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Abstract 
Advancements in computing, electronics and mechanical systems have resulted in 

the creation of a new class of vehicles called autonomous vehicles. These vehicles 

function using sensory input with an on-board computation system. Self-driving 

vehicles use an ad hoc vehicular network called VANET. The network has ad hoc 

infrastructure with mobile vehicles that communicate through open wireless channels. 

This thesis studies the design and implementation of a novel intelligent intrusion 

detection system which secures the external communication of self-driving vehicles. 

This thesis makes the following four contributions: 

It proposes a hybrid intrusion detection system to protect the external 

communication in self-driving vehicles from potential attacks. This has been achieved 

using fuzzification and artificial intelligence. The second contribution is the 

incorporation of the Integrated Circuit Metrics (ICMetrics) for improved security and 

privacy. By using the ICMetrics, specific device features have been used to create a 

unique identity for vehicles. Our work is based on using the bias in onboard sensory 

systems to create ICMetrics for self-driving vehicles.  

The incorporation of fuzzy petri net in autonomous vehicles is the third 

contribution of the thesis. Simulation results show that the scheme can successfully 

detect denial-of-service attacks. The design of a clustering based hierarchical detection 

system has also been presented to detect worm hole and Sybil attacks. The final 

contribution of this research is an integrated intrusion detection system which detects 

various attacks by using a central database in BusNet. The proposed schemes have 

been simulated using the data extracted from trace files. Simulation results have been 

compared and studied for high levels of detection capability and performance. 

Analysis shows that the proposed schemes provide high detection rate with a low rate 

of false alarm. The system can detect various attacks in an optimised way owing to a 

reduction in the number of features, fuzzification. 
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CHAPTER ONE  

INTRODUCTION 

 “The beginning of knowledge is the discovery of something we do not 

understand.”                                  

 Frank Herbert (1920-1986) 

 

utonomous systems play a significant role in developing and 

deploying modern technology [1]. These systems such as self-driving 

vehicles, robots, Unmanned Underwater Vehicles (UUVs) and 

Unmanned Aerial Vehicles (UAVs), have contributed significantly to scientific 

research, wars, reconnaissance and intelligence [1]. Furthermore, they have had a 

direct and positive impact on promoting and supporting the scientific revolution.  

According to the statistics of many international organisations, such as World 

Health Organisation (WHO), more than 1.24 million people die in road accidents 

every year all over the world, in addition to 20 to 30 million nonfatal injuries [2]. The 

number of deaths and injuries is expected to increase by 65% in the next two decades 

[3]. These figures of deaths and injuries are caused by the drivers’ mistakes (human 

errors) through driving and travelling on the roads [4]. These problems are intended 

to be fixed by one of the applications of the autonomous systems, which is 

autonomous vehicles, sometimes also called self-driving, driverless or robotic vehicles 

[5].  
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1.1 Driverless Vehicles 

Autonomous or robotic vehicles (for example, Google’s driverless vehicle) are 

considered one of the most significant applications of autonomous systems and that 

provides the main motivation for this thesis. These vehicles can promote the safety of 

road users, whether drivers or passengers, and they can also have many positive 

economic impacts on society [6]. They have the ability to reduce the number of 

accidents and traffic jams on busy roads. In addition, one economic benefit of these 

self-driving vehicles is the ideal use of the narrow roads through the application of the 

platoon behaviour [6]. Figure 1.1 below explains the platoon in self-driving vehicles. 

Hence, they can establish safety environment for passengers, drivers and vehicles 

themselves. Primarily, three key technologies are needed to enable autonomous or 

semi-autonomous vehicles to function: an embedded processor, an array of sensors 

and a communication system (internal and external) [1]. 

 

 

 

 

 

 

 

 

 

Figure 1.1 Platoon in Autonomous Vehicles. 

Self-driving and semi-autonomous vehicles depend largely on communication 

systems, whether internal or external, to predict events and sense their external 

environment used in their moves. The moving/stopping decision of vehicles depends 
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on data and information that is collected by the sensors and from On-Board Units 

(OBU).   

In addition, these communication systems enable autonomous vehicles to achieve 

their goals, such as traffic management, reducing the number of deaths and injuries 

from traffic accidents on busy roads, reduce human errors and achieve the ideal 

exploitation of available resources [7]. In other words, the autonomous vehicles can 

achieve their tasks without human intervention [8]. These vehicles need wireless 

communication systems to connect vehicles with each other and with their 

infrastructure on the road side. This network enables the vehicles to exchange 

necessary information, warning notification, data control and Cooperative Awareness 

Messages (CAMs). 

All studies have shown that the external communication system used in self-

driving or semi-autonomous vehicles are vehicular ad hoc networks (VANETs) [9], 

[10], [11]. The VANETs are mobile nodes that allow vehicles to communicate with 

each other in a particular zone as well as with Road Side Units (RSUs) in the absence 

of a fixed security infrastructure that is used in traditional networks such as a wired 

network [12]. In addition, VANETs are considered a subclass or subtype of mobile ad 

hoc networks (MANETs) [13]. They have a direct influence on the Intelligent 

Transportation Systems (ITS) by providing safety applications and comfort services to 

drivers and passengers. The goal of VANETs is to provide safety to road users and the 

vehicles themselves. Hence, VANETs are vital now and in future as it eliminates time 

and space constraints and makes information available when required for 

autonomous vehicles [14]. These networks can achieve their goals via an exchange of 

CAMs, control data, and they provide comfort and emergency notifications to 

passengers and drivers, such as messages regarding emergency braking or accidents 

[15], [16]. Furthermore, the networks have the most critical role in self-driving and 

semi-autonomous vehicles.  
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VANETs are exposed to many security and privacy problems because of their 

unique characteristics that distinguish them from other wireless networks, such as 

high dynamic topology, the enormous number of vehicles on roads, open medium 

wireless communication, speed, lack of traditional fixed security stations and high 

mobility [17]. Unfortunately, the VANETs are exposed to many attacks, such as 

network, application and social attacks. Moreover, these security problems are 

reflected directly and negatively on the performance of self-driving and semi-

autonomous vehicles.  

The VANETs create new threats to self-driving and semi-autonomous vehicles 

that contribute to substantial challenges in autonomous systems. These 

communication systems render driverless vehicles vulnerable to many types of 

attacks, such as Denial-of-Service (DoS), black hole, grey hole, dropping and flooding, 

wormhole and Sybil attacks [18].  

Recently, research has revealed that the external communication systems in self-

driving and semi-autonomous vehicles have experienced problems with these 

security and privacy systems [19], [20]. Thus, it is anticipated that there will be a 

gradual increase in the number of security and privacy problems with these vehicles. 

Hence, the autonomous vehicles will be exposed to new security issues unless 

significant changes to the security design of autonomous vehicles are made. There is 

substantial scientific evidence that current security mechanisms are not sufficient or 

efficient enough to protect the external communications employed in self-driving 

vehicles [21]. 

Employing VANETs in autonomous vehicles makes the success of this new 

generation of technology dependent on the security of the networks. Today, security 

in most systems is based on the concept of defence in depth, as is the use of multiple 

layers of defences to prevent adversaries from violating security policies of these 

systems. Intrusion Detection Systems (IDS) offer a second layer of defence for the 
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VANETs [22]. Intrusion detection techniques focus on the detection/identification of 

malicious activity that normally is an attacker. It is able to penetrate the system and 

steal sensitive data such as velocity, position and identification (ID).  

Despite the application of the security approaches, including access control and 

authentication services to improve the protection of the networks, these defence 

mechanisms alone are not sufficient to deter and block all types of attacks, especially 

internal attacks in VANETs. They are still in need of additional protection systems, 

such as IDS, to increase their security. 

In this thesis, a novel intelligent intrusion detection system is proposed which can 

protect the external communication of self-driving and semi-autonomous vehicles 

from any potential attacks. Although, the proposed security systems have the ability 

to detect and block internal and external attacks, they would have a direct and 

adverse impact on the performance of these vehicles.  

The proposed IDS uses the features extracted from the networks auditable data 

which has been generated in a network simulator. The proposed IDS utilises two 

types of detection - anomaly based detection and misuse based detection to detect 

malicious behaviour. A hybrid IDS is designed and implemented to detect different of 

attacks on VANETs. The proposed IDSs in this thesis are composed into six parts. This 

thesis studies the design and implementation of the individual parts of the intrusion 

detection systems. These combined components aim to improved the security of 

autonomous vehicles.     

The first part: IDS is based on the features extracted from trace file that has been 

generated from the network simulator version two (ns-2) to detect the malicious 

vehicle. It has the ability to identify four types of attacks: DoS, black hole, grey hole 

and rushing. In this proposed IDS, artificial intelligence techniques are employed in 

designing the security system, such as Feed-Forward Neural Network (FFNN), 
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Support Vector Machine (SVM), k-Nearest Neighbours (k-NN), Linear Discriminant 

Analysis (LDA) and Quadratic Discriminant Analysis (QDA). 

The second part: The proposed IDS uses the latest Integrated Circuit Metric 

(ICMetrics) technology to detect both internal and external attacks on external 

communications in self-driving and semi-autonomous vehicles. The ICMetrics 

technology uses internal features of a vehicle to generate an identification called an 

ICMetric. It can be used to provide services related to authentication and attack 

detection. The ICMetrics generation is an automated process and does not need user 

intervention. It is generated when required and discarded there after, thus reducing 

the chances of identity perversion. 

The third part:  Fuzzy Petri Net (FPN) is utilised in designing an intelligent IDS to 

secure the communication system of driverless and semi-autonomous vehicles. The 

proposed detection system is based on the interval of beacons (time) that is generated 

from the vehicles in the platoon behaviour. It is usually considered one of the most 

important aspects of a new generation of vehicles. In the platoon, the vehicles create a 

convoy which has many benefits such as reducing cost and enhancing connection 

performance. FPN-IDS is considered a novel detection system because this is the first 

time an FPN is employed in designing an intelligent security system for VANETs. 

The fourth part: Mobile-IDS is proposed to secure the external communication 

system for autonomous vehicles. It is based on a virtual layer to sniff or eavesdrop 

data and information that is sent/transferred between vehicles and RSUs to detect 

different types of DoS attacks, such as flooding and drooping. The proposed IDS was 

installed on buses to detect abnormal/ malicious behaviour and it was also introduced 

in an urban area.  

The fifth part: The distributed IDS is based on a Trusted Third Party (TTP) that 

functions like a data-centric scheme which registers the position, time and ID for each 

vehicle on roads to enable detection of Sybil attacks. In addition, Sybil attack is a 
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leading cause of many types of other attacks, such as node impersonation and 

fabrication attacks. In other words, the distributed IDS can detect/identify Sybil, 

impersonation and fabrication attacks. 

The sixth part: Integrated-IDS has the ability to detect various types of attacks on 

the external communication system of self-driving and semi-autonomous vehicles, 

such as black hole, grey hole, rushing, flooding, dropping and Sybil attacks. It is based 

on the position of vehicles and interval beacons that are generated from the vehicles to 

detect impersonation, Sybil and DoS attacks. To increase the defensive capability of 

the proposed IDS, it is integrated on a RSU. 

All the proposed intelligent security systems have demonstrated good 

performance in detecting and blocking the malicious vehicle in VANETs of self-

driving vehicles and semi-autonomous vehicles. At least one research paper for each 

part was published in international conferences and journals. We have formulated a 

clear research question: 

 

How can we detect an intruder quickly and effectively in the communication networks of 

self-driving and semi-autonomous vehicles? 

A novel quick reaction mechanism, programmed inside the data link layer of 

the network that enters the victim vehicle in the safe mode, is designed for 

infected self-driving and semi-autonomous vehicles. The mechanism will allow 

the infected vehicles to communicate directly with the nearby RSU without any 

intermediary at a suitable time without delay. In other words, when the infected 

vehicle is unable to connect with neighbouring vehicles in any situation, the 

vehicles will directly connect to the closest infrastructure on the roadside, for 

example, the RSU. The safe mode response provides superior response 

capabilities with improved performance. 
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Finally, routing protocols influence the efficiency of detection and the selection of 

stable routers in VANETs. Ad Hoc On Demand Distance Vector (AODV) is used in 

the proposed schemes because it is considered one of the most important protocols in 

ad hoc networks [23]. The basic AODV has been adapted to reduce communication 

overhead and enhance the stability of selected route between source and destination 

vehicle. The proposed AODV protocol, formally called Vehicle AODV (V-AODV), is 

effort to improve the network performance by incorporating new routing selection 

algorithm. 

1.2 Motivation 

Self-driving and semi-autonomous vehicles are, of course, a great addition to ITS. 

These vehicles try to improve traffic management and provide safety environment to 

the passengers/drivers. In other words, the target of the autonomous vehicles is to 

improve security of passengers and drivers by reducing the number of road accidents 

and traffic jams caused by human error [21]. Current research shows that the 

communication systems in self-driving vehicles have encountered problems with the 

security and privacy systems [1], [2], [8]. The external communication system of self-

driving vehicles inherits security weakness of ad hoc networks. In addition, new 

security challenges are added to self-driving vehicles because of their unique features 

of the external communication system, such as fast change topology, and an 

enormous number of vehicles. The proposed IDSs in this thesis address security and 

privacy issues for the communication system of self-driving vehicles. To sum up, 

without significant changes to the security design of the autonomous vehicles, we will 

see a gradual increase in the number of security attacks on these vehicles. There is 

enough evidence that the current security measures are insufficient to protect the 

external communication systems for self-driving and semi-autonomous vehicles [22]. 

The security system, economic impact, safety and privacy are considered key 
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motivations in this thesis. The motivation in this thesis is based on the four following 

factors: 

1) The Security Factor. The application of VANETs in autonomous vehicles makes 

the success of this new generation of technology dependent on the security of 

the networks. Despite the use of the protection approach, including access 

control and authentication services to improve the security of the networks, 

these defence mechanisms alone are not sufficient to deter all types of attacks. 

The security system of self-driving vehicles needs to have some properties such 

as being lightweight, robust, fast and efficient and capable of online-detection. 

2) The Economic Factor. Driverless vehicles are considered one of the most 

significant applications of autonomous systems. Platoon behaviour of these 

vehicles plays a vital role in reducing costs through the ideal use of narrow 

roads. In this case, these vehicles enable the largest number of vehicles on the 

narrow roads, and this will have a significant economic impact on the 

expansion of the road [24]. 

3) The Attacks Type Factor. Traditional security systems such as encryption 

mechanisms are unable to detect all types of attacks on the external 

communication of autonomous vehicles, especially internal attacks in VANETs. 

They are still in need of backup protection systems, such as IDS, to increase 

their security. 

4) The Safety Factor. To save passengers and drivers’ lives, self-driving vehicles 

need to have an intelligent reaction response system which has the ability to 

introduce an infected vehicle into a safe mode immediately and without delay. 

Machine learning has the ability to generate meaning from huge, imprecise and 

complex datasets [25]. It can be utilised detect class and extract patterns which are 

very complex. Machine learning techniques can be employed for some applications 
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that are not possible to solve for humans or other computer technologies. The machine 

learning techniques are employed in this thesis which are: Fuzzy Petri Nets, Artificial 

Neural Networks, Support Vector Machines, k-Nearest Neighbours, Linear 

discriminant analysis and Quadratic discriminant analysis. They have some 

characteristics that distinguish them from other techniques, for example real time 

operation, fault tolerance, self-organisation and adaptive learning [25]. Various of 

machine learning techniques are used in this thesis to improve detection rate and 

reduce the number of false alarms that generated from detection process for our 

proposed security systems. Traditional systems are often unable to make decisions 

with significant amounts of data at critical time [26]. In this case, machine learning 

schemes can play important role in make optimal decision at short time.  

 1.3 Thesis Challenges  

A wide range of safety, non-safety applications, traffic management, security and 

privacy systems have been established for future deployment in external 

communication of self-driving and semi-autonomous vehicles [27]. However, these 

security systems and services applications faced many challenges that were 

considered obstacles to developing the VANETs. The high mobility, and dynamic 

change in network topology are considered the most challenging issues in developing 

and deploying communication systems of autonomous vehicles [11], [28].  

1.3.1 Communication System Challenges 

The external communication system of self-driving vehicles has characteristics 

which distinguish it from other networks. Unfortunately, these characteristics also 

present technical and security challenges for the deployment of self-driving vehicles. 

These challenges can be classified into the following categories [28]: 
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1) Network Management. The high dynamic change topology, high mobility, 

velocities make network management a very difficult task in VANETs. In 

addition, the enormous number of vehicles and rapid channel changing add 

extra challenges to VANETs management.  

2)  Communication Environment. Wireless communication in VANETs creates new 

threats for security systems in the external communication of autonomous 

vehicles. Hence, attackers can launch attacks from anywhere and anytime 

without physical access. This communication environment makes designing 

and building secure communication systems for self-driving vehicles a 

challenging and complicated task.   

3) Environmental Impact. Electromagnetic waves are utilised in the principle 

communication system of vehicles. The external environmental factors play an 

important and direct role in the performance of VANETs. In addition, 

buildings and mountains have a substantial impact on the quality and strength 

of the broadcast signal. 

4) Congestion and Collision Control. The congestion and collision occur in VANETs 

when the traffic load is very high that makes communication difficult between 

vehicles, and with RSUs in that radio coverage area. This challenge has a direct 

and adverse impact on the performance metrics of VANETs, such as decreasing 

the amount of Packet Delivery Ratio (PDR) and increasing the amount of 

dropping packets. 

1.3.2  Security Challenges 

The distinguishing process between normal and abnormal/malicious behaviour is 

one of the most complicated issues in VANETs because of the dynamically changing 

topology and the volatile physical environment. The security challenges can be 

classified into following categories [14]: 
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1) Online Detection. Real-time detection is one of the critical issues in designing 

security systems. In safety applications, CAMs and data control should arrive at 

the destination node with 100ms transmission delay. At this point, the 

intelligent detection system should have the ability to identify and allow 

sent/received packets between source and target at the suitable time without 

delay. Any delay will have a direct impact on the life of passengers and drivers.  

2) High Mobility. The detection system is based heavily on features that have been 

collected from network behaviour. Moreover, the high mobility in VANETs 

makes the collection process for type and number of features very difficult. As a 

result, the designers of security systems need to some technologies to fill the 

gap that is created by high mobility in VANETs, such as fuzzification. 

3) Traditional Security Systems. The conventional security systems are unable to 

provide sufficient security to the communication system of self-driving vehicles. 

In this case, VANETs need to design and build a new security system or modify 

existing protection systems.  

4) Internal Attacks. All encryption algorithms can detect and prevent the external 

attacks. Unfortunately, these algorithms are unable to prevent internal attacks 

that have a negative effect on VANETs. This encourages researchers to create 

and find security systems which can detect and prevent attacks on VANETs 

such as intelligent IDS.  

These challenges should be taken into account of designers to avoid problems that 

were caused in creating security obstacles. In this thesis, a novel intrusion detection 

system is proposed to overcome these key challenges.   
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1.4 Problem Statement  

Communication systems are considered one of the fundamental components in 

the development and existence of autonomous systems, such as driverless vehicles. 

Research has shown that autonomous vehicles have encountered problems with the 

security of their communication systems [1]. Moreover, the use of ad hoc wireless 

networks for these vehicles has added new threats as they have increased the 

vulnerability of the communication systems [29]. Vehicular communication differs 

from other wireless communication networks because of the high mobility involved 

and the rapidly changing topology that makes security a huge challenge in self-

driving vehicles. Protection of these networks and the creation of new security 

mechanisms will increase the development and promotion of autonomous vehicles 

[30].   

VANETs have incorporated some of the characteristics that have made them 

susceptible to many security attacks. These properties are [31]: 

• An open communication medium. 

• A highly changeable topology. 

• Cooperative communication algorithms. 

• The absence of fixed security infrastructures. 

• Lack of centralised point whether management, defence and monitoring.  

• High mobility. 

Unfortunately, such characteristics represent the vulnerabilities of the VANETs 

which make them easy to penetrate by the attacker. The security of these networks is 

vital as, in the case of malicious behaviour involving just one vehicle, the entire 

system will be paralysed which will affect all other vehicles in that particular zone, for 

example via DoS attacks. These attacks will prevent communication between all the 

vehicles in that radio coverage area. The deployment and evolution of self-driving 
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vehicles are dependent on providing security for all the system components. One such 

component is the communications system.        

1.5 Thesis Aim and Objectives 

The aim of the invention of self-driving vehicles is to reduce the number of 

accidents and traffic jams caused by human errors on busy traffic roads. These 

vehicles cannot predict the road conditions so they need to be able to exchange data 

and CAMs with other vehicles and with RSUs. In other words, the movements and 

actions of self-driving vehicles depend heavily on the data control and sensitive 

information that are collected from the external environment (gained information). In 

this scenario, the accuracy of the data exchanged between vehicles and RSUs has a 

significant role and will directly influence the lives of passengers, drivers and the 

vehicles themselves [30]. One of the most critical issues is the protection of the data 

control and the data transferred between these vehicles.  

This thesis aims is to provide intelligent intrusion systems to secure the external 

communication systems (VANETs) to be used in self-driving and semi-autonomous vehicles. 

In addition, the proposed intrusion detection has the ability to protect data and 

warning messages that are exchanged between vehicles and RSUs. For this purpose, 

we introduce more than one intelligent IDS to secure the external communication 

system of these vehicles from the potential attacks. The aim is to secure 

sent/transferred data and CAMs between the source and the destination from any 

expected attacks.  

The proposed security system must be able to detect and block various attacks 

such as DoS, Sybil, flooding, black hole, grey hole, dropping, wormhole and rushing 

attacks in self-driving and semi-autonomous vehicles.  

In this thesis, the objectives are as follows:  
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• Designing an intelligent IDS to secure the external communication system of 

autonomous and semi-autonomous vehicles. 

• Training and testing the proposed IDS using optimised Feed-Forward Neural 

Network (FFNN), Support Vector Machine (SVM), k-Nearest Neighbours (k-

NN), Linear Discriminant Analysis (LDA) and Quadratic Discriminant 

Analysis (QDA). 

• Designing an IDS with different detection schemes and architectures.   

• Employing some of the techniques that are used for the first time in building 

IDS such as FPN and Proportional Overlapping Score (POS) in selecting 

significant features.     

• Detecting and blocking a range of external and internal attacks on self-driving 

and semi-autonomous vehicles and network. 

• Developing a time-efficient system so that the safe mode can be induced in a 

compromised vehicle without delay. In other words, designing and 

implementing a quick response for abnormal scenarios in VANETs. 

• Implementing the detection system using various routing protocols. 

• Creating mobility and traffic model to generate trace file to detect abnormal 

scenarios. 

• Enhancing performance detection which is increasing detection rate and 

reducing the number of false alarms by declining the number of features that 

have been extracted from trace file and Kyoto dataset.  

• Fuzzification, normalisation and uniform distribution of significant features 

extracted from trace file by using POS method. 

• Comparison and analysis of the results to show improved detection rates in 

false alarms. 
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1.6 Thesis Contributions 

In this thesis, various intelligent IDSs are proposed to secure the external 

communication of self-driving and semi-autonomous vehicles. The proposed security 

system has the ability to protect the data control and sensitive information that are 

sent/transferred between vehicles and RSUs in that radio coverage area. A knowledge 

basis is incorporated into this thesis to detect and block different types of potential 

attacks on the communication system. In addition, artificial intelligence techniques are 

utilised in building and improving the performance of IDS. The major contributions 

are outlined below: 

1.6.1 Designing Intrusion Detection System 

• Designing various intelligent IDSs to secure the external communication 

system for self-driving and semi-autonomous vehicles such as FFNN-IDS, 

SVM-IDS, LDA-IDS, QDA-IDS, k-NN-IDS, BusNet-IDS and Distributed-IDS.  

• Designing IDSs with different detection algorithms, architectural models and 

artificial intelligence techniques to get different detection mechanisms with 

different performance metrics values.  

• ICMetrics technology is employed in designing novel ICMetric-IDS to secure 

vehicles communication systems. It is based on readings bias collected from 

different sensors, such as accelerometer, gyroscope, magnetometer and 

ultrasonic sensors, which are utilised in designing IDS. 

• Proposing a novel IDS based on FPN. This is the first time FPN is utilised in 

building IDS for VANETs. It is based on features that are calculated from trace 

file such as PDR and Drop Packet Rate (DPR). 
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•  Designing hybrid “anomaly and misuse” based-detection methods to 

overcome their limitations. In other words, we make use of the benefits of both 

types of detection systems by designing hybrid IDS. 

• Designing integrated-IDS to identify various attacks, such as black hole, grey 

hole, wormhole, Sybil. These attacks influence the performance of IDS. 

• IDS is installed on vehicles and RSUs to provide full safety environment for 

self-driving and semi-autonomous vehicles. The proposed IDS is designed 

using three architectural styles i.e. stand-alone, cooperative and hierarchical. 

• Finally, external and internal attacks are detected and blocked by the proposed 

intelligent IDS. 

1.6.2 Improving the Performance of the Detection System 

• Enhancing detection rate and reducing the amount of false alarms that is 

generated from the proposed IDS. In this thesis, the goal is to get the best 

results by using some techniques, such as fuzzification, normalisation, uniform 

distribution, sub-validation dataset and POS, to select significant features. 

• Creating a new dataset to evaluate performance for the proposed IDS from the 

trace file that is generated by ns-2. To generate real traffic and mobility 

environment for self-driving vehicles, the ns-2 utilises two software which are: 

Simulation of Urban Mobility Model (SUMO) and Mobility Vehicles (MOVE).   

• Reducing the number of extracted features to improve detection performance. 

The elimination of useless features improves the detection rate, decreases the 

computation time and memory consumption, and hence enhancing the overall 

performance of an IDS 

• The Kyoto data set is used to validate detection performance for the proposed 

IDS. Significant features are selected from Kyoto dataset to reduce the 

computation time and memory consumption.   
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1.6.3 Designing a Novel Response System 

• Designing a novel response system to introduce infected vehicles in safe mode 

at a suitable time without delay to save the life of passengers and drivers. 

• Improving the authentication aspect of self-driving and semi-autonomous 

vehicles by generating an ICMetrics basis number, which is generated from 

bias reading of typical automotive sensors.  

1.7 Thesis Outline  

The remainder of this thesis is organised as follows:  

Chapter Two presents the literature review associated with security of self-

driving vehicles. The chapter particularly focuses on intrusion detection algorithms 

and methods being utilised in VANETs. In Chapter two, an overview of 

communication systems for self-driving vehicles is provided, as well as threats and 

vulnerability in the external communication system for autonomous vehicles. In 

addition, the relevant artificial intelligence techniques, detection types and routing 

protocol employed are reviewed in this chapter. Moreover, the security goals are 

discussed that should be taken into account when building intrusion detection system.  

Chapter Three proposes more than one IDS to detect and block various attacks 

such as, DoS, black hole, grey hole, rushing attacks. In addition, methodologies, 

artificial intelligent technologies, mobility and traffic models that are employed in the 

design of intrusion detection system are reviewed.  

Chapter Four presents the novel intrusion detection system based on readings 

bias that have been extracted from various sensors in self-driving vehicles. The 

intrusion detection system uses the latest ICMetrics technology to secure data control 

and sensitive information from potential attacks. Then, it detects both internal and 

external attacks on external communication system of autonomous vehicles.  
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In Chapter Five, a new response reaction mechanism is proposed to transfer the 

infected vehicle into safe mode at a suitable time to save the life of passengers and 

driver, as well as vehicles themselves. The safety model is integrated with a novel 

intrusion detection system that is based on FPN. This is the first time FPN is utilised 

in building IDS for VANETs.  

In Chapter Six, an integrated-IDS has been proposed to create a practical and 

robust system for self-driving vehicles. The proposed security system is created by 

merging two approaches i.e. BusNet-IDS and the distributed-IDS. By composing two 

security solutions the resulting system can detect a range of attacks like flooding, 

drooping, impersonation, fabrication and Sybil attacks. In the proposed design, the 

content of a message is determined by selecting one of the two integrated IDS 

approaches i.e. BusNet-IDS or distributed-IDS. 

Finally, the conclusions are presented in Chapter Seven. Some ideas for future 

work are also discussed in this chapter. 
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CHAPTER TWO 

THEORETICAL BACKGROUND AND LITERATURE 

SURVEY 

“It is a capital mistake to theorize before one has data. Insensibly one 

begins to twist facts to suit theories, instead of theories to suit facts” 

Arthur Conan Doyle, Sherlock Holmes 

 

raditional security systems do not have the ability to protect sensitive 

information or control data of communication systems or host 

computers from internal attacks [32]. Cryptographic and digital 

signature techniques are considered as traditional security systems and the first 

layer/line of defence [33]. They are based on public key cryptography, symmetric 

encryption and hash functions which can secure systems/networks against external 

attacks [33]. Attack countermeasures  can be utilised to reduce the attack possibilities 

[34]. Moreover, these techniques are built for a set of known attacks and they are 

unable to prevent new attacks [34]. In addition, these techniques are unable to protect 

systems/networks from internal/insider attacks when the attacker knows or gets the 

private/public keys. The attackers use keys to perform encryption/decryption 

processes. For these reasons, the external communication system in autonomous 

vehicles needs a second security layer to “detect and notify”. i.e., “intrusion detection 

system” (IDS).  

Here, an IDS can help to detect and block internal and external attacks on those 

systems that are considered the second layer of security system, such as 

encryption/decryption. The external communication system of autonomous vehicles 

has an increased vulnerability compared to other networks, such as wired networks, 

T 



2.1 Autonomous Vehicles 

24 

 

as there are no stationary security infrastructures. Moreover, a high dynamic topology 

network and the open wireless medium makes them more vulnerable to attack [35]. 

2.1 Autonomous Vehicles 

Autonomous vehicles are considered one of the important applications in 

autonomous systems. These vehicles play a vital role in enhancing transport 

approaches by reducing the number of accidents are caused by human errors.  Google 

has had a big role in the development of self-driving vehicles and has seen great 

success through logging of more than 500,000 miles without any incidents [36]. Here, 

we can summarise the potential safety benefits of autonomous vehicles:  1.24 million 

people were killed on the roads in 2010 in 180 countries [2]. In the United States, there 

were 5.4 million accidents; as a result of these accidents, more than 32,885 people were 

killed and injured more than 2.2 million injured in 2010 [37]. The cost of accidents in 

2009 the was more than $299.5 billion [38]. Studies show that more than 5.471 of 

accidents in 2005-2007 were 92.3% from the mistakes of drivers [39]. All these facts 

and error statistics have encouraged to produce a new generation of vehicles, the self-

driving vehicles, because this type of vehicles can avoid driver’s errors. 

Although it is a complex technology, it mainly consists of four components: 

sensors, mapping, perception, and communication system [40]. 

1. Sensor devices: Vehicles contain of a number of sensors used in the perception of 

the external environment, such as infrared, radar, GPS, accelerometer and gyroscope, 

LiDAR and cameras.  

• Infrared sensors: Used at night for the detection of animals and other 

vehicles. 

• Radar sensors: Used for measuring the range and velocity of self-driving 

vehicles. 
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• Global Positioning Systems (GPS): Used for determining the position. Some 

recent studies advise not to use this device due to the inaccuracies in the 

GPS data [41]. 

• Accelerometers and gyroscopes: used to identify changes in the speed and 

directions. 

• LiDAR: This is one of the most expensive sensors, which is used in 

autonomous vehicles, using lasers and photoreceptor to produce a three-

dimensional model of the surrounding environment.  

2. Mapping, usually use files containing points and lines of the road, origin and 

destination entities, photographic images from the streets of satellites, ground 

pictures from the streets, as well as traffic control devices and obstacles. The 

mapping may contain the forms of terrain that were obtained by LiDAR. 

3. Perception is a set of programs that combines data from various sensors and 

compares the input data with the stored data. It is responsible for maintaining 

and determining the vehicle's position with traffic lines, monitoring and 

responding to traffic control devices, pedestrians, and other obstacles on the 

roads. The perception keeps track of the vehicle location with maps. Finally, it 

monitors the health of vehicles and automated systems.  

4.  Communication is a very important thing in the self-driving vehicles. 

According to the United States Department of Transportation (USDOT), 

communication reduces the number of accidents by 80 percent [42]. The 

communication technology is sometimes called the (connected vehicle) [42], 

[43] or (Cooperative Vehicle-Highway Automation Systems (CVHAS)) [44].  

Self-driving vehicles pose challenges for those planning and designing 

transportation facilities. Here are a few examples which show the potential problems 

[40]: 
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• Platooning: It is the form which represents self-propelled vehicles in movement 

on roads, sometimes called (road trains) [45]. This phenomenon posed that self-

driving vehicles need transmission lines and distances, especially for the 

purpose of separating or joining by other vehicles.  

• Loading, unloading, and parking: parking areas must be re-designed to be able 

to accommodate a larger number of passengers. These parking spaces may be 

far from the landing areas of passengers.  

• Lane widths and pavement design: these vehicles will exploit corridors 

optimally allowing us to narrow the lines of transportation, but we need to re-

design the pavement. 

• Rules of the road: the roads are going to be a mixture of self-driving vehicles 

and manual. In this case, self-driving vehicles must mimic the behaviour of the 

driver in the movement.  

• Regional traffic volumes: when self-driving vehicles are allowed to run on the 

roads, the fundamental nature of the travel will change. 

• Goods movement and public transportation: vehicles for the transport of goods 

need to queue for loading or unloading.  

To bypass the testing phase of self-driving vehicles must pave the way to 

overcome some of the obstacles [12]: 

• Critical Mass: These vehicles need transmitter and receiver, and this should 

provide the service on all vehicles for the success of this technique.  

•  Infrastructure Modifications: communication vehicle infrastructure need to 

be built, but the cost may be a challenge to implement this project. The 

compromise is to focus only on the big critical intersections to avoid accidents. 

Another solution is to use the current cellular networks with infrastructure. 

Cellular networks have problems with speed (slow) and a low bandwidth. 
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• Dependency on Sensors.  

Our research focuses on providing intelligent security systems to protect external 

communication systems in self-driving vehicles from the potential attacks due to their 

importance and effective role in the emergence of this generation of vehicles. 

2.2 Communication Infrastructure for Autonomous Vehicles  

Communication systems are an essential component in the success of autonomous 

vehicles. There are two types of communication systems: external and internal 

communication system infrastructure. Figure 2.1 demonstrates external communication 

scenarios in autonomous vehicles. 

 

 

 

 

 

 

 

 

 

Figure 2.1 External Communication of Autonomous Vehicles. 

The Media Access Control (MAC) protocol relies upon vehicles in 

communication. This protocol includes a variety of Wireless Local Area Network 

(WLAN) protocols, such as the IEEE 802.11 [46]. There were some necessary 

amendments to the IEEE 802.11 protocol to support the exchange of data between 

vehicles. The IEEE 802.11 is used to produce the new protocol, which is IEEE 802.11p. 

This protocol has remained under development. It has not been applied and only used 

for the purposes of testing.  
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Vehicular ad hoc network relies on short-range wireless communications between 

vehicles, for example, Dedicated Short Range Communication (DSRC) [47] and IEEE 

802.11 [48]. 

Generally, there are two types of communication in VANETs [30]: 

- Inter-Vehicular Communications (IVC): Autonomous vehicles equipped with 

communication devices are usually short-range. These vehicles can exchange 

information within the radio waves. This kind of networking is known as a 

VANET. Low cost and ease of deployment are some of the important features 

of this network. 

- Communication between the vehicle and the infrastructure (V2I) is used for the 

purpose of monitoring traffic and management services. 

2.2.1 External Communication Infrastructure 

Autonomous vehicles need information, which is present in other vehicles. In this 

case, they must be provided with broadband communications to access external 

resources. For example, these communications enable the passenger to communicate 

with others (people) and access local services such as tourist information, traffic 

information, gas stations and restaurants [49]. 

2.2.1.1 Attacks on External Communication Infrastructure 

(VANETs) 

VANETs are prone to many different types of attacks that lead to greater 

challenges in protection. Cooperation awareness messages transmitted among 

vehicles should be routed through routing protocols. This information will be 

exposed to many attacks.  

Attacks can be classified depending on the source of the attack internal/ inside 

and external/ outside. An external attacker is going to insert, re-send or distort 
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messages, while the internal attacker is inside the network. It broadcasts false 

information to other vehicles. Detection of these messages that carry false 

information will be very difficult because these malware vehicles can create legal 

signatures using their private keys. These types of external attacks will cause 

direct harm to the routing information. Firewall and encryption mechanisms are 

common measures to get rid of this type of attack.  

In addition, attacks can be classified as active or passive [29]. A passive attack 

is a type of attack which monitors or analyses data traffic that is sent among 

vehicles, or controls the traffic flow by eavesdropping. Whereas active attack is a 

type of attack which causes damage to the network by modifying the data and 

sends back the previous messages that causes a denial-of-service.    

Researchers describe the various types of attacks through their studies [50], 

[51], [52] and [53] and categorise them in four classes: 

1. Network Attacks: The main components of the VANET are vehicles and 

infrastructure. This type of attack has a direct impact on the vehicle and the 

infrastructure. These attacks also have a high priority because of their impact 

on the whole network. The main goal of the attackers is to create problems for 

legitimate users and network. Some of the attacks are mentioned below: 

• Denial-of-Service (DoS) Attack: availability in the networks of vehicles is 

considered very important for the fact that all users depend on the 

communication network.  

• Distributed Denial-of-Service (DDOS) Attack: it is considered one of the 

most dangerous attacks in vehicle environments due to the fact that these 

attacks are distributed.    

• Sybil Attack: this kind of attack is considered a network attack [54]. These 

attackers send multiple messages to other vehicles, and each message 

contains a different fabricated source identity (ID). It can give, for example, 
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the illusion of a traffic jam to other vehicles by sending wrong messages 

[55].  

• Node Impersonation Attack: each vehicle has a unique number of VANET 

networks used for the verification of messages. The attackers try to send 

wrong messages to other vehicles [55], [56]. 

• One of the attacks suffered by these networks is a Wormhole attack, where 

the attacker can capture packets from one location and tunnel them to 

another location. This will make the wormhole between the legitimate 

nodes of the network. 

2. Application Attack (AP): vehicles need two types of applications, which are 

safety and non-safety. The main concern of this attack is to change the content 

of these applications for their interests. Safety application is very important in 

vehicle networks since they provide warning messages to other users. The 

attackers try to change the content of the messages and send the wrong ones. 

This may cause accidents. One of the examples of this attack is Bogus [50]. This 

attacker sends false messages to the network, which causes users to change 

their behaviour on the road. Warning, caution and notification messages are 

considered one of the important messages of safety applications.  

3.  Timing Attack: this is a new type of attack which adds a time slot to the 

original messages and creates a delay. This type of attack does not change the 

content of messages, but creates a kind of delay leading to its late receipt. Time 

is important in safety applications and delayed alarm messages can cause 

accidents on the road.  

4. Social Attack: All immoral messages are social attacks. The purpose of this 

attack is to send indirect messages, which aim at creating problems in a 

network. These messages have an unethical influence on the behaviour of 
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drivers on the road.  For instance, a driver may receive a message, “you are an 

idiot”, which may make the driver increase the speed to catch up with the 

sender of this message. This will indirectly affect other users in the network.  

2.2.2 Internal Communication Infrastructure 

Vehicles are equipped with computers, communications capabilities and remote 

sensing to provide necessary information and services to vehicles and passengers. 

Intelligent Transportation Systems (ITS) were instrumental in the emergence of self-

driving vehicles [6].  

