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Abstract

Tests are developed for inference on a parameter vector whose dimension

grows slowly with sample size. The statistics are based on the Lagrange Multi-

plier, Wald and (pseudo) Likelihood Ratio principles, admit standard normal

asymptotic distributions under the null and are straightforward to compute.

They are shown to be consistent and possessing non-trivial power against lo-

cal alternatives. The settings considered include multiple linear regression,

panel data models with fixed effects and spatial autoregressions. When a

nonparametric regression function is estimated by series we use our statis-

tics to propose specification tests, and in semiparametric adaptive estimation

we provide a test for correct error distribution specification. These tests are

nonparametric but handled in practice with parametric techniques. A Monte

Carlo study suggests that our tests perform well in finite samples. Two empir-

ical examples use them to test for correct shape of an electricity distribution

cost function and linearity and equality of Engel curves.
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1 Introduction

Many statistical models are parameterized by vectors that increase in dimension with sam-

ple size, making the study of asymptotic properties of estimates a nonparametric problem.

We are concerned with inference on such growing parameter vectors in these type of mod-

els. Our tests statistics have desirable asymptotic properties in such settings and are easy

to compute using standard formulae and software. We show that they can be applied to a

wide variety of problems, including panel data models, spatial autoregressive models, and

specification testing in nonparametric regression and adaptive estimation. Throughout the

paper we will consider only cases where the parameter space grows slowly with sample size,

as opposed to models in which the number of parameters exceeds or grows like the sample

size.

Inference rules are complicated in increasing dimension settings by the fact that while

usual Lagrange Multiplier (LM), Wald or pseudo Likelihood Ratio (LR) test statistics for

q (fixed) restrictions have an asymptotic χ2
q distribution under the null hypothesis (under

suitable regularity conditions), if in fact q → ∞ with sample size this limit distribution no

longer holds. However, as in previous literature (e.g. de Jong and Bierens (1994), Hong

and White (1995)), we are motivated by the well-known fact that

χ2
q − q

2
1
2 q

1
2

d
−→ N (0, 1), as q → ∞,

and will justify asymptotic properties for such standardized test statistics.

The literature on multiple regression with increasingly many parameters dates back at

least to Huber (1973) but the sequence of experiments considered by Le Cam (1960) is an

even earlier reference to models that evolve with sample size, see van der Vaart (2002) for

a discussion. Portnoy (1984, 1985) studied more general M -estimates of linear regression

with growing dimension, and Andrews (1985) also stressed that frequently the choice of re-

gressors is motivated more by degrees of freedom constraints than actual economic theory,

hence the appeal of a theory that permits the number of regressors to be related to sample

size. While practitioners can adopt an attitude that permits precise estimation of larger

models with more data, arrival at a parsimonious model requires rules of inference. Test-

ing of approximate models also requires such rules, e.g. Berk (1974) considered time series

autoregressions with increasing dimension while Robinson (1979) studied models with in-

creasing dimension as approximations to infinite distributed lag systems. More recently,

Robinson (2003) examined the problem of estimating the parameters of a single equation
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in a system of increasingly many equations. A very recent development is interest in spatial

autoregressions (SAR) with increasing dimension, treated in Gupta and Robinson (2015,

2018), the latter paper permitting a nonlinear regression component of increasing dimen-

sion. They point out that SAR models can sometimes give rise to increasing parameter

asymptotics quite naturally.

An important context in which models of increasing dimension are estimated is series

estimation of nonparametric regression, where a nonparametric regression function is ap-

proximated by a growing number of basis functions whose coefficients need to be estimated,

see e.g. Andrews (1991), Newey (1997). These models and such an estimation strategy

offer an attractive role for inferential rules based on increasingly many restrictions. One

use, explored for instance by Eubank and Spiegelman (1990), Wooldridge (1992), Hong

and White (1995) and Donald, Imbens, and Newey (2003) is to test regression function

specification, providing an alternative to kernel based nonparametric specification testing,

see e.g. Fan and Li (1996), Zheng (1996) and Lavergne and Vuong (2000). We also provide

such tests, but our general results have some differences. We avoid normality of distur-

bances (Eubank and Spiegelman (1990)), sample splitting (Yatchew (1992)) and do not

not impose that the data be generated from an iid process (Wooldridge (1992), Hong and

White (1995), Donald et al. (2003)). Additionally we base our test statistics on the trinity

of tests, which can provide as simple, or even simpler, inference than the sums of squares

based statistics of Hong and White (1995). Our approach can handle a variety of inter-

esting cases. These include, but are not limited to, tests of significance of nonparametric

regressions, tests of linearity against a nonparametric alternative and tests of a partially

linear model against a fully nonparametric alternative. Hong and White (1995) offer more

alternatives to test against, indeed even nonlinear parametric alternatives, but unlike that

paper our focus is not on series based nonparametric specification alone. Another use that

we propose is in testing the unknown specification of the error distribution in the semi-

parametric series-based adaptive estimation techniques employed by, e.g., Beran (1976),

Newey (1988) and Robinson (2005, 2010). The motivation of our tests is rather different

from work such as Chen and Pouzo (2015), which focuses on inference on a functional in

a conditional moment model with an infinite dimensional parameter that is not of pri-

mary interest, or Shen and Shi (2005), wherein there is an infinite dimensional nuisance

parameter and interest lies in known functionals.

Simplification of nonparametric and semiparametric inference is an important issue

in practical work. A recent paper by Ackerberg, Chen, and Hahn (2012) notes that the
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complicated nature of semiparametric methods tends to make practitioners reluctant to use

them. They stress cases in which the practitioner can effectively ignore the semiparametric

nature of certain econometric problems and simply use formulae derived for parametric

cases, thus increasing considerably the appeal of semiparametric methods. Our approach

to nonparametric and semiparametric testing is in the same spirit. Effectively the tests of

specification boil down to simple inference on coefficients in linear regression models with

standard testing principles. We hope that this simplicity adds to the toolkit of ‘parametric-

like’ procedures in problems that are not fully parametric.

In Section 2 we introduce the setup as well as two examples. Section 3.1 defines the

test statistics and introduces their desirable property that we seek sufficient conditions

for. Section 3.2 contains the asymptotic theory, the conditions of which we illustrate

in our examples. Section 4 uses these ideas to propose a simple specification test for

use in nonparametric regression, while Section 5 introduces a test for error distribution

specification in adaptive estimation. Section 6 contains a Monte Carlo study of finite

sample performance, also discussing some implementation issues. In Section 7 we use our

tests to determine the shape of a Canadian electricity distribution cost function and to test

for linearity and equality of Engel curves from South African data. Section 8 concludes,

briefly discussing heteroskedasticity robust versions of our tests. Proofs are in appendices.

2 Setup

We observe a vector wi ≡ win, i = 1, . . . , n, of dimension at least s + 1, with s a positive

integer. The triangular array setup permits sufficient generality to cover many important

cases. The unknown true parameter vector θ0 ∈ Rs, is estimated by

θ̃ = arg min
θ∈Θ

Qn (w1, . . . , wn; θ) , (2.1)

where Θ ⊆ Rs. The dimension s of θ0 is regarded as n-dependent, with s → ∞ as n → ∞

although explicit reference to this dependence is suppressed for notational convenience.

We also suppress reference to the observations w = (w1, . . . , wn) in the objective function,

writing it as Qn(θ). The sequence of true values θ0n satisfies θ0 = arg minθ∈Θ E {Qn (θ)},

where we suppress the n subscript and E {Qn (θ)} is a ‘population’ counterpart of Qn (θ)

for a given sample size n. An example of a population counterpart is given in Example I

below.
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The parameter θ0 is identified with respect to (Qn(θ), Θ) if there is no θ† ∈ Θ \ {θ0}

such that E {Qn (θ0)} = E
{
Qn

(
θ†
)}

. Particular conditions guaranteeing the latter vary

according to the particular econometric model under consideration. Generally for implicitly

defined models a condition of the type E {Qn (θ)} − E {Qn (θ0)} > 0 for all θ ∈ Θ \ {θ0}

is checked for global identification, with suitable conditions imposed on model primitives

to satisfy this. Given a sample of size n, for models with closed form solutions for θ̃

this typically reduces to non-singularity of certain second moment matrices, i.e. non-

multicollinearity conditions.

Assumption 1. Qn(θ) is convex and twice differentiable in θ ∈ Θ, for all sufficiently large

n.

In situations where θ̃ is implicitly defined Θ may be a prescribed compact set, which

needs to be constrained to remain of bounded volume due to its increasing dimension. For

instance Gupta and Robinson (2018) choose a Cartesian product of intervals of unit length.

Assumption 1 ensures that θ̃ exists for sufficiently large n, and allows us to define

gn(θ) =
∂Qn(θ)

∂θ
, Hn(θ) =

∂2Qn(θ)

∂θ∂θ′
, (2.2)

with primes denoting transposition.

We now proceed to the setup of the general testing problem. Split the parameter vector

as θ = (θ′1, θ
′
2)

′ where θ1 is q × 1, with q ≤ s and q → ∞ as n → ∞, and θ2 is (s − q) × 1.

For a generic symmetric, non-negative definite matrix J , define by η̄(J) (η(J)) its largest

(smallest) eigenvalue, and define ‖K‖ = {η̄ (K ′K)}
1
2 for any generic matrix K. If K is a

vector, then ‖K‖ is simply the Euclidean norm. We are interested in testing hypotheses

of the type

H0n ≡ H0 : ‖θ10‖ = 0 (2.3)

H1n ≡ H1 : ‖θ10‖ 6= 0, (2.4)

where θ0 = (θ′10, θ
′
20)

′ is the true parameter value. As usual θ can be a transformation

of some underlying parameters, so that the above formulation is general enough to cover

an increasing number of linear restrictions on model parameters. We also denote the

parameter space under the restriction (2.3) as Θ0 and define the restricted estimate

θ̂ = arg min
θ∈Θ0

Qn (θ) . (2.5)
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In the sequel we will assume that θ0 lies in the interior of Θ.

Example I. Inference in regression models with increasing dimension.

Portnoy (1984, 1985) considers

yn = Xnβ + υ, (2.6)

where throughout the paper y ≡ yn denotes an n × 1 vector of observations, X ≡ Xn

an n × k matrix of exogenous explanatory variables, with k → ∞ as n → ∞, and υ

an unobserved n × 1 disturbance vector with iid elements υi having mean zero and unit

variance. He takes

QM
n (β) =

1

n

n∑

i=1

ψ (yi − x′
iβ) , (2.7)

where xi ≡ xi,n is the i-th column of X ′, yi ≡ yi,n is the i-th element of y and ψ : R→ R.

Thus s = k and wi = (yi, x
′
i)
′. The population counterpart of (2.7) is E {ψ (Y − X ′

iβ)},

where (Y,X ′
i)

′ denotes the random variables from which the sample (yi, x
′
i)
′ is drawn. The

ordinary least squares (OLS) estimate is obtained by taking ψ(x) = x2/2, and we maintain

this case in this paper. Panel data models with fixed effects can also be accommodated.

Consider a balanced panel with N observations in each of T individual panels, so that

n = NT , with N, T → ∞ together. Let ytN be the N × 1 vector of observations on the

dependent variable for the t-th panel, where t may correspond to a time period or a more

general spatial unit like a school, village or district. Also let X1,tN and X2,N be N × k1

and N × k2 matrices of exogenous regressors respectively. X1,tN contains panel-varying

regressors while X2,N does not. Consider the model

ytN = ιNαt + X1,tNβ1 + X2,Nβ2t + υtN , t = 1, . . . , T (2.8)

where υtN is the N×1 vector of disturbances for each panel, formed of iid components, and

ιN is the N × 1 vector of ones. The αt, t = 1, . . . , T , are scalar fixed effect parameters and

β1 is a k1×1 panel-invariant parameter vector, whereas β2t is a k2×1 parameter vector that

can vary with t, so X2,N may be thought of as controlling for ‘quasi’ fixed-effects. Denote

yn = (y′
1n, . . . , y′

Tn)′, X1,n =
(
X ′

1,1n, . . . , X ′
1,Tn

)′
, υ = (υ′

1n, . . . , υ′
Tn)′, α = (α1, . . . , αT )′ and

β2 = (β ′
21, . . . , β

′
2T )′. Writing IT for the T × T identity matrix we can then stack (2.8) to

obtain

yn = (IT ⊗ ιN) α + X1,nβ1 + (IT ⊗ X2,N ) β2 + υ, (2.9)

which can be written like (2.6) by taking Xn = (IT ⊗ ιN , X1,n, IT ⊗ X2,N ) and β =

(α′, β ′
1, β

′
2)

′, implying s = k1 + T (k2 + 1). Again we may dispense with n subscripting
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for brevity.

Our theory will permit inference on subsets of β of increasing dimension. A question

of practical interest is whether the fixed effects αt in (2.8) are zero, or more generally if

they are equal. Thus we may be interested in testing:

H0 : ‖α − cιT‖ = 0, c known scalar. (2.10)

Example II. Inference in spatial autoregressive (SAR) models with increasing dimension.

