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Abstract 

Objective. The main goal of this research is proposing a novel method of onset 

detection for Self-Paced (SP) Brain-Computer Interfaces (BCIs) to increase usability 

and practicality of BCIs towards real-world uses from laboratory research settings.  

Approach. To achieve this goal, various Sound-Production Related Cognitive Tasks 

(SPRCTs) were tested against idle state in offline and simulated-online experiments. 

An online experiment was then conducted that turned a messenger dialogue on when a 

new message arrived by executing the Sound Imagery (SI) onset detection task in real-

life scenarios (e.g. watching video, reading text). The SI task was chosen as an onset 

task because of its advantages over other tasks: 1) Intuitiveness. 2) Beneficial for 

people with motor disabilities. 3) No significant overlap with other common, 

spontaneous cognitive states becoming easier to use in daily-life situations. 4) No 

dependence on user’s mother language.  

Main results. The final online experimental results showed the new SI onset task had 

significantly better performance than the Motor Imagery (MI) approach. 84.04% (SI) 

vs 66.79% (MI) TFP score for sliding image scenario, 80.84% vs 61.07% for watching 

video task. Furthermore, the onset response speed showed the SI task being 

significantly faster than MI. In terms of usability, 75% of subjects answered SI was 

easier to use.   

Significance. The new SPRCT outperforms typical MI for SP onset detection BCIs 

(significantly better performance, faster onset response and easier usability), therefore 
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it would be more easily used in daily-life situations. Another contribution of this thesis 

is a novel EMG artefact-contaminated EEG channel selection and handling method that 

showed significant class separation improvement against typical blind source 

separation techniques. A new performance evaluation metric for SP BCIs, called true-

false positive score was also proposed as a standardised performance assessment 

method that considers idle period length, which was not considered in other typical 

metrics. 

 

 

 

Keywords: Artefact removal; Brain-Computer Interface (BCI); Onset detection; Self-

paced BCI; Asynchronous BCI; Covert speech; Sound-production 
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1 Introduction 

1.1 The Necessity of the Research 

Throughout the years, technologies have been developed at a great rate (e.g., 

smartphones, wearable devices, smart health care systems). Compared to regular PC 

uses, these smart devices require better Human-Machine Interaction (HMI) such as 

touch screen and voice command features. These HMI technologies are reducing the 

barrier between humans and machines. As can be seen from Figure 1.1, in the past, the 

keyboard and mouse input control was the main option for communicating with 

machines. However, it is quite a restricted method compared to human natural 

communication in the real world. Nowadays, this barrier is becoming smaller with 

many HMI technologies. As a consequence, the question that arises is what the next 

stage would be beyond this level. The answer could be the use Brain-Computer 

Interfaces (BCIs). In the near future, the interaction barrier between humans and 

machines will disappear and users will be able to link their thought directly to a 

machine command. 
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Figure 1.1. Human computer interaction from the past to the future. 

 

The use of BCIs, which are also known as Brain-Machine Interfaces (BMIs – 

recently used mostly for implanted brain-interfaces) is one of the most phenomenal 

fields, which has a lot of potential in the human machine interaction area. It enables 

direct communication between humans and computers (or machines) by interpreting 

human brain signal activities and it controls and interacts with the users’ surrounding 

environments without any physical involvement [6]. Owing to these huge advantages, 

it is not only an opportunity for people with motor disabilities but it also gives various 

interesting options to able-bodied people. It could therefore be one of the most popular 

communication systems between humans and machines in the near future. 

Even though the BCI field has quickly developed in the last few years, it is mainly 

investigated as a research area due to shortages of practicality and usability. The 

majority of current BCIs are cue-based (synchronous) systems, which are controlled 

by the machine’s predefined timing protocol. This means that it forces users to follow 

the computer’s timing commands (locked to the machine). It also requires from the 

users to keep their mental focus and/or gaze at the computer interface (i.e., P300, 

SSVEP), which not only is very unnatural to  them, but also leads to loss of both user 
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autonomy and the ability to have a rich interaction with their environment [1, 5, 7, 8]. 

These are the main issues when BCIs are used outside laboratory settings. 

On the other hand, self-paced (asynchronous) systems analyse the user’s brain 

activities continuously without any specific computer-controlled stimulus [9]. The 

users control the timing of the BCI system by intentionally performing a specific 

cognitive task when it suits them [7], thus providing increased autonomy, flexibility, 

and interaction with the environment (including the people therein, of course). For this 

reason, self-paced BCIs are more suitable than cue-based BCIs for the ultimate aim of 

transferring BCIs from laboratory settings towards real-world use [1].  

However, there are great challenges in self-paced BCIs [7]. Self-paced BCIs 

usually require a more difficult system design, worse classification rate and harder 

analysis than cue-based systems due to the systems’ lack of knowledge about the 

precise time location of the user command. Self-paced BCIs need to continuously 

analyse the ongoing brain activity in order to distinguish between Intentional 

Command (IC) and Non-Control (NC) states (also called non-specific or null states). 

NC states can be any states besides IC states (e.g., idle, daydreaming, other mental 

activities, irrelevant evoked responses) [8]. One way to distinguish between IC and NC 

is to use a classifier that treats NC and IC simply as different states in the same 

classification task. For example, a five-output classifier can include NC states as one 

of the five output classes. However, given the brain’s constant multitasking, this 

approach—herein called a ‘lumped’ approach—will lead to a high false-positive (FP) 

rate for the IC states (and thus a high false-negative rate for the NC states) and to large 

timing errors in the IC detection. Hence, an alternative approach is needed, namely, 

separating the ‘when’ classification task (herein called IC onset detection) from the 

‘what/which’ classification stage. This simplifies the problem and leads to reduced 
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timing errors and lower NC misclassification rates. This onset detection problem 

should be solved first in order to move self-paced BCIs to real-world uses, apart from 

the inside laboratory research [1]. 

In this thesis, sound-production related cognitive tasks (sound imagery) have 

been proposed for the onset detection method. Based on our thorough literature review 

(up to 2017), none of the previous works on onset detection or self-paced BCIs systems 

used speech or sound-production related cognitive tasks. They mostly used instead 

motor imagery (e.g., [7, 8, 10, 11]). In addition, all the speech related EEG-based BCI 

studies using different syllables (or syllables / vowels) that were retrieved, focused on 

the discrimination between various tasks and not on onset detection (i.e., idle versus 

intentional state). They were also cue-based approaches and not self-paced (e.g., [12-

15]), while some of them were ECoG studies [16, 17]. The main novelty in this study 

is the discrimination between sound-production related cognitive tasks and idle (or 

non-specific) states for onset detection, which leads to competitive results compared to 

systems based on typical motor-imagery tasks [10, 18].  A novel score system for the 

evaluation of a self-paced BCI performance is also introduced [1].  

Motor imagery self-paced onset detection BCIs have a crucial issue when they 

are used outside laboratory settings. The mental procedure is largely overlapping with 

other common, spontaneous cognitive states. For example, a classifier would not be 

possible to identify whether the onset detection was from the actual command or from 

other daily-life gestures such as shaking hands, grabbing an object or cycling.  

On the other hand, a sound-production related cognitive task is also needed to 

reduce the chances of IC false positives but this can be addressed by choosing cognitive 

tasks that do not significantly overlap with other common, spontaneous and frequent 
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cognitive states [4]. Using specific words/syllables/letters for the onset detection would 

likely increase both the onset false positives as well as the task-related false negatives 

due to the large overlap with the continuous internal speech in normal thought 

processes. For this reason, we have chosen the thought of high tones or siren-like sound 

production tasks as onset switches, which are both unlikely to overlap with normal 

thought processes. The chosen tasks are easy to produce and control voluntarily and 

there is no dependence on the subjects’ mother-language. In addition, sound imagery 

tasks are very intuitive for the vast majority of people as we almost constantly ‘speak’ 

internally or think many words in normal life. This is also a big advantage for people 

with severe motor disabilities, an important target population for BCIs [1]. 

Furthermore, for the self-paced onset detection system, artefact handling is an 

important issue as large EMG artefacts are likely emerging by executing onset tasks 

from the idle state. However, previous BCI and EEG studies applied artefact handling 

techniques to all EEG channels. As such, e.g., in the case of artefact removal using a 

blind source separation, a common approach in BCIs, there may be significant loss of 

useful EMG-free EEG information [19-22]. Thus, a new artefact handling method is 

required to investigate the improvement of system performance and reliability.  

In summary, 

• BCI is the next generation of human machine interaction technology. 

• However, current BCIs are mostly investigated in research due to 

shortages of practicality and usability. 

• The Cue-based approach is the main reason of the practicality problems. 

• Therefore, self-paced BCIs are more suitable for taking BCIs from 

laboratory settings and put them to real-world uses. 
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• However, there are great challenges in self-paced BCIs, where the onset 

detection problem is the main issue. 

• In order to resolve this, our new sound-production related cognitive tasks 

were investigated as a potential onset detection solution in this thesis. 

• Motor imagery tasks have a significant issue in case they are   used in 

outdoor laboratory settings (largely overlap with other common, 

spontaneous cognitive states). 

• In addition, a new artefact handling method needs to be investigated for 

the performance and reliability of the system. 

For all the above reasons, this sound imagery onset detection research is 

necessary to move forward BCIs from their use in laboratory experiments to real-world 

uses. 

 

1.2 Goal of the Research 

Main Goal 

The goal of the research is to propose a novel method of onset detection in self-

paced Brain-Computer Interfaces (BCIs). This research presents intuitive sound-

production related cognitive tasks for detecting the onset for the system in order to 

establish full control of self-paced BCIs. It will increase the usability and the practical 

uses of BCI systems towards real-world settings and not only in laboratory research.  

In order to achieve this goal, various sound imagery tasks were tested against the 

idle state in offline and simulated-online experiments. An online experiment was then 
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carried out where a messenger dialogue was turned on when a message arrives by 

executing an onset task in real-life scenarios such as watching video, reading text. The 

results were compared to typical motor imagery tasks in order to showcase the 

advantage of the proposed sound imagery task over the motor imagery onset detection. 

As a further addition, the message onset detection experiment was also conducted 

outside the usual laboratory settings. 

 

Research Objectives and Scopes 

This PhD research investigated a novel method of onset detection towards pure 

self-paced BCIs in real-life uses. There are two general objectives: (1) Background 

studies of sound imagery vs. idle state. (2) A self-paced onset detection system in daily-

life task scenarios. 

Background Studies and Sound Imagery vs. the Idle State 

• Signal processing and EMG & EOG artefacts handling studies: 

Regarding the first objective, various signal processing, feature extraction and 

classification methods need to be studied. Furthermore, the EMG and EOG 

artefacts handling procedure has to be investigated and tested in order to ensure 

that the sound imagery onset detection is purely based on the cognitive tasks 

and not the artefacts. In the onset detection system, users stay calm and relaxed 

during the idle period and they then execute task for the onset. During this 

procedure, it is likely that the participants might generate some artefacts. Thus, 

it is important to handle these artefacts in advance. 

• Investigation of high-tone sound production cognitive tasks versus the idle state 

in an off-line cue-based system: 



 Department of Computer Science and Electronic Engineering, University of Essex  

8 
 

In order to investigate our hypothesis whether the sound-production related 

cognitive tasks can be distinguished from the idle state, an offline cue-based 

study needed to be carried out in advance. The classification of high tone sound 

production tasks vs. the idle state was done in three different speech modes 

(overt, inhibited overt and covert). These three different speech modes were 

tested in order to examine their differences and to find the optimal mode for the 

onset detection in BCIs. 

• Investigation of siren-like sound mental rehearsal versus the idle state in an off-

line self-cue-based system: 

In addition to the above second objective, a siren-like sound imagery task (in 

covert speech) was also investigated in order to realise whether it can be used 

for an onset detection system.  

• Development of a system that can simulate an online situation and classification 

of various sound imagery tasks from the idle state: 

Following the investigation of the above objectives (offline cue-based), high 

tone and siren-like sound production related cognitive tasks were tested with 

the use of covert and inhibited overt speech modes in a simulated-online 

situation. In order to move our hypothesis from offline cue-based settings 

towards an online self-paced system, this simulated-online system was explored 

in advance. 

 

Self-paced Onset Detection System in Daily-Life Task Scenarios 

• Proposal of a new metric for the self-paced BCI systems’ performance 

evaluation assessment score: 



 Department of Computer Science and Electronic Engineering, University of Essex  

9 
 

In order to compare our sound imagery onset detection approach with other 

typical motor imagery systems, a common performance assessment metric for 

self-paced systems was necessary. However, current existing evaluations did 

not take into account altogether the true-positive, false-positive and idle period 

length aspects.  For this reason, we proposed a new performance evaluation 

metric called the true-false-positive score for self-paced BCIs. 

• Comparison of sound imagery and motor imagery onset detection systems in 

online daily-life task scenarios:  

In order to demonstrate the advantages of our sound imagery task over the 

motor imagery task for the self-paced onset detection system, the two cognitive 

tasks were compared in an online setting. The users were trying to open a 

message dialogue when a new message arrived by executing the onset detection 

task during daily-life task scenarios such as watching videos and reading text.  

• Testing the sound imagery onset detection system outside the laboratory 

settings: 

In order to investigate the problem of applying BCIs in a real-life setting, a 

message opening an online self-paced onset detection system was tested 

outdoors at a cafeteria. The results were compared to an indoor laboratory 

experiment.  

  

1.3 Scientific Contributions & Expected Effects of the Research 

Much research has been carried out so far in the field of BICs. However, there 

are still many areas to be investigated. Even though cue-based (synchronous) systems 
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do indeed have higher accuracies and simpler designs than self-paced (asynchronous) 

BCIs, they prevent BCIs from being applied to real-world situations due to their lack 

of practicality and usability. Therefore, a self-paced system is required. however, there 

is a big challenge in this case called the ‘onset detection problem’, which allows the 

user to control the machine freely whenever they desire. Once the onset detection 

problem is solved, the practicality of BCI systems will be greatly increased. 

 

• A novel onset detection system was suggested and developed with sound-

production related cognitive tasks (sound imagery). 

- The sound imagery onset detection system showed significantly 

better performance results than the motor imagery onset task. 

- It also showed a faster onset response and better usability. 

- The system was tested at an outdoor laboratory environment with 

daily-life task scenarios. 

In this PhD research, a novel onset detection system was suggested with a 

sound-production related cognitive task (sound imagery). Based on our thorough 

literature review, none of the works on onset detection or self-paced BCIs used a speech 

or sound-production related approach. They instead mostly used the motor imagery 

(e.g., [7, 8, 10, 11]). However, there are a couple of clear advantages of our sound 

imagery method over the typical motor imagery. Firstly, it is very intuitive and easy 

to apply as the majority of people almost constantly ‘speak’ internally or think many 

words in normal life. In addition, it is advantageous for people with motor disabilities 

for whom motor imagery may not be suitable. Secondly, the chosen sound imagery 

task (high tone, siren-like sound production) does not significantly overlap with 

other common, spontaneous cognitive states in order to make it feasible to be used 
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in a daily-life situation. On the other hand, motor imagery or specific 

words/syllables/letters production tasks would likely have a large overlap with daily-

life situations such as body movements, gestures or conversations. Thirdly, the sound 

imagery onset detection system showed significantly better performance results 

and a faster onset response speed than motor imagery (details on Chapter 7). Finally, 

the proposed onset detection method has been tested at an outdoor laboratory 

environment with daily-life scenarios. This research showed the current problems of 

BCIs when used in an outdoor laboratory setting, which is an essential investigation at 

this stage in order to apply BCIs in real-world scenarios and not only in indoor 

laboratory experiments.  

 

• A novel EMG contaminated EEG channel selection and handling 

procedure was proposed 

- Our method showed a significantly better class separation (reduced 

useful information loss) than the typical blind source separation 

techniques (i.e., ICA, PCA and BSS-CCA) on both our data set and 

the BCI competition data set.  

This work also proposed a new technique of selecting an EMG contaminated 

EEG channel and handling procedure in chapter 4. Artefact handling is an essential 

procedure in EEG based studies. However, commonly used blind source separation 

methods could cause some useful information loss (cross-talk of brain and muscle 

artefacts were observed in [19-22]). In this research, the information loss of useful EEG 

sources was minimised by applying the artefact handling techniques only to the 

selected EMG contaminated EEG channels. This new technique had gone through 

statistical reliability tests in order to ensure it is strict enough to be used. The result 
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showed that our EMG contaminated channel selection and handling procedure 

significantly improved class separability on both our data set and the BCI competition 

IV data set 2a [23].  

 

• A new performance evaluation metric for self-paced BCIs was proposed. 

- This new true-false-positive score considered all the important 

aspects of a self-paced system (e.g., idle period) and it can be 

therefore used as a common evaluation method for other studies. 

In addition, a new performance evaluation metric for self-paced BCIs, called 

the true-false-positive score was proposed in this study.  Currently, there is no 

common and standardised performance assessment method of self-paced BCI systems. 

The results would therefore all vary according to different papers and experiment 

settings. For example, some papers show performance results with a hit rate that can 

only be applied to their own experimental settings (e.g., [8, 10, 24, 25]), which makes 

it difficult to compare the system performance. In addition, there is no metric that 

considers the idle period length, which is a very important aspect of self-paced systems. 

For example, if two systems have the same number of true-positives and false-positives 

but one system has a longer idle period, then it is a certainly better system as it has a 

smaller false-positive ratio during the experiment.  For this reason, we proposed a new 

performance evaluation metric that takes all these matters into account and can be used 

from all self-paced BCI systems as a standard evaluation metric. 

Because of all the above reasons, this research has a potential effect on the BCI 

field and it can be divided into a short-term and long-term effect:  



 Department of Computer Science and Electronic Engineering, University of Essex  

13 
 

• Short-term effect: From a short-term point of view, this work provides 

background knowledge (including its processing algorithms) about a novel 

sound imagery onset detection system, which has clear advantages over the 

typical motor imagery method in self-paced BCIs. In addition, a new EMG 

artefact contaminated EEG channel selection and handling method was 

proposed to be used in EEG based studies and not only in BCIs, but also in 

brain mapping and clinical areas. Finally, a new performance evaluation metric 

for self-paced BCIs was suggested to be used as a standardised assessment 

method in the BCI field. 

