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1 Introduction

Futures markets provide a tool for risk management and aid in price discovery. However

these functions are only optimal in the presence of market efficiency. As is well known,

under the assumptions of rationality and risk neutrality, the futures market is not only

efficient but the price is an unbiased estimator of the corresponding future spot price.

Using cointegration techniques futures market efficiency has been extensively inves-

tigated for a number of commodities and financial assets across a variety of data spans.

On the one hand, there is evidence of efficiency (see, for example: Kellard et al., 1999;

Switzer and El-Khoury, 2007; Kawamoto and Hamori, 2011; Dolatabadi et al., 2016),

whilst on the other there is evidence of inefficiency (see, for example: Chowdhury, 1991;

Mohan and Love, 2004; Figuerola-Ferretti and Gonzalo, 2010). The outstanding question

is therefore how can this contradictory evidence be reconciled?

Applying Occam’s razor, the obvious answer may be that some markets may be effi-

cient, whilst others may not be. This then points towards unique market specific factors

that may contribute to or hinder efficiency. One such factor may be the way in which, if

at all, electronic trading systems are implemented. Many asset and commodity markets

have now either abandoned open outcry for electronic trading platforms, or run both

systems side-by-side. However there is some recent evidence that exchanges see value

in the open outcry method of trading, as evidenced by the recent investment in a new

open outcry trading floor by the London Metal Exchange.1 The evidence for either form

of trading is mixed, with some work suggesting that a well-functioning market benefits

from the open outcry (Martens, 1998), whilst others posit a fully electronic approach

(Tse et al., 2006). However, there is also evidence that when used independently, elec-

tronic trading is not as able as open outcry to impound information into the price when

volatility is high (Aitken et al., 2004).

Existing work that focuses on these two methods of trading often uses intraday data to

examine issues such as liquidity, trader survival, the size of spreads, and price discovery,

across a broad range financial and commodity futures. Examples of such work include

Boyd and Kurov (2012), Aitken et al. (2004), Ates and Wang (2005), Copeland et al.

(2004), Theissen (2002), and Tse and Zabotina (2001). However the main focus of our

study is distinct from this literature, contributing by being the first, to our knowledge,

to address predictive efficiency in futures markets under discrete market trading regimes.

In other words, we utilize daily data on futures contracts to examine under which trading

regime the futures price best predicts the future spot price.

For this experiment we choose the crude palm oil (CPO) futures market due to

its discrete migration from open outcry to electronic trading which obviates the need to

1The new “Ring” opened on 18 February 2016.
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address a scenario where both open outcry and electronic trading operate simultaneously.

In choosing CPO we also address a gap in the literature as this commodity is under-

researched. This is surprising given its wide spread use globally and the increasing

prominence of this commodity on the world food market. Strikingly production levels

are greater than any other edible oil.2

In implementing this experiment we utilise two sub-samples of data pre- and post-

introduction of electronic trading and initially assess long-run and short-run efficiency

using standard cointegration techniques and Kellard et al.’s (1999) relative efficiency

measure. Unlike other efficiency measures which classify whether a market is either

solely efficient or inefficient, this relative measure allows an assessment of the degree to

which efficiency is present. We further contribute by being the first to examine how

well these two methods of trading impound information as a function of the volatility

of the underlying asset, which is achieved by adapting the relative efficiency measure

to a threshold autoregressive environment with a bootstrap confidence interval. Finally,

we examine market efficiency at several points across the term structure permitting a

more comprehensive analysis of the market. It is noteworthy that much of the extant

literature often focuses solely on shorter terms to maturity.

Our findings indicate that the CPO futures market is long-run efficient for the vast

majority of maturities tested across both trading platforms. However, across the whole

sample and open outcry and electronic trading sub-periods there is evidence of short-run

inefficiency. Interestingly, applying the relative efficiency measure of Kellard et al. (1999)

indicates that open outcry is more efficent at shorter maturities and electronic trading

at longer maturities. However, using the new threshold autoregressive relative efficiency

measure, bootstrap results suggest that the open outcry method is superior for shorter

maturities when volatility is high. Conversely there is some evidence that electronic

trading is superior when volatility is high but for longer maturities. Interestingly the

two forms of trading are found to be indistinguishable from one another when volatility is

low. Moreover, we adapt the delay measure used in the stock market efficiency literature

and which, by construction, focuses on short-horizons and provide further support that

open outcry outperforms electronic trading when volatility is high.

The results presented in this paper suggest the existence of an efficiency skew where in

high volatility environments, improved efficiency is skewed more towards open outcry at

short maturities whilst being skewed more towards electronic trading at longer horizons.

This updates and extends the work of Boyd and Kurov (2012) and Martens (1998),

suggesting there is still a role for open outcry in modern futures markets to improve

2Based on the latest production data, palm oil presents almost a third of edible oil market (source:
Food and Agriculture Organization of the United Nations). See Section 2 for more information on the
CPO market.
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price discovery and related issues of risk management, particularly at shorter maturities.

In the context of the CPO market, this clearly has implications for the price discovery

and optimal hedging of a commodity that is increasingly prominent on the world food

market, and one that also has both developmental and environmental effects.3

The remainder of the paper is organised as follows: Section 2 provides a short overview

of the CPO market, Section 3 examines CPO futures efficiency across the term structure,

Section 4 examines CPO futures efficiency across periods of electronic trading and open

outcry, and a final section concludes.

2 A précis: Crude Palm Oil

CPO currently represents the largest share of the edible oil market, thus the functioning

of this market warrants close attention in the current climate of an expanding world

population and finite resources. It is derived from the fruit of the oil palm tree and is

used for a range of purposes, including cooking oil, baked goods, soaps, washing powder,

and as a bio-fuel. The demand for palm oil has increased in recent years, linked to (i)

the growth of the Indian and Chinese economies (ii) the use of palm oil as a substitute

for trans fatty acids and (iii) the use of palm oil as a bio-fuel. Figure 1 demonstrates the

impressive growth of CPO production over the last 30 years becoming the most produced

edible oil (by tonnes) in 2006.

[Figure 1 about here]

We also compared the production growth 1980-2012 of over 100 crops listed on the Food

and Agriculture Organization’s database, and found that palm oil ranks in 4th place,

contrasting with staple crops commonly traded on futures exchanges such as soybean

(60th), corn (94th), and wheat (124th). Taking each of these commodities as a case in

point, the absolute production levels of corn and wheat is higher than that of the oil

palm fruit. However the production gap between soybean and the oil palm fruit has been

closing over time with 2012’s figures showing higher production for the oil palm fruit.

This study focuses on the Malaysian CPO futures price as it represents the global

reference price and is the single largest market for CPO futures globally.4 Trading tra-

ditionally takes place on the Bursa Malaysia Derivatives Berhad where trading volumes

have increased in recent years - Figure 2 shows the average daily volume and open in-

terest (per month) of the most traded (3-month) CPO futures contract from 1995:06 to

3See World Bank and IFC (2011) for a discussion of the developmental and environmental effects.
4See online documentation from the CME Group (www.cmegroup.com) or the Bursa Malaysia

(www.bursamalaysia.com).
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2008:07.5 Figure 3 shows the average (per month) futures price and the 30-day historical

spot price volatility.