The SAR model was introduced by Cliff and Ord (1973) and has seen heavy use since in

modelling of spatial correlation and dependence. For a given set of known weight matrices

Win, i = 1, . . . , p, whose elements are a measure of economic (not necessarily geographic)

distance between units, yn is modelled as

yn =

p∑

i=1

λiWinyn + Xnβ + υ, (2.11)

The λi capture spatial dependence between units. We write Rn = [W1nyn, . . . ,Wpnyn] and

θ = (λ′, β ′)′, where λ has i-th element λi, i = 1, . . . , p, so s = p + k. Xn may also contain

spatial lags of regressors, so its columns need not be independent or identically distributed

in general. The elements of the Win themselves are usually normalized in some way with a

normalization factor that depends on n, indeed some normalization is necessary to identify

the λi. Thus the triangular array aspect here is not merely a technical generalization but

an important feature of the model. Each column of Rn is endogenous, so OLS estimation

of θ does not work in general but Lee (2002) showed that for p = 1 consistency follows

if the elements of Win are O(h−1) for some h → ∞ such that h = o(n), and asymptotic

normality and efficiency if also n
1
2 = o (h). The asymptotic properties of the instrumental

variables (IV) estimate were justified by Kelejian and Prucha (1998), while Lee (2004)

presented a number of results for Gaussian (although Gaussianity is nowhere assumed)

pseudo maximum likelihood estimates (PMLE). Gupta and Robinson (2015, 2018) have

introduced an increasing dimension (p, k → ∞) version of higher-order models such as

(2.11) that contain more than one spatial lag of yn. They consider OLS, IV and PML

estimates of θ. The latter works also when β = 0, unlike the first two, which require the

presence of at least one non-intercept regressor. Let Zn be an n× r matrix of instruments,

r ≥ p, write P(J) = J(J ′J)−1J ′ for a matrix J with full column rank and define θ̂IV
SAR and
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θ̂OLS
SAR as the θ minimizing

QSAR,IV
n (θ) =

1

2n
(yn − [Rn, Xn] θ)′ P([Zn, Xn]) (yn − [Rn, Xn] θ) , (2.12)

QSAR,OLS
n (θ) =

1

2n
(yn − [Rn, Xn] θ)′ (yn − [Rn, Xn] θ) , (2.13)

respectively. Denoting Sn(λ) = In −
∑p

i=1 λiWin, the PMLE is based on the Gaussian

likelihood

log (2π) − 2n−1 log |Sn (λ)| + n−1 ‖Sn (λ) yn − Xnβ‖2 . (2.14)

For given λ, (2.14) is minimised with respect to β by β̄ (λ) = (X ′
nXn)−1 X ′

nSn (λ) yn. We

define λ̂PML
SAR = arg minλ∈Λ QSAR,PML

n (λ), with Λ a compact set in Rp, where

QSAR,PML
n (λ) = n−1 log

∣
∣S−1

n (λ) S−1
n

′ (λ)
∣
∣+ n−1y′

nS ′
n (λ) (In − P (Xn)) Sn (λ) yn, (2.15)

The PMLE of β0 is defined as β̄
(
λ̂
)
≡ β̂PML

SAR .

Gupta and Robinson (2015, 2018) stress cases motivated by Case (1991, 1992) in which

the Win have a ‘single non-zero diagonal block’ structure. In such cases it is explicitly

assumed that there are no spatial effects between units not in the same block, and it is

reasonable to expect that the λi vary across blocks. However there can be reasons (e.g.

geographic or demographic) for practitioners to suspect that some of the λi may be equal.

Of particular interest is the case where all the λi are equal, implying a simpler model in

which p = 1, and a model of fixed dimension if in fact k is fixed. Denoting by λD the

p(p − 1)/2-dimensional vector with elements λi − λj , i 6= j and i, j = 1, . . . , p, this kind of

test can be captured in the null hypothesis

H0 :
∥
∥λD

∥
∥ = 0, (2.16)

or, if a common value can be hypothesized,

H0 : ‖λ − cιp‖ = 0, c known scalar. (2.17)
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3 Trinity motivated tests

3.1 The statistics and a desirable property

For any function f(∙) we will write f
(
θ̌
)
≡ f̌ and f (θ0) ≡ f , where θ̌ is a generic estimate

of θ, following this convention throughout the paper. Define the standardized LM, Wald

and LR test statistics

LMn =
nĝ′

1,nĤ11
n ĝ1,n − q

2
1
2 q

1
2

, (3.1)

Wn =
nθ̃′1

(
H̃11

n

)−1

θ̃1 − q

2
1
2 q

1
2

, (3.2)

LRn =
2n
(
Q̂n − Q̃n

)
− q

2
1
2 q

1
2

, (3.3)

with ĝn =
(
ĝ′
1,n, ĝ′

2,n

)′
and

Ĥ−1
n =

[
Ĥ11

n Ĥ12
n

Ĥ21
n Ĥ22

n

]

,

where ĝ1,n is q×1, ĝ2,n is (s − q)×1, Ĥ11
n is q×q, Ĥ12

n is q×(s − q) and Ĥ22
n is (s − q)×(s − q).

This convention for partitioning is adopted throughout so we will denote

Jn =

[
J11,n J12,n

J21,n J22,n

]

, J−1
n =

[
J11

n J12
n

J21
n J22

n

]

for a generic nonsingular s×s matrix Jn. LM tests have the favourable feature of requiring

estimation of the model only under the null hypothesis, which yields a more parsimonious

null model always. In the increasing parameter context sometimes even a finite dimensional

null model may be implied, as in Example II. As usual the Wald statistic is based on the

unrestricted estimates alone, while the LR statistic is based on both unrestricted and

restricted estimates.

We seek to provide sufficient conditions for three desirable features of the test statistics

defined above, encapsulated in the following definition.

Definition A sequence of random variables (test statistics) An is said to have Property C

if:
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C.1. Under H0,

An
d

−→ N (0, 1), as n → ∞.

C.2. Under H1 and q
1
4 /n

1
2 −→ 0 as n → ∞, for any % > 0,

P (|An| > %) −→ 1, as n → ∞.

C.3. Define H`1 ≡ H`1,n : θ`,10 = θ`,10,n = δnq
1
4 / (nδ′nΓnδn)

1
2 , where Γn is a constant

symmetric q×q matrix with limn→∞ η (Γn) > 0, limn→∞ η (Γn) < ∞ and δn a constant

q × 1 vector such that ‖δn‖ = 1. Then, under the sequence of local alternatives H`1

and q
1
4 /n

1
2 −→ 0 as n → ∞,

An
d

−→ N (2−
1
2 , 1), as n → ∞.

The conditions specify the asymptotic distribution of An under H0, the consistency of the

test based on An as test statistic, and the fact that such a test can detect local alternatives

at O
(
q

1
4 /n

1
2

)
rate. The latter rate has also been found by de Jong and Bierens (1994).

3.2 Asymptotic theory

In this section we describe the asymptotic behaviour of the test statistics when gn asymp-

totically differs negligibly from a linear function of an n×1 unobservable disturbance vector

ε with elements εi. Let C denote a generic constant, arbitrarily large but independent of

n.

Assumption 2. The elements of ε are independent with zero mean, unit variance, finite

third and fourth moments μ3 and μ4, and satisfy supi≥1 E |εi|
4+χ ≤ C, for some χ > 0.

Imposing unit variance simplifies our notation but is not restrictive as all results hold with

independent homoskedastic disturbances, the latter simply adding another layer of deriva-

tions in the proofs and thus avoided here, but discussed in examples. Heteroskedasticity

robustness is discussed in Section 8. Introduce an n× s matrix Mn and the s× s constant

and symmetric matrix Ln = E (n−1M ′
nMn) satisfying the following assumption:

Assumption 3. The elements of Mn are independent of ε, and there exists a sequence

m ≡ mn, divergent or bounded, such that their second moments are uniformly O(m2).

The eigenvalues of Ln are such that limn→∞ η (Ln) < ∞ and limn→∞ η (Ln) > 0.
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The condition on the elements of Mn implies that these are uniformly Op (m) and the

rows of Mn have uniformly Op

(
s

1
2 m
)

norm. The restrictions on the eigenvalues of Ln

are asymptotic ‘no multicollinearity’ and boundedness conditions of the type familiar from

regression with increasing dimension. For generic matrices, vectors or scalars Jn, Kn we

denote ΔJ
K = Jn − Kn and for any symmetric matrix Jn partitioned in the usual way,

denote ZJ =
[
Iq,−J12,nJ−1

22,n

]
. While both ΔJ

K and ZJ are n-dependent we avoid this in

the notation to avoid excessive strain on the reader.

Assumption 4. The following rate condition holds:

1

q
1
2

∥
∥Δg

n−1M ′ε

∥
∥ (n

∥
∥Δg

n−1M ′ε

∥
∥+ ‖M ′

nε‖
)

+
∥
∥ΔH∗

H

∥
∥+

∥
∥ΔH

n−1M ′M

∥
∥+

∥
∥
∥Δn−1M ′M

L

∥
∥
∥

+
1

q
1
2 n

‖M ′
nε‖2

(∥
∥ΔH∗

H

∥
∥+

∥
∥ΔH

n−1M ′M

∥
∥+

∥
∥
∥Δn−1M ′M

L

∥
∥
∥
)

= op(1), as n → ∞, (3.4)

for any θ∗ satisfying
∥
∥Δθ∗

θ0

∥
∥ ≤

∥
∥
∥Δθ̂

θ0

∥
∥
∥.

Theorem 3.1. Suppose that H0, Assumptions 1, 2, 3 and 4 hold. Then

LMn −
ε′Mnε − q

2
1
2 q

1
2

= op(1), as n → ∞,

where Mn = n−1MnZ ′n−1M ′M (n−1M ′
nMn)

11 Zn−1M ′MM ′
n.

Condition (3.4) looks intimidating but is essentially about some weak laws of large numbers

holding. We discuss it for special cases in Remarks 2 and 3 below. For a generic s × s

matrix Jn, define ΣJ (note again the avoidance of subscripting with n) as the s× s matrix

with bottom-right (s − q) × (s − q) block J−1
22,n and all other entries zero.

Theorem 3.2. Suppose that H0, Assumptions 1, 2, 3 and 4 hold, with (3.4) now holding

for any θ∗ satisfying
∥
∥Δθ∗

θ0

∥
∥ ≤

∥
∥
∥Δθ̂

θ0

∥
∥
∥ or

∥
∥Δθ∗

θ0

∥
∥ ≤

∥
∥
∥Δθ̃

θ0

∥
∥
∥. Then

Wn −
n−1ε′Mn

[
(n−1M ′

nMn)
−1 − Σn−1M ′M

]
M ′

nε − q

2
1
2 q

1
2

= op(1), as n → ∞, (3.5)

LRn −
n−1ε′Mn

[
(n−1M ′

nMn)
−1 − Σn−1M ′M

]
M ′

nε − q

2
1
2 q

1
2

= op(1), as n → ∞. (3.6)
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It can be easily shown using the properties of partitioned matrices that

n−1Mn

[(
n−1M ′

nMn

)−1
− Σn−1M ′M

]
M ′

n = Mn,

thus anticipating the asymptotic equivalence of the trinity of tests that we will prove below,

and also familiar from the fixed dimension case.

Assumption 5. The sequences q, s and m are functions of n satisfying

1

q1+ χ
4






(
s

1
2 m
)2+ χ

2

n
χ
4

+

(
s

1
2 m
)4+χ

n1+ χ
2




 −→ 0, as n → ∞. (3.7)

In Theorems 3.1 and 3.2 we showed that the trio of test statistics may be approximated by

a quadratic form in ε. The next two theorems state the asymptotic distribution of these

quadratic forms under suitable conditions.

Theorem 3.3. Suppose that H0, Assumptions 1, 2, 3 and 5 hold. Then

ε′Mnε − q

2
1
2 q

1
2

d
−→ N (0, 1), as n → ∞.

The proof is in Appendix A and employs a martingale CLT of Scott (1973) as opposed to

the U -statistic CLTs used in earlier literature, cf. e.g. de Jong and Bierens (1994), Hong

and White (1995). For models with uniformly bounded constant Mn elements we have

m ≡ 1, so Condition (3.7) simplifies to

(
s

q

)1+ χ
4 1

n
χ
4

(

1 +
( s

n

)1+ χ
4

)

−→ 0, as n → ∞, (3.8)

and is therefore satisfied if s/q = O(1) and s/n → 0 as n → ∞. In the panel data case of

Example I, s = k1 +T (k2 +1) and n = NT , while if we are interested in testing (2.10) then

q = T . Thus (3.8) holds if k1/T + k2 is bounded and k1/NT + k2/N → 0 as N, T → ∞.

The latter condition is implied by the former.

Theorem 3.4. Suppose that H0, Assumptions 1, 2, 3 and 5 hold. Then

n−1ε′Mn

[
(n−1M ′

nMn)
−1 − Σn−1M ′M

]
M ′

nε − q

2
1
2 q

1
2

d
−→ N (0, 1), as n → ∞.
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Remark 1. In all of the theorems above, if gn(θ) is linear in θ the part of the rate condition

(3.4) relating to
∥
∥ΔH∗

H

∥
∥ is not needed. Indeed, in this case there will be a closed form

for θ̂ and θ̃, and the second derivative will not depend on θ. A typical requirement for

asymptotic normality proofs of implicitly defined estimates is
∥
∥
∥θ̂ − θ0

∥
∥
∥ = op(1), which is

covered in (3.4) by the negligibility conditions on
∥
∥ΔH∗

H

∥
∥. If estimates are of closed form

then ‖n−1M ′
nε‖ = op(1) and

∥
∥
∥Δn−1M ′M

L

∥
∥
∥ = op(1) together with limn→∞ η (Ln) > 0 suffice

for
∥
∥
∥θ̂ − θ0

∥
∥
∥ = op(1). As these are all conditions imposed in (3.4) consistency (in norm) of

the estimates is guaranteed.

