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ABSTRACT 

Mesenchymal stem cells (MSCs) are multipotent stromal cells which can differentiate 

into a variety of cell types including osteoblasts, adipocytes and chondrocytes. They 

are normally resident in adipose tissue, bone marrow and the umbilical cord, but can 

also be found in other tissues and are known to be recruited to sites of wound healing 

as well as growing tumours. The therapeutic potential of MSCs has been explored in 

a number of phase I/II and III clinical trials, of which several were targeted against 

graft-versus-host disease and to support engraftment of haematopoietic stem cells 

(HSCs), but currently only very few in the oncology field. There are now three clinical 

trials either ongoing or recruiting patients that use MSCs to treat tumour disease. In 

these, MSCs target gastrointestinal, lung and ovarian cancer, respectively. The first 

study uses MSCs loaded with a HSV-TK expression construct under the control of the 

CCL5 promoter, and has recently reported successful completion of Phase I/II. While 

no adverse side effects were seen during this study, no outcomes with respect to 

therapeutic benefits have been published. The other clinical trials targeting lung and 

ovarian cancer will be using MSCs expressing cytokines as therapeutic payload.  

Despite these encouraging early steps towards their clinical use, many questions are 

still unanswered regarding the biology of MSCs in normal and pathophysiological 

settings. In this review, in addition to summarising the current state of MSC-based 

therapeutic approaches for cancer, we will describe the remaining questions, obstacles 

and risks, as well as novel developments such as MSC-derived nanoghosts. 
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MSCs and their potential use in cancer treatment 

 

MSCs were first isolated and characterised by Friedenstein and his colleagues in the 

1960-1970s [1]. They are non-haematopoietic cell precursors, initially found in the 

bone marrow, but actually present in many other tissues [2]. The International Society 

of Cellular Therapy (ISCT) uses three criteria to define MSCs [3]: Firstly, MSCs can 

adhere to plastic under standard culture conditions; secondly, MSCs express cell 

surface markers including CD105, CD73 and CD90 with no expression of endothelial, 

haematopoietic, or immunological cell markers such as CD45, CD34, CD14, CD11b, 

CD79α, CD19 and HLA-DR; thirdly, MSCs have the ability to differentiate into 

osteoblasts, adipocytes, and chondroblasts when exposed to the appropriate stimuli 

[4]. MSCs can be readily transduced by a variety of vectors such as Adenovirus, 

Lentivirus and Adeno-associated virus (AAV) [5-9]. Owing to their relative immune-

privilege/-evasiveness and general immune-dampening activities, MSCs can be used 

in an allogenic setting and are therefore well suited as an off-the-shelf cell therapeutic 

agent [10, 11].  

Even though MSCs have been found in and derived from various tissues, the most 

frequently used MSCs are from bone marrow (BM-MSCs), adipose tissue (AT-MSCs) 

and umbilical cord (UC-MSCs) [12-14]. As for this good availability and the relative 

straightforward culturing conditions, MSCs gained increasingly clinical attraction 

over the last ten years including the treatment of cancer. Generally, the use of MSCs 

as cellular vehicles in the latter context is based on their ability to home to tumours as 

they are recognised by MSCs as a “wound that never heals” [15]. This tumour tropism 

is part of the normal repair function in which MSCs are recruited by sites of tissue 

injury and inflammation. They are capable of extravasating into tumours when 

introduced into the organism via the blood stream [16], and although the molecular 

mechanisms behind the migration of MSCs are still not fully understood, studies have 

shown that the migration is regulated by various cytokines and their corresponding 

receptors, i.e. SDF-1/CXCR4, HGF/c-Met, VEGF/VEGFR, PDGF/PDGFR, MCP-

1/CCR2, and HMGB1/RAGE [17]. 

In the context of such cell therapeutic approaches, MSCs are used as gene delivery 

vehicles for tumour targeted therapies. In several preclinical cancer models, MSCs 
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have been genetically modified to express cytokines, growth factor antagonists, 

antiangiogenic factors, prodrug-converting enzymes and proapoptotic proteins (Fig. 

1 and Supplementary Table 1). Another relatively early-stage approach uses MSCs as 

carrier for oncolytic viruses [18, 19]. Such modified MSCs have been used in different 

tumour type models including colon cancer [20, 21], pancreatic cancer [22-24], lung 

cancer [25-29], breast carcinoma [30-32], ovarian cancer [33], prostate cancer [34, 35], 

hepatocellular carcinoma [36-39], glioma [40-44],  melanoma [45], malignant 

mesothelioma [46] and lymphoma [47]. Although these pre-clinical studies clearly 

demonstrated therapeutic benefits of MSC-based targeted approaches, very few 

clinical trials utilising MSCs as delivery vehicles for anti-cancer treatments have been 

approved [48, 49]. This delay in transition from bench to bedside is at least in parts 

due to reports that MSCs not only display a potential to undergo malignant 

transformation, but can also lead to metastasis induction. Both of these issues embody 

possible barriers for the safe use of MSCs in cancer treatment and will be discussed 

below. 
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Potential problems with MSCs in cancer therapies 

 

Do MSCs undergo malignant transformation and form tumours? 

