the

gauge phase invariance of the governing Eq. (3.1) and henceforthφb = arcsinγ, π−arcsinγ.

The former phase corresponds to the so-called symmetric configuration between the arms,

while the latter is called antisymmetric one. Herein, we also refer to the symmetric and

antisymmetric soliton as soliton I and II, respectively. Eq. (3.8) informs us that ω >√
1 − γ2 > 0 and ω > −

√
1 − γ2 are the necessary condition for soliton I and II, respectively.

For the first order correction due to the weak coupling, writing

A(1)
n = ãn,1eiφa , B(1)

n = b̃n,1eiφb ,
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and substituting it into Eq. (3.6) will yield

ãn,1 = b̃n,1 =


1/(2â0) n = 0, 1,

1/â0 n = −1, 2,

0 otherwise.

(3.9)

Eqs. (3.4),(3.7),(3.8),(3.9) are the asymptotic expansion of the intersite solitons. One can

continue the same calculation to obtain higher order corrections. Here, we limit ourselves to

the first order correction only, which is sufficient to determine the leading order behaviour

of the eigenvalues later.

3.3.2 Onsite soliton

For the onsite soliton, i.e., a one-excited-site discrete mode, one can perform the same

computations to obtain the mode structure of the form

A(0)
n =


â0eiφa n = 0,

0 otherwise,

B(0)
n =


b̂0eiφb n = 0,

0 otherwise,

(3.10)

with (3.8). After writing A(1)
n = ãn,1eiφa , B(1)

n = b̃n,1eiφb , the first order correction from (3.6) is

given by

ãn,1 = b̃n,1 =


1/â0 n = 0,±1,

0 otherwise.

(3.11)
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3.4 Stability analysis

After we find discrete solitons, their linear stability is then determined by solving a cor-

responding linear eigenvalue problem. To do so, we introduce the linearisation ansatz

un = (An + ζ(Kn + iLn)eλt)eiωt, vn = (Bn + ζ(Pn + iQn)eλt)eiωt, |ζ| � 1, and substitute this into

Eq. (3.1) to obtain from the equations at O(ζ) the eigenvalue problem

λKn = −(A2
n − ω)Ln − ε(Ln+1 − 2Ln + Ln−1) + γKn −Qn,

λLn = (3A2
n − ω)Kn + ε(Kn+1 − 2Kn + Kn−1) + γLn + Pn,

λPn = −(<(Bn)2 + 3=(Bn)2
− ω)Qn − ε(Qn+1 − 2Qn + Qn−1)

− (2<(Bn)=(Bn) + γ)Pn − Ln,

λQn = (3<(Bn)2 + =(Bn)2
− ω)Pn + ε(Pn+1 − 2Pn + Pn−1)

+ (2<(Bn)=(Bn) − γ)Qn + Kn,

(3.12)

which have to be solved for the eigenvalue λ and the corresponding eigenvector

[{Kn}, {Ln}, {Pn}, {Qn}]T. As the stability matrix of the eigenvalue problem (3.12) is real valued,

λ and −λ are also eigenvalues with corresponding eigenvectors [{Kn}, {Ln}, {Pn}, {Qn}]T and

[{Kn}, {−Ln}, {Pn}, {−Qn}]T with γ → −γ, respectively. Therefore, we can conclude that the

solution un is (linearly) stable only when<(λ) = 0 for all eigenvalues λ.

3.4.1 Continuous spectrum

The spectrum of (3.12) will consist of continuous spectrum and discrete spectrum (eigen-

value). To investigate the former, we consider the limit n→ ±∞, introduce the plane-wave
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ansatz Kn = k̂eikn,Ln = l̂eikn,Pn = p̂eikn,Qn = q̂eikn, k ∈ R, and substitute the ansatz into (3.12)

to obtain

λ



k̂

l̂

p̂

q̂


=



γ ξ 0 −1

−ξ γ 1 0

0 −1 −γ ξ

1 0 −ξ −γ





k̂

l̂

p̂

q̂


, (3.13)

where ξ = ω− 2ε(cos k− 1). The equation can be solved analytically to yield the dispersion

relation

λ2 = 4εω(cos k − 1) − 4ε2(cos k − 1)2
− ω2

− 1 + γ2
± (4ε(cos k − 1) − 2ω)

√
1 − γ2. (3.14)

The continuous spectrum is therefore given by λ ∈ ±[λ1−, λ2−] and λ ∈ ±[λ1+, λ2+] with the

spectrum boundaries

λ1± = i

√
1 − γ2 + ω2 ± 2ω

√
1 − γ2, (3.15)

λ2± = i

√
1 − γ2 + 8εω + 16ε2 + ω2 + 2

√
1 − γ2(±ω − 4ε), (3.16)

obtained from (3.14) by setting k = 0 and k = π in the equation.

3.4.2 Discrete spectrum

Following the weak-coupling analysis as in Section 3.3, we will as well use similar asymp-

totic expansions to solve the eigenvalue problem (3.12) analytically, i.e. we write

� = �(0) +
√
ε�(1) + ε�(2) + . . . , (3.17)
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with � = λ,Kn,Ln,Pn,Qn. We then substitute the expansions into the eigenvalue problem

(3.12).

At order O(1), one will obtain the stability equation for the dimer, which has been

discussed for a general value of γ in [91]. The expression of the eigenvalues is simple,

but the expression of the corresponding eigenvectors is not, which makes the result of [91]

rather impractical to use. Therefore, here we limit ourselves to the case of small |γ| and

expand (3.17) further as

�( j) = �( j,0) + γ�( j,1) + γ2�( j,2) + . . . ,

j = 0, 1, 2, . . . . Hence, we have two small parameters, i.e. ε and γ, that are independent

of each other. For the sake of presentation, the detailed calculations are shown in the

Appendix. Below we will only cite the final results.

3.4.2.1 Intersite soliton I

The intersite soliton I (i.e. the symmetric intersite soliton) has three pairs of eigenvalues for

small ε and γ. One pair bifurcate from the zero eigenvalue. They are asymptotically given

by

λ =
√
ε
(
2
√

ω − 1 + γ2/
(
2
√

ω − 1
)

+ . . .
)

+ O(ε), (3.18)
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and

λ =



(
2
√
ω − 2 − γ2 ω−4

2
√
ω−2

+ . . .
)

+ ε
(√
ω − 2 − γ2 ω

4
√
ω−2

+ . . .
)

+ O(ε)3/2,

(
2
√
ω − 2 − γ2 ω−4

2
√
ω−2

+ . . .
)

+ ε
(

1
√
ω−2
− γ2 ω

4(ω−2)3/2 + . . .
)

+ O(ε)3/2.

(3.19)

3.4.2.2 Intersite soliton II

The intersite soliton II, i.e. the intersite soliton that is antisymmetric between the arms, has

three pairs of eigenvalues given by

λ =
√
ε
(
2
√

ω + 1 − γ2/
(
2
√

ω + 1
)

+ . . .
)

+ O(ε), (3.20)

and

λ =



i
(
2
√
ω + 2 − γ2 ω+4

2
√
ω+2

+ . . .
)

−iε
(
√
ω + 2 + γ2 3ω4+35ω3+136ω2+208ω+108

8
√
ω+2(ω3+6ω2+12ω+8) + . . .

)
+ O(ε)3/2,

i
(
2
√
ω + 2 − γ2 ω+4

2
√
ω+2

+ . . .
)

+iε
(

1
√
ω+2

+ γ2ω4+21ω3+104ω2+184ω+108
8
√
ω+2(ω3+6ω2+12ω+8) + . . .

)
+ O(ε)3/2.

(3.21)

3.4.2.3 Onsite soliton I

The onsite soliton has only one eigenvalue for small ε given asymptotically by

λ =

(
2
√

ω − 2 − γ2 ω − 4

2
√
ω − 2

+ . . .

)
+ ε

(
2

√
ω − 2

− γ2 ω

2(ω − 2)3/2 + . . .

)
+ . . . . (3.22)
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3.4.2.4 Onsite soliton II

As for the second type of the onsite soliton, we have

λ = i
(
2
√

ω + 2 − γ2 ω + 4
√
ω + 2

+ . . .

)
+ 2iε

(
1

√
ω + 2

− γ2 ω

(ω + 2)3/2 + . . .