The following theorem records sufficient conditions for Property C to hold.

Theorem 3.5. (i) Under the conditions of Theorems 3.1 and 3.3, LMn has Property

C.

(ii) Under the conditions of Theorems 3.2 and 3.4, Wn and LRn have Property C.

The appropriate choices of Γn in C.3 are found in the proof, while δn would typically be

the vector with unity in the position corresponding to the direction of departure from H0.

In the remarks that follow we focus only on rate conditions, assuming the identification

conditions to hold.

Remark 2. In Example I, gn = n−1M ′
nυ, Mn = Xn and Hn = n−1X ′

nXn. If the xi are iid

with finite fourth moment m is a bounded sequence, Ln = E (xix
′
i), ‖M

′υ‖ = Op

(
(kn)

1
2

)

and
∥
∥ΔH

L

∥
∥ = Op

(
k/n

1
2

)
, so (3.4) holds if k2/q

1
2 n

1
2 → 0 as n → ∞. If υi have constant

variance σ2, this can be estimated by σ̌2 = σ̌2
n = n−1

(
yn − Xnβ̌

)′ (
yn − Xnβ̌

)
(whereˇcan

be either˜orˆ) and it then follows that σ̌2 − σ2 = Op (k/n) at worst.

Remark 3. In Example II, writing Rn = An + Bn with An = [G1nXnβ, . . . , GpnXnβ],

Bn = [G1nυ, . . . , Gpnυ] and Gin = WinS−1
n , i = 1, . . . , p, we have gn = n−1 [Rn, Xn]′ υ,

Mn = [An, Xn], Hn = n−1 [Rn, Xn]′ [Rn, Xn] for OLS and gn = n−1 [Rn, Xn]′ P ([Zn, Xn]) υ,

Mn = P ([Zn, Xn]) [An, Xn], Hn = n−1 [Rn, Xn]′ P ([Zn, Xn]) [Rn, Xn] for IV. For PMLE,

if h → ∞ the same analysis as the OLS holds. Assumption 11 of Gupta and Robinson

(2015) is designed to deal with the fact that the elements of An can have divergent order of

magnitude in increasing dimension SAR models, a natural consequence of their spatially

dynamic nature. They further note that the elements of An are uniformly O(k) if the

elements of Xn are taken to be uniformly bounded constants, implying m = k.

Under the conditions of Gupta and Robinson (2015), we have for OLS:
∥
∥Δg

n−1M ′υ

∥
∥ =

Op

(
p

1
2 /h
)
, ‖M ′

nυ‖ = Op

(
k(pn)

1
2

)
,
∥
∥ΔH

n−1M ′M

∥
∥ = Op

(
max

{
p/h, p

1
2 k (p + k)

1
2 /n

1
2

})
, and
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for IV:
∥
∥Δg

n−1M ′υ

∥
∥ = Op

(
p

1
2 (r + k)/n

)
,
∥
∥ΔH

n−1M ′M

∥
∥ = Op

(
p

1
2 (r + k)

1
2 /n

1
2

)
and ‖M ′

nυ‖ =

Op

(
(r + k)

1
2 n

1
2

)
. They also assume max

{
p

1
2 k, n

1
2 p

1
2 h−1

}∥∥
∥Δn−1M ′M

L

∥
∥
∥ = op(1) for OLS

and (r + k)
1
2

∥
∥
∥Δn−1M ′M

L

∥
∥
∥ = op(1) for IV. So (3.4) holds under the following conditions as

n → ∞:

OLS:
1

q
1
2

(
pkn

1
2

h
+

p
3
2 k3(p + k)

1
2

n
1
2

)

+
p

h
+

p
1
2 k (p + k)

1
2

n
1
2

−→ 0, (3.9)

IV:
p

1
2 (r + k)

3
2

q
1
2 n

1
2

+
p

1
2 (r + k)

1
2

n
1
2

−→ 0. (3.10)

As far as relaxation to E (υ2
i ) = σ2 is concerned, take

σ̂2,OLS
SAR = n−1

(
yn − [Rn, Xn] θ̂OLS

SAR

)′ (
yn − [Rn, Xn] θ̂OLS

SAR

)
,

σ̂2,IV
SAR = n−1

(
yn − [Rn, Xn] θ̂IV

SAR

)′ (
yn − [Rn, Xn] θ̂IV

SAR

)
.

By Theorems 3.2, 4.2 of Gupta and Robinson (2015), σ̂2,IV
SAR − σ2 = Op ((p + k)(r + k)/n)

and σ̂2,OLS
SAR − σ2 = Op (max {pk2(p + k)/n, p/h})

4 Nonparametric regression specification testing with

Property C

Sometimes it is not reasonable to assume a particular parametric form for the regression

function, leading to consideration of

yi = d (xi) + υi, i = 1, . . . , n (4.1)

with yi observable, xi an k × 1 vector of exogenous explanatory variables, vi is an inde-

pendent and homoskedastic disturbance term and d(∙) an unknown real-valued function

on the support X of xi. On the other hand for multiple regression models such as (2.6),

significance of the regression function can be tested by the null H0 : ‖β‖ = 0 and various

tests are available for functional form. We propose a specification test based on series

estimation. The latter approximates d(x) by α′
JPJ(x), with PJ(x) = (p1J(x), . . . , pJJ(x))′

and αJ = (α1J , . . . , αJJ)′ being J × 1 vectors of basis functions and unknown parameters

respectively, and J → ∞ slowly with n. Given an estimate α̂J , we define a series estimate
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of d(x) as

d̂(x) = α̂′
JPJ(x). (4.2)

Andrews (1991) establishes a set of asymptotic normality results for more general settings

including functionals of d(∙), while uniform convergence rates of d̂(x) to d(x) are derived by

Newey (1997) in settings where the data are iid. Our interest is in testing null hypotheses

on d(x), which we will test by way of the ‘approximate’ null

Happ
0 :

∥
∥αt(J) − ct(J)

∥
∥ = 0, (4.3)

with αt(J) a t(J) × 1 subvector of αJ and ct(J) some known constant t(J) × 1 vector, with

t(∙) an increasing integer valued (if the image is not an integer we choose the integer part

of it) function. The alternative hypothesis will always be the negation of the null being

tested.

This setup falls into the framework of Section 3.2. Indeed, α̂J can be formed by least

squares regression of y = (y1, . . . , yn)′ on P = Pn (x1, . . . , xn) = [PJ (x1) , . . . , PJ (xn)]′, i.e.

α̂J = (P ′P )−1 P ′y, for sufficiently large n if

lim
n→∞

η
{
E
(
PJ (xi) PJ (xi)

′)} > 0. (4.4)

Thus take Qn (αJ) as in (2.7) with ψ(x) = x2/2, implying that gn (αJ) = n−1P ′ (PαJ − y)

and Hn (αJ) = n−1P ′P , which does not depend on αJ . Assuming the existence of a J × 1

constant vector α0J and scalar γ > 0 such that

sup
x∈X

|d(x) − α′
0JPJ(x)| = Op

(
J−γ

)
, as J → ∞, (4.5)

from Newey (1997), and substituting (4.1) gives gn = n−1P ′ (Pα0J − D(x) − υ), with

D(x) = (d (x1) , . . . , d (xn))′, whence

∥
∥Δg

−n−1P ′υ

∥
∥ ≤ n−1 ‖P‖ ‖Pα0J − D(x)‖ = Op

(
J−γ

)
. (4.6)

As in the opening paragraph of the Appendix in Newey (1997), we can use (4.4) to normalize

PJ(x) so that Assumption 3 is satisfied with m a constant sequence.

One case of interest is testing the significance of the nonparametric function, in which

case take

Hsig
0 : d(x) = 0, (4.7)
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cJ = 0 (so t(J) = J) in (4.3). If the series functions are power series, we can use (4.3) as

a more general specification test. To define these, let ρ = (ρ1, . . . , ρk)
′ be a multi-index

with nonnegative entries, z a k × 1 real vector and denote zρ =
∏k

j=1 z
ρj

j . For a sequence

{ρ(l)}∞l=1 of distinct such vectors take pjJ(x) = xρ(j). For instance, we may test for a linear

regression

H lin
0 : d(x) = α′x, (4.8)

by taking ct(J) to have zeros corresponding to indices j for which ρ(j) is not of the form

whose only nonzero entry is unity, implying t(J) = J − k. In practice we must take J > k,

which is satisfied in the theory as k is fixed. R-th order polynomial regression can also be

tested, taking k = 1 for simplicity in notation:

Hpoly
0 : d(x) =

R∑

i=1

αix
i, (4.9)

and ct(J) to have zeros corresponding to indices j for which ρ(j) has elements bigger than

R, so t(J) = J − R. For general regression of order R with k explanatory variables the

multinomial formula gives t(J) = J−(k+R−1)!/(k−1)!R!. Other types of basis functions

pjJ(x) can yield specification tests against more functional parametric forms, indeed there

is no dearth of options for the practitioner. To obtain tests of significance of a subset of

regressors in xi as in Lavergne and Vuong (2000), we can test if all the αjJ corresponding

to this subset are zero. Suppose k = 2 and we are interested in testing if x2i is a significant

regressor. With a polynomial basis we would test if each αjJ that is a coefficient of a

product involving x2i is zero. Following a huge literature, parts of which have been cited

in the introduction, we consider pointwise tests. Uniform theory such as those in Belloni,

Chernozhukov, Chetverikov, and Kato (2015) is not explored in this paper, and would

be much more relevant were we performing a test for nonparametric restrictions, such as

shape restrictions implied by the Slutsky equation.

On the other hand the method proposed is not able to test against all general parametric

alternatives. For example our approach cannot test if the regression function is a Box-Cox,

i.e. d(x) =
(
xδ − 1

)
/δ or arcsinh transformation, i.e. d(x) = sinh−1(δx)/δ, for some δ > 0,

whereas the approach of Hong and White (1995) will work in this case.

An important alternative to (4.1) is the partly parametric model (see Robinson (1988),

Fan and Li (1996)) where

yi = x′
1iβ + d (x2i) + υi, i = 1, . . . , n, (4.10)
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with x1i and x2i subvectors of xi. Our approach permits a simple way to test against this

alternative. The practitioner only has to follow the method described in the paragraph

above to test for linearity of the regressors in x2i. But we can offer something more if the

linearity part of (4.10) is believed to hold. Our method gives a straightforward way to test

for the specification of d(∙), and this can be done in even more general cases where x′
1iβ is

replaced by a parametric nonlinear function as in Andrews (1994).

Use of any of LMn, Wn or LRn under Happ
0 provides a test for the question of interest

with Property C. This has some advantages compared to competing kernel based nonpara-

metric specification tests. There is no need to choose a kernel (although J needs to be

chosen in practice), and the statistics are extremely simple to compute.

Proposition 4.1. Let (yi, xi) be iid, vi satisfy the properties of εi in Assumption 2, (4.4)

and (4.5) hold,

sup
x∈X

‖PJ(x)‖ = Op (ζ(J)) , (4.11)

for some function ζ(∙), and J be chosen as function of n satisfying (3.7) with m constant,

s = J , q = t(J) and
1

J
+

1

t(J)
+

ζ2(J)J

n
−→ 0, as n → ∞. (4.12)

Then LMn, Wn and LRn have Property C, with Happ
0 .

When X is compact and connected and the support of xi has a pdf that is bounded away

from zero, Newey (1997) derives ζ(J) = J for the power series basis and ζ(J) = J
1
2 for a

spline basis, the latter additionally assuming that X is known. The value of γ depends on

features of d(x) such as smoothness. For power series and spline bases, γ = r/k, where r

is the number of continuous derivatives of d(x) on X, see Lorentz (1986). To satisfy (4.12)

in the case of the power series basis described in the paragraph between (4.7) and (4.8)

J3/n → 0 is sufficient.

An outstanding practical issue in series estimation is choice of J . Robinson (2005, 2010)

discusses this, stating that asymptotic theory provides little guidance as it provides upper

but not lower bounds. He points out that these upper bounds suggest very slow increase

of J and numerical experiments show that small integer choices of J work well in practice.