• Long-term effect: From a long-term point of view, once this sound imagery 

onset detection method is further developed by improving its practicality, then 

this system can be implemented to all kinds of cue-based BCI systems so that 

they can be used as a self-paced approach by providing the onset command to 

the machine. Thus, the current prototype onset detection system, which was 

tested in real-life task scenarios at outdoor laboratory settings, illustrates the 

direction of future BCIs in terms of practical uses. In addition, the new true-

false-positive score metric can be used as a standardised evaluation method in 

self-paced BCIs so that it makes it easier to compare the system performances 

in BCI studies.  

 

1.4 Limitations of the Research 

As this PhD research was not funded by any companies or organisations, there 

were a couple of limitations that concerned it. Firstly, people with motor disabilities 
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are an important target population for BCIs in general but the participants who took 

part in the experiments were all able-bodied subjects. This would be a huge limitation 

in motor imagery BCIs as there could be some performance difference between able-

bodied and motor disability subjects. However, in our sound imagery task case, ideally, 

there would not be any difference. Thus, it will not be a huge problem in this thesis. 

Secondly, in the final online self-paced onset detection experiment, the 

simulation of a message arriving / opening application was used without the actual text 

messenger. The reason was that a specially designed message arriving motion (details 

in Chapter 7) had to be used in order to minimise any event related potentials (visual 

and audio) in order to ensure this onset detection was done with the sound imagery 

mental task and not the event related potentials. In addition, artefacts related to mobile 

phone signals had to be avoided by the study at this investigation stage.  

Thirdly, there was a limitation with regards to the order of the outdoor 

experiments. The first indoor laboratory experiment was conducted continuously to all 

the subjects and afterwards, the outdoor experiment was tested. This biased recording 

order could impact the final results and therefore had to be randomised. However, the 

installation of BCI equipment at an outdoor cafeteria area and then move it back to the 

indoor environment takes more time and costs more human resources than if the 

opposite took place. In addition, the main aim of Chapter 7 was to investigate and 

compare the motor imagery and our sound imagery task in terms of onset detection at 

indoor laboratory settings.  Therefore, this limitation was ignored. However, in order 

to minimise the biased recording order effect, there was a small tea/coffee break in-

between the two experiments and the total experiment time did not exceed 1 and a half 

hours, which helped maintain the participants’ concentration level similar to that of an 

indoor lab experiment. 
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Lastly, there are possible issues with the experimental protocol. Even though we 

made a concentrated effort to minimise VEPs by having a circular progress bar, which 

is considered a visual angle that avoids VEPs, there could still some VEPs be present 

during the online real-life scenarios experiment (e.g., message arriving notification, 

watching a video task).  Furthermore, there could be possible mental tasks that overlap 

even though the participants were prevented from counting the timer during the onset 

activation. Moreover, although the participants were instructed to refer to the circular 

progress bar in order to answer the onset response time, it was difficult to clearly avoid 

timer count. 

 

1.5 Structure of Thesis 

This thesis consists of nine chapters and its structure as follows. Chapter 2 

describes a short overview of EEG and brain physiology & structure in order to provide 

the readers with some background knowledge. It gives brief information about the 

visual system, auditory system, somatic sensory system, motor control and language 

processing & sound production related brain physiology.  

Chapter 3 contains the literature review about BCIs and their general applications. 

It also does a comparison review of self-paced and cue-based systems followed by 

speech related BCIs and the onset detection in BCIs. In addition, various signal 

processing, feature extraction and classification methods were examined. 

The experimental part of the thesis is discussed in Chapter 4. It suggests a new 

EMG artefact contaminated EEG channel selection and handling technique. It 
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describes the new method, which minimises the information loss compared to the 

typical blind source separation techniques. It also shows the statistical reliability of the 

new method which can be used in BCI fields and other EEG-based studies.  

Chapter 5 analyses the classification of various speech related cognitive tasks 

against the idle state in an offline setting in order to explore the potential possibility of 

a speech related onset detection system. It consists of two different experiments, where 

the first experiment is about high tone sound-production in covert, inhibited overt and 

overt speech modes and the second one is a siren-like sound imagery task. 

Chapter 6 explores a more in-depth sound-production related onset detection 

system in a simulated-online situation in order to investigate whether the proposed 

method can be used in online settings with a cue-based approach to a self-paced system. 

This chapter also suggests the new performance evaluation metric (true-false-positive 

score) for self-paced BCIs.  

Chapter 7 contains two experiments. The first one shows the comparison result 

between our new sound imagery onset detection task and the motor imagery task in an 

online situation with daily-life task scenarios such as watching video and reading text. 

The second experiment of this chapter is about testing the new onset detection system 

at outdoor laboratory settings in order to demonstrate real-life uses and show its 

limitations.  

Chapter 8 provides an overall in-depth discussion of the main findings and the 

scientific contribution to the BCI field followed by a summary of conclusions along 

with proposals for future work  in Chapter 9.  
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1.6 Ethical Matters 

In this research, all the hardware resources were provided by the BCIs-Neural 

Engineering laboratory at the University of Essex and all the experiments were done in 

accordance with the University of Essex’s Ethics Committee guidelines. The brain 

signal recording method was non-invasive and no thoughts were monitored, apart from 

very specific and deliberate sound imagery and motor imagery. The data were also 

anonymised as per ethical guidelines. 
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2 Neuro Electric Physiology Background 

2.1 Electroencephalography 

Electroencephalography (EEG) is a brain signal recording method that is widely 

used in clinical areas and BCI research. It normally refers to a non-invasive method 

that detects oscillations of the brain electrical potential (electric currents during 

synaptic excitations) from the surface of the scalp [26]. 

Because of its ease of uses, inexpensiveness and safety (non-invasive manner), 

EEG is the most widespread method for brain signal recording by far [6]. However, 

there are some disadvantages. The electrical voltage that is generated from a single 

neuron is not high enough to be measured. Thus, EEG measures hundreds of thousands 

of synaptic excitations and their synchronous activation, which increases the electrical 

amplitude [27]. Even though they have a synchronous electrical activation, the signals 

still have to cross the scalp, skull and many other layers. It makes the signal weaker 

and of poor quality. Moreover, this recording method is easily affected by artefacts [6]. 

EEG Rhythms 

The brain signal has an individual variation and it changes easily according to 

the conscious level and mental activities even of the same person [27]. However, EEG 

rhythms have specific patterns and they can be categorised according to their frequency 
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range: Delta (δ), Theta (θ), Alpha (α), Beta (β), Gamma (γ) and Mu (μ). These 

frequency ranges were defined in accordance with their distribution over the scalp or 

biological significance [6].  

 

 

Figure 2.1. Various EEG frequency ranges for a 1 second sample (acquired in the Oz position) [28]. 

 

Figure 2.1 shows 1 second samples of various EEG rhythms, which are 

categorised by their frequency range. Their characteristics are shown in Table 2.1. 
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Table 2.1. Characteristics of various EEG bands. 

EEG 

(Freq 

Range) 

Properties 

Delta  

(<4 Hz) 

- Deep sleep stage [27]. 

- Brain disorders (if a large amount of delta activity is found in awake 

adults) [29]. 

- Due to its low frequency, the delta wave is easy to confuse with 

artefacts such as muscles of the neck or jaw [6]. 

Theta  

(4-7 Hz) 

- During sleep states (not deep) or meditative concentration [27]. 

- The theta wave can be seen from some cognitive processes (e.g., 

calculation) [30]. 

Alpha  

(8-12 

Hz) 

- Quiet and relaxed state and the amplitude increases when the eyes are 

closed [27]. 

- The alpha rhythm can be found from frontal, temporal, parietal and 

occipital regions and it can be categorised according to its functional 

roles (e.g., mu, occipital and tau) [31]. 

- The Alpha rhythm from the occipital region is related to visual 

processing and metal effort [32]. 

Beta  

(12-30 

Hz) 

- Busy or active concentration state [27]. 

- This rhythm is recorded in the frontal and central area of the brain and 

it is related to motor behaviour [33]. 

- The frontal beta rhythm can be recorded for a few milliseconds post-

stimulus and it is related to stimulus assessment and decision making 

[34]. 
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Gamma  

(30-100 

Hz) 

- The gamma rhythm can easily be affected by EMG or EOG artefacts 

[35].  

- It is related to perception and consciousness or the REM sleep stage 

[27]. 

- This rhythm appears during the linguistic processing of meaningful 

words at around 30 Hz [36, 37].  

Mu  

(8-13 

Hz) 

- The mu rhythm can be found at a similar frequency range with the 

alpha wave. However, it is more associated with motor activities then 

the alpha rhythm [38]. 

- It appears from the sensory-motor cortex during either performing or 

imagining motor actions [27]. 

 

 

EEG Recording  

There is a number of different brain signal recording systems such as Functional 

magnetic resonance imaging (fMRI), Positron Emission Tomography (PET), 

Computerised Tomography (CT), Magnetoencephalography (MEG), Functional Near-

Infrared Spectroscopy (fNIRS) and EEG.  Even though EEG has some disadvantages 

such as poor spatial resolution due to the volume conduction problem, it is by far the 

most common system and is widely used in BCIs because of its advantages, such as 

inexpensiveness, portability, safeness and excellent time resolution [9]. 

An EEG recorder amplifies (between around 1k and 100k times) the electrical 

brain signal due to its negligible amplitude (between 1 and 100 µV) and then filters it 

with an analogue signal processer followed by an analogue to digital converter (ADC) 

process [39]. 

https://en.wiktionary.org/wiki/%C2%B5V
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The placement of electrode sensors usually follows the conventional 10-20 

system (Figure 2.2 – A and B), which has been standardised by the International 

Federation of Societies for Electroencephalography and Clinical Neurophysiology. 

This system places electrodes at a 10% or 20% interval distance on the scalp. Another 

option is the extension of a 10-10 system (Figure 2.2 – C) which can be used in order 

to improve spatial resolution [40].  

 

 

Figure 2.2. Conventional 10-20 EEG electrode placement over the scalp (A and B). Extended 10-10 

system (C) [41]. 

 

One of the main issues of EEG recording is the volume conduction problem. 

Volume conduction is the transmission of electric current sources from the biological 



 Department of Computer Science and Electronic Engineering, University of Essex  

23 
 

tissue to the EEG sensors. As it was previously mentioned, the voltage from the scalp 

is much smaller than the membrane potential. Moreover, each tissue has different 

conductivities and impedances. For these reasons, the EEG signal which is measured 

from the sensor is very different from the signal that is measured from inside the scalp 

with the invasive-measurement method [26]. 

 

 

Figure 2.3. The volume conduction problem (modified from [27]). 

 

Figure 2.3 illustrates the volume conduction problem. The power of the signals 

(the size of the arrow) is gradually decreasing when it passes through many layers and 

the path of the signals (the direction of the arrow) is changing variably. The volume 
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conduction problem is therefore one of the main disadvantages of the EEG recording 

system.  

In addition, there are some statistical EEG problems. Firstly, EEG recording 

displays a stochastic behaviour and it requires statistical analysis as single values are 

not reliable (future values are not predictable). Secondly, EEG is a nonstationary and 

nonlinear (time varying) signal. Lastly, it is noisy (large signal to noise ratio) due 

to the volume conduction problem discussed above. For these reasons, various signal 

processing and feature extraction techniques must be used in order to increase the 

reliability of EEG measured BCIs [42]. 

 

2.2 Brief Review of Brain Physiology and Structure 

The human brain can be divided in three major parts: Brainstem, Cerebellum, 

and Cerebrum. The following explanation was based on [26, 27].  

• Brainstem: The brainstem relays signals (action potential) from the body 

(nerve fibres) to the brain centres and vice versa. It controls involuntary 

functions (e.g. heart regulation, hormone sections and biorhythms) 

• Thalamus: The thalamus relays all the sensory inputs and motor signals 

to the cerebral cortex except the smell. 

• Cerebellum: The cerebellum is related to motor control (voluntary 

movements) and some cognition. 

• Cerebrum: The cerebrum contains around 1010 neurons, which are 

strongly interconnected. It plays an important role in the main brain 
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function such as in movement, sensory processing, olfaction, language 

and communication, and learning and memory. 

  

 

Figure 2.4. The human brain structure [43]. 

 

In the following sections, a detailed brain physiology of language processing and 

the sound production system will be discussed as it provides important background 

information for our sound production cognitive onset task. In addition, some brief 

explanation about visual, auditory, somatosensory, motor systems will be related to 

brain functions simultaneously. For example, on the sound imagery onset task, the 

visual and auditory, somatosensory and motor related signals can be found as artefacts. 

 

Visual System 

The procedure of visual information in the brain is through the eye → thalamus 

→ visual cortex process. There are three major parts in this procedure, called the Optic 

Nerve, Optic Chiasm, and Optic Tract. The visual information, which originates from 
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the retina, passes through optic nerve and these optic nerves are combined at the optic 

chiasm. The information from the eyes is combined and divided according to the visual 

field at the optic chiasm [44].  

Figure 2.5 shows how the visual pathway looks like. The information from the 

right side of the visual field goes to the left optic tract (to the left thalamus) and vice 

versa. From the thalamus, the visual information travels to the visual cortex, which is 

located in the backside of the brain (occipital lobe) and it is the largest part in the human 

brain system. The main functions of this part are the processing of information about 

objects (static or moving) and pattern recognition [44]. 

 

 

Figure 2.5. The visual processing pathway [45]. 

 

Auditory System 

Ears can detect the variations of air pressure and translate them through the neural 

activity to the brain [27]. The procedure of auditory pathway is as follows: 

1. The sound wave beats the eardrum (tympanic membrane). 
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2. The eardrum moves the auditory bones. 

3. These moves cause the fluid in the cochlea to move. 

4. The cochlea’s movement stimulates the sensory neurons. 

 

The neural signals from the cochlea, travel to the auditory cortex, which 

processes the sound information in the cerebral cortex. The sound information passes 

through many pathways so it is more complicated than the visual information [27]. 

Figure 2.6 shows how the auditory pathway looks like. 

 

 

Figure 2.6. The auditory pathway [45]. 

 

As can be seen from the figure, the sound information from the auditory nerve 

goes to the superior olive via the cochlear nuclei in the brainstem [27]. This information 
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goes through the lateral lemniscus and the inferior colliculus, which are located in the 

midbrain. Finally, the sound information arrives to the auditory cortex through the 

medial geniculate nucleus (MGN) of the thalamus. The primary auditory cortex is 

located on the superior temporal gyrus in the temporal lobe [46].  

 

Somatic Sensory System 

The sensory system refers to the vision, auditory (hearing), somatic sensation 

(touch), gustatory (taste), olfaction (smell) and vestibular (balance/movement) senses. 

In this section, the somatic sensory system, which contains touch, pain, temperature 

and pressure, will be discussed. This system has receptors, which receive signals from 

the outside environment, throughout the whole body. The information from the skin 

touch or vibration is different from how the pain and temperature works. In this chapter, 

we will only discuss about the touch information [27]. 

The skin is the largest part of the sensory system. It describes the procedure of 

how the touch information is translated into neural signals and is detected by the brain. 

The information, from the receptors, goes through the sensory nerves and the spinal 

cord to the brain, which is in the parietal lobe of the cerebral cortex [47]. 
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Figure 2.7. The touch and proprioceptive information pathway [48]. 

 

The pathway in Figure 2.7 is called the dorsal column-medial lemniscal pathway 

[27]. From the receptors, the touch information ascends to the thalamus and arrives at 

the primary somatosensory cortex the sensory information is processed. Figure 2.8 

shows the location of the somatosensory cortex in the cerebral and the functions in each 

area. From a microscopic point of view, this location map may vary depending on the 

person. 
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Figure 2.8. The somatosensory cortex (left) and somatotopic map (right) [48, 49]. 

 

Motor Control 

The first step of human motor movement starts from the neocortex and basal 

ganglia of the forebrain. The basal ganglia (group of nuclei) are believed to be 

associated with action selection. It decides on how a person should behave and what 

the best movement is according to each case. Secondly, the motor cortex, which is 

located in the cerebral cortex, plans and controls voluntary movement. Lastly, the brain 

stem and the spinal cord execute the movements [27].  

As can be seen from Figure 2.9, the motor cortex can be divided into five different 

parts; the Primary motor cortex, the Premotor cortex, the Supplementary the motor area, 

the Posterior parietal cortex, and the Primary somatosensory cortex. The primary motor 

cortex is the main part which sends neural signals to the spinal cord. Axons are 

descending to the spinal cord. There are two groups of pathways (lateral pathways, 

ventromedial pathways). The lateral pathways are related to voluntary movement.  In 

contrast, the ventromedial pathways control the pose of the body and its balance [27].  
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Figure 2.9. The motor cortex [50]. 

Language Processing & Sound Production 

Language is the most natural form of human-to-human communication. It could 

propose a better way of future human-machine interaction. There are two important 

brain areas for language processing: Broca’s area and Wernicke’s area. 

 

 

Figure 2.10. Cortical representation for language processing (left hemisphere) [51]. 
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Broca’s area is located near the motor cortex area, which controls the mouth and 

lips. It deals with fluent pronunciation by passing signals to the motor cortex. 

Wernicke’s area is located between the auditory cortex and the angular gyrus. This area 

is better known for language comprehension [27, 52]. For this reason, people with 

Broca’s aphasia showcase good comprehension but have a non-fluent and 

ungrammatical speech. On the other hand, Wernicke’s aphasia shows poor language 

comprehension but fluent and grammatical speech, which are meaningless [27]. As can 

be seen from Figure 2.10, the left hemisphere is an important region for language 

processing. The key components of the language system are located in a small area.  