)
+ . . . . (3.23)

3.5 Numerical results

We have solved the steady-state Eq. (3.3) numerically using Newton-Raphson method

and analysed the stability of the numerical solution by solving the eigenvalue problem

(3.12). Here we will compare the analytical calculations obtained above with the numerical

results.
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Figure 3.2: Eigenvalues of intersite soliton I withω = 1.2, γ = 0 (top panels) and 0.5 (bottom panels).
Dots are from the numerics and solid lines are the asymptotic approximations in Section
3.4.2.1. The collection of dots forming black regions in the right column corresponds to
the continuous spectrum.
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Figure 3.3: The same as in Fig. 3.2 with γ = 0 (left) and γ = 0.5 (right), but for ω = 5.2. In this case,
all the eigenvalues are real.

First, we consider the discrete intersite soliton I. We show in Fig. 3.2 the spectrum of

the soliton as a function of the coupling constant ε for ω = 1.2 and γ = 0, 0.5. On the real

axis, one can observe that there is only one unstable eigenvalue that bifurcates from the

origin. As the coupling increases, the bifurcating eigenvalue enters the origin again when

ε→∞. Hence, in that limit we obtain a stable soliton I (i.e. a stable symmetric soliton). The

dynamics of the non-zero eigenvalues as a function of the coupling constant is shown in

the right panels of the figure, where one can see that the eigenvalues are on the imaginary

axis and simply enter the continuous spectrum as ε increases.

In Fig. 3.3, we plot the eigenvalues for ω large enough. Here, in the uncoupled limit,

all the three pairs of eigenvalues are on the real axis. As the coupling increases, two pairs

go back toward the origin, while one pair remains on the real axis (not shown here). In

the continuum limit ε → ∞, we therefore obtain an unstable soliton I (i.e. an unstable

symmetric soliton).

In both figures, we also plot the approximate eigenvalues in solid (blue) curves, where

good agreement is obtained for small ε.

From numerical computations, we conjecture that if in the limit ε → 0 all the nonzero
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eigenvalues λ satisfy λ2 > λ2
1− (see (3.15-3.16)), then we will obtain unstable soliton I in the

continuum limit ε→∞. However, when in the anticontinuum limit ε→ 0 all the nonzero

eigenvalues λ satisfy λ2
1+
< λ2 < λ2

2−, we may either obtain a stable or an unstable soliton I

in the continuum limit.
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Figure 3.4: The spectra of intersite soliton II with ω = 5.2 (top) and 8.2 (bottom) and γ = 0.5. The
most left panels are the spectra in the complex plane for ε = 1. Middle and right panels
present the eigenvalues as a function the coupling constant. Solid blue curves are the
asymptotic approximations.

Next, we consider intersite solitons II (i.e. antisymmetric intersite solitons). Shown in

Fig. 3.4 is the spectrum of the discrete solitons for two values of ω. In both cases, there is

an eigenvalue bifurcating from the origin. For the smaller value of ω (the top panels of

the figure), we have the condition that all the nonzero eigenvalues λ satisfy λ2 < λ2
2− in

the anticontinuum limit ε→ 0. The collision between the eigenvalues and the continuous

spectrum as the coupling increases creates complex eigenvalues. In the second case using

largerω (lower panels of the figure), the nonzero eigenvalues λ satisfy λ2 > λ2
1− when ε = 0.

Even though not seen in the figure, the collision between one of the nonzero eigenvalues

and the continuous spectrum also creates a pair of complex eigenvalues. Additionally, in
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the continuum limit both values of ω as well as the other values of the parameter that we

computed for this type of discrete solitons yield unstable solutions.
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Figure 3.5: Left panels depict the spectrum of onsite soliton I in the complex plane for ε = 0.2.
Right panels show the eigenvalue as a function of the coupling and its approximation
from Section 3.4.2.3. Top and bottom panels are for ω = 1.2 and 5.2, respectively. Here,
γ = 0.1.

We also study onsite solitons. Shown in Figs. 3.5 and 3.6 is the stability of discrete

solitons type I and II, respectively.

In Fig. 3.5, the top left panel shows that for (ω −
√

1 − γ2) small enough we will

obtain stable discrete solitons. For coupling constant ε small, we indeed show it through

our analysis depicted as the blue solid line. Numerically we obtain that this soliton is

also stable in the continuum limit ε → ∞. However, when ω is large enough compared

to
√

1 − γ2, even though initially in the uncoupled limit the nonzero eigenvalue λ satisfies

λ2 < λ2
2−, one may obtain an exponential instability (i.e. instability due to a real eigenvalue).

The bottom left panel shows the case when the discrete soliton is already unstable even in
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Figure 3.6: The same as in Fig. 3.5 but for onsite soliton II with ω = 5.2 (top panels) and ω = 8.2
(bottom panels) with ε = 1.

the uncoupled limit due to the nonzero eigenvalue that is already real-valued.

Fig. 3.6 shows that the antisymmetric solitons are generally unstable due to a quartet

of complex eigenvalues, as shown in the left panels of the figure. When the coupling is

increased further, there will be an eigenvalue bifurcating from±λ1− that will move towards

the origin and later becomes a pair of real eigenvalues. These solitons are also unstable in

the continuum limit.

Unlike intersite discrete solitons that are always unstable, onsite discrete solitons may be

stable. In Fig. 3.7, we present the (in)stability region of the two types of discrete solitons in

the (ε, ω)-plane for three values of the gain-loss parameter γ. Discrete solitons are unstable

above the curves in the left panel and between the curves in the right panel. Indeed as

we mentioned before, for soliton I there is a critical ω that depends on γ below which the

soliton is stable in the continuum limit, while soliton II is always unstable in that limit.
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Figure 3.7: The stability region of the onsite soliton type I (left) and II (right) in the (ε, ω)-plane for
several values of γ. The solutions are unstable above the curves in the left panel and
between the curves in the right panel.

Another difference between the two figures is that the stability curves in the left panel

generally corresponds to an eigenvalue crossing the origin that becomes real-valued, while

the curves in the other panel are due to the appearance of a quartet of complex eigenvalues.

In general, we obtain that the gain-loss term can be parasitic as it reduces the stability region

of the discrete solitons.

Finally, we present in Fig. 3.8 the time dynamics of some of the unstable solutions shown

in the previous figures. What we obtain is that typically there are two kinds of dynamics,

i.e. in the form of travelling discrete solitons or solution blow-ups. The first type was the

typical dynamics of the intersite soliton I. The second dynamics is typical for the other

types of unstable discrete solitons.

3.6 Conclusion

We have presented a systematic method to determine the stability of discrete solitons

in a PT -symmetric coupler by computing the eigenvalues of the corresponding linear

eigenvalue problem using asymptotic expansions. The computation is based on the so-
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Figure 3.8: The typical dynamics of the instability of the discrete solitons in the previous Figs. Here,
γ = 0.5 and ε = 1. Depicted in the left and right panels are |un|

2 and |vn|
2, respectively.

From top to bottom panels, shown are the dynamics of intersite soliton I with ω = 1.2,
intersite soliton II with ω = 5.2, and onsite soliton I and II both with ω = 5.2.
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called method of weak coupling or anti-continuum limit. While no explicit expression of the

asymptotic series of the eigenvalues for the stability of discrete solitons had been presented

before, in our work here explicit computations of the asymptotic series of the eigenvalues

became possible. This is due to our approach, where in addition to the assumption of weak

coupling between the dimers, we also proposed to consider expansions in the coefficient

of the gain-loss terms. We have compared the analytical results that we obtained with

numerical computations, where good agreement is obtained. From the numerics, we

have also established the mechanism of instability as well as the stability region of the

discrete solitons. We have produced the stability regions for all the fundamental solitons

numerically. We have also presented the typical dynamics of solitons in the unstable

parameter ranges by direct numerical integrations of the governing equation.



Chapter 4

Solitons in a chain of CP-symmetric

dimers

4.1 Introduction

Charge-parity (CP) symmetry is one of the fundamental principles in physics of elementary

particles [92,93]. It holds for all interactions, except for the small violation by weak nuclear

forces [94]. The CP operator is composed of two factors: the parity transformation, P,

reverses the coordinates, and the charge conjugation, C, which interchanges particles and

antiparticles, i.e., essentially, positive and negative electric charges.

While the usual derivation of the CP symmetry is performed for Hermitian Hamilto-

nians, this symmetry does not hold solely for Hamiltonians which are necessarily Hermi-

tian [95]. In fact, Hamiltonians which commute with another symmetry operator, viz., the

parity-time one, PT (T is the time-inverting transform), may include an anti-Hermitian

spatially antisymmetric (odd) part, provided that the Hermitian one has a spatially even

58
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structure [96]. The spectrum of energy eigenvalues, generated by such a PT -symmetric

Hamiltonian, may be purely real (i.e., physically relevant) up to a critical strength of the

anti-Hermitian term, at which the PT symmetry is broken, making the system (in most

cases) physically irrelevant above this point.