[Figure 2 about here]

[Figure 3 about here]

Contracts are for 25 metric tons and are settled on the 15th day of the month, and are

available for the current month, the subsequent 5 months, and thereafter alternately

up to 24 months ahead.6 Up until December 2001, futures contracts were traded using

open outcry and subsequently migrated to an electronic trading system on 28 December

2001.7 Global access to the CPO futures market was further improved on 17 September

2009 via a partnership with the Chicago Mercantile Exchange (CME).8

3 Futures market efficiency across the term structure

3.1 Market efficiency hypothesis

Long-run market efficiency is linked to the spot and futures markets via the notion of

unbiasedness. Specifically, under the joint assumptions of rational expectations and risk

neutrality, the unbiasedness hypothesis can be expressed as:

Et−τ [st] = ft−τ (1)

where st and ft are the log of the spot and futures prices and E[.] is the expectations

operator, and τ is the interval between opening a position and expiry. Equation (1)

states that the futures price set at time t − τ , for delivery at time t should equal the

time t − τ expectation of the spot rate for time t. By varying τ we gain the ability to

comment on efficiency across the term structure. Under rational expectations, Equation

(1) can be recast as:

st = ft−τ + εt (2)

where εt is a zero mean, finite variance random variable. Testing this simple relationship

for any point on the term structure is complicated by the time-series properties of both

5Bursa Malaysia Derivatives Berhad was formally the Malaysia Derivatives Exchange (MDEX).
Malaysia is also the leading exporter and second largest producer of CPO.

6The contract specifications have changed little over the span of our sample. Again, see
www.bursamalaysia.com for further details.

7See Appendix A for a plot of daily volume and open interest in the 6 months pre/post-migration.
8The agreement included the distribution of the Bursa Malaysia’s products through the Globex

electronic trading platform.
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the spot and futures price. There is a large body of evidence that points towards both

series being non-stationary (e.g. Figuerola-Ferretti and Gonzalo, 2010). Therefore for

unbiasedness to hold st and ft must be cointegrated:

st = α0 + α1ft−τ + εt (3)

where α0 = 0 and α1 = 1, and εt is serially uncorrelated. If the restriction that α1 = 1

cannot be rejected, then this points towards a long-run equilibrium relationship between

st and ft. Given empirical support for this relationship a handle on short-run efficiency

can be garnered by rewriting Equation (3) as a quasi-error correction model (Kellard

et al., 1999):

st − st−τ = γ0 + γ1(ft−τ − st−τ ) +

k∑
i=1

δi(st−i − st−τ−i) +

k∑
i=1

ζi(ft−i − ft−τ−i) + εt (4)

Estimating Model (4), efficiency is indicated by there being no significant coefficients on

lagged changes in the spot and futures price. In other words, efficiency requires that no

information in addition to the basis is of use in forecasting changes in the spot rate.

To test CPO market efficiency, we adjust the outlined approach. Following the ob-

servations of Goss (2000), who notes that emerging markets can lack proper underlying

wholesale markets which would support price discovery in the corresponding futures

market, and that in the case of CPO that spot and futures market are traded on differ-

ent exchanges in different locations, we follow Beck (1994) and use the futures price at

maturity as the spot price.9 This is achieved using variants of Equations (3) and (4),

accounting for the fact that we use the futures price at delivery in place of the spot rate:

ft = β0 + β1ft−τ + εt (5)

ft − ft−τ = θ0 +

k∑
i=1

θi(ft−i − ft−τ−i) + εt (6)

Note for long-run efficiency the interpretation for Equation (5) is the same as Equa-

tion (3). As with Equation (4) short-run inefficiency is indicated if Equation (6) yields

statistically significant lags of the dependent variable.

9Malaysia Palm Oil Board manage palm oil physical market and Bursa Malaysia Derivatives Berhad
govern the futures market.
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3.2 Testing CPO efficiency

To utilize the unbiasedness framework in the previous section, we need to construct the

appropriate variables. CPO futures mature each month and therefore a time series of 12

monthly maturity prices can be sampled each year. The log of this data is our ft. To

construct the variable ft−τ note that we follow Kellard et al. (1999) by defining that τ

represents a fraction of the unit of observation. In this manner, ft−τ is the log of the

matched futures price selected by working backwards τ (i.e., a fraction of a month) from

the maturity date t. Of course, it is also possible to express a monthly fraction in days,

and we construct 6 further series where τ is equivalent to 7, 14, 21, 28, 56 and 84 days.

The resulting dataset spans from 15 June 1995 to 15 July 2008 and therefore contains

158 monthly observations.10 For completeness, Table 1 presents summary measures for

each maturity and it can be observed that both the sample mean and standard deviation

tend to increase as τ reduces.

[Insert Table 1 about here]

As discussed, the order of integration of the time series needs to be examined as a

precursor to testing for unbiasedness. Table 2 presents the results of tests under the

null of the futures price being both non-stationary (augmented Dickey-Fuller test) and

stationary (KPSS test) for each τ . Given the uniform inability (ability) to reject the null

of the ADF (KPSS) test across all τ we deem the CPO futures prices to be non-stationary.

[Insert Table 2 about here]

[Insert Table 3 about here]

Table 3 presents the results of tests to examine whether ft and ft−τ are cointegrated

using the Johansen method, specifying a vector error correction model of the m-variable

VAR of order k for time-series vector Xt:

∆Xt = η0 + ΠXt−k +

k−1∑
i=1

ηi∆Xt−i + vt (7)

where k is chosen by the Akaike Information Criterion (AIC). The procedure tests the

rank (r) of parameter matrix Π, where vt will only be I(0) if there exists a stationary

10The data employed to test unbiasedness are closing futures prices from Reuters (code: FCPO). In
addition to the closing futures price, in later analysis (see Section 4.4.), the daily high and low prices
are used as a proxy for volatility. The choice of sample period permits two sub-samples of equal size
as discussed in Section 4.2. Values of τ are calendar not business days and therefore when constructing
each price series, if the trade date t−τ is not a business day, the preceding business day is taken. Across
all series 93% of observations fall on the exact business day and 99.3% fall within three calendar days
prior.
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linear combination of I(1) variables in Xt−k. Specifically ΠXt−k has to be stationary.

We define Xt = (ft, ft−τ ) and test this using the Johnansen λ-max and trace statistics

to test sequentially under the null of the r = 0 (no cointegration) and r = 1 (cointegra-

tion). Given the presence of a long-run relationship it is then straightforward to test the

restriction β1 = 1 in Equation (5) - this test for unbiasedness is also presented in Table

3.

The results clearly show a rejection of the null of zero rank and thus of no cointe-

gration for all maturities for both test statistics. Further using both tests we are unable

to reject the null that r = 1 at the 5% significance level for all maturities, and is thus

indicative of there being a long-run relationship between ft and ft−τ . This also supports

the findings of the time-series properties of ft and ft−τ from the earlier ADF and KPSS

tests. Testing the restrictions on the cointegrating vector yields conclusive support un-

biasedness as the restriction under the null is unable to be rejected for all maturities

tested. Hence we find that in the long-run the futures price is an unbiased predictor of

the future spot price.

The evidence of long-run efficiency in the CPO market, whilst encouraging, does not

preclude inefficiency in the short-run. Table 4 presents the test of short-run efficiency

using Equation (6). We can see from Table 4 that the longest maturity evidences more

inefficiency than shorter maturities as indicated by the larger number of lags included.

More specifically, as the maturity decreases, the number of significant coefficients is

at least equal or fewer, finally yielding short-run efficiency 7 days before settlement.

Interestingly, when lag 4 is present, it is always significant and therefore suggestive of

some predictability which may be useful to traders.