Wernicke proposed a model for language processing and Norman Geschwind 

extended it, now called the Wernicke-Geschwind model, for sound/speech production 

in the human brain. Figure 2.11 shows the model for the two different tasks. Task (A) 

is repeating a spoken word and task (B) is repeating a written word. Stimulus from the 

outside environment is firstly processed by the auditory (for model A) or visual (for 

model B) cortex and it then comes to Wernicke’s area in order to be understood as 

meaningful words.  After this stage, in order to repeat the words (sound production), 

signals are moved to Broca’s area from Wernicke’s area via the arcuate fasciculus. In 

Broca’s area, words are firstly converted to a code for muscular movements and then 

pass to the nearby motor cortex in order to control the movements of the lips, tongue, 

larynx, etc. [27].  
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Figure 2.11. The Wernicke-Geschwind model. (A): repeating a spoken word, (B): repeating a written 

word [27]. 

 

However, this model has several errors and is oversimplified [27]. In a real sound 

production behaviour, it would not need stimuli from the outside environment as 

suggested in the above two tasks. In addition, one dangerous simplification is the 

overstatement of the significance of the given cortical areas for the certain functions. 

Researchers have recently found that aphasia is influenced by damage to subcortical 

structures (e.g., thalamus, caudate nucleus), which are not in the model. It is also often 

found that other cortical areas can sometimes compensate the language function after 

a stroke and actually recover it. Therefore, it is difficult to define sharp functional 

distinctions between regions, which are suggested by the model. In spite of these 

problems, the Wernicke-Geschwind model is continuously being used in clinical areas 

due to its simplicity and approximate validity [27].  

In [53], possible new models for the language processing pathway were reviewed 

(Dorsal and Ventral streams). The major fibre tract which is anchoring the dorsal 

stream is the Superior Longitudinal Fasciculus (SLF) / Arcuate Fasciculus (AF). This 
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SLF/AF component has received the most attention for language and there exist several 

models of SLF/AF connectivity, such as the ‘three-segment’ model presented by Catani 

et al [54] and the  ‘two-segment’ model by Friederici et al [55]. In terms of functionality 

of SLF/AF, it has been suggested that it can transfer information between Wernicke’s 

and Broca’s areas. However, it may be an important pathway in language learning [56]. 

It may also be involved in processing complex syntactic structures for language 

comprehension [57]. However, precise anatomical characterisation and functionality of 

these pathways still remains under investigation [53]. In terms of Ventral streams, the 

Uncinate Fasciculus (UF), Extreme Capsule (EmC), Middle Longitudinal Fasciculus 

(MdLF) and the Inferior Longitudinal Fasciculus and Inferior Fronto-Occipital 

Fasciculus (ILF and IFOF, respectively), have been claimed as new pathways as part 

of the ventral language stream but their role in language remains unclear and 

controversial [53]. 

Many studies repeatedly showed the important roles of Broca’s and Wernicke’s 

areas in the speech production and comprehension in different methodologies (lesion 

and behavioural studies: [58, 59], PET or fMRI studies: [60-62]). Some studies ([60, 

63]) have also showed that language processing involves a widely distributed network 

of different cortical areas (but its neurological pathway remains unclear). Recently, 

ECoG studies have started investigating the neural correlation of speech tasks (e.g., 

[64-66]) [67]. They mostly showed a high gamma response from the left temporal gyrus. 

However, the task design was repeating words after auditory stimuli. It is therefore hard 

to characterise spectral and spatiotemporal dynamics in particular, for covert self-paced 

language processing. 
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Figure 2.12. The physiological location for cursor control (red dot) in an ECoG speech production study 

[68] (figure from [68]). 

 

In a ECoG study [68], a controlled computer cursor (one-dimension) was using 

sound-production tasks. There were five different tasks that were repeatedly dictating 

overtly or covertly expresses of ‘oo’, ‘ah’, ‘eh’ and ‘ee’, along with a rest period. 

Participant 1 (P1) used ‘ee - right’ vs ‘oo – left’, participant 2 (P2): ‘oo’ vs ‘ah’, 

participant 3 (P3): ‘ah’ vs ‘rest’ and participant 4 (P4): ‘ee’ vs ‘rest’. The optimal 

frequency bands for each participant would all vary (92.5-97.5 Hz, 410-420 Hz and 75-

100Hz for P1, P2 and P3, respectively and 40Hz, 560Hz, 550Hz for P4). The 

physiological locations that were used for the classification would also all vary 

depending on their subjects (shown in Figure 2.12 - Brodmann area 42, 6 and 40 for 

P1, P2 and P3, respectively and 3, 22 and 43 for P4).  Furthermore, another ECoG study 

[69] tested sound production tasks (i.e., ‘ah’ and ‘ee’ with six consonants ‘p’, ‘b’, ‘t’, 

‘d’, ‘k’ and ‘g’) and the result showed that in addition to high gamma frequencies, 

lower frequencies (0-40Hz) are useful for speech activity detection [69]. These results 
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indicate that the actual optimal brain physiological area and the frequency bands for 

language processing / sound-production related tasks could all vary depending on their 

subject or they could appear widely in a distributed cortical area. 

 Moreover, the work in [70] reviewed facial EOG / EMG artefacts and showed 

correlation coefficient results between the facial artefacts and the EEG signal. Subjects 

were asked to stick their tongue out three times (which we think it may overlap with 

the speech task and give us similar facial EMG artefacts) and found the highest 

correlation coefficient value of 0.9675 between the artefacts signal and EEG channels 

T8 and T7, followed by channels FC6 and FC5 with a value of 0.8693. The F4 and F3 

channels also reported a high correlation value of 0.8105 and 0.8095 for channels AF4 

and AF3, respectively [70]. These results indicate that an artefacts handling procedure 

for speech related and sound production tasks (e.g., involuntary mouth and vocal cord 

movement, facial EMG) would be necessary.  

 

2.3 Summary 

In this chapter, the neuro electric physiology background was covered. The 

characteristics of EEG and its recorded issues were explained. A brain physiology and 

structure was also described. A brief explanation about visual, auditory, somatosensory, 

motor systems was provided, followed by a detailed background explanation of 

language processing & the sound production system. Having described this neuro 

electric physiology background, the next chapter will discuss in more detail the BCI 

related literature review. The general BCI applications, self-paced onset detection BCIs, 
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speech related BCIs and their EEG signal processing, artefact handling, feature 

extraction, classification and performance assessment will be covered. 
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3 Literature Review 

3.1 Brain-Computer Interface 

A Brain-Computer Interface (BCI), also known as Brain-Machine Interface 

(BMI), is a direct communication system, which includes hardware and software 

aspects, between humans and computers (or machines). It interprets human brain signal 

activities (e.g., EEG) and controls and interacts with their surroundings without any 

physical muscle involvement such as a touch screen or a voice control. Thus, it is not 

only an opportunity for people with severe motor disabilities but also offers various 

interesting applications for able-bodied people such as BCI controlled home devices or 

games [6]. 

In general, a BCI consists of five consecutive stages: data acquisition, pre-

processing or signal enhancement, feature extraction, classification and control, and 

feedback [71]. Figure 3.1 shows the general proceeding structure of a BCI system.  

At the signal acquisition stage (stage A in Figure 3.1), the system captures the 

brain signals. At this stage, brain activity can vaguely be categorised into two different 

ways: 1) the system monitors ongoing brain activities while the user performs specific 

mental tasks such as in-brain simulation of hand movement. 2) the system provides 

stimuli (e.g., flashing objects or beep sounds) and captures the user’s brain involuntary 
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responses. From the signal processing (stage B), a noise reduction, artefact processing 

and further processing (e.g., frequency band filters, spatial filters) are applied to the 

recorded brain signals in order to increase the signal-to-noise ratio. The feature 

extraction (stage C) reduces the dimensionality of signals without any relevant 

information loss in order to minimise the complexity of the data. It increases the 

reliability of classification (stage D), which can discriminate the user’s mental tasks. 

In addition, some BCIs give feedback to the users (stage E) [9]. 

 

 

Figure 3.1. Schematic model of a BCI system [9]. 
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3.2 General BCI Application Paradigms 

P300 BCIs 

Event-Related Potentials (ERPs) are electrical brain signals which are generated 

in response to visual (flashing letters), auditory (sound), tactile (sensory provocations) 

and mental counting stimuli. These are time-locked to the stimuli and it is clearer when 

the stimuli are unpredictable or the subject concentrates on the task [9, 72]. 

Figure 3.2 shows an ERP wave, which consists of many different components 

such as P300, N100 and N400. As can be seen, the P300 wave, which has a positive 

peak, appears between around 300 and 600ms post stimuli and has the most significant 

peak and clear latency. For this reason, P300 has been widely used in many BCI fields 

and it has many applications. 

The most common P300 BCI application is a word speller. In the BCI 

competition Ⅲ the data setⅡ from [73], had 36 characters (6 rows by 6 columns). The 

rows or columns of the matrix were flashed in a random order and user would gaze at 

the target symbol and count how many times the chosen character was flashed. P300 is 

elicited only when the target character’s row or column of the matrix is flashed and 

BCI uses this effect to determine which the target character was. The first rank of the 

competition achieved a 96.5% and 73.5% accuracy when each row and column blinked 

15 and 5 times, respectively [73]. 
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Figure 3.2. ERP components [73]. 

SSVEP BCIs 

Steady-State Visual Evoked Potentials (SSVEPs) are similar to the P300 

approach. However, there are individual flashing objects at different frequencies, 

which are usually between 6 Hz and about 35 Hz [74]. Users fix their gaze on a target 

object and then the object flashes at a specific frequency. It will generate a strong target 

frequency-domain element on the visual cortex, thus the BCI can determine which the 

target object was. This approach is usually faster than the P300, however, it is stricter 

for the user to gaze at the target object [9].  

Motor Imagery BCIs 

A Motor Imagery (MI) task is the imagination or mental rehearsal of limb 

movements such as hands, feet or the tongue. It does not need to have external stimuli 

(e.g., visual or auditory stimuli for P300 or SSVEP), therefore the users do not need to 

entirely focus on the BCI monitor in order to execute a command. In addition, one 

advantage of MI BCIs is that the movement-related brain activity is well localised as it 

was illustrated in Figure 2.9 [9]. Thus, MI widely used BCI techniques and it was 
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extensively investigated in many well-known BCI groups (such as Wadsworth [75], 

Berlin [76], or Graz [77]) [6].  

In the latest BCI competition IV [73], the  data set 2a [23] used 4-class motor 

imagery tasks (left hand, right hand, foot and tongue) with 22 EEG channels. The 

winner of the competition showed that the average (9 subjects) of the kappa value for 

the predicted class-labels of the evaluation set was 0.57 [73]. 

Other Tasks 

There are many other examples of BCI applications. Slow Cortical Potentials 

(SCPs) are slow voltage changes that can be found over the vertex at low frequencies 

(mainly less than 1 Hz which can be extended up to 4 Hz). They require a long-term 

recording with many trials in order to be able to monitor the overall EEG activity trends 

[78].  

Other cognitive tasks, which generate different neural activities in different 

areas can be used for BCIs. In [18, 79], a variety of different mental tasks were tested 

in order to be able to identify them from an idle (neutral) state. The auditory recall, 

navigation imagery, sensorimotor attention, calculation and many other cognitive states 

were investigated. 

 

3.3 Self-paced vs. Cue-based BCIs 

Among other various definitions, BCIs can be categorised as cue-based 

(synchronous) or self-paced (asynchronous) systems. Figure 3.3 shows different 
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examples between Self-Paced BCIs (SP-BCIs) and Cue-Based BCIs (CB-BCIs). As 

can be observed, CB-BCI systems have to inform the user when to start and stop 

thinking the command to the machine. It means the user must follow the computer’s 

own timing commands [5]. The majority of the current stage of EEG-based BCI 

systems are CB-BCIs, where the analysis and classification of brain signals are locked 

to the machine’s predefined timing protocol [7]. The advantage of CB-BCIs is that they 

provide a better classification rate and an easier analysis than SP-BCIs as the machine 

knows the precise time location of relevant events by providing specific cues or triggers 

to the users. For example, very common cue-based approaches are the P300 and SSVEP 

BCI systems, which were discussed earlier. However, this approach forces the users to 

keep concentrating on the computer’s command (e.g., looking at blinking objects) 

which is a very unnatural interaction approach. In addition, CB-BCI systems always 

need an external stimulus from the computer so that the computer can make decisions 

for the users [8].  

 

 

Figure 3.3. Example of human and BCI system interaction (self-paced vs. cue-based BCIs). 



 Department of Computer Science and Electronic Engineering, University of Essex  

44 
 

 

On the other hand, SP-BCIs analyse the user’s brain signals continuously without 

a specific computer-controlled stimulus [9]. The users control the BCI system by 

intentionally performing a specific mental/cognitive task at any point they want [7]. 

This design is more intuitive to the users. It enables them to control the system in a 

more natural way according to the user’s own timing and speed of communication. It 

increases the usability and flexibility of the BCI systems [10]. In order to expand the 

BCIs from the indoor laboratory settings into real-world applications, the machine 

dependent timing constraints have to be resolved. For this reason, the SP-BCI system 

is essential for the real-world use of BCIs in the near future.  

However, there is still a great challenge for SP-BCIs. It is much more 

complicated to analyse them than CB-BCIs as they have a lack of knowledge about the 

precise time location of the user’s command. The user’s control intention and timing 

are usually unknown to the machine [5, 7].  Therefore, SP-BCIs should continuously 

analyse the ongoing brain activity and they should be able to distinguish between 

Intentional-Control (IC) and Non-Control (NC) states. An IC state describes the 

process where the intended brain activity is supposed to produce a BCI output, which 

is quite straightforward. However, the NC state could be any other state besides the IC 

state. It can be also called a non-specific state (i.e., idle, daydreaming, other mental 

activities or performing some other actions) [8]. Distinguishing between the IC and NC 

state is very important in order for SP-BCIs to reduce the false-positive rate. In order 

to solve this issue, onset detection methods can be introduced (it will be explained in 

the following section). 

In the case of these timing analysis difficulties, the classification performance in 

SP-BCIs is usually poorer than in CB-BCIs. In addition, the performance assessment 
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method of SP-BCI systems is not standardised and therefore it may vary depending on 

the values provided by papers and experimental settings. The following section, recent 

studies of SP-BCIs will be discussed together with their applications, evaluation 

methods and performance results. 

In [80], a speech related SP-BCI was tested with a functional Near Infrared 

Spectroscopy (fNIRS) for 5 male subjects. The experiment was carried out as an off-

line scenario and there were three types of speech activity: a normal audible speech, a 

silent speech (moving the articulatory muscles but without sound production), and 

speech imagery. The experiment consisted of 10 sentences (around 66 characters), 

which were taken from a news broadcast. The subjects were asked to produce each 

speech mode followed by pause periods, which were regarded as the idle state [81]. 

SVM was used for classification. In this paper, precision and recall were used for the 

evaluation method. The average result of 5 subjects had a 74% accuracy, 61% true-

positive rate, 16% false-positive rate, 84% true-negative rate and the precision and 

recall values were 0.73 and 0.61, respectively [80]. 

In [82], motor imagery was used for the self-paced system. There were three 

right-handed subjects who were asked to perform real movements (i.e., extending their 

right wrist, holding it sill for about 1-2 seconds and then relaxing) on their own pace 

without any cue from the system. However, they were asked to leave at least a 4 seconds 

interval between the tasks. They used an electromyogram (EMG) in order to identify 

correct onset muscle activities. For the feature extraction, the Thomson Multitaper 

method was used for the Power Spectral Density (PSD) and the Davis-Bouldin Index 

(DBI) was applied for the selection of the features. The Naïve Bayes classifier was used 

for classification. In this study, the performance was analysed with a True-False (TF) 

difference rate and an average time between the correctly detected onset and the real 
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movement onset. The TF rate was defined as: TF = (TP/E – FP/(E+FP)) * 100, where 

TP:  True- Positive, FP:  False-Positive and E: total number of events. In this 

experiment,  the authors achieved a TF rate of 95%, 69% and 59% in 3 different 

subjects and the average time was 325 ms, 788 ms and 688 ms respectively [82]. 

In [8], a tetraplegic subject, who got injured in the spinal cord, was trained with 

the cue-based motor imagery system during a 4 months period.  After that stage, for 

the self-paced system study, the authors used two electrodes; Cz (foot representation 

area) and Fz (ground electrode). A single logarithmic band power feature was applied 

and a simple threshold was used to distinguish between the imaginary thought of foot 

movement and the rest (non-control) state. The aim of this experiment was to move a 

virtual wheelchair to the target area and lay it still there for a couple of seconds. The 

authors evaluated the subject’s performance with the percentage of the accurate stop at 

the target place. They achieved an around 90% accuracy value. However, for most of 

the duration of the experiment, the time that the wheelchair stopped moving was too 

short (between 0.08 and 0.88 seconds), where it was supposed to last for at least a 

couple of seconds. Therefore, even though, the results reported quite a high 

performance, there was still some doubt concerning the actual classification accuracy 

between the active and non-control states. 

 

3.4 Speech Related BCIs 

Speech related BCIs can be divided into overt and covert systems. Overt speech 

takes place when one is speaking naturally so that they can clearly be heard and moves 
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all the related muscles such as the lips and the tongue.  In contrast, covert speech refers 

to when a subject imagines speaking internally in their mind without any actual speech 

related muscle movements.    

Overt speech experiments have been successfully studied with an EEG 

measurement so far. However, overt speech exhibits a bad signal to noise ratio (SNR) 

which is caused by muscle movement artefacts that accompany it [83]. In addition, 

overt speech does not have a reasonable form for ultimate BCI systems (it can be used 

speech recognition technology can be used instead of BCI). 

 In contrast, a covert speech BCI has big advantages even though it is very 

difficult to classify and it may have different processes compared to the overt speech 

production [83]. Firstly, it is suitable when the oral speech is undesirable such as in a 

quite library. Secondly, it can be a solution for people who are not able to speak out 

overtly [84]. 