It is well known that non-Hermitian PT -symmetric Hamiltonians may be emulated

theoretically [97–103] and experimentally [68, 104–106] in the context of classical optics

(without any actual connection to the quantum theory), making use of the fundamental

fact that the usual paraxial propagation equation is essentially the same as the quantum-

mechanical Schrödinger equation. Accordingly, the spatially even and odd Hermitian and

anti-Hermitian terms of the underlying Hamiltonian correspond, severally, to symmetric

and antisymmetric spatial patterns of the local refractive index, and of the local gain and

loss in the waveguide.

Furthermore, the presence of the Kerr nonlinearity, which is ubiquitous in optics, has

suggested the consideration of Hamiltonians which include the corresponding quartic

terms too. The nonlinearity readily gives rise to families of PT -symmetric solitons, that

have been explored in various contexts, see recent reviews [69, 70]. In particular, a natural

setting for the prediction of such one- and two-dimensional solitons is provided by PT -

symmetric dual-core waveguides [79, 82, 107–109].

The emulation of the non-Hermitian PT symmetry in optics suggests to seek for a pos-

sibility to realise non-Hermitian Hamiltonians featuring theCP symmetry in appropriately

designed optical settings. This was proposed in [110], using a model of a dual-core opti-

cal fiber, with opposite signs of the group-velocity dispersion (GVD) in the two cores and

phase-velocity mismatch between them. The non-Hermitian ingredient of the system is the
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specific intercore coupling, which, in a phenomenological form, can represent gain and loss

in the system, assuming that the coupler is embedded into an “active” medium [73, 111].

Alternatively, the same coupling can be derived directly for two fundamental-frequency

components of a nondegenerate (three-wave) second-harmonic-generating system, assum-

ing that the depletion of the second-harmonic pump remains negligible [110]. In terms of

this system, theP transform implies the swap of the two cores, and simultaneous inversion

of the sign of the temporal variable in the transmission equations, while C amounts to the

replacement of the wave amplitude by its complex-conjugate counterpart. The nonlin-

ear version of the CP-symmetric system, derived in [110], gives rise to a family of stable

gap solitons, even if the Kerr nonlinearity breaks the CP symmetry. Another possibility

to implement non-Hermitian CP symmetry in the semi-classical (mean-field) context was

elaborated in terms of a two-component atomic Bose-Einstein condensate with the spin-

orbit coupling between the components, assuming that one of them carries the gain, and

the other one is subject to the action loss with the same strength [112].

In this work, we aim to derive a discrete version of the CP-invariant system, which,

unlike the continuum one, was not considered before, and demands a new physical realisa-

tion, in terms of optics. The system is realised as an array of dual-core optical waveguides

in the spatial domain, with the temporal-domain GVD replaced by the discrete diffrac-

tion [113] in two parallel guiding arrays (two cores) of the system. While in dual-core

fibers it is easy to realise the setting with opposite signs of the temporal GVD in the parallel

cores [114–116], the implementation of opposite signs of the discrete diffraction is a chal-

lenging element of the model. As we discuss it below, it can be realised by means of the

diffraction-management technique [117]. We construct families of discrete solitons in the
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framework of the obtained system, which includes in the framework of Kerr nonlinearity.

The soliton families are obtained in an approximate analytical and full numerical forms,

starting from the anticontinuum limit (uncoupled array). One family continues, as a com-

pletely stable one, into the above-mentioned gap solitons found in the continuum-limit

variant of the system. Other families terminate before reaching the continuum limit, and

one hits a boundary of oscillatory instability.

The chapter is organised as follows. In Section 4.2, we present the model. We then

use the perturbation theory for weak couplings to analyse fundamental discrete solitons

in Section 4.3. In addition to the weak coupling between the sites (CP symmetric dimers),

the analysis is also performed for a small gain coefficient, which accounts for the cou-

pling between the cores. The existence and stability of the solitons is then considered by

means of numerical methods in Section 4.4 by solving time-independent equations, and

the corresponding eigenvalue problem for small perturbations around them. Results of the

numerical calculations are also compared to their analytical counterparts. In particular, we

produce stability regions for the fundamental onsite solitons. We also explore dynamics of

unstable solitons by means of direct simulations. The chapter is concluded by Section 4.5.

4.2 The model

The chains of dimers we consider is described by the coupled equations

u̇n = i|un|
2un + iε∆2un + γvn − iqun,

v̇n = i|vn|
2vn − iε∆2vn + γun + iqvn,

(4.1)
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where the dot stands for the derivative with respect to evolution variable t, which may

actually be propagation distance in the arrays of optical waveguides, the cubic terms

represent the usual Kerr nonlinearity, and ε > 0 is the coefficient of the horizontal linear

coupling with opposite signs, acting along each chain between adjacent sites, ∆2un =

(un+1−2un + un−1) and ∆2vn = (vn+1−2vn + vn−1) being the respective finite-difference second

derivatives, which represent the discrete spatial diffraction in the parallel arrays (ε < 0 may

be replaced by ε > 0 simply by renaming un ←→ vn).

The opposite signs of the discrete diffraction in the two arrays (with spacing d), which

is an essential ingredient of the present system, may be realised by means of the diffraction-

management technique [117], i.e., coupling into one of the arrays a light beam with a

small perpendicular component κ⊥ = π/ (2d) of the wave vector [the effective discrete-

diffraction coefficient is ∼ cos (κ⊥d)]. Another essential peculiarity in the present model is

that the vertical coupling between the parallel chains, represented by real coefficient γ > 0

(γ < 0 may be replaced by γ > 0 by replacing vn → −vn), acts as gain/loss in the active

system [73]. The last terms in Eq. (4.1), with coefficient q ≷ 0, which may be normalised

to be ±1, represent a phase-velocity mismatch between the cores. It is straightforward to

check that the linearised version of Eq. (4.1) is symmetric under the above-mentioned CP

transformation un → v∗n, vn → u∗n, where ∗ stands for the complex conjugation, i.e., the

linear system supports the CP symmetry, while it is easy to see that the Kerr terms are not

compatible with the transformation [110]. Our objective is to construct discrete solitons in

the full nonlinear system satisfying the localisation conditions, un, vn → 0 at n→ ±∞.

In the continuum limit ε→∞, system (4.1) was considered numerically and analytically

in [110]. In the uncoupled limit, i.e. when ε = 0, the chain (4.1) becomes isolated dimers
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with a complex coupling that was studied in details in [73].

Stationary solutions of Eq. (4.1) are sought in the usual form

un = Aneiωt, vn = Bneiωt, (4.2)

with real propagation constant ω and complex amplitudes An, Bn obeying the coupled

algebraic equations

ωAn = A2
nA∗n + ε(An+1 − 2An + An−1) − iγBn − qAn,

ωBn = B2
nB∗n − ε(Bn+1 − 2Bn + Bn−1) − iγAn + qBn.

(4.3)

In particular, looking for solutions to the linearised version of Eq. (4.3) in the natural form

of plane waves, (An,Bn) = (A0,B0) eikn with real wavenumber k, we obtain the dispersion

relation for the linearised system:

ω2 =
[
q + 4ε sin2 (k/2)

]2
− γ2. (4.4)

An essential corollary of Eq. (4.4) is that the stability of the zero solution, which plays the

role of the background for bright solitons, holds under condition ω2
≥ 0, i.e.,

q ≥ γ, (4.5)

for positive q, and

q ≤ −
(
4ε + γ

)
, (4.6)
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for negative q. These conditions demonstrate that the presence of the phase-velocity

mismatch, q > 0 or q < 0, is necessary for the stability of localised states (recall that we have

set γ > 0 and ε > 0).

If condition (4.5) holds, the existence of discrete solitons may be expected in spectral

bandgaps, i.e., intervals of values ofω2 which cannot be covered by Eq. (4.4) at sin2(k/2) ≤ 1.

These are

ω2 < q2
− γ2 or ω2 >

(
q + 4ε

)2
− γ2, (4.7)

in the case defined by Eq. (4.5), and

ω2 <
(
q + 4ε

)2
− γ2 or ω2 > q2

− γ2, (4.8)

in the case of Eq. (4.6).

