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ABSTRACT 51 

 52 
Purpose. Performing against a virtual opponent has been shown to invite a change in pacing 53 
and improve time trial (TT) performance. This study explored how this performance 54 

improvement is established by assessing changes in pacing, neuromuscular function and 55 
perceived exertion. Methods. After a peak power output test and a familiarization TT, twelve 56 
trained cyclists completed two 4-km TTs in randomized order on a Velotron cycle ergometer. 57 
Time trial conditions were riding alone (NO), and riding against a virtual opponent (OP). Knee-58 
extensor performance was quantified before and directly after the TT using maximal voluntary 59 

contraction force (MVC), voluntary activation (VA) and potentiated doublet-twitch force (PT). 60 
Differences between the experimental conditions were examined using Repeated-measures 61 
ANOVAs. Linear regression analyses were conducted to associate changes in pacing to changes 62 
in MVC, VA and PT. Results. OP was completed faster than NO (mean power output OP: 63 
289.6±56.1W vs. NO: 272.2±61.6W; p=0.020), mainly due to a faster initial pace. This was 64 

accompanied by a greater decline in MVC (MVCpre-vs-post: -17.5±12.4% vs. -11.4±10.9%, 65 
P=0.032) and PT (PTpre-vs-post: -23.1±14.0% vs. -16.2±11.4%, P=0.041) after OP compared 66 

to NO. No difference between conditions was found for VA (VApre-vs-post: -4.9±6.7% vs. -67 
3.4±5.0%, P=0.274). RPE did not differ between OP and NO. Conclusion. The improved 68 
performance when racing against a virtual opponent was associated with a greater decline in 69 
voluntary and evoked muscle force compared to riding alone, without a change in perceived 70 

exertion, highlighting the importance of human-environment interactions in addition to one’s 71 
internal state for pacing regulation and performance.  72 
 73 

KEYWORDS: Pacing strategy, Muscle fatigue, Perception, Competition, Cycling 74 
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INTRODUCTION 101 

 102 
The goal-directed regulation of the exercise intensity over an exercise bout has been 103 

defined as pacing, and is widely recognized as an essential determinant for performance.1 Based 104 

on existing theories about pacing, it can be concluded that sensations of fatigue and a 105 
willingness to tolerate discomfort (in anticipation of future rewards) are important in this 106 
process of action regulation.2 Concepts such as teleoanticipation3 and template formation4 have 107 
been pointed out as crucial in the process. In addition, the importance of the interaction of the 108 
exerciser and environmental cues has been emphasized recently in the context of pacing.2,5 109 

Perceptual cues provided by the environment can invite athletes to respond, thereby evoking 110 
adaptations of pacing behavior.2,5 In this sense, an opponent can be perceived as an important 111 
environmental cue that represents action possibilities to an athlete in competitive sports.5 112 
 Indeed, the presence of a virtual opponent has been shown to improve cycling 113 
performance6–8, and the pacing behavior of the virtual opponent has been shown to affect the 114 

initial pace of cyclists in laboratory-controlled conditions.7 The performance improvement 115 
related to the presence of an opponent appears to remain quite stable, regardless of the level of 116 

performance of the opponent.9 Yet a different level of performance of the opponent appeared 117 
to evoke different psychological responses.9 On top of this, the improvement in performance 118 
only seems to occur acutely when the opponent is present, as performance declines back to 119 
baseline levels in subsequent time trials riding alone.10 Possible mechanisms, such as an 120 

increased motivation11 and a change in attentional focus from internal to external aspects,8 have 121 
been suggested in relationship to the performance improvement seen in the presence of a virtual 122 
opponent. However, it is yet unclear how this improved performance in the presence of a virtual 123 

opponent is established. In this study we explored this by examining performance 124 
improvements when riding against a virtual opponent compared to riding alone, and by relating 125 

these to neuromuscular adjustments in the knee extensors and perceived exertion. We 126 
hypothesized that the presence of a virtual opponent could invite a change in pacing and evoke 127 

an improvement in performance, leading to a greater decline in voluntary muscle force after a 128 
4-km time-trial compared to riding alone. In addition, we explored whether a change in pacing 129 

and performance would be mainly related to alterations in contractile function or in muscle 130 
activation. 131 
 132 