There is a number of papers in published literature, which investigated speech 

related BCIs. In [13], three subjects were instructed to perform three different tasks: 

imaginary vocalisation of the ‘a’ and ‘u’ vowels (including imaginary mouth and lip 

movements) and no action state. These tasks were performed with the appearance of a 

visual cue. Strong positive Speech Related Potentials (SRPs) of around 300 ms were 

reported in this experiment, after the visual cue appeared, at channels C3, Cz and C4 

(15 Hz cut-off low pass filtered). The results showed that the difference between the 

‘u’ task and the idle state had an around 78% accuracy value on average for the three 

participants. The ‘a’ task vs. the idle state accuracy was around 72%. On the other hand, 

the ‘a’ task vs. the ‘u’ task showed a lower accuracy result of around 62.6% [13]. 
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In [12, 14, 85], the authors investigated a similar imaginary speech case. The 

subjects were asked to think either the syllable ‘ba’ or ‘ku’ at a specific rhythm with 

audio cues. In [85], where the highest classification result of 99.76% was achieved, the 

authors studied the covert production itself rather than the imaginary speech muscle 

movements. 

In [81], the functional Near Infrared Spectroscopy (fNIRS) signal was recorded 

with various speech modes (audible, silently uttered and imaginary speech) and no 

speech production state. These speech modes were compared to the no-speech state and 

the classification rates were between 69% and 88%. During the speech states, subjects 

read around 66 characters followed by 10 seconds of a no-speech state. 

An ECoG study [16] showed a continuously oral speech decoding, called the 

brain-to-text system in an offline setting. Seven subjects participated and they were 

instructed to read text (historical political speeches) aloud which was cut into 21-49 

phrases. They then trained the data with 23 phones (e.g., ‘aa’, b’, ‘ch’, ‘eh’, etc.). At 

this stage, three of the participants were rejected as they showed speech related 

activations with a lower than normal probability.  The example was decode from 

“/w/ih/aa/r/ /k/aa/m/ih/t/aa/t/ /t/aa/t/eh/” to “we are committed today”. The recoding 

results showed that the system yielded significantly higher accuracies than the random 

models. Participants 1, 3, 5 and 6 showed an around 10-15% accuracy value while 

participants 2 and 7 showed just under 40% and around 50% accuracy values, 

respectively [16]. Even though the results are very promising and the system itself has 

great potential, the artefact removal procedure could have been considered as the 

reading task was overtly conducted, which may influence the classification outcome 

with some artefacts such as facial EMG.  
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3.5 Onset Detection in BCIs 

Onset detection allows self-paced BCIs to detect when a user wants to send a 

command. It should be able to classify a specific active task against the idle (no control) 

state [4]. However, determining the precise onset time is quite difficult and this is called 

the onset detection problem in BCIs.  

There are a couple of reasons why onset detection is important. Firstly, the 

identification of the idle state is compulsory for self-paced BCI applications. The 

system must not only have a reliably high enough true-positive accuracy but also an as 

low as possible false-positive rate in order to be used in realistic applications (especially 

when safety is an issue). Secondly, for a full function of a self-paced BCI, the user must 

be able to turn on and off the machine when they desire. Onset detection can therefore 

be used as an on/off switch [86]. 

The various onset detection methods (e.g., classifying the idle versus the task 

states) will be introduced and discussed in this section. The idle state in BCIs can be 

categorised in two types. The first one is a relaxing state, where the subject tries to 

think nothing and relaxes. The second one is where the subjects can perform almost 

any mental tasks except the active mental task, which belongs to the class [87]. 

However, it is very difficult to classify various non-class mental states as an idle state 

because of its diversity. For this reason, many papers regarded the resting period as an 

idle state. 

In [88], the authors classified the motor imagery tasks against the idle state. They 

made two two-class classifiers for three different classes (left hand, right foot and idle). 

The experiment was performed with three different states: left hand, right hand motor 

imagery tasks and relax. 32 channels at a 256 Hz sampling rate were recorded and an 
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Event-Related Desynchronisation (ERD) in mu and beta rhythms was used as a feature. 

If the feature did not belong to the motor imagery tasks, they assumed it belonged to 

the idle state and it accordingly achieved true-positive rates of around 40% from the 

relax state. A paper [89] also suggested a similar method of idle state detection and 

achieved a 48.73% accuracy value. 

In [90], the imagination of motor movements, cube rotation, subtraction 

calculation, word association and relax (closed eyes) states were tested as an onset of 

a self-paced BCI. The task was to type 27 symbols in a keyboard and it achieved a 0.22 

bit rate (detailed keyboard layout and paradigm can be found in [90]).  

In [18], various mental tasks (Movement imagery, Mental arithmetic, Navigation 

imagery, Auditory imagery and Phone imagery; details of mental tasks can be found in 

[18]) were compared with the idle state. The idle state was defined as not performing 

any of the active tasks and the subjects remained focused on the fixation cross in the 

same manner as the active task. In this experiment, the average accuracy of the five 

subjects was 74.4% (motor left), 71.8% (motor right), 73.2% (calculation), 66.8% 

(navigation), 62.4% (auditory recall) and 62% (phone imagery) [18]. 

Qian et al. [91] developed a motor imagery-based brain-controlled switch. They 

tried to develop a system that minimises the false positive rate in order to be feasible 

in real world switch system. They employed event-related potential-based systems, 

which instructed the subject to repeat 1 s during the right index finger pinch-urging 

time (intentional control) followed by 2 s of resting time, with the use of sound cues 

until the switch turned on. The results on average of the four subjects showed an around 

0.8% false-positive rate with the response speed being around 37 s (urging time: 12.3s).  
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3.6 EEG Signal Processing 

EEG signals usually have a poor signal-to-noise ratio as electrodes are placed on 

the subject’s scalp, which forbids the direct contact between the brain and the machine.  

Therefore, the EEG signal is very weak and contains various artefacts. For this reason, 

a pre-processing process is required in order to achieve an optimal classification 

accuracy. 

Referencing 

One of the most common and easiest ways to remove common environmental 

noise in an EEG recording system is referencing. Here are some common referencing 

methods in BCIs:  

• Common Reference: One or two extra electrodes are placed and the noise 

data are subtracted sample by sample in the time domain. The reference 

point should not have any signal information and it must be placed near 

to the scalp which contains similar noise features (e.g., ear lobes or 

mastoid) [9]. 

• Bipolar Reference: The electrodes are grouped in pairs and the noise 

signal is subtracted between the two electrodes. It describes the difference 

of the linked electrodes [92].  

• Common Average Reference (CAR): The average value of all the 

channels is removed from each channel. This zero-centered output value 

can be regarded as a spatial filter as it removes common noise for all the 

present channels [93]. 
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• Laplacian Filtering: This method is useful because it  maximises the 

spatial difference by the subtraction of one channel from the average of 

the surrounding channels [9].  

 

Frequency Band Filtering 

The raw EEG signal has various frequency components and artefacts. In order to 

keep informative frequency ranges and remove undesired signals such as mains 

interference and EMG noises, a band-pass filtering process is necessary.  

 

 

Figure 3.4. Typical frequency band filtering of EEG signals [9]. 

 

Figure 3.4 illustrates a basic example of a filtering process for an EEG signal. 

The high-pass filter with a value of around 0.5 Hz is used to remove motion related 

artefacts, such as body and electrode cable lines movements. The low-pass filter is used 

to reduce EMG artefacts. The notch filter is required to remove the mains interference 
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(50 Hz in the UK, 60 Hz in USA). However, the filter type, cut-off frequencies and 

order numbers can all be variably chosen depending on the systems.  

 

3.7 Artefact Removal 

The EEG artefacts are normally much higher in amplitude than EEG signals and 

cover a wide frequency range [36]. In order to have clear EEG data, the artefact removal 

is necessary. There are three main EEG artefacts:  

 

• Physiological variability: It is caused by other electrophysiological 

effects such as EMG (e.g., jaws, facial muscle twitches and swallowing), 

EOG (eye movement and blinking) and ECG (cardiac activity) [9, 36].  

• Transducer artefacts: These artefacts are related to the movement of 

cables and the change of the electrodes’ contact from the scalp during the 

long sessions of recording. This could change the baseline level of the 

EEG recording [36]. 

• Mains interference: Mains interference is appearing at 50 Hz in the UK 

and 60 Hz in some countries). This artefact can be removed by 

referencing or a notch / stop-band filter [9].  

 

In order to remove these EEG artefacts, various techniques can be used. 

Transducer artefacts and mains interference can be removed by referencing and 

frequency band filtering. Most motion related artefacts can be eliminated with a high-
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pass filter with a cut-off frequency of around 0.5 Hz. However, some EMG or EOG 

signals overlap with the EEG signal. The study in [70] showed correlation coefficient 

results between facial artefacts (e.g., blink, left/right wink, raise brow, smile and clench) 

and the EEG signal. They found that channels F3 and F4 had the highest correlation 

coefficient values of 0.8579 followed by channels F8 and AF3 (0.8242) for the blink 

artefacts. For the swallowing artefacts, channels FC6 and FC5 had the highest value of 

0.9543 followed by F8 and F7 with 0.8819. These results indicate that specific channels 

were highly correlated with the facial EMG artefacts [70]. For this reason, it is difficult 

for the muscle movement artefacts to be fully removed from EEG [9]. In order to reduce 

these artefacts, some statistical methods can be applied. 

Recent surveys on BCI artefacts [94, 95] demonstrated blind source separation 

techniques that are mostly used in current BCI systems, such as PCA, ICA and BSS-

CCA, which have been shown to provide satisfactory artefact removal results.  

Therefore, the BSS-CCA, ICA and PCA techniques will be briefly described in the 

following sections in addition to wavelet de-noising. 

Canonical Correlation Analysis (CCA) 

Canonical Correlation Analysis (CCA) is a statistical analysis that measures the 

linear relationship between two multidimensional variables. It finds two bases for each 

variable and the correlation matrix between the variables is diagonal so that the 

correlations on the diagonal can be maximised [96]. The Blind Source Separation (BSS) 

problem can be solved with CCA by taking the EEG multi-channel source vector as the 

first multidimensional variable and the temporally delayed EEG source vector as the 

second variable [97]. In order to solve the BSS problem, BSS-CCA assumes mutually 

uncorrelated sources that are maximally auto-correlated. It can therefore be used to 
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separate the brain signal from the muscle activity sources as the muscle artefacts have 

relatively low autocorrelation compared to the brain signal [98]. (a detailed calculation 

procedure with equations for the EEG artefacts handling can be found  in [98]). 

  

Independent Component Analysis (ICA) 

The Independent Component Analysis (ICA) is another widely used technique 

which can solve the BSS problem. It divides EEG sources into multi-components, 

which maximises their mutual independence [99]. By removing the artefact component 

ICs and reconstructing the signal, it produces artefact-free EEG data (a detailed 

calculation procedure with equations for the EEG artefacts handling can be found in 

[100, 101]). The ICA procedure usually requires a manual visual inspection from the 

experts in order to clarify the artefact component ICs, therefore it is not suitable for an 

online system. However, the work in [102, 103] demonstrated an automatic artefact IC 

detection technique by using Kurtosis and Entropy.  

 

Principal Component Analysis (PCA) 

The Principal Component Analysis (PCA) is a statistical procedure that identifies 

patterns in high dimensions of data (multi channels or multi trials) by finding their 

similarities and differences [104]. It uses a linear transformation and it generates a set 

of principal components (Eigenvalues). The higher value of the PCs represents a strong 

correlation between multiple signals (e.g., channels or trials) and the smaller value of 

PCs can be regarded as a noise component, which normally has less correlation. By 
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sorting these PCs in descending order and eliminate the last few PCs and reconstruct 

the signals (reversing the PCA process), noise-removed signals will be generated.  

 

Wavelet De-noising 

The Wavelet Transform (WT) decomposes a time domain signal into time-

frequency space. Due to this feature, it is one of the superior techniques for processing 

non-stationary signals such as EEG. It also works well for finding and removing 

artefacts. In this section, the wavelet de-noising method will be introduced and a 

detailed WT technique for feature extraction and its background knowledge can be 

found in the next section. 

Eye-blinks and movements generate electrical signals known as Ocular Artefacts 

(OA), which are the main contaminating recourse for EEG. In [105, 106] the Stationary 

Wavelet Transform (SWT) was applied in order to detect OAs and correct EEG signals 

by removing the OAs from the contaminated EEG.  

 

 

Figure 3.5. Decomposition process of using a DWT (A) and a SWT (B) [107]. 
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The SWT is a modified version of DWT (Figure 3.5 shows the difference). While 

DWT uses samples downwards at each level, SWT is never sub-sampled but the filters 

are upwards sampled at each level of decomposition. Thus, each set of coefficients 

contains the same number of samples as the input [107]. 

 

Figure 3.6. Block diagram of the wavelet de-noising method. 

 

Figure 3.6 illustrates the de-noising procedure of using SWT. In [105, 106] the 

‘Coiflet 3’ and ‘Symlet 3’ wavelet has been chosen respectively at stage 1 (from the 

above figure) as it resembles the shape of the eye blink artefact. In order to detect the 

EOG artefact, some threshold techniques such as the adaptive threshold were used in 

[105, 106] from stage 2. The SWT was found to be working well for the removal of the 

EOG artefact. In [108], various techniques have been compared for the removal of OAs 

and it was reported that the combination of SWT and the adaptive filter outperformed 

other methods.  
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3.8 Feature Extraction 

For BCI systems, the use of raw EEG signals is very difficult to interpret and 

classify due to their characteristics [109]:  

• Noisy: EEG signals are very noisy and have a poor signal-to-noise ratio.  

• High dimension: BCI systems usually deal with a high dimension of data 

(e.g., multi-channel, multi-trials, frequency analysis). 

• Non-stationary: EEG signals are non-stationary and time-variant.   

• Small training sets: In BCIs, the training sets are usually small. 

 

For these reasons, feature extraction plays an important role in helping to 

improve the recognition performance prior to the classification stage. In this section, 

general feature extraction methods in BCIs will be briefly introduced and some popular 

approaches will be discussed in detail.  

 

Table 3.1. Brief explanation of various feature extraction methods in BCIs [6]. 

 Method Properties 

Dimension 

Reduction 

PCA 

- A statistical procedure that uses linear transformation 

- Transforms a set of correlated variables into a set of linearly 

uncorrelated Principal Components (PCs) 

- Noise and dimension (channels) reduction methods 

- Noise should be uncorrelated with the EEG signal in a PCA 

process 

ICA - A method that splits a mixed signal into its original sources 
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- Good for artefact removal such as eye blinking 

- Processing an ICA will lose EEG channel information  

Space  

Feature 

CSP 

- Spatial filter in order to separate two classes from multi-

channel data 

- Maximum difference in variance between two classes 

- It is affected by the spatial resolution 

- It is not as effective for asynchronous BCIs as for 

synchronous BCIs due to non-stationary properties of EEG 

signals 

Time-

Frequency 

Feature 

AR 

- AutoRegressive (AR) spectral estimation is a method for 

spectrum modelling signals 

- It is used to obtain the filter coefficients and the feature of 

the signal 

- Order selection is important in the AR model 

MF 

- Match Filtering (MF) is a method that detects a specific 

pattern of an unknown signal by obtaining the matched filter 

from predetermined known signals 

- A higher correlation between the template and the user’s 

command would show better matching 

- It is effective when the signals have consistent temporal 

characteristics 

WT 

- The Wavelet Transform (WT) provides not only frequency 

information but also temporal 

-  The Discrete Wavelet Transform (DWT) has a 

computational advantage compared to the Continuous 
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Wavelet Transform (CWT) as wavelets are discretely 

sampled 

- WT is suitable for non-stationary signals 

- However, selecting the appropriate wavelet family is 

important 

Feature  

Selection 

GA 

- A Genetic Algorithm (GA) is an optimisation procedure to 

find the most efficient set of features  

- Requires high computational resources 

SS 

- Sequential Selection (SS) is finding the optimal subset of 

features by adding or removing features sequentially 

 

 

AutoRegressive (AR) Model 

The AutoRegressive (AR) model is a stochastic process which estimates future 

values based on a weighted sum of past values. In BCIs, EEG signals are assumed as 

the output of the AR models, where the input is white noise with a mean of zero and a 

certain variance. Then, the filter coefficients (AR coefficients) are used as the features 

of the EEG signal as it is assumed that the AR coefficient will be different depending 

on the mental tasks [6]. 

 

 𝑋𝑡 =  ∑ 𝑎𝑖𝑋𝑡−𝑖 + 𝜀𝑡

𝑁

𝑖=1

 Equation 3-1 
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Equation 3-1 is the definition of AR modelling, where 𝑎𝑖 is the AR coefficient, 

𝑋𝑡 is the assumed EEG signal, 𝑁 is the order number and 𝜀𝑡 is noise. These 𝑁 numbers 

of 𝑎𝑖 are used as the feature vectors for classification. In the AR model, choosing an 

appropriate order is important. If this value is too low or too high, the spectrum is going 

to be very smooth or it will have excessive peaks [6]. In [110], an order 6 was found to 

be optimal in imagined speech EEG signals. 

However, AR modelling assumes the series 𝑋𝑡  is linear and stationary so the 

performance is not great when the signal is not stationary, especially in an on-line 

system. For this reason, various adaptive methods have been designed such as the 

MultiVariate Adaptive AR (MVAAR) model for on-line BCI systems [6, 111].  

 

Common Spatial Pattern (CSP) 

The Common Spatial Pattern (CSP) method has been used in various BCIs. One 

of the first CSP implementations in Motor Imagery BCIs was introduced in [112, 113].  

In the following years, much research has been carried out that shows that CSP can be 

successfully implemented in Motor Imagery BCIs. 