The idea applies to more general models. Lee and Robinson (2016) consider series

estimation in the presence of cross-sectional dependence, and we can easily accommodate

this with (4.12) amended to the correct rates. Indeed, following that paper introduce the
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bivariate dependence measure

Υn =
1

n(n − 1)

n∑

i,j=1

i 6=j

{

sup
f∈Fij

|cov (f (xi) , f (xj))|

}

, Fij =
{
f : Ef 2 (xi) = Ef 2 (xj) = 1

}
,

(4.13)

and replace (4.12) with

1

J
+

1

t(J)
+

ζ2(J) (J + Υn)

n
−→ 0, as n → ∞, (4.14)

to obtain tests with Property C. The latter is obtained from Assumption A.4 in Lee and

Robinson (2016), noting that we have taken iid disturbances as opposed to their more

general linear process specification. Indeed specification testing can undoubtedly extend

to models such as the SAR in (2.11), where the linear regression component is replaced by a

nonparametric function which is then estimated by series and tested for linearity, say, as in

the previous paragraph. To the best of our knowledge the literature has not yet considered

series estimation of the regression function in this setting, with kernel estimation seemingly

the preferred tactic (see e.g. Su and Jin (2010), Jenish (2016)). The approach can also

be used to test the specification of any of the fixed number of unknown varying coefficient

functions ϑj (∙), j = 1, . . . , r1, in the model

yi = x′
1iβ + x′

2iϑ (x3i) + υi, i = 1, . . . , n,

estimated using the series method by Ahmad, Leelahanon, and Li (2005), where x2i and x3i

are r1 × 1 and r2 × 1 (r1, r2 fixed) vectors of exogenous explanatory variables respectively

and ϑ (x3i) = (ϑ1 (x3i) , . . . , ϑr1 (x3i))
′.

5 Error distribution specification in adaptive estima-

tion

In the adaptive estimation methodology of Newey (1988), which improves upon a treat-

ment of Beran (1976), (2.6) is considered with unknown nonparametric density for a rep-

resentative element υi of υ. The aim is to obtain efficient estimates of β by means of a

Newton-type step that ‘adapts’ to the unknown error density using a series approxima-

tion, starting from an inefficient n
1
2 -consistent initial estimate (such as OLS). It turns out
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that the object that must be nonparametrically estimated is not the density f(t), but the

score function ς(t) = −ft(t)/f(t), where the t subscript denotes partial derivative with

respect to t. There are advantages to using series estimation for this, see Robinson (2010)

p. 7 for details. To maintain simplicity we take Xn to consist of uniformly bounded

constants (as in Robinson (2010)). Let φ`(t), ` = 1, 2, . . . , be a sequence of smooth func-

tions and let J ≥ 1 be some user-chosen integer that increases slowly with n. Define

φ(J)(t) = (φ1(t), . . . , φJ(t))′, φ̄(J)(t) = φ(J)(t) − E
{
φ(J) (υi)

}
, φ

(J)
t (t) = (φ1t(t), . . . , φJt(t))

′.

We approximate ς(t) by least squares projection on φ̄(J)(t). Denote the coefficients in this

population projection by a(J). Then integration-by-parts leads to their identification by

a(J) =
[
E
{
φ̄(J) (υi) φ̄(J) (υi)

′}]−1
E
{

φ
(J)
υi (υi)

}
. On other hand, we can write the sample

equivalent

ς (ti) = Φ(J) (ti)
′ a(J) + ui, i = 1, . . . , n, (5.1)

for some zero mean, uncorrelated and homoskedastic (for ease of exposition we take their

variance to be unity again) random variables ui that are independent of elements of yn,

and Φ(J) (ti) = φ(J) (ti) − n−1
∑n

j=1 φ(J) (tj).

For an observable vector e = (e1, . . . , en)′, approximate a(J) by a†(J)(e), where for generic

t = (t1, . . . , tn)′, a†(J)(t) = W (J)(t)−1w(J)(t) with W (J)(t) = n−1
∑n

i=1 Φ(J) (ti) Φ(J) (ti)
′,

w(J)(t) = n−1
∑n

i=1 φ
(J)
ti (ti). The adaptive estimation literature then approximates ς (υi)

by Φ(J) (ei)
′ a†(J) and inserts this in the Newton step for estimating β. Our interest in this

paper lies in testing the specification of ς(∙), not the Newton step in which an estimate

based on this specification is inserted. If there are indeed increasingly many nonzero

elements in a(J) in (5.1), the adaptive estimation methodology will be efficient. On the

other hand if there are only a finite number of nonzero elements in a(J), ς(t) will almost

have a parametric form. By simply testing the significance of coefficients in the first stage

of adaptive estimation for a range of J , the practitioner can employ a better specification

and anticipate better performance of estimates. Thus we treat (5.1) like a linear regression

model with increasingly many parameters and conduct tests of significance on increasingly

large subvectors of a(J) using LMn, Wn or LRn. For example, if we take φ`(t) = t` and

cannot reject the null hypothesis that all except the leading coefficient in (5.1) are zero then

ς(t) is just the score function of a standard normal distribution. Writing u = (u1, . . . , un)′,

W̄ (J)(t) for the n × J matrix with typical row Φ(J) (ti) and taking ψ(x) = x2/2, we have

gn = −n−1W̄ ′(J)u (suppressing reference to the argument) and Hn = n−1W̄ ′(J)W̄ (J) =

W (J), so here Mn = W̄ (J). Assumption A* in the proposition below defines the restrictions

on J . It is quite technical and a repetition of conditions in Robinson (2005, 2010), so we
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state it in Appendix A. Simpler but stronger conditions restricting J are given in Newey

(1988).

Proposition 5.1. Suppose that we are testing the significance of a t(J) × 1 subvector of

a(J), where t(J) → ∞ as n → ∞, ui satisfy the properties of εi in Assumption 2, Xn is

formed of uniformly bounded constants and Assumption 3 holds, Assumption A* holds and

J is a function of n satisfying (3.7) with m constant, s = J , q = t(J). Then LMn, Wn

and LRn have Property C.

Testing nonparametric density specifications against parametric alternatives through

simple inference on series coefficients is more widely applicable. Following Gallant and

Nychka (1987), there is a very large literature on maximum likelihood estimation via

series approximations to smooth unknown densities. A detailed treatment is beyond the

scope of this paper, but to name one example Gurmu, Rilstone, and Stern (1999) consider

semiparametric estimation of a count regression model based on a series expansion of the

unknown density of unobserved heterogeneity. The approach of this paper is likely to be

extendable to obtain density specification tests with Property C in this setting.

Consequences of misspecification in finite samples have effectively already been exam-

ined in a Monte Carlo study in Robinson (2010). In his design (cf. pg. 12 of that paper),

adaptive estimates perform worse than the initial OLS for J ≥ 1 when the true density of

υ is standard normal, as expected. However there are no remedies in that paper to correct

or test for the specification as we have proposed.

6 Monte Carlo

Finite sample implications of the theory were examined in a set of Monte Carlo experiments.

The first of these analysed the performance of LMn, Wn and LRn when yn was generated

using (2.6), (2.9) and (2.11). The aim is to assess quality of inferences for small to moderate

sample sizes and fairly large parameter spaces, and not to choose sample sizes so large and

parameter spaces so small that the experiments become uninformative. Denoting true

parameters with a zero subscript, the following designs were used to generate y ≡ yn in

each of the 5000 replications:

(2.6) : k = 20, 30, 40, q = 10, 15, 18, , n = 150, 350, 700, β0 = ιk/2, X ∼ U(0, 1) but with

first column of ones, υ ∼ N (0, 1),

20



(2.9) : k1 = k2 = 2, q = T = 5, 10, 15, N = 50, 100, 200, (α0, β10, β20) = (ιT , ι2/2, ι2T /2) ,

X ∼ U(0, 5), υ ∼ N (0, 1),

(2.11) : k = 2, q = p = 8, 16, 32,m = 12, 48, 96, (λ0, β0) = (U(0, 1)p, 1, 1/2) , X ∼ U(0, 5),

Win = diag



0, . . . , (m − 1)−1 (ιmι′m − Im)
︸ ︷︷ ︸

i-th diagonal block

, . . . , 0



 , υ ∼ N (0, 1).

The unusual notation in the choice of λ0 indicates that the λ0i were generated from U(0, 1)

once at the start of the experiment (and then kept fixed for all combinations of p and

m) to conform to a sufficient condition for the existence of a power series for S−1
n viz.

|λ0i| < 1, i = 1, . . . , p (see Proposition 2.1 of Gupta and Robinson (2015)). They are:

0.81, 0.91, 0.13, 0.91, 0.63, 0.1, 0.28, 0.55, 0.96, 0.96, 0.16, 0.97, 0.96, 0.49, 0.8, 0.14, 0.42, 0.92

0.79, 0.96, 0.66, 0.04, 0.85, 0.93, 0.68, 0.76, 0.74, 0.39, 0.66, 0.17, 0.71, 0.03.

Because E (Winy) = E (WinS−1
n Xβ0) this allows instruments to be taken as linearly

independent columns of W r
inX, r ≥ 1. We maintain r = 1 in our experiments, as is common

in the SAR literature, for a total of kp instruments apart from those in X, and analyse

only IV estimates. The choice of Win is commonly employed in Monte Carlo simulations

using the SAR model and comes from Case (1991, 1992), who models an economy in which

there are p districts each with m farmers who influence each farmer in their own district

equally and are independent of farmers in other districts.

We first report empirical sizes and powers in Tables 6.1 and 6.2 for the following nulls:

(2.6) : H0 : β = β0 = ιk/2, H0 : β = 0.4ιk,

(2.9) : H0 : α = α0 = ιT , H0 : α = 0.45ιT ,

(2.11) : H0 : λ = λ0 = U(0, 1)p, H0 : λi = λj , i 6= j, i, j = 1, . . . , p.

Note that the null for (2.11) is the one in (2.16). Tests of the type we construct are one-

sided because only positive increasing values occur asymptotically under the alternative

hypothesis, so we employ one-sided critical values to compute the values in the tables. This

was noted also by Hong and White (1995).

For (2.6) all three tests tend to be oversized compared to the nominal 5%, but converging

towards the latter as n increases even though the improvement is not always monotonic,

as seen by the behaviour of LRn for q = 18. oversizing worsens for all three tests as k

increases for given n and also worsens for Wn and LRn as q increases for given n and k but

improves for LMn, again with occasional exceptions to monotonicity. This reflects the fact
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(2.6) n 150 350 700

k q Wn LMn LRn Wn LMn LRn Wn LMn LRn

20 10 0.0820 0.0912 0.0834 0.0732 0.0756 0.0806 0.0650 0.0664 0.0724
15 0.0886 0.0752 0.0908 0.0734 0.0684 0.0874 0.0672 0.0652 0.0856
18 0.0872 0.0596 0.0952 0.0688 0.0574 0.0864 0.0674 0.0630 0.0916

30 10 0.0736 0.1150 0.0752 0.0800 0.0932 0.0852 0.0684 0.0760 0.0800
15 0.0794 0.1014 0.0792 0.0766 0.0848 0.0880 0.0690 0.0714 0.0866
18 0.0796 0.0900 0.0840 0.0762 0.0788 0.0886 0.0690 0.0704 0.0946

40 10 0.0836 0.1684 0.0792 0.0698 0.1026 0.0724 0.0660 0.0768 0.0756
15 0.0894 0.1572 0.0856 0.0664 0.0892 0.0790 0.0662 0.0762 0.0862
18 0.0914 0.1530 0.0892 0.0654 0.0876 0.0818 0.0672 0.0768 0.0902

(2.9) N 50 100 200

T Wn LMn LRn Wn LMn LRn Wn LMn LRn

5 0.1096 0.0810 0.0680 0.0900 0.0776 0.0704 0.0738 0.0654 0.0636
10 0.1256 0.0838 0.0766 0.0894 0.0714 0.0732 0.0752 0.0682 0.0762
15 0.1374 0.0858 0.0850 0.0928 0.0696 0.0886 0.0886 0.0776 0.0922

(2.11) m 12 48 96

p Wn LMn LRn Wn LMn LRn Wn LMn LRn

IV 8 0.0914 0.2746 0.2036 0.0694 0.1058 0.0992 0.0704 0.0830 0.0856
16 0.0900 0.2928 0.2226 0.0730 0.1058 0.1120 0.0660 0.0794 0.0958
32 0.0884 0.4180 0.2838 0.0692 0.1230 0.1212 0.0650 0.0842 0.1006

Table 6.1: Monte Carlo size for OLS for (2.6) and (2.9), IV for (2.11). Nominal size is 5%.

that LMn relies on estimation of the model under the null, which is more parsimonious,

while the other two tests also require estimation of the unrestricted model. The powers for

(2.6) displayed in the top panel of Table 6.2 indicate improvement again for larger samples

in all tests. However power increases with q (given n, k) for Wn and LRn but decreases

for LMn, with similar justification of this behaviour as provided for the sizes. Increase in

k (given n) doesn’t seem to alter the behaviour of any test in a discernable pattern.