METHODS 133 
 134 

Participants 135 
Twelve trained male cyclists with at least two years cycling experience at a moderate to 136 

high intensity (age: 36.8±10.0 years; body mass: 82.1±13.9 kg; height: 180.1±9.7 cm) 137 

participated in this study. Before participating all participants gave written informed consent 138 
and completed a health screening questionnaire (Physical Active Readiness Questionnaire12). 139 

The study was approved by the university’s local ethical committee in accordance with the 140 

Declaration of Helsinki. 141 

 142 
Experimental procedures 143 

Participants visited the laboratory on four separate occasions. During their first visit, 144 
participants performed a maximal incremental test on a Velotron cycle ergometer. In their 145 
second to fourth visit participants were asked to perform a self-paced 4-km cycling time-trial 146 

(TT) as fast as possible. Prior and after the TTs, maximal voluntary contraction, doublet-147 
twitches at rest and voluntary activation of the quadriceps muscle were determined. The first 4-148 
km TT was always a familiarization TT (FAM). In the final two visits participants completed 149 
in a randomized order one of the two different experimental 4-km TT conditions (see Section 150 
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Procedures). No verbal coaching or motivation was given to the subjects during any of the TTs. 151 

Before each TT condition subjects performed a 5-min warm-up at an intensity of 30% peak 152 
power output (PPO). 153 

To minimize circadian variation, TTs were completed at the same time of the day (±2 154 

h) for each participant.13,14 Participants were asked to maintain normal activity and sleep pattern 155 
throughout the testing period. In addition, participants were asked to refrain from any strenuous 156 
exercise and alcohol consumption in the preceding 24-h, and from caffeine and food 157 
consumption four and two hours respectively, before the start of the test. Participants were 158 
informed that the study was examining the influence of external factors on performance during 159 

cycling TTs. To prevent any pre-meditated influence on preparation or pre-exercise state, the 160 
specific feedback presented for each trial was only revealed immediately before the start of the 161 
TT. All trials were conducted in ambient temperatures between 18-21°C. 162 

 163 

Procedures 164 
Maximal incremental test  165 

Participants attended the laboratory to complete a maximal incremental test on the 166 

Velotron cycle ergometer (VeloTron Dynafit, Racermate, Seattle, USA) to measure PPO. A 5-167 
min warm-up at 100W was followed by a 3-min rest period before starting the test. The 168 
incremental test had an initial workload of 100W and a workload increase of 25W every minute 169 
until volitional exhaustion. Subjects were instructed to keep their cadence between 80-100 170 

revolutions per minute (rpm). Participants were given strong verbal encouragement in the latter 171 
stages. The highest mean power output achieved during any 60-s period was recorded as the 172 
subject’s PPO.  173 

 174 
Familiarization and Experimental trials  175 

During the second visit, participants completed a self-paced familiarization 4-km TT. 176 
During the third and fourth visit, participants were asked to complete one of the two different 177 

experimental, self-paced 4-km TT conditions. The experimental conditions were a TT without 178 
virtual opponent (NO), and a TT with virtual opponent (OP). Each 4-km TT started 4 min after 179 

completion of the warm-up. Before the trials with a virtual opponent, subjects were told that 180 
their virtual opponent would be of similar level of performance in order to make sure a subject 181 
would perceive his opponent as competitive. Although participants were unaware of this, the 182 

virtual opponent was in fact their own previous performance during FAM. Typically, a 183 
modification in pacing strategy towards a less aggressive start occurs after a familiarization trial 184 

in TTs of relatively short duration.7,15 Therefore, using FAM as basis for the construction of the 185 
opponent most likely results in a competitor that uses a different pacing profile compared to our 186 
participant in the experimental TT conditions.      187 

Time trials were performed on an advanced cycle ergometer (VeloTron Dynafit, 188 
Racermate, Seattle, USA) that has been shown to be a reliable and valid tool to measure cycling 189 

performance and pacing behavior.16 Using the VeloTron 3D software, a straight and flat 4-km 190 

TT course with no wind was programmed and projected onto a screen for all trials. During the 191 