Using the invariance of Eq. (4.3) with respect to the phase shift, one can infer that

localised stationary solutions correspond to real-valued An and purely imaginary Bn, i.e.

Bn = i=(Bn). The stability of stationary states is determined by solving the corresponding

problem for linear eigenvalue λ (generally, it is a complex one). To this end, we introduce

the linearisation ansatz for the perturbed solution, un =
[
An + ζ(Kn + iLn)eλt

]
eiωt, vn =[

Bn + ζ(Pn + iQn)eλt
]

eiωt, where ζ is an amplitude of small perturbations with real form

factors Kn,Ln and Pn,Qn, and substitute this into Eq. (4.1) to derive the linearised equations:
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λKn = −(A2
n − ω − q)Ln − ε(Ln+1 − 2Ln + Ln−1) + γPn,

λLn = (3A2
n − ω − q)Kn + ε(Kn+1 − 2Kn + Kn−1) + γQn,

λPn = (−3=(Bn)2 + ω − q)Qn + ε(Qn+1 − 2Qn + Qn−1) + γKn,

λQn = (=(Bn)2
− ω + q)Pn − ε(Pn+1 − 2Pn + Pn−1) + γLn,

(4.9)

which have to be solved for λ and the corresponding eigenvector [Kn,Ln,Pn,Qn]T. The

solution is linearly stable under condition <(λ) ≤ 0 for all eigenvalues, and unstable

otherwise.

4.3 Analytical calculations

4.3.1 The anticontinuum limit

In the decoupled array, with ε = 0 (the anticontinuum limit [55, 118, 119]), the stationary

solution satisfying Eq. (4.3) can be written as A(0)
n = ã0 and B(0)

n = ib̃0, with real ã0 and b̃0.

Upon substitution this into Eq. (4.3), one obtains

b̃0 = −
ã0(ã2

0 − ω − q)
γ

, (4.10)

where ã0 solves the polynomial equation,

ã9
0 − 3(ω + q)ã7

0 + 3(ω + q)2ã5
0 + [−γ2(ω − q) − (ω + q)3]ã3

0 + [γ4
− γ2(q2 + ω2)]ã0 = 0. (4.11)
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One solution of (4.11) is clearly the trivial state ã0 = b̃0 = 0. The non-trivial states are then

roots of a quartic polynomial, which can be solved analytically. However, the expressions

would not be simple [120]. Note that (4.11) simplifies for γ and q = ±1. Therefore instead

we will consider special parameter values and solve the equation perturbatively for small

γ.

Considering q = 1 − q̂γ, one obtains up to O(γ2)

ã0 = −
γq̂ − 2(ω + 1)

2
√
ω + 1

+ . . . , b̃0 =

√
ω + 1γ
1 − ω

+ . . . , (4.12)

ã0 =
γ
√
ω − 1

ω + 1
+ . . . , b̃0 =

√

ω − 1 + . . . , (4.13)

ã0 =
√

ω + 1 ±

√
ω − 1 − q̂γ

√
ω + 1

2(ω + 1)
+ . . . ,

b̃0 = ∓
√

ω − 1 + . . . .

(4.14)

Similarly for q = −1 − q̂γ, one will obtain

ã0 = −
γq̂ − 2(ω − 1)

2
√
ω − 1

+ . . . , b̃0 = 0, (4.15)

ã0 = −
γ
√
ω + 1

1 − ω
+ . . . , b̃0 =

√

ω + 1 + . . . , (4.16)

ã0 =
√

ω − 1 ±

√
ω + 1 − q̂γ

√
ω − 1

2(ω − 1)
+ . . . ,

b̃0 = ∓
√

ω + 1 + . . . .

(4.17)

4.3.2 Discrete solitons in the weakly-coupled arrays

Because solutions ã0, b̃0 at each site n are mutually independent in the anticontinuum limit,

one can construct infinitely many combinations, using the different solutions of ã0 and b̃0.

Here, we focus on fundamental onsite bright solitons for the case of weak coupling, i.e.,
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small ε, which can be constructed by the continuation of the modes available at ε = 0,

which is a well-known method for finding various modes in discrete systems [1]. Up to

order ε2, such solitons are constructed in an approximate form,

An =


ã0 + εã0,1, n = 0,

εã1,1, n = ±1,

0, n , 0,±1,

Bn =


ib̃0 + εib̃0,1, n = 0,

iεb̃1,1, n = ±1,

0, n , 0,±1,

(4.18)

where, ã0, b̃0 , 0 is one of the nonzero pairs given by Eqs. (4.12)-(4.17), and next-order

terms are obtain perturbatively from Eq. (4.3), following [121]:

ã0,1 =
2γb̃0 + 2ã0(q − ω + 3b̃2

0)

γ2 − (q + ω − 3ã2
0)(q − ω + 3b̃2

0)
, (4.19)

b̃0,1 =
2γã0 + 2b̃0(q + ω − 3ã2

0)

γ2 − (q + ω − 3ã2
0)(q − ω + 3b̃2

0)
, (4.20)

ã1,1 =
γb̃0 − ã0(q − ω)
γ2 − (q2 + ω2)

, b̃1,1 =
−γã0 − b̃0(q + ω)
γ2 − (q2 + ω2)

. (4.21)

4.3.3 Stability eigenvalues of the discrete solitons

Following the weak-coupling perturbation used in subsections 4.3.1 and 4.3.2, we use

similar asymptotic expansions to analytically solve the eigenvalue problem given by Eq.

(4.9), i.e., we set

� = �(0) +
√
ε�(1) + ε�(2) + . . . , (4.22)

with � = λ,Kn,Ln,Pn,Qn. Then, we substitute the expansions into the eigenvalue problem

(4.9).
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Due to the expansion of the anticontinuum-limit solutions in γ, we need to further

expand Eqs. (4.22) as

�( j) = �( j,0) + γ�( j,1) + γ2�( j,2) + . . . , (4.23)

j = 0, 1, 2, . . . . Thus, we deal with two independent small parameters, i.e., the intersite and

intercore couplings, ε and γ. Details of the respective calculations are not shown here, as

they directly follow the method presented in [121]. Below, we report final results produced

by this approach.

Due to the phase invariance, the discrete solitons have a trivial eigenvalue λ = 0.

Additionally, for the discrete soliton (4.18), when q = 1− q̂γ with ã0 and b̃0 taken as per Eq.

(4.12), it has a nonzero eigenvalue given, in the present approximation, by

λ = i
[
(−ω + 1) − γq̂ + . . .

]
+ iε [2 + . . . ] + . . . , (4.24)

while for ã0 and b̃0 taken as per Eq. (4.13), a nonzero stability eigenvalue is

λ = i
[
(−1 − ω) + γq̂ + . . .

]
+ iε [−2 + . . . ] + . . . , (4.25)

When we consider q = −1 − q̂γ, the discrete soliton (4.18), with ã0 and b̃0 taken as per Eq.

(4.15), it has a nonzero eigenvalue given by

λ = i
[
(−ω − 1) − γq̂ + . . .

]
+ iε [2 + . . . ] + . . . , (4.26)
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while for ã0 and b̃0 taken as per Eq. (4.16), it is

λ = i
[
(−ω + 1) + γq̂ + . . .

]
+ iε [−2 + . . . ] + . . . , (4.27)

In the present approximation, we obtain the discrete solitons are stable, as the correspond-

ing eigenvalues are imaginary.

Unfortunately we are not able to obtain the non-trivial eigenvalues of the discrete soliton

with ã0, b̃0 given by (4.14) and (4.17) using the method discussed in [121]. It is because the

expansion for q above, i.e. q = ±1 − q̂γ, yields a degenerate case where in the unperturbed

limit γ→ 0, the eigenvalues are all at the origin.

4.4 Numerical results

We have solved the steady-state Eq. (4.3) numerically using Newton-Raphson method,

and analysed the stability of the numerical solutions by solving the eigenvalue problem

(4.9). Below, we present numerical results, as well as their comparisons with the analytical

calculations obtained above.

First, we consider the discrete soliton that are given in the approximate form by Eq.

(4.18), with ã0 and b̃0 taken as per Eq. (4.12). Using the approximate solution, we must

have that ω > −1. Together with the condition (4.5) and the first inequality of (4.7), one

then obtains an interval ofωwhere such localised solutions can be continued to the strong-

coupling regime of ε � 1, indicating that the soliton continues into the continuum limit,

where it goes over into the stable gap solitons reported in [110].

