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Abstract

Resting-state functional magnetic resonance imaging (rs-fMRI) provides a valuable tool to study spontaneous brain

activity. Using rs-fMRI, researchers have extensively studied the organization of the brain functional network and found

several consistent communities consisting of functionally connected but spatially separated brain regions across subjects.

However, increasing evidence in many disciplines has shown that most realistic complex networks have overlapping

community structure. Only recently has the overlapping community structure drawn increasing interest in the domain of

brain network studies. Another issue is that the inter-subject variability is often not directly reflected in the process of

community detection at the group level. In this paper, we propose a novel method called collective sparse symmetric

non-negative matrix factorization (cssNMF) to address these issues. The cssNMF approach identifies the group-level

overlapping communities across subjects and in the meantime preserves the information of individual variation in brain

functional network organization. To comprehensively validate cssNMF, a simulated fMRI dataset with ground-truth, a

real rs-fMRI dataset with two repeated sessions and another different real rs-fMRI dataset have been used for performance

comparison in the experiment. Experimental results show that the proposed cssNMF method accurately and stably

identifies group-level overlapping communities across subjects as well as individual differences in network organization

with neurophysiologically meaningful interpretations. This research extends our understanding of the common underlying

community structures and individual differences in community strengths in brain functional network organization.

Keywords: non-negative matrix factorization, overlapping communities, resting state networks, inter-subject variability,

test-retest reliability, resting state fMRI

1. Introduction

The human brain is a complex and delicate system, where

distinct brain regions work in coordination to accomplish

diverse neural functions. The recent decade has seen grow-

ing interests in introducing the concept of network into the5

field of neuroscience for studying brain system (Bullmore

and Sporns, 2009). From the network viewpoint, brain

networks (or graphs) can be simplified as sets of discrete

neural elements (nodes) and their interactions (edges) for

both structural and functional networks. Such network10

perspective opens a new avenue for investigating brain

architecture and function by providing powerful analysis
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tools for brain imaging data. Moreover, the technology of

functional magnetic resonance imaging (fMRI), especially

resting state fMRI (rs-fMRI), provides a useful channel to15

study brain functional networks in depth. The rs-fMRI

records the signals of spontaneous brain activities when

no particular task is performed. The access to powerful

network approaches and rich resources of brain imaging

data has largely promoted studies on brain network orga-20

nization (Sporns et al., 2004; Power et al., 2011; Bullmore

and Sporns, 2012).

Two primary aspects in understanding brain network

organization is the segregation and integration of brain

functions. In particular, the functional segregation in brain25

networks is captured by identifying underlying communi-

ties, where a community (or module) consists of highly
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functionally-connected brain regions (nodes) that show

coherent signal fluctuations. The communities also cor-

respond to another common term, resting state networks30

(RSNs), when resting-state fMRI data is applied (Sporns,

2013, 2014). Prior studies have discovered several con-

sistent RSNs in normal brains, including default mode

network (DMN), fronto-parietal, visual networks and so

forth (Van den Heuvel and Pol, 2010; Yeo et al., 2011; Buck-35

ner et al., 2013). Besides, significant findings have shown

that brain disorders such as Alzheimer’s disease (AD) and

schizophrenia are related to alterations in network topology

or in connectivity strengths of RSNs (Greicius et al., 2004;

von dem Hagen et al., 2012). Thus, studying RSNs can40

facilitate the understanding of not only the organization

and functions of normal brains but also the pathological

process of neurological illness based on brain imaging data.

Identification of RSNs (or network communities) is of

great importance. In an early work, RSNs were constructed45

based on the correlations between seed regions of interest

(ROIs) and other nodes (Greicius et al., 2003). Recently,

researchers have resorted to various techniques to identify

the RSNs distributed over the whole brain. According to

(Sporns, 2014), these methods mainly fall into the follow-50

ing groups: network-based community detection methods

(Power et al., 2011), clustering analysis (Yeo et al., 2011)

and independent component analysis (ICA)(De Luca et al.,

2006; Smith et al., 2012).

In computational neuroscience, identifying network com-55

munities by clustering highly functionally-connected regions

is termed as community detection. Several resting-state

fMRI studies have applied community detection methods

to the whole-brain network (Power et al., 2011). The whole-

brain network is typically constructed by taking disjoint60

brain regions as nodes and temporal dependency of their

time series (i.e., functional connectivity) as edges (Biswal

et al., 1995). In fact, clustering methods are very similar to

the community detection methods, which group coherent

regions into different clusters based on the affinity (usually65

measured by functional connectivity) between these regions

(Van den Heuvel and Pol, 2010; Yeo et al., 2011). For these

two groups of methods, a major disadvantage is that most

of them typically identify a non-overlapping community

structure under the assumption that one node will be as-70

signed to one community/cluster only and few methods

concern the overlapping community structure. However,

accumulating evidence has shown that the brain network,

like many other kinds of realistic complex networks, actu-

ally has an overlapping community structure in the sense75

that one brain region participates in multiple communities

(O’Reilly et al., 2010; Cole et al., 2013; Pessoa, 2014). Al-

though several efforts have been made on this critical issue

in both structural (Wu et al., 2011) and functional brain

networks (Smith et al., 2012; Eavani et al., 2015; Najafi80

et al., 2016), the overlapping community structure of brain

networks are still largely unclear.

In contrast, ICA differs significantly from the community

detection and clustering methods. Instead of using the func-

tional connectivity between regions, ICA factorizes the data85

matrix of fMRI time series directly into components that

achieve maximal spatial or temporal independence (spatial

ICA (sICA) and temporal ICA (tICA) respectively). Since

the assumptions are made in different situations, the com-

ponents (or RSNs) derived by sICA and tICA are termed90

as intrinsic connectivity networks (ICNs) and temporal

functional modes (TFMs) respectively. As a decomposition

method, there is no constraint to the strengths of each

region across components, and thus ICA results in overlaps

between different components. However, ICA makes strong95

assumptions about the statistical dependency of compo-

nents. A major drawback is that it tends to produce dense

components with negative values, which lack direct and

explicit interpretation both physically and physiologically.

Another common issue of the aforementioned methods is100

that the group-level community structure across subjects

is often identified by collapsing the fMRI data of multi-

ple subjects. And during this process, the inter-subject

variability in community structure is typically ignored or

not directly reflected. Additional steps are thus needed to105

analyze these individual differences. Actually, the inter-

subject variability provides valuable resources especially

for the discrimination of different groups (e.g., normals

and patients) or for the identification of individuals (Finn

et al., 2015). Significant alterations have been found in110

functional connectivity strength and network topological

measures in the brain with diseases like AD (Greicius et al.,

2004). It is suggested that the inter-subject variability is

reflected in community strengths (see Equations (4) and

(5) for definition), indicating the extent to which a specific115

community is involved in the global functional network of

a subject (von dem Hagen et al., 2012). However, only a
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few studies have taken this into consideration and depicted

such inter-subject variability quantifiably without post-

processing steps when developing computational models120

(Eavani et al., 2015).

Recently, a useful technique, non-negative matrix factor-

ization (NMF), has drawn great attention in fMRI studies.

NMF was first proposed by Lee and Seung (1999) and has

been widely used in the domain of image processing and125

text mining. Several studies have applied NMF to fMRI

data (Wang et al., 2004; Potluru and Calhoun, 2008; Fer-

dowsi et al., 2010, 2011). Given a data matrix X ∈ Rd×n

containing d time points and n brain ROIs/voxels, NMF ap-

proximately factorizes X into the product of B ∈ Rd×k and130

H ∈ Rk×n (i.e., X ≈ BH), where k is the reduced rank. As

can be seen, NMF is closely related to ICA, since they both

seek a representation of the original data by using the linear

combination of bases with a lower rank k. However, unlike

ICA which imposes statistical independence on B or H and135

allows negative weights in the components, NMF allows

only additive combinations by enforcing non-negativity con-

straints on both B and H. Hence, NMF learns a part-based

representation by naturally identifying coherent parts to

form the whole with only additive combinations (Lee and140

Seung, 1999). Although NMF has manifested the ability to

perform clustering effectively, it may not be a very suitable

approach to identifying communities or clusters. Firstly,

the primary goal of NMF is to perform dimensionality re-

duction by approximating data with fewer bases, rather145

than to partition the data points into coherent clusters

based on their interrelations (Kuang et al., 2012). Sec-

ondly, the non-negativity of NMF suppresses the negative

values in fMRI signals of the input data matrix, however,

these negative signals might be physiologically meaningful150

(Xie et al., 2017). A better alternative to NMF for per-

forming clustering is one of its variants, symmetric NMF,

which has been recently used in community detection in

fields of data mining (Ding et al., 2005; Wang et al., 2011).