TTs only feedback regarding the relative distance that still had to be covered was provided. In 192 
the opponent conditions, a virtual opponent was projected. Power output, velocity, distance, 193 
cadence, and gearing were monitored continuously during each trial (sample frequency = 4 Hz). 194 
Rate of perceived exertion (RPE) on a Borg-scale of 6-2017 was asked after the warm-up, at 195 
100s, 200s and 300s after starting the TT, and directly after passing the finish line.  196 

 197 
Neuromuscular function  198 

Measures of neuromuscular function were evaluated prior and after the trial (within <3 199 
min after finishing TT) using electrical stimulation of the right femoral nerve. Three variables 200 
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were obtained to quantify muscle performance; maximal voluntary contraction force (MVC), 201 

voluntary activation (VA) and the potentiated doublet-twitch force (PT).  202 
All of these three variables change following exertion. The PT is the highest force of 203 

the three repetitions evoked by paired-pulse electrical stimulation administered to the resting 204 

muscle, five seconds after the MVC.18 The VA is determined via the interpolated doublet-twitch 205 
technique (ITT) and is estimated by changes in the interpolated doublet-twitch relative to the 206 
PT (see equation).19 The force evoked by the imposed electrical stimulation on top of the MVC 207 
is the interpolated doublet-twitch (IT), the force evoked by the electrical stimulation 5s after 208 
MVC is PT.  209 

𝑽𝑨(%) = (𝟏 −  
𝑰𝑻

𝑷𝑻
) ∙ 𝟏𝟎𝟎 210 

Knee extensor force (N) during voluntary and evoked contractions was measured using 211 
a calibrated load cell dynamometer (Kin-Com dynamometer, Chattanooga Group Inc.; Hixon, 212 

TN, USA) fixed to a custom-built chair and connected to a noncompliant Velcro strap attached 213 

around the participant’s right leg superior to the ankle malleoli. The height of the load cell was 214 
individually adjusted to ensure a direct line with the applied force. During all measurements, 215 
participants sat upright, with the hips and knees at 90° flexion, and were given specific 216 
instruction to remain seated. After the skin was shaved two stimulation pads (Axelgaard 217 

ValuTrode 5x9 cm disposable surface electrodes) were placed on the leg and connected to a 218 
high voltage stimulator (DS7AH; Digitimer Ltd., Welwyn Garden City, United Kingdom). The 219 

cathode pad was placed at the distal side of the middle of the inguinal crease.20 The anode pad 220 
was placed 2-3 cm proximal to the patella, with the knee in a bent position.20 The sequence of 221 
stimulation was controlled by a programmable output system (LabChart 7.0, AD Instruments, 222 

United Kingdom). The positions of the electrodes were marked with indelible ink to ensure 223 
consistent placement on repeat trials. 224 

  Before their TT, participants completed three isometric MVC’s separated by 60s rest. 225 

To determine stimulation intensity, paired-pulse stimuli (200 µs duration; 10 ms interval) were 226 

delivered in 25 mA stepwise increments from 150 mA and the current that evoked maximal 227 
doublet-twitch amplitude at rest was determined. To ensure a supramaximal stimulus, the final 228 

intensity was increased by 30% (mean ±SD current: 343±57 mA). Femoral nerve stimulation 229 
was delivered during and 5s after MVC to assess VA. Participants completed post-TT exercise 230 

another three MVC’s with femoral nerve stimulation. In line with other investigations that have 231 
assessed cycling exercise-induced fatigue of the knee extensors, the post-TT measurements 232 
were completed within three minutes of exercise cessation.21 The rapid nature of this procedure 233 

is necessary to capture the decline in MVC force, voluntary activation, and potentiated doublet-234 
twitch force induced by the exercise before it dissipates,22 and the duration was consistent 235 

between trials. During all MVC’s participants received verbal encouragement.  236 

 237 
Statistical analysis 238 

A two-way repeated-measures ANOVA (condition x time) was used to assess the effect 239 
of each time trial on measures of neuromuscular function (comparison of before vs after trial) 240 
and to assess the differences between TT conditions. A multiple linear regression analysis 241 
(Backward method) was performed to determine the relationship between the change in mean 242 

power output per kilometer during OP relative to NO and the absolute VA, and the change in 243 
differences in MVC, VA and PT before and after the time-trial in OP relative to NO. 244 
Significance was accepted at P<0.05. 245 