[Insert Table 4 about here]

4 Open outcry or electronic trading?

4.1 Literature

There is a wide body of research comparing open outcry and electronic trading using

intraday data. This research takes the form of examining markets that have made a

transition from the former to the latter, or markets that trade under both systems con-

currently. Martinez et al. (2011) provides a useful summary of the two trading systems for

agricultural commodity futures markets and Cardella et al. (2014) survey the literature

that examines the effects of computerization across a variety of markets. Of particular

interest for this current study is understanding how efficiency may differ following the

advent of electronic trading.
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Aitken et al. (2004) uses intraday data and time-weighted bid-ask spreads to examine

the determinants of spreads on index futures on three major exchanges: London Inter-

national Financial Futures and Options Exchange (LIFFE), Sydney Futures Exchange,

and the Hong Kong Futures Exchange. Controlling for changes in price volatility and

trading volume they find lower spreads result under electronic trading, adducing evi-

dence that electronic trading can result in higher liquidity and lower transaction costs.

Interestingly they note that spreads from electronic trading are more sensitive to price

volatility and thus the performance of such systems deteriorates during periods of in-

formation arrival. Focusing specifically on how information is impounded in periods of

high and low volatility, Martens (1998) examines futures contracts on German long-term

government bonds traded simultaneously on the LIFFE (open outcry) and Deutsche

Terminborse (electronic trading). Using the Hasbrouck’s (1995) measure of information

share, Martens finds that in low volatility periods it is electronic trading that contributes

more to the price discovery process. Conversely, results suggest that in volatile periods

it is open outcry that makes the larger contribution. However the findings of Martens

(1998) differ from Ates and Wang (2005), who find the opposite relationship between

electronic trading and volatility for the S&P 500 and NASDAQ 100 index futures.11 This

mixed picture is further reinforced by Tse et al. (2006), who look at futures contracts

for foreign exchange (EUR/USD, JPY/USD) and find open outcry trading contributes

least to price discovery (vis-à-vis electronic trading and online trading.)

Tse and Zabotina (2001) examine trading activities before and after the FTSE 100

index futures contracts moved from open outcry to electronic trading. In common with

the majority of the recent literature they find lower spreads in electronic market vis-à-

vis open outcry. However, results using Hasbrouck’s (1993) market quality indicate that

open outcry has greater pricing efficiency (as measured by the variance of pricing error).

One possible explanation cited by Tse and Zabotina (2001) for the poor performance of

electronic trading could be that, given an arrival of a high amount of new market-sensitive

information (proxied by price volatility), the pre-programmed algorithms behind the

electronic trading mechanisms may withdraw from trading. By contrast, humans in the

pit may still be willing to trade and therefore impound the new information into the

open-outcry price. This clearly supports the findings of Aitken et al. (2004). In addition

to the slower adjustment to information in the electronic market, Tse and Zabotina

(2001) also find a negative relationship between trades and lagged quote revisions for

electronic trading, but not for open outcry. The authors attribute this last finding to a

11Ates and Wang (2005) attribute this difference in result to market specific factors. Namely that on
the U.S. index futures markets some participants are able to trade both in the pit and electronically.
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different inventory approach between these two methods of trading.12

In related work Ning and Tse (2009) also examine the FTSE 100 index futures con-

tracts pre-/post-migration to electronic trading. Under electronic trading they find that

daily contract order imbalances are autocorrelated for lags of several days, and attribute

this to the characteristics of the limit order book. As the authors comment, the arrival

of a large market order is split against multiple existing quotes on the order book gener-

ating a sequence of transactions on one side of the market. For open outcry there is no

autocorrelation in the order imbalance suggesting persistence is eliminated within the

day. Moreover, a role for open outcry has been documented at the trader level by Boyd

and Kurov (2012), who find that when run side-by-side with electronic trading, traders

are more likely to survive using both systems rather than one alone.

On balance, the extant research tends to favour electronic trading, but there does

seem to be some evidence that there is a role for open outcry in the price discovery

process, particularly during periods of high volatility. However these results may be

market specific and it is of course difficult to draw broader conclusions given the limited

number of markets examined by researchers to date.

4.2 Market efficiency: open outcry or electronic trading?

This study is the first to examine predictive efficiency across trading systems, using an

important and under researched commodity, CPO. Previous work (see, for example: Tse

and Zabotina, 2001; Martens, 1998) typically use short sample periods and Hasbrouck

(1993, 1995) type measures of pricing efficiency. These measures assume semi-strong

market efficiency and decompose the futures price into a random walk and a transitory

component, which thus reflects a pricing error. However for the CPO futures market there

exists sufficient data to test for predictive efficiency post-implementation of electronic

trading, and so we can employ the testing procedures in Section 3 and avoid any such

initial assumptions. The futures market for CPO represents an ideal candidate as it has

made a discrete transfer from open outcry to electronic trading, rather than running

both systems in parallel. This obviates the task of trying to understand the behaviour

of one market in the presence of another, thus making inference more tractable. This

is achieved by forming two datasets, representing the period where CPO was traded via

open outcry (15 June 1995 - 15 December 2001) and the current system of electronic

trading (15 January 2002 - 15 July 2008) and examine market efficiency under these two

trading methods using the methodology previously applied. We view the choice of data-

span as appropriate for three reasons: (i) it yields two equally sized sub-samples avoiding

12The notion here is that pit traders tend to control their inventory levels more easily than electronic
traders. See Tse and Zabotina (2001) for more details.
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any need to address a scenario where one sub-sample may have better statistical power

than another by virtue of its longer span (ii) it avoids the unusual volatility exhibited as

a result of recent financial crises and (iii) it focuses solely the period prior to the strategic

partnership with the CME group in 2009.

[Insert Table 5 about here]

Table 5 presents the summary statistics for both sub-samples. Interestingly open outcry

tends to exhibit a downward trend in the sample mean as settlement approaches whilst

for electronic trading it is increasing, yet in both samples there typically exists an inverse

relationship between volatility and maturity in accordance with that observed for the

full sample. Table 6 examines the time-series properties of ft−τ and Table 7 the results

of the cointegration analysis. Overall, for both sub-samples, Table 6 is indicative of the

findings for the whole sample, namely the CPO futures price being a non-stationary

process across a range of maturities. The one notable discrepancy between the ADF and

KPSS tests is for the ft−84 (exogenous specification: constant) for the open outcry sub-

sample. Given the contradictory results between these tests we defer to the Johansen

cointegration framework as this implicitly provides an additional test of the time-series

properties of ft and ft−τ in Table 7.

[Insert Table 6 about here]

[Insert Table 7 about here]

In Table 7 we find evidence of cointegration for the majority of maturities across both

open outcry and electronic trading sub-samples. The two exceptions are ft−28 and ft−56

in the open outcry case, where no cointegration is found. Thus we conclude that the

dominant picture is one of a long-run relationship between the futures price at maturity

t − τ and the contract price at delivery. Additionally the Table indicates that for both

sub-samples the unbiasedness restriction in the cointegrating vector cannot be rejected,

thus where cointegration is found we conclude that the market is long-run efficient under

both open outcry and electronic trading regimes.13

Turning now to short-run efficiency, Table 8 indicates that both the open outcry and

electronic trading sub-samples exhibit evidence of inefficiency to some degree, although

there are three noteworthy instances where support for short-run efficiency is found:

open outcry, 7 days and 14 days; electronic trading, 14 days. In the case of inefficiency,

for open outcry there are 4 (2) significant lag coefficients for τ = 84 (τ = 56). As the

maturity decreases further this drops to 1, then finally zero at the shortest maturities.

13Long-run restrictions are provided for ft−28 and ft−56 for completeness only.
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However these results contrast with the electronic trading sub-sample, where there are

almost twice as many significant coefficients across the term structure. We argue that the

stronger evidence for short-run inefficiency in the electronic trading sub-sample provides,

at the very least, prima facia evidence that this trading mechanism may not always be

superior, and indeed may sometimes be less efficient than open outcry.