The major requirements for any vehicle to be in VANETs are: An On Board Units 

(OBUs) that contain a processor, memory, GPS unit, transceiver, sensors, antenna and 

communication modules. Most of the modern vehicles are equipped with all these to 

support VANETs [57]. 

Embedded electronic components in modern vehicles called Electronic Control 

Units (ECUs), are considered an important part of the architecture of vehicles. The 

responsibility of these systems is to monitor and control different subsystems of the 

vehicle, interconnected through internal networks [58]. 

With a large number of electronic control units in vehicles, it is difficult to connect 

two electronic control units directly (point to point) since linking directly requires extra 

cost and space. They can be interrelated with each other through a bus, and they send 

messages to all associated nodes. To correlate them, we need several protocols. Thus, 

vehicles made up of several sub-networks continue among themselves through an 

electronic control unit gateway. These networks are [58]: 

• Control Area Network (CAN) is a serial bus designed for vehicles. Data rate is 

1Mbps. If there is more than one node that wants to send a message at the 

same time of the electronic control units.  
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• Local Interconnect Network (LIN): This type of network uses the principle of 

master-slave. Messages are sent from the slave after a request from the master 

at a rate of 20kbps. This protocol is inexpensive, but the rate of data 

transmission is low.  

• FlexRay: The advantage of this protocol is the large data-transfer rate 

(10Mbps). Due to the cost in the industry, it is used in critical function only.  

• Media Oriented Systems Transport (MOST): It is used to transmit multimedia 

through optical fibres. These networks are used to control the channels though 

which any node sends or receives. Synchronous data channels are used to 

transport the stream of data at high rates, (24Mbps). 

Modern vehicles are now more connected with the outside world via wireless 

interfaces. They are even enabled to contact other vehicles or the infrastructure. Now, 

internal networks in vehicles are complemented by external networks to perform 

tasks. When the vehicle is a closed network, the attacker cannot achieve his attack 

only by the physical access to the vehicle by cutting the wires, but the vehicles have 

become open to the outside world. Thus, the threat of attacks is from a remote 

computer. 

2.2.2.1 Attacks on Internal Communication Infrastructure 

Attacks on internal communication system of self-driving vehicles have been 

classified as follows: indirect physical access, short-range wireless access and long 

range wireless access (direct and indirect) [58].  

1. Indirect Access: Focuses on third-party attacks that will be at a later time able 

to attack the vehicle. 

• OBD Port: The attacker can use the diagnostic port to attack the vehicle. The 

attacker can connect a pass thru device to the OBD port through Wi-Fi, 

which works remotely (via a laptop) [59]. Vulnerabilities in communications 
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Application Programming Interface (API) enables the attacker to achieve his 

attack remotely (computer). Using this mechanism, the attacker can achieve 

another attack on the other device sharing the same Wi-Fi.  

• CD Player: two vulnerabilities are distinguished in this subsection [59]. 

First, the inclusion of a disk (CD) containing the firmware updates, but in 

fact it contains a malicious code. Second, decoding of the WMA file may 

help broadcast messages over the bus for the internal network. 

• USB Port: vehicle media player can access a corrupted file stored on a USB 

key.  

2. Short Range Attacks 

These attacks use short-range wireless networks. It is possible that this attack has 

a direct attack by targeting the vehicle's communication, or indirectly through the 

driver's devices that are usually connected to the vehicle such as smart phones.  

• Wireless Pairing of Mobile Devices: modern vehicles can be coupled with 

mobile devices. For example, a driver can join the mobile phone with the 

vehicle via Bluetooth. Exploitation of these vulnerabilities may lead to the 

retrieval of data stored in communications, eavesdropping on the 

conversation between the passengers and the driver, and in the worst 

possible scenario, it could take over control of the electronic control unit. 

• Car-to-Car Communications: Communication between two vehicles or 

between vehicle and infrastructure is very important in the exchange of 

information. The attacker can eavesdrop through this or send fake data. 

• TPMS (Tire Pressure Monitoring System): This consists of pressure 

sensors inside the tires, which send their data to an electronic control unit 

via the radio frequency emitter. The attacker can eavesdrop on these signals 

and send false signals from 40 meters to the electronic control unit and, 

thus, illuminate the alarm light. 
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• Wireless Unlocking: A lot of vehicles have the technology to open doors 

remotely. Encryption is applied to these signals, which are transmitted 

through the air, thus exposing it to signal violations.  

3. Long-Range Direct Attacks: 

The attacks are from a remote location.  

• Telephony: detection of several vulnerabilities in the telematics unit. Some 

of the attacks are sent through the 3G network.  

• Web browsing: vehicles have a web browser that creates a threat through 

the injection of malware.  

4. Long Range Indirect Attacks: 

This kind of attack is from a remote location and indirect (Mediator). 

• App Store: using such stores to download programmes is possibly to be 

harmful since the store might be exposed to attacks, such as a Trojan Horse.   

• Side Channel Triggers: broadcast signals of a certain Radio Data System 

(RDS) constitute a danger to the electronic control units. 

2.3 Autonomous Vehicles: Types of Applications  

The applications of VANETs are divided into three categories which are: safety, 

security and infotainment [60]. Autonomous vehicles need two types of applications 

related to the safety, and efficiency of traffic which depend on the exchange of 

information between vehicles or between vehicles and roadside units (RSUs) [61]. For 

the autonomous vehicles to be connected, they must be equipped with computer 

technology and wireless communication devices, which is referred to as informatics. 

The main objective of VANETs is to provide safety for passengers [62]. 

These networks provide three types of applications, which are very important for 

autonomous vehicles [63]:  
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• Safety applications are one of the most important applications which are 

responsible for the warning messages such as an Intersection Collision 

Warning, Post-Crash Warning, Emergency Electronic Brake Lights and Road 

Condition Warning. These applications have a significant role in preserving the 

life of the driver and passengers as well as the vehicle itself. 

• Traffic Management Applications: These applications make an ideal driving of 

self-driving vehicles through the sharing of information between vehicles and 

with the infrastructure, such as Congested Road Notification, Parking 

Availability Notification and Parking Spot Locator. 

• Commercial Applications: these applications provide comfort and satisfaction 

to the passengers and drivers, such as service announcements and map 

download.  

2.4 Vehicular Ad hoc Network in Self-Driving Vehicles  

Generally, ITS consists of two main parts: Information processing application 

system and Road condition information transferring system [64]. The responsibility to 

exchange information between the vehicles, or vehicles with road side units, is of road 

condition information transferring system [64]. The main aim of VANETs is to 

provide security and safety for passengers and drivers as well as the vehicle itself [65]. 

The self-driving vehicles heavily depend on VANETs, making these networks 

interesting for researchers. These networks provide the security and comfort for the 

vehicles through cooperative awareness messages which include various applications. 

A significant increase in the number of vehicles makes driving difficult and 

dangerous, thus raising the importance of VANETs. In addition, its design or 

dissemination is low cost compared to other networks. 

There are several applications for VANETs, such as Vehicle collision warning, 

Security distance warning, Driver assistance, Cooperative driving, Cooperative cruise 
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control, Dissemination of road information, Internet access, Map location, Automatic 

parking, Driverless vehicles [65]. In addition, communication between the vehicles is 

used to support the achievement of safety-critical services, such as collision warning, 

up to date traffic and weather information or navigation systems.  

2.4.1 Dedicated Short-Range Communication (DSRC) 

Dedicated Short Range Communication (DSRC) is considered as short-range 

wireless protocol which particularly made for V2V and V2I communications in 

order to enhance the productivity and safety of the transportation system which is 

also known as ITS. DSRC was originally proposed to work in the 915 MHz band; 

however, US Federal Communications Commission (FCC) in the year 1999 

assigned 75 MHZ of spectrum at 5.9 GHz for DSRC. The same thing also 

happened in Japan and Europe where 5.8 GHz is used instead for DSRC. The 

radio technology of DSRC is known to be a variant of the IEEE 802.11a technology 

[66]. This supplies high data transfer rates which can reach as high as 27 Mbps 

over a range of 1km while at the same time still maintaining low overhead in the 

DSRC spectrum. Both academia and industry have been working extensively on 

standardisation of DSRC. An example of such work is the IEEE P1609 Working 

Group; the group is currently working on the IEEE802.11p for both MAC and 

PHY layer of DSRC, including applications and management services over DSRC, 

which can be referred as Wireless Access in Vehicular Environment (WAVE). The 

current research highlights (what the research is dealing with in terms of 

IEEE802.11p) and contributes to the development of the security system as will be 

discussed in detail in Chapters (3,4, 5 and 6) below.  
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2.5 Security in Vehicular Ad hoc Networks 

The Quality of Service (QoS) is considered an important issue in these networks: 

delay, throughput, jitter, bandwidth and packet loss, etc. Security is an essential 

service needed for the secure functioning of VANETs. In other words, security has 

become one of the major concerns in VANETs. The nature of the VANETs exposed a 

group of security challenges in the design of these networks. These challenges are the 

lack of a centralised security infrastructure, participate in open wireless and 

significant change in topology.  

VANETs are more vulnerable to attacks than wired networks. One of the 

challenges is in the nature of structural VANETs. It is a widely used network. 

However, after the emergence of a new generation of intelligent vehicles, it has 

become more important and indispensable for the success of this project. The basic 

idea applied in MANETs is that it assumes that all nodes in the network are 

cooperative and there is no malicious node [67]. As VANETs is a subgroup of 

MANETs based on their work on this idea. Breaching one of the VANETs nodes leads 

to disruption of the entire network.  

The intrusion detection system is one of the protection systems which that are 

very important in these networks and is a supplement other protection mechanisms, 

such as encryption. The Intrusion detection system collects and analyses information 

about the activities of the network, analyse and in the case of detection of any 

abnormal condition issues an alarm.  

The success of the self-driving vehicles relies heavily on its networks and the 

success of the networks, which depends on the scalability of its security. Generally, 

the security systems are divided into two parts. Firstly, intrusion prevention systems, 

such as encryption and authentication (using passwords or biometrics) which is the 

first layer of defence; intrusion detection techniques ("any set of actions that attempt 
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to compromise the integrity, confidentiality, or availability of a resource" [68]), is the 

second layer of defence. Intrusion prevention systems are not sufficient because the 

systems are becoming more complex. 

The concept of security is classified into two classes based on the type of primitive 

work: proactive and reactive [69]. Protection mechanisms that place restrictions and 

prevent unauthorised access early, such as encryption, are considered the mechanics 

of proactive protection; while the mechanisms that detect attacks after the fact and do 

not put any restrictions like proactive security are reactive, such as IDSs. Figure 2.2 

shows the categories of security concepts [69]: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Categories of Security Concepts. 

Security requirements differ from one system to another, and this depends on the 
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2. Location Accuracy and Correctness of Messages: Location accuracy is also 

critical. The attacker can exploit this requirement in achieving its objectives by 

sending more than one message and false information, which confuses the 

traffic of other vehicles. 

3. Privacy: Wireless networks make privacy important issue. It must provide a 

mechanism to protect the data they carry in this message, such as vehicle 

location, time, speed, and internal vehicles sensor data. 

4. Liability: This requirement poses some problem as we have to identify who is 

responsible when the error occurs in the self-driving vehicles. 

2.5.1 Targets of Attacks  

Vehicular ad hoc networks are exposed to many types of attacks. Some of these 

attacks are shown in the following subsections. Generally, potential attacks are 

divided into three categories: the threats against availability, confidentiality and 

authenticity [70].  

1. Threats on Availability  

Self-driving vehicles rely heavily on their communication (VANETs) with the 

external environment for make their decisions. Denial-of-service attacks try to take 

advantage of the opportunity to achieve their objectives in the following two areas 

[71]: 

• Control of a vehicles’ resources. 

• Jamming the communication channels. 

DoS attacks have a direct and negative impact on the life of passengers, drivers 

and vehicles themselves (when they prevent the arrival of warning/ caution 

messages to other vehicles) [72], [52] and [73]. The internal or external attacker which 

has a direct impact on the network by denying users the available resources [74]. 
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This type of attack is the most violent on the VANETs, and is divided into three 

categories:  

a) Denial-of-Services (DoS) 

• The basic level: Intrusion detection system can detect these attacks and 

isolate them. 

•  The extended level: It generates high frequencies to prevent connection. 

The solution is that the DSRC channel contains seven channels and the 

vehicle has to switch between these channels to secure the appropriate 

connection with vehicles or roadside units. 

b) Drop Packet  

• The beacon messages between vehicles are deliberately damaged by 

malicious vehicle through jamming that launched denial-of-service attacks 

[75], [76].  

• Jamming: It is a type of attack on the physical layer of the network. This 

attack has direct and negative impact on the platooning phenomenon in 

self-driving vehicles [77].  

• Black hole attack (Remote redirection): The existence of this type of attack 

causes loss of package (DoS) [78]. 

• Spamming: This kind of attack does not send messages for consumption 

the bandwidth of the network and does not pose a risk (advertising 

messages). 

Availability is one of the very important issues in VANETs. Denial-of-service 

attacker aims to block this feature of these networks. Platooning phenomenon is 

achieved through the exchange of periodic cooperation messages between vehicles. 

These messages carry the position and velocity of each vehicle. In the case of 

blocking, these messages cannot be exchanged between vehicles to achieve this 
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phenomenon, that we refer to as beacons [79]. The danger of this attack is the 

inability of vehicles to update the information between them. 

c) Message Suppression Attack 

Attackers try to drop packets from the network. They use these packets at other 

time [52]. These attacks cause a lot of problems and cause many accidents for 

vehicles on the road.  

 

2. Threats on Authentication 

The vehicular ad hoc network offers a tradeoff between privacy and 

authentication that leads to a kind of malicious attack which is Sybil [80]. The 

networks in the vehicles are exposed to various types of attacks. Such attacks are 

routing attack (Sybil attacks).  

• Sybil Attacks: The attacker generates a number of messages with fake IDs 

that transfer to other vehicles. This is the most lethal attack on the network. 

• Node Impersonation Attack: each vehicle in the network has a unique 

number that distinguishes it from the rest of the vehicles. The attacker can 

change the ID which creates confuse for other vehicles on the roads. 

•  Fabrication Attack: attackers can achieve their goals by broadcasting false 

messages in the network. These messages are warnings, certificates, 

Identities [52], [73]. 

3. Threats to Integrity 

• Alteration Attack: this happens when the attack succeeds in changing the 

content of the message. Delay or re-sending the message more than once is 

considered one of the aspects of this attack [52].  

Finally, the main existing threats on VANETs are divided into three categories: 

infotainment application, safety application and secure communications [60]. These 
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threats are summarised in Figure 2.3. In VANET threats, every attack has a direct and 

negative impact on all types of VANET applications.  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Security threats for VANET Applications [60]. 
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not have the ability to provide sufficient security [82]. In addition, the external 

communication of these vehicles can offer a variety of services such as safety 

applications and non-safety applications, which supports increasing research efforts 

and growing interest in security systems. 

IDS is considered as one of the most effective means of protecting VANETs as 

these mechanisms can identify abnormal or malicious activity on the network or the 

host [22]. IDS has the ability to achieve sufficient security and privacy of systems or 

networks because it plays an important role in detecting and blocking internal attacks 

that cannot be detected or prevented by other security approaches.  

The high dynamics of a topological node for VANETs can be difficult to apply 

using IDS of self-driving vehicles [83] because the security system cannot obtain 

enough data (features) from the mobile nodes to build a comprehensive view of the 

network. To overcome this problem, some novel features are extracted from self-

driving vehicles, such as ICMetrics features from automotive sensors, to achieve 

authentication and detection. 

2.6.1 IDS Classification 

IDS can be categorised in various ways, but an often used classification is: 1) 

anomaly, 2) misuse and 3) specification based detection systems. Each detection 

methodology has features that distinguish it from others, whether positive or 

negative, but all these approaches try to provide sufficient security, as well as 

prevent and detect all unauthorised access from malicious vehicles or nodes [84]. 

1. A signature-based system: in this detection technique, the security system 

contains a database of the typical behaviour identified for known attacks. 

The data set is compared to the behaviour of the system, and when there is 

a match this shows that there is an intrusion. 



2.6 Intrusion Detection System (IDS) 

44 

 

2. An anomaly-based system: this type of detection depends on the 

behaviour that had been previously determined. If there is any deviation 

from this behaviour, there is an intrusion. Essentially, the detection system 

is based on a profile created from the normal behaviour of the network. 

3. A specification-based system: this detection system defines a set of 

conditions that must be available in the protocol or program. The intruder 

is detected in the event that the system does not meet these conditions.  

2.6.2 Architecture of Intrusion Detection System 

There are other classifications of intrusion detection systems depending on the 

architecture [85]: 1) stand-alone, 2) distributed, 3) hierarchical and 4) mobile 

agent. 

1. Stand-alone IDS: each vehicle is relying on local resources for data collection, 

so it does not exchange data. In this scenario, the vehicle has no information 

about the position of other vehicles. 

2. Cooperative and distributed-IDS: this mechanism relies on cooperation 

between vehicles and RSUs to detect intrusion. The very nature of self-driving 

requires the exchange of information between vehicles or with the 

infrastructure. This cooperation can detect penetration through the 

information which is exchanged between the vehicles. The main problem with 

this type of detection is that it may affect the performance of the network. 

3. Hierarchical IDS: this approach is based on the detection of a division of the 

network into groups (clustering); each set contains a head and there is 

cooperation between these nodes. This method of detection may reduce the 

burden on the network. However, the problem is that there needs to be a 

comprehensive view for the network due to the lack of cooperation between 
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the vehicles on the network. Some types of attacks may not be detected; for 

example, distributed attacks. 

4. Mobile Agent for Intrusion Detection: this approach uses mobile agents to 

perform a specific task on a node. This architecture allows the distribution of 

tasks in intrusion detection. 

There are many mechanisms that can be used in the protection of the 

communication system of self-driving and semi-self-driving vehicles. 

Conventional security mechanisms, such as cryptographic methods, cannot detect 

internal attacks. Thus, as indicated above, a second layer of defence is required 

alongside encryption to increase the security of the networks or systems. 

2.7 Simulation for VANETs 

The evaluation process of current trust prototypes for the external communication 

systems in autonomous systems is mostly done via simulation systems [60]. Many 

researchers have shown the important role of simulation systems. According to 

Shannon: "the process of designing a model of a real system and conducting 

experiments with this model for the purpose of understanding the behaviour of the 

system and/or evaluating various strategies for the operation of the system" [86]. 

Simulation systems are considered very important in VANETs. In this case, any 

protocol or a new protection method has to be applied in simulation due to the fact 

that these projects incur significant costs. 

There are many simulation systems that are used in the field of vvehicular ad hoc 

networks. Figure 2.4 shows the classification of simulation software for networks of 

vehicles. Simulation programs in VANETs are divided into three categories. They are 

[87]: 

1. Vehicular mobility generators. 

2. Network simulators. 



2.7 Simulation for VANETs 

46 

 

3. VANET simulators.  

 

 

 

 

 

 

 

 

 

 

Figure 2.4 A Taxonomy of VANET Simulation Software. 

Vehicular network scenarios used in this research are closely linked to real-life 
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path of trace files (the output of simulation takes two files which are traced and 

Network Animator (NAM) file). Figure 2.5 illustrates the input and output files for the 

ns-2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Input and Output Files for ns-2. 
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The output of the ns-2 simulator has two files which are NAM and trace files. TCL 

language determines a number of important issues in the software simulation, 

including: 

- Physical and protocol type specifications. 

- Creation and movement of nodes (scenario file). 

- Node communication (traffic file). 

- Event logs such as trace file and visualisation setup such as NAM file. 

In the TCL file, there are a lot of parameters that must be defined, such as radio 

propagation models (Free space, Two-Ray Ground reflection and shadowing). The 

Two Ray Ground is utilised in this research. For studying the behaviour of the 

protocol, simulation system can store a file tracking and then we can use an analytical 

language. Many types of files tracking are available in the ns-2 simulator, such as 

agent, route and MAC trace. Simulation system contains some practical limitations, 

such as the number of nodes or processor speed [88].  

Through the course of this thesis, the design security system with response system 

are employed by ns-2 [88]. The ns-2 component-based C++ and OTCL simulation 

library and framework primarily for designing network simulators. There are other 

commercial network simulators such as OPNET [91], EstiNet [92] and QualNet [93], 

and free ones such as GloMoSim [94], ns-2 [88] and JiST/SWANS [95].  

2.7.2 Why Do We Use Network Simulator Version Two (ns-2)? 

Network Simulator version two, commonly known as ns-2, is one of the most 

important and most widely used simulation systems in the world [96]. The ns-2 has 

some properties that encourage researchers to employ it in their works, such as open 

source, efficient, a rich library and common application in scientific research area [97]. 

In addition, most of the proposed systems have utilised the ns-2 network simulator as 

shown in Figure 2.6 [60], [98]. 
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 For a proposed security system is on physical, Data link and Network layer the 

researchers prefer to employ ns-2. On the other hand, if the proposed security system 

is for transport, application layers, then ns-3 is highly suitable [99]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Evaluation of Trust Approaches for Vehicle Networks [60]. 

In Figure 2.6, the evaluation methods for the current trust models are summarised 

with the suitable simulators environment for VANETs [60] . 
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1. Step One (Simulation Design): At this stage, the user must specify the 

purposes of the simulation, network configuration, assumptions, performance 

measures and type of the expected results. 

2. Step Two (Configuring and Running Simulation): This step consists of two 

phases, which are network configuration and simulation phases. The network 

configuration could be TCP/UDP, while in the simulation phase, we must 

determine the clock and execute events chronologically (threshold). 

3. Step Three (Post Simulation Processing): This phase involves verifying the 

integrity of the program and evaluating the performance of network 

simulation. 

Specially, the simulation system in vehicular ad hoc network needs two types of 

files for random traffic connection, such as a traffic-scenario generator script and 

mobile pattern generator. These files are generated by special programs or the 

researcher, program generates these files. Through these programs, some parameters 

are set that are needed in the formation of the files. For example, the number of nodes, 

the maximum number of connection and seed, etc. There is no relationship between 

the number of vehicles and the maximum number of connections 

2.7.3 Why Do We Need to Generate a Realistic Environment for 

VANETs? 

The mobility model in VANETs is considered one of the most significant 

parameters when testing or evaluating any algorithms or protocols proposed due to 

high mobility vehicles in VANETs [100]. Generally, the mobility model is divided into 

two types which are urban mobility model and highway mobility model [101]. Most 

existing researches are concerned with city mobility model [102]. The urban mobility 

model has many features that distinguish it from other mobility models, such as: 

- Low speed. 
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- Heavy vehicle density (traffic). 

- A lot of crossings along roads 

At present, urban mobility models utlise many types of modes or models, such as 

the Random Way Point (RWM) model, Manhattan mobility mode, Rice University 

Model (RUM), Stop Sign (SSM), Probabilistic Traffic Sign (PTSM) and Traffic Light 

model (TLM) [101]: 

1. The Random Way Point Model (RWM): The vehicles are initially distributed 

randomly or uniformly distributed for the VANETs. This model is the most widely 

used for VANETs simulation [103]. 

2. Manhattan mobility mode [104]: This model uses the grid road topology. The 

vehicles can move in a horizontal or vertical direction. The probability of the 

vehicles to turn left or right is 0.25, while the probability to go straight is 0.5.  

3. The Stop Sign Model (SSM) [105]: This model is urban mobility model that uses 

stop signs as the traffic control mechanism for vehicles.  

4. The Probabilistic Traffic sign Model (PTSM) [105]: This model is an improved 

version of the previous model (SSM).  It uses the red signal to stop the vehicles and 

green signal to allow vehicles to pass. 

5. The Probabilistic Traffic Sign (PTSM): In this model, the vehicles intersection with 

the empty queue, stop at the signal. It improves the previous model SSM.  

6. The Traffic Light Model [105]: The researchers considered it the most realistic 

model in comparison with the other models. This model has more flexibility 

moving the vehicles than the other. 

In the Highway Mobility Model (HMM), the vehicles have attributes, such as high 

speed, no traffic lights and a few number of RSU. These attributes distinguish the 

HMM from the urban mobility model [101]. The current research, the HMM is not 

fully explored in experimental research [102] ,[106]. Girinath is considered one of the 
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researchers of VANETs is to employ HMM for the vehicles rather than the urban 

mobility model.  

Vehicular traffic is possible to describe the two are microscopic and macroscopic 

approaches [107]. Macroscopic: refers to the density of traffic (number of vehicles per 

kilometre of the lane), while the microscopic is to determine the movement of every 

vehicle alone.  

2.8 Intrusion Detection Systems - Survey 

The life-saving decisions in self-driving vehicles are heavily based on received 

information from other vehicles/RSUs in that radio coverage area. Vehicular 

communication can make driving safer, more efficient and more comfortable. Hence, 

security systems are considered a very important requirement in VANETs for many 

years [108]. In addition, numerous research papers and many experiments have been 

conducted on vehicular ad hoc networks because of their importance to many 

applications in self-driving and semi-autonomous vehicles.  

To achieve security characteristics in VANETs, researchers have proposed some 

security techniques, such as cryptography and digital signatures. These security 

mechanisms play an important role in ensuring nonrepudiation and integrity of 

CAMs, warning messages, notification and control data which are exchanged between 

vehicles and RSUs in that zone. In [109], [110], [111] digital signature schemes have 

been proposed for VANETs. The public key infrastructure has been designed in 

various security systems to protect VANETs from potential attacks [50], [112], [113]. 

Despite all the proposed intrusion prevention techniques, internal attacks can transmit 

false information to other vehicles/RSUs in that radio coverage area. In other words, 

insider/internal attacker is able to launch its malicious behaviour even in the case of 

strong traditional security systems, such as cryptography and digital signature 

schemes [108].  
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The most reliable security system to protect the external communication system in 

autonomous vehicles is intrusion detection system [114]. IDS has the ability to identify 

internal and external attacks with high performance detection rate [114]. In addition, 

IDS is effectively able to detect inside and outside attacks at real time. However, to 

work properly, it needs strong identification and authentication system [108]. Hence, 

a novel authentication system is designed in this thesis to support detection process of 

IDS. Furthermore, artificial intelligence techniques are utilised in building IDS to 

predict new attacks from unknown attacks in this thesis. In the following section, we 

explain some of the related work. 

2.8.1 Anomaly and Signature Intrusion Detection Systems 

A research on threshold determination for processing spoofed data in 

VANETs is carried out to find the best possible threshold in [115]. The authors 

show that this threshold plays an important role as decisions and steps are taken 

based on reaching the defined threshold. If the threshold is kept high, there is an 

evident delay in decision making on part of the vehicles. The research studies the 

threshold as a Kalman filter which can be updated dynamically. The proposed 

work suffers from bootstrapping but is effective in reducing the percentage of 

wrong decisions. 

Adversaries can attack a VANET in many different ways. One method of 

attacking a vehicle is by inserting ghost vehicles in the network. Doing so creates 

nodes that do not physically exist but can impact the functioning and safety of 

other vehicles in the same zone. In [116], the authors propose a central detection 

scheme which uses trust and misused information from misused reports to 

determine and eliminate adversaries from a network. Simulations of the proposed 

scheme show that an adversary can be obfuscated if three spoofed nodes are 
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placed on the network. The authors also show that cooperating adversaries can be 

eliminated if only 37% of neighbouring nodes collaborate with each other. 

Zhang et al. are considered the first researchers to propose the use of IDSs in 

ad hoc networks [117]. A cooperative distributed- IDS is proposed to detect 

malicious activities in ad hoc networks. Two detection engines are proposed 

which are: local and global. IDS agents are designed for each node in network for 

collect data and detect processes of abnormal behaviours in local detection engine. 

Furthermore, neighbour’s nodes can exchange/cooperate important information 

with each other in that radio coverage area to form a cooperative detection engine. 

These detection techniques have the ability to prevent some attacks of DoS on ad 

hoc networks.  

Zaidi et al. proposed an intrusion detection system for VANETs. The 

proposed security system is evaluated under normal and abnormal conditions to 

check its efficient detection of rogue nodes [108]. Statistical techniques are 

employed in the proposed IDS to identify false information attacks. The authors 

can approve that application-layer IDS is more efficient with dynamic network or 

high change topology, such as VANETs. In other words, a cooperative 

information exchange plays an important role in enhancing detection rate of IDS.  

In [118], the authors proposed a watchdog IDS that is based on Bayesian filter 

to detect attack vehicles and decrease the number of alarms of vehicle. Watchdog 

mechanism monitors vehicles behaviour and selects the safest path between 

sources to destination through Pathrater. This system can identify malicious 

vehicles which drop received packet rather than forwarding them to the 

destination node. It is mainly based on communication information that was 

collected from neighbour’s vehicle. On one hand, the main advantage of this 

security system is that is detects misbehaving vehicle in many cases. On the other 

hand, watchdog IDS cannot detect malicious vehicles in cases of partial collision 



2.8 Intrusion Detection Systems - Survey 

55 

 

and collusion. Sometimes, watchdog method detects some vehicles as malicious 

nodes, but in fact they are normal nodes. In this case, Bayesian filter is utilised to 

check whether the identified vehicles are attackers or not. 

Chaudhary et al. in [119] proposed an anomaly intrusion detection based on 

fuzzy logic to protect MANETs from potential attacks. It can detect packet 

dropping attacks as well as isolated malicious nodes based on their internet 

protocol (IP). In addition, the fuzzy intrusion detection system has the ability to 

save the power resources by removing the suspicious nodes in MANETs. It is 

noticed from the simulation results that it can detect the malicious nodes with low 

false positive alarm and high rate of true positive alarm in MANETs. 

 Zhou et al. designed a security protocol to protect the VANETs from Sybil 

attacks [120]. The authors have explained the use of encryption technologies to 

reduce the number of attacks on VANETs. It is a lightweight, efficient and scalable 

protocol that has the ability to provide sufficient safety environment for VANETs 

against malicious activities. In these scenarios, each vehicle would contain a 

number of pseudonyms used during their communication. The malicious vehicle 

in this protocol is pretends/ broadcasts multiple fake IDs to confuse other vehicles 

in that radio coverage area. The detection process of the proposed security system 

does not require any vehicle in VANETs to disclose its identity. The authors can 

enhance the Department of Motor Vehicle workload to road-side boxes to provide 

a security system with low information overhead. It is noticed from the simulation 

results that the security system can detect Sybil attacks in VANETs with a low 

delay, communication overhead with a high accuracy of detection. However, 

these techniques carry large constraints, such as computational complexity. 

Li et al. have designed a trust management approach to create safety and 

security environment for VANETs [121]. The detection system is proposed in this 

paper to secure vehicle network that was based on an attack-resistant trust 
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management scheme (ART). It has the ability to detect and adopt with abnormal 

behaviour in VANETs. In addition, the trustworthiness of both mobile node and 

data are evaluated in this security method. Practically, the data collected from 

multiple vehicles with sensors are used in assessing data trust of the proposed 

system. In other words, two dimensions are utilised in evaluating the trusted 

vehicles which are: recommendation trust and functional trust. Extensive 

experiments are employed to validate the effectiveness and efficiency of the ART 

approach. The ART is applicable to a wide range of applications in VANETs to 

enhance traffic safety, mobility, and environmental protection. 

In [122], the adaptive detection threshold is utilised in designing security 

system to detect intelligent malicious behaviours in VANETs. It can 

detect immediately any abnormal behaviours in vehicle network are generated 

from mobile vehicles. However, the proposed system can detect malicious 

activities with high rate of packet delivery and detection process.    

A security system is designed to secure VANETs from fake vehicles that is 

based on innovative signature based intrusion detection system [123]. Applying a 

plausibility model verify vehicle movement information. Moreover, it can detect 

fake information whether fake traffic congestions from RSUs or fake information 

from attackers. In this case, attackers try to insert moving vehicles data into the 

VANETs to deny the real congestions.  

Coussement et al. have proposed using an intrusion detection system to detect 

malicious activities that have direct and negative impact on the performance of 

external communication system in vehicles [83]. It analyses incoming and 

outgoing traffic packets to distinguish attack actions. The detection process of IDS 

is based on decision making mechanism to protect sensitive information from 

potential attacks in VANETs. More specifically, two schemes of IDS are installed 

in the first one on vehicles whereas the second one on RSUs. These IDSs work 
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together to create groups of vehicles based on their speed. However, the main 

work the proposed IDS depends on two IDS approaches and clustering of 

vehicles. When an intruder launches its attacks, the security system broadcasts 

warning messages and alerts neighbouring clusters.  

2.8.2 Intrusion Detection for Routing Protocol 

A new Position Based Secure Routing Protocol (PBSRP) is presented in [124]. 

To secure routing protocol in VANETs from malicious drivers, the PBSRP 

integrates Most Forward within Radius (MFR) and Border based Most Forward 

within Radius (B-MFR). Station to station key agreement protocol is utilised to 

add to the security system in this protocol to protect the VANETs from different 

attacks. Therefore, the proposed security system consists of three phases which 

are: initialisation, optimal node selection and secure data delivery. In terms of 

PDR and end-to-end delay, it is noticed from the simulation results that the 

performance of PBSRP is better than MFR and B-MFR when attacks are included 

in the VANETs.  

In [125], a security system is proposed to minimise one of the DoS attacks 

which is grey hole attacks. In this approach, the authors assume that each 

communication node is utilising only the internal knowledge which is gained by 

routing protocol. The system is based on the internal information of routing 

protocol that is employed in network layer of network. Various threats are used in 

evaluating the performance of the proposed security system. It is noticed from the 

simulation results that the security system can reduce the number of drop packets 

by 51%. Hence, it plays a vital role in creating stand-alone safety system in ad hoc 

network from grey hole attacks. 

A cooperative intrusion detection system is proposed to secure vehicle 

network from black hole attacks. It is based on cross layer architecture that can 
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correlates both network and MAC layers detection [126]. The security system in 

this paper is proposed to enhance the watchdog model based routing level 

monitoring. The detection process of the cooperative intrusion detection consists 

of two phases which are: 1) monitoring the number of requests to send/clear the 

watchdogs and identified vehicles at the MAC layer; 2) recalculating watchdog’s 

detection percentage. In this security system, the presence of channel collision is 

recognised by cooperative monitoring in both layers that help to reduce the 

number of false alarms. The experimental results corroborate that the cooperative 

detection can enhance the detection rate and reduce the number of false alarms.  

Guo et al. have designed privacy protection to secure vehicles communication 

systems for VANETs [127]. The proposed protection mechanism is able to 

combine digital signature mechanism, symmetric encryption, homomorphic key 

agreement and message authentication to provide adequate protection for 

communication protocol. Hence, the combining process in this paper can prevent 

personal information of users form any illegal access. This proposal can enhance 

the security and privacy of the transmission messages that are exchanged between 

vehicles and RSUs. It also has the ability to reduce computation costs of privacy 

and security in VANETs.  

In [128], the authors proposed a new security system to protect routing 

protocol in VANETs. An anomaly detection system can detect and prevent 

wormhole and rushing attacks that have direct and negative impact on the 

performance of routing protocol in the external communication systems in 

vehicles. A statistical approach is utilised in designing intrusion detection that 

monitors vehicle’s path selection. However, it can detect and prevent any 

malicious behaviours from VANETs. It is noticed from simulation results that the 

proposed security system exhibits high accuracy of detection rate.  
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Usha et al. proposed a protection mechanism of the AODV routing protocol in 

ad hoc networks [129]. It can provide an authentication aspect for each node in 

network through route discovery that detects and isolates one of the DoS attacks 

which is black hole attacks. This security proposal plays an important role in 

increasing the rate of PDR and throughput for network. In addition, in single 

round time of path established between source to destination, the security system 

can prevent black hole attacks with low computation overhead on network. 

2.8.3 Intrusion Prevention Systems 

Cryptographic schemes are often based on the use of public private key pairs 

for the provision of security. These keys are often updated according to the 

instructions from a certification authority. When a vehicle has limited 

connectivity, it may not be able to update the key pairs. A solution to this is that 

often used multiple key pairs are stored on the vehicle. The need for secure 

storage can become a security concern. In [130], the authors showed that it is 

possible to entirely eliminate the need for stored keys by using Physically 

Unclonable Functions (PUF). The authors study a vehicle’s on-board unit as the 

basis of a PUF to create a secure storage for vehicle. 

In [131], the authors stated that cryptographic systems can be used to secure 

VANETs. As they are insiders in a VANET, therefore the cryptographic key used 

can be captured which could lead to the system being exposed. The authors 

showed that it is possible to detect malicious insiders with a high precision by 

simply studying the disseminated redundant information. The authors have 

proposed three graph-based metrics which they apply to the geocast protocol and 

the aggregation protocol. The authors have reported mixed simulation results as 

the geocast protocol does not effectively detect redundant data, whereas the 

aggregation protocol can sufficiently detect conflicting data. 
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Security in VANETs can be attained through the use of cryptography. The use 

of resource hungry cryptographic algorithms can have a negative effect on 

resource constrained networks like VANETs. The authors in [132] studied the 

design of a cryptography based system for VANETs. The proposed system uses a 

single cryptographic key with AES encryption. The authors also tested the 

proposed system with public key cryptography and RSA encryption. The research 

shows that RSA outperforms AES when simulated in VANET composed of 15 

mobile nodes under AODV routing. 

In a recent research [133], the authors discussed that even in the presence of 

encryption-decryption, vehicular ad hoc networks remain insecure. The research 

shows that cryptography can prevent external attacks but internal attacks cannot 

be prevented. The authors show that the prevention of internal attacks can be 

achieved through misbehaviour detection mechanisms. The authors have 

implemented a malware application on a physical vehicle and showed that this 

can be used to prevent internal attacks which are prevalent due to the lack of 

security standardisation in VANETs. 

Research [134] on security in VANETS has shown that the network has 

security implications on the security of the drivers and passengers. Cryptographic 

services come at a cost, like computation time and power, which is why resource-

efficient methods are often required. The authors claim that the security of a 

vehicle is incomplete without the awareness of surroundings. Previously, the 

Awareness Quality has been used in networks to study the effect of network 

congestion. The authors have used the awareness quality to study the positive and 

negative effects of omitting security certificates in VANETs. The authors have 

simulated their work through the use of various metrics and indicators. 

In [135], the authors proposed a security scheme for wearable devices using 

the ICMetrics security. The authors demonstrated how ICMetrics can be 
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generated using the MEMS accelerometer and other sensor characteristics. The 

authors designed a comprehensive security scheme that generates ICMetrics for a 

device. The ICMetrics are then used to generate a symmetric key, which is used 

for the provision of security services like authentication, integrity, and 

confidentiality. The authors have simulated their scheme and concluded that 

higher levels of security can be provided without a compromising the resource 

(memory, time and speed) requirements.  

In [136], the authors did a comparative survey on the complicated issues of 

pseudonymity in VANETs. They have determined four major classes of 

pseudonym approaches that are most commonly used to secure the external 

communication of vehicles. Pseudonym approaches are covered in this survey 

that are based on identity-based cryptography, public key, symmetric 

authentication and group signatures. The authors discussed relations between 

each class of pseudonym and its life cycle. The various schemes are compared to 

identify the research challenges and standardisation issue in the state-of-art. 

