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Big data is fueling the digital revolution in an increasingly knowledge driven and connected society by 
offering big data analytics and computational intelligence based solutions to reduce the complexity and 
cognitive burden on accessing and processing large volumes of data. In this paper, we discuss the 
importance of big data analytics and computational intelligence techniques applied to data produced 
from the myriad of pervasively connected machines and personalized devices offering embedded and 
distributed information processing capabilities. We provide a comprehensive survey of computational 
intelligence techniques appropriate for the effective processing and analysis of big data. We discuss a 
number of exemplar application areas that generate big data and can hence benefit from its effective 
processing. State of the art research and novel applications in health-care, intelligent transportation and 
social network sentiment analysis, are presented and discussed in the context of Big data, Cyber 
Physical Systems (CPS), and Computational Intelligence (CI). We present a data modelling 
methodology, which introduces a novel biologically inspired universal generative modelling approach 
called Hierarchical Spatial-Temporal State Machine (HSTSM). The HSTSM modelling approach 
incorporates a number of soft computing techniques such as: deep belief networks, auto-encoders, 
agglomerative hierarchical clustering and temporal sequence processing, in order to address the 
computational challenges arising from analyzing and processing large volumes of diverse data to 
provide an effective big data analytics tool for diverse application areas. A conceptual cyber physical 
architecture, which can accommodate and benefit from the proposed methodology, is further presented.  



 
Keyw
CPS

1. In

The 
ackn
or as
oil h
fueli

Big 
(Cha

 

 

 

 

 

 

Big 
unde
appli

The 
now 

words: Big D
 applications, 

ntroduction 

importance o
nowledged. Th
s IBM's Chief
has been instr
ing an ever ev

data can be d
ang, 2015a).  

Volume refer
be in Zettab
production lin
Velocity refer
speed at whic
seconds and 
bank transact
Variety refer
structured or 
possible to ca
social media (
Veracity refe
volume of dat
Value refers 
automotive in

Data analytic
erlying patter
ication contex

original Big 
evolved to de

ata, Big Data 
HSTSM 

of big data in
his ever-growi
f Executive O
rumental in fu
volving 21st ce

defined by the 

rs to the vast a
bytes or Bron
nes for manuf
rs to the spee
ch big data m
the speed of 
ions  in millis
s to the vario
unstructured

ategorize the d
(e.g., photos, 

ers to the mes
ta it can be m
to providing 

ndustries to di

cs refers to th
rns are revea
xt under inves

Data revoluti
eveloping com

Valu

Analytics, Cy

n the informa
ing impact can

Officer recently
ueling  the in
entury digital r

five Vs (see 

amounts of da
ntobytes. For 
facturing vehic
d at which bi

move around. F
production li

seconds.   
ous types of d
d which is di
data into regu
text messages
ssiness or tru
essy and conta
meaningful in
scover  pattern

Figur

he techniques
aled, relations
tigation are ex

ion started wi
mplex data dri

B

Veracity

ue

yber Physical 

ation econom
n be summari
y added: "Big

ndustrial revol
revolution.  

Figure 1): Vo

ata which are c
example, bi

cle instrument
ig data are cre
For example, 
ines for proc

data collected
ifficult to pro
ular relational 
s) and industri
ustworthiness 
tain a lot of no
nsight into bi
rns in data lead

re 1: 5Vs of bi

s used to exa
ships are ide
xposed.  

ith fundament
iven models fo

5Vs of
Big Dat

Volume

Systems, Com

my and to the 
ized in the sta
g Data is the n
lution in the 2

olume, Veloci

created and st
ig data create
t clusters and 
eated, streame

big data mov
essing optic c

d. The created
ocess using tr
databases for 
ial production
of the create

oise.   
ig data. For e
ding to faults.

ig data 

amine and pr
entified, and 

tal physics ex
or climate pre

f 
ta

Va

Velocity

mputational In

modern way
tement that "d
new oil" (Hir
20th century s

ity, Variety, V

ored every sec
ed by social 
so forth.  