In the 2000s it was reported that MSCs could undergo spontaneous, malignant 

transformation and form tumours in vivo, dramatically increasing the risk of 

therapeutic use of MSCs [50-52]. However, these initial reports were subsequently 

retracted as it turned out that the observed tumour formation was the result of cross-

contaminations with cancer cells [53, 54]. In detail, the subsequent analyses showed 

that the MSC cultures were cross-contaminated with a human sarcoma cell line in one 

case, and in the second case the presence of two glioma cell lines was detected by DNA 

fingerprinting and short tandem repeat (STR) analysis [54]. These results underscore 

the need for stringent cell culture procedures when it comes to the use of primary cell 

cultures, including MSCs, for therapeutic purposes. Notwithstanding, the acquisition 

of genetic abnormalities in vitro has been observed by several groups [55-57]. 

However, despite these chromosomal abnormalities no evidence of subsequent 

malignant transformation was found in these studies [58]. More importantly, there are 

no reports on MSC-related tumour formation in human patients after MSC 

administration [59, 60]. It cannot be ruled out though, that there is still a hypothetical 

and residual risk of developing tumours after treatment with MSCs, which harboured 

cytogenetic abnormalities at the time of injection or develop them later post-

administration. Follow-up studies of patients who received MSCs as part of their 

treatment will add clarity to their tumorigenic potential. However, out of an 

abundance of caution standardised purification and expansion protocols should be 

established, as chromosomal abnormalities are mainly related to culture conditions 

[61]. As part of these considerations, culture conditions with low proliferation rates 

and minimal expansion rates are recommended to minimise the risk of acquired 

chromosomal aberrations [61].  

In conclusion, while the risk from malignant transformation of MSCs has been 

overstated in the past, it will be essential to put stringent quality-control and 

standardisation procedures in place for MSCs to fulfil their potential in clinic 

applications. 
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MSCs and their pro-metastatic activity 

Another issue that arose with MSCs is their potential to promote metastasis 

development in different cancer models [62-64]. In this context, MSCs can induce 

cancer cell dissemination in tumours that normally do not form metastatic lesions, 

whereas in tumours with a high potential to metastasise, MSCs cannot further increase 

the dissemination process [62]. The ability of MSCs to promote tumour metastasis was 

demonstrated in mammary carcinoma mouse models as well as osteosarcoma and 

colorectal cancer in these reports. While the initial results were obtained from cancer 

cells co-implanted with MSCs [63], it was later shown that established tumours could 

also be induced to form metastatic lesions by systemically administered MSCs, of both 

human and murine origin [62].  

Currently, several hypotheses how MSCs increase the metastatic potential of tumour 

cells exist:  

(a) MSCs within the tumour stroma secret soluble factors, e.g. CCL5 (also known as 

RANTES), which increases the metastatic abilities of cancer cells in a paracrine way 

[63]. In this context, it was also shown that tumour-derived osteopontin (OPN) acts 

on MSCs and induces the production and release of CCL5 [65]. CCL5 acting via its 

receptor CCR5 activates AKT/PKB in cancer cells enabling them to survive the 

different steps of the metastatic process and colonise distal organs [66]. However, 

other factors and pathways may exist that can also trigger cancer cell dissemination, 

of which some act in a cell type and context-specific manner and have not yet been 

identified.  

(b) Within the tumour microenvironment, MSCs can differentiate into other stromal 

cell types, such as carcinoma-associated fibroblasts (CAFs). It is thought that this 

differentiation process can be triggered by the interaction of infiltrating MSCs with 

cancer cells within the primary tumour [67, 68]. CAFs are believed to exert their 

biological effect by secreting tumour growth-promoting factors such as growth factors 

and cytokines, as well as extracellular matrix- and angiogenesis-regulating proteins 

that together create a metastasis-promoting microenvironment [69]. Beyond the 

interaction with cancer cells in the primary tumour, CAFs can also affect cancer cells 

after they entered the circulation leading to increased survival of circulating tumour 
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cells if they are paired together with CAFs in heterotypic tumour-stroma cellular 

units, and consequently higher numbers of metastatic lesions [70, 71]. Despite the 

important role of CAFs in the tumour stroma and beyond, not all of them will be MSC-

derived and it remains to be determined whether MSCs actively promote metastasis 

as differentiated CAFs or as pluripotent stem cells. For more details on CAFs and their 

ability to promote cancer metastasis, please refer to other dedicated review articles 

that have been published [72, 73].  

(c) MSCs and their differentiated progeny protect cancer cells from destruction by 

dampening the immune system thereby increasing the likelihood of dissemination 

and formation of metastatic lesions [74, 75]. MSCs are known to suppress immune 

responses by producing immune-modulatory factors such as IDO, PGE2, TGF-L-

10 and NO acting on T- and B-cells [76-78]. Additionally, they can act via activation of 

potent cellular immune-suppressors such as CD4+FOXP3+ or CD8+FOXP3+ 

regulatory T-cells (Tregs) and myeloid-derived regulatory cells including dendritic 

cells (DCregs), monocytes/macrophages (M-MDSCs) and granulocytes (G-MDSCs) 

[79-81]. More details of the intricate and complex cross-talk of MSCs with immune-

modulatory cells are discussed in a review by Koh & Kang [69].  