Zaidi et al. in [137] discussed various issues in security and privacy of 

vehicular internet which have a vital role in bridging all the security holes. The 

authors emphasise the important role of security and privacy in vehicular 

communication system. In other words, the reliability, privacy and integrity are 

ensured for road conditions information, control data, CAMs and warning 

messages in the external communication system of vehicles. They have proposed 

some suggested solutions for internet security breaches in VANETs. These 

security solutions are proposed to provide protection and privacy for vehicular 

applications. One of the solutions, is digital identity approach which is proposed 

for vehicular communication. i.e., liable for the vehicle held by driver rather than 

another vehicle. In addition, a new digital identity is formed from Vehicle 
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Identification (VID) and driver (DrL). In other words, the driver license authority 

and vehicle registration are merged into one identity.  

In [138], verifiable multilateration is proposed to protect position verification 

for vehicles. The work is based on information of base stations/RSUs. i.e., it is 

working even if vehicles which do not have GPS for positioning. In other words, 

the RSUs in this approach are considered as a trustworthy party to determine the 

vehicles position. The collaboration mode is utilised from four RSUs to determine 

the vehicle position by calculating the time between sending and receiving. i.e., 

the total time between inquire and answer.  

Leinmüller et al. explained the security issue for critical applications of the 

communication systems in vehicles [69]. They presented an overview of the 

concepts that improve the security schemes of communication between vehicles 

and they assessed the security requirements. The concept of security is categorised 

into two classes based on the type of primitive work: proactive and reactive. The 

authors have concluded that some security solution does not fit into the design 

constraints of external communication system in vehicles. Hence, the less 

protected schemes will possibly have to adequate.   

In [139], a security protocol is designed to provide location privacy in 

VANETs. It can prevent Sybil attack from illegally access VANETs. The short 

group signature approach and batch verification are employed in designing 

security systems. It is noticed from the simulation results that the detection system 

is efficient and effective in securing vehicle to vehicle communications. In this 

paper, the authors proved that the proposed Sybil detection system is more 

efficient when compared to rivalling approaches, such as Footprint and Privacy-

Preserving Detection of Abuses of Pseudonyms (P2DAP). 

Nema et al. proposed an encryption and decryption schemes to protect traffic 

system for vehicles communication [132]. The encryption system is based on 
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Rivest-Shamir-Adleman Cryptosystem (RSA) algorithm and Advanced 

Encryption Standard (AES) key-management to protecting sensitive information 

and controlling data between vehicles from malicious vehicles. MATLAB was 

utilised for the proposed security system. It can identify and remove vehicles with 

misbehaving from network. Furthermore, it can provide integrity and 

confidentiality of the control data, warning messages, CAMs and notification 

messages in VANETs.  

Zhang et al. proposed a new privacy-preserving system to secure VANETs 

from malicious activities [140]. The authentication security protocol is designed to 

overcome common problems in existing privacy-preserving communication 

protocols in VANETs, such as fast and not based on tamper-proof devices (TPDs). 

The idea of the proposed security system depends on the distributed aggregate 

privacy-preserving authentication for VANETs. In other words, a new multiple 

trusted authority is utilised in designing the authentication system. The security 

system in vehicles can confirm many control data messages, CAMs and 

notification messages simultaneously that are based on aggregate signature 

technique. The authentication system plays an important role in reducing the 

storage space by the compressing the verification process of messages with their 

signatures into a single one. This security system only needs realistic TPDs that 

makes it more practical.   

2.9 Routing Protocol for Vehicular Ad hoc Networks  

Routing protocols in VANETs play a vital role in transmit/receive control data 

and sensitive information between vehicles and RSUs in that radio coverage area. 

Example of information that was exchanged are CAMs, notification messages and 

warning messages. The routing protocol in the external communication system of 

autonomous vehicles are classified into two types which are: routing information and 
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transmission schemes [141].  In addition, routing information is categorised into two 

types: topology-based and geographic-based routing. Whereas, transmission schemes 

are divided into unicast, multicast and broadcast.  

In order to transmit data/information to all vehicles, the self-driving vehicles need 

a routing protocol that handles messages and avoids collisions and congestion. 

Choosing the appropriate routing protocol is one of the most important things in the 

external communication systems in autonomous vehicles.  

The source of information of topology routing protocol is link’s information that is 

stored in routing tables of vehicles [142]. Routing information source for vehicles that 

are based on position routing protocols is GPS. Geographic-based routing protocol is 

widely used in the external communication for semi-autonomous vehicles. Greedy 

Perimeter Stateless Routing (GPSR) is one of the geographic routing protocols that is 

utilised in VANETs [143]. 

 The principal work of GPSR is based on GPS information to achieve 

transfer/receive information between vehicles and RSUs. Unfortunately, inaccurate 

position information of GPS is considered a major problem in determining the 

vehicles localisation [144]. In other words, the error rate of GPS in determining a 

vehicle position may reach 20 metres which is unacceptable in self-driving vehicles 

[144]. In addition, the position systems of vehicles that rely on GPS are unable to work 

under in tunnels. All these reasons have encouraged researchers to remove GPS from 

driverless vehicles and find alternative techniques, such as e-maps [145].  

In this case, the routing protocol that is based on GPS information has become 

impractical in self-driving and semi-autonomous vehicles. Thus, routing protocols in 

vehicles which rely on the link’s information are more efficient than protocols based 

on topology information. Selection process of routing protocol depends on the nature 

of the network [146]. Figure 2.6 below shows the types of protocol used: 

 



2.9 Routing Protocol for Vehicular Ad hoc Networks 

65 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 The Types of Routing Protocols in VANETs. 

 In this thesis, the topology-based routing protocol is utilised in designing a 

communication system in autonomous vehicles. This protocol is divided into two 

types proactive and reactive routing protocol [141]. 

• Proactive Protocol: routing information to send the package to the next hop 

must be addressed without attention to the connection request.    

• Reactive Protocol: this type of protocol transmits packets only to the 

available paths. This will reduce the burden on the network. 

In this research, the reactive routing protocol is utilised in designing a 

communication system of self-driving and semi-autonomous vehicles. It has many 

types such as Ad hoc On Demand Distance Vector (AODV), Dynamic Source Routing 

Protocol (DSR) and Temporally Ordered Routing Algorithm (TORA) [141]. These 

routing protocols are suitable for MANETs.  
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Routing protocols in MANETs cannot be applied directly to the VANETs. They 

need major adjustments. The routing protocol AODV is suitable for working in an 

environment for vehicles (VANETs) [59], and will be utilised in our research. The 

research reasons for choosing this protocol: 

• AODV can quickly adapt to the rapid change in the network topology, because 

it is only maintained on one road. 

• AODV is appropriate when we have a large number of vehicles. 

• AODV reduces the flooding of messages in the network compared to the other 

protocols (reduces the burden on the network). 

• This protocol can respond even if the connection fails. 

• AODV utilises sequence numbers that help to certify the freshness of paths and 

it can avoid a loop topology. 

• The performance of AODV is the closest to GPSR that was confirmed by many 

studies [146].  

Important features of possible application of this protocol on a large-scale 

compared with other protocols. This feature is considered important for VANETs. 

Table 2.1 shows the similarities between AODV and GPSR routing protocol. The 

same forwarding strategy and scenario are employed in AODV and GPSR which are 

Greed forwarding and scenario in urban area.  

Table 2.1 Comparison between AODV and GPSR. 

 AODV GPSR 

Forwarding Strategy Greedy Forwarding Greedy Forwarding 

Scenario Urban Urban 

Mobility No No 

Road direction Single direction Single direction 
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However, these routing protocols do not provide the mobility model.  In addition, 

single direction is considered a road direction in AODV and GPSR. It is easily 

observed from table 2.1 that AODV and GPSR have the same characteristics. These 

characteristics make AODV protocol the closest to the GPSR protocol.  

2.9.1 Improved Ad hoc On Demand Distance Vector 

In external communication of self-driving vehicles, a routing protocol can 

dynamically establish communication paths between the source vehicle to the 

destination vehicle. In other words, the exchanged packets between two vehicles have 

more than one path (�1, �2, �3, �4, … … … …  	
� �
), where 
 is the number of 

available paths.   

In this thesis, one of a reactive on demand protocol is enhanced to adapt with 

VANET parameters which is VANET-AODV. This protocol consists of three phases 

which are: route discovery, data transmission and route maintenance.  

a. Phase one: Route discovery in VANET-AODV 

In this phase, route request (RREQ) packets are broadcast in VANETs on 

available routers. The proposed routing protocol has the ability to select the 

path that is more stable than others. In more details, the proposed protocol 

can measure weight for each path based on Equation 2.1. Moreover, it plays 

an important role in selecting the path that has less weight to reduce 

overhead and burden on network.  

�
��������� = �� ∗ ��� − ������� !"  # �� + �% ∗ �&� − &������ !"  # � �        (2.1) 

where, the source vehicle represents by vehicle �,  �� - speed weight factor, 

�� is the speed of vehicle �, ������� !"  # � is the speed of vehicle �01 neighbour 

vehicle, �% is the direction weight factor, &� is the direction of node � , 
&������ !"  # �  is the direction of node �01 neighbour vehicle. 
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b. Phase two: Route selection in VANET-AODV 

To transmit data packets, the proposed protocol will choose a more 

stable path between two nodes when the source vehicle obtains numerous 

paths to destination vehicle. In this protocol, total weight for stable path 

will be updated in routing table and attached on each route reply (RREP) 

for each sent packet. The total weight path is calculated based on Equation 

2.2. 

5
�	6 78
9 ��8:ℎ� = <=�> ∗ ��? − �?@A� + �% ∗ �&? − &?@A�B         (2.2)
C

?DE
 

where, F is the number of vehicles in the route between source and 

destination, G is the number sequence of vehicles in the routing table, �� is 

the speed of vehicle ?, ��@A is the speed of the vehicle ?01previous vehicle in 

the path, &?  is the direction of vehicle ?, &?@A  is the direction of vehicle ? 

precious vehicle in the path.  

c. Phase three: Route maintenance in VANET-AODV 

In this phase, the routing protocol notifies link communication failure to 

source vehicles when intermediate vehicles identify link failure. In this case, 

source vehicles will re-send the failure packets again based on available 

paths in the routing table. The routing protocol will need phase two when 

the existing backup route fails. Figure 2.7 shows the lifecycle of routing 

protocol in the external communication in self-driving vehicles. 
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                 Figure 2.8 Lifecycle of Routing Protocol in VANETs. 

The performance of the V-AODV protocol is evaluated by using three different 

metrics: control overhead, delay and PDR. These metrics are calculated under certain 

conditions to measure the efficiency of the routing protocol as well as comparing its 

performance with the original AODV. The conditions required for evaluating 

performance are speed of vehicles, traffic density and traffic of packets.  

According to Table 2.2 and Table 2.3, the performance of the V-AODV is more 

efficient and suitable as compared to the original AODV in VANETs. Owing to this, 

the proposed IDS is applied on V-AODV to obtain a secure communication 

environment for autonomous vehicles. In addition, the proposed security system has 

the ability to adapt with existing routing protocols, such as GPSR, AODV and V-

AODV.  

In Table 2.2, the performance of V-AODV is compared with performance of the 

original AODV under various number of vehicles on roads. 
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Table 2.2 Performance Metrics with Density of Vehicles. 

                            AODV     V-AODV 

Number of Vehicle  
Control 

Overhead 
Delay Control Overhead Delay 

      50     12939 0.188s       3832 0.186s 

     100     13021 0.357s       3798 0.295s 

     150     14304 0.316s       7216 0.304s 

     250     18137 0.397s       11427 0.356s 

According to the results in Table 2.2, we can easily notice that V-AODV can 

reduce burden rate on the external communication system of autonomous vehicles. In 

addition, the new vehicle routing protocol can reduce burden rate and time delay on 

vehicle communication network by up to 55% and 10% respectively. The V-AODV 

performance is evaluated under different vehicles speed rate as shown in Table 2.3. 

Table 2.3 Performance Metrics with Speed of Vehicles. 

                                       AODV         V-AODV 

Vehicle Speed     PDR Delay PDR Delay 

15k/h     87.675% 0.215s 90.480% 0.078s 

25k/h     92.068% 0.439s 92.135% 0.405s 

30k/h     85.025% 0.358s 87.471% 0.261s 

The V-AODV performance in Table 2.3 can improve rate of packet delivery 

between vehicles by up to 6%. In addition, the time delay of V-AODV is up to 30% 

less than the original protocol. Thus, density and speed of vehicles have direct impact 

on effectiveness and efficiency of the routing protocol.  
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2.10 Summary 

In this chapter, the background of the communication systems of self-driving and 

semi self-driving vehicles was presented alongside an in-depth study of the related 

works in the field of autonomous vehicles. A detailed study was presented to show 

that network based attacks can compromise the security of autonomous vehicles.  

The literature survey evidences that security and privacy concerns in VANETs are 

an important area of scientific research. Several recent intrusion detection approaches 

were surveyed and it is concluded that existing IDS techniques are based on anomaly 

detection and distribution architecture. In addition, IDS integrated with mobile agents 

are generally more efficient in detection as compared to traditional IDS. The hybrid 

IDS proposed in this thesis can offer more reliability in terms of identification of 

suspicious/malicious activities in the external communication systems of vehicles and 

also enhance the accuracy of detection rate under the malicious vehicles as will be 

illustrated in chapters 3, 4, 5, and 6 below.  

This chapter also introduces a new routing protocol that relies on link information 

to adapt with vehicles characteristics. It is more efficient than protocol based on 

topology data. The experiments show that the proposed V-AODV is more capable of 

adapting with VANETs with a high packet delivery rate and low end-to-end delay.   
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CHAPTER THREE 
 

INTRUSION DETECTION SYSTEMS FOR AUTONOMOUS 

VEHICLES 

“Everything should be as simple as possible, but not simpler” 

Albert Einstein 

elf-driving vehicles have been one of the fundamental applications 

within the field of modern technology [147]. These vehicles rely heavily on 

their communication systems, whether internal or external, to achieve 

their automated travel from one point to another without human 

intervention. Vehicular ad hoc networks are considered external communication 

systems for self-driving and semi-autonomous vehicles. On one hand, the application 

of VANETs in autonomous and semi-autonomous vehicles ensures the success of this 

new generation of technology based on the security of the networks. However, certain 

characteristics of VANETs have resulted in vulnerability at all the communication 

layers [20]. On the other hand, the external communication system has some 

properties that cause inherent security obstacles, such as speed of the vehicle, 

mobility, high dynamic topology, absence of a fixed security system, open medium 

wireless communication and density of vehicles on roads [20]. 

Artificial intelligence has many important applications in this scientific research 

area. An Artificial Neural Network (ANN) and Support Vector Machine (SVM) are 

employed to improve the detection rate and reduce the false alarm rate of the 

proposed security system. The ANN and SVM need to be trained about the normal 

behaviour of vehicles and this will enable it to detect malicious vehicles. Normal 

behaviour is considered to be an important issue in the training phase of the network. 

S
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The normal and abnormal behaviours are obtained through the trace file which 

describes all the events on the VANETs. The trace file is generated from the ns-2 as 

auditable data to detect the malicious behaviour. In other words, it contains important 

features that describe the normal and abnormal behaviours on roads through moving 

from source vehicle/RSU to destination vehicle/RSU. The proposed security system is 

tested/evaluated with another dataset which is Kyoto dataset to measure the 

performance efficiency in detecting abnormal behaviour. 

In this chapter, an intelligent hybrid intrusion detection system (IDS) is designed 

for the external communication system of self-driving vehicles. In the dataset 

generation phase, a Proportional Overlapping Scores (POS) method is utilised to 

extract significant features from the ns-2 trace file of VANET behaviour and utilised 

for a classification system [148]. POS is a machine learning method that does not 

require any specific assumptions to be met by the underlying data. This allows POS to 

work on a wide range of data sets from. In addition to high predictive performance 

based on features selected by POS, this method has also been investigated for its 

stability by using the technique proposed by Lausser et al [148] in comparison to other 

state-of-the-art-methods. Another reason for using POS is its computational efficiency 

in terms of run time. In addition, the POS approach is often suitable even when the 

data has many classification problems, such as high-dimensional binary and outliers 

[149]. 

Reducing the number of features has direct and positive impact on computation 

time and memory space. These are relevant features that reflect the normal and 

malicious behaviours of mobility vehicles. In addition, the extracted significant 

features are fuzzified to overcome classification problems such as overlapping records 

and miss clear boarder between normal and abnormal connections. This technique 

plays an important role in reducing the error rate, false alarms and enhancing the 

accuracy of detection rate.  



3.1 The Framework of the Proposed IDS to Detect Black Hole Attacks 

74 

 

The hybrid intelligent IDS in this chapter is based on ANNs and SVM to detect 

black hole, grey hole and rushing and DoS attacks. Our research seeks to make two 

essential contributions:  

•  Designing intelligent hybrid IDSs based on the normal/abnormal behaviour of self-

driving vehicles. These behaviours are extracted from the ns-2 trace file that were 

created by Simulation of Urban Mobility Model (SUMO) and Mobility Vehicles 

(MOVE) to model the real-world communication environment.   

• Improving the detection aspect and reducing the number of false rate for proposed 

IDS of self-driving vehicles by utilising and employing some technologies such as: 

POS, fuzzification, normalisation and uniform distributions. 

The hybrid IDS (misuse and anomaly) is proposed to provide sufficient security 

environment to the external communication system of self-driving vehicles. It plays 

an important role in detecting different types of DoS: black hole, grey hole and 

rushing attacks. In other words, three IDS are proposed in this chapter to secure the 

VANETs from potential attacks. Each IDS has the ability to identify one or more types 

of DoS attacks which have direct and negative impact on passengers and drivers’ life 

as well as sensitive information. We assume that all communications take place on 

secure channels.  

3.1 The Framework of the Proposed IDS to Detect Black Hole 

Attacks  

Malicious vehicles have a direct and negative impact on the communication 

system of the other vehicles in that radio coverage area. In this chapter, an intelligent 

intrusion detection system is designed to protect the external communication of self-

driving vehicles. However, malicious vehicles can launch different types of attack on 

VANETs, including DoS, black hole, grey hole, rushing, wormhole and spoofing 

attacks. A security system depends on intelligent IDS for the external communication 
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systems in driverless and semi-autonomous vehicles. It is based on dataset collected 

(trace file) generated from ns-2. The security systems are tested with fuzzified data 

and normal data to distinguish fuzzification role in enhancing the detection rate and 

reducing the number of false alarms. In addition, they are evaluated with the whole 

extracted features and/or with significant features that are generated by POS methods 

from ns-2 trace file.  

3.1.1 IDS Based on the Trace File to Detect Black hole Attack 

An intrusion detection mechanism is designed for VANETs to secure the external 

communication system for autonomous vehicles. These are relevant features that 

describe the normal or abnormal behaviour of vehicles. The IDS uses FFNN and 

fuzzified data to identify black hole vehicles. The IDS utilised the features extracted 

from the trace file as auditable data to detect and block the attack. In addition, a 

hybrid detection is proposed in this IDS to detect the attacks. The steps below explain 

the proposed IDS - methodology that was tested and evaluated with whole normal 

datasets. 

A. Establishing Mobility and Traffic Model  

A network simulator is utilised to measure and evaluate the proposed security 

protocols and algorithms performance in VANETs. The ns-2 required two software 

programs to establish real-world traffic and the mobility of normal/abnormal 

scenarios of self-driving vehicles. The software employed SUMO and MOVE [150]. 

The output files of these tools are mobility and traffic files for the self-driving vehicles; 

these files are used as input to the ns-2 [151]. Basically, mobility models are divided 

into three types: urban mobility models, rural mobility models and highway mobility 

models [103]. The Manhattan urban mobility model is employed in the proposed IDS 

because it is widely used in the scientific research area and it also gives the vehicles a 
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great deal of flexibility to move in vertical and/or horizontal direction [152]. Figure 3.1 

below presents the traffic and mobility scenario for self-driving vehicles. 

 

 

 

 

 

 

Figure 3.1 Traffic and Mobility Scenario. 

B. Network Simulator Environment and Parameters 

The external communication of autonomous vehicles environment is designed on 

the ns-2 simulator as shown in Figure 3.2 and one of the vehicles is established as a 

black hole vehicle. The ns-2 is built to simulate different networks, such as wired and 

wireless networks [88]. However, the researchers face a problem in simulating the 

VANETs with the ns-2 because the simulator is not designed specifically for VANETs. 

In this situation, the following extra tools or software are required to achieve the 

simulation: SUMO, MOVE and CityMob (generate mobility model) [150]. The 

network simulator (ns2.35-RC7) [88] and the mobility system are utilised to achieve 

the communication for VANETs in the real world. The VANET environment consists 

of 30 vehicles and six RSUs (30, 31, 32, 33, 34 and 35) on an ns-2 simulator in the 

proposed IDS [88].  
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Figure 3.2 Screenshot of Simulation in ns-2 NAM. 

The initial parameters of ns-2 are one of the important issues in the simulation 

system. They specify the performance and behaviour in the ns-2. Table 3.1 shows the 

parameters used in this design.  

Table 3.1 Simulator Environment and Parameters. 

Parameter Value 

Simulator ns2.35 

Simulation Time 250s 

Number of Nodes 30 Vehicles 

Number of RSUs Six RSUs 

Type of Traffic Constant Bit Rate (CBR) 

Topology 600 x 400 (m) 

Transport Protocol UDP/TCP 

Packet Size 512 

Routing Protocol Vehicle-AODV, AODV and GPSR 

Channel Type Wireless 

Queue Length 50 Packets 

Number of Road Lanes 2 

Radio Propagation Model Two Ray Ground 

MAC Protocol IEEE 802.11p 

Speed 50 m/s 



3.1 The Framework of the Proposed IDS to Detect Black Hole Attacks 

78 

 

Interface Queue Type Priority Queue 

Network Interface Type Physical Wireless 

Mobility Models Manhattan Mobility Model 

 

C. Generating Malicious Behaviour  

In this scenario, normal and malicious behaviours are created in the proposed 

IDS. The malicious behaviour was generated in the ns-2 utilising the Object Tool 

Command Language (OTCL) script and Object Oriented Programming (OOP). In 

these scenarios, some files are required to modify/update in Vehicle Ad Hoc On 

Demand Distance Vector (V-AODV) routing protocol to generate the 

abnormal/malicious behaviour that was designed in the previous chapter. In this 

thesis, V-AODV routing protocol is utilised in designing the proposed security (that 

was described in detail in chapter two). The V-AODV protocol is a new version of 

normal AODV that was used in ad hoc networks. As mentioned in chapter two, this 

routing protocol can get better results as from normal compared to AODV and even 

GPSR routing protocol. The black hole vehicles dropped received packets rather than 

forwarding them to the destination vehicle in that radio coverage area as shown in 

Figure 3.3. 

 

 

 

 

 

 

 

Figure 3.3 Malicious Attacks in VANETs. 

Source Destination Malicious Attack 
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According to Figure 3.3, black hole vehicles dropped the received packets from 

source vehicles rather than forwarding it to the destination vehicle. 

Various attack scenarios are explored in this thesis to assess the performance of 

proposed security systems, such as black hole, grey hole, rushing and flooding 

attacks. More specifically, flooding and dropping (black hole, grey hole and rushing) 

attacks are utlised to measure the performance efficiency in detecting abnormal 

behaviour. In one hand, dropping attacks such as black hole, grey hole or rushing are 

designed at network layer of wireless communication. In addition, these attacks 

scenarios are built on routing protocol files. In this case, routing protocol traces need 

to modified or updated to generate abnormal behaviour. On the other hand, TCL 

scenario files of ns-2 are modified to generate flooding, wormhole and Sybil attacks. 

However, we do not need to update routing traces to create these attacks. Therefore, 

the generation process for these attacks are increases or decreases the number of 

packets between source and destination, duplicates vehicles IDs and establishes 

tunnel connections between two vehicles in that radio coverage area. The dropping 

attacks scenario is shown in example 3.1 below. 

Example 3.1:  

Abnormal vehicles are added in ns-2 utilising VAODV routing protocol. These 

vehicles are have an abnormal behaviour that will drop sent/received packets between 

source and destination. This processor is required to modified two files of VAODV 

which are VAODV.h and VAODV.cc.  

1. VAODV. h: abnormal vehicles are declared as a Boolean variable in the 

protected scope of the class VAODV. 

{…….. 

bool abnormal; 
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……….} 

2. VAODV. cc: in this file, we need to add the statement below to creating 

abnormal behaviour.  

a. The dropping statement is added to “if (argc==2)” of VAODV.cc in routing 

protocol:  

if (strcmp (argv[1], "abnormal") == 0) { 

# t= true value.     

abnormal = t; 

return TCL_OK; 

} 

b. Constructor: false value of vehicles is initialised for abnormal vehicles and these 

values are declared inside the constructor section on VAODV:  

VAODV::VAODV(nsaddr_t id):Agent(PT_VAODV)... 

{ 

....... 

Abnormal_behaviour = false; 

} 

c. rt_resolve(Packet *p) function: the abnormal behaviour of vehicles is 

implemented by including the statement below inside this function. Here, the 

abnormal vehicles will easily drop the received packets from any surrounding 

vehicles in that zone. 

# t= true value.     

if(abnormal_behaviour==t) 

{ 

drop(p,DROP_RTR_ROUTE); 
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} 

3. TCL script: in this script, abnormal vehicles are set by add the command 

below: 

$ns at 3.0 “[$node6 set ragent_] abnormal” 

The abnormal behaviour of vehicles is shown in example 3.1. This example reflects 

malicious behaviours of black hole, grey hole and rushing attacks with different 

parameters, place of dropping attacks and time. 

D. Dataset Source Collection 

The accuracy detection rate of the IDS relies heavily on the number and types of 

features that describe the events in the VANET. The behaviour of vehicles is extracted 

from the trace file as it contains many different items of data (features) that can be 

utilised in the analysis. These features reflect the normal and abnormal/malicious 

behaviour in VANETs for self-driving vehicles. 

A trace file is employed to evaluate the performance of the proposed intelligent 

IDS. It describes the VANET events that can be used for performance evaluation. For 

example, the number of packets transferred between two vehicles, the delay in the 

transfer of the packets, time, and packet drop. In this case, the type and the number of 

features are very important for efficiency of the IDS. The proposed IDS is trained and 

tested with whole features extracted from the trace file that describe the normal and 

malicious behaviour.  

In addition, the trace file of V-AODV is clarified in more detail in Figure 3.4. The 

trace file in ns-2 is divided into three parts: basic trace, IP trace and V-AODV trace. 

Figure 3.4 below presents the contents of the trace file [153]. 

 

Figure 3.4 Trace File of ns-2. 

“r 20.0013554_31_MAC ------ 0 V-AODV, GPSR or AODV 48 [0 ffffffff 0 800] ------[0:255-1:255 30 0] [ 0x2 1 1 [1  0] [ 0  4] ]” 
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Basic Trace Information: 

- Event: r: receive; s: send; f: forward; D: drop. 

- Timestamp: 20.0013554 s. 

- Send node No. 31. 

- The level of trace is at the “MAC” layer, RTR (network) and AGT 

(application). 

- Flag: --------. 

- The packets have a unique ID such as “0” in this record, payload type “V-

AODV” and packet size “48” bytes.  

- The delay time is “0”. 

- The MAC addresses of the source and the destination are “0” and “ffffffff” 

respectively. 

- The internet protocol (IP) works over an Ethernet (i.e., “800”). 

IP Trace File:  

- The values of “0” and “1” are IP source and destination addresses 

respectively. The value of “255” represents the port value of source and 

destination. 

- The time live is “30”. 

- The address of the next hop is “0”. 

V-AODV Trace: 

- The value of “0x2” is tagged with the REQUEST packet. 

- The value of “1” represents the number of hop counts, “1” is broadcast ID. 

- The destination IP is “1”. 

- The sequence number is “0”. 

- The source IP is “0”. 

- The sequence number is “4”. 

- The string “REQUEST” confirms that the packet is RREQ. 
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The trace file contains 22 features which are shown in table 3.2 below [20]. 

Table 3.2 Features of the ns-2 Trace File. 

Basic Trace IP Trace AODV Trace 

Event, Time, Trace Level, 

Node Number, Packet 

ID, Payload Size and 

Type, Delay, Source and 

Destination MAC, IP 

Packet and Ethernet 

IP Source and 

Destination, Time 

to Live and next 

Hop Node 

Packet Tagged, Hop Counts, 

Broadcast ID, Destination 

IP with Sequence Number 

and Source IP with 

Sequence Number  

To approve the detection efficiency, the proposed IDS is tested with a different 

dataset such as Kyoto dataset. 

E. Pre-processing Data Set  

The dataset benchmark is utilised to assess performance of the proposed IDS. This 

dataset needs three preprocessing stages which are: encoding, uniform distribution 

and normalisation. 

- Encoding stage: In this stage, some features were represented by 

symbols/letters such as event, routing protocol and level of trace with 

symbols: “r”, “AGT”, “RTR”. The proposed intelligent detection system 

deals only with numerical values. In this case, the security system needs to 

convert symbol features to numerical values before making any changes to 

the data set.  

- Uniform distribution stage: This stage is important with machine learning 

(FFNN and SVM), in order to ensure accurate training and testing. In this 

security system, 60.000 data set records are prepared to simulate the 

proposed security system. It is divided into three subsets with each of them 

using a different number of normal and abnormal records that were 

generated randomly from the original dataset benchmark. This distribution 
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is important for training and testing subsets that have different ratio of 

classes because the proportion of each subset (sample) per class is not of 

uniform distribution [154]. For example, the subset_1 in training phase 

contains 9861 normal records out 10000 records. Here, the ANN or SVM 

will not work very well in detection abnormal classes because it is not 

trained with sufficient number of abnormal class. In addition, this 

distribution effectively adapt with dataset that continuous probability 

distribution as well as observations ranging between 0.0 and 1.0 [155]. All 

these aspects of the dataset make a uniform distribution more suitable for 

the dataset extracted from trace file of ns-2. In more detail, they possess the 

following property: if the sample number of abnormal pattern is T subset 

and the original dataset has D samples, then there is a probability of finding 

a sample of class abnormal in the first subset D/T samples of the final 

dataset. Hence, each subset of the final data set has almost the same 

distribution and ratio of record type of the full data set.  

- Normalisation of numerical attributes stage: Each numerical feature is a 

value set between 0.0 and 1.0 according to Equation 3.1. Artificial neural 

network training is often more efficient with normalised data; it is used as 

the preferable predictor. 

 

    H = I−J8

J	I−J8
                                                                 (3.1)          

 

where H is the normalised value with a range between 1.0 and 0.0, x is the 

original dataset value, max and min are maximum and minimum values of 

the original variable. These values are utilised to match the upper and lower 

limits of the activation Function-Sigmoid that has been used in the FFNN 
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models. In the training phase, a subset of data was set aside for the purpose 

of validation which is a common problem in FFNN. It is over-fitting that 

usually occurs during the training phase. The stopping condition in training 

phase is when validation errors increase for a specified number of 

iterations. 

F. Intelligent Detection System 

The intelligent detection system uses a Feed Forward Neural Network (FFNN) to 

identify and block malicious vehicles in VANETs. Current research in the area of self-

driving vehicles confirms that the FFNN is the most efficient and convenient in the 

design of internal and external systems for these vehicles [156]. The proposed IDS 

(32.000 data set records) describes the behaviour in the network and whether it is 

normal or malicious. The data set is divided into three subsets: the first subset is the 

training set (50%), the second subset is the validation set (25%) and the third subset is 

the test set (25%). 

The stopping condition of the training phase is when the value of least-square-

error is between the desired and the actual output is less than ELMND 1*10-5. Figure 3.5 

shows the basic structure of the FFNN. 

 

 

 

 

 

 

 

 

Figure 3.5 The Basic Structure of the Feed Forward Neural Network. 
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In this chapter, trial and error principle is employed to select the best 

configuration of FFNN. In other words, it is based on the best ratio of training 

depending on the condition in the second phase of the proposal. Figure 3.5 shows the 

network of FFNNs selected in this proposed IDS. The MATLAB R2016a toolbox 

provides neural network implementation in the proposed security system. Table 3.3 

presents some of the configuration parameters used in the ANN. 

Table 3.3 Feed Forward Neural Network Parameters. 

Parameter Values 

Training Parameter epochs 68 

Training Parameter learn 1*10-5 

Training Parameter goal 0 

Training Parameter min_grad 1*10-14 

The initial parameters of FFNN play an important role on training accuracy and 

consumption time in training phase of the proposed security system. In this system, 

the epoch parameter is established with 500 epochs as stopping condition but 

according to Table 3.3, we note that ANN obtained an acceptable training rate with 68 

epochs. As for the other parameters obtained in Table 3.3 and number of hidden layer 

are placed according to the trial and error principle with 98.97% average training rate. 

The simulation is based on a system with an Intel 5744 core i3-380M processor 

“2.53GHZ” and 4 GB RAM memory. 

G. The Proposed Model of Intrusion Detection System    

In this proposal, the ANN comprises of three layers: input, hidden and output. 

The input layer consists of 22 neurons equal to the number of the extracted features 

from the trace file. The hidden layer consists of five neurons while the output layer 

consists of three neurons. The proposed system has three stages and Figure 3.6 shows 

the overall architecture of the proposed IDS, namely: 
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• The first stage (Creating the mobility and the traffic model): Both “SUMO and 

MOVE” are utilised to generate the suitable scenarios for ns-2. The output files are 

considered input files for the ns-2.   

• The second stage (ns-2): The ns-2 is employed in generating normal and malicious 

behaviours for vehicles. Two output files are obtained from ns-2 which are: text file 

(trace) and virtualisation (NAM) files. The IDS dataset is extracted from the ns-2 

trace file. 

• The third stage (data collection and pre-processing): The normal and malicious 

behaviour of the vehicles is designed into the ns-2 and a data set is generated from 

the trace file. The whole features are extracted from the data in the trace file. The 

extracted features are pre-processed using normalisation, transformation and 

uniform distribution. The normalisation converts all values between 0 and 1 that 

are extracted from network to increase the efficiency of FFNN. 

• The fourth stage (training): The ANN is trained with the extracted data set 

(features). 

• The fifth stage (testing): The ANN is tested with data features that describe 

malicious and normal behaviour. When the trained ANN is stable, it can survey 

the security of the VANETs by identifying the network control messages and data 

packets in real time and immediately generating an alarm if there is any malicious 

behaviour. 

The malicious vehicles can perform many types of attacks, such as DoS attacks 

[157], and a detection system is built to detect the DoS attack. The DoS attack is 

detected through its behaviour such as dropping packets [72]. 
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                                                 Figure 3.6 Architecture of IDS. 

The main reasons for using the ANN are to reduce costs, to achieve real-time 

responsiveness and to be efficient [156].  

3.1.2 Experimental Result 

The intelligent detection system may be installed in three configurations: vehicles, 

RSUs, or both. The detection system in this IDS is configured in self-driving vehicles. 
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The security system can identify two different behaviours through the IDS: normal or 

abnormal/malicious.  

The detection rate and four alarms are employed as a performance metric to 

evaluate the IDS. To measure and evaluate the performance of the IDS, four types of 

alarms are needed to calculate: true positive (TP), false positive (FP), true negative 

(TN) and false negative (FN). The accuracy of the detection can be calculated as 

follows [158]:  
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In addition, the performance metrics are calculated for VANETs with or without 

the intelligent IDS for self-driving vehicles, such as PDR, average end-to-end delay 

and average throughput [160].  

1. Packet Delivery Rate (PDR): It is the ratio between the numbers of packets 

generated or sent from the source vehicle and the ratio of packets received at the 
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destination vehicle. Figure 3.7 shows the PDR for VANETs with and without 

the IDS. 
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Figure 3.7 PDR for VANETs. 

2. Throughput: It is the total number of packets that are transferred in the 

VANETs. This metric is used to calculate the effectiveness of the routing 

protocol in VANETs. Figure 3.8 shows the throughput for VANETs with and 

without the IDS. 
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Figure 3.8 Average Throughput for VANETs. 

3. Average End-to-End Delay: This metric is used to calculate the average packet 

delay based on time. In other words, the average time for the packets to reach from 

source to destination. Figure 3.9 shows the average end-to-end delay for VANETs with 

and without the IDS. 
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      Figure 3.9 Average End-to-End Delay for VANETs. 

The proposed IDS plays a vital role on the VANETs. Table 3.4 shows PDR, 

average throughput and average end-to-end delay for packets in VANETs. 
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Table 3.4 Performance Metrics for VANETs. 

Performance 

Metrics 

 VANETs with IDS VANETs Without IDS 

Packet Delivery Ratio           82.50%                30% 

Average Throughput [kbps]     13.25 kbps     8.19 kbps 

Average End-to-End Delay 5.06 ms 1.88 ms         

 

Figure 3.10 shows the number of sent, received and dropped packets in the 

external communication systems. 

  

  

 

  

 

 

 

Figure 3.10 Number of Sent, Received and Dropped Packets in VANETs. 

3.1.2.1 Results of Training and Testing the Neural Network (Misuse Detection) 

During the training and testing phases, the same data set is utilised in both phases 

(signature) to calculate the total accuracy, true positive, false positive, true negative 

and false negative. The total accuracy of the training is 98.97%. 

Figures 3.11 show the performance of the neural network. 
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                          Figure 3.11 Training Performance of ANN. 

The performance of the classification and the number of records utilised in the 

proposed system are shown in Table 3.5.  

Table 3.5 Accuracy of ANN – IDS Classification. 

 IDS  

Classifica Original     ANN  Match Miss Accurac

Normal 14533    14404   14379   25 98.94% 

Abnormal 2868    2997   2843   154 99.12% 

Unknown 0      0      0     0 NaN 

 

The recognition rates are calculated using Equations 3.3, 3.4, 3.5 and 3.6 as shown 

in Table 3.6. 

Table 3.6 Recognition Rate of ANN-IDS. 

Alarm Type Accuracy 

True positive 99.82% 

True negative 94.86% 

False negative 0.17% 

False positive 5.13% 
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3.1.2.2 Results of Training and Testing the Neural Network (Anomaly Detection) 

During the training and testing phases, the data set utilised in the testing phase 

differs from the data set used in the training phase (anomaly). The detection accuracy 

is calculated to evaluate the performance of the IDS. In this case, the IDS must be able 

to detect novel attacks. The performance of the classification and the number of 

records used in the proposed system are shown in Table 3.7. 

Table 3.7 Accuracy of IDS Classification. 

IDS 

Classifica Original   ANN Match Miss Accuracy 

Normal      28676 28790 28234 556 98.45% 

Abnormal    3725 3609     3167      442 85.02% 

Unknown 0 2     0           2 NaN 

 

The recognition rates are calculated using Equations 3.3,3.4, 3.5 and 3.6 as shown 

in Table 3.8. 

Table 3.8 Recognition Rate of ANN-IDS. 

Alarm Type Accuracy 

True positive 98.06% 

True negative 87.75% 

False negative 1.93% 

False positive 12.24% 

 

3.1.3 System Analysis 

The motivation behind the proposed IDS system is to implement secure 

communication in self-driving vehicles by identifying malicious vehicles in VANETs. 

This system is implemented in five phases: Creating mobility and traffic model, 

establishing vehicles behaviours via ns-2, data collection and pre-processing, training, 

and testing. 
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The experiments in the ns-2 and MATLAB show that the detection system is 

effective and efficient in identifying anomalies with a low false negative alarm rate. 

The error rate is 2.05%. The obtained results indicate that the calculated rate of alarms 

fluctuate between 94.86% and 99.82% which involves efficient accuracy detection. On 

the other hand, the anomaly detection system has a low false negative alarm rate of 

about 2% which is a good indicator of the results. However, the problem is the high 

rate of false positives in the anomaly detection because of the different records that 

describe both normal and abnormal behaviour.  