By contrast, the symmetric NMF decomposes an affinity155

matrix G which measures the affinity between each pair

of data points into a cluster membership matrix H of size

n× k as G ≈ HHT. In our previous work, we have applied

the symmetric NMF to detect the overlapping community

structure at the individual level on fMRI data and the160

method has achieved good performance (Li et al., 2016a,b).

Inspired by the symmetric NMF, in this paper, we pro-

pose a collective symmetric sparse non-negative matrix

factorization (cssNMF) method. The proposed cssNMF

inherits the soft clustering effect from symmetric NMF,165

which factorizes any non-negative symmetric affinity ma-

trix (not necessarily positive definite) into overlapping

clusters, allowing one part to participate in multiple clus-

ters. Moreover, we enforce sparsity on cssNMF by adding

a sparsity constraint in the form of `1-norm, as used in the170

sparse NMF (Hoyer, 2002). Although the symmetric NMF,

like other NMF methods, has an accompanying effect that

encourages sparsity automatically, the trade-off between

sparsity and reconstruction error cannot be controlled ex-

plicitly. It has been suggested that algorithms enforcing175

sparsity may better capture the underlying structure of

data and generate results with a better interpretation of the

physical mechanism (Eavani et al., 2015; Xie et al., 2017).

Therefore, in theory, the proposed cssNMF is expected to

discover a sparse and overlapping brain community struc-180

ture with a more straightforward interpretation. Like the

symmetric NMF, cssNMF also operates on affinity matrices.

In this paper, we introduce a collective generalization into

cssNMF to identify the group-level community structure

across subjects by taking as input the affinity matrices of185

all subjects simultaneously, instead of the commonly used

group-averaged one. Furthermore, in order to capture the

inter-subject variability, we adopt a weighted form of sym-

metric NMF by incorporating a weight matrix (Ding et al.,

2005). This formulation gives the communities extra degree190

of freedom and makes space for preserving the individual

variability in community strengths.

It should be noted that an accurate construction of the

affinity matrix is essential for community detection. In

fMRI studies, the affinity matrix is typically calculated by195

using the most widely-used Pearson correlation, which cor-

responds to an association matrix representing the whole-

brain network. However, the Pearson correlation method

calculates only the pairwise associations between nodes

without ruling out the influence of other nodes and pro-200

duces a dense association matrix with negative values that

are difficult to interpret. Recently, a bunch of sparse rep-

resentation based approaches has been widely applied to

the construction of brain network (Huang et al., 2010; Wee

et al., 2014; Li and Wang, 2015). These approaches obtain205

the associations between one node and all the other nodes

simultaneously and retain only a few important associa-
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tions, based on the idea that the brain network is thought to

be sparse (Fransson, 2005; Sporns, 2010). In this paper, we

mainly apply cssNMF to association matrices constructed210

by non-negative adaptive sparse representation (NASR),

which was proposed and applied in our previous work and

has shown great performance (Li et al., 2016a,b).

To validate the proposed cssNMF, it is compared with

two state-of-the-art network-based community detection215

methods, Infomap and modularity optimization, and two

ICA methods, i.e., sICA and tICA on both real and sim-

ulated datasets. To quantitatively measure their ability

in community detection, we first apply these methods on

a simulated fMRI dataset with a ground-truth of the un-220

derlying network configuration. Then real resting-state

fMRI data are used to mainly evaluate the reproducibility

and test-retest reliability (Zuo et al., 2010). Furthermore,

besides NASR, we also conduct the experiment based on

the association matrices constructed by the Pearson corre-225

lation on simulated data for all network-based community

detection methods including cssNMF, Infomap and modu-

larity optimization. To sum up, cssNMF aims to serve the

following two main purposes. Firstly, it identifies the group-

level overlapping community structure across subjects with230

a straightforward interpretation. Secondly, it meanwhile

retains the inter-subject variability in community strengths

without additional post-processing steps.

The rest of this paper is organized as follows. In Section

2, we elaborate the proposed cssNMF and describe experi-235

mental settings. Section 3 presents the experimental results

on both simulated and real fMRI datasets. Discussion and

conclusion are given in Section 4 and Section 5 respectively.

2. Materials and Methods

Before applying cssNMF to identifying communities, an240

association matrix for each individual is constructed to

capture the affinity between brain network nodes. Below,

we briefly introduce the NASR method used in this work.

2.1. Constructing association matrix by NASR

Nodes of the brain functional network are usually rep-

resented as ROIs of the brain cortex, which can be de-

rived based on a predefined atlas or by data-driven analy-

sis. Once the network nodes are defined, the associations

of these nodes are then measured by NASR using their

fMRI time series. Specifically, let the normalized fMRI

time series of n nodes with d time-points be denoted as

X = (x1, . . . , xn) ∈ Rd×n, where sample xi is the fMRI

time series of the ith node. In the NASR problem, xi is

approximately represented by its corresponding dictionary

Xi = (x1, . . . , xi−1, xi+1, . . . , xn) ∈ Rd×(n−1) containing all

samples except for xi itself with a coding vector wi ∈ Rn−1

that is constrained to be non-negative and sparse. It is

formulated as follows (Li et al., 2016a):

min
w≥0

1

2
‖xi −Xiwi‖22 + λ‖XiDiag(wi)‖∗, (1)

where λ > 0 is a regularization parameter. ‖XDiag(w)‖∗
is a trace least absolute shrinkage and selection operator

(LASSO) regularizer which computes the sum of all singular

values of XDiag(w), where Diag(w) represents a diagonal

matrix with w as its diagonal elements (Grave et al., 2011).

It is the very feature of the trace LASSO regularizer that

makes NASR stand out from other sparse representation

based approaches. It is well-known that fMRI signals are

likely to be highly correlated and such multicolinearity

tends to cause failure for traditional LASSO sparse rep-

resentation, since a sparse predictor will arbitrarily select

one or several from these correlated variables, leading to

an unstable situation. However, the trace LASSO regu-

larizer adaptively makes a trade-off between the sparsity

effect of `1-norm and the grouping effect of `2-norm, thus

highly suitable to be applied on fMRI data. Specifically,

when all samples xi in X are orthogonal, the trace LASSO

will behave the same as the `1-norm, whereas when xi are

highly correlated (say identical in the extreme case), it is

equal to the `2-norm, as shown in Equation (2) (Grave

et al., 2011)

‖w‖2 ≤ ‖XDiag(w)‖∗ ≤ ‖w‖1. (2)

Besides, the non-negative constraint on wi ensures that

only the samples that positively contribute to the repre-

sentation of xi are likely to be selected, which leads to

the results easy to interpret. For each wi, the associations

between node i and all other nodes are obtained simultane-

ously by solving Equation (1) using alternating direction

method (ADM) (Boyd et al., 2011), as used in Lu et al.

(2013); Li and Wang (2015). The resulting wi is extended

to w̃i by inserting a zero in its ith position, indicating the

association between node i and itself is set to zero. Finally
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a symmetric association matrix is constructed by

G = (W + WT)/2, (3)

where W = (w̃1, . . . , w̃n) ∈ Rn×n. In short, the association245

matrix constructed by NASR, which is non-negative and

symmetric with a clear physical meaning, can directly be

used as the input of cssNMF. Details of NASR and its

early version, adaptive sparse representation (ASR), can

be found in our previous works (c.f. Li and Wang, 2015;250

Li et al., 2016a).

2.2. Identifying community structure by cssNMF

2.2.1. Problem formulation

Given the symmetric non-negative association matrices of

M subjects, derived by NASR, Gi ∈ Rn×n (i = 1, . . . ,M),

cssNMF aims to factorize these matrices collectively into

k group-level communities H = (h1, . . . , hk) ∈ Rn×k across

subjects, where each column hj is the membership vector

of the jth community. Simultaneously, for each subject

the individually specific information is retained in a vector

si = (si1, s
i
2, . . . , s

i
k) ∈ Rk, where the scalar sij > 0 indicates

the strength of the jth community of the ith subject. In

the model of cssNMF, it is represented by a diagonal weight

matrix Si = diag(si) ∈ Rk×k with si as its diagonal ele-

ments and zeros as off-diagonal elements. Mathematically,

the proposed cssNMF method is formulated as

min
H,S≥0

1

2

M∑
i=1

‖Gi −HSiHT‖2F + β‖H‖1

s.t. ∀j : max(hj) = 1, j = 1, . . . , k,

(4)

where H and Si are restricted to be non-negative, ‖ · ‖F de-

notes the Frobenius norm and the regularization parameter255

β > 0 controls the sparsity level of the obtained communi-

ties. More specifically, the sparsity constraint ‖H‖1 in the

form of `1-norm enforces the obtained communities to re-

tain only the most relevant nodes by assigning them larger

membership values and eliminate the less important nodes260

with membership values near zeros. The sparsity constraint

improves the cssNMF method from two aspects. Firstly,

it makes the cssNMF method more robust by reducing

its risk of overfitting. Secondly, it helps to seek a better

interpretation of the obtained community structure. Be-265

sides, in order to obtain the common community structures

shared by multiple subjects, we factorize the association

matrices of all subjects simultaneously and minimize the

collective reconstruction error, instead of taking the com-

monly used group-averaged association matrix as input. It270

brings about a direct benefit that the individually specific

information is retained. Based on this, we further introduce

the diagonal weight matrix Si to preserve the inter-subject

variabilities. Moreover, an important distinction between

cssNMF and other matrix factorization methods is that no275

assumptions have been made on cssNMF except for the

constraint of non-negativity. The non-negative constraint

enables cssNMF to learn a part-based representation of

the original data, thus enhancing the interpretability of

the results. The constraint of the input association matrix280

is also relaxed, indicating that it is not necessary to be

positive definite. Any association (affinity) matrix can

be factorized by cssNMF as long as it is symmetric and

non-negative.