[Insert Table 8 about here]

4.3 Relative efficiency

The estimates reported in Table 8 indicate that there exists short-run inefficiency at

various points across the term structure using both open outcry and electronic trading

sub-samples. However this approach is not able to quantify the magnitude of this inef-

ficiency. With this in mind we adopt the measure of relative efficiency of Kellard et al.

(1999). As they note, the ability to quantify the level of (in)efficiency is important to

hedgers (hedging costs rise as markets become more inefficient - Krehbiel and Adkins,

1993) and wider society alike (the link between inefficiency and the social costs attributed

to futures trading - Stein, 1987). For the current application, being able to quantify the

measure of efficiency allows a new direct comparison between open outcry and electronic

trading systems.

The efficiency measure of Kellard et al. (1999) is formed from two forecast error

variances. One is the forecast error variance of Equation (4), representing the extent to

which the model was unable to forecast the realised change in the spot price. The second

is based on the corresponding forecast error should the market be efficient: E[(st−ft−τ ].

Under the assumption of rationality this is proxied by the mean corrected measure of

st − ft−τ . This yields the relative efficiency measure:

φτc =
(n− 2k − 2)−1

∑n
t=1 ε̂

2
t

(n− 1)−1
∑n
t=1[(st − ft−τ )− (st − ft−τ )]2

(8)

We adapt this efficiency measure using Equation (6) place of (4). This requires substi-

tuting st with ft and an attendant adjustment to the degrees of freedom:

φτc =
(n− k − 1)−1

∑n
t=1 ε̂

2
t

(n− 1)−1
∑n
t=1[(ft − ft−τ )− (ft − ft−τ )]2

(9)

where n constitutes the number of dependent variable observations prior to lags being

taken. By construction φτc takes values between 0 and 1, with 0 indicative of complete

inefficiency, 1 for a fully efficient market, with interim values representing the degree

of (in)efficiency. Table 9 presents the results of the test for relative efficiency for both

sub-samples, as well as for the whole sample for comparative purposes.
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[Insert Table 9 about here]

For the entire sample, short-run efficiency increases as the settlement date approaches,

while for the two sub-samples the average across the term structure is within two percent

(78% for electronic trading and 76% for open outcry). As maturity reduces there is a

marked increase in φτc for the open outcry sub-sample mirroring the full sample results;

however the pattern from the electronic trading sub-sample is not quite so clear. Further,

our results suggest that open outcry is at least as efficient as electronic trading at shorter

maturities whilst electronic trading performs better at longer maturities.14 Finding that

support for open outcry is garnered at shorter maturities could support the notion that

when volatility is high open outcry is superior in impounding information (Aitken et al.,

2004) - recall from Table 5 that the standard deviation is highest at the 7-day maturity

for both samples. We examine this further in the next section.

4.4 Relative efficiency during periods of high and low volatility

Building on the direct comparison between open outcry and electronic trading systems

from the previous section, we redeploy the relative efficiency measure in a threshold

autoregressive setting permitting a novel comparison between trading systems in times of

high and low volatility. To achieve this the following two regime threshold autoregression

(TAR) framework replaces Equation (6):

ft − ft−τ =


θH,0 +

∑k
i=1 θH,i(ft−i − ft−τ−i) + εH,t if σ2

t (f) > q(κ)

θL,0 +
∑k
i=1 θL,i(ft−i − ft−τ−i) + εL,t if σ2

t (f) ≤ q(κ)

(10)

where the subscript H denotes the high volatility regime, L the low volatility regime,

σ2
t (f) is the transition variable which is defined as the difference between the daily

future’s high and low price at the pricing date, q(κ) is the threshold for a chosen quantile

κ, and lags are selected up to a maximum of 6 using information criteria adapted for a

TAR setting.

Thereafter it is straightforward to apply the relative efficiency measure in Equation

(9) to the high volatility regime using εH,t and εL,t for the low regime. We denote these

two new measures as φτc,h and φτc,l, which are estimated for given values of κ that yield

values for q(κ) that are based on σ2
t (f) for the full available sample across open outcry and

electronic trading. For each κ we calculate the difference in the relative efficiency measure

between the electronic (ET) and open outcry (OO) samples, δτc,r = φτ,ETc,r − φτ,OOc,r ,

14For ft−7 and ft−21 open outcry is more efficient while both are short-run efficient at the 14-day
maturity.
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where r denotes either the higher or lower regime from Equation (10). Complementing

this relative efficiency TAR framework we examine the effect of maturity by creating a

short and long maturity measure by averaging δτc,r across 7- and 14-day maturities (δ̄sc,r,

short), and 56- and 84-day maturities respectively (δ̄lc,r, long). Further, we extend this

approach by bootstrapping these short and long maturity measures, adding robustness

to our approach.15

We implement our relative efficiency TAR framework for κ = [{0.4, 0.6},{0.3, 0.7}]
to capture times of low and high volatility. As the focus is on high and low volatility

environments, when κ is 0.4 for example, we only examine δ̄sc,L and δ̄lc,L (the lower

regime) and when κ is 0.6 we examine δ̄sc,H and δ̄lc,H (the upper regime). Lag selection in

our TAR setting is initially chosen using a modified AIC, and we proceed to then remove

the issue of lag selection by imposing a fixed lags of 6. For robustness we also select lags

using the Hannan-Quinn information criterion (HQIC) and adjusted R2.16

Figures 4 and 5 report these results and the attendant bootstrapped confidence in-

tervals for the AIC and fixed lag estimation respectively. They show the difference in

relative efficiency between electronic trading and open outcry for the high/low volatility

regimes at short/long maturities.

[Insert Figure 4 about here]

[Insert Figure 5 about here]

Overall, the results of the bootstrap TAR analysis show novel differences in efficiency

under electronic trading and open outcry, finding these differences to be a function of

the maturity and the volatility of the underlying asset. In particular, note: (i) there

are no significant results when volatility is low; (ii) in the κ = 0.7 cases, we observe a

significant positive value for longer maturities when volatility is high; and (iii) for both

values of κ, 0.6 and 0.7, we observe a significant negative result for shorter maturities

when volatility is high.17

Turning first to the low volatility results, the lack of significance indicates open outcry

and electronic trading are indistinguishable from one another at both short and long

maturities. However, on inspection of the high volatility results differences emerge. In the

15Taking the short maturity measure as a case in point, the inputs into the relative efficiency measure
(E[(ft − ft−τ )] from the high and low volatility environments and the corresponding residuals from
Equation (10) are re-sampled in tandem for 7- and 14-day maturities to generate φτc,h and φτc,l which

are then averaged to get δ̄sc,r. This is repeated 5000 times to form an empirical distribution from which
a 10% confidence interval is calculated.

16The motivation for the choice information criteria is in part based on the work of Kapetanios (2001)
who examines the small sample properties of a number of information criteria in threshold models. See
Tong (1990) for early work on using a modified AIC in a TAR setting.

17We also calculated confidence intervals for other significance levels. The significant results in Figure
4(b) also hold at the 1% level, and the short maturity result in Figure 5(b) holds at the 5% level.
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case of the significant positive values for our difference in relative efficiency measure, this

suggests that when volatility is particularly high (i.e., when κ=0.7), electronic trading

is more efficient than open outcry at longer maturities. By contrast, our significant

negative values indicate that open outcry is more efficient than electronic trading at

shorter maturities when volatility is generally high (i.e., when κ=0.6 and κ=0.7) .

These figures are striking from a market efficiency perspective insofar they suggest

open outcry can, in some cases, outperform electronic trading. Thus our results support

and extend earlier work such as Tse and Zabotina (2001) and Martens (1998), suggesting

that there are potential advantages to using open outcry in modern futures markets.18

These results also complement those from the original relative efficiency measure in

Table 9 where we found that open outcry seemed to be more efficient at short horizons

and electronic trading more efficient at longer horizons. Specifically, they suggest the

existence of an efficiency skew where in high volatility environments, improved efficiency

is skewed more towards open outcry at short maturities whilst being skewed more towards

electronic trading at longer horizons.