The IDS is formally discussed in a research paper [20] which was presented at the 

12th International Conference on Consumer Communications Networking: CCNC 

2015 workshops–IEEE CCAN, 978-1-4799-6390-14/15 IEEE, Las Vegas, Nevada, USA, 

2015. 

3.2 IDS based on the Significant Features from Trace File to 

Detect Drooping Attacks 

An intelligent security system is proposed for the VANETs of self-driving vehicles 

that is based on an intelligent IDS. The security system relies on the features of trace 

file that is generated from the ns-2. In this security system, the proposed IDS is based 

on significant features extracted by the POS method from the trace file of routing 

protocol. In addition, the IDS is trained and tested with fuzzified dataset. Generally, 

the steps are the same as utilised in the previous IDS. In this case, the outline of the 

steps without any details is mentioned, but some of the contributions will be clarified 

in detail. 
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A. Feature Extraction 

The number and type of extracted features have a vital and direct role in the 

effective and efficient performance of the proposed security system. To increase the 

efficiency of the detection system rate, the proposed IDS needs to extract the most 

effective features on which to base the security system. In this chapter, the IDS 

requires to evaluate and weigh each feature to reduce the number of features. A 

statistical approach is employed to extract the significant features that have a high 

weight value, using the POS method [161].  

According to the current studies, many researchers have considered the POS 

method to be the most efficient even when the extracted dataset has many problems 

[149]. The identification features are selected by evaluating the overlap between the 

feature values across both “normal and abnormal” classes.  

The POS method is utilised to measure the overlap rate between the features 

extracted in the ns-2 trace file [149], and shown below is the POS algorithm 3.1. 

Algorithm 3.1 POS Method for Features Selection 

1. For all features in I and both the classes find inter quartile range 

and then based on it find features mask. 

2. Compute POS as defined in [162] and assign each feature its 

domanial class.  

3. Based on step 1 and 2 find aggregative features mask [162]. 

4. Find those features that correctly classify all observation in the 

training set based on step 3.  

5. Arrange the rest of the features (exceeding those in the minimum 

set) with respect to POS and relevancy.   

6. Add the top ranked features to the minimum set to get the full set 

of features. 
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21 features are extracted from the trace file and the statistical R language is used 

to implement the POS algorithm. Table 3.9 shows the POS order and value for each 

feature in the trace file. 

Table 3.9 Features Extracted. 

Feature No. Feature Name POS Value 

1 Time 7.777406e-02 

2 Trace Level 1.004217e-01 

3 Node ID 1.105206e-01 

4 Flag 1.207380e-01 

5 Packet ID 1.504676e-05 

6 Payload Type 0.000000e+00 

7 Payload Size 0.000000e+00 

8 Delay 6.922136e-02 

9 Source MAC 0.000000e+00 

10 Destination MAC 1.292744e-04 

11 Ethernet 0.000000e+00 

12 IP Source Address 6.161803e-02 

13 IP Destination Add

ress 

8.132236e-06 

14 TTL 1.393600e-02 

15 Request Packet 1.139098e-05 

16 No. Hop 0.000000e+00 

17 Destination IP Add

ress 

0.000000e+00 

18 Seq. Number 0.000000e+00 

19 Source IP Address 2.187990e-04 

20 Seq. Number 7.130718e-05 

21 Tagged 0.000000e+00 

 

 

The extracted features can redistribute in Table 3.9 that was based on the POS 

scheme to show the overlap of features. In this proposed security system, the POS 

applied 20 attempts to show overlap and generate the weight value for each feature 

extracted from the trace file. According to Table 3.10, the proposed IDS can select the 

15 features that have a high value of POS and low repetition and overlap as well as 

significant roles in the detection system.  

 

 

 



3.2 IDS based on the Significant Features from Trace File to Detect Drooping Attacks 

98 

 

Table 3.10 Appearance of Features (as a percentage). 

 

Table 3.11 shows the selected top 15 features identified by the largest weights after 

POS. 

 

 

 

 

 

 

 

 

 

 

Feature No. Feature Name POS Impressions 

Percentage of  

appearance 

for feature selected 

6 Payload Type 0.000000

e+00 

20 100% 

7 Payload Size 0.000000

e+00 

20 100% 

9 Source MAC 0.000000

e+00 

20 100% 

16 No. Hop 0.000000

e+00 

20 100% 

11 Ethernet 0.000000

e+00 

20 100% 

13 IP Destination Address 6.795097

e-06 

20 100% 

17 Destination IP Address 0.000000

e+00 

20 100% 

15 Request Packet 1.292640

e-05 

20 100% 

18 Seq. Number 0.000000

e+00 

20 100% 

5 Packet ID 1.803172

e-05 

20 100% 

21 Tagged 0.000000

e+00 

20 100% 

20 Seq. Number 6.492623

e-05 

20 100% 

10 Destination MAC 1.289860

e-04 

20 100% 

12 IP Source Address 6.164915

e-02 

20 100% 

19 Source IP Address 1.667554

e-04 

9 45% 

4 Flag 1.185719

e-01 

5 25% 

8 Delay 8.604373

e-02 

3 15% 

3 Trace Level 1.100107

e-01 

2 10% 

2 Node ID 1.003258

e-01 

1 5% 

1 Time 9.613269

e-02 

0 0% 

4 

TTL 1.393555

e-02 

0 0% 
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Table 3.11 Feature Selection. 

 

 

 

 

 

 

 

 

 

 

 

To evaluate the 15 selected features, the trial and error principle is utilised to 

choose the perfect number of features based on the training accuracy. The proposed 

system began with an entire set of features. After each round of training, the features 

which had the lowest weight id were removed. The process was repeated until we are 

left with a set comprising only 15 features which was then used to classify normal and 

abnormal behaviour. 

B. Fuzzy Set Membership 

The data set extracted from the trace file “features” has a direct influence on the 

detection performance of the IDS [57]. When the detection system had a problem 

involving the distribution and nature of the features, or where the name of the classes 

was not well defined between normal and malicious behaviour, the detection rate is 

reduced and the number of false alarms in the IDS is increased. In this situation, a 

mathematical model is employed to redistribute the extracted features. In this 

research, a fuzzy set is employed to solve the problem of the data set. This was 

Feature Selected  Feature Name POS 

6 Payload Type 0.000000e+00 

7 Payload Size 0.000000e+00 

9 Source MAC 0.000000e+00 

11 Ethernet 0.000000e+00 

16 No. Hop 0.000000e+00 

17 Destination IP 

Address 

0.000000e+00 

18 Seq. Number 0.000000e+00 

21 Tagged 0.000000e+00 

5  Packet ID 1.504676e-05 

13 IP Destination 

Address 

8.132236e-06 

15 Request Packet 1.139098e-05 

20 Seq. Number 7.130718e-05 

10 Destination MAC 1.292744e-04 

19 Source IP Address 2.187990e-04 

12                           IP Source Address 6.161803e-02 
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employed for a number of reasons; it is well known, widely used in scientific fields, 

and efficient [163]. 

The fuzzy set is a mathematical model used with data sets that have classification 

problems [149]. It is considered to be one of the most appropriate applications with 

classification problems as it applies fuzzification on the features extracted from the 

trace file “ns-2” [149]. Figure 3.12 shows the triangular membership function that was 

utilised in this proposed IDS [149].  

 

 

 

 

 

 

Figure 3.12 Fuzzification Data. 

According to Equation 3.11, each single value from the data set is distributed in 

five values from the fuzzy domain and the range of intervals is [0, 1]. Linguistic 

expression is generated from linguistic notions [164]. 
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where 	, T and c represent the fuzzy domain value distributed between the fuzzy set 

while I is the normal value of the data set before fuzzification. The motives for 

applying fuzzification data are that it enhances the detection rate of the IDS and 

reduces the number of false alarms generated by the IDS.   

(3.10) 
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C. Simulation Parameters and Generating Malicious Vehicles 

In this proposal, the VANET is an extended environment to nine RSU vehicles (40, 

41, 42, 43, 44, 45, 46, 47 and 48) as shown in Figure 3.13 and selected two of them as 

Black hole vehicles.  

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3.13 Screenshot of Simulation in ns-2 NAM. 

 

Initial parameters are one of the most important issues in the simulation system. 

They determine the behaviour and performance in the ns-2.  

Table 3.12 Simulator Environment and Parameters. 

Parameter Value 

Simulator NS2.35-RC7 

Simulation Time 500s 

Number of Nodes 40 Vehicles 

Number of RSUs 9 RSUs 

Type of Traffic Constant Bit Rate (CBR) 

Topology 650 x 450 (m) 

Transport Protocol UDP/TCP 

Packet Size 512 

Routing Protocol V-AODV 

Channel Type Wireless 

Queue Length 50 Packets 

Number of Road Lanes 2 

Radio Propagation Model Two Ray Ground 

MAC Protocol IEEE 802.11Ext 
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Speed 30 m/s 

Interface Queue Type Priority Queue 

Network Interface Type Physical Wireless 

Mobility Models Manhattan Mobility Model 

 

The intelligent IDS is required to change the parameters of the FFNN because it 

altered the training and testing data set (60,000 data set records) as well as adapt with 

new dataset. Table 3.13 shows some of the configuration parameters of the training 

phase of the FFNN. 

Table 3.13 Feed Forward Neural Network Parameters. 

Parameter Value 

Training Parameter epochs 15 

Training Parameter Learn 1*10-7 

Training Parameter goal 0 

Training Parameter min_grad 1*10-12 

The initial parameters of FFNN play important role on training accuracy and 

consumption time in training phase of the proposed security system. In this system, 

the epoch parameter is established with 500 epochs as stopping condition but 

according to Table 3.13, we note that the ANN obtained an acceptance training rate 

with 15 epochs. As for the rest of the parameters that mentioned in Table 3.13 and 

number of hidden layer are placed according to the trial and error principle with 

99.86% average training rate.  

D. The Proposed Intrusion Detection System    

The proposed security system used a FFNN consisting of three layers: input, 

hidden and output. The first layer comprises 75 neurons, equal to the number of 

fuzzification features. The hidden layer has eight neurons while the output layer has 

three neurons, “normal, abnormal and unknown”. Figure 3.14 shows the overall 

architecture of the proposed security system, namely: 
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• The first stage (generate the mobility and traffic model): At this stage, both 

“SUMO” and “MOVE” are employed to generate the suitable scenarios for the ns-

2. These files are considered to be input files for the simulation system. 

• The second stage (ns-2): The normal and malicious behaviour for the vehicles was 

built. Two output files are obtained: trace and NAM. The data set was extracted 

from the trace file generated from the ns-2. 

• The third stage (data collection and pre-processing): The features were extracted 

from the trace file. The features were pre-processed by converting them into 

numeric values and the values were normalised to values between zero and one.  

Normalising the data increases the detection rate and enhances the performance of 

the ANN [34]. 

• The fourth stage (extracting the significant features): In this stage, the significant 

features are extracted from the trace file. The POS was utilised to extract features 

that have a high priority value. 

• The fifth stage (fuzzy set): The fuzzy set was employed to convert the selected 

features into their fuzzified counterparts to fix the overlap data set. 

• The sixth stage (training phase): The FFNN was trained with the extracted data set 

(significant). A repeat condition was established at this stage to obtain the best 

ratio from the training. The raw data set was divided into six subsets, each subset 

containing 10,000 records. For each iteration of the training cycle, a different subset 

was used for training. Hence, the proposed system utilised three subsets (30,000 

records) which resulted in an exceptional training rate of 99.86%. 
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The malicious vehicles can appear in many types of intrusions such as DoS, black 

hole, wormhole and grey hole attacks, and here a detection system is designed to 

identify the dropping attack. The black hole attack is detected by its behaviour that 

was designed in the ns-2 [165]. 

3.2.1 Experimental Results 

The methodology utilised in the proposed security system was used in the 

previous proposal to generate the different types of alarm. The training and testing 

phases used the same fuzzification data set in both phases (signature) to calculate the 

total accuracy of the IDS, true positive, false positive, true negative and false negative. 

The total accuracy of the training is 99.86 %. Figures 3.15 show the performance of the 

neural network. 

 

 

 

 

Figure 3.14 Architecture of the IDS. 
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 Testing  

   Normal         Abnormal  
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Figure 3.15 Training Performance of ANN. 

The role of the proposed IDS is explained in the secure VANETs for self-

driving vehicles by calculating the performance metrics, as in the previous 

proposal. Now, the proposed IDS needs to calculate PDR, average throughput 

and average end-to-end delay for VANETs with IDS and infected VANETs 

with drooping attacks. Using Equations 3.8, 3.9 and 3.10. Table 3.14 shows the 

performance metrics for VANETs. 

  

 

 

 

 

 

 

 

 

Figure 3.16 PDR for VANETs. 
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                                                    Figure 3.17 Average End-to-End Delay. 

 

 

 

 

 

 

 

 

 

                                             Figure 3.18 Average Throughput for VANETs. 

Table 3.14 Performance Metrics for VANETs. 

Performance Metrics  VANETs with IDS VANETs Without IDS 

Packet Delivery Rate 97.68% 48% 

Average End-to-End Delay 1.4751ms 1.47772ms 

Average Throughput [kbps] 78.57kbps 38.27 

Figure 3.19 shows the number of sent, received and dropped packets in VANETs 

with and without the IDS. The important role is observed of the IDS in terms of the 

performance and throughput in the communication of self-driving vehicles. 
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Figure 3.19 The Number of Sent, Received and Dropped Packets in VANETs. 

3.2.1.1 Training and Testing the Neural Network (Misuse Detection Based) 

The training and testing phase utilised the same fuzzification data set in both 

phases (signature) to calculate the total accuracy of the IDS, true positive, false 

positive, true negative and false negative. The total accuracy of the training 

classification was 99.8%. One subset (10,000 records) was used in the testing phase. 

Table 3.15 shows the performance of the classification system and the number of 

records of features used in the security system.  

Table 3.15 Classification Rate of FFNN-IDS. 

Intrusion Detection System 

Classifica

tion 

Original 

Records 

AN

N 

Match 

Records 

Miss 

Records 

Accurac

y Normal 6382 6381 6375 6 99.89% 

Abnorma

l 

3618 3617 3611 6 99.80% 

Unknown 0 0 0 2 NaN 

 

The rates of alarm are calculated using Equations 3.3, 3.4 3.5 and 3.6 as shown in 

Table 3.16. 

 

 

 



3.2 IDS based on the Significant Features from Trace File to Detect Drooping Attacks 

108 

 

Table 3.16 Alarm Rates of FFNN-IDS. 

Alarm Type Accuracy 

True positive 99.90% 

True negative 99.83% 

False negative 0.09% 

False positive 0.16% 

 

3.2.1.2 Training and Testing the Neural Network (Anomaly Detection Based) 

The testing phase used a fuzzified data set that differs from the data set utilised in 

the training phase (anomaly). The total accuracy is calculated to evaluate the proposed 

security system. The anomaly detection system must be able to identify novel attacks. 

Three subsets (30,000 records) are utilised in the testing phase. Table 3.17 shows the 

performance of the classification and the number of records used in the IDS. 

Table 3.17 Classification Rate of FFNN-IDS. 

Intrusion Detection System 

Classifica

tion 

Original 

Records 

AN

N 

Match 

Records 

Miss 

Records 

Accurac

y Normal 19285 19288 19261 27 99.87% 

Abnorma

l 

10715 10698 10685 13 99.72% 

Unknown 0    14 0 14 NaN 

 

Table 3.18 shows the rates of alarm calculated by Equations 3.3, 3.4, 3.5 and 3.6. 

Table 3.18 Alarm Rates of FFNN-IDS. 

Alarm Type Accuracy 

True positive 99.86% 

True negative 99.87% 

False negative 0.14% 

False positive 0.12% 
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3.2.2 System Analysis 

The proposed IDS is implemented in six phases: generating the mobility and 

traffic model, network simulation version 2, data collection and pre-processing, 

extracting the main features, fuzzification of the data, training and testing. 

The experimental results confirm that the performance of the IDS is efficient in 

detecting dropping vehicles with a low false alarm rate. On one hand, the results 

indicate a high accuracy of detection rate, whether normal or abnormal, that fluctuate 

between 99.89% and 99.72% with a low error rate of 0.15%. On the other hand, the 

anomaly detection system is a good indicator of the results and it also has a low false 

alarm rate of about 0.14%.  

In this research, the detection rate ranges between 99.72% and 99.89%. When 

comparing these results with our previous research where fuzzy sets were not used, a 

detection rate is obtained that ranged between 85.02% and 99.12% [106]. The 

percentage of false alarms ranged between 0.9% and 0.16%. When comparing these 

results with our previous research where fuzzy sets were not used, the obtained false 

alarm rate ranged from 0.17% to 12.24% [106]. According to the results, the differences 

are observed between the ratio of detection and false alarms. The use of a fuzzy set 

increases the detection rate while decreasing the number of false alarms. We can see 

from the previous studies that the proposed system has improved detection and has 

overcome the data set problems by applying the POS method in order to extract the 

significant features and perform a fuzzy set “fuzzification” on the data set which was 

extracted from the trace file. This scheme has a direct and positive impact on the result 

by increasing the detection rate and decreasing the false alarm rate and error rate. 

However, the main problem is that the system needs extra memory resources to store 

the data and the approach is computationally expensive. The low error rate indicates 

that the IDS is effective and efficient in identifying anomaly and misuse “hybrid 
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detection” with high accuracy and a low false positive alarm rate. The proposed work 

can be extracted to build an IDS which can detect other types of attacks such as grey 

and wormhole attacks. 

The proposed IDS was published in a research paper [166] at the 6th International 

Conference on Emerging Security Technology (EST-2015) - IEEE, Brunswick, 

Germany, 2015. 

3.3 An IDS Based on the Trace File to Detect Grey hole and 

Rushing Attacks 

In this work, the same research methodology was used as was mentioned in the 

previous proposal to detect the black hole attack. However, the main difference from 

the previous proposal is the type of attacks and the type of machine learning used in 

designing the intelligent IDS. In other words, it is based on the FFNN and SVM to 

detect the grey hole and rushing attacks. In this case, two types of detection system 

are designed and the two IDSs are compared to find out which would be more 

efficient. 

In addition, the security system used the same features that were extracted from 

the previously proposed system based on the POS approach to extract the significant 

features. Fuzzification is applied on the extracted features from the trace file to 

increase the detection rate and decrease the number of false alarms. The steps below 

explain the methodology of the proposed security system. 

A. Network Simulation Parameters and Mobility Scenarios 

The same infrastructures and vehicles are used as in the previously proposed IDS 

to detect Black hole attacks as shown in Figure 3.20. There are four malicious vehicles, 

two vehicles with grey hole attacks and two with rushing attacks. The Manhattan 

mobility model (Mmm) is used in this proposed IDS. It is considered to be a type of 
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urban mobility model [88]. In addition, the same parameters are used as in the 

previous IDS. 

 

 

  

 

 

 

 

 

 

 

Figure 3.20 Screenshot of ns-2. 

B. Intelligent Security System 

The intelligent IDS based on a FFNN is designed to detect grey hole and rushing 

vehicles in the external communication system. Many recent studies have focused on 

the ANN as the most efficient in building internal and external systems for self-

driving vehicles [156].  

The proposed IDS utilised 40,000 data set records to describe the normal and 

abnormal behaviour in VANETs. The data set collected from the trace file was divided 

into three subsets: the test set (25%), the validation set (25%) and the training set (50%) 

to avoid one of the most common problems of an ANN which is the overfitting by 

specific parts of the data set to validation.  

To select the best configuration of the ANN, the trial and error principle is used to 

configure and select the best ratio of training depending on the condition put in the 

seventh and eighth phases of the proposal. Figure 3.21 shows the best structure of the 

ANN that was selected in our proposal. 
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Figure 3.21 Structure of the FFNN. 

 

The learning parameter is considered to be one of the most important parameters 

in the ANN [167]. The ns-2 parameters have an important role in the performance of 

the FFNN that have a direct impact on the performance of detection. Table 3.19 shows 

some of the initial parameters of the training phase utilised in the FFNN and SVM. 

Table 3.19 Artificial Neural Network Parameters. 

Parameter Value 

Training Parameter epochs 46 

Training Parameter learn 1*10-8 

Training Parameter goal 0 

Training Parameter min_grad 1*10-13 

Gaussian Radial Basis Function 1 

BoxConstraint 1e5 
 

The initial parameters of FFNN play important role on training accuracy and 

consumption time in training phase of the proposed security system. In this system, 

the epoch parameter is established with 500 epochs as stopping condition but 

according to Table 3.19, we note that ANN obtained an acceptance training rate with 

46 epochs. As for the rest of the parameters that mentioned in Table 3.19 and number 
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of hidden layer are placed according to the trial and error principle with 98.24% 

average training rate.  

C. The Proposed Intrusion Detection System    

Machine learning has an important role in enhancing the performance of the 

proposed IDS. For this reason, two types of machine learning (FFNN and SVM) are 

utilised in the design of the proposed IDS to detect two types of attack in VANETs – 

grey hole and rushing vehicles. These malicious vehicles have a direct and negative 

impact on all the vehicles in that particular zone. In this research, the ANN consists of 

an input layer, a hidden layer and an output layer. The input layer comprised 75 

neurons equal to the fuzzification features after applying a fuzzy set to them. Two 

hidden layers are designed in this proposal to increase the accuracy of the detection 

system and to decrease the number of false alarms. The first hidden layer consisted of 

five neurons and the second hidden layer consisted of 11 neurons while the output 

layer consisted of two neurons, “normal and abnormal”. The proposed IDS has eight 

stages and the overall architecture of the proposed security system is shown in Figure 

3.22, namely: 

• The first stage (generate the realistic world): In this stage, two tools are required to 

generate the mobility and traffic model that reflected the real movement of 

vehicles in the external communication system. These tools are SUMO and MOVE. 

• The second stage (ns-2): The output files from the first stage are utilised as input 

files in the ns-2. In this stage, normal, grey hole and rushing attacks are simulated 

to generate two files. These files are the trace file and the NAM file. 

• The third stage (data extraction): In this stage, all the features from the trace file are 

extracted that were generated in the second stage. However, the proposed system 

only used 15 significant features from all the features [166]. In addition, reducing 
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the number of features has a vital role in increasing the detection rate and 

decreasing the false alarms.  

• The fourth stage (pre-processing): In this stage, the extracted features required 

some pre-processing techniques such as transformation to convert some letters and 

symbols to numbers, and a uniform distribution to balance the different types of 

classes in collecting the data to increase the efficiency of the detection rate and 

normalisation process to convert all the values of the features between zero and 

one to make the performance of the FFNN more efficient. 

• The fifth stage (fuzzy set): In this stage, fuzzification data set was generated from 

the normal data. This process can solve some of the common classification 

problems that occur in the data set such as overlap and a lack of clarity.  

• The sixth stage (training and testing phase – FFNN): The FFNN is trained and 

tested with the extracted data that was produced in the fifth stage. In this stage, the 

detection rate is obtained for normal/abnormal behaviour, and four types of alarm 

are calculated.  

• The seventh stage (training and testing phase – SVM): The SVM with fuzzification 

data is trained and tested that was extracted in the fifth stage to check the 

efficiency of the proposed security system in the detection of grey hole and rushing 

vehicles in comparison to normal vehicles.  

• The eighth stage (comparison): In this stage, the two proposed intrusion detection 

systems are compared that are based on FFNN and SVM to check which was more 

efficient based on the criteria to make these decisions, such as detection rate and 

the number of false alarms.  
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Figure 3.22 Architecture of IDS. 

 

3.3.1 Experimental Results 

Two types of self-driving vehicle scenarios are generated under certain conditions 

in order to obtain real data. This data was processed to extract the significant features 

with some pre-processing of the data. In this case, the proposed systems have ready 

data for training and testing to measure the performance of the proposed intelligent 

detection system. The total accuracy of the training is 98.24%. Figures 3.23 show 

training status of the neural network. 

 

 

 

 

 

 

 

 

                               Figure 3.23 Training performance of ANN. 
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This work needs to explain the role of the IDS in the secure external 

communication for self-driving vehicles by calculating the performance metrics, as in 

the previous proposal. It is required to calculate PDR, throughput and average end-to-

end delay for VANETs with IDS and infected VANETs with black hole attacks using 

Equations 3.8, 3.9 and 3.10. Table 3.20 shows the performance metrics for VANETs. 

 

 

Figure 3.24 Packet Delivery Rate for VANETs. 

 

Figure 3.25 Average End-to-End Delay. 
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Figure 3.26 Average Throughput for VANETs.  

Table 3.20 Performance Metrics for VANETs. 

Performance Metrics  VANETs with IDS VANETs Without IDS 

Packet Delivery Rate 100.00% 1% 

Average End-to-End Delay 2.858ms 2.9919ms 

Average Throughput [kbps] 78.73 0.05 

 

Figure 3.27 shows the performance metrics for VANETs with and without the IDS. 

 

 

 

 

 

 

 

 

 

 

Figure 3.27 The Number of Sent, Received and Dropped Packets in VANETs. 
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3.3.1.1 Training and Testing the Neural Network (Misuse Detection Base) 

The proposed IDS is trained and tested with the same fuzzification data in both 

phases (signature) to measure the accuracy of the detection rate and to calculate four 

types of alarm: true positive, false positive, true negative and false negative. Table 3.21 

shows the detection rate accuracy and the number of records that were used in our 

proposed security system. 

Table 3.21 Classification Rate of ANN and SVM. 

     IDS 

IDS Class Original Records SVM Miss Records Accuracy 

Normal 19329 19298 31 99.83% 

Abnormal 10671 10654 17 99.84% 

Class Original Records FFNN Miss Records Accuracy 

Normal 19329 18973 356 99.15% 

Abnormal 10671 10641 30 99.71% 

Table 3.23 shows the rate of four alarms that were calculated by Equations 3.3, 3.4, 

3.5 and 3.6 as shown in Table 3.22. 

Table 3.22 Alarm Rates of ANN and SVM. 

Alarm Type FFNN SVM 

True Positive 99.96% 99.70 % 

True Negative 99.91% 99.91 % 

False Negative 0.03% 0.29 % 

False Positive 0.08% 0.08 % 

 

 

Figure 3.28 shows the performance comparison between the FFNN and SVM. 
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Figure 3.28 Performance Comparison between FFNN and SVM. 
 

3.3.1.2 Training and Testing the Neural Network (Anomaly Detection) 

The type and number of fuzzification that was utilised in the training phase 

differs from the data set that was used in the testing phase. The type of detection has 

the ability to detect novel or new attacks. Table 3.23 shows the accuracy of the 

detection rate and the number of records that were used in this proposed security 

system. 

Table 3.23 Classification Rate of FFNN and SVM. 

Intrusion Detection System  

Class Original Records SVM Miss Records Accuracy 

Normal 25667 25612 55 99.78% 

Abnormal       14333 14320 13 99.90% 

Class Original Records FFNN Miss Records Accuracy 

Normal 25667 25183 484 98.11% 

Abnormal 14333 14300 33 99.76% 

The rate of four alarms, time, error rate and Standard Deviation (SD) of FFNN and 

SVM that were calculated by Equations 3.3, 3.4, 3.5 and 3.6 are shown in Table 3.24.  
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Table 3.24 Performance Metrics of FFNN and SVM. 

        Alarm Type FFNN SVM 

True positive 99.96% 99.61 % 

True negative 99.88% 99.94 % 

False negative 0.03% 0.38 % 

False positive 0.11% 0.05 % 

Time/s 0.99s 0.12s 

Error Rate 0.15 0.21 

Standard Deviation 0.102 0.429 

  

In Table 3.24, time, error rate and SD are calculated to measure the efficiency of 

performance of FFNN and SVM as well as measure variation rate between them. 

Figure 3.29 shows the performance comparison between the FFNN and SVM. 

 

 
 

 Figure 3.29 Performance Comparison between FFNN and SVM. 

3.3.2 System Analysis 
 

The methodology of the proposed security system was implemented in eight 

phases: generating the mobility and traffic model, the ns-2, the trace file, data 

collection and pre-processing, fuzzification data, training and testing for the FFNN, 

training and testing for the SVM and comparing the results that were generated in the 

two types of intelligent IDS. 
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When the two types of the proposed IDS are compared, the misuse IDS based on 

the SVM was more effective and efficient in detecting malicious vehicles with a lower 

false negative alarm rate as compared to the IDS based on the FFNN. SVM is faster 

than FFNN because the SVM automatically computes the number of hidden layers in 

an optimised way [168]. 

The error rate for the IDS based on the SVM was 0.16%. In this system, the alarm 

rate fluctuated between 99.91% and 99.61% with excellent and efficient accuracy. On 

the other hand, the false negative alarm rate was low in the anomaly detection system 

at about 0.38% which is a good indicator of the results.  

Meanwhile, the error rate for the IDS based on the FFNN was 0.28%. The alarm 

rate fluctuated between 99.96% and 99.88% with good and efficient accuracy. On the 

other hand, the false negative alarm rate was low in the anomaly detection system at 

about 0.03% which is an excellent indicator of the results. 

The detection rate is enhanced by using fuzzification data and two types of IDSs 

that create flexibility in selecting the system more efficiently with different conditions. 

In addition, in this proposal, the significant features were selected based on the 

previous study [160]. All these factors make the proposed security system more 

efficient in securing the external communication systems of self-driving and semi self-

driving vehicles.  

The proposed IDS was formally described in a research paper [169] which was 

presented at the 7th International conference in the School of Computer Science and 

Electronic Engineering (CEEC) - IEEE, University of Essex, 2015, Colchester United 

Kingdom, 2015. 
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3.4 Assessing the Proposed IDS with Kyoto Dataset 

The proposed IDS, in this chapter, is tested with Kyoto dataset to evaluate the 

detection performance with a new dataset. Assessing the performance of the proposed 

IDS with a new dataset is important to check the efficiency of the security system. In 

addition, the role of the POS method and fuzzification model are distinguished in 

enhancing the detection rate and reducing the number of false alarms as well as 

improving consumer memory space and CPU speed. Figure 3.30 shows the basic 

architecture of the proposed IDS. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.30 Network Architecture. 

The proposed security system starts with collecting the behaviour of autonomous 

vehicles. The behaviours are analysed and then the IDS generates four types of 

alarms: True Positive, True Negative, False Positive and False Negative [170]. The 

steps below explain the Kyoto-IDS methodology and how we were able to reduce the 

number of Kyoto features and maintain the detection accuracy with fuzzification. 

Figure 3.31 shows the overall IDS architecture. 
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Figure 3.31 Overall IDS Architecture. 

A. Benchmark Dataset Collection 

One of the most important factor in evaluating the efficiency of the proposed IDS 

is dataset. Previous research mostly utilised KDD Cup99’ for measuring the 

performance of security system [171]. Unfortunately, the proposed system cannot 

utilise KDD dataset for evaluating the performance of detection system because it 

suffers from a major problem of not covering current and recent network topology 

[172]. The intelligent IDS utilised Kyoto benchmark in testing performance of 
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proposed security system. It is built from real traffic data on a network as well as 

honeypot dataset that was collected over three years. In other words, the Kyoto 

dataset is composed of: 

- Kyoto data set with Internet Protocol (IP) source and IP destination. 

- Kyoto data set without IP. 

The dataset consists of 24 features that reflect normal and abnormal behaviour of 

nodes on network. Table 3.25 shows type of features: 

Table 3.25 Features of Kyoto Data set. 

Feature Name Feature Source 

Duration, Service, Source bytes, Destination bytes, 

Count, Same srv rate, Serror rate, Srv serror rate, 

Dst host count, Dst host srv count, Dst host same 

src port rate, Dst host serror rate, Dst host srv serror 

rate and Flag 

 

 

KDD Cup 99’ 

IDS_detection, Malware_detection, 

Ashula_detction, Label, Source IP Address, Source 

Port Number, Destination IP Address, Destination 

Port Number, Start Time and Duration 

 

Real Network 

 

B. Extract the Impact of Features 

In this subsection, the POS method and fuzzification model are approved in 

improving the detection rate, reducing the number of false alarms, enhancing 

consumer memory space and CPU speed. Table 3.26 shows the impact of the 

proposed Kyoto-IDS on the training time and memory consumption. Utilising 13 

features reduces the time required by 11.4% and the memory required by 27.7%. 
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Table 3.26 Metrics 

Metrics 
IDS with 

All Features 
IDS with 13 Features 

Memory Consumed 72e05b 52e05b 

Time 24.31s 21.53s 

In the training phase, the IDS can achieve 99.18% training accuracy with 13 features, 

that describe normal and abnormal behaviour in the Kyoto benchmark. Reducing the 

number of features is the fourth contribution of this chapter. The proposed Kyoto-IDS 

examined both all features and the 13 selected features. These features are shown in 

Table 3.27. 

Table 3.27 Significant Features. 

Significant Feature Name Feature Source 

Duration, Service, Source bytes, Destination bytes, 

Count, Dst host count, Dst host srv count, and Flag 
KDD Cup 99’ 

Label, Source IP Address, Source Port Number, 

Destination IP Address, Destination Port 

Number and Duration 

Real Network 

 

The comparative evaluation results for different configurations of the IDS are 

shown in Table 3.28. The Kyoto-IDS is evaluated against a full set of features and then 

against a reduced set of features to establish the performance of the security system. 

Table 3.28 Performance Metrics of ANN-IDS. 

 

Metrics 
IDS with 

all Features 

IDS with 13 

Features 

IDS with 13 

Fuzzification 

Features 

Misuse Detection Normal         97.5% 99.79% 99.23% 

Misuse Detection Abnormal         99.2% 64.34% 99.05% 

Anomaly Detection Normal 92.04% 60.35% 99.04% 

Anomaly Detection Abnormal    99.85%   98.45% 99.06% 

Unknown Rate         28.5 0% 0.03 

Average FP Alarm          2.27% 23.61% 1.82% 

Average FN Alarm          1.01% 7.38% 0.4% 
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Average Error Rate 1.9% 19.32% 0.88% 

Training Parameter Epochs 115 75 27 

The vital role of the fuzzification dataset in enhancing detection rate, reducing the 

amount of false alarms and error rate as shown in Table 3.28. In addition, fuzzification 

features have a positive effect on time in the training phase for ANN by reducing the 

number of epochs. 

3.4.1 Experimental Evaluation and Results 

The proposed security system utilised a dataset of 40.000 records to reflect normal 

and malicious behaviour on network. The accuracy of detection rate in the training 

phase is 99.82% in this proposed IDS.  

3.4.1.1 Training and Testing IDS with Misuse Detection  

The proposed system is trained and tested with Kyoto dataset to evaluate its 

performance. The system calculated the classification rate and generated four types of 

alarms for the proposed IDS as shown in Table 3.29. 

Table 3.29 Classification Rate of ANN-IDS. 

Class Original No. Neural No. Accuracy 

Normal 3120 3042 97.5% 

Abnormal 6873 6823 99.2% 

Unknown 7 135 17.4% 

Table 3.30 shows the rate of four alarms and error rate of detection system of 

communication of autonomous vehicles that were calculated based on Equations 3.3, 

3.4, 3.5 and 3.6. 
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Table 3.30 Alarm and error rates of ANN-IDS. 

Alarm                                          Rates 

True positive 98.32% 

True negative 98.90% 

False negative           1.68% 

False positive           1.1% 

Error Rate                                     1.37% 

3.4.1.2 Training and Testing IDS with Anomaly Detection 

Misuse detection technique is utilised in this proposed IDS to detect and block 

internal and external attacks on the external communication system of self-driving 

vehicles. This detection system has two properties that made it more attractive in 

building IDS which are: a high detection rate and a low false alarm rate. Table 3.31 

shows the detection rate and the number of records that were utilised in this proposed 

IDS. 

Table 3.31 Classification rate of ANN-IDS. 

Class Original No. Neural No. Accuracy 

Normal 3105 2868 92.04% 

Abnormal 6890 7129 99.85% 

Unknown 5 3 40% 

Table 3.32 shows the alarm rate and error rate that were generated in this proposal 

based on Equations 3.3, 3.4, 3.5 and 3.6. 

Table 3.32 Alarm and error rates of ANN-IDS. 

Alarm                                 Rates 

True positive  99.65% 

True negative  96.54% 

False negative 0.34% 

False positive 3.45% 

 Error Rate                                   2.62% 
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 The IDS was formally described in a research paper [173] that was presented at 

the 22nd IEEE International Conference on Automation and Computing (ICAC’16) - 

IEEE, University of Essex, 2016, Colchester, United Kingdom, 2016. 

3.4.2 Assessing the Extracted Dataset with New IDS 

The extracted dataset, in this chapter, is tested with new IDS to confirm the 

validity of the trace file that has been extracted from the ns-2. In other words, two IDS 

is proposed to prove that the extracted data is standard dataset for any IDS to 

evaluate the detection performance.  

Discriminant techniques, whether linear or quadratic, are efficiently robust. Bayes 

optimal classifier is considered work principle of a discriminant methods as well the 

basic classification between classes in discriminant methods is based on a linear 

separating hyper plane is utilised in [174]. Table 3.33 shows classification rate of the 

proposed LDA and QDA that is based on trace file dataset. 

Table 3.33 Classification Rate of LDA and QDA. 

IDS 

  Class Accuracy – Test Phase   Time/s Error Rate – Train Phase 

LDA-Normal              99.94% 

 8.79 0.385% 

QDA-Normal              81.09% 

  Class Accuracy – Test Phase   Time/s Error Rate – Train Phase 

LDA-Abnormal 91.07% 

14.27 0.397% 

QDA- Abnormal 78.87% 
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In Table 3.34, four types of alarm are calculated for the proposed security system 

with new trace dataset.  

Table 3.34 Alarm rates of LDA and QDA. 

Alarm Type LDA QDA 

True positive  86.44% 84.55% 

True negative  92.73% 87.44% 

False Positive 7.27% 12.56% 

False negative 13.56% 15.45% 

It is easily noticed that the LDA-IDS is more efficient and fast as compared to the 

QDA-IDS. In addition, the detection error rate of the LDA-IDS is less than that of the 

QDA-IDS. Hence, the IDS that is based on LDA is more efficient and effective in the 

detection of malicious behaviour for self-driving vehicles with a low false alarm rate 

as compared to QDA. 

The IDS was formally described in a research paper [175] that was published in 

the Digital Communication and Networks– Elsevier Science Direct Journal, 2017. 

3.4.3 System Analysis 

Traditional security systems are not able to secure the VANETs of self-driving 

vehicles. In this case, these communication systems need to identify new protection 

methods or modify the current security schemes in order to establish efficient 

functionality in protecting the external communication system of vehicles.  

Intelligent IDS can secure the external communication system of driverless 

vehicles by detecting and blocking malicious behaviour in its communication system. 

The proposed IDS in this chapter is mainly suitable for identifying malicious 

behaviour that targets vehicles disturbing the communication between self-driving 

vehicles. From experiment, an important role of the IDS is observed on the external 
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security of communication vehicles under different condition.  

When comparing these results with the previous paper [20], the proposed Kyoto-

IDS can get a high detection rate with a low rate of false alarms in identifying 

abnormal behaviour of driverless vehicle.  

In this proposed IDS, the alarm rate fluctuates between 92.4% and 99.85%; this 

enables an efficient detection rate with an average error rate of 3.30%, while the 

previous best achieved average error rate is 8.68% [20]. In [20], the average rate of 

false alarm is 4.86%, while we achieve 1.64% with the IDS presented here. Thus, 

experimental results confirm that the performance of Kyoto-IDS is efficient in 

detecting DoS of communicating self-driving vehicles.  