In Fig. 4.1, we display the numerical results of this class of solitons showing that the
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Figure 4.1: The discrete soliton given in the approximate form by Eqs. (4.18) and (4.12), and its
stability for ω = 3, γ = 0.1 and q = 1.2. (a) The solution profile for ε = 0.4, blue and red
dashed lines represent |un| and |vn| respectively. (b) The corresponding spectrum of the
solution in panel (a) in the complex plane. (c) Imaginary eigenvalues as a function of ε.
(d) Zoom-in of panel (c) showing the nonzero eigenvalue and its approximation given
by Eq. (4.24) (the dashed line).
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Figure 4.2: The dynamics of discrete solitons corresponding to those displayed in Fig. 4.1(a) past
the critical coupling ε = 0.5. Depicted in the left and right panels are |un|

2 and |vn|
2,

respectively.
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solution is linearly stable. Here, we take the parameter value ω satisfying the second

inequality in (4.7). In this case, there is a maximum coupling constant ε, above which the

inequality is no longer satisfied. Numerical results cannot continue the solution beyond

the critical value. In Fig. 4.1, the critical coupling corresponds to the moment when the

lower branch of the continuous spectrum (see panel (c)) touches the horizontal axis.

In Fig. 4.2, we plot the typical dynamics of a discrete soliton past the critical coupling

constant, i.e. we use the discrete soliton right before the critical coupling as the initial

condition of the time integration code for the coupling right after the critical value. One

can observe the ’breathing’ dynamics of the solution, which creates radiation travelling

towards the boundary. As time evolves, the soliton amplitude will decrease and eventually

vanishes.
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Figure 4.3: The same as Fig. 4.1, but for the discrete soliton given in the approximate form by Eqs.
(4.18) and (4.13), and its stability for ω = 3, γ = 0.3 and q = 1.1. The approximation of
the nonzero eigenvalue is given by Eq. (4.25) (the dashed line).

Next, we consider the discrete soliton approximately given by Eq. (4.18) with ã0 and
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b̃0 taken as per Eq. (4.13). The solution profile and its stability are displayed in Fig.

4.3. Analytical approximation (4.25) is also shown, showing good agreement with the

numerical findings. Note that this type of the solution exists only for ω > 1 and it ceases to

exist beyond a critical value of ε, i.e. because the possible values of ω can only be made to

satisfy the second inequality of (4.7).
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Figure 4.4: The discrete soliton for out-of-phase solitons corresponding to the approximate solution
Eqs. (4.18) and (4.14), with the + and - signs for ã0 and b̃0, respectively. Here, parameters
are for ω = 3, γ = 0.1 and q = 1.2. (a) The solution profile for ε = 0.9, blue and red
dashed lines represent |un| and |vn| respectively. (b) The spectrum corresponding stability
eigenvalues in the complex plane. (c) Imaginary eigenvalues as a function of ε.

Finally, we consider discrete solitons that correspond to the approximate expression

(4.18) with ã0 and b̃0 given by Eq. (4.14), which also requires ω > 1 for its existence. Due to

the ± sign in Eq. (4.14), there are two types of the solutions, that we refer to as the in-phase

and out-of-phase solitons, for the solutions with signs + and − in b̃0, respectively.

The profile and stability of the out-of-phase soliton are shown in Fig. 4.4, where one

can see that the soliton is stable in its existence region. Further, we depict the profile and

stability of the in-phase soliton in Fig. 4.5. Differently from the previous solutions, this

solution becomes unstable beyond a critical point. The instability is caused by the collision

of two eigenvalues on the imaginary axis (where one of them bifurcates from the continuous

spectrum), thus creating a quartet of complex eigenvalues, i.e., oscillatory instability, which



4.4. Numerical results 73

-10 -5 0 5 10
0

0.5

1

1.5

2

2.5

|u
n
| 
, 
|v

n
|

(a)

-0.5 0 0.5

( )

-6

-4

-2

0

2

4

6

(
)

(b)

(c) (d)

Figure 4.5: The same as Fig. 4.1, with ε = 0.35 but for in-phase solitons corresponding to the
approximate solution given by Eqs. (4.18) and (4.14), with the + and - signs for ã0 and
b̃0, respectively. In addition, panel (d) shows the real part of the spectrum as a function
of the intersite coupling.

is a known generic scenario of the onset of instability of discrete solitons, [122] and [121].

The evolution initiated by the instability is shown in Fig. 4.6. It is clearly seen that the

solution amplitude increases while oscillating, indicating an eventual blow-up.
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Figure 4.6: The dynamics of unstable in-phase discrete solitons, whose stationary shape is displayed
in Fig. 4.5(a). Depicted in the left and right panels are |un|

2 and |vn|
2, respectively.

We have also considered the case q < 0. Note that due to the condition (4.6), discrete

solitons in this case will not be continuable towards the continuum limit ε → ∞, i.e.
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Figure 4.7: The same as Fig. 4.1, but for the discrete soliton given in the approximate form by Eqs.
(4.18) and (4.13), and its stability for ω = 2, γ = 0.3 and q = −0.9. The approximation of
the nonzero eigenvalue is given by Eq. (4.26) (the dashed line).
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Figure 4.8: The same as Fig. 4.1, but for the discrete soliton given in the approximate form by Eqs.
(4.18) and (4.13), and its stability for ω = 2, γ = 0.1 and q = −1.2. The approximation of
the nonzero eigenvalue is given by Eq. (4.27) (the dashed line).
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whatever value of q we take initially, there will be a critical coupling ε above which the

inequality is no longer satisfied.

For the sake of completeness, we depict in Figs. 4.7 and 4.8 the discrete soliton approx-

imately given by Eq. (4.18) with ã0 and b̃0 taken as per Eqs. (4.15) and (4.16), respectively.

We also plot our approximation to the non-zero eigenvalue given by Eqs. (4.26) and (4.27),

where good agreement is also obtained. In panel (c) of both figures, the critical coupling

constant above which the condition (4.6) is violated corresponds to the moment when the

two branches of the continuous spectrum merge. Here, we did not present the numerical

results for discrete solitons approximately given by Eq. (4.18) with ã0 and b̃0 taken as per

Eqs. (4.17) because they yield the same qualitative pictures as those in Figs. 4.7 and 4.8.

4.5 Conclusion

In this work we have introduced the model of the dual-core waveguiding array, which

can be realised as an optical system featuring the CP−symmetry. Characteristic features

of the system are the opposite sign of the discrete diffraction in the two parallel arrays

(cores), that may be implemented by means of the diffraction-management technique, and

the active coupling between the arrays, which accounts for the gain and loss in the system,

the stability of the zero state being provided by a sufficiently phase-velocity mismatch

between the parallel arrays. Our analytical results, obtained by means of the extension

from the anticontinuum limit, and numerical findings show the existence of several families

of stationary discrete solitons in the system. On the contrary to the continuous limit of

the present setting, considered in [110], the discrete system supports different types of
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solitons, with the propagation constant falling into the bandgap of the corresponding

linear spectrum. Most soliton families are stable, although only one of them extends to

the continuum limit, while others terminate by leaving the bandgap and crossing into

the spectral bands. One discrete-soliton family develops the oscillatory instability past a

critical value of the intersite coupling.



Chapter 5

Snakes in a PT -symmetric chain of

dimers

5.1 Introduction

Many nonlinear dynamical systems, such as spatially extended nonlinear dissipative sys-

tems [123], vertical-cavity semiconductor optical amplifiers [124], nematic liquid crystal

layers with spatially modulated input beam [125], and magnetic fluids [126], exhibit spa-

tially localised patterns and a snaking structure in their bifurcation diagrams in the plane

of the length of the localised solution against a control parameter. This phenomenon of

snaking is referred to as homoclinic snaking [127–129], where the spatial structure of such

a localised state departs from and then returns to a uniform state. By definition, it has

infinitely many turning points due to saddle-node bifurcations which form the boundaries

(fronts) of the snaking region. Such snaking region is also called the pinning region since

the fronts at either end ‘pin’ or ‘lock’ to the structure within the localised state, and an

77
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infinite number of localised states exist in the entire interval of the pinning region.

In most of previous works devoted to localised states and snaking in continuous sys-

tems, the Swift-Hohenberg equation has been widely used as a model for pattern formation

since it is the simplest model equation that illustrates the pinning effect [129–133]. In gen-

eral, the pinning effect cannot be described by conventional multiple-scale asymptotic

method due to the fact that the length of the pinning region is exponentially small in a

parameter which is related to the pattern amplitude [127]. Recently the Swift-Hohenberg

with quadratic-cubic nonlinearities and cubic-quintic nonlinearities have been success-

fully studied with the help of the exponential asymptotics [134–136]. The calculations,

however, are rather cumbersome and unfortunately require two fitting parameters. Al-

ternatively, variational methods to obtain scaling laws for the structure of the snaking

region have been proposed and demonstrated, for example, in the system modelled by the

cubic-quintic Swift-Hohenberg equation [137].