Why might an efficiency skew occur? Tse and Zabotina (2001) suggest that any

poor performance of electronic trading may be related to pre-programmed algorithms

withdrawing from trading during periods of the arrival of large amounts of new, market-

sensitive, information proxied by price volatility. Our new results would suggest an

extension of this idea: namely, that if the withdrawal of electronic traders during periods

of high volatility does occur, it occurs as we move towards maturity. This could be

explained by the time-dependent risks to closing an open contract at an appropriate

price, thus making the algorithms relatively more sensitive to price volatility as maturity

approaches.

As a first step towards checking the robustness of our findings the same procedure

is estimated under the HQIC and Adjusted R2 lag selection schemes and are given in

Appendix B (Figures B1 and B2 respectively). Reassuringly, a similar picture emerges.19

18We thank an anonymous referee for noting that when sub-samples are not contemporaneous, one
needs to be careful about acknowledging the possibility of other causal factors. This we do. However,
given our context (i.e., the imposition of a known structural break representing a complete switch from
open outcry to electronic trading), we think there are plausible reasons to suggest that the pre-eminent
rationale for any differences between efficiency in the two samples is the type of auction. These include
(a) we examine predictive efficiency in 4 different states. Given a change in the regulatory environment
or general market conditions between our two sub-samples, we might expect efficiency all 4 states to be
affected in the same direction. However, only two states are affected (i.e., short-maturity contracts in
high volatility conditions and long-maturity contracts in high volatility conditions) and (b) the finding
that efficiency falls after the structural break (i.e., after the introduction of electronic trading) in the
short-maturity contract and high volatility state is consistent with some prior theory and literature (see
Martens, 1998; Tse and Zabotina, 2001; Aitken et al., 2004; Ning and Tse, 2009) that open outcry may
be better able to impound information into the price during periods of higher volatility than electronic
trading.

19The adjusted R2 approach again provides analogous results to using modified AIC or a fixed lag
length. HQIC, whilst also finding significance for the superiority of open outcry at short horizons and
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The next section also examines the robustness of these results.

4.5 Robustness: informational delay during periods of high and

low volatility

The mainstream approach to tests for market efficiency in futures markets is to adopt

the long-run/short-run framework we applied earlier in this paper, however there are

other tests used in other asset classes (for example see Griffin et al., 2010, who applies

a battery of tests to examine market efficiency in equity markets).20 Drawing from this

literature we apply the delay measure used in Griffin et al. (2010) to the CPO futures

market, adapting it to high and low volatility environments.21

The delay is an R2-based measure that tries to capture the extent to which the

price is slow to incorporate market information. In the stock market literature weekly

data is typically used to estimate a restricted and unrestricted model from which the

delay measure is calculated. The restricted model regresses an individual stock price

return series on the contemporaneous change in news proxied by the market return. The

unrestricted model includes lagged market returns. The delay measure is the calculated

using the R2 (or adjusted R2) from each model as either a simple difference or as a scaled

measure.

The implementation of this measure in equity markets is straightforward. The stock

price presents the price series and market information is represented by the stock index.

For the delay measure to be used to examine informational efficiency in a futures mar-

kets setting we need to generate a continuous nearby futures contract series at weekly

frequency to replace the stock price and define the variables that proxy market infor-

mation to replace the stock market index (in the case of the latter see Ismailescu and

Phillips, 2015, who have made a similar adjustment albeit with different variables to

examine the bond market and credit default swaps). Turning to the continuous futures

price series, we follow the standard approach in the literature by using the nearby fu-

tures contracts to generate a weekly continuous futures contract series with the contract

rollover occurring at the end of each month. As a consequence of measuring the delay

using this continuous price series our our focus is on providing further evidence for our

short horizon findings from the previous section. For our news variables we select: (i) the

weekly change in the average exchange rate between Malaysia and their 5 largest trading

high volatility (in the κ=0.7 case), is the only approach taken that marginally fails to find significance
for the superiority of electronic trading at long horizons and high volatility.

20The difficulty here is that many of these tests are not directly applicable to futures markets which
is further complicated by our need to look at these results in different volatility environments.

21We are not the first to use the delay measure to get an insight into derivative markets. See Ismailescu
and Phillips (2015) who examine if credit default swap initiation is associated with improvements in
sovereign bond price efficiency.
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partners as Malaysia is the leading exporter of CPO worldwide;22 (ii) Soybean oil futures

prices constructed as a continuous nearby series as soybean oil and CPO are considered

“substitute goods” as food processors tend to switch between the two products as prices

fluctuate;23 and (iii) a grain and oilseed futures index to represent the wider market in

which CPO sits.24 Finally we distinguish between high and low volatility environments

using the same measure as previously, σ2
t (f), which is calculated alongside the weekly

continuous CPO futures series.

Equations (11) and (12) show the restricted and unrestricted models. The delay

literature usually selects 4 lags in (12) but we elect to include additional lags as well

to see how stable our results are. In Equation (13) we follow Griffin et al. (2010) and

measure delay as the difference in the adjusted R2 (R̄2) between the unrestricted and

restricted models.25

∆fCPO,t = α+ β1∆fxt + β2∆fSO,t + β3∆IndexOG,t + εt (11)

∆fCPO,t = α+ β1∆fxt + β2∆fSO,t + β3∆IndexOG,t +

k∑
i=1

φi∆fxt−i+

k∑
i=1

ψi∆fSO,t−i +

k∑
i=1

ωi∆IndexOG,t−i + εt

(12)

Delay = R̄2
unrestricted − R̄2

restricted (13)

where fCPO,t and fSO,t represent the continuous CPO and soybean oil futures contract

series, fxt the averaged exchange rate series, and IndexOG,t the oil and grain index.

Putting the issue of volatility to one side, the delay measure is first calculated based

on the available sample for both open outcry and electronic trading sub-periods. Then

we estimate the delay measure during periods of high and low volatility based on the

observed σ2
t (f). In keeping with the previous section an observation will be assessed as

either high or low volatility using the value of σ2
t (f) at the pricing date, which in this

case is at time t − 1 and threshold values q(κ) are calculated using the whole sample

22The top 5 exporting and importing partners for Malaysia are: China, Japan, Singapore, Thailand,
and the United States. Source: World Bank.

23See CME (2015) for more information on the relationship between these two commodities.
24The exchange rate data are from Reuters, the soybean oil futures from Chicago Board of Trade, and

the oil and grain index from Thomson Reuters. In the case of the latter the index comprises soybean,
wheat and corn contracts (but not soybean oil). The correlation between the change in the index and
the change in the soybean oil futures price is 53% and 57% for open outcry and electronic trading
sub-samples respectively. Appendix C shows correlation tables.

25Using the scaled measure does not change our results.
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and are not sub-sample specific. We again use quantiles κ = [{0.4, 0.6},{0.3, 0.7}] to

calculate threshold values.

Table 10 shows the results from applying the delay measure to the open outcry and

electronic trading sub-samples. It also shows the results from these sub-samples using

the stated values for κ. We implement the delay measure using 4 to 8 lags and note that

in the majority of cases the results across all panels remain qualitatively the same.26

[Insert Table 10 about here ]

Turning to Panel A, which does not distinguish between different categories of volatility,

the results for all lags indicate more evidence of delay during open outcry than during

electronic trading and suggests the latter is better at incorporating market information.