3.5 Summary 

An intelligent intrusion detection system is proposed in this chapter to secure the 

external communication system of self-driving and semi-autonomous vehicles. These 

security systems have been designed for training and testing of normal and malicious 

behaviours created on a simulator. They have to investigate and identify the 

behaviour of each self-driving vehicle to detect if it is a malicious vehicle or normal 

vehicle. One of the important properties for the proposed security system is the 

detection/stopping of both external and internal attacks.  

Based on these experiments, the proposed hybrid IDS has demonstrated good 

detection rate with a low rate of false alarms. In addition, it plays an important role in 

blocking and identifying various attacks on the external communication systems. The 

process of decreasing the number of the extracted features by POS scheme has a vital 

role in enhancing the detection rate. In addition, the fuzzification on dataset helps 

reducing the error rate and the number of false alarms when compared with the 

previous studies. 
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The evaluation process of the proposed IDS with Kyoto benchmark dataset plays 

an important role in validating and measuring the efficient and effective detection 

performance in securing the external communication system of self-driving vehicles. 

This detection process and authentication technique of the security system are heavily 

based on novel features which are generated from different sensors of autonomous 

vehicles as will be illustrated in chapter four. 
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CHAPTER FOUR 

AN INTRUSION DETECTION SCHEME FOR VEHICLES 

BASED ON ICMETRICS TECHNIQUE 

"The most beautiful thing we can experience is the mysterious. It is the 

source of all true art and all science."  

Albert Einstein 

n this chapter, we propose that a novel IDS could protect these networks 

from any potential attacks that would have a direct and negative impact on 

the appearance of these self-driving vehicles. Recently, security in the 

majority of systems has been based on the concept of in-depth defense and specifically 

the use of multiple layers of defense to prevent adversaries from violating the security 

policies of these systems. IDSs can offer a second layer of defense for VANETs [176]. 

Figure 4.1 shows mobility vehicles, RSUs and the occurrence of an accident. Once an 

accident has occurred, CAMs and control data are created and communicated to the 

RSUs and other vehicles in that radio coverage area. 

 

 

 

 

 

 

 

 

Figure 4.1 An Example of the Process of Responding to Cases of Emergency on the Road. 

I

Accident 
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A novel IDS is proposed in this chapter to secure external communication system 

of self-driving and semi self-driving vehicles. It uses the latest ICMetrics technology to 

detect both internal and external attacks on external communication in self-driving 

vehicles. The ICMetrics technology uses internal features of a vehicle to generate an 

identification called an ICMetric. The ICMetric can be used to provide services related 

to authentication and attack detection. The ICMetric generation is an automated 

process and does not need user intervention. The ICMetric is generated when 

required and discarded there after thus reducing the chances of identity perversion. 

Traditional IDS is combined with ICMetrics technology to achieve a robust 

security system of the external communication system of self-driving vehicles called 

ICMetric-IDS. Our research seeks to make two essential contributions in this chapter:  

• Improving the authentication aspect of self-driving and semi self-driving 

vehicles by generating an ICMetric basis number, which was generated from 

bias reading of typical automotive sensors, such as accelerometer, gyroscope, 

magnetometer and ultrasonic sensors. 

• Designing intelligent IDS based on the behaviour of self-driving or semi self-

driving vehicles. These behaviours are identified as normal or abnormal which are 

extracted from the trace file. It was generated utilising ns-2 to model the VANET 

and its environment.   

4.1 Self-Driving Vehicle Sensors 

Self-driving and semi self-driving vehicles contain a huge number of sophisticated 

sensor devices that play a vital role in autonomous vehicles with different functions. 

These devices are frequently used to sense, predict and detect the status of the vehicle 

and its environment employing optical or electrical signals [147]. The sensors have the 

ability to generate signals from the physical characteristics they observe. They can be 
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divided into three principle types: Micro Electro Mechanical Systems (MEMS), 

magnetic and light sensors [147].  

The proposed security system presented here uses bias readings that have been 

extracted from sensor devices. These readings are used to generate ICMetric basis 

numbers that are employed as identification for self-driving vehicles. Recent research 

in the field of sensor-based identification has demonstrated that the use of sensory 

data is feasible and that it is possible to establish device identification [177], [178] and 

[179]. 

The main challenge is the design of the ICMetric basis number used for generating 

suitable features and identifying the sensor device’s characteristics [180]. The suitable 

features must reflect the characteristics of the sensor devices; the extraction and the 

analysis process should not significantly influence the device performance. In this 

chapter, we get suitable features from the sensors to describe internal and external 

behaviour of vehicles, such as the ultrasonic crash sensor, gyroscopic, magnetometer 

and airbag accelerometers. The offset is utilised in the sensor measurement to our 

advantage and we propose a novel security system that generates an ICMetric basis 

number using the sensor bias readings.  

4.1.1 Ultrasonic Crash Sensor 

Autonomous and semi-autonomous vehicles are equipped with a sophisticated 

set of sensor devices that assist in providing various services required by the vehicles. 

These sensors have a substantial role in predicting the crash that helps the vehicles to 

introduce the safe mode at critical times. Every sensor has an offset that can be used to 

establish the identification of vehicles [135]. 

Self-driving vehicles utilise ultrasonic sensors for detecting the direction and 

calculating the distance of the object and pedestrian from time. In other words, the 

sound wave is taken to travel to object and back. In addition, these sensors have the 
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Object 

Receive 

ability to receive and emit ultrasonic that was a speaker or microphone. Table 4.1 

shows the parameters of ultrasonic sensors that are utilised in proposed security 

system: 

Table 4.1 Electric Parameters. 

Parameters Value 

Voltage DC 5 V 

Current 15mA 

Frequency 40Hz 

Min & Max Range 2cm & 4m 

Measuring Angle 15 degree 

Echo output Signal Input TTL level signal and the range 

proportion 

The ultrasonic sensors in autonomous vehicles utilise sound propagation to 

identify pedestrian and object. In other words, these sensors use sonar to measure 

distances and detect stationary or moving objects in front or behind a vehicle up to a 

distance of four meters [181]; radar and sound navigation are used as acronym of term 

sonar. The ultrasonic sensor is also used to detect obstacles present in blind spots 

especially in intelligent parking assistance systems. The ultrasonic ranging Model HC-

SR04 [181] sensor has been used to simulate the characteristics of a distance sensor in 

the design and implementation of the proposed security system. The ultrasonic sensor 

has an inherent bias which is unique to every sensor. This bias is utilised as a 

characteristic of the sensor to generate an ICMetric basis for the self-driving vehicle. 

Figure 4.2 shows the ultrasonic sensors in vehicles. 

 

   

  

  

 

 

Figure 4.2 Ultrasonic Sensor. 



4.1 Self-Driving Vehicle Sensors  

136 

 

   4.1.2 Airbag Micro Electro Mechanical System Accelerometer 

Micro Electro Mechanical System (MEMS) accelerometer is a technology that was 

first utilised in the automotive-airbag system in the 1990s [182]. This technology forms 

the design of a wide range of devices and systems in many industries [183], such as in 

automobile systems [184], mobile devices and structure monitors [185]. The MEMS 

accelerometer sensor is heavily employed in self-driving and semi self-driving 

vehicles [186]. A typical vehicle is embedded with three accelerometer sensors for 

airbag activation, active suspension control and for pedal position sensing.  Figure 4.3 

shows the accelerometer directions sensor in vehicles. 

 

 

  

  

   

   

  

 

Figure 4.3 Accelerometer Sensor. 

When an accelerometer sensor is embedded into a vehicle, it can be used to 

identify acceleration based unique behaviour of that particular vehicle. Owing to 

flaws in manufacturing, every MEMS based sensor has an inherent bias which is 

unique to the sensor. Owing to this bias, a sensor will generate a reading that differs 

slightly from the normal. Calibrations are introduced to correct this bias but still there 

is a residual error in the readings [135],[177],[178] and [187]. An output can be 

extracted when a static stimulus is applied to a MEMS and ultrasonic sensor device to 

generate ICMetric basis number. Table 4.2 shows some sensors and their offset that 

can be employed in identification of self-driving vehicles. 
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Table 4.2 Sensors and their Associated Bias. 

    Sensor                 Imperfection 

Ultrasonic 

Accelerometer 

Gyroscope 

Magnetometer 

Infrared  

Linear bias 

Linear acceleration bias 

Linear gyroscopic bias 

Linear Magnetometer bias 

Nonlinear bias 

4.1.3 Navigation Micro Electro Mechanical Systems Gyroscope 

Sensors 

Self-driving vehicles, drones, digital camera, smart phones and stability 

controllers of vehicles are considered important applications of consumer electronics. 

These applications heavily depend on Micro Electron Mechanical Systems (MEMS) 

gyroscopes in their tasks [188]. The gyroscope sensors are categorised into three types: 

MEMS, optical fibre and ring laser [189]. This classification is based on work principle 

of this sensor. The performance and efficiency of optical fibre and ring laser 

gyroscopes in industrial machines are higher than MEMS. As we know, self-driving 

vehicles also require sensors have that high performance and efficiency. However, the 

cost and difficulty of application are big obstacles in designing navigation systems of 

self-driving vehicles with optical fibre and ring laser gyroscope [189].  

Self-driving vehicles employ MEMS gyroscope to measure the angular rate that is 

based on Coriolis Effect as shown in Figure 4.4. 
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Figure 4.4 Gyroscope Sensor [190]. 

In Figure 4.4, mass (m) is passing in angular rotation velocity (Ω→) and directions 

(v→). However, drive axis and sense axis are represented by x-axis and y-axis 

respectively.  

Employing MEMS gyroscope in the navigation systems can fix common problem 

of self-driving vehicles is GPS signals this event called “vehicle dead-reckoning 

backup system” [190]. In other words, the navigation systems of self-driving vehicles 

are based on yaw rate of gyroscope sensors to find the orientation to keep the vehicle 

moving on a digital map (e-maps) [190].  

Bias readings stability that has been extracted from MEMS gyroscope are 

considered motivation to employ in designing a novel IDS. Moreover, the proposed 

ICMetric-IDS is based on individual characteristics of the manufacturing technology 

that was utilised in designing these sensors [135]. 

4.1.4 Micro Electro Mechanical Systems Magnetometer Sensors 

Self-driving vehicles utilise MEMS magnetometer sensors for measuring and 

detecting magnetic fields. Hall Effect, Magneto-resistive effect and fluxgate effect are 

the most popular principles in magnetometer sensors [191]. Moreover, these sensors 
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play important role in many applications, such as GPS navigation, magnetic field 

detection applications and electronic compass. In self-driving vehicles, the magnetic 

sensors have a number of applications, such as throttle, sunroof, wipers and wheel 

speed sensing. Self-driving vehicles employ MEMS magnetometer to measure the 

magnetic fields that is based on Hall Effect as shown in Figure 4.5.  

 

 

 

 

 

 

 

Figure 4.5 Magnetometer Sensor [192]. 

The proposed security system is dependent on unique features, which are 

extracted from bias readings of MEMS magnetometer sensors. These readings are 

considered novel features of magnetic sensors that are utilised in designing self-

driving vehicles.  

4.2 Integrated Circuit Metrics Technology 

The key problem with existing security systems is that they are not sufficient for 

detecting the insider/internal attacks in wireless networks; they require additional 

security and defender systems like intelligent detection system to support their 

protection. The idea of the proposed IDS in this chapter depends significantly on 

potential features, which are generated from the characteristics of a specific embedded 

system [193]. These unique extracted features are called Integrated Circuit Metrics 

(ICMetrics). These features are viewed as a unique identifier for the specific system it 

is generated for.  
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ICMetrics is an emerging technology that uses features that have been extracted 

from the characteristics of an electronic system to form a unique identifier that can be 

used both for security and identification purposes, akin to the electronic equivalent of 

a biometric [193]. In this chapter, we are able to generate ICMetric basis number from 

bias readings that have been extracted from four types of sensors inside self-driving 

vehicles. The ICMetrics technology allows a device to generate an identity which is 

used for authentication, preventing identity misuse and a range of other 

cryptographic services. 

The proposed IDS is based on an emerging protection approach called ICMetric 

technology. It is mainly based on inherent features that are extracted or derived from 

characteristics of sensors devices of self-driving and semi self-driving vehicles [193]. 

The generated features are considered a unique identifier that can be utilised to 

describe, detect or determine the vehicles. The main challenges in this domain are 

identifying the sensors devices’ characteristics and extracting suitable features for the 

ICMetrics system [180]. In addition, the extracted features must reflect the 

characteristics of the sensor devices for vehicles, and the extracting and analysing 

processes of features should not significantly affect sensor device performance. 

Particularly, the suitable features are derived from bias readings of self-driving 

vehicles’ sensors.  

The type of extracted features is the main difference between the concept of 

ICMetrics technology and conventional traditional fingerprinting technologies [135]. 

Traditional hardware fingerprinting approaches are based on utilising inherent 

features which are static, easy to capture and use, such as CPU IDs, MAC addresses 

and serial numbers. The extracted features in traditional fingerprinting technologies 

are faced with many security problems, such as spoofed/replicated [135]. In addition, 

the fingerprinting technologies lack entropy and diversity because easily extractable 

for extracted features. Whereas extracted features in ICMetrics technology are difficult 
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for an intruder to spoof/predict at runtime because ICMetrics utilises internal and 

various features to increase the complexity in the code breaking secret systems. In 

other words, it is employed application usage in selection of features such as 

browsing histories, system profile, camera resolutions, bias reading and GPS 

coordinates.  

ICMetrics technology has demonstrated the ability to achieve a reliable 

authentication over traditional security systems that are based on password and 

identification numbers. It establishes the identity of a vehicle using their behavioural 

and physical characteristics. It has shown to be able to augment incumbent security 

technology in order to establish hardened protection [194]. The principle ICMetrics 

technology utilises two phases: the calibration phase and the operational phase [195].  

The ICMetrics system requires these two phases to collect detailed knowledge or 

distribution of each extracted features for typical sensors.  

4.2.1 Calibration Phase 

The features and characteristics of a system are recorded and analysed in the 

calibration phase. In this phase, normalisation distributions are applied on feature 

values observed in the system. Statistical and mathematical operations on the 

extracted feature values are used to generate a device ICMetric basis number which 

uniquely identifies a device based on its low level features. Choice of features is an 

important factor because ICMetric is based on features which are unique and cannot 

be predicted or generated by an attacker. Finally, this calibration phase is applied once 

only when the system requires the ICMetric basis number. 

 

   4.2.2 Operational Phase  

Following the calibration phase, the operational phase is then applied each time 

on the extracted features to generate a unique number. The extracted values are 



4.3 ICMetric-IDS Methodology  

142 

 

composed to form an ICMetric basis number in the operational phase. In this phase, 

the proposed security system applies the normalisation maps to generate unique 

features that distinguish it from others.  

 Figure 4.6 shows how the ICMetric basis number is generated by first applying 

the calibration phase. In this phase, the sensor readings are obtained following which 

they are subjected to statistical operations in the operation phase. In the operation 

phase an attempt is made to generate a resulting device ICMetric basis number 

through either feature concatenation or feature addition [193]: 

 

 

 

 

 

 

 

   

  

 

Figure 4.6 Process Flow Diagrams of ICMetrics Technology. 

4.3 ICMetric-IDS Methodology 

The proposed security system is composed of individual modules aimed at 

designing a security system based on the ICMetrics technology. We first collect bias 

readings from the ultrasonic, magnetometer, gyroscope and accelerometer sensors 

that are utilised in self-driving vehicles. The ICMetric basis number is generated from 

the bias readings obtained from the individual sensors. This is then studied in 

combination with a traffic and mobility scenario simulation. Malicious behaviour is 
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simulated to determine how the system behaves when subjected to various forms of 

attacks. An ICMetric based trace file is generated and features are extracted to train 

the FFNN and k-NN. The POS method that was mentioned in Chapter three is used to 

extract significant features from a wider range of features available in the trace file. 

Feature values are fuzzified and the intelligent detection system is trained and tested 

to detect intrusions. 

4.3.1 Sensor-Based Offset Measurement 

Sensor-based offset cannot be obtained for every sensor. In some cases, it is 

infeasible to collect the bias in the sensor. The offsets of sensors are extracted and 

normalised to determine if they are truly unique and deterministic. For generating the 

bias readings of a system, those sensors are required which are not affected by 

external factors and also do not require user intervention. For instance, the engine 

temperature sensor cannot be used since it is subjected to varying weather conditions. 

Other sensors, like the oxygen sensor, cannot be used as the amount of oxygen varies 

in the atmosphere with change in altitude [196]. Our proposed system uses the 

ultrasonic and MEMS sensors because they are readily available and also because the 

required stimulus is easy to create. 

4.3.1.1 Ultrasonic Sensors  

The ultrasonic sensor is a distance measuring sensor designed to measure 

distances between vehicles and objects, and alert early for any expected accidents. It is 

composed of ultrasonic transmitters, receiver and control circuit [197]. The ultrasonic 

sensor must be placed on a stable place that is free from erratic movements to extract 

the offset values [135]. Using the ranging Model HC-SR04 sensor as an experimental 

platform, we obtained 4500 individual readings from the ultrasonic sensor. These 

sensor devices are embedded in the ultrasonic transmitter and receiver module. The 
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output readings from the sensors are saved in a CSV file at regular intervals. Three 

ultrasonic sensors are utilised to prove that each sensor behaves differently when 

subjected to the same stimulus. The raspberry pi is used as an embedded platform 

and use the sensors to create a system prototype as shown in Figure 4.7. 

 

 

 

 

 

 

 

Figure 4.7 An Ultrasonic Sensor with Raspberry pi used to determine the Ultrasonic Bias. 

The number of readings influences the stability of the ICMetric basis number. A 

large number of readings ensures that sufficient population representation is used in 

the statistical analysis. If the number of readings is too small, then the resulting 

statistical analysis will be flawed as this does not completely represent the full 

population. Figure 4.8 shows a graph in which the convergence of sample means and 

population mean has been depicted. As the number of readings increases the two 

mean values converge to a single reading. While generating the ICMetric, the point of 

convergence needs to be determined which in our case is 4500 readings from the 

ultrasonic sensor. 
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Figure 4.8 The Relationship between Sample mean and Population Mean. 

Figure 4.9 shows that each sensor possesses a bias which is unique to the sensor. 

This ultrasonic proves that the extracted reading can be used for the establishment of 

an ICMetrics basis number. The unimodal distribution for the three sensors is shown 

in Figure 4.9. 

 

      Figure 4.9 Calibrated Ultrasonic Unimodal Distribution Graphs for three different 

Sensors. 
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4.3.1.2  Micro Electro Mechanical Systems Sensor 

In the proposed security system, myAHRS_plus sensor is utilised in designing 

IDS that is considered one of the most accurate sensors in the scientific research area 

[198]. It is an embedded sensor triple axis accelerometer with a sensitivity of ±16g and 

consists of also a gyroscope and a magnetometer sensor that are shown in Figure 4.10. 

 

 

 

 

 

 

 

Figure 4.10 myAHRS_plus Sensor. 

Different number of bias reading are extracted from myAHRS+ to generate 

ICMetric basis number. In this case, the security system needs scientific justification to 

determine the optimal number of offset readings that are used in designing the IDS. 

The number of bias readings influences the stability of the statistical processes of the 

ICMetric generation. To determine the optimal number of readings, we need to 

calculate the population mean and compare the result with the mean value calculated 

for a smaller subset of readings. The MEMS demonstrated that lesser number of 

readings are required to achieve a mean convergence point. The optimal number is 

950 but we used 1000 bias readings to obtain a more accurate system that is shown in 

Figure 4.11.  



4.3 ICMetric-IDS Methodology  

147 

 

 

Figure 4.11 The Relationship between Population Mean and Sample Mean. 

The offset readings obtained from the x, y and z axis of the MEMS sensor make it 

a suitable candidate for the generation of a device ICMetric. The calibration matrices 

in our research are generated for x, y and z axis of three types of MEMS sensors. 

Figure 4.12 (a) shows the unimodal distribution for the three axes of a single 

accelerometer sensor based on our measurements. 

 

Figure 4.12 (a) Calibrated Normalisation Map for the three Axes of a Single Accelerometer 

Sensor.  

In addition, the measured characteristics for the triple axis of two accelerometer 

sensors are shown in Figure 4.12 (b). 
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Figure 4.12 (b) Calibrated Normalisation Map for three axes of two Accelerometer 

Sensors.  

Figure 4.13 (a) and (b) show bias readings that are generated from gyroscope 

sensors. In this proposed security system, three gyroscope sensors are employed to 

establish ICMetric basis number to protect the external communication system from 

possible attacks.  

 

   

 

 

 

 

Figure 4.13 (a) Calibrated Normalisation Map for three Axes of a Single Gyroscope 

Sensor. 
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Figure 4.13 (b) Calibrated Normalisation Map for three Axes of Two Gyroscope Sensors. 

Whereas the bias readings of three magnetometer sensors are shown in Figure 

4.14 (a) and (b). 

 

  

  

 

 

 

Figure 4.14 (a) Calibrated Normalisation Map for the three Axes of a Single Magnetometer 

Sensor.  
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Figure 4.14 (b) Calibrated Normalisation Map for three Axes of two Magnetometer 

Sensors. 

4.3.2 Statistical Analysis for ICMetrics  

Statistical functions are utilised to study features for ICMetric basis number 

generation [199]. Sensor readings are obtained from ultrasonic, accelerometer, 

gyroscope, infrared and magnetometer. In other words, the generating process needs 

a probability mass (I) function to determine the precise value from the bias reading 

[199]. A Probability Mass Function (PMF) is a statistical probability function that is 

employed to calculate the probability of bias readings from various sensors. Hence, 

probabilities are calculated through bias readings through PMF [200]. The bias 

readings that are generated from sensors that have a defined a real valued function. In 

other words, this numerical valued function is a random variable [201]. These 

variables are classified into two types which are discrete and continuous [201].  The 

discrete random variable can take a countable infinite value number. However, 

discrete random variables are associated with the outcomes of random bias readings 

of sensors. Specifically [201], the bias reading in sensors provides a discrete random 

variable which can take on a set of possible readings. When eliminating outliers, it is 
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evident that data is discrete random variable. The PMF is given by Equation (4.1), if 

(σE) is the SD. 

     

     �(I) = A
q√E�  �s(tsu)v

v wv                                                                                               (4.1) 

According to Equation (4.1), the probability mass (I) function is composed of other 

statistical function that is identified for generating the ICMetric basis number. In 

addition, the mean ( Hx ) and standard deviation (σE) are calculated to determine the (I) 

value. Equation (4.2) is used to calculate the mean:  

              Hy = A
�  ∑ I���DA                                                                                                            (4.2) 

where x is an individual ultrasonic, accelerometer, gyroscope and magnetometer 

reading and n is the total number of bias data obtained from the sensors. Equation 

(4.3) is used to calculate the standard deviation (σE): 

 
              σE = ∑ �(I�)��DA (I� − Hy)E

                                                                                            (4.3) 

  

In addition, other statistical and mathematical functions are employed to analyse 

the generated reading, such as:  

• Confidence Interval (CI) is used to estimate the range being calculated from the 

offset readings: 

Upper and Lower bound of CI = I̅ ± i q
√�                                                              (4.4) 

where, z= 1.96 for a 95% confidence interval [202].  

• Inter Quartile Range (IQR) is the difference between the third and the first 

quartile in offset data. It is a calculation of how spread out the bias readings are 

around the mean: 
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|}� = }₃ − }₁                                                                                                                             (4.5) 

where, Q3 and Q1 are the upper and lower quartile respectively. 

• The Variance (s2) is a measure of dispersion for extracting readings: 

V² = 1

 − 1 <(Iᵢ − I̅)E

�

�DA
                                                                                                           (4.6) 

where, n is the total number of bias data obtained from the sensors and x-bar is the 

mean. 

• The Skewness distribution (S) is a measure of asymmetry of the probability 

distribution of bias readings; it can be negative or positive: 

                    j = �(�̅@ae�\�)
�v                                                                                          (4.7) 

• The P-value is a statistical indicator which shows that there is sufficient 

statistical difference between the readings. It forms the basis for the acceptance 

or rejection of the null hypothesis [203]. The P-value ranges from 0 to 1 where 0 

means no similarity between the readings while 1 means high certainty of 

similarity. 

Some statistical and mathematical functions are applied in Table 4.3 that were 

earlier used to calculate the metrics for the graphs in Figures 4.9, 4.12, 4.13 and 4.14.  

Table 4.3 Statistical Analysis of the Unimodal Distribution for the Ultrasonic, 

Accelerometer, Gyroscope and Magnetometer Devices. 

Statistical Functions Sensor_1 Sensor_2 Sensor_3 

Confidence Interval (9.0422, 9.0274) (11.0833, 11.0624) (10.8294, 10.8169) 

Standard Dev. 0.2492 0.4548 0.2433 

Inter Quartile range (IQR) 0.2575 0.7523 0.2248 

Mean 9.0369 11.0789 10.8250 

Skewness 0.0138 0.8155 0.9650 

Variance 0.0621 0.2068 0.0591 
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P-value                                          0.00 

 

Statistical analysis of x, y and z axis in three different Accelerometer, 

Gyroscope and Magnetometer Devices 

 

Statistical Functions 

          Accelerometer_1 

X-axis Y-axis Z-axis 

Confidence Interval (0.1327, 0.1324) (0.0069, 0.0064) (-1.0272, -1.0279) 

Standard Dev. 0.00268 0.0037 0.0053 

Inter Quartile Range (IQR) 0.00341 0.0053 0.0068 

Mean 0.1326 0.0066 -1.0275 

Skewness -0.0349 0.1152 -0.0610 

Variance 7.21091E-06 1.43403E-05 2.82819E-05 

P-value 0.00 

Statistical Functions 
                 Accelerometer_2 

X-axis Y-axis Z-axis 

Confidence Interval (0.1956, 0.1952) (0.4996, 0.4992) (-0.0881, -0.8822) 

Standard Dev. 0.00264 0.0028 0.0044 

Inter Quartile Range (IQR) 0.00342 0.0039 0.0058 

Mean 0.1954 0.4994 -0.8819 

Skewness -0.01518 -0.0986 0.0871 

Variance 7.00621E-06 8.07228E-06 1.94442E-05 

P-value 0.00 

 

Statistical Functions 

                        Accelerometer_3 

X-axis Y-axis Z-axis 

Confidence Interval (0.1674, 0.1671) (-0.2794, -0.2803) (-0.979, -0.9803) 

Standard Dev. 0.0028 0.0071 0.0042 

Inter Quartile Range (IQR) 0.0034 0.0185 0.0063 

Mean 0.1673 -0.2798 -0.9800 

Skewness 0.0095 0.1730 0.1486 

Variance 8.09261E-06 5.14123E-05 2.36604E-05 

P-value 0.00 

  

Statistical Functions 

                           Gyroscope_1 

X-axis Y-axis Z-axis 
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Confidence Interval (0.3205, 0.1867) (-0.6656, -6.922) (-0.2954, 0.3098) 

Standard Dev. 1.0795 0.2151 0.1171 

Inter Quartile Range (IQR) 1.1291 0.2441 0.1221 

Mean 0.2536 -0.6789 -0.3024 

Skewness -0.0175 -0.0878 0.0281 

Variance 1.1652 0.0463 0.0137 

P-value 4.7557E-202 

Statistical Functions 
                    Gyroscope_2 

X-axis Y-axis Z-axis 

Confidence Interval (0.2425, 0.2582) (-0.5022, -0.5127) (-0.3312, -0.0053) 

Standard Dev. 0.126844115 0.0852 0.086142153 

Inter Quartile Range (IQR) 0.122074038 0.1221 0.061037019 

Mean 0.250434889 -0.5075 -0.336558123 

Skewness 0.270088788 0.0891 0.169868043 

Variance 0.016089429 0.0073 0.00742047 

P-value 0.00 

Statistical Functions 
                       Gyroscope_3 

X-axis Y-axis Z-axis 

Confidence Interval (0.2962, 0.2577) (-0.6910, -0.7080) (-0.3003, -0.3158) 

Standard Dev. 0.3109 0.1373 0.1247 

Inter Quartile Range (IQR) 0.3662 0.1831 0.1831 

Mean 0.2769 -0.6995 -0.3081 

Skewness 0.2910 -0.2828 0.0926 

Variance 0.0967 0.0188 0.0155 

P-value 0.00 

 

Statistical Functions 

            Magnetometer_1 

X-axis Y-axis Z-axis 

Confidence Interval (31.4568,30.9338) (125.1675, 124.6984) (-28.7284, -29.0831) 

Standard Dev. 4.218985944 3.784291053 2.860914541 

Inter Quartile Range (IQR) 5.90990936 5.1454207 3.9208655 

Mean 31.19535813 124.9330027 -28.90580157 

Skewness -0.000881593 -0.003934633 -0.180903772 

Variance 17.79984239 14.32085877 8.18483201 

P-value 0.00 

Statistical Functions           Magnetometer_2 
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X-axis Y-axis Z-axis 

Confidence Interval (-102.5211, -103.0188) (-72.5730, -73.0026) (60.3743, 60.0407) 

Standard Dev. 4.015104407 3.466054182 2.690850552 

Inter Quartile Range (IQR) 5.706198312 4.94399854 3.68968779 

Mean -102.7699637 -72.78785363 60.20756554 

Skewness 0.065459667 -0.016225336 0.04191755 

Variance 16.1210634 12.01353159 7.240676692 

P-value 0.00 

Statistical Functions 

               Magnetometer_3 

X-axis Y-axis Z-axis 

Confidence Interval (49.2086, 48.7042) (49.7952, 49.3480) (40.0403, 39.7036) 

Standard Dev. 4.068817756 3.606942915 2.715888261 

Inter Quartile Range (IQR) 5.74053164 5.00808741 3.78124332 

Mean 48.95645314 49.57165136 39.87197485 

Skewness 0.135312932 0.083964566 0.106800676 

Variance 16.55527793 13.01003719 7.376049045 

P-value 0.00 

The most important attribute of this technology is that the ICMetric basis number 

is not transmitted between vehicles and their RSUs, and also not stored in the system 

protected by this technology. The ICMetric basis number is utilised as a feature which 

can be incorporated into the trace file. Since the ICMetric is not stored in its raw form, 

therefore, any attack on the trace file does not expose the ICMetric stored on the file.  

This characteristic has made systems that rely on ICMetrics technique for 

protection more exciting and attractive in the scientific research area. Figure 4.15 

shows the elapsed time in second (s) to analyse readings for generating the ICMetric 

value with different number of ultrasonic crash sensors, accelerometer, gyroscope and 

magnetometer sensors. 
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Figure 4.15 The Elapsed Time of Sensors. 

4.3.3 Simulation System 

a. Simulation of Traffic and Mobility Scenarios 

Two softwares are utilised to generate a real-world traffic of abnormal/ normal 

behaviour for self-driving and semi self-driving vehicles. These tools are: SUMO and 

MOVE [98]. The output files of these tools are used as input for ns-2 [151]. The reasons 

for employing the SUMO to generate mobility scenario are: open source, widely used 

in VANETs, microscopic and multi-model traffic simulation [87]. In addition, it is 

computationally efficient and easily adapts with various number of vehicles as well as 

the MOVE model designed on SUMO [204], [205] with Java interfaces.    

The mobility models are divided into three types: urban, highway and rural 

model [156]. The urban mobility model includes many kinds of model, such as 

Random Way Point (RWM) model, Manhattan mobility model and Rice University 

Model (RUM) [156]. In this chapter, the Manhattan mobility model is used in 

designing mobility environment because it is widely used in the research field and it 

allows vehicles to move in different directions – vertical and horizontal [156].  
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b. Simulation Parameters and Environment 

To test the design of the proposed system, it was implemented on an Intel 5744 

Core i3-380M processor running at 2.53 GHz with 4GB RAM. To prove the efficiency 

of the schemes, simulation was carried out in MATLAB. The cryptographic module 

was designed in Dev-C with OpenSSL providing the cryptographic libraries. The 

system was designed with a 128-bit random salt value that works with an assumed 

ICMetric basis. The simulation of Urban Mobility Model and MObilty VEhicles are 

integrated with ns-2 to generate the normal and malicious behaviours.  

The simulation process is conducted with the ns-2.35RC7 environment on a 

platform and Ubuntu 14.04 LTS to evaluate and measure the performance of the 

proposed IDS. It is designed to simulate various networks, such as wireless and wired 

networks [98]. The simulator has many characteristics that have encouraged many 

researchers to use it, such as open source, low cost, fast and a rich library. Moreover, it 

has the ability to adapt to different networks and speed of simulation [151].  

The external communication system of self-driving vehicles is created on the ns-2 

to simulate the proposed security system. We face problem in simulating the 

communication system for autonomous systems with ns-2 because it is not designed 

specifically for VANETs. For this purpose, extra software is employed for the VANETs 

simulation: SUMO and MOVE or CityMob [50]. The mobility system uses the ns-2 to 

achieve the intelligent IDS for the external communication of autonomous vehicles in 

real-world. The ns-2 generates two output files: trace file and Network Animator 

(NAM) that describe the external behaviour of vehicles [98].  

The proposed system is based on features that were extracted from the ns-2 trace 

file of routing protocol. The system processes the features from the trace file of routing 

protocol. Hence the system can be adapted to any routing protocol.  
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The initial parameters are one of the important issues in ns-2 because they play a 

vital role in specifying the performance, mobility, traffic type and behaviour of 

vehicles. In Table 4.4, some parameters used in simulating VANETs are given. 

Constant Bit Rate (CBR) application that sends constant packets through a transport 

protocol, such as (UDP or  TCP), and Radio Propagation Model (Two Ray Ground) 

[98]. 

Table 4.4 Simulator Environmental and Parameters. 

Parameter Value 

Simulator ns-2.35 

Simulation time 499s 

Number of nodes 150 Vehicles 

Number of RSUs 12 RSUs 

Type of Traffic Constant Bit Rate (CBR) 

Topology 600 x 600 (m) 

Transport Protocol UDP- TCP 

Packet Size 512 

Routing Protocol V-AODV 

Channel type Wireless 

Queue Length 50 packets 

Number of Road Lanes 4 

Radio Propagation Model Two Ray Ground 

MAC protocol IEEE 802.11p 

Speed 40 m/s 

Interface queue type Priority Queue 

Network Interface type Physical Wireless 

Mobility Models Manhattan Mobility Model 

 

c. Generating Malicious Behaviour 

In this chapter, we need to modify and add some files to the routing protocol to 

generate the malicious behaviour in external communication of driverless vehicles to 

evaluate and measure the performance of the proposed IDS. In other words, malicious 

vehicles are added to the routing protocol because the trace file is generated from the 

malicious behaviour which has different characteristics from the trace file that had 

been generated from the normal behaviour. The self-driving vehicle is called 
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malicious vehicle when it drops packets rather than forwarding them to the 

destination vehicle. Figure 4.16 shows a screenshot of ns-2 utilising NAM. 

 

 

 

 

 

 

 

 

 

Figure 4.16 Screenshot of ns-2. 

The external communication system of self-driving vehicles consists of 150 vehicles 

and 12 RSUs on a ns-2 simulator [88]. Six malicious vehicles are created to get different 

behaviour in VANETs.  

d. Security Hash Algorithm 2 

A hash function is an algorithm that maps data of arbitrary length to fixed length 

output (called the digest) [206]. Hash functions possess certain properties which 

makes them suitable for use in cryptography and security. For instance, it is not 

feasible to extract the input of a hash function if the output is provided. The second 

property of hash functions is that no two different inputs can have the same output. 

Owing to these properties hashing has been used in file authentication, user 

authentication, password storage, commitment protocols and digital signatures. 

Hashing algorithms are designed to be efficient which is why their use is preferred 

over symmetric key encryption. There are many popular hash algorithms like MD 
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hashing, Simple Hash Function, RACE Integrity Primitives Evaluation Message Digest 

(RIPEMD) etc [207]. 

To utilise hashing for a system, a suitable one way hash algorithm is selected. The 

algorithm is supplied with an input I. The input is processed and produces the digest 

such that the digest cannot be used to recover the input I. Figure 4.17 below is a 

pictorial representation of this process. The hash algorithm here is SHA-2 that 

produces a digest of length 256bit. 

                                

                                                             

Figure 4.17 The SHA-2 Function. 

e. Feature Sets and Extraction 

The proposed authentication system and IDS rely on features that have been 

extracted from the trace file. It contains various data features that are employed for 

authentication and detection process. These features describe abnormal/malicious 

and normal behaviour in the external communication system of self-driving vehicles 

that are extracted from the trace file. The trace file consists of large and overlapping 

data that make extracting features from a trace file very complicated and difficult. To 

resolve this issue, the AWK and python language is utilised for the analysis and grip 

features which capture the behaviour of self-driving vehicles in real-world.  

The data of the original trace file is divided into three parts: basic trace, IP trace, 

and V-AODV trace information [208]. However, we contributed to modify and add a 

new feature which is the hash ICMetric to the trace file: “message trace” information 

as shown in Table 4.5.  

Table 4.5 Features of the Trace File. 

Basic Trace IP Trace           V-AODV Trace       Message Trace  

Event IP Source Packet Tagged ℎ(|nF��Q8P) 

   SHA-2 
ᵪ Digest 
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 Time 

 Trace level 

 Node ID 

 Packet ID 

 Payload Size  

Payload Type 

 Source MAC 

Destination MAC 

 Delay 

 Ethernet 

 Flag  

 IP Destination 

Time to Live  

Next Hop 

Hop Counts  

Broadcast ID  

Destination IP with 

Sequence number 

Source IP with 

Sequence number  

 

The number of features that are produced from the trace file plays a vital role in 

the efficient performance and effectiveness of the proposed security system as well as 

ideal exploitation of memory, reduced computation time and increase in detection 

accuracy. We need to extract the most significant features based on the detection 

system to enhance and increase the efficiency and the accuracy of the IDS. In this 

chapter, a statistical method, POS, is utilised to extract a high-weight value of features 

from the trace file that was mentioned in detail in Chapter three [162].  

The distinguishing extracted features are singled out by calculating the 

proportional overlapping score to avoid the outliers effect for each feature in the trace 

file. The selection process of relevant features is based on the measure for the overlap 

is the one defined in the POS method [209]. It is efficient and suitable with the data 

has common classification problem such as the outliers and high-dimensional binary 

[209]. The proposed IDS is based on the identification of features picked by 

measuring the overlapping rate between the features in the trace file across both 

classes: abnormal/malicious and normal. The statistical R language is employed in 

order to apply the POS method. 
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In our work, the principle of trial-and-error is used to choose the optimal number 

of features based on the accuracy rate. We started with the 23 features that describe the 

normal and malicious behaviour of self-driving and semi self-driving vehicles. We 

removed the feature which had the lowest weight after each round of training time. 

This process is repeated until the training rate is up to the highest accuracy rate. In 

other words, the best accuracy rate reaches at a set comprising of only 16 features. 

Figure 4.18 shows all the features, and significant features that are extracted from the 

trace file in VANETs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18 The Flow Process to Extract and Select Significant Features. 