In other words, cssNMF pursues an approximation of the

association matrix for each individual by a non-negative

linear combination of k identified consistent communities

across all individuals with the diagonal elements in Si as

the corresponding combination coefficients. Further, the

association matrices can be represented as

Gi ≈ si1h1hT1 + si2h2h
T
2 + . . .+ sikhkh

T
k , (5)

where hjh
T
j denotes the jth community and sij represents285

its strength. Note that the solution of this problem is

not unique due to the arbitrary scales of hj and sij , i.e.,

sijhjh
T
j = (sij/(α

2))(αhj)(αh
T
j ) where α is a scalar. For

this reason, we restrict the maximum value of membership

to each community to be unity.290

2.2.2. Algorithm for cssNMF

The optimization of Si is a convex problem. It could

be solved by using the multiplicative algorithm (Lee and

Seung, 2001), which is simple but efficient for solving NMF

problems. However, the optimization of H is somehow295

complicated due to the non-convex constraint on hj . We

thus adopt the strategy of projected gradient descent to

solve the problem, following the procedures in Hoyer (2002).

Specifically, by fixing H, Si is optimized by the multi-

plicative update rule used in (Ding et al., 2005):

Si
jl ← Si

jl

(HTG
i
H)jl

(HTHS
i
HTH)jl

. (6)
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As long as Si is strictly initialized as a non-negative diagonal

matrix, the update rule in Equation (6) can ensure the

non-negativity of the resulting Si and the non-diagonal

elements are set to zero automatically. Then by fixing Si,

H is updated by using the projected gradient descent:

H← H− µ

(
M∑
i=1

HSiHTHS
i −GiHSi + β

)
, (7)

where µ is the stepsize parameter. Note that Equation

(7) has no guarantee of the non-negativity of H. Hence in300

each iteration all negative values in H are set to zero. Then

at the end of each iteration, each column hj is normalized

to have unity maximum.

To sum up, Si and H are optimized alternatively by

using the multiplicative update rule and the projected305

gradient descent respectively, as described in Algorithm

1. H is initialized as a random non-negative matrix and

Si is initialized as a random diagonal non-negative matrix,

which is a widely-used initialization strategy for NMF-based

methods (Kuang et al., 2012). Of note, for Si, its iteration310

under Equation (6) is guaranteed to converge to its global

minimum quickly. However, for H, no global minimum can

be guaranteed due to the non-convex constraint on hj ,

even though the step size µ is small enough. Besides, the

randomness of initialization leads to changes in results of315

each computation. Thus multiple computations are needed

to select the best result.

Algorithm 1 Algorithm for cssNMF

Parameter value selection:
Choose values for the sparsity level β and the number of
communities k by grid search using cross-validation.

Initialization:
Initialize Si (i = 1, . . . ,M) randomly as a non-negative
diagonal matrix of size k × k for each subject;
Initialize H randomly as a non-negative matrix of size
n× k ;
Normalize each column hj (j = 1, . . . , k) of H;

Iteration until convergence:
Fix H;
Update Si (i = 1, . . . ,M) for each subject by using the
multiplicative update rule in Equation (6);
Fix Si;
Update H by using the projected gradient descent step
in Equation (7);
Set all negative values in H to zero;
Renormalize each column hj (j = 1, . . . , k) of H;

2.3. Datasets

2.3.1. Simulated fMRI dataset

The simulated fMRI dataset with ground-truth used in320

our experiment is from Eavani et al. (2015), which was gen-

erated at a repetition time (TR) value of 3 seconds by using

the Netsim software (Smith et al., 2011) based on dynamic

causal modeling (DCM) (Friston et al., 2003). Here, we

use the simulated fMRI time series with 120 time-points of325

the first 45 nodes.1 The overall community structure of all

subjects consists of eight communities with the size varying

from 3 nodes to 10 nodes. And these communities share

several overlapping nodes to different extents. Besides, the

inter-subject variability in community strengths was intro-330

duced by varying the activation strengths of communities

for each individual. Please refer to the work of Eavani et al.

(2015) for a detailed description of this dataset about its

generation and its underlying network configuration.

2.3.2. CoRR dataset335

To evaluate the proposed method, in comparison with

the other four methods, in terms of reproducibility and

reliability, the Hangzhou Normal University (HNU) dataset

containing repeated measurements of rs-fMRI data from

the Consortium for Reliability and Reproducibility (CoRR)340

(Zuo et al., 2014) is applied here. Details about scan param-

eters and other information of this dataset can be found

in http://dx.doi.org/10.15387/fcp_indi.corr.hnu1.

Briefly, thirty healthy participants (15 females) were re-

cruited with the mean age of 24 years old (SD=2.41). Each345

session of the rs-fMRI data was acquired by following the

same procedure. Participants were instructed to open eyes

with a fixation and the acquisition lasts for 10 mins with a

TR value of 2 seconds, thus resulting in 300 time-points.

The first two sessions are used in our experiment, which350

are three days apart. Each participant provided written in-

formed consent, and ethical approval of data collection was

obtained from the ethics committee of the Center for Cog-

nition and Brain Disorders (CCBD) at Hangzhou Normal

University.355

2.3.3. Beijing Zang dataset

Another real rs-fMRI dataset of twenty subjects, Bei-

jing Zang, is also used in order to assess the consistency of

1The original dataset consists of 50 nodes including a cluster of
last 5 nodes that are negatively connected with the other nodes. Since
the negative association is not our concern, we exclude the last 5
nodes in our experiment.
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results across distinct datasets. It is part of the 1000 Func-

tional Connectomes Project (Biswal et al., 2010), which can360

be downloaded from http://fcon_1000.projects.nitrc.

org. During the acquisition of 7.5 mins, participants per-

formed no task in particular with their eyes closed.

2.4. Data preprocessing

The real rs-fMRI datasets were preprocessed by using365

the pipelines provided by the Data Processing Assistant

for Resting-State fMRI (DPARSF) (Yan and Zang, 2010).

The CoRR data was preprocessed following the steps used

in Chen et al. (2015). Specifically, the first 5 echoplanar

imaging (EPI) volumes were discarded and then the steps370

of slice timing and realignment were conducted. To fur-

ther reduce the effect of head motion and physiological

artifacts, we performed regressions by using the Friston-24

parameter model together with cerebrospinal fluid (CSF)

and white matter (WM) signals as the covariates. Then375

we regressed out linear and quadratic trends for individual

rs-fMRI data. Afterwards, the resulting data were spa-

tially normalized to the Montreal Neurological Institute

(MNI) space by DARTEL procedure, due to the availabil-

ity of corresponding T1 images of the participants, and380

then resampled to a voxel size of 3× 3× 3 mm. Then the

preprocessed data were spatially smoothed with a 4 mm

full width half maximum (FWHM) Gaussian kernel and

bandpass filtered (0.01-0.1Hz). For both sessions, all sub-

jects meet the criteria that head motion is less than 3 mm385

of translation and 3 degree of rotation. The Beijing Zang

dataset was preprocessed similarly, as described in Li and

Wang (2015). Finally, the automated anatomical labeling

(AAL) template (Tzourio-Mazoyer et al., 2002) defining 90

ROIs on the brain cortex was applied and the mean fMRI390

time series of each ROI was extracted for each individual

of both datasets.

2.5. Parameter selection

For both simulated fMRI and real rs-fMRI data, cssNMF

detects the group-level overlapping community structure

based on individual association matrices derived by NASR.