ed and aggreg
ves from and 
character reco

d data can be
raditional app
example, big

n lines (e.g., se
d data. Due 

xample analy

rocess Big Da
other insight

xperiments at 
diction, weath

ariety

ntelligence, C

y of life is w
data is the new
rsch, 2013). Ju
so big data is

Veracity and V

cond. The dat
media, indu

gated as well a
to social med

ognition (OCR

e structured, 
proaches. It i
g data generate
ensory data). 
to the variety

ysis of big dat

ata so that hi
hts concerning

CERN, and i
her forecastin

CI and 

widely 
w oil" 
ust as 
s now 

Value 

ta can 
ustrial 

as the 
dia in 
R) or 

semi-
s not 
ed by 

y and 

ta for 

 

idden 
g the 

it has 
g and 



seismology. Gone are the days when the computation time to model the atomic nucleus data took 24 
hours on a cray supercomputer, it now takes minutes or even seconds on a laptop. Big Data is now 
transmitted via hundreds of operational satellites where global positional resolution is expected to be 
40 cm in a few years’ time. 

Recent advances in hardware and software technologies have enabled big data acquisition. This data 
can be harvested from a large number of diverse sources including emails and online transactions, 
multimedia information such as audio, video and pictures, large databases containing health records 
and other information. In addition, information can be captured during a user's interaction with social 
media such as posts, status updates etc., data derived from search queries or click patterns of a user, 
physiological data such as heart rate, skin conductivity etc. as captured from wearable sensors, data 
derived and extracted from our interaction with our mobile devices, embedded artifacts  inside a smart 
home, data from production machines and industrial robots, scientific research and other sources 
(Eaton, 2012). It is clear from the above that in the modern world data is being generated at an 
accelerated rate (Villars, 2011).  

The potential utilization of this huge amount of information has catapulted Big Data and Big data 
analysis as a central focus for modern research communities, modern businesses, and governments 
(Hashem, 2015) working towards delivering the promise of a plethora of new application areas and 
opportunities which can emerge under completely diverse application contexts from smart cities 
(Hashem, 2016) to digital health care (Murdoch, 2013). As a result the benefits arising from this wealth 
of knowledge and information can affect research in numerous ways. These can include : promoting 
medical advances by providing evidence in the identification of symptoms and patterns concerning 
diseases, pandemics and  modern health issues; or aiding in the creation of large ground truth databases 
for scientific fields such as sentiment analysis, which are in desperate need of vast amounts of data in 
order to successfully create models of human affect and effective behavior  recognition techniques. The 
businesses that constitute the modern economy can also greatly benefit from Big Data and Big Data 
analytics since they can utilize the data generated from the interaction of users with social network 
(Yaqoob, 2016) or smart devices in order to identify the users' preferences  towards a product, 
recognize dissatisfaction  of modern clients, or understand the relationships between competitive and 
collaborating organizations, thus creating better and more appealing products and services , or 
improving existing ones.  

Nowadays huge quantities of personalized and contextualized information are generated in platforms 
such as social networks extending to wearable devices, where millions of people interact and express 
their opinions and emotions. The development of advanced Big Data analytics and computational 
intelligence techniques enables the development of intelligent computerized solutions with the help of 
social and behavioral data based  sentiment analysis.  

Sentiment analysis aims to improve products and services, by automatically identifying the user's 
opinion, including their evaluations and affective state (Karyotis, 2017). Acquiring more nuanced 
insights of customer preferences and needs will provide modern organizations and businesses with a 
crucial advantage over their competition (Sagiroglu, 2013). For instance, big data received from 
electronic communications can be used to enable employees to become more emotionally resilient in 
the work place. As mentioned in (Hirsch, 2013) Big Data “is becoming a significant corporate asset, a 
vital economic input, and the foundation of new business models" (Hirsch, 2013). Businesses and 
organizations can benefit from Big Data through the deployment of technologies such as Cloud 
Computing services which would allow for meeting the storage and processing requirements of Big 
Data analysis (Chang, 2015b). In Chang and Will's work, a balanced approach to comparing non Cloud 
to Cloud storage was presented and realized by utilizing the appropriate experimental set up and 
metrics. From the team's experimental results a significant performance improvement was observed in 
relation to execution times, consistency between expected and actual execution times, and efficiency, 
when Cloud approaches were used compared to the case when non-Cloud systems were utilized 
(Chang and Wills, 2016b). Nowadays, Cyber-physical cloud systems (CPS) have emerged as state of 
the art cloud-based architectures, which are utilized in a wide range of applications. CPS can be 
defined as hierarchical architectures, where devices located in the physical layer need to communicate 
and transact securely with computing and communication resources in the cyber layer. These complex 
interactions include several Big Data related operations, such as sensing, storing, and processing large 
amounts of heterogeneous data. Therefore, it is extremely challenging to effectively handle these 
operations in terms of crucial aspects, such as security and energy management. Security is of outmost 
importance since in CPS environments a variety of sensitive transactions are performed (e.g. selling 
and buying of energy). Efficient energy management is also a widely acknowledged research challenge 