These features are: Packet ID, Payload Size and Type, Source and Destination 

MAC, Ethernet, IP Source and Destination, Packet Tagged, Hop Counts, Broadcast 

ID, Destination IP with Sequence number, Source IP with Sequence number and 
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h(ICMetric). They are used in the design of IDS to detect the malicious behavior of 

the normal in external communication of autonomous vehicles. To illustrate the 

efficiency of the 16 features, the performance is metrics compared with previous 

studies where the authors employed all extracted features from the trace file with 

our IDS [20]. Table 4.6 shows the performance metrics for the two sets of features. 

We can easily notice the vital role of the 16 features in enhancing the detection rate 

and reducing the training time as well as a decline in the error rate.  

Table 4.6 Performance Metrics of ICMetric-IDS. 

 IDS with all Features IDS with 16 Features 

Training Rate 98.97% 99.84% 

Average False Alarm  6.21% 0.25% 

Error Rate 2.05% 0.17% 

Train Parameter Epochs 68 23 
 

 

f. Fuzzification of the Benchmark 

The features extracted from the trace file can have some data problems that 

describe the normal and abnormal behaviour. These problems have a direct impact on 

the detection rate and the number of false alarms of the proposed ICMetric-IDS. One 

of these problems is the ambiguity between the normal and abnormal/malicious 

behaviour if the name of the class is not well-defined or the distribution of the features 

is not clear. To overcome this problem, a mathematical model is utilised to develop 

solutions and redistribute the extracted features to build clear boundaries between 

them. The fuzzy set is used to fix the data problem because it is efficient, well-known 

and widely used in scientific fields [210]. 

This mathematical model is considered an optimal solution of the classification 

problem by employing a classification model on the significant features that were 

extracted from the trace file of ns-2 [98]. We could clearly notice the role of fuzzy set in 

improving the results of our proposed system, when comparing with our previous 
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research where fuzzification was not used. In our experiments, we got the false alarm 

rate ranging from 0.17 to 12.24% [20]. We can easily observe the vital role of fuzzy set 

in enhancing the average detection and decreasing of false alarms. Each feature value 

is distributed in five values of fuzzy with a range in [0, 1] as shown in  Chapter three.  

Finally, utilising fuzzy data improves the detection rate of proposed IDS as well 

as reduces the number of false alarms that are generated from the intelligent IDS.  

g. Intelligent Intrusion Detection System 

An ICMetric-IDS is built that is based on FFNN and k-NN to identify/detect 

vehicles with a malicious behaviour in the external communication system of self-

driving and semi self-driving vehicles. The most efficient tool in designing internal 

and external systems is ANNs [156]. The proposed security system utilises a data set 

of 60.000 records to reflect the normal and abnormal behaviour in VANETs. The 

collected data set was divided into three subsets collected from the trace file of ns-2: 

the test set, the validation set and the training set. The validation data set helps the 

intelligent detection system avoid over fitting.  

The principle of trial-and-error and the best ratio of training neural network are 

considered the criteria for selecting the best configuration of the ANN used to design 

the proposed IDS. The best structure of the ANN that was nominated in our security 

system is shown in Figure 4.19. 
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Figure 4.19 Structure of the ANN. 

Table 4.7 shows the initial parameters of the training phase used in the ANN; 

these have a direct impact on the performance of detection.  

 

Table 4.7 Initial Parameters of ANN. 

Parameter Value 

Train Parameter epochs 23 

Train Parameter learn 1*10-7 

Train Parameter goal 0 

Train Parameter min_grad 1*10-13 

Gaussian Radial Basis Function 1 

BoxConstraint 1e6 

 

The initial parameters of ANN play an important role on training accuracy and 

time consumption in the training phase of the proposed security system. In this 

system, epoch parameter is established with 500 epochs as stopping condition but 

according to Table 4.7, we can easily notice that ANN obtained the acceptance training 

rate with 23 epochs. As for the other the parameters identified in Table 4.7 and number 

of hidden layer are placed according to the trial and error principle with 99.84% 

average training rate.  

The ANN consists of three layers: an input layer, a hidden layer and an output 

layer. The first layer input comprised 80 neurons equal to the fuzzified data set that 

was extracted from the trace file of ns-2 after employing a fuzzy set to them. The 
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proposed security system is composed of two of the middle hidden layers that help to 

increase the detection rate and reduce the number of false alarms. They consist of five 

and seven neurons respectively, and the output layer comprises two neurons 

(“normal”, “abnormal”).  

4.3.4 The proposed Intrusion Detection System  

Providing sufficient security to protect the external communication system of self-

driving and semi self-driving is the target of this thesis. Two security levels are 

designed which are the authentication phase and the anomaly detection phase.  

A. Authentication Phase 

A novel authentication system is proposed to secure the external communication 

system of self-driving vehicles. The authentication or identification phase is considered 

one of the most important security aspects that must be provided for each system. This 

phase assists the moving vehicles to distinguish between the authorised and 

unauthorised vehicles so that they can communicate with each other in that radio 

coverage area. In other words, this phase heavily depends on the ICMetric basis 

number that is generated from the bias readings of the sensors for self-driving and 

semi self-driving vehicles. Figure 4.20 describes the proposed authentication scenario 

for self-driving vehicles. The security system assumes that each vehicle has the hash 

value generated from the ICMetric basis number which is considered an identifying 

aspect for each vehicle in VANETs. 
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Figure 4.20 Authentication Scenario. 

Definition- salt value: It is a random number that is integrated with CAMs from 

destination node to increase the security of communication between vehicles in 

external communication system.  

The authentication scenario is as follows:  

• The vehicle V1  sends CAM to the vehicles V2 and V3.  

• The Vehicles V2 and V3 send random value (salt) to the source vehicle (V1) 

and wait.  

• The vehicle V1 sends summation of the salt value with h (ICMetric) value to 

the destination vehicles (V2 and V3). 

• The vehicles V2 and V3 will match the received value with their own value. If 

the value matches the decision it “accepts the CAM”, otherwise they will 

“reject and block the communication with vehicle V1 ”. 

The algorithm 4.1 shows an algorithm for vehicles authentication that is proposed 

to secure the external communication for autonomous vehicles. 
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B.  Anomaly Detection Phase 

The proposed system first determines the ICMetric basis from the ultrasonic and 

MEMS sensors. The cryptographic hash function is applied on ICMetric basis to 

generate h (ICMetric). It is then integrated with CAMs from source node to the 

destination node. The behaviour features require a pre-processing phase and are then 

considered the input to the intelligent IDS. The IDS outputs are then considered 

normal or malicious connection. 

The detection phase in the proposed security system has ten stages, and the 

overall architecture of the proposed IDS is shown in Figure 4.21. 

 

Algorithm – 4.1 : Vehicles Authentication 

Input: 

• Started when vehicles are within range of central transmission. 

• Authorised vehicles are understanding the ICMetric number. 

• Central Vehilce =v1, client Vehicles =v2, v3, …. vn. 

Procedure: 

1. Vehicle V1 send CAM message to the fixed rang. 

2. Authorised vehicles (with range) v2 … vn send response message (salt) and wait. 

3. Vehicle v1 send summation (salt + h(ICMetric)) to the destination vehicles. 

4. Destination vehicles will match the received value with own value. 

Output: 

• Accept communications if matching the received value. 

• Reject communications if not matching the received value. 

End 
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Figure 4.21 Overall Intrusion Detection of the Proposed Scheme. 

• The first stage (extract bias reading and assume ICMetric basis number)- In this 

stage, the offset reading is extracted from the four sensors on self-driving 

vehicle. An assumed ICMetric is used to generate a hash from the ICMetric 

basis number which is employed in the proposed security system. 

• The second stage (integrated hash ICMetric): The h(ICMetric) value is 

integrated with ns-2 trace file. In other words, the h(ICMetric) value is extracted 

with features from trace file. All these features are utilised in training and 

testing phases.  

• The third stage (generate the real-world): The SUMO and MOVE are used to 

generate the mobility and traffic model in VANETs that reflect the real 

MEMS 

SHA-2 
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movement of self-driving vehicles. The ns-2 uses the output files from these 

tools as input to generate a trace file that describes normal and abnormal. 

• The fourth stages (ns-2): The output files generated from the third stage are 

used as input files for the ns-2. These files are the NAM file and the trace file; 

the normal and abnormal behaviours are simulated in this chapter. 

• The fifth stage (significant feature extraction): In this stage, the features are 

extracted from the trace file which is generated in the fourth stage. The 

proposed IDS only utilises 16 significant features from all the features [166]. 

Decreasing the number of extracted features play a vital role in enhancing the 

detection rate and reducing the false alarms. 

• The sixth stage (pre-processing dataset): The significant features were pre-

processed to transfer some symbols to numbers, and to apply a uniform 

distribution to create a balance between normal and abnormal, and to increase 

the efficiency of the detection rate. The normalisation formula is applied on the 

output data to enhance the performance of ANN and k-NN by converting them 

to numeric values between 0 and 1 according to Equation 3.1. 

• The seventh stage (fuzzification dataset): The output data set from the sixth 

stage has to be converted into fuzzified data. The fuzzification process can 

solve some common data problems that occur in the extracted dataset, such as 

overlap and lack of clarity between normal and abnormal. 

• The eighth stage (training phase-FFNN and k-nearest neighbours (k-NN)): The 

FFNN-IDS and k-NN- IDS are trained with the fuzzified data that was 

generated in the seventh stage. The detection rate is obtained for normal and 

malicious/behaviour.  

• The ninth stage (testing phase-FFNN and k-NN): The FFNN-IDS and k-NN-

IDS are tested with the extracted dataset; the detection rate for normal and 

abnormal behaviour, and four types of alarm are calculated in this stage. There 
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are criteria for measuring the efficiency of ANN and k-NN. For example, 

detection rate, the number of false alarms, throughput, Packet Delivery Rate 

(PDR) and End-to-End delay, error rate and Standard Deviation. 

• The tenth stage (re-action): The activeness of this stage depends on the results 

of these IDS. In other words, it is only active when the detection result is 

malicious vehicles. This stage tries to introduce the infected vehicles in the safe 

mode to save lives of drivers, passengers and vehicles themselves at suitable 

time without delay.  

4.4 Experimental Results 

Our experimental setup consists of a set of three ultrasonic and three 

myAHRS_plus sensors for creating ICMetric basis number that is utilised to secure 

the external communication system of self-driving vehicles from potential attacks. To 

get an accurate reading from the sensors, ultrasonic and MEMSs devices are placed in 

an environment free from magnetic and vibration interference.   

The bias readings are obtained from the ultrasonic, accelerometer, magnetometer 

and gyroscope sensors to create the device ICMetric. A total of 6500 readings were 

recorded from the ultrasonic sensor and 1000 readings were recorded per axis from 

the MEMS sensors. The statistical analysis is done on the recorded data/offset reading 

to establish ICMetric basis number. As we mentioned, the cryptographic library is 

utilised to generate hash ICMetric value from the ICMetric basis number that is 

employed in authentication and detection phases for the proposed ICMetric-IDS. The 

hash ICMetric may have been included in the message content that was sent from the 

source to the destination. The proposed IDS is based on the trace file that contains all 

significant features such as, basic trace, IP trace, V-AODV trace and message trace.  

In general, the proposed IDS may be installed in three configurations: RSUs, 

vehicles or both. In this chapter, the ICMetric-IDS is configured in self-driving 
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vehicles that plays a vital role in identifying two different behaviours: normal and 

abnormal/malicious. In order to evaluate the performance of the proposed ICMetric-

IDS, we need to calculate the performance metrics, detection accuracy and four types 

of alarms: TP, FP, TN and FN.  

In this chapter, three ICMetric-IDS are proposed to secure the external 

communication system for autonomous vehicles which are: 1) ICMetric-IDS based on 

bias readings of ultrasonic and accelerometer sensors. 2) ICMetric-IDS based on bias 

readings of magnetometer sensors. 3) ICMetric-IDS based on bias readings of 

gyroscope sensors. In this case, we need to evaluate and test the proposed security 

systems under certain condition. 

4.4.1 ICMetric-IDS based on Ultrasonic and Accelerometer 

Sensors 

To test and evaluate the performance of the proposed ICMetric-IDS, we need to 

generate two types of scenarios normal /abnormal, and simulate these using ns-2 

under certain conditions in order to obtain real data. In this case, we have ready 

significant features for the training and testing phase so as to measure the 

performance of the proposed security system. The average of the training algorithm is 

99.61% in the training phase of our system. 

In testing phase, the fuzzified data is used for testing the ability of the ICMetric-

IDS in anomaly detection of different malicious behaviours in the external 

communication system of self-driving vehicles. In other words, the detection rate and 

the alarms are calculated for the proposed security system. The cross validation for 

FFNN and k-NN is employed to evaluate the performance of the proposed IDS. The 

data set is divided into 30 subsets (k=100) that had used 90% of the dataset in the 

training phase and 10% in testing phase. This process is repeated to measure the 

efficiency and effectiveness of the ICMetric-IDS by calculating the standard deviation 
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(SD), detection rate and time. Table 4.8 shows the number of records that were used in 

our system and detection accuracy rate. 

Table 4.8 Accuracy of Classification. 

Attack Class  IDS    

 
Real 

Record 
ANN 

Match 

Records 

Miss 

Records 
Accuracy 

Normal 9697 9649 9647 2 99.48% 

Abnormal 5303 5324 5300 24 99.94% 

Unknown 0     27 0 27 NaN 

 

Table 4.9 shows the time, SD, error detection rate and four alarms that are 

generated in the testing phase of the IDS. These alarms are calculated by Equations 

3.3, 3.4, 3.5 and 3.6. 

Table 4.9 Alarm Rate. 

Alarm Type FFNN Time/s Error Rate SD 

True positive 99.9

3.48s 0.15% 0.074 
True negative 99.8

1% False negative 0.08

% False positive 0.19

%  

In addition, a criterion is required to measure the efficiency of the proposed 

system, and to clarify its role in improving the performance of VANETs. The 

proposed evaluation criteria are PDR, average end-to-end delay and average 

throughput [211]. The PDR, average throughput, average end-to-end delay and 

detection rate for packets in VANETs for three types of networks: VANETs without 

IDS under attacks, VANETs with Normal-IDS and VANETs with ICMetric-IDS are 

shown in Table 4.10. 

Table 4.10 Performance Comparison of ICMetric-IDS. 

Performance Metrics 
Detection rate 

Throughput PDR 
End-to-End 

Delay 

False 

Alarm Normal Abnormal 

VANETs without-IDS -------- -------- 1.02% 0.05% 23.33ms -------- 

VANETs with Normal-IDS 98.45% 85.02% 78.57% 97.86% 1.47ms 12.24% 

VANETs with ICMetric-IDS 99.48% 99.94% 80.34% 99.89% 101.63ms 0.19% 
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We can easily observe the role of the ICMetric-IDS on the external communication 

of self-driving vehicles/VANETs under different types of attacks. Finally, the four 

alarms are considered the first re-action technology for the self-driving vehicles.  

4.4.2 ICMetric-IDS based on Magnetometer Sensors 

 In this experiment, the bias readings are generated from the three identical 

magnetometer sensors to establish the ICMetric basis number. These readings are 

employed in designing a novel ICMetric-IDS to identify internal/external attacks. In 

the testing phase, the extracted significant features are utilised to evaluate the 

anomaly detection in the external communication system for self-driving vehicles. The 

detection rate and false alarm of the proposed ICMetric-IDS with the traditional IDS 

as shown in Table 4.11. 

Table 4.11 Detection Rate and False Alarm. 

  

 

 

 

In Table 4.11, the proposed security system achieves significant security 

improvement on the external communication system of self-driving vehicles under 

various types of attacks with average error rate of 0.72%.  

The performance of the proposed ICMetric-IDS is shown in Table 4.12. 

Table 4.12 Performance Metrics of ICMetric-IDS. 

Performance Metrics 
Throughput 

kpbs 
PDR Delay 

VANETs without-IDS    1.02 0.05%   23.33ms 

VANETs with Normal-IDS 78.57 97.86%   1.47ms 

VANETs with ICMetric-IDS 80.22 99.64%         28.71ms 

Performance Metrics 
Detection Rate 

False Alarm 
     Normal     Abnormal 

VANETs with Normal-IDS    98.45%    85.02%    12.24% 

VANETs with ICMetric-IDS 99.77% 98.78% 1.21% 
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All the IDSs in Table 4.12 are tested under malicious conditions to calculate their 

performance. This IDS was formally presented in the form of a research paper at 

ICASE Conference, Newcastle, United Kingdom, 20-21 October 2016. 

4.4.3 ICMetric-IDS based on Bias Readings of Gyroscope 

Sensors 

Three gyroscope sensors were utilised to extract bias readings. The extracted 

readings demonstrated that a minimum of around 1000 samples are required to 

achieve a mean convergence point. In testing phase, the extracted data is employed 

for testing the ability of the IDS in identifying malicious behaviours in the VANETs. 

Table 4.13 shows the accuracy of detection, time, P-value and SD of the proposed 

ICMetric-IDS. 

Table 4.13 Performance Metrics of ICMetric-IDS. 

Class Accuracy Time P-value Standard Deviation 

FFNN-ICMetric-IDS 99.83% 4.24s 
8.6006E-09 

           0.02 

k-NN-ICMetric-IDS 99.28%  68.4s      0.09 

Table 4.14 shows the error rate and alarm rate. 

Table 4.14 Alarm Rate of ICMetric-IDS. 

FFNN-IDS Accuracy k-NN-IDS Accuracy 

True Positive 99.72% True Positive 99.76% 

True 

Negative 

99.89% True Negative 99.01% 

False Positive    0.09% False Positive 0.98% 

False Negative    0.26% False Negative 0.22% 

Error Rate    0.16% Error Rate 0.71% 

According to the results in Table 4.14, ICMetric-IDS, that is based on FFNN 

algorithm, is more efficient, effective and has low error rate in detecting malicious 

vehicles as compared to ICMetric-IDS that is based on k-NN algorithm. This IDS was 

formally presented in the form of a research paper at the IEEE International 

Conference on Consumer Electronics (ICCE), Las Vegas - USA 2017. 
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4.5 System Analysis  

The success and development of self-driving vehicles heavily rely on adequate 

security systems that provide a safe environment for external communication system 

/VANETs. The methodology used in designing the security system is summarised in 

ten phases: extracting bias reading, calculating the ICMetric basis number and 

generating and integrating h (ICMetric), establishing the real-world, the ns-2 to 

generate the trace file, data collection, pre-processing and extracting significant 

features, fuzzification of the extracted features, training phase-FFNN and k-NN, 

testing phase for the FFNN and k-NN and re-action technique - alarms. 

 In Table 4.10, 4.11 and 4.12, the performance and efficiency are compared of 

VANETs with and without the ICMetric-IDS. We can easily observe that the ICMetric-

IDS was more efficient and effective in detecting malicious vehicles as compared to 

traditional IDS which is not based on the ICMetric technology. In addition, it has a 

low false negative alarm rate, high PDR and throughput rate. The significant features 

are selected based on our previous study [166]. Moreover, addition of a new ICMetric 

feature played an important role in enhancing the detection rate and reducing the 

number of false alarms in the performance of IDS. All these factors made the proposed 

IDS more efficient in securing the VANETs of self-driving and semi self-driving 

vehicles. 

The average error rate for the IDS based on the ICMetric technology was 0.34%. 

The average alarm rate in our security system fluctuated between 99.80% and 99.57% 

with excellent and efficient accuracy. On the other hand, the average false positive 

alarm rate was low at about 0.61% which is a good indicator of the results. The 

number of sent, received and dropped packets in the external communication system 

for self-driving and semi self-driving vehicles are shown in Figure 4.22. 
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Figure 4.22 Number of Sent, Received and Dropped Packets in VANETs. 

In Figure 4.22, the IDS is evaluated under attack condition: the total number of 

generated packets is 1944 packets in the two scenarios, while the number of received 

packets is 1937 in VANETs with ICMetric-IDS. Thus, the total number of dropped 

packets is 9 while 1 packet is received. Hence, the total number of dropped packets 

are 1943 in VANETs without IDS. In our experiments, we noticed that even smallest 

difference in bias reading extracted from the ultrasonic and accelerometer sensors is 

adequate for generating a stable ICMetric basis number.  

Meanwhile, we can notice results in Table 4.13 that ICMetric-IDS that is based on 

FFNN algorithm is more efficient, effective, fast and has low error rate in detecting 

malicious vehicles as compared to ICMetric-IDS that is based on k-NN algorithm. The 

proposed ICMetric-IDS has demonstrated good performance in detecting and 

blocking malicious vehicle in VANETs of self-driving vehicles and semi self-driving 

vehicles. 

4.6 Summary 

An ICMetric-based vehicle sensing scheme is proposed in this chapter which 

employs ultrasonic crash sensors and MEMS accelerometer and other features to 

generate a novel vehicle identification called the vehicle ICMetric. One of the 

significant aspects of the ICMetric–IDS is its capability to detect both new and existing 
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attacks. The ICMetric-IDS is considered a novel security system for securing external 

communication because this is the first time an ICMetric is used in VANETs. In our 

experiments, the proposed anomaly IDS has demonstrated good performance in 

identifying and blocking malicious vehicles in VANETs of self-driving vehicles. The 

process of decreasing the number of extracted features by POS method had a vital role 

in enhancing the detection accuracy and reducing the number of false alarms of the 

IDS, while the fuzzification process helps decrease the error rate and false alarms 

when compared with our previous research. 

The experiments above have introduced a new effective security system, however, 

it may still needs to be improved with regard to the frequency of false alarms and the 

time span of the computational process. Above all, the system needs to be further 

improved in order to be quicker in response to security hazards. These improvements 

will be discussed and tested in chapter five below. New techniques will be employed 

in designing IDS to predict attacks on the communication system of autonomous 

vehicles which use FPN and clustering model. 
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CHAPTER FIVE 

FUZZY PETRI NET INTRUSION DETECTION SYSTEM AND 

INTELLIGENT RESPONSE SYSTEM FOR AUTONOMOUS 

VEHICLES 

“The only reason for time is so that everything doesn't happen at 

once" 

 Albert Einstein 

elf-driving vehicles’ movements and safety are dependent on the 

exchange of control and status data between vehicles and their roadside 

units. This information is exposed to several types of attacks, such as black 

hole, grey hole, Sybil and DoS. The challenge is to protect the communication systems 

of these vehicles from potential attacks. A novel security system is proposed in this 

chapter to protect the external communication of self-driving and semi self-driving 

vehicles. It can detect malicious vehicles in the urban mobility scenario. The anomaly 

detection system is based on a Fuzzy Petri Net (FPN) to detect most common attacks 

in vehicular ad hoc networks: packet dropping, Sybil and wormhole attacks. The 

Fuzzy Petri Net-Intrusion Detection System eliminates possible false alarms from the 

ordinary fuzzy model. The experimental results show that the proposed system can 

predict DoS attacks in external communication of self-driving vehicles. In addition, 

the anomaly detection is more efficient, accurate and real-time in identifying 

malicious vehicles.  

According to the previous research, it was shown that FPNs can have a vital role 

in enhancing the security system used in different applications, such as wireless ad 

hoc networks [212]. FPN is the fusion of fuzzy logic and Petri nets. In other words, it is 

S
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the combination of a mathematical model and a set of methodologies [213]. This 

combination makes it powerful and reliable in real-world scenarios. FPNs have a 

number of possible applications, such as control, scheduling, communication, 

decision-making and classification. In this research, FPN classification is utilised to 

distinguish between normal and abnormal communication. 

In this chapter, three systems are proposed: 

1) A novel security system based on FPN 

2) A hierarchical IDS based on log  

3) A new response system  

The security systems are based on the FPN and clustering model to predict attacks 

on the external communications of autonomous and semi-autonomous vehicles. The 

FPN security system has the ability to identify and block a malicious vehicle among 

other vehicles. The detection system relies on a number of features that have been 

calculated from a trace file. It was generated using the network simulator software 

[98]. These features are the fuzzy parameters for the proposed security system.   

5.1 Fuzzy Petri Net 

Petri nets are utilised in many research applications. However, the rapid 

industrial development prevents the adoption of the petri nets because of their 

limitations in performing certain tasks like their inability to detect zero tokens and to 

support the design of large models [214]. This encouraged researchers to combine 

Petri Nets with Fuzzy Logic to create a new tool, the FPN [214]. FPN techniques are 

popular because they can produce precise outputs by removing ambiguities in data 

[215]. In addition, many researchers prefer FPN in decision-making processes, 

especially when ordinary algorithms are unable to describe the situation and multiple 

criteria utilised [216]. Also, FPN is straight forward to understand because the fuzzy 

logic uses natural language [217] as well as having tolerance and flexibility for data. In 
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FPN, many different membership functions are employed, such as Triangular, 

Trapezoidal, or Gaussian membership functions [218]. 

The FPN has two types of nodes: place and transition nodes. In FPN, a transition 

provides connectivity between a place node which holds a place token range (0-1). 

The FPN has the following attributes that make them suitable for this problem [219]: 

• It allows researchers to visualise the structure of the proposed model making 

them clearer and easier to understand.  

• It permits designers to use mathematical forms to describe the behaviour of the 

proposed system. 

Fuzzy logic used formalism on Petri Nets to implement reasoning algorithms [214]. 

In Petri Nets, propositions and rules are represented in places and transitions 

respectively, whereas a truth table is represented in tokens. In addition, the firing 

process is defined as moving from one place to another by a transition connection.  

Algorithm 5.1 – Constructing Linguistic Variables of FPN Model 

begin 

//Create group of rules to describe the knowledge of the security problem 

For R (rule) Do 

   Create a set of T (transitions) 

             //Test each antecedent- consequent proposition 

               While each of antecedent-consequent proposition Do 

                  Generate a set of P (places) 

                     α(pi)= yi; 

// where yi is the degree of truth of proposition di. 

                   // Input values (arcs from Antecedents to T) 

                      Create a set of I: P× T→ [0,1].  

                       // Output values (arcs from T to consequents) 

                       Create a set of O: P× T→ [0,1]. 
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                   End While. 

   End for. 

   End.  

The algorithm shows a set of linguistic variables that have been inferred from the 

fuzzy model. These variables describe the inputs to the FPN and the outputs obtained 

processing [220]. 

 The FPN pass life cycle is divided into four phases [213]:  

• Fuzzy set definition 

• Fuzzy rule base 

• Fuzzy inference engine 

• Defuzzification 

Figure 5.1 depicts the block diagram of FPN to predict DoS. 

 

 

 

 

 

 

 

 

 

Figure 5.1 Block Diagram of FPN. 

5.2 Intrusion Detection System Based on Fuzzy Petri Net 

Ad hoc networks have particular characteristics that make conventional security 

systems inefficient in VANETs [221]. Therefore, there is significant attention from 

researchers to develop current security to become more suitable to protect inter and 
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intra-vehicles communications. In this chapter, an intelligent security system is built 

which employs FPN to detect malicious vehicles based on parameters that reflect the 

vehicles’ behaviour on roads. 

5.2.1 Mobility Model for Self-Driving Vehicles 

In VANETs, the mobility model is considered important in creating a 

simulation environment for self-driving vehicles. The challenge lies in how to 

build an environment close to the real world. In order to establish a real 

environment for vehicles, two platforms are used: SUMO and MOVE [19]. This 

structure allowed the network simulator to generate different scenarios, such as a 

Simple Model (SM), Manhattan Model (MM) and Downtown Model (DM). The 

mobility model used in this chapter is MM. It has some properties that encourage 

researchers to select it in their project, such as flexibility in selection of direction of 

vehicles as well as its wide adoption in investigation and research [19]. 

5.2.2 Normal and Abnormal Behaviour 

The performance of the proposed security IDS needs to be evaluated in two of 

scenarios: normal and malicious behaviour. To create malicious behaviour, two 

source files are modified to exemplify a packet dropping attack. The specific 

malicious vehicles will drop packets rather than forwarding them to the 

destination vehicles. This type of attack has a direct and negative impact on the 

performance of VANETs. Each node corresponds to one vehicle in this scenario. In 

this proposal, two nodes are made malicious vehicles. The MM consists of 38 

normal vehicles, two malicious vehicles and nine RSUs.  

5.2.3 Fuzzy Parameters 

Fuzzy parameters are used as input values for the proposed security system. In 

this case, some parameters are extracted from VANETs that describe the normal 
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and abnormal behaviour for self-driving vehicles in network simulator. These 

parameters are:  

• The average of the Delivery Packet Rate (PDR): it indicates the efficiency of 

performance for VANETs.  

• The average of Dropping Packet Rate (DPR) on VANETs: the proposed 

system needs to calculate the proportion of dropped packets with period 

transfer from source to destination. In this case, the attacker tries to drop sent 

packets rather than forwarding them to destination vehicles, so DPR is used as 

an input parameter for the proposed security normalisation.  

The number and type of detection features are heavily based on attacks types. 

In addition, the security system is proposed in this chapter to detect flooding and 

dropping attacks. In this case, the system requires features that measure flooding 

and dropping rate which are PDR and DPR. These features play direct and 

important role with the proposed security system. 

Many studies recommended normalising values that are used in artificial 

intelligence techniques [222]. In this phase, the input values are converted to fuzzy 

between 0 and 1. Figure 5.2 the fuzzy input membership functions as a function of 

a normalised attack level. 

 

 

 
 

 

 

 

Figure 5.2 Normalized Attack Level. 

5.2.4 Rules Sets 

The proposed IDS uses nine rules to achieve its role. These rules are 

Normalized 
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considered the core of FPN for accurate and efficient detection of the attacks. 

Table 5.1 shows these rules for Verity Level (VL): 

 

 

 

 

 

 

 

 

 

 

 

 

5.2.5 Fuzzification 

Fuzzification is the first step in the FPN algorithm. In this chapter, the 

proposed system utilises a triangular membership function, defined formally as 

Equation 5.1. The fuzzy variable deviation consists of three fuzzy sets, i.e. low, 

medium and high. In other words, fuzzy set is employed to calculate low, 

medium and high value. 

U(I, 	, T, P) = max (min (�@\
�@\ , c@�

c@�)), 0)                                      (5.1) 

where x is the actual value of parameters, whereas a, b and c are parameters which 

represent fuzzy domain values. Equation 5.1 will be applied to all values to 

generate three values for each value. Thus, the value of the fuzzy are calculated 

Table 5.1 Parameters Definition of the Nine Qualitative Fuzzy Rules. 

Rule’s Serial No. Rule Description  

R1 If PDR is “Low” and DPR is “Low” then VL shift is “Low” 

R2 If PDR is “Low” and DPR is “Medium” then VL shift is “Low” 

R3 If PDR is “Low” and DPR is “High” then VL shift is “Low” 

R4 If PDR is “Medium” and DPR is “Low” then VL shift is “Medium” 

R5 If PDR is “Medium” and DPR is “Medium” then VL shift is 

“Medium” 

R6 If PDR is “Medium” and DPR is “High” then VL shift is “Low” 

R7 If PDR is “High” and DPR is “Low” then VL shift is “High” 

R8 If PDR is “High” and DPR is “Medium” then VL shift is “High” 

R9 If PDR is “High” and DPR is “High” then VL shift is “Low” 
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and set based on the Mamdanis fuzzy inference method [21]. Figure 5.3 shows the 

triangular membership function. 

 

 

 

 

 

 

 

Figure 5.3 Data Fuzzification. 

Equation 5.1 is applied to all values to generate three values for each value. In 

other words, we calculate the value of fuzzy set based on the Mamdanis fuzzy 

inference method. The behaviour of attacks and networks plays a critical role in 

determining the value of the threshold. The value of the threshold determines the 

percentage accuracy of alarms rate that is generated from ns-2. 

5.2.6 Defuzzification 

 Defuzzification translates the linguistic value of the output variable back into 

a real value representing the current value of the parameters. The membership 

function represents the relationship between the linguistic values and the 

corresponding real values: 

�a\�,a�e�!a,a�� = (QA, QE, Q�, Q�, Q�, … … . . Q�, ) 

 

WQ��8P� �	6�� 
U &
j =  ∑ !���∗������
∑ !�������

                                                 (5.2) 

where: ui is the height value of output values and the yi  is the gravity’s horizontal 

coordinate of output generated from the i-th rules; whereas n is the total number 
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of matching rules for given values of each input dimension [220]. 

5.2.7 Simulation Environment  

In this research, a network simulator is utilised to evaluate the performance of 

the proposed IDS. It is a popular simulator that is widely used for network 

research. The simulation results are a NAM and trace file. The trace file describes 

all network events between vehicles and RSUs in that zone. The IDS heavily 

depends on features that have been calculated from the trace file. These features 

are considered fuzzy parameters for FPN. The following features are used in this 

proposal: PDR and DPR. The behaviour and the performance of the proposed 

security system are determined by the initial parameters that are used in network 

simulator.  

The efficiency of the proposed FPN-IDS is evaluated using a network 

simulator under two conditions: VANETs with FPN-IDS and VANETs without 

FPN-IDS. In this case, the performance metrics are calculated of VANETs in both 

conditions for self-driving and semi-self-driving vehicles, for instance, PDR, 

average end-to-end delay and average throughput [160].  

• Packet Delivery Rate (PDR): the rate between the number of packets 

generated or sent from the source vehicle and the number of packets received 

at the destination vehicle.  

• Throughput: the total number of packets that are transferred in the VANETs. 

This metric is used to calculate the effectiveness of the routing protocol in 

VANETs.  

• Average End-to-End Delay: this metric is used to calculate the average packet 

delay based on time. In other words, the average time for the packets to reach 

the destination from the source.  
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5.2.8 Intelligent Security System  

The sending and receiving of the CAMs over a shared communication 

channel between vehicles and their RSUs is an effective method for identifying the 

malicious behaviour in VANETs.  

Figure 5.4 shows the architecture of the proposed IDS: 

• The first stage: extracting fuzzy parameters (PDR and DPR). These 

parameters are extracted from the trace file which is generated from 

network simulator. 

• The second stage (normalisation and fuzzification): the IDS needs to 

normalise the values of PDR and DPR. Fuzzified values are created 

from the normalisation step to complete the proposed system. 

• The third stage (rules): at this stage, the fuzzy rule is applied. The 

proposed system has two inputs (fuzzy parameters), but it has one 

output (Certainty level). 

• The fourth stage (FPN): the system applied the FPN based on 

Equation 5.3 [220]: 

  �� = min=	G1, 	G2, 	G3, 	G4, 	G5, 	G6, … … … … … . . , 	G
B ∗ �8�                              (5.3) 

 

where �� are rules, αjn represents the value of each place in the 

model, whereas the �8� or confidence degree factor nY = 1 for all the 

transitions. 

• The fifth stage (Defuzzification): it translates the output variable back 

into a real value: 

 

0.0285*0.333 0.696*0.666
Pr 0.6625

0.0285 0.696
edict value of DoS

+
= =

+
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• The sixth stage: IDS can detect the malicious behaviour at this step; it 

is based on the FPN.  

The proposed security system is illustrated in Figure 5.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                     Figure 5.4 System Architecture. 

The FPN-IDS system starts with producing the fuzzy parameters. They are 

fuzzified, and then processed based on an inferencing engine utilising nine rules. 

The output value is defuzzified and is compared with a threshold value to predict 

normal or abnormal behaviour. 
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5.2.9 Experimental Analysis 

In order to evaluate the performance of the proposed FPN-IDS, the proposed 

security system is examined with different scenarios that describe the normal and 

abnormal behaviour of external communication of self-driving vehicles.  

The steps explain the methodology for examining the detection system: 

• Generate mobility and traffic model with two tools (SUMO and MOVE). 

• Create malicious behaviour for some vehicles by modifying some files on 

the routing protocol. 

• Calculate PDR and DPR used as input of fuzzy parameters.  

According to Equation 5.1, the system can generate fuzzification of fuzzy 

parameters: 

       PDRnormal= 0.825;    DPRnormal= 0.175  

       PDRlow= 0;              PDR medium= 0.35;     PDRhigh= 0.65 

       DPRlow= 0.35;         DPRmedium=0.65;       DPRhigh= 0          

1. Applying FPN based on Equation 5.3. 

R1= Min (0, 0.35) = 0    

R2= Min (0, 0.65) = 0  

R3= Min (0, 0) = 0        

R4= Min (0.35, 0.35) = 0.35  

R5= Min (0.35, 0.65) = 0.35      

R6= Min (0.35, 0) = 0  

R7= Min (0.65, 0.35) = 0.35   

R8= Min (0.65, 0.65) = 0.65         

R9= Min (0.65, 0) = 0  

2. Defuzzification: 

P7_Low=Max (R1, R2, R3, R6, R9) 
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                  Max (0, 0, 0, 0, 0) = 0 

P8_Meduim=Max (R4, R5) 

                  Max (0.35, 0.35) = 0.35 

P9_High=Max (R7, R8) 

                  Max (0.35, 0.65) = 0.65 

The value of certainty level= (0*0.25+0.35*0.5+0.65*0.75)/ (0+0.5+0.65)= 0.6625 

Hence, the final change is decided in certainty level will be “Medium”. To 

verify the efficiency of the proposed security system, the FPN-IDS is tested in 

different scenarios. The normal and abnormal behaviours are represented as an 

input in Table 5.2 as well as the output, where normal is denoted by (N) and 

abnormal is denoted by (A):  

                                                       Table 5.2 Testing FPN-IDS 

Input 
Output Class 

PDR DPR 

1 0 0.5 N 

0.8024 
0.197

5 
0.75 N 

0.3580 
0.641

9 

0.36

2 
A 

0.8148 
0.185

1 
0.75 N 

0.6172 
0.382

7 

0.63

6 
N 

0.3703 
0.629

6 

0.38

6 
A 

0.7777 
0.222

2 
0.75 N 

0 1 0.25 A 

0.0617 
0.938

2 
0.25 A 

0.5308 
0.469

1 

0.57

2 
N 

0.2716 
0.728

3 

0.31

2 
A 

0.7407 
0.259

2 
0.75 N 

0.9259 0.074

0 

0.75 N 

0.0370 0.962 0.25 A 
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The classification rate is calculated of the proposed system as shown in table 

5.3 and 5.4: 
 

 

 

 

 

 

 

 

 

The proposed system is simulated by gradually increasing the number of 

iterations. As the number of iterations increases, the stability of the accuracy 

increases. Figure 5.5 shows that the accuracy stabilises when the number of 

iterations exceeds nine. 

 

9 

0.5308 0.469

1 

0.57

2 

N 

0.5925 0.407

4 

0.62 N 

0.3086 0.691

3 

0.34

4 

A 

0.9012 0.098

7 

0.75 N 

0.4444 0.555

5 

0.75 N 

0.1358 0.864

1 

0.25 A 

Table 5.3 Classification Rate of FPN-IDS. 

Class Accuracy  P-value 

Normal 58.33% 

0.000107 Abnormal 100% 

Threshold 0.66 

   

Table 5.4 Testing FPN-IDS. 

Normal Behaviour Abnormal Behaviour 

PDR 82.5% PDR 30% 

DPR 17.5% DPR 70 
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Figure 5.5 Graph showing the Relationship between the Number of Iterations and the 

Resulting Accuracy. 

The proposed detection system become more accurate and stability when 

number of iterations exceeds nine is shown in Figure 5.5. The rate of four types of 

alarms is shown in Table 5.5. 

  

 

 

 

 

 

 

 

The performance metrics are evaluated of VANETs with or without the FPN-

IDS for self-driving and semi-self-driving vehicles. The metrics are PDR, Average 

End-to-End Delay and Average Throughput. Table 5.6 shows the performance 

metrics of FPN-IDS: 

 

 

 

 

Table 5.5 Alarms Rate of FPN-IDS. 