The parameter λ in NASR is predefined to 0.1 empirically

for all datasets (Li et al., 2016a,b). The two parameters in

the cssNMF model (i.e., community number k and sparsity

level β) are determined by a grid search with a two-fold

cross-validation procedure. The test error used in the

cross-validation process is defined as follows:

Test error =

Ntest∑
i=1

‖Gi
test −HtrainSi

testH
T
train‖2F

Ntest∑
i=1

‖Gi
test − Ḡtest‖2F

. (8)

The whole dataset is divided into a training set and a

testing set, and Ntest is the size of the testing set. Gi
test and395

Si
test denote the association matrix and its corresponding

weight matrix of the ith subject, while Ḡtest is the mean

association matrix across all subjects in the testing set.

Equation (8) measures the reconstruction error of the

testing set by using the membership matrix Htrain learned400

on the training set, divided by its variation. By using this

measure, we aim to find the appropriate parameter values

at which the increment of information carried by H and Si

only results in negligible gain in generalizability. In other

words, the parameters are determined when the increase of405

k or the decrease of β causes little drop in the test error.

As described before, multiple runs are needed for cssNMF

due to the random initializations and the non-convex con-

straint. Therefore, for each computation in the experiment,

we run the cssNMF algorithm ten times and select the best410

run with the minimum value of the objective function in

Equation (4) for the subsequent analysis.

2.6. Competing methods

Infomap and modularity optimization are two leading

methods aiming to find an optimal non-overlapping par-415

tition of a network based on different fitness functions.

Infomap seeks a minimization of the description length

defined by a map equation (Rosvall and Bergstrom, 2008),

while modularity optimization maximizes the modularity

of a network partition (Newman, 2006). Different from420

cssNMF, Infomap and modularity optimization identify

the group-level community structure based on the group-

averaged association matrix, instead of all individual as-

sociation matrices, and result in a non-overlapping com-

munity structure. In this experiment, the edge density of425

the input association matrix for these two methods was

adjusted by thresholding the association matrix so as to

vary the number of communities of the partition. The In-

fomap algorithm was implemented using the code available

on http://www.tp.umu.se/~rosvall/code.html. The430

modularity optimization was performed by using the Lou-

vain method implemented in the Brain Connectivity Tool-
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box (Rubinov and Sporns, 2010). For both methods, we

launched 1000 runs and selected the best results with min-

imum description length for Infomap and maximum modu-435

larity for modularity optimization.

By contrast, sICA and tICA take the fMRI time series

directly as input and identify sub-networks with overlap.

For this study, the fMRI time series of all subjects are

temporally concatenated and the dimensionality is reduced440

by using PCA (Smith et al., 2012). After that, these

fMRI data are fed into the fastICA algorithm (Hyvärinen,

1999) implemented by the FastICA software available from

http://www.cis.hut.fi/projects/ica/fastica/ with

varying number of components for both sICA and tICA.445

Besides, to further test the performance of the proposed

cssNMF approach, in this experiment all network-based

algorithms, i.e., cssNMF, Infomap and modularity optimiza-

tion are also carried out based on the association matrix

constructed by using the Pearson correlation. Specifically,450

for each pair of ROIs, the functional connectivity is cal-

culated by using Pearson correlation and the correlations

are then transformed to Fisher’s z values. All negative

values are flipped and all diagonal entries are set to zeros,

as usually done in practice (Power et al., 2011; Eavani455

et al., 2015). The whole framework to carry out cssNMF,

Infomap, modularity optimization, sICA and tICA is shown

in Figure 1

2.7. Evaluation metrics

For a direct comparison, the output of all these methods460

are converted into a community membership matrix H. To

be specific, each community/component forms a column

of the membership matrix and the label assignments of all

nodes produced by Infomap and modularity optimization

are converted into a binary version of the membership465

matrix. Before quantitatively comparing any two sets of

communities, a graph matching procedure is conducted

by using the Hungarian algorithm (Lovász and Plummer,

1986), since the order of the resulting communities may be

different across computations and methods.470

For any two resulting membership matrices H, their

similarity is calculated firstly for each pair of matched

communities by using the normalized inner product, and

then averaged over all communities. Particularly, for the

simulated data, the performance of all methods is usually475

evaluated by measuring the similarity between the exper-

imental results and the ground-truth of the underlying

group-level community structure to depict the degree of

their correspondence.

Furthermore, for the simulated data, since the ground-

truth is binary and gives a clear membership of each com-

munity while the numerical results of cssNMF, sICA and

tICA are continuous and only indicate the degree of partic-

ipation in a community of each node, we apply a threshold

τ to transform the results into binary variables to calcu-

late the accuracy. For each community, the accuracy is

calculated by

accuarcy (hj) =
TP + TN

TP + FP + TN + FN
. (9)

where TP, TN, FP, FN denote true positive, true negative,480

false positive and false negative respectively. It measures

the ratio of the number of nodes that are correctly identified

(TP+TN) to the total amount of nodes (TP+FP+TN+FN).

The overall accuracy across all communities is then com-

puted by accuracy (H) =

(
k∑

j=1

accuracy (hj)

)
/k.485

Similarly, the analysis of the inter-subject variability

obtained by cssNMF is also conducted in terms of similarity

and accuracy. For each community, the similarity to the

corresponding ground-truth measured by the normalized

inner product indicates the ability of cssNMF to capture490

the individual differences in community strength. Then

the overall accuracy across all communities with regard to

the binary ground-truth is further computed by Equation

(9).

For the resulting group-level community structure on

the real rs-fMRI data, a higher sparsity often indicates a

structure that is easier to understand. The sparsity of a

community hj is computed as follows (Hoyer, 2004):

sparsity (hj) =

√
n− ‖hj‖1/‖hj‖2√

n− 1
, (10)

where n denotes the dimension of hj . It reaches the max-495

imum value of one when there is only one non-zero ele-

ment and the minimum value of zero when all elements

are of the same value. The overall sparsity of the whole

community structure H is then obtained by averaging

the sparsity across all communities, i.e., sparsity(H) =500 (
k∑

j=1

sparsity (hj)

)
/k.

Another important aspect of the evaluation of the group-

level community structure is its consistency across time,
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Figure 1: Schematic illustration of the experiment framework of cssNMF, Infomap, Louvain, sICA and tICA. (A) The fMRI
time series of each ROI are extracted for all subjects. (B) Based on the fMRI time series, the whole-brain network is constructed for each
subject by calculating its association matrix. (C) The group-averaged association matrix across all subjects is calculated. (D) sICA/tICA and
Infomap/Louvain identify the group-level networks/communities in the black box based on the concatenated fMRI time series and on the
group-averaged association matrix respectively, while cssNMF factorizes all these individual association matrices collectively into group-level
communities as well as inter-subject variability in community strengths in the red box.

subjects or datasets, i.e., reproducibility. For two sets

of matched communities, reproducibility is defined as the

mean similarity across all communities measured by nor-

malized inner product. Firstly, cross-session reproducibility

is computed based on results of the two sessions from the

CoRR dataset of the same group of subjects. It tests

whether the obtained community structure is stable across

time. Secondly, for cross-subject reproducibility, we split

the data of the first session from the CoRR dataset into

two halves of separate subjects (each half containing 15

subjects) and calculate the consistency between the two

halves. This procedure is repeated 100 times and the mean

across these computations is taken as the final measure

of cross-subject reproducibility. Finally, the Beijing Zang

dataset is used to compute cross-data reproducibility. In

contrast, a desirable property of the individual differences

derived by cssNMF is not only the ability to retain sta-

ble across time but also being sensitive to the differences

between subjects, which is characterized by test-retest reli-

ability (Zuo et al., 2010). In other words, a high test-retest

reliability means a low intra-subject variability but a high

inter-subject variability. Test-retest reliability has drawn

great attention in fMRI studies recently (Shehzad et al.,

2009; Cao et al., 2014; Zuo et al., 2014) and is often com-

puted by using the intra-class correlation coefficient (ICC)

index (Shrout and Fleiss, 1979):

ICC(C, 1) =
MSB −MSE

MSB + (m− 1) ∗MSE
, (11)

where m = 2 in our experiment denotes the number of

9



Figure 2: Parameter selection for the cssNMF method on the simulated data by grid search using cross-validation based on
NASR-based association matrices. (A) Cross-validation error (Equation (8)) vs. sparsity level β. (B) Cross-validation error vs. number
of communities k.

repeated sessions. MSB is the mean square (i.e., variance)

between subjects in community strengths and MSE rep-

resents the mean squared error (please refer to Zuo et al.