Like spatially continuous systems, several discrete systems can display the snaking

behavior with the locking effect, however, being attributed to the imposed lattice. Examples

include the discrete bistable nonlinear Schrödinger equation [138–140], which leads to a

subcritical Allen-Cahn equation [141], optical cavity solitons [142, 143], discrete systems

with a weakly broken pitchfork bifurcation [144] and in patterns on networks appearing

due to Turing instabilities [145]. The pinning region in this case was studied analytically

by Matthews and Susanto [146] and Dean et al. [147]. In this chapter, we consider localised

structures in aPT symmetric chain of dimers that has two arms with each arm described by

a discrete nonlinear Schrödinger equation with gain or loss. To the best of our knowledge,

the effect of the gain and loss term in a PT -symmetric chain of dimers to the snaking
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regime has not been explored yet.

A system of equations isPT−symmetric when it is invariant regarding combined parity

(P) and time-reversal (T ) transformation [14, 18, 66]. Such symmetry is of great interest

as it forms a particular class of non-Hermitian Hamiltonians in quantum mechanics and

has been widely studied [65]. Among these, dimers are the most basic and important

PT−symmetric systems because the concept of PT−symmetry was first demonstrated

experimentally on dimers, which are composed of two coupled optical waveguides [67,68]

(see also [71] and references therein). In particular, when nonlinear dimers are put in arrays

where elements with gain and loss are linearly coupled to the elements of the same type

belonging to adjacent dimers, one can obtain a distinctive feature in the form of the existence

of solutions localised in space as continuous families of their energy parameter [74]. The

nonlinear localised solutions, which loosely are also referred to as bright discrete solitons,

and their stability have been studied in [121] analytically and numerically (see also the

references therein for localised solutions in systems of coupled nonlinear Schrödinger

equations).

This chapter is devoted to a detailed numerical and analytical study of homoclinic

snaking in a PT -symmetric chain of dimers with cubic-quintic nonlinearity. The contin-

uum limit of the same set-up has been considered in [107, 109]. In optical media, such

nonlinearity can be obtained from a saturation of the Kerr response, which with the in-

crease of the intensity will introduce a self-defocusing quintic term in the expansion of

the refractive index [148, 149]. In the continuous case [107, 108], it was shown that the

presence of gain-loss terms only influences the stability of the localised solutions. Here,

it will be shown that the discrete set-up admits homoclinic snaking. We show that the
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critical gain/loss parameter corresponding to the ‘broken PT -symmetry’ phase, i.e. the

linear system counterpart has a complex-valued spectrum, is related to the merging of two

snaking regions. The width of the snaking region is discussed analytically in two different

regimes, i.e. weak and strong coupling between the dimers. In the strong coupling region,

we use a variational method following [146], but with a different approach yielding a sim-

ple expression of the width that was not obtainable in [146]. When the coupling is weak,

we introduce a one-active-site approximation following [150].

This chapter is outlined as follows. In Section 5.2, we present the mathematical model.

In Section 5.3, we present the numerical solution using Newton-Raphson method and

analysed the stability. The analytical approximations of the solitons is then considered in

Section 5.4. Conclusion the main finding in the chapter is in Section 5.5.

5.2 Mathematical model

The governing equations describing PT -symmetric chains of dimers are of the form

iu̇n =
(
ε∆2 − ω + |un|

2
−Q |un|

4 + iγ
)

un + vn,

iv̇n =
(
ε∆2 − ω + |vn|

2
−Q |vn|

4
− iγ

)
vn + un.

(5.1)

The derivative with respect to the evolution variable (i.e., the propagation distance, if we

consider their application in fiber optics) is denoted by the overdot, un = un(t), vn = vn(t)

are complex-valued wave function at site n ∈ Zwith the propagation constantω ∈ R, ε > 0

is the constant coefficient of the horizontal linear coupling (coupling constant between two

adjacent sites), ∆2un = (un+1 − 2un + un−1) and ∆2vn = (vn+1 − 2vn + vn−1) are the discrete
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Laplacian term in one spatial dimension, the gain and loss acting on complex variables un,

vn are represented by the positive coefficient γ, i.e. γ > 0. The cubic nonlinearity coefficient

has been scaled to +1, while Q is the coefficient of the quintic nonlinearity. Discrete solitons

satisfy the localisation conditions un, vn → 0 as n → ±∞. In the continuum limit ε → ∞,

Eqs. (5.1) were studied in [108] and [107] for the one-dimensional and two-dimensional

problems, respectively.

Here, we consider standing wave solutions of (5.1) that can be obtained from substitut-

ing un = An, vn = Bneiφ into (5.1) to yield the equations

(
ε∆2 − ω + A2

n −QA4
n + iγ

)
An + Bneiφ = 0,(

ε∆2 − ω + B2
n −QB4

n − iγ
)

Bn + Ane−iφ = 0.

(5.2)

Here, An,Bn, φ ∈ R. We can assume that un is real-valued because of the phase invariance

of the governing equations (5.1).

Simplifying the equations by splitting the real and the imaginary parts of the equation

will yield

ΩAn =ε (An+1 − 2An + An−1) + A3
n −QA5

n, (5.3)

which is also known as the discrete Allen-Cahn equation, where Bn = −An, Ω = ω ±√
1 − γ2 with φ = arcsinγ for the plus sign and φ = π − arcsinγ for the minus sign, which

corresponds to the so-called antisymmetric and symmetric configuration between the arms,

respectively. Eq. (5.3) has uniform solutions An ≡ A that are given by

A = 0, A2 =
1 ±
√

1 − 4QΩ

2Q
. (5.4)
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Note that (5.3) will have no real solution when |γ| > 1. This is the broken region of

PT -symmetry. The uniform solution (5.4) also requires 4QΩ < 1 to exist.

The linear stability of a solution of (5.1) is determined by solving a corresponding

linear eigenvalue problem of (5.1). To do so, we introduce the linearisation ansatz un =

An + ζ(Kn + iLn)eλt, vn = Bneiφ + ζ(Pn + iQn)eλt, |ζ| � 1, and substitute this into Eq. (5.1) to

obtain from the equations at O(ζ) the eigenvalue problem

λKn = (ε∆2 − ω + A2
n −QA4

n)Ln + γKn + Qn,

−λLn = (ε∆2 − ω + 3A2
n − 5QA4

n)Kn − γLn + Pn,

λPn = (ε∆2 − ω + B2
n(1 − γ2)(1 −QB2

n(1 − γ2)))Qn

+ (2B2
nγ

√
1 − γ2(1 − 2QB2

n(1 − γ2)) − γ)Pn + Ln,

−λQn = (ε∆2 − ω + B2
n(1 − γ2)(3 − 5QB2

n(1 − γ2)))Pn

+ γQn + Kn,

(5.5)

which have to be solved for the eigenvalue λ and the corresponding eigenvector

[Kn,Ln,Pn,Qn]T. One can note that if λ is a spectrum, so are −λ and ±λ [121]. Therefore, a

solution is (linearly) stable only when<(λ) = 0 for all eigenvalues λ.

The spectrum of the uniform solutions (5.4) can be obtained by introducing the plane-

wave ansatz Kn = k̂eikn,Ln = l̂eik,Pn = p̂eikn,Qn = q̂eikn, k ∈ R, and substitute the ansatz

into (5.5) to yield the dispersion relations. The continuous spectrum is obtained from the

dispersion relation by setting k = 0 and k = π in the equation. However, rather than

showing the lengthy expressions of the dispersion relations, for the sake of simplicity

we only plot the uniform solutions and indicate their stability. In Fig. 5.1, we show
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Figure 5.1: The bifurcation diagram of the uniform solutions (5.4) for γ = 0.1 and γ = 0.8 with
ε = 0.1. The notation ‘a’ and ‘s’ denotes the antisymmetric (φ = arcsinγ) and symmetric
(φ = π − arcsinγ) configuration between the arms, respectively.

the bifurcation diagram of the nonzero solutions (5.4) for ε = 0.1. The solution when

unstable is shown as dashed line. Note that the antisymmetric solutions are unstable

almost everywhere in their existence region. We will need these observations later.