To examine 4-km TT performance mean power output, heart rate, cadence, and finish 246 
time were calculated. Differences in performance between conditions were assessed using a 247 
one-way repeated-measures ANOVA (condition). To assess differences in pacing behavior 248 
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between the conditions, average power output, cadence, and split times for each 250m segment 249 

were calculated, and differences were tested using a two-way repeated-measures ANOVA 250 
(condition x segment). The RPE was evaluated using a two-way repeated-measures ANOVA 251 
(condition x asking point). All analyses were performed using SPSS 19.0, and significance was 252 

accepted at P<0.05. Data are presented as means ± SD. 253 

 254 
RESULTS 255 

 256 

Performance analysis 257 
The participants achieved a mean PPO of 351±35 W in the maximal incremental test, 258 

and can be classified as trained cyclists based on the guidelines of De Pauw et al.23 A higher 259 
mean power output (OP: 289.6±56.1 W vs. NO: 272.2±61.6 W; F=7.5; p=0.020) and faster 260 
finishing times (OP: 382.2±31.9 s vs. NO: 393.6±21.9 s; F=5.1; p=0.046) were reported after 261 
OP compared to NO. Completion time of FAM and NO did not differ (p=0.241), In contrast, 262 

participants completed their TT faster in OP compared to the FAM/virtual opponent (p=0.003).     263 
Mean heart rate over the TTs was higher during OP compared to NO (OP: 164.6±9.0 bpm vs. 264 

NO: 158.9±12.4 bpm; F=6.6; p=0.026). No differences in mean cadence were found between 265 
OP and NO (OP: 103.9±10.2 rpm vs. NO: 104.7±12.5 rpm; F=0.2; p=0.669). 266 
 267 

Pacing analysis 268 
Mean (±SD) power outputs per 250m section are shown in Figure 1. Main effects for 269 

condition (F=7.5; p=0.020) and segment (F=5.0; p<0.001), and an interaction effect for 270 
condition x segment (F=1.9; p=0.029) were found, indicating differences in pacing profile 271 

between conditions. Post hoc analysis revealed a faster initial pace during OP compared to NO, 272 
with higher power outputs between 250-500m (p=0.040), 750-1000m (p=0.022), and  1000-273 

1250m (p=0.024). In addition, a faster end spurt (3750-4000m) was noticed in OP compared to 274 
NO (p=0.001). Finally, regression analysis showed that the difference in mean power output 275 

between OP and NO during the first kilometer could explain 47.9% of the total variance in the 276 
relative difference in mean power output between OP and NO over the whole time-trial 277 

(R2=0.479, β = 0.692, p=0.013). Participants adopted a slower initial pace in NO (0-250m: 278 
p=0.065; 250-500m: p=0.001; 500-750m:p=0.005), but not during OP, in comparison to FAM 279 
(and thus the virtual opponent in OP; 0-250m: p=0.187; 250-500m: p=0.148; 500-280 

750m:p=0.216). In addition, participants were faster in OP compared to FAM between 1250-281 
1500m (p=0.032), 2500-2750m (p=0.022), 3250-3500m (P=0.046), and 3750-4000m 282 

(p=0.018).  283 
Mean (±SD) heart rates per 250m section are shown in Figure 2. A main effect was 284 

found for condition (F=6.6; p=0.026) and segment (F=149.8; p<0.001). An interaction effect 285 

was reported for condition x segment (F=1.8; p=0.035). Post hoc tests showed heart rate values 286 
were higher in OP compared to NO from 250m until 1750m. A main effect for segment 287 

(F=18.756; p<0.001), but no main effect for condition (F=0.2; p=0.669) and no interaction 288 

effect for condition x segment (F=0.7; p=0.767) was found for cadence. Mean (± SD) RPE 289 

scores per point of asking for each experimental condition are shown in Table 1. A main effects 290 
for point of asking (F=29.2; p<0.001), but no main effect for condition (F=4.2; p=0.065), and 291 
no interaction effect for condition x point of asking (F=0.7; p=0.560) were found.  292 
 293 