(2010) for detailed computation and interpretation of MSB

and MSE). Negative ICC values are set to zero as usually

done in practice (Braun et al., 2012). The ICC values are

equally divided into five levels, which are (0, 0.2] (slight),

(0.2, 0.4] (fair), (0.4, 0.6] (moderate),(0.6, 0.8] (substantial)

and (0.8, 1] (almost perfect) separately from low to high

(Landis and Koch, 1977). Results of the inter-subject vari-

ability in community strengths on CoRR dataset are used

and the strengths of each community are collected from all

M subjects, i.e., sj = [s1j , s
2
j , . . . , s

i
j , . . . , s

M
j ], j = 1, . . . , k

for each session and each element sij denotes the strength of

community j of the ith subject. The ICC index is computed

for each pair of sj and then averaged across all communi-

ties. Before that, we use a simple rescaling technique to

standarize all elements in each sj so as to have the same

range between zero and one. Because for each subject it is

the relative weight of the strength rather than its absolute

value in one community that we are concerned with, sij is

rescaled as follows:

(sij)
′ =

sij −min(sj)

max(sj)−min(sj)
, (12)

where (sij)
′ is the rescaled value of the original sij .

3. Results

3.1. Results on simulated fMRI data

To determine the values of parameters in the cssNMF505

method, a grid search was conducted by using a two-fold

cross-validation. Results based on NASR-derived associ-

ation matrices are shown in Figure 2. The number of

communities k varies from 2 to 20 with a stepsize of 1 and

the sparsity level β varies from 0.1 to 1 with a stepsize of510

0.1. The selection of k seems straightforward since the test

error decreases significantly until k reaches 8, which is in

accordance with the ground-truth of the simulated data.

Besides, the test error stays relatively stable as β decreases

from 0.4 to 0.1 for most values of k. Thus, k and β were515

set to 8 and 0.4 respectively for the simulated data. The

same process was done on association matrices derived by

the Pearson correlation and the results are shown in Fig-

ure S1. Similarly, for most cases the test error fluctuates

frequently until β decreases to 0.55, where the test error520

stays quite stable as β continues decreasing. Thus β = 0.55

was selected in this experiment. For the selection of k, the

test error drops sharply until k increases to 6. However,

for a plain comparison between NASR-derived results and

correlation-based results, k was set to 8, i.e., the same as525

the value selected for the NASR-derived ones.

For network-based community detection algorithms, css-

NMF, Infomap and modularity optimization, an accurate

brain network construction is a crucial pre-step. Figure 3

illustrates the mean association matrix averaged over all530
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Figure 3: Association matrices derived by NASR on the simulated dataset. The mean association matrix as well as the individual
association matrices of four randomly selected subjects are shown. The red contours indicate the overall ground-truth network configuration of
the simulated dataset.

subjects and the individual association matrices of four ran-

domly selected subjects constructed by the NASR method.

The corresponding association matrices derived by the Pear-

son correlation are shown in Figure S2. The red contours

indicate the overall ground-truth network configuration of535

the simulated dataset. It can be seen that by calculat-

ing the non-negative association between nodes, NASR is

able to depict the underlying network configuration with

individual differences for each subject nicely and derives

non-negative sparse association matrices. However, the540

association matrices produced by the Pearson correlation

are quite dense where almost all connection weights are

non-zero. Besides, spurious negative values often appear in

individual association matrices, which are hard to interpret

for the simulated dataset where networks are not negatively545

related.

Based on the individual association matrices, the overall

community structure, as well as the inter-subject variability

in community strengths, is obtained by cssNMF. For ICA

methods, Infomap and modularity optimization, only the550

group-level community structure is derived based either

on concatenated fMRI time series of all subjects or on

the group-averaged association matrix. The group-level

community structures from the ground-truth and identified

by these methods are shown in Figure 4(A), where each555

column represents a community membership vector. Here,

the number of communities k for ICA methods were set

to 8 according to the ground-truth, while for Infomap and

modularity optimization, different values of k were obtained

with varying edge-densities of the association matrix and560

the results with the highest similarity to the ground-truth

were shown. The first row in Figure 4(A) shows the

overall community structure from the ground-truth and

those derived by sICA and tICA. The second row and the

third row display the overall community structures iden-565

tified by cssNMF, Infomap and modularity optimization,

based on the NASR-derived association matrices and on the

correlation-based association matrices respectively. Visu-

ally, the overall communities derived by cssNMF show the

highest resemblance to the ground-truth on both NASR-570

derived and correlation-based results compared to the other

methods, since cssNMF uniquely learns a sparse overlap-

ping community structure without negative values. By

contrast, although ICA methods, especially tICA, are also

able to discover the overlapping community structure, they575

tend to produce a much denser result with some spuriously

high or negative values of community membership, whereas

Infomap and modularity optimization fail to identify the

overlapping community structure. The similarities between

the resulting community structures of all methods and580

the ground-truth community structure are quantitatively

measured by using normalized inner-product separately, as

shown in Figure 4(B). Note that we also launched the

cssNMF method with β = 0, where no extra sparsity is

enforced, to observe how its performance is affected by the585

sparsity constraint. It reveals that the network-based meth-
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Figure 4: Results of the group-level community structure on the simulated dataset. (A) Illustration of the group-level commu-
nities/networks. The top row displays the ground-truth and those identified by sICA and tICA. The middle and bottom rows display the
communities identified by cssNMF, Infomap and Louvain method based on the NASR-derived and correlation-based association matrices
respectively. (B) Similarity between the ground-truth communities and those identified by cssNMF, Infomap, Louvain method, sICA, and
tICA separately. For cssNMF, cssNMF without sparsity (cssNMF β = 0), Infomap and Louvain method, results on both the NASR-derived
association matrices and on the correlation-based ones are shown here. (C) Accuracy of the continuous methods including cssNMF (under
different conditions), sICA and tICA in detecting the community structure with varying thresholds.

ods, i.e., cssNMF, Infomap and modularity optimization

perform better than tICA (0.776) and sICA (0.720) in terms

of similarity, regardless of which method is used to con-

struct the association matrix. Among these network-based590

methods, cssNMF achieves the highest score in general.

Specifically, based on the NASR-derived association matri-

ces, Infomap and modularity optimization reach a similarity

of 0.926, while cssNMF reaches a similarity of 0.944 (with

sparsity) and 0.945 (without sparsity). The advantage of595

cssNMF is more evident than the other methods when

performed on correlation-based association matrices, with

a similarity of 0.941 (with sparsity) and 0.835 (without

sparsity), followed by Infomap and modularity optimiza-

tion both with a similarity of 0.811. Finally, for matrix600

factorization-based methods which result in a continuous

membership matrix, including cssNMF, sICA and tICA,

the accuracy of the identified community structure com-

pared to the ground-truth is measured by using Equation

(9) against a wide range of thresholds τ (varying from605

0.0001 to 1). It shows that the NASR-based community

structure identified by cssNMF with sparsity is significantly

less sensitive to the selection of threshold than the other
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Figure 5: Results of the inter-subject variability on the simulated dataset captured by cssNMF under different conditions.
(A) Illustrations of the binary ground-truth and the inter-subject variability in community strengths detected by cssNMF and cssNMF without
sparsity (cssNMF β = 0), where NASR and Corr denote the results are obtained on NASR-derived and on correlation-based association
matrices respectively. (B) Similarity between the detected inter-subject variability and the ground-truth of individual communities separately
with the mean similarity across all communities. (C) Accuracy in detecting the inter-subject variability with varying thresholds.

methods, since it stays stable above 0.9 even when τ is

close to zero. However, the accuracy of cssNMF without610

sparsity drops to 0.4 when τ is below 0.01, although it per-

forms slightly better than cssNMF with sparsity in terms of

similarity. By contrast, the accuracy of the other methods

rises rapidly until τ reaches above 0.2. It suggests that

both NASR and cssNMF with sparsity contribute to the615

robustness of the identified community structure and lead

to easier interpretation of the results.

Different from the other methods, in addition to the

group-level community structure, cssNMF is also able to

capture the inter-subject variability in terms of community620

strength. These results as well as the corresponding binary

ground-truth are illustrated in Figure 5(A), where each

row represents the variations in community strengths of all

subjects for one community. Though varied in values of the

community strengths, the experimental results of cssNMF625

under different conditions all show similar patterns to the

binary ground-truth. Quantitative measures in terms of

similarity and accuracy are shown in Figures 5(B) and

(C) respectively. Overall, cssNMF under different condi-

tions consistently achieves a surprisingly high similarity630

of above 0.9, although it performs slightly better on asso-

ciation matrices derived by NASR (0.984) than on those

derived by the Pearson correlation (0.920 with sparsity

and 0.900 without sparsity). In general, the sparsity level

β has little impact on the results in terms of the inter-635

subject variability for most communities. Similarly, the

accuracy of the NASR-based results is higher than that of

the correlation-based results and it reaches up to almost

1 in a wide range of τ (around 0.1 to 0.5). It means that

for all subjects cssNMF can correctly decide whether a640

community is recruited in its whole-brain network, thus

indicating that cssNMF is capable of effectively reflecting

the individual differences in the degree of participation

(community strength) of a community.
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Figure 6: Parameter selection for the cssNMF method on the real rs-fMRI dataset by grid search using cross-validation.
(A) Cross-validation error (Equation (8)) vs. sparsity level β. (B) Cross-validation error vs. number of communities k.