(d) MSCs can stimulate epithelial-mesenchymal transition (EMT) of cancer cells [82] 

and thereby promote the invasiveness of cancer cells they intact with. EMT is a 

developmental process, in which epithelial cells acquire mesenchymal, fibroblast-like 

characteristics and show decreased intercellular adhesion and increased motility. As 

these are features, important for disseminating tumour cells, it was first hypothesised 

and now has been widely recognised that EMT is also involved in the metastatic 

process [83, 84]. HGF, EGF, PDGF, TGF-and leptin are factors that can be produced 

by MSCs [85-87], which in turn activate a series of EMT-promoting transcription 

factors such ZEB1, ZEB2, Slug, Snail, and Twist as well as other EMT-inducing factors 

such as SERPINE1, MMP-2, and IL-6 [87-90]. Experimentally, a potential role of MSC-

induced EMT has been shown for breast, melanoma, head and neck squamous cell 

carcinoma, ovarian, endometrial, pancreatic, gastric and colon cancer [88, 89, 91-94]. 

Therefore, the induction of EMT might be the mode of action by which MSCs promote 
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metastasis development, but obviously this function might overlap with some of the 

other activities ascribed to them and summarised above.  

In contrast to these observations there are also reports describing a reduction in 

tumour growth even in responses to unmodified MSCs, at least in certain cancer 

models. Such anti-cancer properties were attributed to soluble factors secreted by 

MSCs [95]. However, the overall balance lies with cancer-progression-promoting 

functions of MSCs at this point. Therefore, in the short term MSCs should probably be 

used only after a careful risk-benefit analysis in humans, in particular in clinical cancer 

trials. Furthermore, the therapeutic payload should also target metastasising cells and 

thereby overcome the potential metastasis-promoting activities by stopping 

disseminating cancer cells in their tracks. In the mid-to-long term, the goal is to 

develop and use “safe” re-engineered MSCs that lack the expression of one or more 

pro-metastatic factors (e.g. CCL5, TGF- For this, further investigations in the 

underlying mechanisms and a deeper understanding of the pro-metastatic effect 

would be beneficial in the development of such safer MSCs for the treatment of cancer. 

However, it will also be crucial to investigate whether the deletion of these genes, 

while creating “safe” MSCs, also leads to a loss of tumour tropism and therapeutic 

activity.  

 

The potential impact of MSCs on anti-cancer therapies 

The ability of MSCs to create an immunosuppressive environment can be potentially 

detrimental for their use in cancer therapy. Generally, the effects of anti-cancer 

therapies are thought to be amplified by immune cells attacking tumour cells marked 

and/or damaged by the treatment. Thus, MSCs either delivering the therapy or being 

used in combination with cytotoxic drugs, radiotherapy or biologicals could block or 

diminish this additional effect and limit the overall therapeutic outcome [96, 97]. In 

this context it is important to consider the mode of action of the treatments and what 

type of cell death they trigger. Programmed cell death or apoptosis has regularly been 

called the silent cell death because it does not lead to an immune response [98]. In such 

a context, the immune dampening effects of MSCs should be inconsequential and 

approaches of MSCs delivering bona fide apoptosis inducing agents such as TRAIL 
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should not be affected. However, recent studies have uncovered evidence of paracrine 

signals originating from dying cells [98-100], and in a setting like this, the therapeutic 

success could indeed be reduced. One way to address this potential problem is to 

prime MSCs with TLR4 to render them immune competent [101]. This is based on a 

concept of MSCs being polarised by downstream TLR signalling into two 

homogenously acting phenotypes classified as MSC1 (immune competent) and MSC2 

(immune-suppressive) [102, 103]. Furthermore, the group who characterised the two 

types of MSCs could show that MSC1-based therapy attenuated tumour growth 

whereas MSC2-treatment promoted tumour progression [104]. However, further 

research needs to address whether MSC1-based cell therapies including different 

therapeutic genes can surpass the efficacy of unprimed MSCs.  
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MSCs in preclinical studies and clinical trials 

 

Efficient tumour homing properties will be of importance in MSC-based cancer 

treatments to surmount the limitations of current therapies such as short drug half-

lives and insufficient delivery. The use of an MSC-delivered and continuously 

produced therapeutic agent could help to overcome these hurdles given that sufficient 

numbers of MSCs are indeed recruited to tumour lesions. Efforts in increasing the 

tumour tropism by local irradiation or by overexpressing molecules involved in 

homing of MSCs (e.g. CXCR4, EGFR or artificial receptors targeting tumour-specific 

receptors) have been shown to increase the number of MSCs in the tumour 

microenvironment [105-109]. 