for CPS, which has a significant impact on provided services, but also the environment. CPS research 
can largely benefit from intelligent computational intelligence and Big Data analytics techniques in 
order to tackle these modern challenges.  

Big Data analytics can also facilitate government's efforts towards delivering better services to their 
citizens. Big Data can aid governments in improving crucial sectors such as healthcare and public 
transport thus helping to shape a more efficient modern society. For example, Big Data analytics and 
computational intelligence techniques are able to provide intelligent solutions for challenging problems 
such as health shock prediction, or optimization of the public transport services delivered by the state to 
the population. 

In order to capitalize on the advantages of Big Data analytics in an increasingly knowledge driven 
society there is a need to develop solutions that reduce the complexity and cognitive burden on 
accessing and processing these large volumes of data in both embedded hardware and software-based 
data analytics (Maniak, 2015) (Iqbal,  2015). Big challenges stem from the utilization of Big Data in 
the real world, since the implementation of real time applications is becoming increasingly complex. 
This complexity derives from a variety of data-related factors. One factor is the high dimensionality 
degree which a dataset may possess thus increasing the difficulty of processing and analyzing the data. 
The interactions, co-relations and causal effects of these high dimensional data parameters in relation to 
the behaviours and specific outcomes of these systems are often too complex to be analysed and 
understood by human users. Additionally, data can be accumulated from diverse sources and input 
channels, making online processing very demanding due to the variety of signal inputs which need to 
be synchronized, and diverse data types which need to be analyzed simultaneously. Furthermore, the 
collected data is often comprised of multiple types of inputs, which are also not always precise or 
complete due to various sources of imprecision, uncertainty, or missing data (e.g. malfunctioning or 
inaccurate sensors). Moreover, there is an inherent need in real life applications for high-speed storage, 
processing of data and retrieval of the corresponding analysis results. Another factor that should be 
taken into account is that the method utilized for Big Data analytics should extract knowledge from 
data in an interpretable way. The computational techniques deployed to perform this task should make 
the underlying patterns, which exist in the data, transparent to the person who wishes to utilize and 
understand them. Finally, there is a need for techniques performing online adaptation to incorporate 
contextual and user-specific elements in their design, and decision-making mechanism, in a user 
friendly and computationally feasible manner. All the above factors should be reflected in the 
computational and machine learning techniques utilized in order to process and analyze Big Data so 
that successful applications and models can be constructed (Suthaharan, 2014).  

The rest of the paper is organized as follows.  Section 2 discusses computation intelligence for big data 
analytics. Section 3 presents our novel methodology to provide solutions to data driven problems.  
Section 4 presents few examples of application areas in which the data driven methodology is applied. 
Section 5 concludes the paper.    

2. Computational Intelligence for Big Data analytics  

Machine learning (ML) approaches are used for modelling patterns and correlations in data in order to 
discover relationships and make predictions based on unseen data / events. ML approaches consist of 
supervised learning (learning from labelled data), unsupervised learning (discovering hidden patterns in 
data or extracting features) and reinforcement learning (goal oriented learning in dynamic situations) 
(Mitchell, 1997). As such, ML approaches can also be categorised into: regression techniques, 
clustering approaches, density estimation methods and dimensionality reduction approaches. Non-
exhaustive examples of these approaches are: Decision tree learning, Associate rule learning, Artificial 
neural networks, deep learning support vector machines, clustering and Bayesian networks.  