With (2.9) note that n increases with T , which is also the rate of increase of the

parameter space. There is oversizing with all three tests, but LRn is the closest to the

nominal 5%. The oversizing worsens with increasing T for given N but not in each case,

e.g. LMn when N = 100 actually improves with increasing T . The conclusion is that large

T can have serious consequences in inference on T fixed-effect parameters even though it

implies a larger n = NT . On the other hand, powers displayed in Table 6.2 for all three tests

improve in all possible ways that n can increase, viz. both N and T increase (diagonal),
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(2.6) n 150 350 700

k q Wn LMn LRn Wn LMn LRn Wn LMn LRn

20 10 0.1290 0.1404 0.1160 0.1952 0.2008 0.1890 0.3596 0.3628 0.3580
15 0.1396 0.1200 0.1270 0.2304 0.2208 0.2268 0.4544 0.4456 0.4536
18 0.1488 0.1088 0.1316 0.2564 0.2298 0.2470 0.4920 0.4814 0.4926

30 10 0.1172 0.1684 0.0990 0.1962 0.2268 0.1936 0.3516 0.3682 0.3542
15 0.1340 0.1686 0.1138 0.2270 0.2432 0.2164 0.4338 0.4436 0.4338
18 0.1426 0.1560 0.1204 0.2456 0.2540 0.2382 0.4792 0.4822 0.4786

40 10 0.1204 0.2298 0.1038 0.1954 0.2448 0.1928 0.3490 0.3812 0.3510
15 0.1324 0.2334 0.1092 0.2258 0.2716 0.2176 0.4408 0.4682 0.4372
18 0.1500 0.2288 0.1192 0.2426 0.2820 0.2290 0.4804 0.5048 0.4822

(2.9) N 50 100 200

T Wn LMn LRn Wn LMn LRn Wn LMn LRn

5 0.5478 0.4836 0.4568 0.8076 0.7798 0.7746 0.9854 0.9838 0.9852
10 0.7490 0.6780 0.6520 0.9560 0.9464 0.9426 0.9996 0.9996 0.9998
15 0.8620 0.7964 0.7696 0.9912 0.9888 0.9872 1.0000 1.0000 1.0000

(2.11) m 12 48 96

p Wn LMn LRn Wn LMn LRn Wn LMn LRn

IV 8 0.1470 0.8198 1.0000 0.9314 0.9992 1.0000 1.0000 1.0000 1.0000
16 0.1456 0.9654 1.0000 0.9966 1.0000 1.0000 1.0000 1.0000 1.0000
32 0.1348 0.9986 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 6.2: Monte Carlo power for OLS for (2.6) and (2.9), IV for (2.11).

only N increases (horizontal), only T increases (vertical). Unit power is attained by all

three for the largest sample with T = 15, N = 200.

Finally, for (2.11) recall that n increases with p, which is also the rate of increase of

the parameter space. We find that LMn and LRn are unacceptably oversized for m = 12,

with Wn much better. However matters do improve for LMn and LRn as m increases,

though the improvement is not necessarily better with both m and p increasing (so both

parameter space and sample size increase) than with m increasing for given p. In fact

sizes are usually worse in the former case indicating that the gains for LMn and LRn due

to increased sample size are overpowered in this case by the burden of estimating extra

parameters. On the other hand Wn showcases better performance and improves more as

we proceed diagonally on the table as opposed to horizontally, reflecting a better response

to increasing n with both m and p. The powers in Table 6.2 tell a somewhat different

story, with Wn under-performing LMn and LRn substantially when m = 12 but all tests
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giving excellent results for larger m. LRn seems to be the clear winner here, always giving

unit power, while the latter property is true for all three tests when m = 96.

Our second set of experiments pertain to the specification testing procedure described

in Section 4, using the power series basis described therein. In each of 5000 replications

we generate yi, i = 1, . . . , n and n = 100, 300, 500, using several data generating processes

(DGPs):

DGP1 : yi = 1 + x1i + x2i + υi ≡ x′
iβ0 + υi,

DGP2(τ1) : yi = exp {τ1 (x′
iβ0)} + υi,

DGP3(τ2) : yi = τ2 log {log (x′
iβ0)} + υi,

DGP4(τ3) : yi = 1 + τ3 (sin x1i + cos x2i) + υi,

DGP5(τ4) : yi = 1 + τ4

(
x−2

1i + x
− 1

2
2i

)
+ υi,

DGP6 : yi = 1 + 0.8 (x1ix2i)
1
2 + 0.1 (x2ix3i)

1
2 + υi,

DGP7 : yi = 1 + exp (0.1x1ix2i) + x2ix3i + υi,

where x1i = (zi + z1i) /2, x2i = (zi + z2i) /2 with zi, z1i, z2i ∼iid U(0, 5), υi ∼iid N (0, 1),

x3i ∼ iid χ2
4 and τi, i = 1, 2, 3, 4, some real numbers. Note that we have redefined β0 = ι3.

We experimented with J = 1, 2, 4. (4.12) and the discussion in the paragraph below

suggests an upper bound choice for J of
[
n

1
6

]
, where we take [x] to denote the integer

part of x. This is is the kind of approach used by Hong and White (1995) when choosing

J in their simulations (they use closest integer, not integer part), but Robinson (2005,

2010) criticizes reliance on an upper bound for choice of J , stating that asymptotic theory

provides little guidance. Our discussion of simulation results for DGP5 below give credence

to this criticism. Our choices of n imply
[
n

1
6

]
= [2.15] , [2.59] , [2.82] = 2, 2, 2, but we choose

to also report for J = 4 to give a sharp illustration of the consequences of ‘overfitting’ the

upper bound. For DGP5 and many cases of DGP6 we find that power improves, thus

indicating that the upper bound may not always be the optimal choice.

When J = 1 we are simply regressing y on a constant, x1 and x2, and under the null we

set both slope coefficients equal to zero. Thus the tests boil down to a test of significance of

x1 and x2, and rejection probabilities are interpreted as power against an alternative that

one of x1 or x2 is significant. For J = 2, 4 the null hypothesis sets all coefficients apart from

those on (1, x1, x2) to be zero. This null is true under DGP1 so the rejection probabilities

under this DGP are to be interpreted as sizes to be compared to the nominal 5%, while
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under the other four DGPs the null is not true and the rejection probabilities are to be

interpreted as power of a null hypothesis of linearity against these DGPs as alternatives.

The rejection probabilities are tabulated in Table 6.3. Under DGP1, the first row

indicates unit power for all three tests and sample sizes. For J ≥ 2, the next two rows

display empirical sizes. All three tests are over-sized, but mostly acceptable for n = 500

while even for n = 100, 300 they are not very far off with the best being LMn with J = 2.

There is no clear winner overall between J = 2 and J = 4. Next we take τ1 = 0.15, 0.2

in DGP2(τ1). Note that the expansion exp (x) =
∑∞

j=0 xj/j! indicates that the smaller

the absolute value of τ1 the closer DGP2(τ1) is to DGP1. Thus tests against linearity are

expected to have more power for larger τ1, which in fact should also lead to better power

in tests of regressor significance. As discussed above our tests boil down to the latter when

J = 1, and in this case we see that we get unit power always. The power under a null of

linearity is always better for J = 2 than for J = 4, although for both choices it increases

with n. With J = 2 and τ1 = 0.2, it starts at around 58% for all three tests when n = 100

but improves to over 97% when n = 300 and is around 99.9% for n = 500. On the other

hand the tests lose power quite dramatically for τ1 = 0.15, doing no better than 53.2%,

although they still improve with increasing n. Next we take τ2 = 1.8, 2 for DGP3(τ2),

finding rejection percentages when J = 1 to be excellent for both cases with unit power

achieved when n = 300, 500. For n = 100 power is better for τ2 = 2, as we would anticipate.

Power under the null of linearity follows much the same pattern, and like DGP2(τ1) power

for J = 2 dominates that for J = 4. With both choices of τ2 power more than triples from

n = 100 to n = 500, but from around 21% to around 71% when τ2 = 1.8 and from around

24% to around 79% when τ2 = 2. All three tests have very similar performance the larger

n becomes.

Next we study DGP4(τ3) with τ3 = 0.2, 0.5. Power when the null imposes insignificance

of the regressors becomes unity for τ3 = 0.5, n ≥ 300, although it is over 95% even when

n = 100. With τ3 = 0.2, power is lower for n = 100 but still very good for n = 500. When

the null is of linearity, J = 2 has better power properties than J = 4 for both values of τ3

but the power is much higher for the bigger value. An almost analogous analysis holds for

DGP5(τ4), which we simulate with τ4 = 0.3, 0.1. But, as mentioned earlier, there is one

crucial difference: here J = 4 dominates J = 2, and in fact it does so for all tests, sample

sizes and both values of τ4.

DGP6 and DGP7 have the distinctive feature of interaction terms in the nonlinear re-

gression functions. For DGP7 we record perfect performance of both regressor significance
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testing (J = 1) and rejections of linearity (J = 2, 4). On the other hand we get worse

performance with DGP6, especially for the Wn when n = 100. While matters improve

with n > 100 it is interesting to note that even in these cases LRn and LMn perform much

better. In all cases performance is better when J = 4, as was the case with DGP5, but

the improvements can be quite dramatic.

7 Empirical illustrations

Data for both examples is available at https://www.economics.utoronto.ca/yatchew/.

7.1 Scale economies in electricity distribution

Yatchew (2000) considers (4.10) as a variant of the Cobb-Douglas model for the costs of

distributing electricity with data on 81 municipal distributors in Ontario, Canada, during

1993. The interest lies in examining economies of scale in the number of customers. He

takes y = tc, x1 = (wage, pcap,PUC , kwh, life, lf , kmwire)′ and x2 = cust , where tc is

the log of total cost per customer, wage is the log wage rate, pcap is the log price of

capital, PUC is a dummy variable for public utility commissions that deliver additional

services, kwh is the log of kilowatt hour sales per customer, life is the log of remaining life

of distribution assets, lf is the log of the load factor (which measures capacity utilization

relative to peak usage), kmwire is the log of kilometres of distribution wire per customer

and cust is the log of the number of customers. Yatchew (2003) also fits a fully parametric

specification with d(cust) = β1cust + β2cust2 . He uses a differencing procedure and his

test (pg. 9) fails marginally to reject quadraticity, obtaining a test statistic of 1.5 to be

compared to the 5% standard normal critical value of 1.645. However he later (pg. 77)

employs a different specification test, also asymptotically standard normal, and finds that

quadraticity is rejected with a statistic of 2.4. We will employ Wn to test for a quadratic

specification, by fitting (4.10) using the series
∑J

j=1 α0jcust j with J = 4, 5.

When J = 4, q = 2 and the null is α03 = α04 = 0 while for J = 5, q = 3 and the null

is α03 = α04 = α05 = 0. We get Wn = 0.1, 3.51 for J = 4, 5 respectively. Compared to

the one-sided 5% critical value of 1.645 for a standard normal distribution this results in

a rejection of the null hypothesis of quadraticity when J = 5. Because of the very small

statistic when J = 4 we conclude that including high order polynomial terms captures

features of customer scale economies in electricity distribution that might otherwise be

missed, thus providing evidence in favour of a semiparametric specification.
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Another basis is constructed using Laguerre polynomials, which have the the advantage

of being orthogonal. These are given by the recursive relation

Lk+1(x) =
(2k + 1 − x)Lk(x) − kLk−1(x)

k + 1
, k ≥ 1,

with L0(x) = 1 and L1(x) = 1 − x. An estimation using
∑J

j=1 α0jLj(cust) can be used to

test for quadraticity by grouping polynomials of the same order and conducting significance

tests on these as follows. Suppose J = 6, and denote the coefficient on custj , j = 1, . . . , 6,

by ϑj . Then

ϑ1 = − (α01 + 2α02 + 3α03 + 4α04 + 5α05 + 6α06) ,

ϑ2 =
1

2
α02 +

3

2
α03 + 3α04 + 5α05 +

15

2
α06,

ϑ3 = −

(
1

6
α03 +

2

3
α04 +

5

3
α05 +

1

3
α06

)

,

ϑ4 =
1

24
α04 +

5

24
α05 +

5

8
α06,

ϑ5 = −

(
1

120
α05 +

1

20
α06

)

,

ϑ6 =
1

720
α06.

It is clear that ϑj = 0 for all j = 2, . . . , 6, if and only if α0j = 0 for all j = 2, . . . , 6. Thus

the analysis of the previous paragraph works also when using the Laguerre polynomial

basis.

7.2 Engel curve estimation: testing for linearity and equality

Yatchew (2003) considers Engel curve estimation from South African household survey

data. Two categories are considered: single individuals without children (‘singles’, 1,109

observations) and couples without children (‘couples’, 890 observations). For each group

we estimate (4.1) with y = fs and x = texp where fs is the food share of total expenditure

and texp is the log of total expenditure, using the series
∑J

j=1 α0jtexp
j with J = 2, 3, 4,

plotting the results in Figure 7.1. One question of interest centres on whether the Engel

curves are linear, see e.g. Lewbel (2008). To answer this question we test α02 = 0,

α02 = α03 = 0, α02 = α03 = α04 = 0 for J = 2, 3, 4, respectively. Let s and c superscripts

denote singles and couples respectively. We obtain Ws
n = 10.47;Wc

n = 1.83, for J = 2,

27



Ws
n = 13.18;Wc

n = 17.07, for J = 3 and Ws
n = 14.13;Wc

n = 13.98, for J = 4, indicating a

rejection of the linear specification on comparison with a critical value of 1.645. We thus

opt for a nonparametric model with J = 4, because taking J > 4 leads to multicollinearity

problems.
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Figure 7.1: Fitted Engel curve for ‘singles’ (dashed line) and ‘couples’ (solid line), with
J = 2 (a), J = 3 (b) and J = 4 (c).