There are various therapeutic transgenes that have been studied and of these 

approaches three have been continuously developed and have reached the stage of 

clinical trials. The first one (TREAT-ME1) uses MSC-delivery of HSV-TK under the 

control of the CCL5 promoter (Fig. 2A) [48]. The preclinical studies demonstrated 

growth reduction of hepatocellular and pancreatic carcinoma and also a reduction in 

metastases [24, 37]. The CCL5 promoter restricts the HSV-TK expression to the tumour 

microenvironment, so side effects can be minimised.  This is based on the fact that 

MSCs infiltrating tumour tissues start producing the chemokine CCL5 upon contact 

with cancer cells [63]. Thus, the CCL5 promoter becomes active and will drive 

therapeutic transgenes that are regulated by it. After cell delivery, the pro-drug 

ganciclovir will be administered, which is phosphorylated and activated by HSV-TK 

and consequently gives rise to cancer cell death. In the TREAT-ME1 trial autologous 

BM-MSCs that are isolated and expanded to passage 1 are used. They are transduced 

with a gamma-retroviral SIN-vector carrying the CCL5-promoter-HSV-TK expression 

cassette [48]. The successful completion of Phase I/II was recently announced. 

The second clinical trial aims to treat women with recurrent ovarian cancer with IFN-

 secreting MSCs. For this study, MSCs are isolated from healthy male donors, and 

genetically engineered MSCs will then be intraperitoneally administered into patients 

(Fig. 2B). The use of IFN- is based on results from a study in the early 2000s that 

showed profound anti-cancer activities in a preclinical melanoma model [45]. IFN- is 
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a cytokine that has been used to treat multiple sclerosis for many years. In cancer 

treatment it is thought to act through indirect immunomodulatory and antiangiogenic 

properties or through direct antiproliferative effects on malignant cells [110]. 

The third clinical approach using MSCs as gene-therapeutic vehicle aims to deliver 

the TNF-related apoptosis-inducing ligand (TRAIL). In this trial (TACTICAL), 

allogeneic MSCs expressing a full-length version of TRAIL (i.e. membrane bound) will 

be used for the treatment of lung cancer (Fig. 2C) [47]. TRAIL is a protein that can bind 

as a ligand to five different receptors, of which two are functional apoptosis-inducing 

receptors, whereas the other three are so called decoy-receptors [111, 112]. It has been 

shown to selectively induce apoptosis in cancer cells and has been clinically tested as 

recombinant protein and TRAIL receptor-targeting agonistic antibodies [113, 114]. 

MSC-delivered TRAIL has been shown to be more potent than these agents and can 

therefore induce cell death in relatively TRAIL resistant cells [115]. Due to its 

promising results in initial preclinical studies, MSC-based TRAIL therapies have been 

continuously improved over the last few years. Firstly, by engineering a soluble form 

of TRAIL (sTRAIL) enabling it to also act on distant cells, which appears to be 

important for a wider anti-cancer effect [116-119]. Secondly, by generating receptor 

specific variants of sTRAIL, which target specifically one of the two apoptosis- 

inducing TRAIL-receptors, and can therefore, overcome resistance [23, 120, 121]. 

Thirdly, MSCs delivering TRAIL have been successfully used in combination 

therapies [20].  

Other approaches to tackle cancer use MSCs to package and deliver drugs like 

Palitaxel and Gemcitabine [118, 122]. In contrast to other studies, in which MSCs 

deliver an enzyme necessary to convert a prodrug into a pharmacologically active 

drug, primed MSCs do not need to be genetically modified. The loaded MSCs release 

their cytotoxic payload packed in exosomes at the sites of tumour or metastatic growth 

[123, 124]. Overall, MSCs can be loaded with a broad spectrum of anti-cancer agents 

[125]. To do so, multiple packaging methods have been described, ranging from silica 

nanorattles [126] to liposomes [127].  All approaches are relying on MSCs as efficient 

carriers. For this very reason, MSCs also play an important role in theranostics, which 

represent recent efforts to combine diagnostics and therapy with a single agent.  In 
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this context, MSCs have been genetically modified to express the sodium iodide 

symporter protein under the control of the CCL5 promoter. The authors demonstrated 

that tumour stroma–targeted iodide led to a significant reduction of growth in a 

metastatic colon cancer model. At the same time, it was possible to monitor the MSC 

biodistribution in vivo by MRI [128]. Another attempt used fluorescent magnetic 

nanoparticle (FMNP)-labelled MSCs to target gastric cancer [129].  