Computational Intelligence (CI) is a subclass of ML approaches where algorithms have been devised to 
imitate human information processing and reasoning mechanisms for processing complex and 
uncertain data sources. CI techniques form a set of nature-inspired computational methodologies and 
techniques which have been developed to address complex real-world data-driven problems for which 
mathematical and traditional modelling are unable to work due to: high complexity, uncertainty and 
stochastic nature of processes. Fuzzy Logic (FL), Evolutionary Algorithms (EA) and Artificial Neural 
Networks (ANN) form the trio of core CI approaches that have been developed to handle this growing 
class of real-world problems.  

FL is an established methodology to deal with imprecise and uncertain data (Zadeh, 1965). FL provides 
an approach for approximate reasoning and modelling of qualitative data and adaptive control (Doctor, 
2016) (Liu, 2014) based on the use of linguistic quantifiers (fuzzy sets) for representing uncertain real-



word, data and user-defined concepts and human interpretable fuzzy rules that can be used for 
inference and decision-making. EAs are based on the process of natural selection for modelling 
stochastic systems (Whitley, 2001) and approaches such as genetic algorithms, genetic programming 
and swarm intelligence optimisation algorithms (Dreier, 2002) (Poi, 2008) (Parpinelli, 2011) can be 
used for optimising complex real-world systems and processes. Finally ANNs enable feature extraction 
and learning from experiential data (Haykin, 2009) and are based on imitating the parallel processing 
and data representation structure of neurons in animal and humans brains. A NN is an interconnected 
assembly of basic elements (artificial neurons) that broadly speaking resemble the neurons existing in 
our brains. The analyzing ability of neural networks is hidden in the values of the weights that connect 
these basic elements. These weights are acquired by adaptation, or by learning from training data 
(Gurney 1997). 

A combination of CI techniques can be used to extract insight and meaning from the data, offering 
integrated solutions, which can be applied to a variety of application domains. Such solutions should be 
adapted to offline and online, hardware and software data processing and control requirements, which 
can be further optimised to domain dependent constraints and dynamics. Hence these approaches can 
be used to provide effective multipurpose intelligent data analysis and decision support systems for a 
variety of industrial and commercial applications characterized by large amounts of vague or complex 
information requiring analysis to support operational and cost effective decision-making (Doctor, 
2013). 

2.1 Deep learning for Big Data analytics 

In Big Data analytics there is a growing need to accurately identify important features in the data 
affecting the outputs, and to determine the spatial co-relations between input variables at a given point 
in time as well as the causal or temporal co-relations between input parameters that change overtime. 
Effective modelling to identify patterns from these data sources can be employed to produce accurate 
predictions of how a system is supposed to behave under normal operational conditions, and enable the 
detection of abnormalities. Deep learning algorithms have attracted increasing attention by providing 
effective biologically inspired computational modelling techniques for addressing tasks such as speech 
perception and object recognition by extracting multiple levels of representation from various sensory 
inputs and signals (Bekkerman, 2011) (Bengio, 2009) (Hinton,2012) (Le, 2013) (Campo, 2014). These 
approaches can offer the means to model large-scale data with significant dimensionality as well as 
spatial and temporal correlations for sequence modelling tasks.  Deep Learning (DL) approaches are 
based on the principle of using ANNs with multiple hidden layers as shown in Figure 1.  This allows 
both unsupervised (bottom-up) training to generate higher level representations of sensory data which 
can then be used for training a classifier (top down) based on standard supervised training algorithms 
(Hinton, 2006). Feature learning methods are based on supervised approaches such as Deep NNs, 
Convolutional Neural Networks (CNNs), and Recurrent NNs along with unsupervised techniques such 
as Deep Belief Networks and CNNs and provide deep architecture that combine structural elements of 
local receptive fields, shared weights, and pooling that aims to imitate the processing of simple and 
complex cortical cells found in animal vision systems (Korekado, 2003).  