CSP is a mathematical technique which separates two classes from multi-channel 

data [114]. In BCIs, it projects multi-channel EEG data into low dimension space with 

a projection matrix by using a linear transform [115]. This CSP filter finds optimal 

variances between classes by maximising one class’s variances and minimising the 

other condition [114].  

In this project, the two classes were chosen as matrices XI and XH, which represent 

the idle state and the high tone speech EEG signal after the signal processing procedure. 
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Matrix X has an S*N*T dimension, where S is the number of sampling points, N is the 

number of electrodes, which is 64 channels, and T is the number of trials. The 

normalised covariance matrix from multiple trials can be described as: 

 

 

𝑅𝐼 =  
∑ 𝑋𝐼𝑋𝐼

𝑇𝑇

𝑡𝑟𝑎𝑐𝑒(∑ 𝑋𝐼𝑋𝐼
𝑇𝑇 )

  

 

𝑅𝐻 =  
∑ 𝑋𝐻𝑋𝐻

𝑇𝑇

𝑡𝑟𝑎𝑐𝑒(∑ 𝑋𝐻𝑋𝐻
𝑇𝑇 )

 

Equation 3-2 

 

where X T denotes the transpose matrix of X and trace(X) refers to the sum of the 

diagonal elements of X. Let R = RI + RH and the whitening transformation, W can be 

calculated by the Ramoser Equation [113] as follows: 

  

 𝑊 =  √𝑑𝑖𝑎𝑔(𝐸𝑣𝑎𝑙)−1 ∗ 𝐸𝑣𝑒𝑐𝑡
 Equation 3-3 

 

where diag(X) is the diagonal matrix of X. Eval (Eigenvalues) and Evec (Eigenvectors) 

are sorted in descending order.  As a consequence, SI and SH share common 

eigenvectors when they are transformed as: 

  

 

𝑆𝐼 = 𝑊 ∗  𝑅𝐼 ∗  𝑊𝑇  

𝑆𝐻 = 𝑊 ∗ 𝑅𝐻 ∗  𝑊𝑇
 

Equation 3-4 
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therefore, the eigenvector, which has the maximum eigenvalue for SI, has the minimum 

eigenvalue for SH and  vice versa as the sum of two corresponding eigenvalues is always 

1 [113]. The projection matrix P, which contains spatial filter coefficients, can be 

described as: 

 

 𝑃 = 𝐸𝑉𝑇 ∗ 𝑊 Equation 3-5 

 

where EV are the sorted eigenvectors of SI and SH in ascending order according to the 

eigenvalues. The columns of the inverse matrix of P (P-1) are the spatial patterns, which 

can be used for the neurophysiological mapping projection of the scalp [114]. The first 

column of P-1 represents the largest variance of one class and the smallest of the other 

and the last column represents the opposite [115]. The original EEG signal can be 

transformed into E: 

 

 𝐸 = 𝑃 ∗  𝑋 Equation 3-6 

 

After the spatial filter process, uncorrelated components E (64 according to the samples) 

were sorted in order to maximise or minimise the variance of one class. Thus, the first 

and last rows of E represent the maximum difference in the variance between the 

classes.  
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Frequency Band Power 

Band Power (BP) is one of the simplest spectral domain feature extraction 

methods in BCIs. In our study, the Fast Fourier Transform (FFT) was applied to the 

pre-processed EEG signal and separated into multiple pre-defined frequency ranges 

(the details will be discussed in each experiment-based Chapter). At the next stage, 

these signals were square powered and averaged within the specific band. 

 

Wavelet Transform (WT) 

EEG signal can generally be analysed in the time-domain or frequency-domain. 

However, the Wavelet Transform (WT) offers time-frequency features, which are very 

efficient for non-stationary signals such as EEG.  

A wavelet is a certain formed waveform, which has a limited duration and an 

average value of zero [116]. The WT decomposes the signal in the time and frequency 

domain at multiple resolutions, by shifting wavelets along the signal at various scales 

[6]. The output of WT is the set of coefficients, which  represent the input at the wavelet 

basis [117].  

 

 

Figure 3.7. Steps of CWT [116, 118]. 
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WT can generally be categorised as Continuous WT (CWT) and Discrete WT 

(DWT). CWT is the sum of all the times of the signal multiplied by scaled and shifted 

versions of the wavelet. As can be seen from the Figure 3.7, shifting and scaling simply 

means moving the wavelet window and stretching or compressing the wavelet. There 

is a correspondence between the wavelet scale and frequency. The low scale, which is 

the compressed wavelet, correlates more with high frequencies than with low 

frequencies.  In contrast, the high scale correlates more with the low frequencies of the 

signal [116]. The mathematical definition of CWT is:  

 

 𝑤(𝑠𝑐𝑎𝑙𝑒, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) = ∫ 𝑓(𝑡)𝜓(𝑠𝑐𝑎𝑙𝑒, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑡)𝑑𝑡

∞

−∞

 Equation 3-7 

 

where 𝜓(𝑠𝑐𝑎𝑙𝑒, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑡) is the scaled and shifted version of the mother wavelet 

𝜓(𝑡). CWT generates many wavelet coefficients 𝑤(𝑠𝑐𝑎𝑙𝑒, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) , which are a 

function of scale and position [116].  

CWT generates enormous numbers of wavelet coefficients as it works at every 

scale and position. Due to its redundancy and complexity, DWT was introduced. 
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Figure 3.8. (A) DWT filtering process, (B) DWT decomposition tree [116, 118]. 

 

The DWT process divides the original signal into approximation (low frequency 

components) and detail (high frequency components). As can be observed from Figure 

3.8, DWT has a filtering process as well as down-sample processes in order to prevent 

the length of data from increasing twice from the previous level. 

There are many different mother wavelets and families. However, finding the 

suitable wavelet for the specific BCI application is of most importance as the feature 

coefficients will be significantly varying depending on the choice of wavelets.  

Feature Selection 

The above feature extraction methods usually produce hundreds of features 

depending on the number of channels and sample size.  Therefore, a feature selection 

had to be applied in order to reduce the feature set size and class overlap, and to improve 

computational efficiency. To this end, the Davies-Bouldin Index (DBI) [119, 120] was 

applied in this thesis. The DBI is a cluster overlap measure. Smaller DBI values 

indicate a better class separation, with smaller class overlap and a larger distance 

between classes. DBI is defined as follows: 
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 𝐷𝐵𝐼 =
𝑆𝑖 + 𝑆𝑗

𝑀𝑖𝑗
 Equation 3-8 

 

where Si and Sj is the dispersion of cluster i and j, respectively and Mij is the Euclidean 

distance between cluster centroids i and j [120, 121]. In our work (two classes), we 

only require Equation 3-8 for the DBI value calculation. Thus, DBI values for each 

feature were sorted in an ascending order and the features which had a smaller DBI 

value than the threshold were selected as a feature set for further classification analysis. 

 

3.9 Classification 

BCI systems should be able to classify different mental tasks in order to control 

machines. However, as it was mentioned in the feature extraction part, EEG signals are 

noisy, non-stationary and normally have a small training set [109]. For this reason, the 

selection of an appropriate classifier is important in order to increase the reliability of 

the system. In [109], various classification techniques for EEG-based BCI systems 

were reviewed so according to this study, the most common BCI classifiers will be 

shown and discussed in this  section. 

The most common BCI classifiers can be categorised as Linear classifiers, 

Neural networks and Non-linear Bayesian classifiers [122]. The linear classifier uses 

linear functions in order to distinguish classes and these are the most popular algorithms 

for BCI applications which were also used in this project. Therefore, the LDA and SVM 
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classifier will briefly be covered in the following section. The neural networks classifier 

is imitating the neurons nerve system, which has several layers in order to produce 

nonlinear decision. There are many examples of neural networks such as the Multi-

layer perception, Radial basis, Learning vector quantization and Dynamic neural 

network. The  non-linear Bayesian classifier on the other hand, is not common and not 

fast enough for real-time BCIs but it sometimes shows good classification performance 

with their non-linear decision boundaries (e.g., Bayes quadratic, Hidden Markov Model) 

[122].  

Linear Discriminant Analysis (LDA) 

Linear classifiers use linear functions in order to distinguish between multiple 

classes and the Linear Discriminant Analysis (LDA) is one of the most popular linear 

classifiers in BCI systems.  

As the dimensionality reduction is one of the objectives of the LDA process, it 

provides a simpler classification in multiple dimensions of data. LDA uses a linear 

hyperplane, which is a projection line which maximises the separation between the 

classes (by increasing the distance between the mean of the two classes) and minimises 

their overlap (by decreasing the variance within the classes) [109]. The linear 

discrimination is based on the function: 

 

 𝑔(𝑥) = 𝑤𝑇𝑥 + 𝑤0 Equation 3-9 

 

where 𝑥 is the sample to discriminate, 𝑤 is the weight matrix and 𝑤0 is the bias or 

threshold [93]. 
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Figure 3.9. LDA hyperplane separating two classes [109]. 

 

The advantage of LDA is its simplicity and low computational power, which 

allows the LDA to be successfully used in online BCI systems [109]. 

 

Support Vector Machine (SVM) 

The Support Vector Machine (SVM) is another popular linear classifier in BCIs. 

It also uses a discriminant hyperplane in order to separate classes. However, the SVM 

chooses the linear line based on the maximisation of the margin between the classes 

[109].  
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Figure 3.10. SVM hyperplane maximising the margin between classes [109]. 

 

As can be seen from Figure 3.10, the set of vectors is optimally separated by the 

SVM hyperplane if the distance between the closest vectors and the hyperplane is 

maximal. However, this case only applies when the training data are linearly separable 

but in most cases they are not. As a solution to this problem, the SVM estimates the 

noise in the data depending on prior knowledge [123].  

 

3.10 Performance Assessment 

There are many common performance evaluation measures for BCIs such as the 

Area Under the Curve (AUC), Receiver Operating characteristic Curves (ROC) and 

Mean Squared prediction Error (MSE). However, these measures are not taking into 

account the system operation time, especially the idle period length, which is a very 
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important and critical evaluation criterion for a self-paced onset detection system.  

Therefore, they will not be covered in this thesis.   

In this section, the confusion matrix performance evaluation measures will be 

briefly described as background knowledge for the better understanding of this thesis.  

In addition, the mutual information and information transfer rate, which are very 

common evaluation systems will be discussed, along with how their issues can be 

applied to online self-paced systems. Based on the issues of the current evaluation 

systems, our novel performance evaluation metric will be proposed and discussed in 

Chapter 6 - Performance Assessment Score.  

 

Confusion Matrix  

A confusion matrix is a table layout that is used to visualise the performance of 

a classification model. In the common BCI two-class problem, classes are often 

labelled as ‘target’ and ‘non-target’. In this case, the  True-Positive (TP),  True-

Negative (TN),  False-Positive (FP) and  False-Negative (FN) cases can be described 

as follows [124]: 

TP: targets that were correctly classified. 

TN: non-targets that were correctly classified. 

FP: non-targets that were incorrectly classified as targets. 

FN: targets that were incorrectly classified as non-targets. 
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The TP rate (TP / TP + FN) and the FP rate (FP / FP + TN) are usually used in 

BCI systems. They show the proportion of positive items that were correctly classified 

and the error rate of false alarms, respectively. In addition, the classification accuracy 

(TP + TN / TP + FN + FP + TN) is a common performance measure in BCIs that 

shows the percentage of the total correctly classified patterns.  

 

 

Figure 3.11. Confusion matrix [125]. 

 

Mutual Information & Information Transfer Rate (ITR) 

Mutual information finds out how many bits of information are effectively sent 

on average when the classifier makes decisions about all possible situations of the 

inputs. In BCIs, the formula is defined as [124]: 

 

 𝐵(𝑏𝑖𝑡𝑠) = log2 𝑁 + 𝑃 log2 𝑃 + (1 − 𝑃) log2 (
1 − 𝑃

𝑁 − 1
) Equation 3-10 
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where N is the number of classes and P is the accuracy. However, this formula holds 

under the following conditions [126]: 

• N selection of classes is possible and the classes have the same probability. 

• The accuracy is the same for each class. 

• Errors of the classifier must have the same probability for each class. 

 

This mutual information does not take into account the speed of the system.  

Therefore, the Information Transfer Rate (ITR) is used more in BCI systems. It simply 

divides the number of bits B by time T (either in minutes or seconds), which is the 

average time of a single trial (ITR = B/T). 

However, there is one major issue which concerns the mutual information 

evaluation of online self-paced BCI systems. As can be observed from Figure 3.12, the 

performance B (in bits) presented in the y axis shows the highest performance results 

not only when it has the highest number of true-positives with 0 false-positives but also 

with 0 true-positives when it has the highest number of false-positives, which should 

give the lowest performance results. This happens because if the 100% false output is 

inversed manually by the user, it gives a 100% correct output. However, in online self-

paced systems, users would not be able to know whether the system gives a false output 

or a correct output. This will cause a problem in the case where the performance output 

shows results of 80% accuracy, when they actually have a 20% accuracy. In addition 

to this problem, mutual information and ITR measures are not taking into account the 

idle period length, which is an important assessment criterion for self-paced onset 

detection systems. For these reasons, we proposed a novel assessment score metric for 

self-paced BCIs and it will be discussed in Chapter 6 - Performance Assessment Score.  
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Figure 3.12. Mutual information performance graph based on various number of false-positives and 

true-positives. 𝐵(𝑏𝑖𝑡𝑠) = log2 𝑁 + 𝑃 log2(𝑃 + α) + (1 − 𝑃) log2 (
1−𝑃+α

𝑁−1
), α = 0.1 was added to P 

(accuracy) in order to prevent log2(0).  

 

3.11 Summary of Existing Challenges of Onset Detection 

In this section, the existing challenges of onset detection will briefly be 

summarised as a conclusion of the introductory sections and before we move to the 

next chapters (experiment-based). 

BCIs have rapidly been developed in the last few years but they are mostly 

restricted only in laboratory settings due to the lack of practicality and usability which 

is derived by the cue-based approach.  Therefore, self-paced modality is more suitable 
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for applying BCIs to real-world uses. However, there exists a great challenge for SP-

BCIs. They are more complicated to analyse than the CB-BCIs as they have lack of 

knowledge about the precise time location of the user’s command. The user’s control 

intention and timing are usually unknown to the machine [5, 7]. SP-BCIs should 

therefore continuously analyse the ongoing brain activity and they should be able to 

distinguish between the Intentional-Control (IC) and Non-Control (NC) states (called 

the onset detection problem). 

Based on our literature review, the motor imagery task was mostly used (e.g. [7, 

8, 10, 11]) for onset detection. However, one crucial issue emerges if this is used 

outside the indoor laboratory settings. The motor imagery mental procedure largely 

overlaps with other common spontaneous cognitive states. For example, the classifier 

would not be possible to identify whether the onset detection was from the actual 

command or from other daily-life gestures such as shaking hands, grabbing an object 

or cycling. This is the main challenge in the current onset detection system. 

For this reason, we suggested sound-production related cognitive tasks (sound 

imagery) for the onset detection method. The chances of IC false positives also need to 

be reduced, but this can be addressed by choosing cognitive tasks that do not 

significantly overlap with other common, spontaneous and frequent cognitive states [4]. 

The use of specific words/syllables/letters for onset detection would likely increase 

both the onset false positives as well as the task-related false negatives due to the large 

overlap with the continuous internal speech in normal thought processes.  As a result, 

we have chosen imagining a high tone or siren-like sound production tasks to be onset 

switches, both of which are unlikely to overlap with normal thought processes.  
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Another big issue in the current onset detection system is its low performance. 

This is mainly because of the variety of the idle state mental pattern. Task vs. task is 

usually easier as there are two different clear patterns which can simply be classified. 

However, the idle state has no clear spectral/spatial characteristic, therefore it makes it 

difficult to be classified. In order to address this issue, some papers (e.g. [90]) defined 

the idle state as a relaxed state with the eyes closed (alpha wave generation). However, 

it is not an appropriate approach if it is applied to a real-world system. In this thesis, 

the effect of the variety of idle states has not been investigated, however the sound 

imagery onset detection achieved significantly better results in terms of performance 

than the motor imagery task. 
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4 A Novel Technique of EMG Artefacts 

Contaminated EEG Channel Selection and 

Processing (Based on a paper [2]) 

4.1 Introduction 

This chapter is based on a journal paper (submitted / under review) [2].  

As it was discussed in Chapter 1, artefact handling is an important challenge for 

the onset detection system as EEG signals usually have low signal-to-noise ratios and 

may contain electromyography (EMG) and/or electrooculography (EOG) artefacts [6]. 

In the onset detection study in particular, users stay calm and relaxed during the idle 

period and then they execute the task for the onset. During this procedure, it is likely 

that the participants may unintentionally generate some artefacts.  Therefore, it is 

important to handle these artefacts in advance in order to ensure that the system 

performs purely based on the cognitive tasks and not the artefacts.  

 However, previous BCI and EEG studies applied artefact handling techniques to 

all EEG channels. As such, e.g., in the case of artefact removal with the use of a blind 

source separation, a common approach in BCIs, there may be significant loss of useful 

EMG-free EEG information [19-22]. In order to minimise this information loss, we 
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propose an algorithm for the rejection of any EEG channels that are contaminated by 

class-related EMG artefacts, and which have called EMG-CChs. Typical EMG 

handling techniques such as ICA, PCA and BSS-CCA were only applied to the EMG-

CCh and not to all channels in this study. This combined approach was then compared 

to other existing methods without doing any channel elimination, i.e., methods that 

apply EMG artefact removal to all EEG channels. The comparisons were made against 

our own onset detection data as well as against a BCI competition data set.  

In our data set, the comparison results against the BSS artefact removal approach, 

which was applied in two ways, one to all channels and one only to EMG-CCh, showed 

that ICA, PCA and BSS-CCA can yield a significantly better (p<0.05) class separation 

with the proposed method (79% of the cases for ICA, 53% for PCA and 11% for BSS-

CCA). In the BCI competition data, we saw an improvement in 60% of the cases for 

ICA and BSS-CCA.  