In recent years, a number of studies have noted that the interactions between MSCs 

and human tumour cells mediate the exchange of biological material via exosomes 

[130-132]. Exosomes are small, extracellular membrane‑enclosed vesicles 

encapsulating a variety of molecules, including proteins, DNA, mRNA and miRNAs, 

and are approximately 30-100 nm in size [133]. They have been shown to play diverse 

roles in tumorigenesis, angiogenesis and tumour progression, and have been mostly 

associated with tumour supportive functions [134-137]. However, there are other 

reports that show tumour growth inhibition [138, 139]. While some of these 

discrepancies can be explained by the differences in the tissue of origin of the 

underlying MSCs [140, 141], the exact roles and mechanisms of MSC‑derived 

exosomes in tumour biology remain largely elusive. Notwithstanding, MSC-produced 

exosomes have been tested as part of experimental cell-free therapies for various 

diseases [142], of which some have been in cancer models [137, 139, 143]. In 

conclusion, exosomes might be able to substitute for MSC cell therapy, but their utility 

as a delivery vehicle needs to be further explored and the exact mechanisms of action 

elucidated. 

A further development in the MSC-based delivery technology field, are so called 

nanoghosts (NGs) that are produced from the cytoplasmic membranes of MSCs. MSC 

surface markers are retained on the NGs and they broadly behave like MSCs in 

relation to in vitro and in vivo tumour targeting capabilities [144]. They can be 

produced in different sizes and loaded with a variety of therapeutics using a 

technologically scalable and pharmaceutically applicable process that involves the 

removal of the cytosol and nuclei residues. The loaded therapeutics can range from 

small molecule compounds to membrane-bound factors over-expressed in MSCs prior 

to NG generation and recombinant proteins and DNA constructs. Such MSC-based 
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NGs (MSC-NGs) are seen as a potentially safer alternative to MSCs, as they are not 

associated with the common risks arising from the administration of living 

proliferating cells. In preclinical tests, systemic administration of MSC-NGs loaded 

with recombinant TRAIL demonstrated a marked inhibition of human prostate cancer 

[144]. Furthermore, in a study to also demonstrate the applicability of MSC-NGs for 

gene therapy, loading with a plasmid expressing the hemopexin-like domain (PEX) of 

human matrix metalloprotease-2 gave rise to a significant therapeutic effect both on 

the primary cancer as well as metastatic lesions [145-147]. Thus, it might be possible 

to use MSC-NGs as a tumour cell therapy by proxy in the future. In this context, it is 

of interest that when MSCs were heat-inactivated (HI-MSC), which means they could 

no longer respond to inflammatory signals or secrete immunomodulatory factors, 

they showed the same biodistribution and persistence after infusion in mice with 

ischemic kidney injury [148]. While in contrast to MSCs, HI-MSC lacked the capability 

to suppress T-cell proliferation or induce regulatory B-cell formation, they, like MSCs 

were able to modulate monocyte function in response to lipopolysaccharides. Hence, 

in specific cases, the functions of MSC, in particular the immunomodulatory effects, 

do not depend on their set of secreted factors (secretome) or active cross-talk with 

immune cells, but on recognition of MSC by monocytic cells [148]. 
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Outlook and remaining questions  

 

The fate of MSCs in vivo 

In contrast to other diseases [149], for the treatment of cancer it appears necessary for 

MSCs to engraft in the relevant tissues, i.e. primary cancer, dissemination routes (e.g. 

lymphatic system) and metastatic lesions [45]. However, currently, it is not entirely 

clear how exogenously administered MSCs behave in the human body but what we 

know is summarised in Supplementary Table 2. Multiple studies have demonstrated 

the presence of MSCs in the lung, immediately after injection [150-154]. The majority 

of cells are, however, cleared within the first days of treatment [62, 155]. 

Notwithstanding, even after 11 weeks MSCs were still detectable in the lungs, albeit 

at very low numbers [154] and several other tissues [62]. A human study, examining 

autopsy material from patients following MSC therapy, only found a low degree of 

MSC engraftment, and therefore concluded that MSCs exert their function more likely 

through a ‘‘hit and run’’ mechanism rather than through sustained engraftment [59]. 

However, all attempts to detect exogenously administered MSCs in recipients’ organs 

suffer from limitations in relation to the respective detection method and can clearly 

lead to variabilities in the number of detected MSCs [156-158]. An extra level of 

variability can be added by using different sources of MSCs and having cultured these 

cells under different conditions and expansion rates. In this context, it has been shown 

that extensive expansion, which might be necessary for certain transplantation 

regimens, negatively impacts on the homing capabilities of MSCs [159], whereas 

hypoxic culture conditions increased their migratory potential [160]. Furthermore, the 

site of MSC delivery can also influence the biodistribution of MSCs and should 

therefore be considered when designing a study. As it has been shown that 

intravenously delivered MSCs are entrapped in the lung and cleared to the liver and 

spleen within a day, this mode of application is suitable for the treatment of tumours 

like lung cancer, pleural mesothelioma [46] as well as lung and liver metastases [26, 

128]. Furthermore, MSCs could be found in the bone marrow and lymph nodes [62] 

after several weeks, expanding the utility to disseminating disease and those that form 

metastases in the bone such as prostate cancer. Going forward, it will be important to 
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control the different parameters that determine MSC biodistribution and find 

optimised administration routes for different cancer treatment applications. 

 

Are Induced MSCs (iMSCs) the future? 