Panel B shows the delay measure for each sub-sample when volatility is low. The results

match those of the previous panel indicating that there is less (more) delay in electronic

trading (open outcry). However a different picture emerges in the high volatility setting

where we observe that in volatile times, under most lag structures, there is more delay in

electronic trading than in open outcry, and therefore in this case it is open outcry that

is better at incorporating market information.27 Overall, the delay measure supports

our earlier findings, suggesting there is some aspect of open outcry that enables it to

impound information during volatile periods that is not matched by electronic trading.

5 Conclusions

This study presents the first examination of futures market predictive efficiency under

different market trading regimes, as well as providing a timely contribution to an under

researched yet important commodity in the world food market - crude palm oil (CPO).

We operationalize our test of market efficiency between trading regimes by deriving

two sub-samples of data, pre- and post-introduction of electronic trading at the Bursa

Malaysia Derivatives Berhad using a number of different contract maturities. Testing for

long-run efficiency across a selection of maturities using contegration analysis indicates

that the CPO futures market is predominantly long-run efficient across both trading

platforms. However, across both sub-samples there is evidence of short-run inefficiency.

Applying the relative efficiency measure of Kellard et al. (1999) indicates that the level

26Recall the literature tends to use 4 lags, and including lags up to 8 lags seems sufficient as this
represents two months of past information.

27In some cases the delay measure is negative. This is because the adjusted R2 from the unrestricted
model is lower than that from the restricted, thus the inclusion of lags did not help explain the change
in the CPO futures price sufficiently to offset the penalty for the reduction in degrees of freedom. This
we interpret to be an absence of delay. In these cases calculating the delay using the unadjusted R2

does not change the findings.
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of short-run inefficiency is lower for shorter maturities under open outcry and conversely

is lower for electronic trading when maturities are longer.

To examine this issue further we implement a novel bootstrapped version of the

relative efficiency measure, conditioning on a daily measure of futures price volatility,

in a threshold autoregressive environment. The results suggest a type of efficiency skew

that (i) for shorter maturities, the open outcry method is superior when volatility is

high (ii) for longer maturities, electronic trading is superior when volatility is high and

(iii) that they are indistinguishable from each other when volatility is low. These results

help clarify the mixed picture in the extant literature by providing new evidence that

the considered trading systems are complementary and can be usefully run side-by-side.

Although exceptions exists, in particular the London Metal Exchange, a number of

exchanges have closed their open outcry markets over the recent past. Declining volume

is a frequently cited rationale, with more and more trading taking place on electronic

exchanges. Why has this transfer of volume taken place? The extant literature appears

to be relatively clear that, on average, electronic trading increases liquidity and lowers

spreads. Given the immediate cost of trading reduces in this manner, it is perhaps no

surprise that either some futures markets have rejected open outcry or where they co-

exist, the majority of trading takes place on the electronic platform. Moreover, results

in this paper suggest there is some evidence that at longer horizons, electronic trading

is more efficient during periods of heightened volatility.

Given the above, can there really be any role for open outcry in modern futures

markets? The answer is potentially. For example, Boyd and Kurov (2012) note that

traders have a survival advantage in side-by-side systems if they use both open outcry and

electronic trading rather than relying exclusively on just one of these. Our results provide

evidence that open outcry auctions work better, in efficiency terms, than electronic

trading, during higher volatility periods at short maturities. Finally, benchmark pricing

itself might be more transparent when carried out on open outcry venues where trading

can be clearly observed.

However, to support open outcry volumes, the benefits of such trading will need to

exceed the costs of maintaining parallel markets. In part, this will rely on exchanges

running open outcry venues cost-efficiently, whilst making traders and regulators aware

of potential benefits. A particular hurdle is that whilst the lower cost of trading in

electronic markets is obvious to individual traders as soon as they trade, the benefits

of open outcry markets may only become clearer over prolonged periods of trading.

Exchanges that have recently invested heavily in maintaining open outcry functionality

will require that traders adopt a longer-term perspective.
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Appendix A

Figure A1: Daily volume and open interest prior to and proceeding migration from open
outcry to electronic trading
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Notes: The figure plots the daily volume and open interest for the 3-month futures contract 6 months
prior and 6 months after migration from open outcry to electronic trading on 28 December 2001. The
vertical dashed line denotes the switch over from open outcry to electronic trading. Source: Reuters.
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Appendix B

Figure B1 shows the results of the TAR relative efficiency measure where lags are selected

using the HQIC. Figure B2 shows the results of the TAR relative efficiency measure where

lags are selected using the adjusted-R2. The results are qualitatively similar to Figures

4 and 5. In Figure B2(b) the significant result in favour of open outcry also holds using

the 5% level of significance.

Figure B1: TAR relative efficiency measure, HQIC
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Notes: The figure shows the results of the TAR relative efficiency analysis using the HQIC. The figure
shows the difference in relative efficiency between electronic trading and open outcry (δ̄mc,r) as an average
across short (m = s: τ = 7 and 14 days) and long (m = l : τ = 56 and 84 days) maturities and across
high (r = H, κ = 0.6) and low (r = L, κ = 0.4) volatility environments. See equations (9) and (10).
Positive (negative) values denote a higher value for electronic trading (open outcry). The bands denote
10% bootstrapped confidence intervals calculated using 5000 replications.
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Figure B2: TAR relative efficiency measure, R̄2
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Notes: The figure shows the results of the TAR relative efficiency analysis using the adjusted R-squared.
The figure shows the difference in relative efficiency between electronic trading and open outcry (δ̄mc,r)
as an average across short (m = s: τ = 7 and 14 days) and long (m = l : τ = 56 and 84 days) maturities
and across high (r = H, κ = 0.6) and low (r = L, κ = 0.4) volatility environments. See equations (9)
and (10). Positive (negative) values denote a higher value for electronic trading (open outcry). The
bands denote 10% bootstrapped confidence intervals calculated using 5000 replications.
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Appendix C

Table C1 shows the correlation coefficients of the independent variables used in the delay

regressions.

Table C1: Delay variables, correlation coefficients

Panel A: Correlation coefficients for
delay measure variables, open outcry

∆fxt ∆fso,t ∆IndexOG,t
∆fxt - - -
∆fso,t -0.0248 - -

∆IndexOG,t -0.0585 0.5297 -

Panel B: Correlation coefficients for
delay measure variables, electronic trading.

∆fxt ∆fso,t ∆IndexOG,t
∆fxt - - -
∆fso,t 0.0014 - -

∆IndexOG,t 0.0193 0.5738 -

Notes: ∆fxt is the change in the average exchange rate against Malaysia’s major trading partners,
∆fso,t is the change in the nearby soybean oil futures contract series, and ∆IndexOG,t is the change in
the oil and grain futures index.
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Table 1: CPO summary of statistics, June 1995 - July 2008

ft ft−7 ft−14 ft−21 ft−28 ft−56 ft−84

Mean 7.3102 7.3085 7.3081 7.3084 7.3055 7.2985 7.2917
Standard Deviation 0.3559 0.3501 0.3462 0.3427 0.3438 0.3295 0.3139
Skewness 0.4645 0.4514 0.4729 0.4974 0.4936 0.5048 0.5273
Kurtosis 3.2356 3.1402 3.1955 3.2842 3.2819 3.3515 3.3960

Notes: Observations = 158. ft is the logged futures price at the settlement date. ft−τ is the logged
futures price τ -days before settlement, where τ = 7, 14, 21, 28, 56, 84.