Neuromuscular adjustments 294 
Mean (±SD) differences in MVC, PT and VA in the posttest versus the pretest per 295 

experimental condition can be found in Table 2. In addition, a typical example of the assessment 296 
of neuromuscular function of the knee extensors during and after a MVC using the interpolated 297 
doublet-twitch technique is shown in Figure 3. A main effect was found for time (F=23.8; 298 
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p<0.001), but not for condition (F=0.3; p=0.596) for the MVC. The main effect for time showed 299 

a decrease in MVC force in the posttest compared to the pretest. Furthermore, an interaction 300 
effect was reported for condition x time (F=6.1; p=0.032) for the MVC, revealing that the force 301 
decline was relatively greater after OP compared to NO.  302 

A main effect for time (F=41.4; p<0.001), but not for condition (F=0.6; p=0.440) was 303 
found for the PT, indicating smaller potentiated doublet-twitch force after the TTs compared to 304 
before the TTs. An interaction effect for condition x time (F=5.4; p=0.041) showed the decline 305 
in potentiated doublet-twitch force was greater after OP compared to NO. A main effect for 306 
time (F=11.8; p=0.006), but not for condition (F=0.5; p=0.484) was reported for VA. Moreover, 307 

no interaction effect for condition x time (F=1.4; p=0.274) was found for the VA, indicating no 308 
difference in voluntary activation was found between NO and OP.  309 

The outcomes of the linear regression analyses used to assess the relationship between 310 
the change in power output per kilometer during OP relative to NO, and the change in 311 
differences in MVC, VA, and PT before and after the time-trial in OP relative to NO can be 312 

found in Table 3. Negative standardized beta coefficients were found between the relative 313 

change in power output during the first kilometer in OP compared to NO and both ∆PT (β = -314 

0.50, p=0.036) as well as ∆VA (β = -0.49, p=0.045) after OP compared to NO. These negative 315 

beta-values indicate that a relatively faster initial pace in OP is associated to a relatively greater 316 
decline in PT and increased reduction in VA after OP compared to NO. The combination of the 317 
relative change in PT and VA could explain 60.9% of the total variance in the relative change 318 

in power output during the first kilometer in OP compared to NO. The relative change in MVC 319 
in OP compared to NO and the absolute voluntary activation did not significantly contribute to 320 

the model. 321 

 322 
DISCUSSION 323 

 324 
Trained cyclists were able to improve their mean power output and finishing time in a 325 

self-paced 4-km TT when riding against a virtual opponent. This performance improvement 326 
was accompanied by a greater decline in MVC force and PT force, while no difference between 327 

TT conditions was found for the voluntary activation. In addition, linear regression analyses 328 
showed that the faster initial pace of the participants in OP relative to NO, most likely evoked 329 

by their virtual opponent,7 is associated with a relative greater reduction in doublet-twitch 330 
amplitude and voluntary activation after OP relative to NO. Remarkably, participants still 331 

perceived a similar level of exertion in both experimental conditions, despite the higher mean 332 
power output, the greater decline in MVC force and potentiated doublet-twitch force, and the 333 
higher mean heart rate that was found when riding against a virtual opponent.  334 

Previous research has shown before that a virtual opponent could affect pacing behavior7 335 
and improve performance.6–8 In this perspective, the presence of a virtual opponent has been 336 

related to a greater external distraction, possibly deterring perceived exertion.8 However, at the 337 
same time a higher level of fatigue has been revealed to alter attentional focus from external to 338 

internal factors.24 Interestingly, if the “competitor” was not visible during the trial, even the 339 
prospect of a monetary incentive ($100,-) did not led to an improvement in 1500m cycling 340 
performance.25 The improvements during a 2-km head to head competition with virtual 341 
opponent were shown to be accompanied by a greater anaerobic energy contribution while 342 
aerobic contribution remained the same.6 The present study adds onto this knowledge that the 343 

performance improvement in the presence of a virtual opponent is also accompanied by a 344 
greater decline in voluntary and evoked muscle force.  345 