Even though MSCs can be cultured relatively easily, their life span is finite and it is a 

challenge to expand them to the numbers required for clinical trials, let alone routine 

clinical use in the future. MSCs derived from human induced pluripotent stem cells 

(iPSC) could offer a solution to these issues and become a virtually inexhaustibly, 

autologous source of MSCs [161, 162]. These cells, commonly referred to as iMSCs 

(even though this abbreviation is also used for immune-modulatory MSCs) are 

generated by culturing iPSCs under specific conditions that regularly involve the use 

of TGF- inhibitors (e.g. SB-431542) and extracellular matrix material (e.g. Matrigel) 

[163, 164]. Recently a new method has been described to derive iMSCs directly from 

primary dermal fibroblasts without the need to go via iPSCs. [165]. iMSCs generated 

by these methods have been shown to possess high differentiation efficiency into 

adipocytes, chondrocytes and osteoblasts and to express characteristic MSCs markers. 

Functionally, iMSCs display similar strong immunosuppressive characteristics and 

produce the same range of cytokines as regular MSCs [166]. In the context of MSC-

based cancer treatments it has been shown that iMSCs are tumour-tropic but have 

much less potential to promote tumour progression than bone marrow MSCs.  The 

iMSCs in this study were readily expandable, underwent senescence after prolonged 

culture and did not form teratomas in vivo [167]. These findings suggest that iPSC-

derived MSCs are a potentially safer and better option for therapeutic applications in 

cancer patients. The protocol used in this study is scalable and able to produce the 

substantial number of cells needed for “off-the-shelf” therapies and bioengineering 

applications. 
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Concluding remarks 

MSCs provide a powerful treatment modality for tumours owing to a series of 

beneficial features. However, there are still remaining issues that should be addressed 

and optimised such as the choice of vector and/or therapeutic gene, the optimal route 

of administration, the question whether allogenic cells provide a good and safe source 

or whether they will be replaced by autologous iMSCs in the future. Furthermore, it 

might be possible to derive so called NGs or exosomes from MSCs to avoid many 

problems associated with the administration of viable cells, but more work 

surrounding their use is needed.  
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Figure legends 

 

Fig. 1. Overview of therapeutic transgenes delivered by MSCs in pre-clinical cancer 

studies. 

Transgenes depicted inside the cells are either expressed as intracellular proteins (e.g. 

HSV-TK) or as transmembrane proteins (e.g. full-length TRAIL). Most pre-clinical 

approaches however, target cancer cells by MSCs expressing soluble and secreted 

proteins such as interleukins, interferons, death-ligands (e.g. sTRAIL) or various other 

proteins. Further details, including a detailed reference list, of MSC-based pre-clinical 

studies are provided in Supplementary Table 1. 

 

Fig. 2. Current MSC clinical trials targeting cancer. 

A. Schematic illustration of the TREAT-ME trial. Autologous BM-MSCs from 

patients with advanced, recurrent or metastatic gastrointestinal 

adenocarcinoma are isolated and transduced with a retroviral vector 

containing the HSV-TK gene under the control of the CCL5 promoter. The 

transduced MSCs are administered before Ganciclovir is given to the patient. 

HSV-TK is only expressed when MSCs infiltrate tumour tissues, cross-talk to 

cancer cells and the CCL5 promoter becomes active. The prodrug Ganciclovir 

is then converted to the phosphorylated and active form by HSV-TK. 

B. Overview of a clinical trial using IFN- secreting MSCs for the treatment of 

advanced ovarian cancer. BM-MSCs from male donors are transfected with 

plasmid constructs with an IFN- expression cassette. The resulting IFN--

secreting MSCs are intraperitonially administered. 

C. Summary of the TACTICAL trial for lung cancer. Allogenic BM-MSCs are 

lentivirally transduced to express full-length TRAIL before being administered 

to patients with advanced lung cancer. 
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Abbreviation List  

AAV  adeno-associated virus  

AKT  RAC-alpha serine/threonine-protein kinase 

AT  adipose tissue 

BM  bone marrow 

CAF  carcinoma-associated fibroblast 

CCL5  chemokine (C-C motif) ligand 5 

CCR2  C-C chemokine receptor type 2 

CCR5  C-C chemokine receptor type 5 

CD  cluster of differentiation 

c-Met   tyrosine-protein kinase Met 

CXCR4 C-X-C chemokine receptor type 4 

DCregs dendritic cells 

EGF  epidermal growth factor 

EGFR  epidermal growth factor receptor 

EMT  epithelial-mesenchymal transition  

FMNP  fluorescent magnetic nanoparticle 

G-MDSC granulocytic myeloid derived suppressor cells 

HGF   hepatocyte growth factor 

HI  heat-inactivated 

HLA  human leukocyte antigen 

HMGB1 high mobility group box 1  

HSC  haematopoietic stem cell 

HSV-TK  herpes simplex virus -thymidine kinase 

IDO   indoleamine 2,3-dioxygenase 

IFN-  interferon-beta

L-6  interleukin-6 

L-10  interleukin-10 

iMSC  induced MSC 

iPSC  induced pluripotent stem cells  

ISCT  International Society of Cellular Therapy  
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MCP-1 monocyte chemoattractant protein-1 