Once we have chosen our model (with J = 4), an economic question of interest is: if

the two Engel curves in Figure 7.1(c) were to be superimposed, would they coincide? It

looks unlikely given the marked difference in shapes for high levels of texp. We answer this

question by generating a dummy variable coup that takes the value 1 for couples and 0

otherwise, pooling the data for singles and couples, estimating the model

fs = α00 +
4∑

j=1

α0jtexp
j +

4∑

j=1

δ0j

(
coup × texpj

)
+ vi, (7.1)

and testing δ01 = δ02 = δ03 = δ04 = 0. This returns Wn = 88.87, implying a strong

rejection of the null hypothesis. In contrast the test used in Yatchew (2003) (cf. p. 69)

returned a statistic of 1.76 and therefore a rather weak rejection of the null of equality.
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8 Conclusion and robustification to heteroskedastic-

ity

We have proposed nonparametric specification tests based on the trinity of testing princi-

ples for models in which objective function derivatives may be linear in iid disturbances.

The test statistic sequences were shown to be asymptotically standard normal under the

null hypothesis, consistent and possessing nontrivial power against local alternatives con-

verging to the null at a prescribed rate. We now heuristically discuss heteroskedasticity

robust versions of the tests. Suppose that the unit variance assumption on the εi is removed

and instead var (εi) = σ2
i , i = 1, . . . , n, where σ−2

i ≤ C. Note also that the existence of

finite fourth moments guarantees that σ2
i ≤ C. Because so many of our cases of inter-

est essentially involve only linear regression, we discuss heteroskedasticity robust versions

of LMn, LRn and Wn in (2.6). As for the homoskedastic case, these are obtained sim-

ply by standardizing usual heteroskedasticity robust versions of familiar statistics. Define

ε̂ = (ε̂1, . . . , ε̂n)′, ε̃ = (ε̃1, . . . , ε̃n)′, ε̂i = yi − x′
iβ̂, ε̃i = yi − x′

iβ̃, Ω̂ = diag [ε̂2
1, . . . , ε̂

2
n],

Ω̃ = diag [ε̃2
1, . . . , ε̃

2
n], Q̂R

n =
(
y − Xβ̂

)′
Ω̂−1

(
y − Xβ̂

)
, Q̃R

n =
(
y − Xβ̃

)′
Ω̃−1

(
y − Xβ̃

)

and

LMR
n =

ε̂′Ω̂−1X1

{

X ′
1Ω̂

−1X1 − X ′
1Ω̂

−1X2

(
X ′

2Ω̂
−1X2

)−1

X ′
2Ω̂

−1X1

}−1

X ′
1Ω̂

−1ε̂ − q

2
1
2 q

1
2

,

LRR
n =

2n
(
Q̂R

n − Q̃R
n

)
− q

2
1
2 q

1
2

,

WR
n =

β̃′
1

{

X ′
1Ω̃

−1X1 − X ′
1Ω̃

−1X2

(
X ′

2Ω̃
−1X2

)−1

X ′
2Ω̃

−1X1

}

β̃1 − q

2
1
2 q

1
2

,

where X = [X1, X2] is a partition conformable to the dimension of the null. LMR
n , LRR

n

and WR
n can be shown to have Property C with similar techniques of proof as for LMn,

LRn and Wn.

29



n 100 300 500

J Wn LMn LRn Wn LMn LRn Wn LMn LRn

DGP1 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 0.0766 0.0754 0.0722 0.0758 0.0748 0.0712 0.0690 0.0686 0.0698
4 0.0882 0.0654 0.0792 0.0756 0.0694 0.0822 0.0690 0.0654 0.0858

DGP2(0.15) 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 0.1646 0.1620 0.1582 0.3670 0.3658 0.3666 0.5320 0.5310 0.5302
4 0.1288 0.0958 0.1148 0.2234 0.2108 0.2198 0.3178 0.3054 0.3176

DGP2(0.2) 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 0.5876 0.5812 0.5872 0.9752 0.9746 0.9756 0.9992 0.9992 0.9996
4 0.3914 0.3360 0.3734 0.8794 0.8686 0.8846 0.9890 0.9886 0.9890

DGP3(1.8) 1 0.9092 0.9026 0.9142 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 0.2140 0.2090 0.2028 0.4818 0.4804 0.4832 0.7106 0.7098 0.7150
4 0.1784 0.1406 0.1618 0.3682 0.3528 0.3624 0.5752 0.5658 0.5724

DGP3(2) 1 0.9534 0.9500 0.9576 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 0.2446 0.2390 0.2342 0.5642 0.5636 0.5692 0.7950 0.7944 0.7998
4 0.1996 0.1602 0.1840 0.4402 0.4204 0.4390 0.6758 0.6660 0.6746

DGP4(0.2) 1 0.3396 0.3270 0.3342 0.7496 0.7476 0.7526 0.9260 0.9256 0.9292
2 0.1350 0.1312 0.1256 0.2444 0.2434 0.2446 0.3642 0.3628 0.3592
4 0.1156 0.0866 0.1082 0.1698 0.1582 0.1766 0.2538 0.2450 0.2542

DGP4(0.5) 1 0.9550 0.9514 0.9624 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 0.4310 0.4254 0.4282 0.8832 0.8816 0.8880 0.9864 0.9864 0.9872
4 0.3166 0.2656 0.3006 0.7762 0.7642 0.7868 0.9556 0.9530 0.9594

DGP5(0.1) 1 0.2212 0.2150 0.2564 0.4672 0.4648 0.5142 0.6222 0.6202 0.6600
2 0.2502 0.2480 0.2668 0.4984 0.4958 0.5186 0.6586 0.6580 0.6728
4 0.3036 0.2744 0.2982 0.6048 0.5954 0.6102 0.7700 0.7640 0.7744

DGP5(0.3) 1 0.6040 0.5936 0.6446 0.9592 0.9586 0.9650 0.9966 0.9966 0.9976
2 0.5532 0.5500 0.5764 0.9166 0.9164 0.9240 0.9856 0.9854 0.9868
4 0.6016 0.5756 0.6050 0.9450 0.9414 0.9478 0.9956 0.9956 0.9958

DGP6 1 0.4830 0.6184 0.6402 0.9110 0.9548 0.9582 0.9912 0.9966 0.9970
2 0.2106 0.5328 0.5162 0.4462 0.7780 0.7764 0.6532 0.8920 0.8936
4 0.2190 0.9448 0.8966 0.4280 0.9736 0.9710 0.6312 0.9918 0.9912

DGP7 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 6.3: Comparison of specification tests: Rejection probabilities
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Appendices

A Proofs of theorems

Proof of Theorem 3.1. We first carry out some preliminary development. Because θ10 = 0

under H0, by the mean value (MVT) theorem we can write ĝ1,n = g1,n + H12,nΔθ̂2
θ20

, 0 =

ĝ2,n = g2,n + H22,nΔθ̂2
θ20

with
∥
∥
∥Δθ

θ0

∥
∥
∥ ≤

∥
∥
∥Δθ̂

θ0

∥
∥
∥, whence

ĝ1,n = ZH̄
[
g′
1,n, g′

2,n

]′
= ZH̄gn. (A.1)

Note that the value of θ̄ may be different in each row of H12,n, this fact applying whenever

the MVT is applied to a vector of values. Then (3.1) becomes

ng′
nHngn − q

2
1
2 q

1
2

(A.2)

where Hn = Z ′H̄Ĥ11
n ZH̄ . Assumption 2 and Lemma B.5 imply that (A.2) is

∑3
i=1 Πi,n with

Π1,n =
nΔ′g

n−1M ′εHnΔg
n−1M ′ε

2
1
2 q

1
2

= Op

(
n
∥
∥Δg

n−1M ′ε

∥
∥2

/q
1
2

)
, (A.3)

Π2,n = 2
ε′MnHnΔg

n−1M ′ε

2
1
2 q

1
2

= Op

(∥
∥Δg

n−1M ′ε

∥
∥ ‖M ′

nε‖ /q
1
2

)
, (A.4)

Π3,n =
n−1ε′MnHnM ′

nε − q

2
1
2 q

1
2

. (A.5)

(A.3), (A.4) are negligible by (3.4) so (A.2) is Π3,n + op(1). Denoting ξn = Z ′H̄M ′
nε we

have Π3,n =
(
n−1ξ′nĤ11

n ξn − q
)

/2
1
2 q

1
2 . Note that by the proof of Lemma B.5, we have

ξn = Op (‖M ′
nε‖). We write Π3,n =

∑4
i=1 Γ3i,n with

Γ31,n =
n−1ξ′nΔĤ11

H11ξn

2
1
2 q

1
2

= Op

(
n−1 ‖M ′

nε‖2
∥
∥
∥ΔĤ

H

∥
∥
∥ /q

1
2

)
, (A.6)

Γ32,n =
n−1ξ′nΔH11

n−1M ′M11ξn

2
1
2 q

1
2

= Op

(
n−1 ‖M ′

nε‖2 ∥∥ΔH
n−1M ′M

∥
∥ /q

1
2

)
, (A.7)

Γ34,n =
n−1ξ′n (n−1M ′

nMn)
11

ξn − q

2
1
2 q

1
2

. (A.8)
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The bound for the ΔĤ11

H11 term in (A.6) is justified by the following argument. First
∥
∥
∥ΔĤ11

H11

∥
∥
∥ ≤ ‖H11

n ‖
∥
∥
∥Ĥ11

n

∥
∥
∥

∥
∥
∥
∥Δ

(Ĥ11)
−1

(H11)−1

∥
∥
∥
∥, with the first and second factors on the RHS Op(1)

by Lemma B.2. By the partitioned inverse formula
(
Ĥ11

n

)−1

= Ĥ11,n−Ĥ12,nĤ−1
22,nĤ21,n and

(H11
n )

−1
= H11,n − H12,nH−1

22,nH21,n, implying that the last factor is bounded by
∥
∥
∥ΔĤ11

H11

∥
∥
∥ +

∥
∥
∥Δ

Ĥ12Ĥ−1
22 Ĥ21

H12H−1
22 H21

∥
∥
∥ . The first term in the last expression is bounded by

∥
∥
∥ΔĤ

H

∥
∥
∥, while the second

term is bounded by
∥
∥
∥Ĥ12,n

∥
∥
∥
∥
∥
∥Ĥ21,n

∥
∥
∥
∥
∥H−1

22,n

∥
∥
∥
∥
∥Ĥ−1

22,n

∥
∥
∥
∥
∥
∥ΔĤ22

H22

∥
∥
∥ +

∥
∥H−1

22,n

∥
∥
∥
∥
∥Ĥ21,n

∥
∥
∥
∥
∥
∥ΔĤ12

H12

∥
∥
∥ +

∥
∥H−1

22,n

∥
∥ ‖H12,n‖

∥
∥
∥ΔĤ21

H21

∥
∥
∥. By Lemmas B.2 and B.3, we conclude that

∥
∥
∥Ĥ12,n

∥
∥
∥,
∥
∥
∥Ĥ21,n

∥
∥
∥,

‖H12,n‖,
∥
∥
∥Ĥ−1

22,n

∥
∥
∥ and

∥
∥H−1

22,n

∥
∥ are all Op(1). Because

∥
∥
∥ΔĤ22

H22

∥
∥
∥,
∥
∥
∥ΔĤ12

H12

∥
∥
∥ and

∥
∥
∥ΔĤ21

H21

∥
∥
∥ are all

bounded by
∥
∥
∥ΔĤ

H

∥
∥
∥ the bound in (A.6) now follows, and the bound in (A.7) is justified

similarly. By (3.4), (A.6), (A.7) are negligible. Finally we show that

n−1ξ′n (n−1M ′
nMn)

11
ξn

2
1
2 q

1
2

−
n−1ε′Mnε

2
1
2 q

1
2

= op(1). (A.9)

Adding and subtracting n−1ξ′n (n−1M ′
nMn)

11 Zn−1M ′MM ′
nε/q

1
2 to the LHS and combining

terms yields

1

2
1
2 q

1
2

n−1ε′Mn

(
ZH̄ + Zn−1M ′M

)′ (
n−1M ′

nMn

)11
[

0, Δ
n−1M ′M12(n−1M ′M22)

−1

H12H
−1
22

]

M ′
nε. (A.10)

∥
∥
∥
∥Δ

n−1M ′M12(n−1M ′M22)
−1

H12H
−1
22

∥
∥
∥
∥ ≤

∑4
i=1 ‖Υi,n‖ with Υ1,n = ΔH12

H12
H

−1

22,n, Υ2,n = ΔH12

n−1M ′M12
H

−1

22,n,

Υ3,n = M ′M12,nH
−1

22,nΔH22

H22
H−1

22,n and Υ4,n = M ′M12,n (n−1M ′
nMn)

−1
22 Δn−1M ′M22

H22
H−1

22,n, so

‖Υ1,n‖ ≤
∥
∥
∥ΔH12

H12

∥
∥
∥
∥
∥
∥H

−1

22,n

∥
∥
∥ = Op

(∥∥
∥ΔH̄

H

∥
∥
∥
)

, (A.11)

‖Υ2,n‖ ≤
∥
∥
∥ΔH12

n−1M ′M12

∥
∥
∥
∥
∥
∥H

−1

22,n

∥
∥
∥ = Op

(∥∥ΔH
n−1M ′M

∥
∥) , (A.12)

‖Υ3,n‖ ≤ ‖M ′M12,n‖
∥
∥
∥H

−1

22,n

∥
∥
∥
∥
∥H−1

22,n

∥
∥
∥
∥
∥ΔH22

H22

∥
∥
∥ = Op

(∥∥
∥ΔH̄

H

∥
∥
∥
)

, (A.13)

‖Υ4,n‖ ≤ ‖M ′M12,n‖
∥
∥H−1

22,n

∥
∥
∥
∥
∥
(
n−1M ′

nMn

)−1

22

∥
∥
∥
∥
∥
∥ΔH22

n−1M ′M22

∥
∥
∥ = Op

(∥∥ΔH
n−1M ′M

∥
∥) , (A.14)

by Lemmas B.2, B.3, B.6 and proof of Lemma B.5. Thus, by Lemma B.6, (A.10) is

Op

(
n−1 ‖M ′

nε‖2
max

{∥∥
∥ΔH̄

H

∥
∥
∥ ,
∥
∥ΔH

n−1M ′M

∥
∥
}

/q
1
2

)
= op(1),
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proving (A.9). The theorem is now proved.