To sum up, the proposed cssNMF method outperforms645

the other competing methods on both NASR-derived and

correlation based association matrices in terms of iden-

tifying the group-level community structure, as well as

extracting the inter-subject variability via the community

strength. Since how the association matrix is constructed650

is not the focus of this study and all network-based commu-

nity detection methods perform better on NASR-derived

association matrices in the experiment on the simulated

data, in the following experiment on the real fMRI data

all network-based methods are only applied to the NASR-655

derived association matrices.

3.2. Results on real rs-fMRI data

For the real rs-fMRI experiment, the parameter value

selection for cssNMF was performed on the first session of

the CoRR data. The corresponding results are shown in660

Figure 6, where the number of communities k ranges from

2 to 20 with a stepsize of 1 and the value of β was narrowed

down to a range of 0.01 to 0.1 with a stepsize of 0.01,

since the test error declines significantly as β decreases

from 1 to 0.1. As can be seen, the test error only slightly665

changes as β decreases from 0.07 to 0.01 for most conditions

of k. However, unlike the simulated data, the selection

of k seems unclear since the test error keeps dropping

significantly as k increases. Thus we applied β = 0.07

and k varying from 2 to 20 to all real fMRI datasets. For670

Infomap and modularity optimization, we were able to

obtain results with k varying from 17 to 28 and from 7 to

24 (not uniformly spaced) respectively, as we decreased the

edge density of the association matrices from 1 to 0.02. For

sICA and tICA, k was varied from 2 to 20 with a stepsize675

of 1.

The group-level communities derived by all these meth-

ods on the first session of CoRR real data with a moderate

size of k = 9 and a larger size k = 18 (where we were able

to obtain the results of all methods) are shown in Figures680

7(A) and (B) respectively. (Note that for Infomap we

were only able to obtain the group-level communities with

k ≥ 17 on this dataset, so the 9 communities derived by

Infomap shown in this paper are the ones obtained with

k = 17 that most resemble the results of cssNMF.) Visually,685

Infomap and modularity optimization produce sparse but

totally non-overlapping community structures, while the

ones derived by sICA and tICA are overlapping but rather

dense. By contrast, cssNMF appears to seek a trade-off

between these two types of methods by identifying a sparse690

but overlapping community structure. To depict such dif-

ferences more accurately, we quantified the sparsity of the

overall community structures by using Equation (10) for

all methods based on the large repeated split-half data

(containing 200 datasets). For each value of k, the sparsity695

measure is calculated for each dataset and then averaged

across all datasets. Results are shown in Figure 8. Not

surprisingly, Infomap and modularity optimization achieve

the highest sparsity in the group-level community structure

with varying values of k, followed closely by cssNMF, while700

sICA and tICA fall far behind.

14



Figure 7: Results of the group-level communities identified by different methods on the real rs-fMRI data. (A) and (B) show
the community structures identified by cssNMF, Infomap, Louvain method, sICA and tICA when k = 9 and 18 respectively.

Figure 8: Overall sparsity of the group-level communities
identified by cssNMF, Infomap, Louvain method, sICA and
tICA with varying values of k on the repeated split-half rs-
fMRI data. The error bars denote the standard deviation across all
200 datasets.

Furthermore, in order to compare cssNMF with the

other four methods more intuitively in the group-level

communities and further explore the neurophysiological in-

terpretations of these communities, we then mapped these705

communities represented by membership matrices in Fig-

ure 7 with k = 9 onto the human brain models, as shown in

Figure 9. Illustrations for the other four competing meth-

ods are provided in Figures S3-S6. In particular, Figure

9 displays the communities derived by cssNMF based on710

the repeated split-half data with τ = 0.1, where the mem-

bership value of each node to each community indicates the

median across all 200 datasets. The 9 communities derived

by cssNMF shown here refer to basal ganglia (C1), fronto-

parietal (C2), sensory-motor (C3), primary visual (C4),715

limbic (C5), extra-striate visual (C6), DMN (C7), orbital

(C8) and insular-temporal/ACC (C9) networks separately,

which are highly consistent with several well-recognized

RSNs discovered by previous studies. Besides, as can be

seen, the communities detected by cssNMF are also in line720

with the communities detected by the other four methods

although to different extents (see Figures S3-S6). The

quantitative measure of the similarity between cssNMF and
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Figure 9: Illustration of the communities identified by ccsNMF on the human brain model. Results are derived with k = 9 based
on the repeated split-half datasets, where the weight of each node to each community is the median across all datasets. Communities C1 to C9
refer to basal ganglia, fronto-parietal, sensory motor, primary visual, limbic, extra-striate visual, DMN, orbital and insular-temporal/ACC
networks respectively. The threshold τ = 0.1 for illustration. This figure is drawn by using BrainNet Viewer (Xia et al., 2013).

Figure 10: Similarity between cssNMF and the other four methods in group-level community structures on the repeated
split-half rs-fMRI data. (A) Overall similarity between cssNMF and the other four methods including Infomap, Louvain method, sICA and
tICA with varying values of k in group-level community structures. (B) Similarity between cssNMF and the other four methods for individual
communities separately. The error bars denote the standard deviation across all 200 datasets.
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the other four methods in the overall community structure

under different values of k are shown in Figure 10(A)725

separately. It reveals that Infomap and modularity opti-

mization achieve a high similarity to cssNMF (from 0.699

to 0.809), whereas ICA methods achieve a moderate sim-

ilarity around 0.5. Figure 10(B) further illustrates the

similarity for individual communities separately. It can be730

seen that these methods actually perform quite differently

for individual communities. For example, for the primary

visual network (C4), the similarity between Infomap and

cssNMF reaches up to 0.950, while modularity optimization

only achieves a similarity of 0.281. By scrutinizing this735

community in detail, we find that modularity optimization

fails to separate primary visual network and extra-striate

visual network and identifies the precuneus regions as a

single network, which is known as a core part of DMN,

while it has a high similarity to cssNMF in basal ganglia740

and sensory-motor networks. Besides, although both sICA

and tICA achieve a similarity to cssNMF around 0.5 on

average, for several communities sICA are more similar to

cssNMF than tICA and vice versa for the rest communities.

745

We then further depicted the unique features of the com-

munities detected by cssNMF by counting the number of

the belonging communities for each region to illustrate

community overlap, based on the median weights across all

200 datasets of the repeated split-half data with τ = 0.1,750

as shown in Figure 11(A). It reveals that most regions

are involved in more than one community and community

overlap spans over frontal, parietal and temporal lobes.

By contrast, regions related to sensori-motor and primary

visual participate in fewer communities. To more precisely755

pinpoint the overlapping nodes that take part in at least

two communities, we used the following two stricter criteria

to select the overlapping nodes based on all 200 subsets of

the repeated split-half datasets. Firstly, as the overlapping

nodes identified in each dataset might be different, the760

selected overlapping nodes are restricted to be identified

consistently by more than 90% of all these datasets. Sec-

ondly, the multiple communities that they belong to are

consistent across at least 90% of all these datasets. Con-

sidering the value of the threshold may affect the results765

of the identified overlapping nodes, we tested five different

thresholds τ ∈ {0.1, 0.12, 0.15, 0.17, 0.2}. The detailed de-

scription of all the identified nodes under each threshold and

their belonging communities are shown in Tables S1-S3 in

the supplementary material. All twenty-three overlapping770

nodes are drawn in Figure 11(B). Furthermore, we illus-

trate the distributions of the overlapping nodes identified

under all values of τ over brain lobes and communities in

Figures 11(C) and (D) respectively. The distribution of

all overlapping nodes over brain lobes is consistent with the775

finding in Figure 11(A). Most of them are located in the

parietal, frontal lobes and limbic structures (accounting for

about 38%, 25.4% and 22.5% respectively of all overlapping

nodes). The fronto-parietal network (C2) contains signif-

icantly more overlapping nodes than the other networks,780

which covers mainly the frontal and parietal lobes. The

insular/ACC (C9), orbital networks (C8) and DMN (C7)

also contain more than 20 overlapping nodes, while no

overlapping nodes are found in the sensory-motor network

(C3).785

Next, we mainly evaluated the reproducibility of the

group-level communities identified by all these methods

under different values of k. Specifically, the result of cross-

session reproducibility computed on two sessions of CoRR

dataset is shown in Figure 12(A). On the whole, cssNMF790

achieves the highest cross-session reproducibility (from

0.798 to 0.999) when k varies from 2 to 16. Infomap also

achieves a high cross-session reproducibility (from 0.821

to 0.966) when k ≥ 17, while tICA obtains the lowest

score between 0.566 to 0.822. It indicates that for the795

same cohort of participants cssNMF is able to derive highly

stable communities across time. Furthermore, we evaluated

the cross-subject reproducibility based on the repeated

split-half datasets, as shown in Figure 12(B). Similarly,

cssNMF still achieves a remarkably higher cross-subjects800

reproducibility (from 0.805 to 0.997) with k varying from

2 to 15, followed by modularity optimization, sICA and

tICA. Infomap achieves the highest score when k ≥ 16. In

addition, another different dataset (Beijing Zang dataset)

was used by running the same procedure to compute the805

cross-data reproducibility, as shown in Figure 12(C). The

cssNMF method achieves a score above 0.78 irrespective of

the number of resulting communities (except at k = 2) and

the score reaches up to 0.953. It substantially outperforms

all the other methods, which means that the results derived810

by cssNMF are highly reproducible even across different

datasets.