MDSC  myeloid-derived suppressor cell 

M-MDSC monocytic myeloid-derived suppressor cell 

MMP-2 matrix metalloproteinase-2 

MRI  magnetic resonance imaging 

MSC  mesenchymal stem cell 

NG  nanoghost 

NO   nitric/nitrogen oxide 

OPN  osteopontin 

PDGF   platelet-derived growth factor 

PDGFR platelet-derived growth factor receptor 

PEX  hemopexin-like domain  

PGE2  prostaglandin E2 

PKB  protein kinase B 

RAGE  receptor for advanced glycation endproducts 

RANTES regulated on activation, normal T cell expressed and secreted 

SDF-1  stromal cell-derived factor-1 

SERPINE1 serine proteinase inhibitor E1 

SIN  self-inactivating 

STR  short tandem repeat  

sTRAIL soluble/secreted TRAIL 

TGF- transforming growth factor beta

TLR  Toll-like receptor 

TNF  tumour necrosis factor 

TRAIL TNF-related apoptosis-inducing ligand 

Tregs  regulatory T-cells 

 UC  umbilical cord 

VEGF   vascular endothelial growth factor 

VEGFR vascular endothelial growth factor receptor 

ZEB1  zinc finger E-box binding homeobox 1  

ZEB2  zinc finger E-box binding homeobox 2   
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Supplementary Table1. List of therapeutic transgenes used in MSC-based experimental pre-clinical 

studies. 

Expressed transgene Targeted tumour in pre-clinical 

studies 
IFN-α B16F10, mouse melanoma cells, established as 

lung metastases model [1]. 

IFN-β TRAMP-C2, murine prostate cancer cells, 

established as lung metastases model [2].  

4T1, murine breast cancer cells, established as 

orthotopic mouse model [3]. 

LMeC canine melanoma cells established as 

xenograft model [4].  

B16F10 mouse melanoma xenograft model [5]. 

In combination with IL-18 in a rat intracranial 

glioma model [6]. 

PANC-1, human pancreatic carcinoma cells, 

orthotopically implanted [7]. 

Huh7 hepatocellular carcinoma xenograft 

model [8]. 

IFN-γ H460 human non-small cell lung carcinoma 

model [9]. 

In combination with TRAIL, B16F10 mouse 

melanoma cells in xenograft and metastasis 

models [10].   

IL-12 B16F10, mouse melanoma cells, established as 

lung metastases model [11]. 

B16 mouse melanoma cells, LLC murine Lewis 

lung cancer - and murine HCC hepatoma cells in 

unestablished tumour models [12]. 

B16 melanoma cell xenograft models [13, 14]. 

Hepatoma cell xenograft models [13].  

Ast11.9-2 murine glioma cells implanted into 

mouse brains [15]. 

GL26, mouse glioma cells, implanted into 

mouse brains [16]. 

4T1, murine breast cancer cell xenograft model 

[13, 17]. 

786-O, human renal cell carcinoma cell 

xenograft model [18]. 

TC-1 cervical cancer cells in a xenograft and 

lung metastases model [14]. 

HCa-I and Hepa 1-6 cells in heterotopic murine 

hepatoma models [19]. 

Liver cancer H22 and MethA ascites models 

[20]. 

IL-18 C6 glioma-bearing rat models [21] 

In combination with IFN-β in a rat intracranial 

glioma model [22]. 

CX3CL1 C26 mouse colorectal carcinoma cells, B16F10 

mouse melanoma cells and LLC Lewis lung 
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carcinoma cells established as lung metastases 

model [23]. 

HSV-TK Intracranial 9L rat glioma model [24]. 

9L, rat glioma cell xenograft model [25]. 

Intracranial glioma model [26]. 

In combination with TRAIL, Gli36vIII-FmC, 

human glioblastoma multiforme cells implanted 

into mouse brains [27].   

U-87 glioma cells in an intracranial xenograft 

model [28]. 

Orthotopic PANC02 pancreatic carcinoma 

model [29]. 

Hepatocellular carcinoma xenograft model [30]. 

In combination with dodecameric TRAIL, RENCA 

murine renal carcinoma cells established as 

lung metastases model [31]. 

iNOS Rif-1 fibrosarcoma-bearing mice [32]. 

NK4 C-26, colon cancer cells as lung metastasis 

model [33]. 

MKN45, gastric carcinoma xenograft model 

[34]. 

TSP-1 In combination with sTRAIL, LN229-Fluc-

mCherry cells in an intracranial glioma model 

[35]. 

PEDF U-87 glioma cells in an intracranial xenograft 

model [36]. 

Lewis lung carcinoma cells established as lung 

metastases model [37]. 

CT26 cells in a colorectal peritoneal 

carcinomatosis model [38]. 

Orthotopic model of hepatocellular carcinoma 

[39]. 

Endostatin U87MG-EGFRvIII-driven intracranial xenograft 

model [40]. 