Many studies have suggested that muscle fatigue has a crucial impact on the decision-346 
making process regarding exercise regulation and performance.2,26–28 In this respect, afferent 347 
feedback generated during high-intensity exercise has been suggested as a potential way to 348 
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protect intramuscular homeostasis.27,29 For instance, when receiving similar pacing instructions, 349 

athletes demonstrated different pacing behavior in different sports while similar neuromuscular 350 
adjustments were found at the end of the trial.20 In addition, impairing lower limb muscle 351 
afferent feedback via group III/IV muscle afferents led to a faster initial pace.30 In this 352 

perspective, the present findings indicate the possible effect of afferent feedback on the 353 
decision-making process involved in pacing might be counteracted by motivational aspects 354 
and/or attentional strategies related to the presence of a virtual opponent. In addition, linear 355 
regression analyzes showed that the faster initial pace of the participants in OP relative to NO, 356 
most likely evoked by their virtual opponent,7 was associated to a relative higher reduction in 357 

doublet-twitch amplitude after OP. This supports the idea that perceptual affordances provided 358 
by the environment could invite athletes to respond differently,2,5 and might be able to overrule 359 
to a certain extent the influence of afferent feedback on the decision-making process involved 360 
in pacing. To further our understanding of the complex decision-making process involved in 361 
the regulation of the exercise intensity a combination of observational studies (to ensure a high 362 

ecological validity; see 31,32) as well as experimental studies (to allow controlled manipulations) 363 
will be required. 364 

According to Amann & Dempsey29 afferent feedback via group III/IV muscle afferents 365 
can also lead to an increased reduction in the voluntary activation of the muscle. However, no 366 
difference in the voluntary activation has been found after OP compared to NO. In this respect, 367 
it is known that the contribution of the decline in muscle activation to performance fatigability 368 

is more apparent in time trials of longer duration, while the contribution of the reduction in 369 
contractile function is relatively higher in high-intensity time trials of shorter duration.21,33–35 370 
Interestingly, despite no difference in voluntary activation was found after our experimental 371 

conditions, a higher initial pace in OP relative to NO appeared to be associated to a relative 372 
higher reduction in voluntary activation after OP compared to NO.  373 

Due to methodological reasons, adjustments in neuromuscular function caused by the 374 
TT exercise could only be measured after TT completion but not during the race. This limitation 375 

is common in the literature of studying adjustments in neuromuscular function caused by 376 
locomotor exercise modes and assumes that the neuromuscular adjustments observed after 377 

exercise are also present during the exercise.21,22 In addition, we used linear regression analyses 378 
to assess the relationship between the change in mean power output per kilometer during OP 379 
relative to NO, and the change in differences in MVC, VA and PT before and after the time-380 

trial in OP relative to NO. The outcomes of the linear regression analyses indicated that a 381 
relatively faster initial pace in OP relative to NO was associated with a relatively larger decline 382 

in PT and an increased reduction in VA. The combination of the relative change in PT and VA 383 
could explain 60.9% of the total variance in the relative change in mean power output during 384 
the first kilometer in OP compared to NO. As a significant recovery of muscle function can 385 

occur two minutes after exercise,22 it is possible that the changes in neuromuscular function 386 
caused by the TT exercise were underestimated. Nevertheless, the time taken to assess 387 

neuromuscular function was consistent within participants between their trials. Moreover, a 388 

significant reduction in all three measured neuromuscular variables was observed after all TTs, 389 

while the decline in MVC and PT force was influenced by the TT condition. These observations 390 
indicate that the methods used were appropriate to determine differences in the neuromuscular 391 
function after the TT exercise in the different experimental conditions. Finally, the reported 392 
potentiated doublet-twitch force in this study appeared to be relatively high. This is most likely 393 
related to the neuromuscular stimulation of quadriceps, as this effect has been reported earlier 394 

for this muscle group.36  395 
 396 

Practical applications 397 
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 In the presence of a virtual opponent, cyclists were able to establish an improved 398 

performance, maintain a higher mean power output, and able to handle a greater decline in 399 
muscle force over a 4-km TT. In this sense, the use of a visual avatar in a simulated competitive 400 
situation could be a beneficial, novel tool to use during high-intensity training sessions. In 401 

addition, our findings emphasize that external cues are crucial the regulation of the exercise 402 
intensity in addition to an athlete’s internal state, and indicate that understanding the interaction 403 
between external cues and internal information may be a key for pushing the limits of human 404 
performance. 405 