Alarm Accuracy  

True Positive (TP) 72.22% 

True Negative (TN) 100% 

False Positive (FP) 0% 

False Negative (FN) 27.78% 
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The threshold value plays an important role in enhancing the detection rate 

and reducing the amount of false alarms [119], [223]. To select the optimal value of 

threshold, the FPN-IDS is tested with different values of threshold to calculate the 

accuracy of detection rate and false positive alarm. In this system, the threshold 

value is set to 0.42 because the most suitable threshold of certainty level lies 

between 0.38 and 0.48. The rate of detection with different thresholds is shown in 

Figure 5.6.  

 

   

  

 

 

 

 

 

Figure 5.6 Dependency between Detection Rate and Threshold Value. 

 

 

 

Table 5.6 Performance Metrics. 

 

Performance Metrics 
VANETs with 

FPN-IDS 

VANETs 

without FPN-IDS 

PDR           98.31%    32% 

Throughput          79.98%           31.07% 

End-to-End Delay         213.17s    8.28s 
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5.3 Response Mechanism 

Security and privacy are considered very important matters of transport systems 

as they directly impact the lives of drivers and passengers. Security systems alone are 

not enough to provide sufficient security and safety, and alternative ways must be 

found to create a safe environment for any emergency situation. In this chapter, a time 

efficient system is developed so that a ‘safe mode’ can be induced in a compromised 

vehicle without delay. In other words, a quick response can be provided on the data 

link layer for any abnormal situation to prevent potential risks or hazards.  

A new response system is considered as a communication protocol of self-driving 

vehicles under different conditions in order to facilitate a safe mode or a secure 

communication environment. A typical external communication of self-driving 

vehicles consists of three main entities in Manhattan scenarios that were established in 

a city street environment. In other words, it allows mobile nodes to move in urban 

conditions [151]. 

 Trust Authority (TA), mobile On-Board Units (OBUs) equipped on each vehicle 

and immobile RSUs at the roadside every 250m as illustrated in Figure 5.7 [224]. 

 

 

 

 

 

  

 

 

 

 

Figure 5.7 System Model. 
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The motivation of the proposed response system is to preserve the lives of drivers, 

passengers and vehicles themselves. The author is trying to increase the confidence of 

consumers in the acquisition of this new generation of vehicles. In addition, the 

reasons below encourage selecting certain RSUs in an emergency [224]: 

• Trust because of its wire connection to TAs. 

• Low delay. 

• Low bit error rates. 

• High bandwidth. 

The IEEE 802.11p protocol has a problem in its scalability rate. In dense road 

scenarios, it is unable to provide the required time-probabilistic characteristics. In 

other words, it has low scalability when the self-driving vehicles are in the same area 

[225], [226]. All these features encourage us to make the RSUs the end-point of self-

driving vehicles safe from any critical or emergency case.  

5.3.1 Data Link Layer 

The data link layer has many factors that encourage the designers to build the 

response mechanism within [227]:  

• It supplies basic addressing and access control to the physical layer on 

VANETs of self-driving and semi-self-driving vehicles. 

• It provides easy mobility of vehicle communication among the subnet, 

without requiring re-configuration. 

These factors are considered the main reasons for selecting this layer among 

others on VANETs. In this layer, many types of communication protocols are 

used, such as the Point-to-Point Protocol (PPP), High-Level Data Link 

Control (HDLC) and Advanced Data Communication Control Protocol (ADCCP) 

[228]. The proposed response system is based on the PPP concept: “vehicle to the 

closest RSU”.   
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5.3.2 Safe Mode 

The safe mode is a protective response system that intervenes when a vehicle 

has been compromised. After a vehicle is compromised its ability to communicate 

with other vehicles in the same coverage area is restricted. The restriction allows 

the vehicle to only communicate directly with the RSU. The safe mode enforces a 

partial isolation policy, so that the functionality of the vehicle can be fully restored 

through interaction with the RSU. The vehicle cannot further disrupt the 

communications of other vehicles.  

5.3.3 Testing Response System  

In this subsection, normal and abnormal behaviours of self-driving and 

semi-self-driving vehicles are analysed. All behaviours of vehicles, whether 

benign or malicious, are based on a network simulator. An emergency connection 

protocol of these vehicles is proposed as a secondary communication system for 

any compromised situation. The safe mode places vehicles in an isolated state so 

that correct functionality can be restored. The proposed response system was 

evaluated under normal conditions. One of the self-driving vehicles is 

programmed with the new response system. The performance metrics are 

calculated for a vehicle in two cases under the same condition. 
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Table 5.7 shows the performance metrics that have been calculated for the 

same vehicle under normal behaviour with and without the proposed response 

system. 

 

 

 

 

 

 

 

 

 

On the other hand, Table 5.8 shows the performance metrics that have been 

calculated for the same vehicle under abnormal behaviour with and without the 

proposed response system. 

 

 

 

 

 

 

 

 

 

The performance of the proposed response system is measured under malicious 

behaviour. According to Table 5.8, the active role of the proposed response system can 

Table 5.7 Performance Metrics of Normal Behaviour. 

Performance 

Metrics 

Without     

Response System 

With Response 

System 

Generated Packets 14402 14402 

Received Packets 12831 13654 

Packet Delivery Rate 89.09% 94.80% 

Totally Dropped Packets 2652 906 

Average End-to-End Delay 120.10ms 62.61ms 

   

 Table 5.8 Performance Metrics of Abnormal Behaviour 

Performance 

Metrics 

Without Response 

System  

With Response 

System  

Generated Packets 14402 14402 

Received Packets 7297 12622 

Packet Delivery Rate 50.66% 87.64% 

Totally Dropped Packets 7311 2602 

Average End-to-End Delay 38.43ms 15.003ms 
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be easily distinguished in two cases of self-driving vehicles. 

5.4 A Hierarchical Detection Method Based on TDMA 

In this section, a hierarchical intrusion detection method is proposed to secure the 

external communication system of self-driving and semi-self-driving vehicles from the 

potential attacks. It is based on Cluster -Time Division Multiple Access (TDMA) to 

overcome some of problems of VANETs. These problems are: large density of vehicles 

on roads, high dynamic mobility and low bandwidth for exchanging beacons 

messages between them.  

In this proposed IDS, each vehicle logs, calculates and stores various parameters 

that are calculated from trace file and log data after a significant period. If a vehicle 

has the same values for the log parameters at the same time with other vehicle, these 

vehicles are detected as Sybil attacks while the proposed system uses other 

parameters to detect wormhole attacks. The proposed system is based on parameters 

which describe the behaviour of vehicles, whether normal or abnormal. In other 

words, the IDS attempts to build a clustering approach that increases the system 

accuracy and efficiency, while providing a low false alarm rates in online detection. 

TDMA is used to provide channel access which shares medium networks based on 

splat signal between nodes in that radio coverage area. It divides the signal between 

vehicles’ network into various time slots. In this chapter, an IDS is proposed to detect 

Sybil and wormhole vehicles. Figure 5.8 shows behaviour of Sybil and wormhole 

attacks in VANETs. 
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Figure 5.8 Typical Sybil and Wormhole Attacks in VANETs. 

The proposed security system utilises the TDMA Cluster-based media access 

control to secure the VANETs for driverless vehicles. To achieve stability and channel 

utilisation, a cluster is needed in the external communication systems. The TDMA has 

the ability to divide signal into time frames and then into time slots, where each 

vehicle is associated with a time slot in the frame [229]. The IDS can detect and 

analyse the positions and IDs to calculate distance and angle of vehicles based on 

Cluster - TDMA. This can be relied upon to determine a malicious vehicle in the 

VANETs. 

5.4.1 Clustering Mechanism 

The proposed IDS is built on centralised authority to overcome a wireless 

network problem which is the lack of fixed security. In other words, the proposed 

security system is created on virtual centralised or semi-centralised authority by 

incorporating clustering [229]. Clustering based TDMA architecture provides the 
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external communication system of driverless vehicles while offering scalability 

and fault tolerance resulting in efficient use of VANET resources.   

The Clustering-Head (CH) receives data traffic and control data from Cluster 

Members (CMs) to validate malicious behaviour and generate alarms. The 

selection of the CH is based on selection algorithms which are used in clusters 

[229]. The semi centralisation optimises communication between vehicles and 

between vehicles and their RSUs. Figure 5.9 shows the taxonomy of existing 

clustering scheme for VANETs [229]: 

 

 

 

 

 

 

 

  

 

 

Figure 5.9 Taxonomy of Clustering Scheme. 
 

A MAC algorithm is utilised in the TDMA method to reduce the number of packet 

drop, collision and enable vehicles to transmit on the same frequency channel by 

using clustering vehicles. Figure 5.10 shows the clustering scheme in the external 

communication systems. 
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Figure 5.10 An Example of the Clustering in VANETs. 

5.4.2 Time Division Multiple Access (TDMA) 

TDMA is utilised to control channel access between vehicles by sharing a 

medium communication based on divide signal between nodes in that radio 

coverage area. It divides the signal between users by allocating different time 

slots. In this chapter, intrusion is based on clustering head (CH) vehicles. The 

security system uses the TDMA Cluster-based media access control to secure the 

VANETs for self-driving vehicles. To achieve stability and channel utilisation, the 

cluster is required in the external communication system. The TDMA divides 

signal into time frames, and it divides the time frame into time slots, where each 

vehicle is associated with a time slot in the frame [229]. Figure 5.11 shows the 

working of TDMA. 
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Figure 5.11 TDMA Structure. 
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In addition, the TDMA can offer fairness in the sharing of communication channels 

between vehicles without employing any extra infrastructure or virtual leader vehicle 

[229]. To create a robust security system, two important challenges are addressed in 

this chapter: fuzzy logic and clustering based TDMA. 

5.4.3 Intrusion Detection System Parameters 

The accuracy detection and false alarm rate depend on the number and type of 

parameters that are utilised while designing the detection scheme [230]. In this 

system, four types of parameters are used: routing table, distance, timestamp and 

forward value (Fv). To get these parameters, each vehicle must collect data from its 

neighbour vehicles in inter-clustering. The following parameters describe normal 

and abnormal behaviours of self-driving vehicles in VANETs:  

A. Routing Table 

The routing table provides communication data of any vehicle whether in intra-

clustering or inter-clustering of autonomous vehicles. In this proposed system, each 

vehicle has an IDS to sniff, analyse and identify normal/abnormal behaviours. It is 

required to write a function in the rtable.c file or routing protocol to generate a 

routing table. Table 5.9 shows basic information of routing table generated in ns-2. 

Table 5.9 Routing Table. 
 

 

 

 

 

 

 

Notation  Value 

Vehicle ID 2 

Current Time 1.00949s 

Destination ID 3 

Next Hop 3 

Number of Hops 1 

Sequence Number 4 

Expire Time 7.0009s 

Flags 1 
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IDS installed on each vehicle will extract vehicle ID, time and number of hops 

from routing table to detect wormhole attacks.  

B. Distance and Angle of Vehicles 

A measure of distance between vehicles is an important factor in this proposed 

IDS. Each self-driving vehicle in clustering mode can calculate distance between 

itself and other vehicles, based on the values of x-axis and y-axis obtained from GPS. 

The proposed system is based on Equation 5.4 and Equation 5.5 to calculate the 

distance and angle between two vehicles: 

 

 

           &8V�	
P� = �� (I₂ − I₁)E + (R₂ − R₁)²�                                                                      (5.4) 

 

           O
:6� = arctan(R₂ − R₁) /(I₂ − I₁)                                                                            (5.5) 

 

where: (x1, y1) is the position of the first vehicle and (x2, y2) is the position of the 

second vehicle. 

C. Forward Value 

The forward value plays an important role in increasing the detection accuracy 

in self-driving vehicles. The IDS can calculate the forward value of each vehicle; it 

makes decisions based on the Fv. It is calculated from a trace file that has been 

generated from ns-2. The IDS considers a vehicle to be malicious when the vehicle 

does not forward a received packet to the destination after a particular time (5) and 

forward value (Fv) will be increased by one unit. In other words, it will increase by 

one-every time an an abnormal behaviour is observed. The Fv is notified to all 

neighbour vehicles and they update their stored value with the latest. The proposed 
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system considers behaviour of vehicles as normal when the Fv is higher than the 

threshold such as three otherwise the system will consider abnormal. 

D. Assumption 

Cooperative Awareness Messages reflect the condition of the surrounding 

environment and status messages of other vehicles that have joined the platoon. The 

status messages contain important information such as curvature, position, speed, 

acceleration, weather, ID, and more. In VANETs communication, each self-driving 

vehicle acts as a router and host. Hence a vehicle may be the source vehicle at time 

t=0 to generate CAMs. The same vehicle can function as destination to receive 

packets sent at time t=n. that the packets may have been generated from other 

source vehicles and other intermediate vehicles between source and destination like 

relay vehicles. 

Some rules are established to receive the CAMs otherwise they will be 

discarded. These rules make the performance of the proposed security system more 

efficient in terms of detection rate by reducing the number of false alarms and 

making more efficient use of network resources, such as bandwidth. These rules are 

[231]: 

1. The current CAM must differ by at least four degrees in value of heading 

from the previous messages or 

2. The current CAM must differ by at least 4m in position from the previous 

message or 

3. The current CAM must differ by at least 0.5m/s in speed from the previous 

message or 

4. The current CAM must differ by at least 1s in time from the previous 

message. 
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To avoid channel congestion and increase amount of dropped packets, these rules 

have to be checked every 100ms [152] [232].  

E. Communication Area 

A self-driving vehicle that wants to communicate with RSUs or vehicles must be 

in cluster mode. In a clustering scheme, we can find just one vehicle selected as CH 

based on the TDMA. When another self-driving vehicle joins a cluster area, the 

group must select one vehicle as CH to manage the group and control transfer of 

data between multiple vehicles, and also between vehicles and RSUs. The success of 

this proposal depends on the existing cooperation between CMs and CHs, and this 

cooperation should be within the coverage area. In other words, the vehicles and 

CHs should be under the transmission range (5Q) that helps to report abnormal 

behaviour from vehicles to CH in that zone. The area of vehicle is calculated based 

on Equation 5.6 [230]: 

OQ�	 (�Q) = Tr (Vr) - T (Smax – Smin)                                                             (5.6) 

where, 

       Tr (Vr) is the transmission range of self-driving vehicle Vr. 

       T is the packet latency in vehicles. 

       Smax is the maximum vehicle speed. 

       Smin is the minimum speed of vehicles. 

The proposed IDS algorithm relies on the following basic principles: 

1. Malicious vehicles drop or duplicate the data or control that has been received 

from other surrounding vehicles. These vehicles try to create congestion in the 

network. 

2. While a normal self-driving vehicle forwards packets that have been received 

to the right destination.  

 



5.4.2 Time Division Multiple Access (TDMA) 

207 

 

F. Intelligent Clustering-IDS  

In the clustering scheme, IDS is configured on each self-driving vehicle. The 

role of CMs is to collect and sniff information of neighbour vehicles in the zone. It is 

assumed that CHs are trusted in external communication of self-driving vehicles. 

Each vehicle uses rules and threshold to detect abnormal behaviour when 

identifying a malicious vehicle. Whether Sybil or wormhole attack; the vehicle will 

send a message to notify its CH. The CH will block and broadcast malicious IDs to 

its CMs and to other CHs. Following are the seven stages of the proposed IDS, and 

the overall architecture of the proposed security system is shown in Figure 5.12. 

1. Generate the highway mobility - in this stage, two tools are utilised to 

generate highway mobility and traffic to simulate the real environment of 

self-driving vehicles. The output files of this stage are considered input files 

to ns-2 to generate trace file and routing table of normal and abnormal 

behaviour. 

2. Network Simulator two - CMs will sniff information from other vehicles. 

They can generate a routing table for each vehicle. Each vehicle will 

broadcast 3-10 packets/second [233]. The CMs can extract features like 

timestamp, vehicle ID, GPS position and number of hops from routing table 

and trace file. 

3. Distance and angle calculation - in this stage, the proposed system can 

calculate distance and angle between vehicles based on values of x-axis and 

y-axis obtained from GPS and implementing Equation 5.4 and Equation 5.5. 

4. Detection phase - in this stage, the IDS on CMs has the ability to detect the 

wormhole attacks from parameters that have been extracted from the 

routing table and trace file. The parameters are: the number of hops, forward 

value and time. The IDS on CMs can identify the Sybil vehicles from normal 
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vehicles based on some important features, such as distance, angle and 

vehicle ID. 

5. CMs - the IDS on CMs will send notification to CH when it detects a 

malicious behaviour. It sends a warning message with full details about the 

malicious vehicle that is detected in clustering mode. 

6. Reaction of CHs - the CH will generate alarms and blocks the malicious 

vehicle to alert other vehicles in inter-clustering. It sends the same warning 

message to all CHs and RSUs in that zone.  

7. Performance metrics - in this stage, we need to evaluate the proposed IDS by 

calculating the performance metrics such as the packet delay rate, PDR and 

throughput. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12 IDS Architecture. 

As shown in Figure 5.12, the proposed system has six parameters as input to CMs 

while it has three outputs: malicious vehicle (Sybil / wormhole) and normal vehicle. 
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G. Simulation Results and Analysis                                                  

The proposed IDS can detect two of the most common but serious attacks in 

VANETs: Sybil and wormhole attacks. Each of these attacks has a different 

behaviour. Thus, each attack has different parameters to detect malicious behaviour. 

Figure 5.13 shows type parameters of proposed IDS. 

 

 

 

 

 

 

 

 

 

Figure 5.13 Type Parameters of Detection Method. 

Here, the performance of proposed IDS needs to be evaluated by analysing 

efficiency, effectiveness, and calculating the performance metrics. First, Table 5.10 is 

generated, and it describes the different parameter values that have been extracted, 

calculated and stored by each vehicle. 

 

Table 5.10 Some Extracted and Calculated Parameters. 

Time Parameters V1 V2 V3 V4 V2 

 

 

T0 

Vehicle -ID V0 V1 Vwormhole V5 V9_Sybil 

Distance Value 64.6m 97.7m 130m 67.2m 97.7m 

Angle Value -50.6° -30.7° -21° -48.01° -30.7° 

Time Stamp 7s 7s 7s 7s 7s 

Forward Value   1 3 2 1 3 

Number of hops 1 2 1 3 2 

 

 

T1 

Vehicle –ID Vwormhole V1 V4 V5 V8_Sybil 

Distance Value 86.8 m 139.2 m 139 m 107.3 m 139.2 m 

Angle Value -35.1° -

21.03° 

-21° -27.7° -21.03° 

Time Stamp 10s 10s 10s 10s 10s 

Forward Value 1 5 3 11 5 
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Number of 

hops 

1 3 5 3 3 

 

 

 

T2 

Vehicle –ID V0 V1 V4 V5 V6_Sybil 

Distance Value 126.3 m 139 m 139.2 111.8 m 139 m 
Angle Value -23.3° -21° -21° -26.5° -21° 
Time Stamp 16s 16s 16s 16s 16s 

Forward Value 1 10 8 12 8 
Number of hops 1 2 3 5 4 

 

Table 5.10 demonstrates the sample database of vehicles that has been collected 

and calculated from the routing table and trace file.  According to Table 5.10, the 

Sybil attacks are detected by using distance and angle. To detect the wormhole, 

attack the forward value and number of hops are used.  

The average classification rate is collected of two types of attacks targeting self-

driving vehicles in VANETs. Our findings are given in Table 5.11: 

Table 5.11 Classification Rate of Clustering-IDS. 

 Accuracy Class 

IDS -

Clustering 
72.05% Normal 

92.2% Abnormal 

 

The efficiency of the proposed IDS is assessed using ns-2 under two conditions: 

self-driving vehicles with IDS and self-driving vehicles without IDS. To evaluate the 

efficiency of VANET with IDS, different performance metrics are calculated, such as 

PDR, packet delay and throughput [234], as shown in Figure 5.14:  
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Figure 5.14 Performance Metrics of IDS-Clustering. 

A vital role of the proposed IDS is noticed in enhancing the performance of 

external communication in self-driving vehicles. The proposed system can fix one of 

the common security problems, which is the lack of fixed security infrastructures; by 

using the clustering mode in VANETs, a virtual gateway of control built on data 

and information between vehicles and RSUs. 

5.5 System Analysis 

Conventional security systems need to be modified in order to provide efficient 

functionality in protecting these types of VANET networks. The proposed IDS can 

protect self-driving and semi-self-driving vehicles by detecting malicious vehicles in 

its external communications. The proposed IDS is mainly suitable for dropping 

attacks that target broadcasting packets. The intelligent security system is 

implemented in seven phases: extracting fuzzy parameters, normalisation and 

fuzzification, rules, apply FPN, prediction phase, training phase and testing phase. 

Figure 5.15 illustrates the role of the security system in protecting packets that are 

sent or received between vehicles in that zone. 
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Figure 5.15 Performance Metrics for FPN-IDS. 

Artificial intelligence plays a vital role in optimising performance for most 

scientific projects [235]. Figure 5.15 reflects the vital role of FPN-IDS in enhancing the 

security of VANETs. It is evaluated under two different conditions: normal and 

abnormal. The total number of generated packets is 14402 in the two scenarios; the 

average number of received packets is 13138 of VANETs with IDS and average 

dropped packets is 1754. However, the average number of received packets is 10064 

and average dropped packets is 4982 in VANETs without FPN-IDS. It shows the vital 

role of the proposed FPN-IDS in external communication of self-driving vehicles. The 

output metrics explain the range of abnormal behaviour between 0.368 and 0.25. 

This security system is compared with a recent research [119] and it is concluded 

that the scheme provides optimum performance for false positive rate and detection 

rate. The simulation obtains 0% false positive rate as compared to the rival scheme, 

which has a false positive rate of 1.6%. The scheme has a 100% detection rate with a 

0.42 threshold value, whereas the rival system does not provide an exact measure of 

the detection rate [119]. 

According to the experiment, the author can prove the differences between the 

proportion of detection and false alarms are directly related to a threshold value. 

However, the use of FPN-IDS enhances the detection rate, whereas decreasing the 

number of false alarms. Thus, FPN has a direct and positive impact on the result by 
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increasing the detection rate, and decreasing the false alarm rate and error rate. The 

proposed security system can be extended to design other IDS which can identify and 

isolate other types of intruders, such as flooding, black hole and grey hole attacks.  

The designed response system targets packet dropping in VANETs. By 

incorporating the response system, the packet delivery rate is improved and the end 

to end delay of the packet is reduced. 

The Clustering-IDS can overcome two common problems; some self-driving 

vehicles have the same angle but different distances and others have the same distance 

but different angles. If the proposed IDS is just based on these features, it will be 

confused in detection which would directly have a negative impact on the detection 

rate and the number of false alarms, as shown in Figure 5.16. 

 

 

 

 

 

 

 

 

Figure 5.16 Case 1 and Case 2 of Self-Driving Vehicles. 

To validate our system, we need to compare our results with other security system 

such as FPN-IDS [19].  

Table 5.12 Classification Rate of IDS. 

      IDS Accu

racy 

Class 

IDS -Clustering 

72.05

% 

Normal 

92.2% Abnormal 

IDS-FPN 58.33 Normal 
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% 

100% Abnormal 

 

Regarding Table 5.12, a vital role of the IDS-clustering is noticed in enhancing the 

detection rate of normal behaviour in self-driving vehicles, while IDS-FPN has better a 

detection rate than IDS-clustering for abnormal behaviour. In future, we can design 

clustering FPN to get better detection results of normal and abnormal behaviours. 

The design of hierarchical IDS based on the clustering mode enhances the detection 

rate of the proposed IDS in VANETs. Hence IDS-clustering has a direct and positive 

impact on the resulting system because of the increase in the detection rate, and 

decrease in the false alarm rate and error rate. The proposed IDS can be extended to 

build other IDS which can detect other types of attacks, such as flooding, black hole 

and grey hole attacks. 

Both virtual layer that is design on BusNet and the Trust Third Party (TTP) are 

integrated to build the security system of autonomous vehicles which is the final 

product of this research. The integration process will be discussed in detail in chapter 

six showing how the integrated-IDS will enable the detecting and blocking of various 

attacks that threaten the communication system of self-driving and semi self-driving 

vehicles.  

5.6 Summary  

An anomaly FPN-IDS was proposed in this chapter to secure the external 

communication system of self-driving vehicles. It is based on the extracted parameters 

that are calculated from the trace file. The FPN-IDS is considered a novel security 

system to protect VANETs because this is the first time a FPN was used in the design 

of a security system for VANETs. A response system has been proposed in this 

chapter which protects compromised vehicles by ensuring communications that are 

free from intermediaries. An advantage of doing so is that the proposed system 
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achieves a higher packet delivery rate and also improves the end to end delay.  

A new response methodology, a ‘safe mode’ on the data link layer is designed to 

introduce the infected vehicles in the safe mode at a suitable time. It can be applied to 

compromised vehicles in order to mitigate the damage caused by the attack. Under 

normal circumstances, these vehicles are connected with their surrounding 

communication infrastructure. The safe mode allows the compromised vehicle to 

communicate directly with the nearby RSUs without any intermediary. Placing a 

vehicle into ‘safe mode’ provides partial isolation so that recuperation can take place.   
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CHAPTER SIX 

INTEGRATED INTRUSION DETECTION SYSTEM FOR 

IDENTIFYING VARIOUS ATTACKS 

"The most incomprehensible thing about the world is that it is 

comprehensible"  

Albert Einstein 

n this chapter, an integrated-IDS is proposed to secure the external 

communication system of vehicles against various potential attacks. It is 

composed of two security systems: BusNet-IDS and distributed-IDS, which 

are designed to work together. These security systems are based on three components, 

namely BusNet/virtual layer information, trace and log files information of ns-2 and 

Center Database (position information, time and ID). This information helps 

integrated-IDS to detect various attacks such as Sybil, rushing, flooding, drooping, 

black hole, impersonation and grey hole attacks. 

A hierarchical intrusion detection system is based on BusNet layer to 

sniff/eavesdrop the information among vehicles and send these messages to the 

closest RSU. The detection process is based on features that have been extracted from 

control data and warning messages to distinguish between normal and abnormal 

behaviours. In this security system, the proposed IDS is configured on each RSU to 

identify abnormal behaviour for vehicles. This security system has the ability to detect 

various DoS attacks, such as black hole, grey hole, drooping and flooding attacks. 

Unfortunately, this system cannot detect some tricky attacks, such as Sybil attack. 

Therefore, a distributed-IDS is proposed in this chapter to secure self-driving vehicles 

from Sybil attack.   

I
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The distributed-IDS is based on Trust Third Party (TTP), like a central dataset to 

register the position, time and ID for each vehicle on the roads to detect Sybil attacks.  

In addition, Sybil attack is a leading cause of many types of other attacks, such as 

node impersonation and fabrication attacks. In other words, the distributed-IDS can 

detect/identify Sybil, impersonation and fabrication attacks. The application of this 

security system requires the following: 

• All vehicles must be recorded, and they must have an identification 

number (ID) in any database of roadside units. 

• The database is distributed to all roadside units. 

• All roadside units must be wire connected with each other (share the 

same database).  

Designing a robust and reliable security system which can protect the external 

communication system from various attacks. BusNet-IDS system is integrated with a 

distributed-IDS to detect various attacks. In other words, integrated-IDS is composed 

of the BusNet-IDS and the distributed-IDS to secure VANETs from Sybil, rushing, 

flooding, black hole, impersonation, drooping and grey hole attacks.  

The detection method can detect abnormal behaviour with a less false alarm rate 

as is shown by the experiments with the ns-2. The contribution of this chapter can be 

summarised in three points: 

• Proposing the BusNet-IDS: creating a virtual layer between vehicles and RSUs to 

sniff information and data that is exchanged between vehicles, and calculate/ 

extract the features from the collected data. These features will be transferred to 

the closest RSUs in its radio coverage area. 

• Proposing the Distributed-IDS: installed TTP like central dataset to register the 

position for each vehicle on the roads to detect Sybil attacks. In this case, the 

proposed system has local and global datasets about all registered vehicles. In 

this system, a mobile agent is proposed and attached with each vehicle to collect 
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and send important information to the closest RSUs. In addition, two datasets are 

established in this system which are: a local dataset on RSU and a global dataset 

on the TTP. Finally, the detection system heavily depends on sharing dataset 

between RSU with TTP in identifying normal and abnormal behaviour. 

• Proposing Integrated-IDS: it is proposed to detect various attacks, such as 

rushing, flooding, grey hole, black hole and Sybil attacks. In addition, the 

proposed integrated system is more efficient, faster, and effective than ordinary 

IDS.  

6.1.  Integrated Intelligent Intrusion Detection System 

To create a practical and robust system an integrated-IDS been proposed in this 

chapter. The proposed security system is created by merging two security systems i.e. 

the BusNet-IDS and the distributed-IDS. The resulting system can detect a range of 

attacks, such as Sybil, black hole, grey hole, flooding and rushing. In the proposed 

design, the content of a message is determined by selecting one of two integrated IDS. 

i.e., BusNet-IDS or distributed-IDS. This section gives the IDS detection process for 

identifying various attacks as given in Algorithm 6.1. 

Algorithm – 6.1 Detection Process for the Proposed Integrated-IDS 

1. 
Input: Stream of received messages (msgs) from vehicles; whether control data, CAMs, 

Notification or warning messages.  

2. Output of the proposed detection system: normal or abnormal behaviours.  

3.    For each received message from vehicles do \\ received at RSUs 

4. 
         Analyse the content for all received msgs \\ Classification of the received 

msg is broadcast from Bus or normal vehicles 

5.      If msg content is features detection, then Bus_msg 

6. 
              Bus_msg \\ the proposed IDS will apply the rules detection to identify 

the attack type  

7.            IfIfIfIf  YA > Y� and, 
8.             (YE / YA) ≤   thenthenthenthen: the source vehicle is flooding attack 

9.                  Else IfElse IfElse IfElse If  Y�> I, 
10.                     Y¥> Y¦ and, 
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11.                      (Y§ / Y�) <   thenthenthenthen: the source vehicle is drooping attack intentionally 
12.                        Else If Y¥ < Y¦ then this is congestion drop 

13.        Else: normal connection 

14.          End if 

15.            End if 

16.         End if 

17.       Else: vehicles msg 

18.   For each received msg from vehicles, do 

19.        The IDS on RSU will analyse the msg content\\ vehicle number and position 

20. 
       If vehicle number match with database and the same vehicle number has two 

different positions at time n then 

21. 

          This is malicious vehicle (Sybil)\\ the proposed system will match received 

number of vehicles with local and global database that are stored on RSU and 

Trusted Third Party 

22.        Else: Normal behaviour 

23.     End if 

24.   End for 

25.    If the IDS detect malicious behaviour, then: 

26. 
             Block and broadcast warning msgs to all vehicles in that radio coverage 

area 

27.   Else: confirm the normal behaviour 

28.     End if 

29. End for 

The Algorithm 6.1 describes the principal work of the proposed integrated-IDS. 

The BusNet-IDS and distributed-IDS are discussed in more details of the individual 

systems. The detection rules � 1 are created from the calculated/extracted features. 

These rules are considered the backbone of the proposed system in the detection and 

the classification process, as explain below:  

• Flooding vehicle is detected in the VANETs if rules (�A 	
� �E) hold:  

        � A: if YA > Y� and, 

        �E : (YE / YA) ≤   then the source vehicle is flooding attack.  

where threshold   is 0.85, the �A check the number of packets generated. In other 

words, it will check if the intruder sent packets traffic exceeds the communication 
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traffic or the attacker broadcasts more than communication capacity. On the other 

hand, �E will compare the PDR value with   value, i.e. if the PDR value is less than 

the   value, the source vehicle is flooding attack. 

• Intentional dropping vehicle - black hole, grey hole and rushing are detected 

in VANETs if rules � �, � �, and � � hold: 

� � : if Y�> I, 

� �: Y¥> Y¦ and, 

� �: (Y§ / Y�) <   then the source vehicle is drooping attack intentionally. 

where threshold I is 15 and the dropped packets number exceeds the threshold value 

in ��. The �� checks the dropped packets whether is due to intentional or congestion. 

In addition, the congestion drop happens when the number of received packets at the 

loss monitor vehicle - intermediate is greater than the   value; otherwise, it is an 

intentional drop. The � � checks the communication system performance (PDR). When 

PDR is less than the   value, and � � and � � hold, that means dropping attacks 

happened in the external communication system for self-driving and semi-self-driving 

vehicles. 

• Congestion dropping vehicle is detected in VANETs if rule � § hold: 

� § : if Y¥ < Y¦ then this is congestion drop. 

If the � § holds then the security system can detect that the loss monitor vehicle – 

intermediate has made dropping packets due to congestion.  

6.1.1 Intrusion Detection System Based on BusNet Layer  

A BusNet-IDS is a hierarchical system that is based on a virtual layer. This layer is 

established between vehicles and RSUs for sniff communication data between them. 

In detail, BusNet is the bus vehicles utilised to gather conversion data exchanged 

between vehicles. It works like a cluster-head to monitor and eavesdrop control data 
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and CAMs of members’ cluster, which are self-driving vehicles. Hence, it plays a vital 

role in transferring this detection data to its closest RSUs on road side.  

The BusNet layer is just a virtual mobile skeleton infrastructure that is created 

using public buses. The proposed security system gathers the routing control 

messages and data packets transmitted among the vehicles using the bus nodes as the 

cluster-heads. The bus nodes in this situation will calculate/extract the detection 

features from the original network behaviour information; and these buses will send 

these extracted features to the closest IDS on the RSUs. When this is done, the road-

side unit will be able to see the global view of the vehicular ad hoc networks and it 

can identify abnormal behaviours by data analysis. It is composed of three layers: 

• First layer: vehicle layer 

• Second layer: virtual layer 

• Third layer: RSU layer 

In addition, the structure of these layers is shown in Figure 6.1. 

 

 

 

 

Figure 6.1 Three layers of the Detection System. 

Figure 6.2 shows the significant role of BusNet layer in sniffing/eavesdropping 

data that is transferred/received among moving vehicles and RSUs. However, it can 

collect data/CAMs, warning messages and notification messages from self-driving 

vehicles and send it to the closest RSUs. 
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Figure 6.2 BusNet layer Structure. 

This security system will solve one of the most significant problems for the 

wireless channels which is lack of centralised infrastructure. In other words, the 

BusNet/virtual layer will work like central communication system between vehicles 

and RSUs. 

6.1.1.1 Features Generation  

A cluster-based BusNet-IDS is not only able to identify an attack, but also to 

classify the potential attack types on the VANETs. Various types of features are 

evaluated by capturing packets from communication systems [236]. In a normal 

communication behaviour, extracted features are divided into four categories: traffic 

patterns, network topology, statistics and routing operations  [237]. Hence, the 

proposed security system heavily depends on features vectors that are extracted/ 

calculated from trace and log files of ns-2. 

The trace and log files of ns-2 describe the events of the external communication 

for autonomous vehicles. It contains many feature vectors which are utilised for 

analysis. The features describe normal and abnormal behaviours in VANETs. The 

type and the number of extracted/ calculated features play an important role in the 

efficient and effective performance of the proposed security system.  
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In general, the statistics are classified into two types, traffic-related and non-

traffic-related. The mobility, trace and log files are utilised in calculating the non-

traffic-related statistics, such as average route length, route removal count, total route 

changes and route add count. Whereas the traffic-related statistics are calculated 

based on trace and log files. In other words, these features involve counting the 

number of sent, received and forwarded packets between vehicles and RSUs. These 

features are the number of route reply messages, the number of packets received and 

the number of packets forwarded [237]. In this chapter, some traffic-related statistics 

features are calculated/ extracted from the trace and log files of ns-2 that are presented 

as follows: 

• Feature_one: it is the number of packets that were transmitted from the 

source vehicle to the destination vehicle. 

• Feature_two: it is the number of packets that were received at the destination 

vehicle from the source vehicle. 

• Feature_three: it is the maximum number of packets that were received at 

destination vehicle without drop. 

• Feature_four: it is the number of packets that were received at the 

intermediate vehicle – router. These packets are transmitted from the 

source vehicle to the destination vehicle. 

• Feature_five: it is the number of packets dropped by the loss monitor vehicle 

– intermediate that were sent from the source vehicle to the destination 

vehicle. 

• Feature_six: it is the number of packets received by the destination vehicle 

that were forwarded by the loss monitor vehicle. 

• Feature_seven: it is the total number of arriving packets to loss monitor 

vehicle that were sent from the source vehicle. 
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• Feature_eight: it is the maximum number of received packets at the 

destination vehicle that were forwarded by the loss monitor vehicle.  

The BusNet vehicles are only responsible for calculating features rather than 

capturing every vehicle’s communication features. This is considered a unique aspect 

of the proposed BusNet-IDS that makes it a robust and reliable system. Besides, the 

overall performance communication of self-driving vehicles is noticeably better, 

reducing traffic overhead and burden on VANETs.   

6.1.1.2 Detection Rules 

In BusNet-IDS, the detection rules are formulated to detect various attacks on the 

communication system for self-driving vehicles. In other words, the proposed IDS in 

the detection process is mainly based on these generated detection rules. The system 

is composed of features Y� where 
 ∈ ℕ and 1 ≤ 
 ≤ 8. These features will help the 

proposed IDS to distinguishing between normal and abnormal behaviour. In addition, 

it has the ability to classify the malicious behaviour into categories, such as flooding 

and drooping attacks.   

In the previous chapters, the proposed IDSs only have the ability to detect the 

intentional drop because the optimal communication environment is supposed to be 

in the external communication of self-driving vehicles. In other words, we assume 

that autonomous vehicles can communicate with high bandwidth channel without 

congestion. However, the proposed IDS in this chapter has the ability to classify 

between intentional and congestion dropping. Hence, it can adopt with all 

communication circumstance.  

6.1.1.3 BusNet-IDS Architecture 

A hierarchical proposed IDS involves three layers of architecture and IDSs 

integrated with all RSUs. A novel security system is proposed in this chapter that 
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Abnormal Behaviour 

utilised a virtual layer to protect the sensitive information and control data for self-

driving vehicles from the potential attacks. The detection rules of the BusNet-IDS are 

designed on features vectors that described communication behaviours among 

vehicles. These features are calculated/ extracted from the routing protocol packages. 

In other words, IDS heavily depends on features vectors that have been extracted 

from trace and log files on its detection process, such as rrouter.tcl, trace.tr and 

rtable.tcl files. Figure 6.3 shows the BusNet-IDS structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 Proposed BusNet-based Intrusion Detection System. 

The role of virtual layer/bus vehicles is to sniff, calculate and send features 

detection from the exchange information and control data between vehicles to the 

closest RSUs that were designed with BusNet-IDS. The extracted/calculated features 

are part from the virtual layer on the bus vehicles. It has the ability to calculate 

- Eavesdrop/sniff on the Communication 

Messages between vehicles 

- Calculate features detection. 

- Sending the extracted features to the 

closest RSUs. 

BusNet-IDS  

The BusNet-IDS has 

two outputs: 

Normal Behaviour 
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communication features from the behaviour’s, whereas, the detection rules are 

configured with the proposed BusNet-IDSs that were designed on all RSUs. These 

rules are considered the backbone to the security system created to identify the 

potential attacks. Hence, these features are utilised in the detection phase for IDS.  

The normal and abnormal behaviours are output in detection phase for IDS. In 

this phase, the extracted features will be matched and compared with the detection 

rules that were pre-defined for normal behaviour to detect the malicious behaviour. In 

addition, the security should detect/identify any attack that plays a direct and 

negative role on communication vehicles of autonomous vehicles.   