In addition to the group-level community structure, css-

17



Figure 11: Illustrations and distributions of the overlapping nodes identified by ccsNMF. (A) The number of belonging communities
is counted for each node based on the median weights across all 200 datasets of the repeated split-half data with τ = 0.1 and represented by
different colours. (B) illustrations of the identified overlapping nodes. (C) Distribution of the overlapping nodes over different brain lobes,
where the labels ’F’, ’P’, ’T’, ’O’, ’L’ refer to the frontal, parietal, temporal, occipital lobes and limbic structures respectively. (D) Distribution
of the overlapping nodes over the 9 communities.
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Figure 12: Reproducibility across sessions, subjects and datasets of the group-level community structures identified by
cssNMF, Infomap, Louvain method, sICA and tICA on the real rs-fMRI data with varying number of communities. (A)
Cross-session reproducibility of the group-level community structures identified on the CoRR data. (B) Mean cross-subject reproducibility
of the group-level community structures identified across 100 split-half datasets of the CoRR data. (C) Cross-data reproducibility of the
group-level community structures, which were identified on each session of the CoRR data against Beijing Zang data separately and then
averaged over the results on two sessions.
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Figure 13: Results of the inter-subject variability identified by cssNMF on the CoRR dataset. (A) and (B) show the inter-subject
variability in community strengths derived on session 1 and session 2 respectively with k = 9. (C) Test-retest reliability of the inter-subject
variability measured by the mean ICC index with varying values of k. (D) Test-retest reliability of each community measured by ICC with
k = 9.

NMF also retains the inter-subject variability in community

strengths. An example of individual community strengths815

of all subjects obtained from Session 1 and Session 2 with

k = 9 are shown in Figures 13(A) and (B) respectively.

The test-retest reliability of the two sessions is measured by

ICC, and the mean ICCs averaged across all communities

with varying values of k are shown in Figure 13(C). In820

general, the mean ICC arrives at a moderate level (varying

from 0.422 to 0.523) until the number of communities k

is larger than 14, where it starts to fall into the fair level

(around 0.39). Such decrease of the mean ICC values could

be accounted for by the appearance of highly unreliable825

communities when k is large. To further investigate the

reliability of inter-subject variability, Figure 13(D) shows

the ICC value of each individual community separately

with k = 9. Interestingly, the ICCs of different communi-

ties are highly divergent. Specifically, community 1 and830

community 2 are the most reliable (0.632 and 0.620 re-

spectively within the substantial level) and community 8

performs worst (only 0.299 of the fair level ), while the rest

communities exhibit a moderate level of reliability.

4. Discussions835

In this paper, we propose cssNMF to identify the over-

lapping community structure in resting state brain func-

tional networks, which is developed on the previous NMF-

based methods. As a matter of fact, as a classic method

which exists for almost two decades, only recently has840

NMF attracted great attention in brain imaging studies.

Besides the studies mentioned in the introduction have

applied NMF-based methods to fMRI data, NMF has also

been adopted to find the common structural imaging pat-

terns across individuals using structural magnetic resonance845

(sMR) data of the human brain (Sotiras et al., 2015). More-

over, significant alterations in the brain networks associated

with attention deficit hyperactivity disorder (ADHD) have

been revealed by applying NMF to multimodal data consist-

ing of MRI, fMRI and phenotypic information (Anderson850

et al., 2014). And in decoding single-trial M/EEG signals,

NMF has been used to identify the temporal and spatial

components simultaneously (Delis et al., 2016).

Two aspects are taken into account by cssNMF for com-

munity detection. Firstly, studying the group-level com-855
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munity structure across subjects, especially the overlap-

ping structure, can result in a better understanding of the

mechanism of brain functioning. Secondly, capturing the

individual differences could be useful to discriminate differ-

ent groups in particular for clinical practice. Several other860

approaches have been proposed by considering one or both

aspects in recent studies. For example, Wu et al. (2011)

investigated the structural overlapping brain network by

using an algorithm based on k-cliques communities. Du

and Fan (2013) proposed an improved group-ICA approach865

to identify both group-level and individual-level intrinsic

networks based on fMRI time series directly. Yeo et al.

(2014) have applied latent dirichlet allocation (LDA), which

is closely related to NMF and ICA, to identify overlapping

networks. Eavani et al. (2015) studied the overlapping870

brain network as well as the inter-subject variability fo-

cusing on negative correlations, while Najafi et al. (2016)

detected the functional overlapping community structure

by using a Bayesian model-based approach. By contrast,

the proposed cssNMF approach uniquely identifies the875

group-level overlapping functional network organization

by factorizing non-negative sparse association matrices de-

rived by NASR and obtains the inter-subject variability

in community strengths simultaneously without additional

steps.880

To our best knowledge, by proposing the cssNMF

method, we for the first time have applied NMF to identify

common functional connectivity patterns across individuals

based on fMRI. Furthermore, it simultaneously retains the

information of the inter-subject variability. Experimental885

results show that the whole framework is capable of identi-

fying the underlying network organization of the functional

human brain accurately and consistently across varying

time, subjects and datasets, while capturing the subtle

individual differences in community strengths stably.890

4.1. Analysis on the simulated data

In identifying the group-level community structure of

the simulated dataset, cssNMF outperformed all the other

methods in terms of similarity and accuracy, based on both

the NASR-derived and the Pearson correlation-derived asso-895

ciation matrices. It may be owed to some unique properties

of cssNMF. Firstly, as a community detection method, css-

NMF inherits the advantages from the symmetric NMF,

which naturally groups the highly functional-linked nodes

into coherent parts with a plain explanation of the physical900

meaning that all these parts additively form the whole pic-

ture due to its non-negativity and in the meantime allows

overlaps between different clusters. Secondly, its sparsity

constraint in cssNMF further improves the results by assign-

ing larger weights to the most coherent nodes and weights905

close to zero to the irrelative nodes within each community.

As a result, it makes cssNMF rather insensitive to the selec-

tion of thresholds when obtaining the binary membership

of communities. The performance of Infomap and mod-

ularity optimization, however, is more susceptible to the910

input association matrix, since they perform significantly

better based on the NASR-derived association matrix than

on the correlation-based one. Moreover, a common issue in

both sICA and tICA is that they tend to obtain a denser

result with negative values, although tICA shows a slight915

advantage over sICA due to its better ability to find over-

lapping community structure (Smith et al., 2012). For

this simulated dataset, these negative values are especially

difficult to interpret, since the ground-truth has shown that

the communities are not anti-correlated with each other.920

Furthermore, cssNMF also exhibited a remarkable abil-

ity to capture the inter-subject variability in community

strengths on both type of association matrices, by reason of

the collective way used to preserve individual specified in-

formation. Besides, the accurate construction of the brain925

functional network by NASR, which provides a solid basis

for cssNMF, is also an important contributing factor to its

superior performance, since the accuracy approached as

high as 100% for the NASR method. To sum up, results on

simulated dataset suggest that the cssNMF approach is able930

to identify the group-level community structure and the

individual differences in community strengths effectively

and accurately.

4.2. Analysis on the real rs-fMRI data

The quantitative analysis on the real rs-fMRI data mainly935

focuses on the reproducibility of the community structure

and the test-retest reliability of the inter-subject variabil-

ity. In identifying the group-level community structure,

cssNMF achieved higher reproducibility than the other

methods in all three reproducibility measures including940

cross-session, cross-subject and cross-data basically in most

cases. It means that the community structures identified

by cssNMF are considerably consistent across varying ses-

sions, subjects and even different datasets. The sparsity

constraint in cssNMF may account for its robustness, since945
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it largely reduces the uncertainty of the results whereby

enforcing cssNMF to retain only the most relevant informa-

tion and exclude the others. There are also some interesting

findings regarding the inter-subject variability. The high

reproducibility of the group-level community structures ob-950

tained by cssNMF across sessions provides a fundamental

basis for evaluating the test-retest reliability. In general,

the test-retest reliability of individual differences across two

sessions is moderate with varying numbers of communities,

revealed by the ICC index. By further looking into the con-955

stitution of the ICC values, we find that the differences in

community strengths captured by cssNMF within subjects

(i.e., the intra-subject variability) vary from 0.016 to 0.072,

whereas the values of the inter-subject variability vary from

0.042 to 0.134. Although the intra-subject variability is960

smaller than the inter-subject variability, it may not be

small enough as the ICC values in this experiment are only

at a moderate level in most cases, which might be related to

non-neural influencing factors like physiological noises and

data analysis approaches. It also could be attributed to965

the low inter-subject variability, since ICC considers both

the inter-subject variability and intra-subject variability.