1



Table 2: ADF unit root and KPSS stationarity tests, June 1995 - July 2008

Exogenous specification
Constant Constant and linear trend

Test ADF KPSS ADF KPSS

ft -1.4935 (4) 0.4064* -1.9815 (4) 0.1726**
ft−7 -1.9319 (5) 0.3982* -2.3701 (5) 0.1706**
ft−14 -1.7103 (5) 0.4064* -2.1679 (5) 0.1746**
ft−21 -1.4106 (4) 0.3960* -1.8538 (4) 0.1727**
ft−28 -1.3471 (4) 0.3908* -1.7896 (4) 0.1693**
ft−56 -1.3472 (4) 0.3830* -1.8050 (4) 0.1684**
ft−84 -1.4319 (4) 0.3690* -1.8658 (4) 0.1660**

Notes: The table shows t-statistics for the ADF and KPSS tests. (): number of lags selected by the
AIC. *,**,*** represents a rejection of the null hypothesis at the 10%, 5%, and 1% significance levels
respectively.
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Table 3: CPO cointegration analysis CPO, June 1995 - July 2008

λ-max Trace P(χ2(β))
H0: r = 0 H0: r = 1 H0: r = 0 H0: r = 1

ft−7 79.8946*** 0.4724 80.3669*** 0.4724 0.7943
ft−14 75.8854*** 0.3623 76.2477*** 0.3623 0.9102
ft−21 90.0689*** 0.2693 90.3382*** 0.2693 0.5014
ft−28 28.0500*** 2.6566 30.7066*** 2.6566 0.5704
ft−56 29.6712*** 3.1608* 32.8321*** 3.1608* 0.8739
ft−84 56.2082*** 3.2621* 59.4703*** 3.2621* 0.9013

Notes: The table shows the results of the Johansen test (λ-max and Trace) with attendant chi-squared
test on the restricted cointegrating vector [1,-1,0]. *, **, ***, represents a rejection of the null hypothesis
at the 10%, 5%, and 1% significance levels respectively.
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Table 4: Short-run CPO efficiency

ft−7 ft−14 ft−21 ft−28 ft−56 ft−84

θ0 0.0017 0.0023 0.0017 0.0029 0.0046 0.0047
(0.0030) (0.0046) (0.0055) (0.0060) (0.0083) (0.0086)

θ1 0.0577 0.1083 0.1044 0.5931 0.8268
(0.0702) (0.0778) (0.0757) (0.1144)*** (0.0863)***

θ2 -0.0525 -0.0659 -0.0704 -0.3994 -0.2812
(0.0853) (0.0937) (0.1040) (0.1494)*** (0.1086)**

θ3 0.0024 0.0525 0.0513 0.2553 -0.0650
(0.0869) (0.1038) (0.0774) (0.1307)* (0.1182)

θ4 0.2796 0.2736 0.3279 0.1620 0.4417
(0.0889)*** (0.0813)*** (0.0891)*** (0.0969)* (0.1527)***

θ5 -0.2148
(0.1178)*

P(F ) NA 0.0066*** 0.0005*** 0.0001*** 0.0000*** 0.0000***

Notes: The table shows the results for the short-run model, Equation (6), with lags selected using AIC.
(): HAC standard errors. *, **, *** represents a rejection of the null hypothesis at the 10%, 5%, and
1% significance levels respectively. P(F ) denotes the p-value from the joint test of zero restrictions on
lagged coefficients.
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Table 5: Summary of statistics, open outcry and electronic trading

ft ft−7 ft−14 ft−21 ft−28 ft−56 ft−84

Open outcry
Mean 7.1666 7.1689 7.1690 7.1733 7.1711 7.1739 7.1797
Standard deviation 0.3393 0.3391 0.3302 0.3283 0.3322 0.3219 0.3076
Skewness 0.3690 0.4289 0.4078 0.4035 0.4222 0.4232 0.4450
Kurtosis 2.5832 2.5911 2.5624 2.6258 2.6356 2.5975 2.6444

Electronic trading
Mean 7.4538 7.4482 7.4473 7.4434 7.4398 7.4231 7.4036
Standard deviation 0.3131 0.3038 0.3049 0.3028 0.3017 0.2889 0.2798
Skewness 1.1498 1.1410 1.1171 1.1790 1.1965 1.2423 1.1643
Kurtosis 3.2525 3.2215 3.2919 3.3856 3.4575 3.7408 3.9076

Notes: ft is the logged futures price at the settlement date. ft−τ is the logged futures price τ -days
before settlement, where τ = 7, 14, 21, 28, 56, 84. Open outcry sample period: 15 June 1995 - 15
December 2001. Electronic trading sample period: 15 January 2002 - 15 July 2008.

5



Table 6: ADF unit root and KPSS stationarity tests, open outcry and electronic trading

Panel A: Open outcry

Exogenous specification
Constant Constant and linear trend

Test ADF KPSS ADF KPSS

ft -1.8829 (4) 0.3689* -2.1086 (4) 0.2079**
ft−7 -1.7223 (4) 0.3655* -1.9681 (4) 0.2117**
ft−14 -1.5474 (4) 0.3792* -2.1222 (5) 0.216**
ft−21 -1.8293 (4) 0.3715* -2.0488 (4) 0.2165***
ft−28 -1.8835 (4) 0.3618* -2.1609 (4) 0.2184***
ft−56 -1.7283 (4) 0.3509* -1.9598 (4) 0.2234***
ft−84 -2.0818 (4) 0.3301 -2.2119 (4) 0.2198***

Panel B: Electronic trading

Exogenous specification
Constant Constant and linear trend

Test ADF KPSS ADF KPSS

ft 0.1455 (2) 0.7286** -0.7159 (2) 0.2265***
ft−7 -0.0735 (2) 0.7312** -0.9308 (2) 0.2242***
ft−14 -0.2385 (0) 0.7375** -1.1591 (0) 0.2189***
ft−21 0.0755 (0) 0.7327** -0.8159 (0) 0.2209***
ft−28 0.2894 (2) 0.7288** -0.5562 (2) 0.2205***
ft−56 0.4742 (0) 0.7461*** -0.5561 (0) 0.2136**
ft−84 -0.3551 (0) 0.7553*** -1.0637 (0) 0.2019**

Notes: The table shows t-statistics for the ADF and KPSS tests. (): number of lags selected by the
AIC. *, **, *** represents a rejection of the null hypothesis at the 10%, 5%, and 1% significance levels
respectively. Open outcry sample period: 15 June 1995 - 15 December 2001. Electronic trading sample
period: 15 January 2002 - 15 July 2008.
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Table 7: CPO cointegration analysis, open outcry and electronic trading

Panel A: Open outcry

λ-max Trace P(χ2(β))
H0: r = 0 H0: r = 1 H0: r = 0 H0: r = 1

ft−7 34.3067*** 1.7865 36.0932*** 1.7865 0.6822
ft−14 29.5163*** 1.5155 31.0318*** 1.5155 0.9839
ft−21 43.0092*** 1.2708 44.2801*** 1.2708 0.5210
ft−28 9.4352 3.1375* 12.5727 3.1375* 0.9623
ft−56 11.5456 4.1884** 15.7340** 4.1884** 0.8485
ft−84 28.2994*** 3.3478* 31.6472*** 3.3478* 0.7139

Panel B: Electronic trading

λ-max Trace P(χ2(β))
H0: r = 0 H0: r = 1 H0: r = 0 H0: r = 1

ft−7 18.1087** 0.0272 18.1358** 0.0272 0.5149
ft−14 50.4781*** 0.1470 50.6252*** 0.1470 0.7266
ft−21 56.6498*** 0.1129 56.7627*** 0.1129 0.2946
ft−28 48.1009*** 0.0450 48.1459*** 0.0450 0.2307
ft−56 29.6180*** 0.0078 29.6257*** 0.0078 0.5319
ft−84 28.2616*** 0.6979 28.9595*** 0.6979 0.1528