The aim of this chapter is to describe a novel EMG artefact contaminated EEG 

channel selection and handling technique which shows advantages over the common 

blind source separation EMG handling methods. There are no existing methods for the 

removal of EMG artefacts based on the correlation between EEG and EMG channels 

with statistical testing.  In addition, the EMG-CCh selection can be used on its own or 

it can be combined with pre-existing artefact handling methods. For these reasons, we 

believe that this method can be useful for other EEG studies (e.g. BCIs, brain mapping, 

and clinical areas). 
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4.2 Methodology 

Experimental Paradigm and Data Set Description 

In this paper two different experiment data sets were tested. One set was from 

our covert and inhibited overt sound-production onset detection study [1, 5] and the 

other was from BCI competition IV data set 2a [23]. Both sets are discussed below. 

i) Sound-production Related Cognitive Tasks for Onset Detection: 

In that study, four different mental tasks were tested for the onset detection: 

Inhibited-overt high tone; inhibited-overt siren-like sound; covert high tone; and covert 

siren-like sound. Inhibited-overt sound production involves tensioning of the vocal 

cords but there is no actual sound production that can clearly be heard. On the other 

hand, covert production is a pure imagination process which include covertly making 

the sound as well as imagining hearing the sound (auditory imagery) [1, 5]. These four-

different sound production cognitive tasks were classified against the idle (a.k.a. non-

control or null) state as an onset switch. 

The study had seven subjects and they all completed four different mental tasks. 

Thus, the total number of runs was 28 (7 participants * 4 tasks). Each task run had 30 

trials. In a single trial, there were 3-30 seconds of idle state followed by 3 seconds of 

an intentional command (IC, i.e., one of the four cognitive tasks) state. The idle state 

length was freely chosen by the user as the study was focused on self-paced activation 

of the BCI system. The recorded EEG data were segmented using a 0.5s window 

without overlapping and were then separated into idle and task state categories. If the 

0.5s window happened to include both idle and task states, it was discarded from the 

analysis. These separated idle and task segments were pre-processed and applied with 
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various feature extraction method. Then, Davies-Bouldin index (DBI [119, 120]) was 

calculated to test class separation. There were 64 electrodes placed based on 10-10 

layout system with 2 reference channels on both left and right earlobes. In addition, 4 

facial electrodes were placed to detect EOG and EMG artefacts (more details of the 

setup will be discussed later in section B below). A Biosemi ActiveTwo system was 

used with 512 sample/s. 

ii) BCI Competition Data: 

The BCI competition IV data set 2a was recorded from 9 participants to classify 

four different motor imagery tasks in a cue-based BCI study [23]. In order to simulate 

a self-paced scenario using these data, we only selected specific time segments (Figure 

4.1). Figure 4.1 represents their timing scheme of a single trial for the competition data. 

The first 0-2s segment `was the preparation state (fixation cross) that corresponded to 

the idle state in our data. However, there was a short acoustic warning tone at 0s, which 

could produce event-related potentials. In addition, the length of fixation cross state is 

always 2 seconds, which participants can anticipate. Thus, we defined this state as non-

specific / expectation state (NE state). However, the NE state would be expected to be 

somewhat similar to that preceding a self-paced task event. For this reason, we treated 

the NE state as corresponding to the idle state.  Caution is needed when analysing 

results stemming from this, but the choice is still suitable for this study as the data set 

was chosen merely to extend our analysis to include an existing and well accepted data 

set. Also, this data set was chosen as it was the only BCI competition set that includes 

facial channels, which were needed for a suitable comparison with results from our 

data. 
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The four-different motor-imagery tasks were regarded as being in the Task state 

class. To minimise ERP-related effects, we only used the 4-6s segment for the Task 

state. 

 

Figure 4.1. Timing scheme of a single trial, BCI competition data (modified from [23]). N (null) and T 

(task) represent selected areas that were used in the present study. 

 

EMG Channel Placement 

 

Figure 4.2. (A): Four facial EOG/EMG electrodes placement for our onset detection system. (B): Three 

facial electrode channels for BCI competition data set [23]. 
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Figure 4.2 displays four EMG channel locations. This placement was based on 

[127]. EMG_ch1 was located above the corrugator muscle and it was used mainly to 

detect forehead EMG and eye blink artefacts. EMG_ch2 was set above the levator labii 

and zygomaticus muscles to detect facial twitches and upper limbs artefacts as well as 

up/down EOG, conjointly with EMG_ch1. EMG_ch3 and EMG_ch4 were placed 

around the anterior-most edge of the temporalis muscle to detect left/right EOG and 

temporal EMG artefacts. 

 

Spectral Domain EMG Artefact Content 

Spectral domain EMG artefacts were analysed to find out whether these artefacts 

affect class separation and, if so, in which frequency range. This analysis was done 

with our self-paced onset detection data set [1, 5]. In the analysis, the frequency bands 

were separated into eight different ranges (Table 4.1). 

 

Table 4.1. The eight different frequency bands used in this study. 

Name Freq1 Freq2 Freq3 Freq4 

Frequency 

Range 

2-4 Hz (Delta) 4-8 Hz (Theta) 8-12 Hz (Alpha) 

12-16 Hz  

(Low Beta) 

Name Freq5 Freq6 Freq7 Freq8 

Frequency 

Range 

16-20 Hz (Beta) 

20-30 Hz  

(High Beta) 

30-42 Hz 

(Low Gamma) 

42-100 Hz  

(High Gamma) 

 

Figure 4.3 illustrates the absolute Pearson correlation coefficient (CRC) values 

between 64 EEG channels and 4 EMG channels for each of the eight frequency bands. 
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The CRC values shown were averaged across all subjects, all four mental tasks, and all 

trials, for illustration purposes. Panel (A) shows data from the idle state while panel (B) 

shows data from the IC task state. Also, all data was submitted to the eye blink and 

EOG artefact removal procedure (explained below). Thus, the data shown contains 

only EEG and EMG artefacts. Red and orange areas indicate EEG channels that are 

highly correlated with EMG channels, i.e., they had high contamination by EMG 

artefacts. As expected, the plots show that frontal areas have EMG contamination as 

seen by the high correlation with EMG_ch2 throughout all the frequency bands. On the 

other hand, EMG_ch3 and EMG_ch4 show high correlation with temporal area EEG. 

In [128] it was shown that EMG can contaminate all EEG bands and its 

contamination level differs with scalp location. We observe a similar pattern in our data.  

In addition, EMG contamination for the idle (panel A) and IC (panel B) states shows 

quite similar results for both cases. This indicates that EMG artefacts can appear in the 

idle state as well as in IC states.  I.e., EMG contamination per se may not be idle vs. 

IC class-dependent.  For this reason, we statistically checked which channel locations 

were affected by EMG artefacts during IC states more than during idle states. Such 

channels (i.e., EMG-CCh) were then removed from the analysis and the existing EMG 

removal techniques were applied only to the remaining channels. Thus, the system’s 

performance result will be based on the only with the mental tasks but artefacts. The 

details of the procedure for EMG-CCh selection method will be discussed in section 

‘EMG Artefacts Channel Selection’ below. 
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Figure 4.3. (A): Topographic map of absolute Pearson correlation coefficients between 64 scalp EEG 

electrodes and the 4 EMG channels shown in Figure 4.2. The correlation values in each channel were 

averaged over all subjects, four onset tasks and all trials. Panel (A) represents during idle state while (B) 

shows during IC task state. Freq1-Freq8 ranges from Table 4.1 [2]. 

 

EOG Artefacts Removal 

EOG artefacts can be separated into two different types. One is eye blink and the 

other is eyeball rolling. Eye blink artefacts can easily be detected as they have relatively 

high signal amplitude compared to EEG. However, eyeball rolling EOG is somewhat 
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different. Thus, in this paper, eye blink EOG artefacts were rejected with a discrete 

wavelet transform (DWT) denoising method while eyeball rolling artefacts were 

handled with the EMG & EOG contaminated channel selection method. 

The window segments that contained the eye blink artefacts were automatically 

rejected based on the method shown in [108, 129]. DWT was applied with Haar mother 

wavelet as it resembles eye blink artefacts. The signal was decomposed up to level 6 

and was then, reconstructed using only the approximation coefficients, as in [108, 129]. 

If the reconstructed signal’s standard deviation (std) was higher than 3 times the 

preceding data’s std (using the previous 500ms window), then this data segment (all 

channels) was regarded as eye blink artefact and was rejected from further analysis. 

 

EMG Artefacts Channel Selection 

The method described in this section comprises the main novelty in our study. 

The technique can be applied as an EMG-contaminated channel rejection method on 

its own, or it can be combined with other EMG handling algorithms such as ICA, PCA, 

BSS-CCA. By applying the latter EMG handling methods only to the EMG 

contaminated channels, useful signal information loss can be reduced.  

Figure 4.4 shows the EMG-artefact contaminated channel selection procedure:  

1) Calculate the absolute Pearson correlation (CRC) values between 64 EEG 

channels and EMG_ch1 for each idle and task state. This will generate 64*NI 

window segments idle state correlation values and 64*NT window segments task 

state correlation values, where NI and NT are the numbers of idle and task trials, 

respectively. 
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2) Calculate the Wilcoxon-test p-values between the two lists (NI and NT) for each 

of the 64 channels. 

3) If an EEG channel’s EMG correlation value for the task state (average of M 

correlation values) is higher than for the idle state (average of N correlation 

values), AND the difference is statistically significant (p<0.05), THEN this 

channel was selected as an EMG contaminated channel, EMG-CCh. 

4) Repeat steps 1 to 3 with EMG ch_2, EMG_ch3 and EMG_ch4. 

 

 

Figure 4.4. EMG artefacts contaminated channel selection procedure [2]. 

 

Rationale of the procedure:  

The aim of the method is to select EMG-artefact contaminated channels which 

affect classification (idle vs. IC) results. Participants were instructed to stay calm and 

relaxed in the idle states. However, when they executed a task state, unexpected EMG 

artefacts (e.g., facial twitches and eye movements) can contaminate EEG, especially if 

they are unfamiliar with BCI experiments, even though they were instructed to avoid 
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any muscle movement. Thus, it is difficult to identify whether the result is purely EEG-

based or it is EMG-contaminated. Many other blind source separation EMG removal 

methods have been suggested to deal with this issue. However, as existing methods are 

applied all EEG channels, it is possible that important EEG information is being lost in 

the process. For this reason, our EMG contaminated channel selection method 

calculates correlations between EMG channels and EEG channels, and contaminated 

channels are removed before applying other methods, as follows: 

• IF the EMG vs. EEG correlation was greater during task states than 

during idle states, which indicates that there was potentially class-

dependent EMG contamination during task execution, AND 

• IF the correlation increase was statistically significant, 

• THEN the EEG channel can be regarded as having class-dependent EMG 

contaminated and is therefore removed. 

 

Possible limitation in our method: It is possible that a channel with lower CRC 

in idle states could still have too much class-dependent EMG. To test whether this may 

have been the case, a reliability analysis was performed (see section Reliability of the 

EMG-CCh Selection Method below). 
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Figure 4.5. An example of EMG-CCh selection procedure for Participant 1’s inhibited overt siren task. 

Figure (A) represents correlation values from 64 scalp EEG channels vs. EMG ch1. Figure (B) shows 

Wilcoxon test p value between idle and task state’s correlation values [2]. 

 

This EMG-CCh selection procedure is quite strict,  unbiased and reduce valuable 

data loss when compared with typical thresholding methods presented in [130]. Figure 

4.5 shows an example of the proposed EMG-CCh selection process. Figure 4.5A 

represents correlation values from 64 channels for each idle and task state (averaged 

from number of window segments). Channel number 35, for example, shows task 

state’s EMG correlation is around 0.23, i.e., it is unlikely to be correlated with EMG 

artefacts if we cut it based on a typical thresholding method. However, if it is 

statistically compared with idle state by using the p-value from Figure 4.5B, it is certain 
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that the task state’s EMG correlation is significantly higher than in idle state. This 

indicates that channel number 35 is affected by EMG during the task activation. Thus, 

this channel has to be processed with further EMG handling methods to remove class-

dependent EMG related performance results. Wilcoxon method was used for the 

statistical test as the correlations are non-Gaussian, so it is suitable for our handling 

method. 

The selected EMG-CChs will be shown separately for our onset detection data 

set and for the BCI competition data set, respectively.  

 

• Sound-production Related Cognitive Tasks for Onset Detection: 

Figure 4.6 shows the artefact-contaminated areas from the EMG-CCh selection 

method for each participant and task. The red area represents the EMG-CCh. Some 

cases, only a couple of or none of channels were selected. On the other hand, 50 

channels were selected as EMG-CCh in the worst case (participant 1 C_Siren task). 

The EMG affected channels are task-dependent and it are not consistent between 

subjects. It could be due to the fact that the level of tasks activation depends on the 

subject and on the mental task. However, this strict EMG handling processing ensures 

that all the remaining analysis on EEG- based class-dependent information. 
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Figure 4.6. EMG contaminated channel area that selected from the EMG-CCh channel selection method. 

Red area represents the selected channels, which EMG artefacts are contaminated, while green is normal 

channels. The orange and blue area has no meaning. It is simply caused from drawing algorithm [2]. 

 

• BCI Competition Data 

This sub-section deals with data from the BCI competition set with 6 participants. 

The default channel placement can be found in [23]. Participant 1 had only channel 13 
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selected as an EMG-CCh. Participant 4 had fifteen EMG-CChs and the uncontaminated 

channels were ch14, 15, 16, 19, 20, 21 and 22. Participant 6 had uncontaminated 

channels ch19 and 22 and the remaining channels were EMG-CCh. Participant 7 had 

only five EMG-CChs, i.e., ch8, 12, 13, 17 and 18. Participant 9 had seventeen EMG-

CChs and the uncontaminated channels were ch17, 18, 20, 21 and 22.  

Participant 2 and 3 had all the twenty-two channel selected as EMG-CCh.  This 

means that their data were so contaminated by EMG as to preclude their use. 

Participants 5 and 8 had no EMG-CChs. Thus, these four subjects’ data were not used 

for further analysis as this did not allow a comparison between typical EMG handling 

techniques and our method. 

EMG Artefacts Handling 

After the EMG-CCh selection process, various common EMG artefact handling 

methods were tested. 

• Simple Channel Rejection: EMG contaminated channels were simply 

eliminated from further analysis. 

• Blind Source Separation Canonical Correlation Analysis (BSS-CCA): 

CCA measures the linear relationship between two multi-dimensional 

signals [131]. This method can be used to solve BSS problems (proposed 

in [132]) by taking the EEG multi-channel source vector as the first 

multidimensional variable and temporally delayed EEG source vectors as 

the second variable [97]. In this experiment, the threshold for the 

autocorrelation coefficient ρ was chosen as 0.35 based on the study in 

[133]. Thus, EEG sources that had ρ <0.35 were removed. If there is no 



 Department of Computer Science and Electronic Engineering, University of Essex  

92 
 

source that has less than the threshold ρ value, the last source that has the 

lowest autocorrelation coefficient was removed. 

• Independent Component Analysis (ICA): ICA is also a widely used 

technique to solve the BSS problem. It separates EEG sources into multi 

components, which maximizes their mutual independence [99]. By 

removing the artefact ICs, it produces EMG free signal. However, it 

normally requires manual/visual inspection to check artefact ICs. In this 

paper, automatic artefact ICs were detected using Kurtosis and Entropy, 

which was suggested in [102, 103]. Both were computed for all the ICs 

and were normalized to a 0 mean and 1 standard deviation. The threshold 

was set at ±1.64 (based on [102]). If the IC exceeded the threshold, it was 

regarded as an artefact component and was removed.  

• Principal Component Analysis (PCA): PCA is a statistical procedure that 

identifies patterns in high dimension data by finding their similarities and 

differences [104]. It uses linear transformation and it generates a set of 

principal components (Eigenvalues). The higher value of the PC 

represents strong correlation between multiple signals (e.g., channels or 

trials) and the smaller value of PCs can be regarded as a noise component. 

In this study PCs that accounted for 95% of the total power were used 

(based on [134]) and the remaining PCs were removed. 
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Figure 4.7. Examples of artefact-contaminated channel handling procedure [2]. 

 

These typical artefact handling techniques in BCIs were only applied to the 

EMG-CCh selected in the earlier stages of the analysis. Figure 4.7 shows an example 

of how to selectively apply EMG handling methods to those EMG-CCh. Panel (A) 

shows the original data. The green circles represent normal channels that have no class 

separation effect from artefacts, based on the statistical test. The red triangles depict 

channels with EMG/EOG artefact contamination. The artefact handling methods (BSS-

CCA, ICA or PCA) were applied to all the channels (64 for our onset detection data 

and 22 for the BCI competition data). This is represented in panel (B) with yellow 

squares. Panel (C) shows the channel data that were used for the final analysis. 

Channels without artefact contamination were kept and only the EMG-CChs were 

selected from (B). BSS-CCA, ICA and PCA separate N number of source components 

if they have N number of channels. Thus, applying these techniques only to EMG-CChs, 

which sometimes could be in very low numbers of channels, would not be suitable to 

separate artefact components (and it is impossible to do it if the number of EMG-CChs 
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is 1). For this reason, artefact handling processes were applied to all channels first and 

then selectively taking channels if they were EMG-CCh. As a result, panel (C) has 

EMG free data (i.e., statistically no artefact-related class-dependent effects), which 

were then used for further analysis. 

 

Feature Extraction 

The artefact-free data were submitted to four separate feature extraction methods, 

as follows: 

• Autoregressive Model (AR): AR model extraction was applied to all 

channels and the obtained coefficients were used as features. For the 

coefficient estimation, Burg’s method [135] was used. In [12], AR model 

order number 6 was suggested as optimal for imagined speech EEG signal, 

so order 6 was chosen.  