Proof of Theorem 3.2. By the MVT, 0 = g̃n = gn + H̄nΔθ̃
θ0

, with
∥
∥
∥Δθ̄

θ0

∥
∥
∥ ≤

∥
∥
∥Δθ̃

θ0

∥
∥
∥, so

solving yields θ̃1 = −
[
H̄11

n , H̄12
n

]
gn. Thus, upon substituting in (3.2), Wn is

n−1ε′Mn [n−1M ′
nM11

n , n−1M ′
nM 12

n ]
′
(n−1M ′

nM11
n )

−1
[n−1M ′

nM11
n , n−1M ′

nM12
n ] M ′

nε − q

2
1
2 q

1
2

+Op

([∥
∥Δg

n−1M ′ε

∥
∥{n

∥
∥Δg

n−1M ′ε

∥
∥+ ‖M ′

nε‖
}

+ n−1 ‖M ′
nε‖2

{∥∥
∥ΔH̃

H

∥
∥
∥+

∥
∥ΔH

n−1M ′M

∥
∥
}]

/q
1
2

)
.

By (3.4) the second term above is negligible. The quadratic form in M ′
nε in the first term is

weighted by a matrix of rank q, which by the partitioned matrix inversion formula simplifies

to (n−1M ′
nMn)

−1 − Σn−1M ′M , whence the claim follows. Now consider LRn. By the MVT

we have

LRn =
nΔ′θ̂

θ̃
H̄nΔθ̂

θ̃
− q

2
1
2 q

1
2

, (A.15)

0 = g̃1n = g1n + H̄11,nθ̃1 + H̄12,nΔθ̃2
θ20

, (A.16)

0 = g̃2n = g2n + H̄21,nθ̃1 + H̄22,nΔθ̃2
θ20

, (A.17)

0 = ĝ2n = g2n + H̆22,nΔθ̂2
θ20

, (A.18)

with
∥
∥
∥Δθ̄

θ0

∥
∥
∥ ≤

∥
∥
∥Δθ̃

θ0

∥
∥
∥ and

∥
∥
∥Δθ̆

θ0

∥
∥
∥ ≤

∥
∥
∥Δθ̂

θ0

∥
∥
∥. Subtracting (A.18) from (A.17) gives H̄21,nθ̃1 +

H̄22,nΔθ̃2
θ20

= H̆22,nΔθ̂2
θ20

. Adding and subtracting H̄22,nθ̂2 to the LHS gives H̄21,nθ̃1 +

H̄22,nΔθ̃2

θ̂2
= ΔH̆22

H̄22
Δθ̂2

θ20
, solving which we get Δθ̃2

θ̂2
=
[
H̄−1

22,nH̄21,n, H̄−1
22,nΔH̆22

H̄22

] (
θ̃′1, Δ

′θ̂2
θ20

)′
,

implying

Δθ̂
θ̃

= Z ′H̄ θ̃1 +

(

0′,
(
H̄−1

22,nΔH̆22

H̄22
Δθ̂2

θ20

)′)′

. (A.19)

Substituting (A.19) into (A.15), it follows by techniques similar to those used in earlier

proofs that LRn equals

nθ̃′1Z
n−1M ′M (n−1M ′

nMn)Z ′n−1M ′M θ̃1 − q

2
1
2 q

1
2

+ op(1) =
nθ̃′1 (n−1M ′

nM11
n )

−1
θ̃1 − q

2
1
2 q

1
2

+ op(1),

by (3.4) and the partitioned matrix inverse formula. The proof now follows that for Wn.

Proof of Theorem 3.3. Denote by mrt,n the (r, t)-th element of Mn. We seek to establish
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asymptotic normality of

1

2
1
2 q

1
2

n∑

r=1

(
ε2
r − 1

)
mrr,n +

2

2
1
2 q

1
2

n∑

r=1

εr

∑

t<r

εtmrt,n =
n∑

r=1

zrn, (A.20)

say, with

zrn =
1

2
1
2 q

1
2

(
ε2
r − 1

)
mrr,n +

2

2
1
2 q

1
2

εr

∑

t<r

εtmrt,n. (A.21)

We apply Theorem 2 of Scott (1973). Because the limit distribution is independent of the

elements of Mn we can prove the result conditional on these and, henceforth, all expecta-

tions will be conditional on elements of Mn. First note that by Lemma B.1,
∑n

r=1 zrn has

mean zero and variance converging to 1 in probability. Writing 1(∙) for indicator function,

we need to prove

n∑

r=1

E
{
z2

rn1 (|zrn| ≥ ε)
} p
−→ 0, for any ε > 0, (A.22)

n∑

r=1

E
(
z2

rn | εt, t < r
) p
−→ 1. (A.23)

To show (A.22) we can check the sufficient Lyapunov condition

n∑

r=1

E |zrn|
2+ χ

2
p

−→ 0. (A.24)

Showing (A.24) boils down to proving that

1

q1+ χ
4

n∑

r=1

E
∣
∣ε2

r − 1
∣
∣2+ χ

2 |mrr,n|
2+ χ

2
p

−→ 0, (A.25)

1

q1+ χ
4

n∑

r=1

E |εr|
2+ χ

2 E

∣
∣
∣
∣
∣

∑

t<r

εtmrt,n

∣
∣
∣
∣
∣

2+ χ
2

p
−→ 0 (A.26)

By Assumption 2, (A.25) is bounded by a constant times

n

q1+ χ
4

max
1≤r≤n

|mrr,n|
2+ χ

2 , (A.27)

while by the Jensen, Burkholder, cr, von Bahr-Esseen, triangle and Hölder inequalities
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(A.26) is bounded by a constant times

n

q1+ χ
4

max
1≤r≤n

E

∣
∣
∣
∣
∣

∑

t<r

εtmrt,n

∣
∣
∣
∣
∣

2+ χ
2

≤
Cn

q1+ χ
4

max
1≤r≤n



E

∣
∣
∣
∣
∣

∑

t<r

εtmrt,n

∣
∣
∣
∣
∣

4+χ




1
2

≤
Cn

q1+ χ
4

max
1≤r≤n



E

∣
∣
∣
∣
∣

∑

t<r

ε2
tm

2
rt,n

∣
∣
∣
∣
∣

2+ χ
2





1
2

≤
Cn

q1+ χ
4

max
1≤r≤n



E

∣
∣
∣
∣
∣

∑

t<r

ε4
tm

4
rt,n

∣
∣
∣
∣
∣

1+ χ
4





1
2

≤
Cn

q1+ χ
4

max
1≤r≤n



E

∣
∣
∣
∣
∣

∑

t<r

(
ε4
t − μ4

)
m4

rt,n

∣
∣
∣
∣
∣

1+ χ
4

+

∣
∣
∣
∣
∣

∑

t<r

m4
rt,n

∣
∣
∣
∣
∣

1+ χ
4





1
2

≤
Cn

q1+ χ
4

max
1≤r≤n




∑

t<r

E
∣
∣ε4

t − μ4

∣
∣1+ χ

4
∣
∣m4

rt,n

∣
∣1+ χ

4 +

∣
∣
∣
∣
∣

∑

t<r

m4
rt,n

∣
∣
∣
∣
∣

1+ χ
4





1
2

≤
Cn

q1+ χ
4

max
1≤r≤n






(
∑

t<r

m4
rt,n

)1+ χ
4






1
2

≤
Cn

q1+ χ
4

max
1≤r≤n

(
∑

t<r

m2
rt,n

)1+ χ
4

. (A.28)

For (A.27), note that mrt,n = n−1m′
rnZ

′n−1M ′M (n−1M ′
nMn)

11 Zn−1M ′Mmtn where m′
rn is

the r-th row of Mn. Then

|mrt,n| = Op

(
n−1‖mrn‖ ‖mtn‖

)
= Op

(
n−1sm2

)
, (A.29)

by Lemma B.6 and Assumption 3. This implies that (A.27) is Op

((
s

1
2 m
)4+χ

/n1+ χ
2 q1+ χ

4

)

,

which is negligible by (3.7). For (A.28),
∑n

t=1m
2
rt,n equals n−1 times

m′
rnZ

′n−1M ′M
(
n−1M ′

nMn

)11
Zn−1M ′M

(
n−1M ′

nMn

)
Z ′n−1M ′M

(
n−1M ′

nMn

)11
Zn−1M ′Mmrn

≤ ‖mrn‖
2
∥
∥
∥Z ′n−1M ′M

(
n−1M ′

nMn

)11
Zn−1M ′M

∥
∥
∥

2 ∥
∥n−1M ′

nMn

∥
∥ = Op

(
sm2

)
.

Then (A.28) is Op

((
s

1
2 m
)2+ χ

2
/n

χ
4 q1+ χ

4

)

, which is negligible by (3.7).

To show (A.23) note that by Lemma B.1
∑n

r=1 E (z2
rn | εt, t < r) − 1 equals

4

2q

n∑

r=1

∑

t,u<r
t 6=u

εtεumrt,nmru,n +
1

2q

n∑

r=1

∑

t<r

(
ε2
t − 1

)
m2

rt,n +
4

2q

n∑

r=1

μ3mrr,n

∑

t<r

εtmrt,n. (A.30)
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Also, because Mn is idempotent and symmetric, we have, for r, t = 1, . . . , n,

mrt,n =
n∑

u=1

mru,nmut,n =
n∑

u=1

mru,nmtu,n, (A.31)

i.e. Mn and M2
n have the same elements. In particular this indicates that

tr
(
M2

n

)
=
∑

r

∑

u

mru,nmru,n =
∑

r,u

m2
ru,n. (A.32)

The first term in (A.30) has zero mean and (conditional) variance bounded by 1/q2 times

C
∑

v,r,t,u
t,u<r,v

mrt,nmru,nmvt,nmvu,n = C
∑

t,u
t,u<r,v

∑

r

mru,nmrt,n

∑

v

mvu,nmvt,n

= C
∑

t,u
t,u<r,v

m2
tu,n ≤ C

∑

t,u

m2
tu,n = Cq, (A.33)

using (A.31), while the last equality follows because (A.32) and the idempotency of Mn

imply that
∑

r,tm
2
rt,n = tr (M2

n) = tr (Mn) = q, because Mn has rank q. Thus the first

term in (A.30) is negligible because q → ∞ as n → ∞. The second term in (A.30) also

has zero mean. By (A.29), (A.31) and (A.32), its variance is bounded by

Cq−2
∑

r,v

∑

t<r,v

m2
rt,nm

2
vt,n ≤ Cq−2

∑

r,v,t

m2
rt,nm

2
vt,n

= Cq−2
∑

r,t

m2
rt,n

∑

v

m2
vt,n = Cq−2

∑

r,t

m2
rt,nmtt,n

≤ Cq−2 max
t

|mtt,n|
∑

r,t

m2
rt,n = Op

(
q−1n−1sm2

)
, (A.34)

which is again negligible under (3.7). Finally the third term in (A.30) has mean zero and

variance bounded by q−2 maxtm
2
tt,n

∑
r,tm

2
rt,n = Op (q−1n−2s2m4), which is negligible.

Proof of Theorem 3.4. First note that n−1Mn

(
(n−1M ′

nMn)
−1 − Σn−1M ′M

)
M ′

n is symmet-

ric and has rank q, and when multiplied by itself gives

n−1Mn

{(
n−1M ′

nMn

)−1
+ n−1Σn−1M ′MM ′

nMnΣn−1M ′M − 2Σn−1M ′M
}

M ′
n.

Now partitioning n−1M ′
nMn yields n−1Σn−1M ′MM ′

nMnΣn−1M ′M = Σn−1M ′M , so that Wn
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and LRn are quadratic forms in ε weighted by a symmetric, idempotent matrix with rank

q. The proof now follows that of Theorem 3.3 and the details are omitted.