Notes: The table shows the results of the Johansen test (λ-max and Trace) with attendant chi-squared
test on the restricted cointegrating vector [1,-1,0]. *, **, ***, represents a rejection of the null hypothesis
at the 10%, 5%, and 1% significance levels respectively. Open outcry sample period: 15 June 1995 - 15
December 2001. Electronic trading sample period: 15 January 2002 - 15 July 2008.
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Table 8: Short-run CPO efficiency, open outcry and electronic trading

Panel A: Open outcry

ft−7 ft−14 ft−21 ft−28 ft−56 ft−84

θ0 -0.0023 -0.0024 -0.0038 -0.0018 -0.0030 -0.0082
(0.0046) (0.0080) (0.0106) (0.0111) (0.0147) (0.0132)

θ1 0.1117 0.0685 0.5511 0.8789
(0.1110) (0.1110) (0.1655)*** (0.1146)***

θ2 -0.1131 -0.1016 -0.4134 -0.3262
(0.1099) (0.1256) (0.1953)** (0.1425)**

θ3 0.0559 0.0728 0.2749 -0.0379
(0.1440) (0.1108) (0.1976) (0.1492)

θ4 0.3643 0.4606 0.2183 0.5669
(0.1044)*** (0.0993)*** (0.1419) (0.2304)**

θ5 -0.4276
(0.1922)**

P(F ) NA NA 0.0003*** 0.0000*** 0.0000*** 0.0000***

Panel B: Electronic trading

ft−7 ft−14 ft−21 ft−28 ft−56 ft−84

θ0 0.0037 0.0065 0.0065 0.0085 0.0174 0.0171
(0.0028) (0.0045) (0.0046) (0.0062) (0.0085)** (0.0101)*

θ1 -0.0333 0.1521 0.1956 0.6489 0.8020
(0.1189) (0.1391) (0.0836)** (0.0913)*** (0.1388)***

θ2 -0.1435 -0.1279 -0.1519 -0.4208 -0.3602
(0.1060) (0.1068) (0.1075) (0.1111)*** (0.1859)*

θ3 0.3909 0.2308 0.1727 0.2335 0.0541
(0.1340)*** (0.1045)** (0.0752)** (0.0888)** (0.1407)

θ4 0.0864 0.0415 0.0963 0.1709
(0.0859) (0.0965) (0.0888) (0.0938)*

θ5 0.2883 0.0668 0.1138
(0.0893)*** (0.0843) (0.1005)

θ6 0.3795 0.2476
(0.0995)*** (0.1238)*

θ7 -0.1373 -0.1199
(0.1140) (0.1312)

θ8 -0.0435 -0.0895
(0.1427) (0.1577)

θ9 -0.1546 -0.1072
(0.1227) (0.0877)

P(F) 0.0000*** NA 0.0015*** 0.0069*** 0.0000*** 0.0000***

Notes: The table shows the results for the short-run model, Equation (6), with lags selected using
AIC.(): HAC standard errors. *, **, *** represents a rejection of the null hypothesis at the 10%, 5%,
and 1% significance levels respectively. P(F ) denotes the p-value from the joint test of zero restrictions
on lagged coefficients. Open outcry sample period: 15 June 1995 - 15 December 2001. Electronic trading
sample period: 15 January 2002 - 15 July 2008.
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Table 9: Relative efficiency measure

ft−7 ft−14 ft−21 ft−28 ft−56 ft−84

Open outcry 1 1 0.8477 0.7795 0.6156 0.4120
Electronic trading 0.7835 1 0.7403 0.7974 0.6909 0.5411

Whole sample 1 0.9153 0.8994 0.8643 0.6353 0.4648

Notes: The table shows the results of the Kellard et al.’s (1999) short-run efficiency measure. Open
outcry sample period: 15 June 1995 - 15 December 2001. Electronic trading sample period: 15 January
2002 - 15 July 2008.
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Table 10: CPO futures delay

Panel A: Open outcry and electronic trading sub-samples

Lags OO delay ET delay

4 0.0601 0.0128
5 0.0577 0.009
6 0.0602 0.0164
7 0.056 0.0211
8 0.0507 0.0178

Panel B: Low volatility, open outcry and electronic trading sub-samples

κ = 0.3 κ = 0.4
Lags OO delay ET delay OO delay ET delay

4 0.0611 -0.0118 0.0817 -0.0179
5 0.0579 -0.0353 0.0756 -0.03
6 0.062 -0.0523 0.0799 -0.0269
7 0.0707 -0.0352 0.0745 -0.0249
8 0.0523 -0.0542 0.06 -0.0327

Panel C: High volatility, open outcry and electronic trading sub-samples

κ = 0.6 κ = 0.7
Lags OO delay ET delay OO delay ET delay

4 0.047 0 0.0353 0.0922
5 0.0349 0.0043 0.0201 0.0913
6 0.0232 0.0239 0.0041 0.0924
7 0.0107 0.05 -0.0123 0.1222
8 0.0018 0.057 -0.0286 0.1213

Notes: The table shows the results of the delay measure which is calculated using Equations (11)-(13).
Panel A shows the results for the open outcry (OO) and electronic trading (ET) sub-samples. Panels B
and C calculate the delay measure for OO and ET during times of low volatility (quantiles, κ = 0.3, 0.4)
and high volatility (quantiles, κ = 0.6, 0.7) respectively. Lags refers to the number of lags that are
entered into the unrestricted regression.
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Figure 1: Edible Oil Production
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Notes: The graph shows the annual production (’000,000 tonnes) for the most produced edible oils. For
ease of interpretation the remaining edible oils are presented by the shaded area and comprise: Coconut
oil, cottonseed oil, groundnut oil, linseed oil, maize oil, virgin olive oil, palm oil kernel, safflower oil, and
sesame oil. Source: Food and Agriculture Organization of the United Nations.
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Figure 2: Average daily volume and open interest for 3-month CPO futures contracts
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Notes: The graph shows the daily average (per month) volume and open interest for the 3-month futures
contract. The vertical dashed line denotes the switch over from open outcry to electronic trading. Source:
Reuters.
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Figure 3: CPO futures price and 30-day historical spot price volatility
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Notes: The figure shows the average (per month) 3-months CPO futures price and the 30-day historical
spot price volatility (σ30, standard deviation). The vertical dashed line denotes the switch over from
open outcry to electronic trading. Source: Reuters.

3



Figure 4: TAR relative efficiency measure, AIC
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Notes: The figure shows the results of the TAR relative efficiency analysis using the AIC. The figure
shows the difference in relative efficiency between electronic trading and open outcry (δ̄mc,r) as an average
across short (m = s: τ = 7 and 14 days) and long (m = l : τ = 56 and 84 days) maturities and across
high (r = H, κ = 0.6) and low (r = L, κ = 0.4) volatility environments. See equations (9) and (10).
Positive (negative) values denote a higher value for electronic trading (open outcry). The bands denote
10% bootstrapped confidence intervals calculated using 5000 replications.
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Figure 5: TAR relative efficiency measure, fixed lags
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Notes: The figure shows the results of the TAR relative efficiency analysis using a fixed lag of 6. The
figure shows the difference in relative efficiency between electronic trading and open outcry (δ̄mc,r) as an
average across short (m = s: τ = 7 and 14 days) and long (m = l : τ = 56 and 84 days) maturities and
across high (r = H, κ = 0.6) and low (r = L, κ = 0.4) volatility environments. See equations (9) and
(10). Positive (negative) values denote a higher value for electronic trading (open outcry). The bands
denote 10% bootstrapped confidence intervals calculated using 5000 replications.
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