• Band Power (BP): Fast Fourier Transform (FFT) was applied to the pre-

processed signals with seven different frequency ranges (Freq2 to Freq8 

as described in ‘Spectral Domain EMG Artefact Analysis’ above). Freq1 

(Delta band) was removed as it highly correlates with EMG channels (as 

seen in Figure 4.3). Each bands FFT was squared and these were used as 

features.  

• Common Spatial Pattern (CSP) [115]: Using our data idle and sound-

production  related states were used as the two separate classes. In BCI 

competition data set, on the other hand, four motor-imagery tasks were 

regarded as one class and non-specific states for the other class. After the 

spatial filter process, EEG source components were sorted to maximise 
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variance for one class and to minimise it for the other class. CSP makes 

the first and last components represent the maximum variance difference 

between classes. Thus, the first three and the last three EEG source 

components were found. Linear regression was applied and its slope was 

used as a feature. 

• Discrete Wavelet Transform (DWT): Pre-processed data were 

decomposed up to level 7 for sound-production related data and up to 

level 6 for the BCI competition data (due to different sampling rate). Then, 

the coefficients for the detail components, which represent pseudo 

frequency bands 4-8Hz, 8-16Hz, 16-32Hz, 32-64Hz and 64-128Hz (up to 

100Hz as it was bandpass filtered), were obtained and the variances of 

the coefficients in each band were used as features. The mother wavelet 

‘db2’, which has just 4 coefficients, was chosen because of its simplicity 

and because it is commonly used in BCI studies. In our previous study 

([4]) we also showed that the choice of wavelet type (db2, coif2 and sym2) 

did not have a significant effect in onset detection in our (covert) sound-

production scenario. 

 

These features were used for DBI calculations for evaluation purposes (details 

are given below). This DBI value can be different depending on which feature domain 

is analysed. It is for this reason that various feature extraction methods commonly used 

in BCIs were tested in order to increase the reliability of the evaluation. In addition, the 

choice of the feature extraction methods listed above covers the time, frequency, spatial 

and time-frequency domains. 
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Evaluation and Feature Selection 

In order to evaluate how the EMG-CCh selection and handling method improves 

class separation compared to the common EMG handling techniques, the Davies-

Bouldin Index (DBI) was used. DBI is a cluster separation measure that was suggested 

in [119, 120]. It measures the average similarity between each data cluster. Lower DBI 

values indicates better class separation [136]. Note that in our case there is no need for 

clustering per se as the clusters are simply the classes (idle vs. task states) we which to 

detect. In this paper, applying artefact handling methods (BSS-CCA, ICA and PCA) to 

all channels will be compared with applying these methods to the selected EMG-CCh 

only.  

The extracted features were sorted in ascending order based on DBI values. The 

features that had smaller DBI values (i.e., better class separation) were used for further 

evaluation. In BCIs, as in most human-machine interaction systems, the minimum 

number of features is recommended to reduce computational loads. Thus, three sets 

based on a) the smallest DBI, b) smallest 1%, and c) smallest 5% were used for 

evaluation.  

These DBI values between from artefact handling applied to all channels were 

compared to those from selective EMG-CChs using the Wilcoxon test to compare the 

means and a t-test to estimate statistical power. 

 

Reliability of the EMG-CCh Selection Method 

Two questions must be asked concerning the proposed EMG-CCh selection 

method. First, is it actually selecting the EMG-contaminated channels that have class-
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dependent EMG data? And, secondly, is it strict enough to be used? In order to ensure 

its reliability, we have gone through extra testing by statistically comparing ICA-

processed EMG-free data with our suggested method using both our data and the BCI 

competition data set. The testing procedure is as follows: Figure 4.8 shows how to 

separate channel data for the test. The testing method will be explained based on the 

example figure. Firstly, ICA was applied to all channels to remove EMG artefacts. Thus, 

it can be confirmed that right side of the figure has EMG-free signals. Then, on the left 

panel, channels were separated based on the EMG-CCh selection method (area A1 for 

EMG-CCh, and A2 for artefact-free channels). Based on this, the EMG-free data on the 

right panel is also separated into A3 and A4 using the channel numbers from the left 

panel. Secondly, feature extraction with an autoregressive model was processed in each 

area. Then, the data with the smallest 10% of DBI values between idle and task state 

were selected from sets A1 to A4. Finally, a Wilcoxon test was applied between the 

best DBIs from A1 and A3 (Comparison (A)) as well as between the DBIs from A2 

and A4 (Comparison (B)). In an ideal EMG-CCh selection scenario, Comparison (A) 

should show significant difference between A1 and A3 as A1 contains EMG artefacts 

whereas A3 is clean, so the DBI value from A1 should shows significantly lower DBI 

values, which indicates that EMG artefacts would have played a significant role in class 

separation. Also, Comparison (B) should show no significant DBI difference between 

A2 and A4. Based on the EMG-CCh selection method, A2 channels were found not to 

have an EMG-related role in class separation. Thus, it should give similar (i.e, no 

significant difference) DBI values to those from set A4. Therefore, if Comparison (A) 

shows significant difference and Comparison (B) shows no significant difference, it 

can be concluded that the suggested EMG-CCh selection method correctly chose EMG 

artefacts contaminated channels that would otherwise have played an EMG-
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contaminated role in class separation and the remaining channels did not play any 

significant class-dependent result. 

 

 

Figure 4.8. Example reliability test of the EMG-CCh selection method [2]. 

 

4.3 Results 

Sound-production Related Cognitive Tasks Onset Detection Data 

Table 4.2 shows an example from participant 1 with the inhibited overt siren 

(IO_Siren) task onset detection. The smallest 5% of DBI values (384 features x 5% = 

19 values) were selected from the AR features. The Wilcoxon test p-values and 

statistical power t-test were calculated for No EMG handling vs. EMG-CCh removal, 

ICA vs. ICA (EMG-CCh), PCA vs. PCA (EMG-CCh) and BSS-CCA vs. BSS-CCA 

(EMG-CCh), respectively, with the 19 DBI values. The results show that applying 
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EMG removal methods only to the EMG-CCh significantly improves class separation 

between Idle and Task states (p-value < 0.05) when using ICA (EMG-CCh) and BSS-

CCA (EMG-CCh), and the power is statistically conclusive (t-test > 0.5). These 

evaluations were done with all seven subjects and with all four different onset detection 

tasks. In addition, the single smallest, smallest 1%, and smallest 5% DBI results, 

respectively were separately evaluated with the four different feature extraction 

methods. 

 

Table 4.2. Example of Wilcoxon test and Statistical power calculations for features with the lowest 5% 

DBI values [2]. 

Average of Smallest 5% DBI values 

AR Model 

Feature 

[P1 – Inhibited 

Overt Siren Task] 

No EMG 

handling [std] 

ICA [std] PCA [std] BSS-CCA [std] 

4.090 [±0.44] 6.756 [±0.66] 4.179 [±0.59] 4.227 [±0.27] 

EMG-CCh 

removal [std] 

ICA(EMG-CCh) 

[std] 

PCA(EMG-CCh) 

[std] 

BSS-CCA 

(EMG-CCh) 

[std] 

4.096 [±0.45] 4.096 [±0.45] 4.086 [±0.44] 3.978 [±0.40] 

Wilcoxon-test 

(p-values) 

-0.9069 ≈ 0 0.1568 0.0296 

Statistical Power 

(t-test) 

0.0502 ≈ 1 0.0758 0.7863 
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• Smallest 5% and 1% DBI value results 

 

Figure 4.9. Results with features with the smallest 5% and 1% DBI values using the onset detection data 

set [2]. 

 

Figure 4.9 shows DBI comparison results. 5% of the smallest DBI values were 

taken from each feature domain: 19 (384 AR model features x 0.05), 22 (448 Band 

power features x 0.05), 16 (320 DWT features x 0.05) DBI values respectively. The 

blue areas in the figure indicate that applying EMG handling methods only to the EMG-

CCh (our proposed method) shows significant improvement (Wilcoxon test p-value < 

0.05) in class separation, and power is statistically conclusive (statistical power t-test > 

0.5). On the other hand, vertical red areas represent instances in which our proposed 

method showed significantly higher DBIs and, thus, less class separation between Idle 

and Task states. The grey horizontal stripe areas showed no significant difference 

between our method and typical EMG handling techniques when applied to all channels. 
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As can be seen from the case of No EMG handling vs. EMG-CCh removal, there 

is no significant difference most of the time. But, average DBI values become higher 

more times than become lower for all three different feature extraction methods. This 

an expected result as EMG artefacts could play a role in class separation if they are not 

handled properly. Thus, removing EMG-CCh reduces class separation, but it shows 

why artefact handling is required. In the case of ICA vs. ICA (EMG-CCh), 79%, 7% 

and 4% out of 28 tests (7 subjects x 4 onset tasks) showed significant class separation 

improvements with EMG-CCh selection for AR model features, band power and DWT 

features, respectively. On the other hand, only 7% of the AR features gave higher DBI 

values with the proposed EMG-CCh method and all remaining tests yielded no 

significant difference. In the PCA vs. PCA (EMG-CCh) case, band power and DWT 

feature made no significant difference but AR features showed significant class 

separation improvement for 53% of the tests and 43% remained as not significantly 

different. In the BSS-CCA vs. BSS-CCA (EMG-CCh) case, 11% showed significant 

class separation improvement with AR features, while 3% became worse and most tests 

(86%) showed no significant difference. Band power and DWT features also showed 

no significant difference in class separation between BSS-CCA applied to all channels 

vs. only to EMG-CCh. 

The smallest 1% DBI results showed similar trend as results based on the best 5% 

DBIs. While results generally show no significant difference between our method and 

standard EMG-removal techniques, EMG-CCh selection did yield significantly better 

class separation more often than it yielded worse separation. 
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• The smallest DBI value results 

 

Table 4.3. Results with the features that gave the smallest DBI value, onset detection data set [2]. 

 

AR Model 

Feature 

 

[Average of 7 

subjects & 4 onset 

Detection Tasks] 

No EMG 

handling [std] 

ICA [std] PCA [std] BSS-CCA [std] 

3.569 [±1.72] 4.351 [±1.86] 4.119 [±2.09] 3.713 [±1.85] 

EMG-CCh 

removal [std] 

ICA(EMG-CCh) 

[std] 

PCA(EMG-CCh) 

[std] 

BSS-CCA(EMG-

CCh) [std] 

3.320 [±2.01] 3.769 [±1.87] 3.648 [±1.76] 3.547 [±1.70] 

Band Power 

Feature 

 

[Average of 7 

subjects & 4 onset 

Detection Tasks] 

No EMG 

handling [std] 

ICA [std] PCA [std] BSS-CCA [std] 

2.494 [±1.15] 2.566 [±1.15] 2.592 [±1.20] 2.500 [±1.15] 

EMG-CCh 

removal [std] 

ICA(EMG-CCh) 

[std] 

PCA(EMG-CCh) 

[std] 

BSS-CCA(EMG-

CCh) [std] 

2.590 [±1.21] 2.506 [±1.18] 2.514 [±1.19] 2.496 [±1.15] 

DWT Feature 

 

[Average of 7 

subjects & 4 onset 

Detection Tasks] 

No EMG 

handling [std] 

ICA [std] PCA [std] BSS-CCA [std] 

2.741 [±1.26] 2.825 [±1.29] 2.740 [±1.20] 2.753 [±1.25] 

EMG-CCh 

removal [std] 

ICA(EMG-CCh) 

[std] 

PCA(EMG-CCh) 

[std] 

BSS-CCA(EMG-

CCh) [std] 

2.946 [±1.39] 2.777 [±1.23] 2.762 [±1.27] 2.745 [±1.24] 

CSP Feature 

 

[Average of 7 

subjects & 4 onset 

Detection Tasks] 

No EMG 

handling [std] 

ICA [std] PCA [std] BSS-CCA [std] 

3.794 [±7.14] 4.724 [±9.85] 5.977 [±16.10] 3.810 [±7.22] 

EMG-CCh 

removal [std] 

ICA(EMG-CCh) 

[std] 

PCA(EMG-CCh) 

[std] 

BSS-CCA(EMG-

CCh) [std] 

3.828 [±6.21] 3.839 [±7.08] 8.320 [±25.52] 3.767 [±7.11] 

 

Table 4.3 lists the (single) smallest DBI value in each case. CSP features were 

included only in this table because it has just one feature point. Also, as this table shows 
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only the smallest DBI value, Wilcoxon tests and Statistical power t-tests could not be 

applied.  However, even though no inferences can be made concerning statistical 

significance on a test-by-test basis, the smallest DBI values can give relevant 

information that might be useful to other BCI studies as minimising the number of data 

points is always an important goal in BCIs. For this reason, we averaged the smallest 

DBI values from 28 tests and compared overall results between our EMG-CCh method 

and standard EMG handling methods (there was no statistical difference p > 0.05 from 

all cases). The averaged smallest DBI values were lower with our EMG-CCh handling 

method in most cases, except for DWT features and for CSP features with PCA. In 

terms of CSP featured, some subjects had very large DBI values (i.e., poor class 

separation) compared to other feature domains. But, in general, our EMG-CCh method 

gave lower DBI values. 

 

BCI Competition Data Set 

The smallest 5% DBIs gave 7, 8 and 6 features from the AR model, band power 

and DWT domains, respectively. The number of feature was 1 when using the smallest 

1% DBIs. Thus, only these two cases were analysed with the BCI competition data set. 

In Figure 4.10, 40% of participants showed less class separation with EMG-CCh 

removal using AR model and band power features in the case of comparisons between 

No EMG handling vs. EMG-CCh removal. The remaining 60% has no statistical 

difference in the latter comparison.  As before, this is an expected result as EMG would 

have had a role in class separation. 

In the case of ICA vs. ICA (EMG-CCh), 60%, 20% and 20% of 5 subjects - for 

each of the three feature domains, respectively - showed significantly lower DBI values 
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with our EMG-CCh method and none of participants yielded worse class separation 

with our method. Comparing PCA vs. PCA (EMG-CCh), only one participant out of 

five yielded significantly improved class separation with our method. In the BSS-CCA 

vs. BSS-CCA (EMG-CCh) similar results were seen for band power and DWT features. 

For AR features, on the other hand, 60% (3 subjects) showed significant improvement 

while 1 participant had higher DBI value with the EMG-CCh. Table 4.4 shows a similar 

trend; it mostly has lower DBI values with the EMG-CCh method except for ICA 

(EMG-CCh) with CSP feature and PCA (EMG-CCh) with AR model feature. 

• Smallest 5% DBI value results 

 

Figure 4.10. Result of smallest 5% DBI values from BCI competition data set [2]. 

 

• The smallest DBI value results 

Table 4.4. Result of the smallest DBI values from BCI competition data set [2].[9] 

 

AR Model 

Feature 

 

[Average of 5 

subjects] 

No EMG 

handling [std] 

ICA [std] PCA [std] BSS-CCA [std] 

8.623 [±3.23] 11.689 [±4.64] 9.551 [±4.89] 10.753 [±3.13] 

EMG-CCh 

removal [std] 

ICA(EMG-CCh) 

[std] 

PCA(EMG-CCh) 

[std] 

BSS-CCA(EMG-

CCh) [std] 

11.393 [±6.19] 10.362 [±5.34] 9.846 [±5.23] 9.768 [±3.95] 
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Band Power 

Feature 

 

[Average of 5 

subjects] 

No EMG 

handling [std] 

ICA [std] PCA [std] BSS-CCA [std] 

4.968 [±1.50] 5.492 [±1.89] 5.101 [±1.22] 9.244 [±2.91] 

EMG-CCh 

removal [std] 

ICA(EMG-CCh) 

[std] 

PCA(EMG-CCh) 

[std] 

BSS-CCA(EMG-

CCh) [std] 

5.175 [±1.82] 5.175 [±1.82] 4.963 [±1.45] 5.239 [±1.89] 

DWT Feature 

 

[Average of 5 

subjects] 

No EMG 

handling [std] 

ICA [std] PCA [std] BSS-CCA [std] 

6.756 [±2.52] 7.192 [±2.90] 6.984 [±2.32] 12.408 [±2.95] 

EMG-CCh 

removal [std] 

ICA(EMG-CCh) 

[std] 

PCA(EMG-CCh) 

[std] 

BSS-CCA(EMG-

CCh) [std] 

6.957 [±2.84] 6.951 [±2.83] 6.780 [±2.55] 6.940 [±2.70] 

CSP Feature 

 

[Average of 5 

subjects] 

No EMG 

handling [std] 

ICA [std] PCA [std] BSS-CCA [std] 

3.467 [±1.72] 3.722 [±2.03] 5.387 [±4.05] 4.637 [±2.60] 

EMG-CCh 

removal [std] 

ICA(EMG-CCh) 

[std] 

PCA(EMG-CCh) 

[std] 

BSS-CCA(EMG-

CCh) [std] 

4.292 [±2.17] 3.806 [±1.88] 3.791 [±1.34] 3.281 [±1.44] 

 

Throughout the thorough literature review, we could not find EMG contaminated 

EEG channel selection method so far in most EEG studies. Many BCI studies generally 

applied EMG artefact handling with blind source separation such as BSS-CCA, ICA or 

PCA [130]. These blind source separation techniques could lose some useful EEG 

information as well [19-22]. Thus, our EMG-CCh selection method could help this 

problem. It minimises useful information loss by statistically selecting EMG-CCh, 

which could cause EMG related class-dependant results, and applying blind source 

separation techniques only to these channels. This method can keep useful EEG 

information that could have been eliminated by applying blind source separation to 

non-EMG-CCh. 
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In addition to this, based on the results, combining our EMG-CCh selection 

method with typical EMG artefact handling methods (ICA, PCA and BSS-CCA) 

significantly improved class separation by having lower DBI values than normal EMG 

handling approaches in many cases. Only few percentages of tests were become higher 

DBIs in our onset detection data set and rests, which is most, were become either better 

class separation or no significant difference with EMG-CCh selection approach. In BCI 

competition data set, only one test (BSS-CCA with AR model feature) had higher DBI 

values with our methods. They showed either significantly lower DBI values or no 

significant difference. These results indicate that our suggested EMG-CCh selection 

and handling method improves (at least remain same) class separability compared to 

typical EMG handling approaches in BCIs. 