The potential of utilizing deep learning techniques in Big Data analytics has been highlighted by recent 
review studies (Tolk, 2015) (Chen, 2015). In the work by Tolk et al. deep learning potential as a 
modelling approach and as a means to discover correlations from data is highlighted. Based on a 
thorough review of recent applications, the researchers argue that Big Data and deep learning have the 
potential to provide a new generation of modelling and simulation applications (Tolk, 2015). The 
ability of DL methods to handle cases where the amount of data is huge is also discussed in the work 
by Chen et al. (Chen, 2015).  This work has demonstrated the key role of deep learning approaches for 
solving Big Data analytics problems.  

There are a number of recent examples of research in applying optimized and enhanced deep learning 
techniques in order to analyze and process Big Data. More specifically in the work by Zaidi et al., the 
researchers present an algorithm for Deep Broad Learning which can be tuned in order to specify the 
depth of the mode, and this has achieved notable accuracy of performance for a large amount of data 
which can be considered competitive with other state of the art research (Zaidi, 2015). In (Alsheikh, 
2016) the research addresses a very modern challenge arising from the large amount of data, which can 
be collected through mobile devices. The team explores deep learning as a technique for mobile Big 
Data analytics and presents a scalable learning framework for Apache Spark. From the experimental 
results, it can be seen that the team's framework achieves a significant increase in the speed of learning 
process for deep learning models, which are comprised of a large number of hidden layers and 
parameters. In the work by Lv et al., the researchers applied a deep learning technique that takes into 
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Data transformation layer deals with transforming the pre-processed data into machine readable codes 
by the use of encoders. Input data is initially encoded into what is termed as a Sparse Distributed 
Representation (SDR) (Hawkins, 2009) which decomposes the representation of information over 
thousands of bits. Here at any point in time a small percentage of these bits may be activated, i.e. equal 
to 1’s emulating the firing response patterns of neurons in the brain. Each bit represents a feature of 
information and a set of activated bits is therefore able to encode the semantic attributes of what is 
being represented. These bits are unlabeled and the associated semantics meanings are learnt. Hence if 
different SDRs have activate bits in the same location then they can be considered to spatially share the 
sematic attributes and we can use this to learn the spatial correlations between different input patterns 
as will be discussed in the following section. 

3.4 Spatial Modelling 

The discovery of correlations between individual inputs (bits) are determined through the spatial 
transformation of input space into a transformed feature space that is achieved through the use of deep 
belief networks, where this process is referred to as spatial pooling (Hawkins 2004). Hierarchical 
clustering is performed on the transformed features derived from the deep belief network, to extract a 
number of possible states of the modelled system. The main purpose of this operation is for reducing 
the input space to a fixed number of the most probable states of the underlying system being modelled. 

In the beginning of the modelling process, raw process data is generated by the relevant data sources 
and is transformed from its textual - human readable form, to binary sparsely distributed format. Data 
encoding aims to map the inputs defined for a specific modelling problem to discrete signals that can 
be understood by the HSTSM. The encoded vector is compressed, and an automatic process of feature 
extraction is performed with the use of deep belief neural networks (DBN). The trained restricted 
Boltzmann Machines (RBM) forming the DBN are used to initialize the deep auto-encoder. This 
unsupervised method of feature extraction enables us to acquire an improved and more compressed 
representation of the input space. Because of the unsupervised nature of the process, there is no need 
for labeling the data at this stage. Therefore, the algorithm is able to cope successfully with high 
volumes of data. The features extracted are used to automatically identify a set of possible patterns on 
the inputs to the model. This would correspond to a set of possible states of the monitored system. In 
order to achieve this we incorporate into the model agglomerative hierarchical analysis, which is an 
unsupervised method of cluster analysis. The basic metric used to conduct this analysis is defined to be 
the Euclidian distance. This process can be considered as spatial pooling, where the original binary 
input that occur close together in space are pooled together. This operation enables the extraction of a 
set of individual system states, and the analysis of the temporal sequence of input activities in terms of 
these states. 

3.5 Temporal Modelling 

The initial stage of the approach performs hierarchical organization of multiple levels of data 
abstraction to identify correlations between temporal sequences of input patterns. Temporal sequence 
learning is used to train the model on different temporal consequential relations between probable 
states of the system. This is used to infer the next predicted state of the inputs in comparison with the 
actual behaviour of the system, which is termed as temporal inference.  