 406 

Conclusions 407 
Trained cyclists were able to improve their performance in the presence of a virtual opponent, 408 
in line with previous research.6–8 The present study has shown that the improved performance 409 
during head-to-head competitions compared to individual self-paced cycling time-trials is 410 
associated to a greater decline in MVC force and potentiated doublet-twitch force, while still 411 

perceiving a similar rate of perceived exertion as when riding alone. Our findings indicate that 412 
the regulation of the exercise intensity is not purely based on physiological information related 413 

to a decline in muscle force production. An external environmental stimulus appears to be able 414 
to evoke the execution of certain actions that were not perceived as possible or necessary when 415 
riding alone. To understand the regulation of the exercise intensity, it is crucial to incorporate 416 
human-environment interactions in our thinking about how pacing decisions are made in real 417 

life competitive situations in sports, and what information is used to inform such decisions.2,5  418 

 419 
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FIGURES 548 

 549 
 550 

551 
Figure 1. Average power output per 250 m segment for both experimental conditions. In 552 
addition, the average power output per 250 segment of the virtual opponent in the experimental 553 

condition OP is displayed. 554 
*
 significant difference between OP and NO (P<0.05) 555 
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 584 

 585 
Figure 2. Average heart rate per 250 m segment for both experimental conditions. 586 
*
 significant difference between OP and NO (P<0.05) 587 
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 616 

 617 
Figure 3. Typical example of the raw data for one of the 5 s MVCs, including the superimposed 618 
doublet-twitch during the MVC and the potentiated doublet-twitch 5 s after the MVC. The 619 

double arrows indicate the moment of applying the paired-pulse electrical stimuli to the right 620 
femoral nerve.    621 
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TABLES 649 

 650 

Table 1. Mean ± SD values for the RPE of the participant per experimental condition after completing 

their warm-up and time trial, and 100 s, 200 s and 300 s after starting their time trial. 

 Warm-up TT
100 sec

 TT
200 sec

 TT
300 sec

 TTFinish 

NO 8.6 ± 1.6 13.3 ± 1.5 15.1 ± 1.4 16.8 ± 1.7 18.7 ± 1.4 

OP 9.0 ± 1.8 13.7 ± 2.0 15.7 ± 1.4 17.4 ± 1.7 18.7 ± 1.1 
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 693 

Table 2. Mean ± SD values for the neuromuscular function of the knee extensors in terms of 

maximal voluntary contraction force (MVC), potentiated doublet-twitch force (PT) and voluntary 

activation (VA) before and after both 4 km time trial conditions.  

                                NO         OP 

 Pre-TT Post-TT Decrease%         Pre-TT Post-TT Decrease% 

MVC A,B 

(N) 
715±182 633±169 11.4±10.9 717±199 592±170 17.5±12.4 

PT A,B 

(N) 
425±70 356±83 16.2±11.4        431±83 331±75 23.1±14.0 

VA A 

(%) 
80.2±9.8 76.7±8.1 3.4±5.0      83.0±8.8 78.1±11.8 4.9±6.7 

A main effect for Trial (pre vs post), B interaction effect for Trial*Condition 
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 729 

 730 
Table 3. Multiple linear regression analysis was used to 

assess the relationship between the change in mean 

power output per kilometer during OP relative to NO 

(∆PO), and the change in MVC, VA, and PT before and 

after the time-trial in OP relative to NO (∆MVC, ∆VA, 

∆PT respectively). R2 and Standardized beta coefficients 

are presented. 

Multiple linear regression 

  ∆PO 
1km 

∆PO 
2km 

∆PO 
3km 

∆PO 
4km 

 
 

∆PT & 

∆VA† 
-° -° -° 

 R2 0.609 - - - 

     β    ∆PT 
          ∆VA 

-0.50 
-0.49 

- 
- 

- 
- 

- 
- 

   Sign    ∆PT 
             ∆VA 

0.036* 
0.045* 

- 
- 

- 
- 

- 
- 

*significant standardized beta coefficient (P<0.05) 
†∆MVC and absolute VA were removed out of the multiple linear 

regression analysis as they did not contribute significantly to any of the 
variables 
° all variables were removed out of the multiple linear regression analysis 
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