A2780 human ovarian cancer xenograft model 

[41]. 

CT26 cells in a colorectal peritoneal 

carcinomatosis model [42]. 

NIS MDA-MB-231, breast cancer xenograft model 

[43]. 

Huh7, human hepatocellular carcinoma 

xenograft model [44, 45]. 

LS174t, colon cancer liver metastasis model 

[46]. 

TRAIL Primary human-derived TRAIL resistant 

glioblastoma stem cells mouse intracranial 

xenograft model [35, 47].  

U87MG glioma xenografts [48].  

U-87 glioma cells in an intracranial xenograft 

model [49, 50]. 

U87MG intracranial xenograft model [51, 52]. 
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U87-mC-FL tumour model [53]. 

Gli36-EGFRvIII-FD-driven intracranial xenograft 

model [54].  

MK886, orthotopic glioma xenograft model 

[55]. 

Intracranial F98 rat glioma model [56]. 

U87-EGFRvIII glioma cells in an intracranial 

xenograft model [57].   

Gli36vIII and LN229 human glioblastoma 

multiforme intracranial xenograft model [58].   

In combination with HSV-tk, Gli36vIII-FmC, 

human glioblastoma multiforme intracranial 

xenograft [27].   

DAOY and UW426 medulloblastoma cells in an 

intracranial xenograft model [59]. 

MSTO-211H, pleural mesothelioma model [60]. 

MESO, pleural mesothelioma model [61]. 

Tongue squamous cell carcinoma [62]. 

A549 lung cancer xenograft model [63]. 

MDA-MB-231, breast cancer xenograft model 

[64]. 

MDA-MB-231, breast cancer lung metastases 

model [64, 65]. 

MDA-MB-231, orthotopic breast cancer 

xenograft model [66]. 

In combination with HSV-tk, RENCA murine 

renal carcinoma cells established as lung 

metastases model [31]. 

HeLa, cervical cancer xenograft model [67]. 

Malignant fibrous histiocytoma model [68]. 

In combination with IFN-γ, RFP-melanoma cells 

in xenograft and metastasis models [10].   

PancTu1 pancreatic cancer xenograft model 

[69].  

Mia-PaCa2, human pancreatic cancer cells, 

transplanted to the chorioallantoic 

membrane of fertilized eggs hybrid LB chicks 

[70]. 

Colo205 xenograft tumour model [71]. 

HT29 colorectal cancer xenograft model [72].  

DLD-1 colorectal cancer xenograft model [73]. 

HCT116 colorectal cancer xenograft model [74]. 

Orthotopic model of hepatocellular carcinoma 

[75]. 

MHCC97-H hepatocellular carcinoma xenograft 

model [76]. 

TNF A375 melanoma cells in a lung metastases 

model [77]. 

Fused to fusing Tumstatin; PC3 prostate cancer 

xenograft model [78]. 
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SGC-7901, human gastric cancer cells in a 

xenograft model [79]. 

LIGHT Murine gastric cancer models [80]. 

tsFlk-1  Raji, Burkitt's lymphoma cells, subcutaneously 

injected [81]. 
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Supplementary Table2. Biodistribution of MSCs 

MSC type Model Organs in which 

MSCs were 

detected 

Method of 

MSC delivery 

Reference 

autologous hBM-

MSCs 

patients with 

mammary 

carcinoma 

 

blood i.v. [1] 

111In-oxine labelled 

human MSCs 

patients with liver 

cirrhosis 

lungs, liver, 

spleen 

i.v. [2] 

murine MSCs from 

different age 

groups 

transgenic APP/PS1 

Alzheimer’s 
disease mice 

lungs, lymph 

nodes, blood, 

kidney, bone 

marrow, spleen, 

liver, heart, and 

brain cortex  

 

i.v. [3] 

murine umbilical 

cord-derived 

mesenchymal 

stem cells 

carbon 

tetrachloride-

induced acute liver 

injury 

lungs, lymph 

nodes 

i.v. [4] 

human MSCs  

 

hepatocellular 

carcinoma model 

tumour, spleen i.v. [5] 

human umbilical 

cord-derived 

mesenchymal 

stem cells 

spinal cord injury 

model 

spinal cord, 

lungs, liver, 

spleen 

 

i.v. [6] 

hBM-MSCs rat  liver, spleen, 

heart, and lungs 

i.v. [7] 

hBM-MSCs glioma model lungs, liver, 

spleen, brain 

i.v. [8] 

human umbilical 

cord-derived 

mesenchymal 

stem cells, hBM-

MSC, porcine BM-

MSC, rat MSC 

mouse, rat, and 

porcine models 

lungs, heart, 

liver, spleen, 

pancreas, kidney, 

GI tract, femur 

i.v. [9] 

hBM-MSCs, 

murine MSC 

mouse BM, liver, lymph 

nodes, lungs, 

spleen 

i.v. [10] 

MSC-nanoghosts prostate cancer 

model 

tumour, liver i.v.  and i.p. [11] 
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