Proof of Theorem 3.5. (i): C.1 follows from Theorems 3.1 and 3.3. For C.2, nĝ′
1,nĤ11

n ĝ1,n =

ng′0
n Hng0

n by (A.2), where the 0 superscript denotes evaluation at (0 ′, θ′20)
′, which is no

longer the true parameter value under H1. Another application of the MVT yields

g0
n = gn −

∂

∂θ′1
g

((
θ̊′1, θ

′
20

)′)

θ10 = gn − τ H̊
n , (A.35)

say, where
∥
∥
∥θ̊1

∥
∥
∥ ≤ ‖θ10‖. Thus

ng′0
n Hng0

n − q

2
1
2 q

1
2

=
ng′

nHngn − q

2
1
2 q

1
2

− 2
nτ ′H̊

n Hngn

2
1
2 q

1
2

+
nτ ′H̊

n Hnτ ′H̊
n

2
1
2 q

1
2

. (A.36)

The first term converges in distribution to a standard normal variate, as in Theorem 3.3,

and is therefore Op(1). Because at least one element of θ10 is nonzero, the third term on the

RHS of (A.36) is readily seen by Assumption 2 and Lemma B.5 to be at least Op

(
n/q

1
2

)
,

and evidently dominates the second term. Thus the LHS of (A.36) diverges at n/q
1
2 rate,

and therefore so does LMn, by Theorem 3.1. Hence, for all ε > 0, P
(∣
∣LM−1

n

∣
∣ ≤ εq

1
2 /n
)
→

1 as n → ∞, implying that, for all % > 0,

P (|LMn| > %) → 1, as n → ∞, (A.37)

because q
1
2 = o(n). Denote θ̊ =

(
θ̊′1, θ

′
20

)′
. To show C.3 first note that under the sequence

of local alternatives H`1, τ H̊
n =

[
H̊11,n, H̊12,n

]′
θ`,10. As ‖θ`,10‖ → 0,

∥
∥
∥θ̊1

∥
∥
∥ → 0 also and so

∥
∥
∥Δθ̊

θ0

∥
∥
∥→ 0 under H`1. Thus by Assumption 2 and (3.7), and because ‖θ`,10‖

2 = O
(
q

1
2 /n
)

we can use (A.36) to write

nτ ′H̊
n Hnτ H̊

n

2
1
2 q

1
2

= Op

(
max

{∥∥
∥ΔH̊

H

∥
∥
∥ ,
∥
∥ΔH

n−1M ′M

∥
∥ ,
∥
∥
∥Δn−1M ′M

L

∥
∥
∥
})

+
nτ ′L

n LnτL
n

2
1
2 q

1
2

(A.38)

nτ ′H̊
n Hngn

2
1
2 q

1
2

= Op

(
n

1
2 q−

1
4

∥
∥Δg

n−1M ′ε

∥
∥
)

+ Op

(
n− 1

2 q−
1
4 ‖M ′

nε‖max
{∥∥
∥ΔH̊

H

∥
∥
∥ ,

∥
∥ΔH

n−1M ′M

∥
∥ ,
∥
∥
∥Δn−1M ′M

L

∥
∥
∥
})

+
τ ′L
n LnM ′

nε

2
1
2 q

1
2

, (A.39)
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with Ln = Z ′LL11
n ZL. Everything apart from the last terms on the RHSs of (A.38) and

(A.39) are negligible by (3.7). Choosing Γn = [L11,n, L12,n]Ln [L11,n, L12,n]′ in H`1 the

second term on the RHS of (A.38) equals 2− 1
2 , so that the LHS converges in probability to

2−
1
2 . The last term on the RHS of (A.39) has zero mean and conditional variance bounded

by a constant times

δ′n [L11,n, L12,n]Ln

(
n−1M ′

nMn

)
Ln [L11,n, L12,n]′ δn/q

1
2 δ′nΓnδn = δ′n [L11,n, L12,n]Ln ×

Δn−1M ′M
L Ln [L11,n, L12,n]′ δn/q

1
2 δ′nΓnδn + 1/q

1
2 ,

whose first term is Op

(∥∥
∥Δn−1M ′M

L

∥
∥
∥ /q

1
2

)
= op(1), by Assumption 3, using the techniques of

Lemma B.5 to conclude that norms of blocks of Ln are O(1) and consequently so is Ln. The

simplification of the second term results from LnLnLn = Ln, because Z ′LLnZL = (L11
n )

−1

by the partitioned inverse formula. Thus the LHS of (A.39) is negligible, proving the result.

Part (ii) is proved in an identical fashion and we omit the details, noting only that we

take Γn = [L11,n, L12,n]
(
L−1

n − ΣL
)
[L11,n, L12,n]′, which equals [L11,n, L12,n]Ln [L11,n, L12,n]′.

Proof of Proposition 4.1. The condition (4.12) is simply the union of those imposed in

Theorem 3.5 and by Newey (1997) to obtain supx∈X

∣
∣
∣d̂(x) − d(x)

∣
∣
∣ = op(1). The proof of

Theorem 1 in Newey (1997) implies
∥
∥n−1P ′P − E

(
PJ (xi) PJ (xi)

′)∥∥ = Op

(
ζ(J)J

1
2 /n

1
2

)

and ‖P ′υ‖ = Op

(
(Jn)

1
2

)
. Together with (4.6) these imply that (3.4) holds under (4.12),

because in the notation of (3.4) we have Mn = P , ε = v and gn = n−1P ′v in this proposition.

Assumption A*. (Robinson (2005, 2010)) Define ϕ = (1 + φ (t1)) (φ (t1) − φ (t2))
−1 where

[t1, t2] is an interval on which f(t) is bounded away from zero, and κ = 1 + 2
1
2 l 2.414,

The following conditions hold:

• The υi are iid with zero mean, unit variance and differentiable pdf f(t).

• φ`(t) = φ`
t with φ(t) strictly increasing and thrice differentiable such that for some

κ ≥ 0 and K < ∞, |φ(t)| ≤ 1+ |t|κ and |φt(t)|+ |φtt(t)|+ |φttt(t)| ≤ C
(
1 + |φ(t)|K

)
.

• J → ∞ as n → ∞, and either (i) κ = 0, E (υ4
i ) < ∞, and

lim
n→∞

(log n/J) > 8 {logκ + max (log ϕ, 0)} l 7.05 + 8 max (log ϕ, 0) ;
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or (ii) κ > 0, for some ω > 0 the moment generating function E (exp (u |υi|
ω)) exists

for some u > 0, and

lim
n→∞

(log n/J log J) ≥ max
{
8κω−1, 4κ(ω + 1)ω−1

}
;

or (iii) κ > 0, υi is almost surely bounded, and

lim
n→∞

(log n/J log J) ≥ 4κ.

• Define ρvJ as CJ if v = 0, (CJ)vJ/ω if v > 0 and Assumption A* (ii) holds and CJ ,

if v > 0 and Assumption A* (iii) holds. Then

1

J
+

1

t(J)
+

J
1
2 ρ

1
2
4κJ (ρ2κJ/t(J) + 1)

n
1
2

−→ 0 as n → ∞.

Proof of Proposition 5.1. The proof follows straightforwardly because as in Newey (1988)

we can use ei = yn−Xnβ̂OLS and prove the result with ei replaced by ui. Then E
∥
∥W̄ ′(J)u

∥
∥2

=
∑n

i=1 E
∥
∥Φ(J)(vi)

∥
∥2

= Op (nρ2κJ) by (A.37) of Robinson (2010) (note that we do not have

the tiin factor that arises in his SAR setup), whence
∥
∥W̄ ′(J)u

∥
∥ = Op

(
n

1
2 ρ

1
2
2κJ

)
by Markov’s

inequality. Similarly by Lemma 10 of Robinson (2005)
∥
∥W (J) − E

{
Φ(J) (vi) Φ′(J) (vi)

}∥∥ =

Op

(
J

1
2 ρ

1
2
4κJ/n

1
2

)
. Now the conditions of the Proposition ensure that (3.4) and (3.7) are

satisfied.

B Technical lemmas

Lemma B.1. Let the conditions of Theorem 3.3 hold. Conditional on elements of Mn,

E (ε′Mnε − q) = 0 and var (ε′Mnε) /2q
p

−→ 1.

Proof. The first part follows from E (ε′Mnε) = trMn = q, by symmetry, idempotency and

rank q of Mn. These properties also imply var (ε′Mnε) = (μ4 − 3)
∑

rm
2
rr,n+tr (MnM′

n)+

tr (M2
n) = Op (n−1s2m4) + 2q, by (A.29), so var (ε′Mnε) /2q = Op (q−1n−1s2m4) +1 =

op(1) + 1, by (3.7).
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Lemma B.2. Under the conditions of Theorem 3.1 or Theorem 3.2,

w
w
wĤ−1

n

w
w
w = Op

(wwH−1
n

w
w) = Op

(ww
w
(
n−1M ′

nMn

)−1
w
w
w
)

= Op

({

lim
n→∞

η (Ln)

}−1
)

= Op(1).

A similar result holds for evaluation at θ̃ and θ satisfying
∥
∥
∥Δθ

θ0

∥
∥
∥ ≤

∥
∥
∥Δθ̂

θ0

∥
∥
∥ or

∥
∥
∥Δθ

θ0

∥
∥
∥ ≤

∥
∥
∥Δθ̃

θ0

∥
∥
∥. The result also implies that the norms of blocks of partitioned versions of these

matrices are bounded.

Proof. See Lemma B.3 in Gupta and Robinson (2018). For square blocks, the last claim

follows by Lemma B.4. For non-square blocks, it follows as in the proof of Lemma B.5 (see

(B.2)).

Lemma B.3. Under the conditions of Theorem 3.1 or Theorem 3.2,

w
w
wĤn

w
w
w = Op (‖Hn‖) = Op

(wwn−1M ′
nMn

w
w) = Op

(
lim

n→∞
η (Ln)

)
= Op(1).

A similar result holds for evaluation at θ̃ and θ satisfying
∥
∥
∥Δθ

θ0

∥
∥
∥ ≤

∥
∥
∥Δθ̂

θ0

∥
∥
∥ or

∥
∥
∥Δθ

θ0

∥
∥
∥ ≤

∥
∥
∥Δθ̃

θ0

∥
∥
∥. The result also implies that the norms of blocks of partitioned versions of these

matrices are bounded.

Proof. Similar to proof of Lemma B.2.

Lemma B.4. Consider a square matrix An. Suppose that
{
η(An)

}−1
+ η(An) = Op(1).

Let AS
n be any diagonal square sub-matrix of An. Then

{
η(AS

n)
}−1

+ η(AS
n) = Op(1).

Proof. Follows easily by appropriate choice of xn in quadratic form x′
nAnxn.

Lemma B.5. Under the conditions of Theorem 3.1 or Theorem 3.2, ‖Hn‖ = Op(1).

Proof. By elementary norm inequalities and properties

‖Hn‖ ≤
∥
∥
∥ZH̄

∥
∥
∥

2 ∥∥
∥Ĥ11

n

∥
∥
∥ . (B.1)

For the first factor on the RHS of (B.1), note that
∥
∥ZH̄

∥
∥ ≤ ‖Iq‖ +

∥
∥
∥H

−1

22,n

∥
∥
∥
∥
∥H21,n

∥
∥ . Also

H21,n = I1,nHnI2,n where I1,n =
[
0(s−q)×q, Is−q

]
and I2,n =

[
Iq, 0q×(s−q)

]′
. Clearly ‖I1,n‖,

‖I2,n‖ ≤ 1. Then

∥
∥H21,n

∥
∥ ≤ ‖I1,n‖ ‖I2,n‖

∥
∥Hn

∥
∥ ≤

∥
∥Hn

∥
∥ = Op(1), (B.2)
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by Lemma B.3. By the partitioned inverse formula, we have H
−1

22,n = H
22

n −H
21

n

(
H

22

n

)−1

H
12

n

implying that
∥
∥
∥H

−1

22,n

∥
∥
∥ ≤

∥
∥
∥H

22

n

∥
∥
∥ +

∥
∥
∥H

21

n

∥
∥
∥

2
∥
∥
∥
∥

(
H

22

n

)−1
∥
∥
∥
∥ . Since eigenvalues of diagonal sub-

matrices fall within the same bounds as those of the original matrix (see Lemma B.4)∥
∥
∥
∥

(
H

22

n

)−1
∥
∥
∥
∥ =

{
η
(
H

22

n

)}−1

= Op(1). Arguments similar to those used for showing (B.2)

allow us to conclude that
∥
∥
∥H

22

n

∥
∥
∥ and

∥
∥
∥H

21

n

∥
∥
∥ are Op(1) using Lemma B.3. It follows that

the first factor on the RHS of (B.1) is Op(1). The second factor is also Op(1) by Lemmas

B.2 and B.4.

Lemma B.6. Under the conditions of Theorem 3.1 or Theorem 3.2,∥
∥
∥Zn−1M ′M

∥
∥
∥+ ‖n−1M ′

nMn‖ = Op(1).

Proof. The LHS is bounded by
∥
∥
∥ΔZn−1M ′M

ZL

∥
∥
∥ +

∥
∥
∥Δn−1M ′M

L

∥
∥
∥ +

∥
∥ZL

∥
∥ + ‖Ln‖. The last two

terms are are O(1) by Assumption 2 and the techniques used in the proof of Lemma B.5,

while the first is

∥
∥
∥
∥Δ

n−1M ′M12(n−1M ′M22)
−1

L12L−1
22

∥
∥
∥
∥ = Op

(∥∥
∥Δn−1M ′M

L

∥
∥
∥
)
, as we bounded

∥
∥
∥Δ

L12L−1
22

H12H
−1
22

∥
∥
∥

in the proof of Theorem 3.1. As
∥
∥
∥Δn−1M ′M

L

∥
∥
∥ = op(1) by (3.4), the lemma is proved.
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