Temporal inference is performed on the identified states, and prediction of the next possible state of the 
system can be achieved with the utilization of an n-order Markov chain. Prediction acquired in this way 
can be consequently used to identify specific patterns of behavior of the modelling problem under 
investigation. At the end of this process, the predicted vector can be compared with the actual vector, 
generated at each moment in a specific application context, in order to identify specific patterns or 
irregular behavior. This can be achieved with the use of distance function or basic ML techniques, like 
a Multilayer Perceptron.  

3.6 Prediction Model 

The spatial pooling and temporal inference elements of the approach hence combine to produce a 
spatial temporal model of the operational behaviour of the system being modelled. The model can then 
be used in combination with prediction and classification approaches such as standard ANNs to predict 
future behaviour of the system under different operational conditions and detect deviations and changes 
in behaviour that might signify an underlying unknown effect or problem.  

3.7 Optimisation 
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data-oriented service layer (Zhang, 2017). In the paper by Wang et al. a cyber physical architecture 
consisting of a communication core, a computation core, and resource scheduling and management 
core was presented, and the authors provided examples of its application to healthcare monitoring and 
decision support systems (Wang, 2011). 
Health services can benefit patients and clinicians by providing optimised health information and 
recommendations, based on individual and population-based profiling, and using advanced Big Data 
analytics algorithms. Gaining a better insight into an individual’s healthcare needs is of central 
importance in order to provide tailored treatment and formulate therapy intervention recommendations. 
Moreover, this extends to fitness, lifestyle, social care and wellbeing monitoring, based on personalised 
preferences and goals that can be used to promote positive health, support behaviour change related to 
diet, exercise, and reduction of stress, and effective management of changing care needs such as for the 
elderly. Monitoring and delivering these services though personal (Harding, 2015), cloud based 
(Sultan,2014), mHealth (Free, 2013) and Internet of Things (IoT) applications (Pang, 2015)  will help 
to empower people to manage their health and life style more effectively, owing to reduced healthcare 
costs. Computational health informatics can be used on large population based data through the 
development of interpretable decision support models for promoting effective health policy, and 
intervention planning for crisis management related to disease epidemics and famine.  

Dementia is an age related, progressive, neurodegenerative condition, also considered to be one of the 
biggest global public health challenges that the current generation needs to face. The growing 
prevalence of diseases such as Alzheimer’s, and their impact on a society benefiting from greater 
longevity, is a critical health challenge of national importance. Managing patients with dementia calls 
for improvements in effectively monitoring the progress of their condition, adjusting therapy 
interventions, and adapting to changing care needs (Doctor, 2014). Advanced deep learning approaches 
can be used to enable the development of context aware dementia monitoring, and predictive care 
recommendation solutions that can intelligently forecast behaviour changes of individual patients, from 
utilising contextual heterogeneous data, while handling uncertainties associated with incorporating 
qualitative data from stakeholders. Human interpretable care recommendation decisions can provide 
care staff with the means of implementing evolving care and therapy plans, in response to the changing 
needs of patients due to the effects of cognitive decline. 