5.3 Numerical methods

We solve the steady-state Eq. (5.2) numerically using Newton-Raphson method and anal-

ysed the stability of the numerical solution by solving the eigenvalue problem (5.5).

It is well-known that there are two natural fundamental solutions representing bright

discrete solitons that may exist for any coupling constant ε, from the anticontinuum to

the continuum limit, i.e. an intersite (or bond-centred) and onsite (or site-centred) discrete

mode.

Fixing the coupling ε and varying the propagation constantω, we obtain the bifurcation

diagrams of the two types of discrete modes in Fig. 5.2. One can note that for each symmetric

and antisymmetric configuration between un and vn, there are two branches that correspond
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to the site-centred and bond-centred solutions. More importantly, the bifurcation diagrams

form a snaking structure. Even though such structures have been reported before [138,

139,141,146,151], the stability behaviour along the curves are different due to the different

setup of equations considered herein. The region between the boundaries of the snakes is

the pinning region. Additionally, there are also branches of asymmetric solutions, called

ladders, connecting the snaking branches of onsite and intersite modes. Comparing the

two panels of Fig. 5.2, one can note that in agreement with the continuous case reported

in [107, 108] the gain-loss parameter tends to destabilise the localised solutions, shown by

the dashed curve that tends to expand in the second panel.

In Fig. 5.3 we plot the profiles of several localised solutions and their spectrum in the

complex plane. One can note that some of the solutions are unstable shown by the fact that

there is a spectrum with nonzero real part. This corresponds to the red dashed segment in

Fig. 5.2.

It is interesting to note that up in the snaking structures (represented by point 5 and 6

in Fig. 5.2(a)), the stability of the branches is similar to those in Fig. 5.1. This is due to the

fact that as we move up in the snaking, the corresponding localised solutions have longer

and longer plateau of nonzero uniform solutions, i.e. the stability may be determined by

the continuous spectrum.

We show in Fig. 5.4 the time evolution of the unstable solutions of Fig. 5.3. While in

Fig. 5.5 indicates a clear blow up of the wave field with gain, which is typical in PT -

systems [71], panel (a) shows intensity oscillations. The fact that the oscillations persist for

quite a while is interesting by itself as PT -symmetric dimers with cubic nonlinearity are

known to have oscillations that blow up [71]. Similar oscillations in the continuum limit
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Figure 5.2: The bifurcation diagram of the fundamental localised solutions. We plot the norm ||u|| =√∑
n u2

n as ω varies. Stable branches are represented by solid blue lines and unstable
branches by dashed red lines. There are two principle branches, one corresponding to
site-centered solutions and one for bond-centered solutions. The two principle branches
are connected via asymmetric solutions at points of stability change. Here, (a) γ = 0.1
and (b) γ = 0.8 with ε = 0.1.

ε → ∞ were also reported in [108], where the bounded oscillations were attributed to the

quintic nonlinearity that may have suppressed the blow up. However, whether the long-

live oscillation is a genuine cycle is still unknown and is addressed for future work. The

instability of the solution at point (2) when γ = 0 is actually due to a symmetry breaking

(or pitchfork) bifurcation, i.e. asymmetric solutions between the arms (|An| , |Bn|) emanate

from the points of stability change. When γ , 0, the instability persists, however in the

case of dimers with cubic nonlinearity only the bifurcating solution is usually called the

‘ghost-state’, i.e. nonlinear asymmetric solutions with complex-valued ω [152]. Whether

such ghost states exist in the presence of quintic nonlinearity (considering the persisting

oscillation in Fig. 5.4, instead of the normal blow up in the cubic dimers) is also addressed

for future work.

Regarding the snaking region, we observe that the width does not depend on γ. As the
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Figure 5.3: Plot of the corresponding localised solutions on the bifurcation diagram shown in Fig. 5.2
and their spectrum in the complex plane. Panels (a,b,c): site-centred solutions. Panels
(e,f): bond-centred solutions. Panel (d): asymmetric solution, which is an intermediate
between two symmetric profiles.
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(a) Point (2) (b) Point (2)

Figure 5.4: Dynamics view of the unstable solutions in panels (b) and (f) of Fig. 5.3 when ε = 0.1,
γ = 0.1 and ω = 2.7133. Left panel is for |un(t)|2 and right panel is for |vn(t)|2.

(a) Point (6) (b) Point (6)

Figure 5.5: Dynamics view of the unstable solutions in panels (b) and (f) of Fig. 5.3 when ε = 0.1,
γ = 0.1 and ω = 0.20623. Left panel is for |un(t)|2 and right panel is for |vn(t)|2.
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parameter increases towards the critical value γ→ 1, Fig. 5.2 shows that the branches of the

symmetric and asymmetric solutions become closer. At the critical value, they overlap. This

is due to the fact that when studying time-independent solutions, the governing equation

(5.1) reduces nicely to the discrete Allen-Cahn equation (5.3) that is rather independent of

γ and the parameter Ω for the symmetric and antisymmetric solutions becomes the same

when γ = 1.

Next, it is interesting to analyse the width of the snaking region as a function of, e.g.,

the coupling constant ε.

5.4 Analytical approximations

In this section, we will derive an asymptotic approximation of the width of the snaking

region in Fig. 5.2. The approach is distinguished in two different regions, i.e. small and

large coupling.

5.4.1 Small coupling case

When ε is small, as we follow the snaking structure upward (see Fig. 5.2), actually there

is only one site that is ‘active’ as ω varies, with the remaining sites being either at 0 or at

the plateau of a uniform solution. Such behaviours were observed and exploited in many

ways before, see, e.g., [153, 154], but not in the context of snaking.

From (5.3) and (5.4), the one-active-site approximation is given by

f (a) := Qa5
− a3 + (Ω + 2ε)a − ε

√
1 +
√

1 − 4QΩ

2Q
= 0. (5.6)
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Note that we only use the ‘+’ sign for the uniform solution forming the plateau.

In general (5.6) will have five roots. The roots relevant to our study are the positive

ones. As Ω varies, two of the roots will collide in a saddle-node bifurcation. This condition

corresponds to the boundaries of the snaking region. The condition for the collision is

when a local maximum or minimum of the function f (a) crosses the horizontal axis. The

critical points of f (a) are given by

f ′(a) := 5Qa4
− 3a2 + (Ω + 2ε) = 0, (5.7)

i.e.

a =

√
3 ±

√
9 − 20Q(Ω + 2ε)

10Q
. (5.8)

Substituting (5.8) into (5.6) and solving the resulting equation for Ω asymptotically give

us

Ω =
1

4Q
− ε + O(ε2), 3 3

√
ε2

4Q
+ O(ε4/3). (5.9)

the snaking width W is then given approximately by the difference between the two

functions.

5.4.2 Large coupling case

In the large coupling case, i.e. close to the continuous limit, following [155, 156], (5.3) can

also be obtained from

εAxx +

∞∑
n=−∞

δ(x − n)
(
−ΩA + A3

−QA5
)

= 0, (5.10)
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where An = A(x = n).

We then write the summation
∑
∞

n=−∞ δ(x − n) = 1 + 2
∑
∞

k=1 cos(2πkx), which does not

converge uniformly. Taking only the first harmonic, (5.10) then becomes

εAxx + (1 + 2 cos(2πx))
(
−ΩA + A3

−QA5
)

= 0, (5.11)

which can be expected to approximate (5.3) for ε� 1 [155].

Without the periodic potential 2 cos(2πx), Eq. (5.11) at the Maxwell point, that corre-

sponds to the condition when An ≡ A = 0 has the same ‘energy’ (or the value of the first

integral) with the nonzero solution (5.4) with the ‘+’ sign, i.e.

ΩA2 =
1
2

A4
−

Q
3

A6,

which is attained at

Ω =
3

16Q
, (5.12)

has a front solution given by

A(x) =

√√√ 3

4Q
(
1 + e

√
3

4Qεx
) . (5.13)

Following [137, 146], we approximate the solutions along the snaking structure by

A(x) =

√√√ 3

4Q
(
1 + e

√
3

4Qε (|x−φ|−l)
) , (5.14)
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where φ is the phase-shift distinguishing the two branches, i.e. φ = 0, 1/2 for the on-site

and intersite solutions, respectively. l is the length of the plateau, which is presently an

unknown variable.