Furthermore, the ICC values of different communities are

divergent. In the nine identified communities, we find that

the fronto-parietal and the basal ganglia networks are the970

most reliable communities in the substantial level in our

experiment. This is partially consistent with the finding of

a meta-analysis study on reliability by Zuo and Xing (2014)

that the fronto-parietal network is one of the most reliable

functional networks under various voxel-wise metrics. In975

addition, it has been reported by Finn et al. (2015) that the

fronto-parietal network is most distinct across individuals,

which may implicate a high inter-subject variability that

will contribute to a higher ICC.

More importantly, the overlapping communities derived980

by cssNMF are not only highly reproducible but also neuro-

physiologically meaningful. In this experiment, we adopted

a relatively coarse node definition of 90 ROIs so as to

reduce the computational burden of the construction of

the whole-brain network. It is suggested that node defini-985

tions of different sizes or degrees of functional homogeneity

within ROIs may affect the identified network organization

(Poldrack, 2007). Here, we have also performed the css-

NMF based on a more refined atlas of 264 ROIs proposed

by Power et al. (2011), which produced similar results on990

this atlas although results may differ in some details, as

shown in Figures S7. Actually, myriads of studies have

detected RSNs on different scales of the brain by using

various methods. Yeo et al. (2011) proposed a 7-network

parcellation based on more than 1000 ROI vertices. And995

Van den Heuvel and Pol (2010) reported eight most con-

sistent RSNs across different studies using clustering or

ICA-based methods. These RSNs mainly include the DMN,

fronto-parietal network, primary and extra-striate visual

network, insular/temporal ACC network and so on, which1000

are largely in accordance with the nine communities iden-

tified by cssNMF in this paper.

Furthermore, the overlapping communities derived by

cssNMF are comparable to the communities derived by the

other methods. On average, most communities detected1005

by cssNMF also appear in the results derived by both In-

fomap and modularity optimization with a high similarity

around 0.8. However, the most prominent difference is

that only cssNMF is able to capture the widely-spread

community overlap across frontal, parietal and temporal1010

regions in the association cortex. Moreover, sICA and tICA

exhibit a great diversity in their similarity with cssNMF

for different communities. Basically, tICA shows higher

similarity with cssNMF than sICA for communities con-

taining more overlapping nodes, such as the fronto-parietal1015

network and DMN, due to its better ability to identify

overlapping networks, while communities containing fewer

overlapping nodes such as primary visual network iden-

tified by cssNMF resemble those by sICA more than by

tICA. In other words, the cssNMF-identified community1020

structure is partially supported by sICA and partially by

tICA with little overlap and can not be replaced by each

other. It could be easily understood because these matrix

factorization-based methods work under different assump-

tions, thus reflecting various facets of the human brain1025

network structure. In this sense, cssNMF at least provides

a complementary approach to investigate the overlapping

community structure of the human brain. Furthermore, al-

though sICA and tICA are able to capture the overlapping

networks as well, the main drawback is that they derive1030

very dense networks, where few nodes have zero weights,

thus making the results lack a direct interpretation.

Moreover, some interesting features were also found in

the overlapping nodes. The identified overlapping nodes

occur widely in the frontal and parietal brain regions, which1035
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are closely related to the fronto-parietal network. Similar

results that some most flexible hubs implicated in cognitive

control are included in the fronto-parietal network have

been found by several recent studies (Cole et al., 2013;

van den Heuvel and Sporns, 2013; Zanto and Gazzaley,1040

2013). The bilateral angular gyri which play an important

role in both DMN and the fronto-parietal network have

been revealed to serve multiple functions that are related

to various tasks (Seghier, 2013). The superior and mid-

dle bilateral temporal poles that are in charge of sensory1045

integration have been classified as both structure and func-

tional cores in (Pascual et al., 2013). The superior parietal

regions have also been recognized as an important hub to

mediate information from distributed regions (Hwang et al.,

2012). These overlapping nodes indicate that the corre-1050

sponding brain regions may play flexible roles in executing

various brain functions and are responsible for information

integration. On the other hand, the sensory-motor and pri-

mary visual network that have fewer overlapping nodes are

relatively isolated, and these regions have been reported to1055

have high local connectivity (Buckner and Krienen, 2013;

Yeo et al., 2014).

4.3. Future work and limitations

Unlike conventional community detection methods, such

as Infomap and modularity optimization, the cssNMF1060

method derives a continuous solution of the community

structure, thus allowing community overlap. On the one

hand, it provides more than just binary clustering assign-

ments, since it indicates how the nodes are involved in each

community via membership values. On the other hand,1065

an inevitable limitation lying in cssNMF per se alongside

with its merits is that a threshold is needed if one wants

to obtain the binary clustering assignments. In this case,

the threshold applied should be at least larger than the

minimum of the maximum membership values of all nodes,1070

so that each node is ensured to belong to at least one

community.

Another limitation of cssNMF is that the performance

of cssNMF depends on its initialization to some extent,

although not as heavily as clustering algorithms such as K-1075

means. In this paper, the cssNMF algorithm is initialized

randomly, which is the most popular and simple initializa-

tion strategy for NMF methods. In fact, there are other

useful initialization techniques for NMF methods, such

as spherical k-means (Wild et al., 2004) and nonnegative1080

double singular value decomposition (NNDSVD) (Bout-

sidis and Gallopoulos, 2008). These alternative strategies

may lead to faster convergence of the algorithm. How-

ever, they still do not provide guarantees for the quality

of the obtained solutions by cssNMF. In our experiment,1085

we launched multiple runs with different initializations for

cssNMF to select the best result, which is a simple way in

practice to alleviate the influence of random initializations

on the quality of solutions.

Moreover, further improvements could be made on css-1090

NMF regarding its sparsity constraint. In this paper, we

adopt the widely used `1-norm to enforce a global sparsity

on the obtained community structure. More structured

forms of sparsity could be applied to cssNMF, by incorpo-

rating the techniques provided by recent studies in various1095

domains. For example, an `1,2-norm used in sparse learning

(Kong et al., 2014) could be used to enforce sparsity at the

level of intra-community. Besides, it has been shown that

NMF methods could benefit from applying a more natural

sparsity constraint `0-pseudo norm (Peharz and Pernkopf,1100

2012).

Besides, the ability of cssNMF for capturing the individ-

ual differences in community strengths may be beneficial

for studying fMRI data from different groups. In other

words, the individually specified information on commu-1105

nity strengths, which may reflect changes in network or-

ganization, could be viewed as discriminatory features to

distinguish different brain states or identify brain disorders.

Thus, we aim to apply cssNMF on such datasets in our

future work, which may contribute to the early diagnosis1110

of brain disorders. Before that, the test-retest reliability of

cssNMF in capturing such individual differences could be

further tested by using different data preprocessing meth-

ods or analysis approaches such as network construction

to lower the intra-subject variability and by using differ-1115

ent datasets containing more heterogeneous subjects with

larger inter-subject variability.

Finally, using the brain functional imaging data alone

may not be enough to gain a comprehensive understand-

ing of the brain functional organization. A multimodal1120

way of combining the brain’s structural information with

functional data may provide more knowledge about the un-

derlying substrates and guide us to a deeper understanding

of the brain network organization.
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5. Conclusion1125

Identification of the network community structure in

resting-state brains has been a hotspot issue for years. Par-

ticularly, the overlapping community structure has drawn

great attention only recently. Besides, the inter-subject

variability is usually not directly reflected when detecting1130

the group-level community structure. In this paper, we

propose a novel method called cssNMF to address these

issues based on the association matrix derived by NASR.

The proposed cssNMF is capable of identifying the group-

level overlapping community structure across subjects while1135

characterizing the inter-subject variability in community

strengths. Experimental results suggest that the proposed

framework can accurately characterize the brain network

organization at both the group level and the individual

level with a high reproducibility and reliability. It also pro-1140

vides some meaningful results from the neurophysiological

perspective. In conclusion, we believe that the cssNMF

approach and its potential application could provide new

insights into the functional network organization of the

human brain.1145
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