Big data analytics and computational intelligence techniques are also able to facilitate governments and 
organizations provide solutions to challenging problems. Health shock is a health related event with a 
heavy impact on a household because of the cost of treatment, or the absence from work caused by the 
health related event. Health shock especially affects individuals in developing and underdeveloped 
countries. Government, organizations, policy makers, and individuals could largely benefit from the 
development of intelligent Big Data analytics techniques to battle health shock by facilitating accurate 
prediction and by highlighting the factors contributing to this phenomenon. These techniques will 
enable effective and timely mitigation and management of health shock events. In order to address this 
problem and contribute in this direction a Big Data analytics and visualization framework based on 
fuzzy logic was presented, which utilized a large-scale dataset towards health shock prediction 
purposes (Mahmud, 2016). The researchers utilized cloud Amazon web services integrated with 
Geographical Information Systems (GIS) to facilitate the collection, storage, indexing, and 
visualization of data for different stakeholders using smart devices, and develop their framework 
(Mahmud 2016). The dataset utilized comprised of data from questionnaires, and an online system 
where each data sample comprised of 47 features. Data were gathered from 1000 households belonging 
to 29 villages in rural areas of Pakistan. The collected data where pre-processed and analyzed by 
utilizing expert-opinion to extract meaningful measures related to living standards, health risk, 
accessibility to health facilities and income allocation labeled with a level of health shock incurred. A 
fuzzy rule summarization technique was utilized in order to develop a health-shock prediction model. 
The proposed predictive fuzzy model was evaluated by utilizing k-fold cross validation. An overview 
of the research methodology can be seen in figure 7. The model achieved a very high performance of 
89%, while at the same time retained a very high interpretability degree with the help of the extracted 
natural language fuzzy rules. These rules can enable all relevant stakeholders to understand the causal 
factors affecting this phenomenon, and make informed and effective decisions. Moreover as 
demonstrated by the team's experimental results the proposed framework was also able to deliver 
results in competitive times with a low computational burden thus making it suitable for real-time and 
Big Data settings. Furthermore, data were mapped to the iron triangle model (Kissick, 1994) under the 
socio-economic, geographical, and cultural norms, and factors that lead to health-shock. 
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information retrieval and its delivery based on ad hoc communication networks (Alhabashneh, 2017) 
(Iqbal, 2015) (Qureshi, 2017). Understanding each driver’s behaviour and information needs in terms 
of their intentions can be used to provide relevant information and services as they are needed which 
can be used to improve user satisfaction, vehicle efficiency, and energy utilization.  

Another problem is effectively managing transport networks in urban areas (Tirachini, 2013), for 
instance how to pick up passengers more efficiently based on identifying demand for taxi services. This 
can be achieved by using intelligent approaches to predict hot spots relating to locations of where taxis 
pick up and set down people in an urban area over the course of the day based on historical and real-
time geo-spatial data. Data collected on high and low predicted taxi demands over the urban area 
together with contextual information pertaining to traffic conditions, geospatial distribution of the fleet 
and vehicle telematics can then be used to provide recommendations to taxi operators for the 
distribution and optimization of taxi services. User behavior modelling can further be used to 
recommend real-time re-routings to satisfy personal objectives while relieving congestion. The 
problem of optimally managing the distribution of taxi services can also be tackled at large 
transportation hubs such as railway stations and airports to meet passenger demands. For example, an 
airport Taxi stand passenger queue tracking system can be implemented from real time CCTV camera 
feeds and the application of vision processing algorithms for identifying and counting individuals 
waiting in a queue to estimate the number of people entering/exiting and queuing throughput over time. 
The system can be used to measure length, growth rate and predict the wait time for each queue, which 
can be visualized in real-time and used to send notifications / alerts based on operator triggers and 
thresholds. 

Our ongoing work is focused on optimizing taxi fleet distribution and routing in context of urban traffic 
conditions in order to enhance availability, reduce waiting and journey times, and promote fuel 
economy. In order to achieve the research objectives a novel deep learning based spatial modeling 
technique was developed and applied which was able to predict hot spots relating to locations of where 
taxis pick up and set down people in an urban area over the course of the day. The structure and ideas 
of the computational modelling approach is described in detail in section 4. The data used to train the 
predictive model were acquired from NYC Open Data webpage. This data include the 2013 Green taxi 
trip data which contain trip records from all trips completed in green taxis in NYC in 2013. The data 
records include fields such as capturing pick-up and drop-off dates/times, pick-up and drop-off 
locations, trip distances, itemized fares, rate types, payment types, and driver-reported passenger 
counts. The data used were collected and provided to the NYC Taxi and Limousine Commission (TLC) 
by technology providers authorized under the Livery Passenger Enhancement Program (LPEP). An 
example data sample can be seen in figure 8. The proposed model was utilized in the development of a 
commercial software application, and achieved above 95% prediction accuracy.  