Using the variational argument, requiring (5.14) to be an optimal solution of (5.11)

implies that l must satisfy the equation (see [157] for the derivation in a general set-up)

∫
∞

−∞

[
εAxx + (1 + 2 cos(2πx))

(
−ΩA + A3

−QA5
)] ∂A
∂l

dx = 0, (5.15)

where Ω is set to be near the Maxwell point (5.12), i.e. Ω = 3/(16Q) + ∆Ω.

Equation (5.15) can be simplified at the leading order for l� 1 to

∆Ω = lim
l→∞

−2ε
∫
∞

0
cos(2πx)Axx

∂A
∂l dx∫

∞

0
A∂A

∂l dx

=
επ3

3
csch

(
4π2
√
εQ

√
3

) [
4π

√
3εQ cos(2πl) + 3 sin(2πl)

]
. (5.16)

The width of the snaking region is then simply given by

W =
2επ3

3
csch

(
4π2
√
εQ

√
3

) √
48π2εQ + 9, (5.17)

≈ 16π4ε3/2

√
Q
3

e−
4π2 √εQ
√

3 , (5.18)

which is exponentially small. Note that [146], that used the explicit expression of the

Lagrangian without approximating the discrete Laplacian with the second derivative, was

not able to obtain the explicit expression and only provided the exponential scale.
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Figure 5.6: The width of the snaking region as a function of the coupling constant ε for Q = 0.1. The
solid curve is obtained from the numeric and the dashed and dash-dotted lines are the
approximations.

5.4.3 Snaking width

We show in Fig. 5.6 the width of the snaking region computed numerically and our ap-

proximations (5.9) and (5.17). One can see good agreement between them.

5.5 Conclusion

Localised solutions (site-centered and bond-centered modes) and their bifurcation dia-

grams that form a snaking structure in a PT -symmetric coupler composed by a chain of

dimers have been discussed. It has been shown that the gain-loss coefficient does not

influence the width of the snakes, and the critical gain/loss coefficient above which the

PT−symmetry is broken corresponds to the overlapping bifurcation diagrams.

Asymptotic approximations of the width of the snaking region have been derived in two

different limits, i.e. strong and weak coupling between the dimers. The approximations

have been compared with the numerical results where good agreement is obtained.



Chapter 6

Conclusion and future work

6.1 Conclusion

In this thesis, a systematic method to determine the stability of discrete solitons in a PT -

symmetric coupler by computing the eigenvalues of the corresponding linear eigenvalue

problem using asymptotic expansions has been presented. We used perturbation expan-

sion method for small coupling constant ε to analyse the existence and stability of the

solitons. Also a comparison between the analytical results that we obtained with numer-

ical computations shows good agreement. From the numerics, we have established the

mechanism of instability as well as the stability region of the discrete solitons.

We have also analysed a model of a dual-core waveguide which may implement an

optical system featuring the CP−symmetry. Our study shows the presence of a general

family of stationary discrete solitons in the nonlinear system, that have been also found

and checked for the stability in the numerical form. On the contrary to the continuous

case discussed in [110], the lattice system may support different types of solitary pulses

93
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with propagation constants above the upper edge of the spectrum band. Asymptotic

expansions have been presented as well where good agreement with the numerical results

was obtained.

Localised solutions in a PT -symmetric coupler composed by a chain of dimers were

studied in this work, that is modelled by linearly coupled discrete nonlinear Schrödinger

equations with gain and loss terms and with a cubic-quintic nonlinearity. We consider site-

centered and bond-centered localised solutions and show that the resulting bifurcation

diagrams when a parameter is varied form a snaking behaviour. Each localised solution

has symmetric and antisymmetric configurations between the arms. The critical gain/loss

coefficient above which the PT−symmetry is broken corresponds to the overlapping bi-

furcation diagrams. We analyse the width of the snaking region and provide asymptotic

approximations in the limit of strong and weak coupling where good agreement is ob-

tained. It has been shown that the gain-loss coefficient does not influence the width of

the snakes, and the critical gain/loss coefficient above which the PT−symmetry is broken

corresponds to the overlapping bifurcation diagrams.

6.2 Future work

The application of the higher dimensional PT / CP -symmetric couplers in Chapter 3 and

4 (see, e.g., [158]) is a natural extension of the problem that is addressed for future work.

Additionally we also address the computation of eigenvalues of discrete solitons in the

neighbourhood of broken PT -symmetry as future investigations.

An unstable solution was shown in Chapter 5 to yield a long-live oscillation. As such
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oscillations would lead to blow up in the cubic dimers, it is not clear yet if the oscillation is

a genuine cycle and related to the quintic nonlinearity or only a transient dynamics. The

oscillation as a typical dynamics of the instability is also related to the mechanism of the

instability of the localised solution, i.e. whether it is a symmetry breaking (or pitchfork)

bifurcation with a ‘ghost-state’. These questions are addressed for future work.
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Appendix A

Analytical calculation

As mentioned in Section 4.3.3, to solve the eigenvalue problem (3.12) analytically we expand
the eigenvalue and eigenvector asymptotically as

� = �(0) +
√
ε�(1) + ε�(2) + . . . , (A.0.1)

with � = λ,Kn,Ln,Pn,Qn.
Performing the expansion in ε, at O(ε0) we obtain the following set of equations

λ(0)v(0)
n =


γ ω − A(0)

n
2

0 −1
3(A(0)

n )2
− ω γ 1 0

0 −1 k1 k2

1 0 k3 k4

︸                                       ︷︷                                       ︸
M0

v(0)
n , (A.0.2)

where

v( j)
n =


K( j)

n

L( j)
n

P( j)
n

Q( j)
n

 ,
k1 = −(2<(B(0)

n )=(B(0)
n ) + γ), k2 = ω −<(B(0)

n )2
− 3=(B(0)

n )2,

k3 = 3<(B(0)
n )2 + =(B(0)

n )2
− ω, k4 = 2<(B(0)

n )=(B(0)
n ) − γ.
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At O(ε1/2) and O(ε1), we obtain

λ(0)v(1)
n = M0v(1)

n − λ
(1)v(0)

n , (A.0.3)

λ(0)v(2)
n = M0v(2)

n − λ
(1)v(1)

n − λ
(2)v(0)

n

+


0 2

(
1 − A(0)

n A(1)
n

)
0 0

6A(0)
n A(1)

n − 2 0 0 0
0 0 k5 2 + k6

0 0 k7 − 2 k8

︸                                                         ︷︷                                                         ︸
M1

v(0)
n

+


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


(
v(1)

n+1 + v(1)
n−1

)
, (A.0.4)

where

k5 = −2(<(B(0)
n )=(B(1)

n ) +<(B(1)
n )=(B(0)

n )),

k6 = −2(<(B(0)
n )<(B(1)

n ) + 3=(B(0)
n )=(B(1)

n )),

k7 = 2(3<(B(0)
n )<(B(1)

n ) + =(B(0)
n )=(B(1)

n )),

k8 = 2(<(B(0)
n )=(B(1)

n ) +<(B(1)
n )=(B(0)

n )).

The steps of finding the coefficients λ( j) of the asymptotic expansions, j = 0, 1, 2, . . . , are
as follows.

1. Solve the eigenvalue problem (A.0.2), which is a 4 × 4 system of equations, for λ(0)

and v(0)
n .

2. Determine λ(1) by taking the vector inner product of both sides of (A.0.3) with the
null-space of the Hermitian transpose of the block matrix that consists of

(
M0 − λ(0)I4

)
along the diagonal, where I4 is the 4 × 4 identity matrix.

3. Solve (A.0.3) for v(1)
n .

4. Determine λ(2) by taking the vector inner product of both sides of (A.0.4) with the
null-space of the Hermitian transpose of the block matrix that consists of

(
M0 − λ(0)I4

)
.

The procedure repeats if one would like to calculate the higher order terms.
The leading order eigenvalue λ(0) of (A.0.2) has been solved in [91]. However, the

expression of the corresponding eigenvector v(0)
n was very lengthy, that makes it almost
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impractical to be used to determine the higher order corrections of λ( j). Therefore, in every
equation at orderO(ε`), ` = 0, 1/2, 1, . . . ., obtained from (3.12), we also expand the variables
in γ, i.e.

M j = M j,0 + γM j,1 + γ2M j,2 = . . . , �( j) = �( j,0) + γ�( j,1) + γ2�( j,2) + . . . ,

where again � = λ, vn, and obtain equations at order O(γ ˆ̀), ˆ̀ = 0, 1, 2, . . . . The steps to
determine λ( j,k) and v( j,k)

n are the same as mentioned above.
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