6.2 Distributed-IDS to Detect Sybil Attacks Based on the Dynamic 

Position of Vehicles 

The major function of VANETs is the provision of improved safety and security 

for passengers, drivers and vehicles. The open wireless communication medium 

encouraged intruders to lunch various attacks, including Sybil. This attack on the 

external communication of self-driving can cause serious damage to the safety and 

privacy of passengers and drivers in many ways. The Sybil attacks target the accurate 

location and position information in self-driving vehicles. Hence, this attack can lead 

to serious life threats. 

Position-based information dissemination and location information are 

considered a critical issue for VANETs in autonomous vehicles, and essentially all 

safety applications [238]. In addition, this information plays a direct and important 

role on the precision of collision avoidance, CAMs, notification messages and control 

data.  

A Sybil attack is composed of broadcasting multiple fake identities with false 

information to break/defeat the strength or trust of an existing communication system 

[239]. The detection process of a malicious vehicles location becomes a difficult task 
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when Sybil attacks are launched in the external communication system for self-

driving vehicles [239]. The Sybil is one of the discussed attacks and is studied owing 

to the following reasons [59]: 

• Sybil attack is a leading cause of many types of other attacks such as node 

impersonation and fabrication Attacks. 

• This kind of attacks is intended to target safety applications in VANETs. 

• Sybil attacks vehicular networks: this attack makes identifying or 

distinguishing the malicious vehicle location very difficult. 

• Temporal and spatial constraints make detection Sybil’s attacks in VANETs a 

difficult issue. 

• This attack has the ability to defeat the redundancy mechanisms of distributed 

systems [240]. 

• Most privacy-preserving schemes are vulnerable to Sybil’s attacks. 

• This attack has a negative impact on all aspects of network such as network 

topologies connection, network bandwidth, consumption and human life [59]. 

The Sybil attacks have two common aspects of the attacks on the communication 

of the vehicles are [241]: 

1. Sybil attack: in this case, the attacker will be on the side of the road and an 

illusion of a congestion on a road by sending multi-cooperative awareness 

messages to vehicles with fake IDs or pseudonyms. 

2. Denying Existence of a Congestion: this type of attack aims to obscure real 

congestion for the rest the vehicles, which increases the seriousness of the 

situation. 

This chapter focuses on the detection of various attacks in distributed-IDS. A 

novel use distributed-IDS is proposed to identify Sybil attack in communication 

system. The security system is heavily based on local and global datasets that were 
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collected from moving vehicles. In other words, a mobile agent is proposed and 

attached with each communication system of vehicle to collect and send the detection 

database to the closest RSUs which are: vehicle ID, time and position information. The 

distributed database on each RSU is connected with a global database that was saved 

on the Trusted Third Party. 

To deal with transmissions of false information, there are mainly two schemes 

which are: a trust-based scheme and data-centric scheme [108]. In trust-based scheme, 

centralised and decentralised infrastructures have been adopted to identify false 

information [242], [243]. Unfortunately, this scheme cannot detect the false emergency 

information when it comes from a trusted source [108]. Misbehaviour detection 

approaches have been proposed to identify malicious behaviour in vehicular 

networks that were based on data-centric technique [244], [243]. 

 In this chapter, a distributed-IDS is proposed to secure the external 

communication system that is based on a data-centric scheme. The Distributed-IDS 

will be designed on RSUs to detect Sybil and impersonation attacks on VANETs. This 

proposed IDS can differentiate between normal and abnormal (Sybil, impersonation 

and fabrication) behaviour of vehicles in the network. The security system determines 

this using local and global databases of vehicles’ positions and their associated 

identification. If an abnormal behaviour is detected, then the ID of the attacking 

vehicle is broadcast to nearby vehicles and RSU. Figure 6.4 illustrates the basic 

infrastructures and the scenarios of the IDS to detect Sybil and impersonation attacks. 

The application of this proposed security system has the following requirements.   

• All vehicles must be recorded and there must be an identification number (ID) 

in any database of the RSUs. 

• The database is distributed to all RSUs. 

• All RSUs must be connected to each other (share the same central database).  
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The connection with the VANET cannot be established in situations where a 

vehicle ID is not registered with the RSU.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 Scenarios for the distributed-IDS. 

A Sybil attack scenario in figure 6.4 consists of the TTP is node_0, RSUs are nodes 

(1,2,3, and 4) with wireless communication range of 600m and moving vehicles are 

remaining nodes within a communication range of 250m.  

The Sybil Scenario:  

• Vehicle ID_no. 250 has updated its position to RSU_3. 

• Vehicle ID_no. 88 has sent a message to vehicle ID_no. 250. 

• The message issued by vehicle ID_n.88 will be compared to the database of 

vehicle ID_no. 250. The RSU provides a new database to vehicle ID_no. 250 

and the intrusion detection system in vehicle ID_no. 250 will be verified from 

the position of the vehicle. 

• In this situation, it is detected that the number of this vehicle is in another 

area so a message is issued to all other vehicles that this vehicle is malicious 

and will be blocked/isolated. 
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• Vehicle ID_no. 28 has updated its position to RSU_ 2. 

• In this case, it is detected that the number of this vehicle is in another area, 

issuing a message to all vehicles that this vehicle is malicious and the 

vehicle is isolated. 

• Vehicle ID_no. 3 has updated its position on the roadside unit number 3. 

• In case the vehicle is not recorded in roadside units, they cannot connect 

with VANETs. 

• The status of database for RSUs will change dynamically with the 

movement of vehicles. 

• The vehicles must update the status of location depending on their 

movement. 

This attacker can attack by sending a fake number of CAMs with different IDs and 

pseudonyms to other vehicles, which creates an unreal image of the traffic of vehicles. 

This generates a kind of confusion in traffic, leading to a lot of accidents. For the 

detection of malignant vehicles, all vehicles should be recorded in roadside units. 

These roadside units are maintained by a trusted third party (government), and they 

are spreaded along the road. In this approach, RSUs will change and share traffic 

information about the existing vehicles with TTP in that radio coverage area. When 

the vehicle enters a new area, a new connection should be established with the 

roadside units. The roadside units will provide the TTP with a message carrying ID 

for all existing vehicles in the area. The sample of vehicles information shown in table 

6.1 that is collected from RSU1, RSU2, RSU3 and RSU4 s: 

Table 6.1 Sample of Vehicles Information 

RSU_1 

Time/sec ID 
Position 

X axis Y axis 

60 0 277.33 313.35 
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60 2 226.82 313.35 

65 0 313.35 198.10 

65 2 301.12 313.35 

70 2 280.64 316.64 

70 4 316.64 194.23 

75 1 160.50 313.35 

75 2 201.52 316.64 

75 4 316.64 290.88 

80 1 279.50 313.35 

RSU_2 

30 1 178.77 13.35 

35 1 285.33 13.35 

40 1 308.16 13.35 

45 1 308.09 16.64 

50 1 262.99 16.64 

55 1 176.92 16.64 

60 3 253.01 13.35 

60 4 243.84 10.05 

60 5 197.41 10.05 

65 3 304.85 13.35 

RSU_3 

0 21 10.05 300.84 

0 22 10.05 300.84 

0 23 10.05 300.84 

120 18 16.64 184.57 

120 27 13.34 165.89 

120 28 10.05 238.66 

120 29 10.05 238.66 

120 30 13.33 282.33 

120 31 10.05 300.84 

120 32 10.05 300.84 
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RSU_4 

85 18 13.34 144.95 

90 0 29.16 16.64 

90 3 21.56 16.64 

90 7 13.35 25.31 

105 2 13.35 89.60 

105 3 21.56 16.64 

105 14 85.58 13.35 

105 23 13.34 141.61 

110 0 29.07 16.64 

110 2 13.35 69.07 

The detection process of distributed-IDS is heavily based on shared database that 

are mentioned in Table 6.1. In more details, the position, time and ID of vehicles play 

an important role in detecting and blocking Sybil attacks. 

6.3 Integrated-IDS Design and Methodology  

The proposed security system provides safety and security environment for the 

communication system in self-driving vehicles. The proposed systems will work 

together to detect various attacks that were mentioned above. In general, the road side 

communication stations will handle different notifications, warnings, cooperative 

awareness messages from moving vehicles in their respective radio coverage area. In 

this proposed security system, the content of a received message is specified by 

choosing one of two the integrated IDS i.e. Distributed-IDS or BusNet-IDS. The steps 

below explain the methodology that follows in designing this security system.  

• Step_one - Creating mobility and traffic model: in this step, SUMO and 

MOve software are employed in generating Manhattan mobility and traffic 

scenarios for self-driving and bus vehicles. The output files from this step 

will be associated with ns-2 in the step two.  
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• Step_two - Establishing communication environment: the communication 

scenario for vehicles is configured based on ns-2. In addition, all moving 

vehicles whether vehicles or buses are connected with RSU, as well as 

establish a TTP. In this scenario, all RSUs are connected by wire with the 

TTP. The output files of ns-2 reflect all communication behaviours 

between vehicles and with RSUs. The proposed BusNet-IDS system is 

based on features that have been extracted from trace file of ns-2. Whereas 

the distributed-IDS is based on local and global database (share database) 

that are collected from moving vehicles behaviour, as shown in Figure 6.5. 

 

 

 

 

 

 

 

          

 Figure 6.5 Mobility and Traffic scenario.  

• Step_three – Creating select condition for IDS: the content of a received 

message is determined by selecting one of two integrated IDS i.e. BusNet-

IDS or Distributed-IDS. In other words, if the message is composed of 

feature behaviour obtained from the virtual layer of the Bus vehicle, then it 

is forwarded to the BusNet IDS. Whereas, if the message contains a vehicle 

axial positions, time and ID then the message is analysed by the 

distributed-IDS.  
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• Step_four - Designing BusNet layer: this layer is a virtual mobile backbone 

infrastructure that is built utilising bus vehicles. In other words, mobility 

nodes work as cluster-heads to sniff/ collect the CAMs, beacons, warning 

messages and routing control data that were transmitted/ sent between 

vehicles in radio coverage area. This layer has the ability to transmit the 

VANETs behaviour information to the closest RSUs. In addition, this 

virtual layer has the ability to calculate features connection between 

vehicles. The features that reflect normal behaviour are 

extracted/calculated from trace files that were collected from the BusNet 

layer. The detection system relies on features that were described as 

normal behaviour for vehicles. For example, normal behaviour means that 

the time interval between two beacon transmissions is 0.4 sec, the payload 

size of packets is 512B and CBR is traffic application. These vehicles are 

responsible for sending the extracted features that were mentioned above.   

• Step_fifth – Designing BusNet_IDS: in this IDS, the detection rules are 

formulated to detect various attacks that were based the extracted features. 

In other words, the proposed BusNet-IDS in the detection process mainly 

based on these generated detection rules. The system is composed of 

features Y� where 
 ∈ ℕ and 1 ≤ 
 ≤ 8. These features will help the 

proposed security system to distinguish between normal and abnormal 

behaviours. In addition, it has the ability to classify the malicious 

behaviour into categories such as: flooding and drooping attacks. The 

performance of the BusNet-IDS is evaluated in the experimental results to 

measure the detection rate, false alarm and error rate.   

• Step_six: Designing Distributed_IDS: the IDS is heavily based on local and 

global databases/ shared database that were collected from moving 

vehicles. In more details, a mobile agent is proposed and attached with 
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each communication system of vehicles to collect and send the detection 

database to the closest RSUs, which are vehicle ID, time and position 

information. The distributed database on each RSU is connected and 

shared with a global database that was saved on the TTP. 

The overall architecture of the proposed Integrated-IDS is shown in Figure 6.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 Integrated-IDS Flowchart. 

Shown in Figure 6.1 is the Integrated-IDS aims to detect various types of attacks 

using a combination of a distributed-IDS and BusNet IDS. Traffic messages are 

received by the IDS placed in the RSU. The messages are analysed for vehicle ID, time, 
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position and feature behaviour. In other words, the proposed IDS is heavily based on 

information that have been extracted from trace, rtable, rrouter files of ns-2. 

If the message is composed of feature behaviour obtained from the virtual layer of 

the Bus vehicle then it is forwarded to the BusNet IDS. This IDS will distinguish 

between normal and abnormal (flooding or dropping) behaviours of vehicles. If an 

abnormal behaviour is detected then the ID of the attacking vehicle is broadcast to 

nearby vehicles and RSU. 

If the message contains a vehicle ID and axial positions then the message is 

analysed by the distributed-IDS. This IDS can differentiate between normal and 

abnormal (Sybil, impersonation and fabrication) behaviours of vehicles in the 

network. The IDS determine this using local and global database of vehicles’ positions 

and their associated identification. If an abnormal behaviour is detected, then the ID 

of the attacking vehicle is broadcast to nearby vehicles and RSU.  

6.4 Experiment Simulation 

The proposed integrated-IDS was implemented on an ns-2 network simulator 

platform. It has a simulation area of 600m *600m with a number of vehicles ranging 

from 20 to 500.  In Table 6.2, some of the parameters used in simulating VANETs are: 

Constant Bit Rate (CBR) application that sends constant packets through a transport 

protocol such as (UDP or  TCP), and Radio Propagation Model (Two Ray Ground) 

[98]. 

Table 6.2 Simulator Environmental and Parameters. 

Parameter Value 

Simulator ns-2.35 

Simulation time 450s 

Number of nodes 500 Vehicles 

Number of RSUs 4 RSUs 

Type of Traffic Constant Bit Rate (CBR) 

Topology 600 x 600 (m) 

Transport Protocol UDP- TCP 
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Packet Size 512 

Routing Protocol  V-AODV 

Channel type Wireless 

Queue Length 50 packets 

Number of Road Lanes 4 

Radio Propagation Model Two Ray Ground 

MAC protocol IEEE 802.11p 

Speed 40 m/s 

Interface queue type Priority Queue 

Network Interface type Physical Wireless 

Mobility Models Manhattan Mobility Model 

The initial parameters are one of the important issues in ns-2 because they play a 

vital role in specifying the performance, mobility, traffic type and behaviour of 

vehicles that are  mentioned in Table 6.2.  

To evaluate the detection performance of the proposed integrated-IDS, a 

malicious behaviour is created, whether flooding, dropping, Sybil attacks, in the 

external communication of self-driving vehicles. In other words, normal and 

malicious behaviours are generated in the scenario of the proposed IDS to evaluate its 

detection performance. The abnormal behaviour was established in the ns-2 utilising 

the OTCL script and OOP. In these scenarios, some files are required to 

modify/update in V-AODV of VANETs routing protocol. In this thesis, a V-AODV 

routing protocol is utilised in designing the proposed security system that was 

mentioned in details in chapter two. The DoS - Flooding is designed to bring 

connection down by sending/ generating large amounts of traffic that cause a halted 

connection between vehicles. Whereas DoS - Dropping attack drops received packets 

rather than forwarding them to the destination vehicle in that radio coverage area. In 

this section, the performance of integrated-IDS is evaluated under normal and 

abnormal behaviour.  
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6.4.1 BusNet-IDS Evaluation  

 Two types of scenarios, normal/ malicious behaviour and ns-2 are required to 

evaluate/ test the performance of proposed BusNet-IDS. These behaviours are 

simulated under certain conditions in order to reflect the efficiency and effectiveness 

of the security system. The virtual layers that were configured on Bus vehicles will 

calculate and send the significant features periodically to IDS on the closest RSU. In 

addition, a criterion is required to measure the efficiency of the proposed security 

system, and to clarify its role in improving the performance of the external 

communication systems. The proposed evaluation criteria are detection rate, PDR, 

false alarms and error rate [211].  

Table 6.3 Performance Metrics of BusNet-IDS. 

Detection Status PDR Value Time/s

ec 

Congestion 69.23% 35.0 

Normal 87.09% 40.0 

Normal 90.69% 45.0 

Normal 93.33% 50.0 

Drooping – vehicle 6 22.49% 55.0 

Drooping – vehicle 6 21.74% 60.0 

Drooping – vehicle 6 19.66% 65.0 

Drooping – vehicle 6 21.06% 70.0 

Normal 89.79% 75.0 

Congestion 60.65% 80.0 

Congestion 64.23% 85.0 

Normal 97.15% 90.0 

Normal 98% 95.0 

Normal 80.32% 100.0 

Normal 90.72% 105.0 

Normal 92.41% 110.0 

Normal 92.02% 115.0 

Dropping – vehicle 42 21.27% 120.0 

Dropping – vehicle 42 19.29% 125.0 

Dropping – vehicle 42 20.22% 130.0 
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Dropping – vehicle 42 16.95% 135.0 

Normal 95.04% 140.0 

Normal 95.85% 145.0 

Congestion 72.19% 150.0 

Flooding – vehicle 31 0.212% 155.0 

Flooding – vehicle 31 0.190% 160.0 

Flooding – vehicle 31 0.197% 165.0 

Flooding – vehicle 31 0.183% 170.0 

Flooding – vehicle 7 18.82% 175.0 

Flooding – vehicle 7 17.43% 180.0 

Flooding – vehicle 7 19.17% 185.0 

Flooding – vehicle 7 14.01% 190.0 

Congestion 78.68% 195.0 

Normal 90.06% 200.0 

Normal 91.46% 205.0 

Normal 91.36% 210.0 

Flooding – vehicle 6 22.49% 215.0 

Flooding – vehicle 6 21.74% 220.0 

Flooding – vehicle 6 19.66% 225.0 

Flooding – vehicle 6 21.06% 230.0 

These metrics are required to approve the detection efficiency of the proposed 

IDS. The normal, dropping, flooding and congestion behaviour are output result of 

the proposed IDS that are described in table 6.3. The average of detection rate is 

95.85% in our security system.  

Table 6.4 shows the detection rate, error rate, TN and FP alarms that are generated 

in the detection phase of the IDS and it also shows the role of the threshold value and 

its impact on the accuracy of detection rate. These alarms are calculated by equations 

3.5 and 3.7 that were mentioned in chapter three. 

Table 6.4 Performance Metrics with False Alarm of BusNet-IDS. 

Average Error 

Rate 

Average Detection 

Rate 
Class 

2.58% 97.42% Abnormal behaviour 
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Alarm Rate & Threshold – Flooding Attack 

False Positive True Negative Threshold 

0.0% 100% 0.0 

100% 0.0% 0.1 

100% 0.0% 0.2 

100% 0.0% 0.3 

0.0% 100% 0.4 

0.0% 100% 0.5 

0.0% 100% 0.6 

0.0% 100% 0.7 

0.0% 100% 0.8 

0.0% 100% 0.9 

0.0% 100% 1.0 

Alarm Rate & Threshold – Dropping Attack 

0.0% 100% 0.0 

100% 0.0% 0.1 

100% 0.0% 0.80 

100% 0.0% 0.81 

0.0% 100% 0.82 

0.0% 100% 0.83 

0.0% 100% 0.84 

0.0% 100% 0.85 

0.0% 100% 0.86 

0.0% 100% 0.87 

0.0% 100% 0.88 

0.0% 100% 0.89 

0.0% 100% 0.9 

  0.0% 100% 1.0 

In Table 6.4, the BusNet-IDS can achieve the significant security improvement on 

the communication system of self-driving vehicles under Flooding and Dropping 

attacks with an average error rate 2.58%. This IDS has been formally presented in a 

research paper which was been submitted to EST Conference Kent 2017, United 

Kingdom, 20-21 September 2017. 

6.4.2 Distributed-IDS Evaluation  

The detection process in this approach is heavily based on sharing information of 

RSUs and TTP. This IDS is tested under normal and abnormal behaviours to assess its 



6.4.2 Distributed-IDS Evaluation 

241 

 

role in identifying any malicious behaviour. In the detection phase, the collected 

information of vehicles is employed for testing the ability of the IDS in identifying the 

malicious behaviour in the external communication system of self-driving vehicles. 

Table 6.5 shows the accuracy of performance detection, TN, FP and error rate of the 

proposed distributed-IDS. These metrics reflect the efficient and effective performance 

of the distributed-IDS that were calculated in Table 6.5.  

Overhead rate of communication, messages and update location are required to 

measure the detection efficiency. The communication overhead is calculated for the 

proposed distributed-IDS to measure the efficiency of the communication system for 

self-driving vehicles. In more details, communication-overhead, messages-overhead 

and location update-overhead are calculated of the communication system for the self-

driving vehicles as shown in table 6.6. These values of overhead rate are associated 

with the number of attacks on the communication system of vehicles. 

                                            Table 6.5 Performance Metrics of distributed-IDS. 

 

 

 

 

 

 

The calculating process of the overhead values based on equations 6.1, 6.2 and 6.3: 

 F�VV	:�V − 
h�Qℎ�	� =  nOF �Q	UU8P                                                   (6.1)  

 

Error Rate Detection 

Rate  

Class  

2.0%  98%  
       Abnormal 

behaviour  

Alarm Rate with Attack Number  

    False 

Positive  

True 

Negative  

Attack 

Number  

0.0%  100%  1  

0.0%  100%  3  

1.0%  99%  4  

1.0%  99%  5 

2.0% 98%  6  

2.0%  98%  7  
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Communication-overhead =  CAM traffic + Location traffic              (6.3) 
where, CAM is cooperative awareness messages that are exchanged between vehicles 

and RSUs. If the value of the value of field four ($4) equal agent "AGT" and value of 

file one ($1) of trace file equal send event "s" and value of field seven ($7) equal 

"CAM" then: 

Increase CAM traffic by one ~ CAM ++; 

Or 

If value of field four ($4) equal "AGT", value of filed one ($1) equal send event "s" 

and value of field seven ($7) equal "cbr" of trace file equal then:  

Increase location traffic by one ~ location traffic++. 

Table 6.6 shows the overhead rate for communication, messages and update 

location. 

Table 6.6 Overhead Rate for Communication, Messages and Update Location. 

Attacks 

Number  

Communication

-Overhead (packets)  

Messages-

Overhead 

(packets) 

Location Update-

Overhead 

(packets) 

1 7497 92 7405 

4 7507 102 7405 

6 7516 111 7405 

8 7525 120 7405 

10 7534 129 7405 

Whereas, the amount of detection time shown in Table 6.7 that are associated with 

attacks number on the VANETs. 
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Table 6.7 Detection Time of distributed-IDS. 

Number of Attack 
Detection   

Time/sec 

3 173.45*10-3 

4 293.766*10-3 

5 293.766*10-3 

6 306.7*10-3 

7 306.7*10-3 

According to the results in Table 6.5, 6.6 and 6.7, we can notice the distributed-IDS 

based on information of TTP and RSUs has the ability to detect and block one of 

serious attacks on the external communication system which is Sybil attack. This IDS 

was formally presented in a research paper which has been submitted at for PLOS 

Journal 2017. 

6.5 System Analysis 

The simulation results and analysis of the detection performance of integrated-

IDS are covered in this subsection. The average of the detection rate of the integrated-

IDS is 97.71% and the average error rate is 2.29%. In order to present an 

understanding of integrated-IDS in experiment results, the performance analysis has 

been divided into two subsections as BusNet-IDS and distributed-IDS. The traffic 

messages are forwarded to suitable IDS whether BusNet-IDS or distributed-IDS that 

was based on messages contents. In more details, if the message is composed of a 

feature behaviour obtained from the virtual layer of the Bus vehicle, then it is 

forwarded to the BusNet IDS. Whereas if the messages contain vehicle ID, time and 

axial positions, then the message is analysed by the distributed-IDS. In this simulation 

scenario, trace file, rtable and rrouter files are generated of ns-2 to reflect clear statues 

of vehicles behaviour. 
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Performance metrics are introduced and which have been employed in the 

previous research. These metrics utilised the efficiency and effectiveness of the IDS. 

The evaluation metrics utilised in assessing the performance of security system are: 

PDR, communication overhead, flooding rate, dropping rate, error rate, false alarms 

and detection time.  

In Table 6.3 and 6.4, the BusNet-IDS can achieve the significant security 

improvement on the communication system of self-driving vehicles under flooding 

and dropping attacks with an average error rate 2.58%.  

The threshold value plays an important role in enhancing the detection rate and 

reducing the amount of false alarms [119], [223]. To select the optimal value of 

threshold, the BusNet-IDS is tested with different values of threshold to calculate the 

accuracy of detection rate and false positive alarm. In this system, the threshold value 

is set at 0.85 because the most suitable threshold of certainty level lies between 0.4 and 

0.99 for Flooding attacks, whereas the most suitable threshold of certainty level lies 

between 0.82 and 0.99 for dropping attacks. The rate of detection with different 

thresholds is shown in Figure 6.7.  

 

 

 

 

 

 

 

Figure 6.7 Threshold Value. 

According to the results in Tables 6.5, 6.6 and 6.7, we can notice distributed-IDS 

based on information of TTP and RSUs has the ability to detect and block one of 

serious attacks on the external communication system which is Sybil attack. The 
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detection time and error rate confirm the efficiency of the Distributed-IDS in 

identifying abnormal behaviour on VANETs.  

The feasibility of the application of integrated intrusion detection system is 

explained below.  

1. This security system can detect all external and internal attacks, i.e. 

common types of DoS attacks such as Dropping and Flooding attacks. 

2. The detection system is able to detect all messages that have a fake ID or 

pseudonym such as Sybil and Impersonation attacks. 

3. This mechanism enables us to apply an intrusion detection system of the 

signature type (misuse). This type is characterised by high precision 

because errors are not acceptable in self-driving vehicles (low false 

positives). 

4. The system ensures that vehicles can communicate with RSUs directly, 

without the need for intermediate vehicles. 

5. The proposed system has the ability to detect new or novel attacks on 

wireless communication systems in self-driving vehicles without being 

predefined for normal or abnormal behaviours. 

According to the experimental results, the performance detection of integrated-

IDS is faster, more efficient and effective than others because it does not require a 

training and testing time. Finally, employing integrated-IDS in the external 

communication system make self-driving and semi-autonomous vehicles more 

realistic and reliable. 

Chapter seven reflects on the overall design and function of the security system 

introduced in this study. In addition, an outlook on its future application on 

autonomous vehicles will also be discussed showing its importance to the 

development of self-driving and semi self-driving vehicles.   
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6.6 Summary 

In this chapter, an efficient intrusion detection system is proposed based on 

integrating two different intrusion detection systems for the security of the external 

communication system for self-driving vehicles. It is based on detection rules that 

were formulated on RSUs with a shared database that reflects communication 

behaviour for moving vehicles. A novel distributed-IDS and BusNet-IDS are 

integrated to identify various attacks from the wireless communication system of self-

driving vehicles.  

The virtual layer is created between mobile vehicles and RSUs to sniff / eavesdrop 

on exchanged information and control data. This layer is designed on Bus vehicles 

that extracted the detection features from the warning, notification and CAMs. 

However, it plays an important role in extracting and sending these features to the 

closest RSUs.  

The distributed-IDS proposed in this chapter identifies Sybil, impersonation and 

fabrication attacks. It is heavily based on local and global-TTPs database to detect and 

block any fake ID that was received from moving vehicles. In other words, it matches 

and compares between received vehicle information and the shared database that was 

already received and updated with moving vehicles on roads.  
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CHAPTER SEVEN 

CONCLUSION AND FUTURE DIRECTIONS 

“The future is much like the present, only longer.” 

                                                    Dan Quisenberry 

Self-driving and semi-self-driving vehicles are a recent innovation in the field of 

automotive research. A hurdle in the wide adoption of this new class of vehicles is 

security concerns. This research studies the design and implementation of intelligent 

IDSs to protect the external communication systems in self-driving and semi-self-

driving vehicles. The proposed security systems are based on two types of detection 

approach i.e. anomaly and misuse. The main motivation behind designing the two 

types of detection approach is to overcome the problems associated with these types 

of vehicles, such as the lack of accuracy, inability to detect novel attacks, difficulty in 

updating the database, and increased number of false alarms. 

This chapter brings to light novel contributions presented in the thesis. It points 

out the advantages of the proposed IDS’s to protect the external communication for 

self-driving vehicles. Core contributions are mentioned for each chapter to clarify the 

role of the proposed security systems that have great positive impact on the self-

driving vehicles. The chapter then discusses possible venues for future research.  

7.1 Summary of Conclusions  

Intelligent intrusion detection systems will have  important security applications 

in many modern technologies, like where they use self-driving and semi-self-driving 

vehicles [245]. Among many factors the success of self-driving vehicles depends 

heavily on the integrity of their communication systems. The communication system 

of self-driving vehicles is often exposed to many different types of attack which 
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impact the development and deployment of self-driving vehicles. Below are the 

important findings of this research: 

Chapter Two presents an in-depth study on the communication system of self-

driving vehicles in normal and adversarial environments. It is predicted that more 

than 250 million autonomous vehicles will be connected to RSUs in the next five years 

[246]. With one in five vehicles having communication wirelessly by 2020 as well as  

these vehicles fleets is of growing importance [247], self-driving and semi-self-driving 

vehicles will be one of many integrated elements in the Internet of Things (IoT). Many 

security solutions have been proposed that secure VANETs from potential attacks. 

The following conclusions are drawn from the study of the state of the art 

Autonomous and semi-autonomous vehicles use communication systems to 

exchange warning messages, notification messages, control data and sensitive 

information. At this point, the security of VANETs is crucial and very important for 

the development and deployment of self-driving vehicles. VANETs can provide safety 

to self-driving and semi-self-driving vehicles through cooperative awareness 

messages and control data which are exchanged between the vehicles and the RSUs 

within the radio coverage area. 

Attempts have been made to secure ad hoc routing protocol [248], [249], [250], 

[251], [252], [253], [254], [253] and [255]. The routeing protocols cannot completely 

eliminate all forms of insider attacks. This is due to the fact that intruders are already 

inside the network with required credentials. A compromised mobility node has all 

the vital cryptographic keys and can launch several types of attacks, for instance grey 

hole attacks, routeing loop attacks, and black hole attacks. Hence, it is important to 

develop detection and response techniques for the external communication of self-

driving vehicles. 

The V-AODV is a modified version of the original AODV often used in MANETs. 

In the proposed protocol, algorithm selection is built on determining the optimal 
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communication link between source and destination vehicle. In other words, the 

algorithm can measure all route weights for the available paths and also select the link 

with the least communication weight. Thus, the algorithm is a new version of AODV 

which offers efficient functioning in VANETs. Finally, it is noticed from the 

experimental results that the proposed V-AODV is more capable of adapting with 

VANETs with a high packet delivery rate and low end to-end delay. 

In Chapter Three, designs of three IDS, which work with ANN and SVM machine 

learning algorithms, have been presented. They have the ability to detect various 

types of attacks such as black hole, grey hole and rushing attacks. The IDSs are based 

on lightweight features that have been extracted from vehicles behaviours. The 

proposed security system is tested with different dataset to validate the intelligent 

detection performance. Experimental results show that by building an IDS using ANN 

and SVM ensures robustness against adversarial manipulation. 

The proposed hybrid “anomaly and misuse” IDS has demonstrated a good 

detection rate with a low rate of false alarms. The proposed IDS plays an important 

role in identifying and blocking various types of attacks on the VANETs. The hybrid 

IDS can identify one or more types of DoS attacks which have direct and negative 

impact on passengers and drivers’ lives as well as sensitive information. Designing a 

hybrid detection method allows the system to detect new attacks without the high rate 

of false alarms, improved detection accuracy and update database.  

The selection of appropriate lightweight and significant features from vehicle 

behaviour that describe inter and intra communication between vehicles and their 

RSUs is a big challenge. The process of decreasing the number of the extracted 

features by POS scheme has a vital role in enhancing the detection rate. 

The fuzzification of dataset help reduce the error rate and the number of false 

alarms when compared with the previously studied systems. This process is 

employed to solve some classification problems in dataset which are generated from 
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vehicle behaviours (both normal or abnormal). The normalisation, and uniform 

distribution techniques are employed in the pre-processing phase. These techniques 

play an important role in enhancing the detection rate and reducing the number of 

false alarms.  

The proposed intelligent IDS has been evaluated by using Kyoto benchmark 

dataset. This dataset assists in verifying the efficiency and effectiveness of detection 

performance in securing the external communication system of self-driving vehicles. 

In addition, Kyoto-IDS can be used to validate the role of the POS method and 

fuzzification model in improving the detection rate and reducing false alarms. 

In Chapter Four, the traditional IDS is combined with the ICMetric technology to 

achieve a robust security system for the external communication system of self-

driving vehicles called ICMetric-IDS. The ICMetric technology uses the features of a 

device to create an ICMetric basis number. The number is generated using unique 

features and characteristics of a device. Suitable features must reflect the 

characteristics of the sensor devices while the extraction and the analysis process 

should not significantly influence the device performance. Ultrasonic, accelerometer, 

gyroscope and magnetometer sensors are employed in designing the ICMetric-IDS. 

The ICMetric generation is an automated process which does not require user 

intervention.  The ICMetric technology has demonstrated the ability to achieve a 

reliable authentication over traditional security systems which are based on password 

and identification numbers. It establishes the identity of a vehicle using its 

behavioural and physical characteristics. It has shown to be able to augment 

incumbent security technology in order to establish hardened protection. 

The proposed ICMetric based IDS can identify and isolate malicious vehicles thus 

providing protection to the external communication of self-driving vehicles. The IDS 

based on ICMetric detects malicious behaviour by monitoring the routeing table and 

tracing the file generated in network simulator. Simulation results show that the 
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ICMetric technology was efficient in enhancing detection rate. ICMetric-IDS is based 

on the FFNN algorithm and is efficient, effective and has lower error rate in detecting 

malicious vehicles than ICMetric-IDS based on k-NN algorithm. The proposed 

security system achieves significant security improvements on the external 

communication system of self-driving vehicles under various types of attacks with 

average error rate 0.72%. 

  In Chapter Five a framework called FPN-IDS has been proposed. The FPN-IDS is 

considered a novel security system designed to protect VANETs because this is the 

first time an FPN has been used in VANETs. The FPN-IDS has the ability to detect 

external and internal attacks launched at any time such as packet dropping attacks. 

Anomaly FPN-IDS is based on the parameters that are computed from the trace file. 

The FPN has a vital role in increasing the detection rate and decreasing false alarms 

for proposed IDS. 

The Clustering-IDS can overcome two common problems which are that some 

self-driving vehicles have the same angle but different distances and others have the 

same distance but different angles. A vital role of the IDS-clustering is noticed in 

enhancing the detection rate of normal behaviour in self-driving vehicles, while IDS-

FPN had better detection rate than IDS-clustering. It can provide high levels of 

security to external communications in self-driving vehicles. In addition, a 

hierarchical IDS is proposed to detect Sybil and Wormhole attacks by using log 

records. The design of hierarchical IDS based on clustering mode enhances the 

detection rate of IDS in VANETs. Hence IDS-clustering has a direct and positive 

impact on the resulting system because of the increase in the detection rate, decrease 

in the false alarm and error rate.  

The chapter also presents a new response system that is designed to put infected/ 

compromised vehicles into safe mode at suitable time without delay. The response 

system is built on the data link layer of the network that switches the infected vehicle 
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from normal operations to a ‘safe mode’. The safe mode allows the compromised 

vehicle to communicate directly with the nearby RSUs without any intermediary. 

Placing a vehicle into ‘safe mode’ provides partial isolation so that recuperation can 

take place. 

In Chapter six the design of an integrated intrusion detection system is presented 

that secures the external commination system of self-driving vehicles from attacks like 

Sybil, dropping, flooding, DoS, black hole, impersonation and grey hole attacks. The 

proposed IDS is composed of three components i.e. BusNet layer, trace file and a 

central database for location information. 

BusNet-IDS is simulated and the results show that it is efficient in detecting 

abnormal behaviours in VANETs. It has the ability to sniff/eavesdrop important 

information exchanged between vehicles and RSUs. The BusNet-IDS can detect 

common types of attacks such as DoS, dropping, flooding, rushing, grey hole, black 

hole and wormhole attacks. The distributed intelligent IDS is proposed in this chapter 

to detect Sybil and Impersonation attacks. It is able to detect all messages that have a 

fake ID or pseudonyms. Sharing of database between trusted third party and RSUs 

supports the detection phase of the proposed security system to enable the detection 

of one type of tricky attacks on communication system, which is Sybil attack. The 

proposed integrated-IDS can overcome common detection problems faced with single 

IDS such as adapting to different behaviours of attacks. In addition, detection process 

in single IDS is relies on local resources for data collection hence no exchange of data 

takes place. 

7.2 Future Directions 

The work proposed in this thesis is an effort to enhance the security of driverless 

vehicles. It is possible today to purchase a driverless vehicle but the technology is far 

from perfect. There is room for improvement in all domains related to driverless 
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vehicles. The work presented in this thesis is novel and requires specific infrastructure 

for successful implementation. To fully implement the proposed system in real life it 

is necessary that road side units are installed across all national highways. These road 

side units should be equipped with network and computation capabilities. Besides 

this every self-driving vehicle should be able to carry out external and internal 

communications. To ensure security the self-driving vehicle should be embedded with 

an intelligent system which is able to detect external obstacles, provide security 

functionalities, make observations using vision system. When these individual 

systems function collaboratively then the safety and security of the vehicles can be 

ensured. 

Research shows that system defences evolve to address the advancements made 

by adversaries in their resources and capabilities. Thus, designers of system intrusion 

prevention systems are always trying to stay one step ahead of adversaries. The 

proposed work attempts to improve the security of existing systems and also opens 

up new venues for future research. There are many ways in which the proposed work 

can be extended. 

Efforts have been made to secure the external communications of autonomous 

vehicles. To secure this unique environment, research needs to be done on the security 

of the internal communication system of the autonomous vehicles. Doing so would 

create a robust communication system that can resist both internal and external 

attacks.  

To improve the detection rate while reducing the number of false alarms, a 

clustering FPN can be designed to get better results in both normal and abnormal 

behaviours. This security system has the ability to detect various attacks on the 

communication system of self-driving system. In other words, integrated clustering 

model with FPN to get robust and new security system.  
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The proposed security system can also be tested using other methodologies that 

employ artificial intelligence. Techniques such as Self-Organising Maps (SOM), 

Bayesian trees and genetic algorithms can be used to test the security and practicality 

of autonomous vehicles. Testing and evaluating the proposed security system with 

another dataset to validate the detection performance.  

Research can be done to improve the routeing protocol for VANETs. This can be 

achieved by using intelligent e-maps to determine vehicle destination. Research 

should also study the applications and effectiveness of handover mechanisms in 

VANETs. 

It is important to improve road safety, logistics and information services. 

However, the efficiency and performance of VANET applications depend primarily 

on the way in which messages are transmitted between the vehicles. Improvement can 

be made to specific characteristics and constraints of VANET, such as speed, 

acceleration, geographical position, the transmission radius, management, etc. 

Introduction of a central controller with the right communication solution can 

make processes more efficient, improve provider collaboration, enhance the driver 

experience and support decision making processes. Speed and quality of signals are 

the most important part of all process associated with VANET. This means all 

operations must be arrived at easily, operations with providers directly and find the 

information they need instantaneously. They expect continuity and simplicity across 

all points of contact with their central control. 

Extracting the ICMetric number from other sensor devices such as LiDAR can be 

explored. However, comparison between results must be carried out to analyse the 

performance compared to the proposed ultrasonic and MEMS sensors. 

A concept worth exploring is the design of a distribute-IDS that can be configured 

on vehicles and RSUs simultaneously. This design can be a major improvement as this 
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can improve the functioning of the network entities through the integration of local 

and global datasets and credentials. 
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