Field    Value 

pick up_datetime  12/06/2013 12:11:05 PM 
dropoff_datetime  12/06/2013 12:14:06 PM 
store_and_fwd_flag   N 
rate_code  1 
Dropoff_latitute  40.811981201171875 
Passenger_count  1 
Trip_distance  0.5 
Fare_amount  4 
Extra  0 
MTA_tax  0.5 
Tip_amount  0 
Tolls_amount  0 
Ehail_fee   
Total_amount  4.5 
Payment_type  2 
Trip_type   
Pickup_longitude  ‐73.9650650024414 
Pickup_latitude  40.8061408996582 
Dropoff_longitude  ‐73.962234497707031 
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process, the analysis engine builds a complex relational graph to determine the various relationships 
between identified parts of the query, including complex, multi-table relationships, from which an SQL 
query is constructed, once all required relationships are identified. 

Gaining an insight of the user’s/client’s affective state, through the utilization of social media data, can 
fuel the generation and diversity of intelligent mechanisms able to deliver affective feedback in a wide 
spectrum of application areas. This feedback could extend from the digital to the physical world, by 
using standard hardware devices (e.g. smart phones, home appliances, lighting) in the context of  
intelligent environments. Intelligent cars could modify their engine and cabin configuration to meet 
their driver’s needs and preferences. E-learning systems could provide tailored learning material and 
tailored encouragements to the students. Automated manufacturing systems could take into account the 
client’s sentiment when designing and developing new products, in order to better satisfy their 
customer’s needs. Tele-home healthcare, robot companions, patient monitoring could be enriched by 
taking into account the patient’s context, behaviors and emtions in order to deliver more efficient 
patient specific services. Homes with the ability to modify their environment (lighting, temperature 
etc.) in order to suit their resident’s mood. 

 

5. Conclusions 

In this paper, we have discussed the importance of big data analytics and computational intelligence 
techniques. We provided a comprehensive survey of computational intelligence techniques appropriate 
for the effective processing and analysis of big data. We have presented a data modelling methodology, 
which introduces a novel biologically inspired universal generative modelling approach called 
Hierarchical Spatial-Temporal State Machine (HSTSM). We investigated the benefits arising from the 
utilization of computational techniques namely deep learning neural networks, evolutionary algorithms, 
and fuzzy logic in Big Data analytics. We identified and highlighted potential novel real life CPS 
applications arising from the vast amount of information on offer by modern high tech societies, the 
deployment of intelligent computational techniques, and state of the art solutions to address challenges 
in these application areas. In this work, a novel approach for Big Data modelling is presented. The 
proposed methodology relies on a hybrid method, which is based on the structure and functions of the 
mammalian brain. It incorporates different soft computing techniques and it has the potential to deal 
with large amounts of data, which are characterized by spatial-temporal correlations. This approach can 
tackle the high requirements and maximize the potential of dealing with Big Data and therefore can be 
considered as a state of the art tool for Big Data analytics. The potential benefits arising from this 
research are numerous and span over a large spectrum of application areas. Utilizing this novel 
methodology to exploit Big Data's potential can lead to applications with significant impact to 
knowledge, society, economy, and individuals. Scientific knowledge and research may benefit from 
revealing hidden patterns in Big Data or by delivering Big Data analysis results in ways, which can be 
easily visualized and interpreted. Society could profit from the delivery of applications, which promote 
improved public transportations and health services. E-businesses and organizations could also be 
assisted through sentiment analysis tools, which contribute at the delivery of products and services 
which meet their customers' needs. Finally, an individual may benefit through the development of 
personalized and contextualized products and services, which are able to account effectively for 
complex related notions, such as their cognitive/affective state. Future work will involve the utilization 
of the proposed methodology to different application areas in order to create novel models and 
applications with significant commercial and scientific value and the further improvement of the 
developed systems.  
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Big Data Analytics: computational intelligence techniques 
and application areas 

 

Highlights 

1. We highlighted the importance of Big Data in modern life and economy. 

2. We investigated the benefits of computational intelligence techniques namely deep learning 

neural networks, evolutionary algorithms and fuzzy logic in big data analytics. 

3. We presented a novel data modelling methodology which introduces a novel biologically 

inspired universal generative modelling approach called Hierarchical Spatial‐Temporal State 

Machine (HSTSM). 

4. We explored the potential of the powerful combination of Big Data and Computational 

intelligence and identified a number of areas where novel applications in real world problems 

can be developed.  

5. We have also discussed various aspects of policy, protection, valuation and commercialization 

related to big data. 
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