 

Reliability of the EMG-CCh Selection Method 

As explained in ‘Methodology’ section ‘Reliability of the EMG-CCh Selection 

Method’ above, we applied two types of comparisons, A and B, respectively, to test for 

the possibility that we did not eliminate all EEG channels with significant class-

dependent EMG contamination. 

Using our sound-production onset data and the average of the smallest 10% DBI 

values from 28 cases (7 subjects x 4 tasks), Comparison A showed significant 

difference (p=0.011, mean value of A1=6.26, mean value of A3=8.11) while 

Comparison B showed there was no significant difference (p=0.124, mean value of 

A2=4.85, A4=5.00). The results were similar when we used the BCI competition data 

set (5 subjects).  In this case results also showed a significant difference in Comparison 

A (p=0.016, mean value of A1=12.61, A3=25.88) and no significant difference in 
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Comparison B (p=0.222, mean of A2=18.27, A4=20.94). From these results, it can be 

said that our EMG-CCh selection method is indeed correctly identifying channels that 

could affect class-dependent results.  

 

4.4 Discussion 

Electromyography (EMG) artefacts are a well-known problem in 

Electroencephalography (EEG) related studies such as BCIs, brain mapping, and 

clinical areas. In order to handle these artefacts, Blind Source Separation (BSS) 

techniques (e.g. BSS-CCA, ICA and PCA) were commonly used. However, these BSS 

techniques may remove not only EMG artefacts but also some useful EEG sources [19-

22]. To reduce this loss of useful information, a new technique for statistically selecting 

EMG artefacts Contaminated EEG Channels (EMG-CCh) was proposed in this chapter.  

The EMG-CChs are selected based on the correlation between EEG channels and 

facial EMG channels. The correlation coefficient values were calculated for the idle 

and task states, respectively, and compared (using a Wilcoxon test) against each other 

in order to determine whether the artefacts played a significant role in class separation. 

If a channel’s (EMG vs. EEG) correlation value was significantly higher during a task 

than during the idle states, then this channel was chosen as an EMG-CCh; i.e. it was 

treated as being significantly contaminated and was therefore removed from the signal 

classification stages. In order to ensure that our EMG-CCh selection approach does 

reduce EMG artefacts and the results are not produced simply because of a weak EMG 

removal, reliability tests on the EMG-CCh selection method were made by comparing 
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our EMG-CCh selection data with typical ICA-EMG removal data. As it was discussed 

in section 4.3 ‘Reliability of the EMG-CCh Selection Method, the statistical comparison 

(Wilcoxon test) with the ICA-EMG removal method showed that the selected EMG-

CCh has significantly lower DBIs than its EMG-free (ICA applied) data (our dataset: 

p-value of 0.0108, BCI competition dataset: p-value of 0.0159), while non-selected 

channels had no significant difference with the EMG-free data (our dataset: p-value of 

0.1241, BCI competition dataset: p-value of 0.2222). This indicates that the proposed 

EMG-CCh selection method is indeed correctly identifying channels where EMG 

artefacts played a significant role for class separation, whereas the rest of the unselected 

channels have no EMG related class separation effect. 

The statistical testing results showed that our EMG-CCh selection method 

correctly found the artefact-contaminated channels. The application of this channel 

selection method to typical artefact handling techniques, such as ICA or BSS-CCA, 

would result in the elimination of artefacts in the same manner as typical methods. 

Furthermore, it reduces information loss, as it only applies to the EMG-CCh. A 

comparison of signals before and after applying this method would not be necessary, 

as widely used and validated common blind source separation techniques would 

guarantee the same result. Thus, it is out of scope for this EMG-CCh selection 

procedure. 

The EMG-CCh selection technique was tested with our own onset detection data 

set as well as with the BCI competition IV data set 2a. The comparison of the results 

between the typical BSS artefact removal approach, when applied to all channels and 

when only to the EMG-CCh, and our method, showed that ICA, PCA and BSS-CCA 

can yield a better class separation with the proposed method. In particular, a significant 

improvement (p<0.05) in class separation was recorded when autoregressive 
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coefficients were used, which were extracted from our onset data in 79% of the cases 

for ICA, 53% for PCA and 11% for BSS-CCA. Only 7% (ICA), 4% (PCA) and 3% 

(BSS-CCA) of tests became significantly worse with our approach; the rest of the cases 

yielded no statistically significant differences in terms of class separation performance. 

In the BCI competition data we reported an improvement in 60% of the cases for ICA 

and 60% for BSS-CCA when the autoregressive coefficients were used as features. To 

the best of our knowledge (thorough literature review up until 2017), while there are 

few EOG artefact removal methods using simple cross-correlation (e.g., Quilter et al. 

1977. [137]), there are no existing methods for removing EMG artefacts by applying a 

statistical approach with correlation values between EEG and EMG channels. The 

simple method which was proposed in this chapter showed improvement with the use 

of both our data and the BCI competition data.  Furthermore, the EMG-CCh selection 

method can be used on its own or it can be combined with pre-existing artefact handling 

methods.  

In some neurophysiology studies our method may not be suitable, as it does not 

remove artefacts from all channels. Even though this represents a limitation in this 

method, the class dependent artefacts effect and selective removing process would 

prove beneficial in most EEG-related studies. For these reasons, we believe that this 

method can be of use for other EEG studies and in the long term, it will have an impact 

on the field in terms of artefact removal techniques.  
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4.5 Summary and Conclusions 

EMG artefact handling is an essential procedure for EEG based studies where 

one of its issues is that there is some useful information loss with the common 

established blind source separation techniques.  Therefore, we proposed a new 

technique for selecting EEG channels contaminated with class-dependent EMG 

artefacts (named EMG-CCh), in order to minimise the information loss and improve 

class separation. The method can be used on its own for channel rejection or it can be 

combined with pre-existing artefact handling techniques and it showed a significant 

class separation improvement (compared to other existing techniques) with the use of 

both our data and the BCI competition data set in many cases.  

The existence of this improved (reduced information loss) EMG artefacts 

handling procedure will help our onset detection study to expand to real-world BCI 

uses in terms of performance as well as reliability (purely task based onset detection). 

In addition, this approach will provide a significant step forward for the other EEG 

studies (e.g. BCIs, brain mapping, and clinical areas) in terms of the EMG artefact 

removal procedure.  
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5 Classifying Sound Production Related vs. Idle 

State Towards Onset Detection in Brain-

Computer Interfaces in Offline System (Based on 

papers [4] and [5]) 

5.1 Introduction 

This chapter is based on the published conference proceedings; [4] and [5]. 

Onset detection allows self-paced BCIs to detect when a user wishes to send a 

command [9, 138]. Aiming specifically at exploring cognitive states that may be 

potentially used in onset detection, this chapter proposes the use of novel, speech-

related cognitive tasks as a first step of the investigation. Speech (of some sort) is the 

most natural form of human-to-human interaction, it is therefore suggested that such 

tasks would be suitable for BCIs from a usability point of view. The goal of this chapter 

is to classify various easy and intuitive speech-related tasks versus the idle state in 

offline settings in order to investigate our hypothesis whether the sound-production 

related cognitive tasks can be distinguished from the idle state and to pick the most 

suitable one before it is used in an online onset detection experiment. 

This chapter describes two different experiments. The first experiment (section 

5.2) shows high-tone sound production tasks versus the idle state with various speech 

modes (covert, inhibited overt and overt). The results showed that the Covert state 

produced the best classification rate vs. the Idle state (82.41%, 81.20%, 85.12%, and 
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74.72%, respectively) compared to the Overt vs. Idle for all participants (p≪0.05). The 

Covert state also provided better classification results vs. Idle than the I_Overt state for 

participants 1, 2 and 3, and equally good results with the I_Overt state for participant 

4. The second experiment (section 5.3) investigates covert siren-like sound production 

tasks and it achieved a 76.88%, 79.58%, 76.67%, 80.2% and 82.71% of true-positive 

performance for participant 1, 2, 3, 4 and 5, respectively. As a first stage of our sound 

imagery onset detection investigation in offline cue-based settings, these studies and 

results provided very useful background information for this project in order to move 

it forward to the online self-paced onset detection study. 

 

5.2 Experiment 1 (High-tone sound production task) 

As a first stage of the experimental process and in order to firstly determine the 

suitability of the chosen tasks for discrimination against the idle states, we present a 

cue-based study. The cognitive tasks which were explored here and have provided 

suitable results, will be used in proper self-paced studies in next chapters.  

Methodology 

(A) Speech-related State Definition 

In this experiment, high tone production and idle state were recorded.  The high 

tone production states were generated under the following three conditions:  

• Overt speech (Overt): A high tone is actually produced by the user and it can be 

heard clearly. 
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• Inhibited overt speech (I_Overt): This involves two elements: 1) breathing out, 

and 2) tensioning the vocal cords but without actually producing the high tone 

sound. 

• Covert speech (Covert): Imagination of the processes leading to high tone sound 

production. To facilitate this task, participants were instructed to also imagine 

hearing the high tone sound. 

For high tone production, participants were instructed to aim at producing an ‘um’ 

sound in as high a tone as they can comfortably produce for a few seconds continuously. 

However, imagining tongue, mouth, or any body movements was not allowed in order 

to reduce the motor imagery signals not related to high tone sound production.  

(B) Experiment Protocol 

Each experiment consisted of 6 runs in total (i.e., 2 Overt, 2 I_Overt and 2 Covert 

modes, all intercalated with idle states). The sequence of cognitive tasks was randomly 

ordered to prevent sequence-dependent results and predictive guesses by users. In each 

run, there were 40 trials, of which 30 were high tone states and 10 were idle states. 

 

 

Figure 5.1. EEG data recording timing procedure for each trial [5]. 
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Figure 5.1 shows the recording timing protocol and the visual stimuli. The arrow 

indicates high tone production and ‘X’ represents the idle state. Either symbol is 

randomly presented on a screen for 3s to give notice to the participant about the which 

action to take, but no task is to be executed at this stage yet. When the green circle 

appears, participants start the designated task (or idle state) and they are to execute it 

shortly after appearance of the green circle. The latter circle, contrary to the other 

displayed objects, did not have a 'start' label on it so at to reduce cognitive load. The 

task is performed for 5s, during which data are recorded. After this a red circle is 

presented for 5s for the resting period until the next trial begins. This timing protocol 

(i.e., separate 'category' and 'start' cues) was designed to minimize effects resulting 

from the different category cues. Visual stimuli generate ERP signals for around 300-

400ms after the stimuli. Different cue object shapes/colours could generate different 

ERP patterns, which must be decoupled from the actual sound production related tasks 

so as to ensure that we are classifying the tasks, not the stimuli. 

The experiments were done in accordance with the University of Essex Ethics 

Committee guidelines. 

(C) Data Acquisition 

Four healthy subjects (3 males, 1 female, ages 20-25) with normal or corrected 

vision participated in this experiment. Each participant sat down on a chair comfortably 

with their head 1m away from the monitor. 64 electrodes were placed based on 64 

channel 10-20 layout and 1 reference channel was recorded from the right side mastoid. 

The BIOSEMI ActiView software was used for EEG data acquisition and the sample 

rate was 256 S/s. EEG data was transferred from the BIOSEMI software through 

TCP/IP communication. On the PC side, a Java application displayed the visual 
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stimulus and saved the EEG data. The saved EEG signals were used for off-line data 

analysis with MATLAB. 

(D) Signal Processing 

To investigate how far after the 'start' stimuli onset useful data can be found, 

recorded EEG data were segmented with various window lengths, as measured from 

the 'start' cue onset:  1.0s, 1.5s, 2.0s and 3.0s.  

The segmented EEG signal were band-pass filtered (zero-lag Butterworth filter, 

order 5) at a range of 4-20 Hz. Then, Referencing was applied to reduce common 

environmental noise by subtracting the right mastoid reference channel from all 64 

channels. 

(E) Common Spatial Pattern (CSP) for Channel Selection 

CSP was used for channel selection by maximizing the difference in variance 

between classes in multi-channel data [114, 115].  Figure 5.2 shows the common spatial 

pattern for each subject. For illustration purposes, the plots shown were generated in 

covert speech mode when the time window is cut at 1.5 second. Channel F5 and nearby 

areas showed best class separation. As expected, these channels are located around 

Broca’s area, which is related to speech production. The channels with the best CSP-

based class separation were used for feature extraction. 
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Figure 5.2. Common spatial patterns for each participant (A: Max eigenvalue for covert sound 

production states; B: Max eigenvalue for idle state) [5]. 

 

(F) Autoregressive Model for Feature Extraction 

Autoregressive (AR) modelling was applied for feature extraction. The AR 

coefficients were used as a feature vector. To this end, order number selection is 

important. In [139] order number 6 was found to be optimal in imagined speech EEG 

signals. The order number selected was therefore 6.  Burg’s method (‘arburg’ function 

in MATLAB) was used for AR coefficient calculations and these coefficients were 

used as feature vectors. 

(G) Classification 

Linear Discriminant Analysis (LDA) was applied for classification. LDA finds a 

linear projection line that maximizes the separation probability between classes and 

minimizes the overlap between them [140]. 
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Feature vectors (i.e., AR coefficients) were used as inputs to the LDA. 5-fold 

cross validation was applied 100 times to improve the classification results reliability.  

Results 

Table 5.1 shows True Positive classification accuracy results. For each 

participant, three speech sound production modes (Overt, I_Overt and Covert, in 

addition to the idle state) and four different time window sizes (1.0s, 1.5s, 2.0s and 3.0s) 

were tested. 

As can be seen from the results, average performances for each of two runs with 

same speech mode and time window length show that Covert sound production mode 

gave us the best classification accuracy results in most cases (82.41%, 81.20%, 85.12% 

and 74.72%, respectively; see yellow/highlighted results). The Covert vs. Overt 

differences were significant for all participants (Wilcoxon test, p ≪ 0.05).  The Covert 

vs. I_Overt differences were significant for participants 1, 2, and 3 (p ≪ 0.05), but not 

for participant 4 (p=0.24).   Likewise, the I_Overt vs. Overt differences were significant 

for participants 1, 2, and 3 (p ≪ 0.05), but not for participant 4 (p=0.195). 

In terms of bit-transfer rate, the 1.5s window length performed the best for 

participants 1 and 3. Window_length = 2.0s was best for participant 4, and 3.0s was 

best for participant 2. From these results, the maximum hypothetical bit-transfer rate 

(BTR) -- i.e., if the tasks were to be executed only for the duration of the best window 

length and without the category cue and the rest periods -- can be estimated as: 

 𝐵𝑇𝑅 =  
60𝑠

𝑤𝑖𝑛𝑑𝑜𝑤_𝑙𝑒𝑛𝑔𝑡ℎ
 × 𝑇𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒_𝑟𝑎𝑡𝑒 Equation 5-1 
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Thus, the maximum hypothetical BTR was computed as 32.95bit/min, 

16.24bit/min, 34.05bit/min and 22.42 bit/min for participants 1, 2, 3, and 4, respectively. 

 

Table 5.1. Performance results for each participant [5]. 

Participant 1 

Time Windows 

1.0 s 1.5 s 2.0 s 3.0 s 

CSP_CH 

(Acc %) 

BEST_CH 

(Acc %) 

CSP_CH 

(Acc %) 

BEST_CH 

(Acc %) 

CSP_CH 

(Acc %) 

BEST_CH 

(Acc %) 

CSP_CH 

(Acc %) 

BEST_CH 

(Acc %) 

S
P

E
E

C
H

 M
O

D
E

 

Overt run 1 

FPz 

(80%) 

FPz 

(80%) 

FP2 

(86.25%) 

FP2 

(86.25%) 

PO3 

(80.43%) 

C4 

(82.55%) 

PO3 

(85.18%) 

FPz 

(85.45%) 

Overt run 2 
CP5 

(68.43%) 

P1 

(73.53%) 

CP5 

(61.28%) 

P6 

(66.10%) 

CP5 

(61.83%) 

P1 (68%) 
CP5 

(68.58%) 

P6 

(74.60%) 

I_Overt run 1 

PO8 

(68.38%) 

Pz 

(78.59%) 

Cz 

(64.38%) 

C6 

(73%) 

PO8 

(67.08%) 

O1 

(75.15%) 

F2 

(53.90%) 

P9 

(76.63%) 

I_Overt run 2 
FC4 

(32.70%) 

TP7 

(67.55%) 

CP5 

(56.25%) 

TP7 

(72.53%) 

TP7 

(71.98%) 

TP7 

(71.98%) 

P5 

(72.78%) 

P5 

(72.78%) 

Covert run 1 
CP5 

(69.65%) 

CP4 

(80.73%) 

F3 

(82.88%) 

F3 

(82.88%) 

 F3 

(78.50%) 

AF7 

(81.83%) 

CP5 

(65.98%) 

PO3 

(78.30%) 

Covert run 2 
CP5 

(73.43%) 

CP5 

(73.43%) 

P5 

(78.48%) 

CP5 

(81.93%) 

P6 

(58.95%) 

POz 

(72.30%) 

P6 

(60.25%) 

P9 

(76.45%) 

Participant 2  

S
P

E
E

C
H

 M
O

D
E

 

Overt run 1 

Iz 

(67.45%) 

P9 

(73.48%) 

F1 

(60.63%) 

O1 

(77.53%) 

TP7 

(46.13%) 

O1 

(80.35%) 

AF3 

(78.68%) 

AF3 

(78.68%) 

Overt run 2 
FC5 

(46.05%) 

AF4 

(69.15%) 

FC5 

(45.75%) 

Oz 

(63.75%) 

CP4 

(66.13%) 

CP4 

(66.13%) 

FC5 

(44.63%) 

FP2 

(75.20%) 

I_Overt run 1 
AF7 

(58.95%) 

P8 

(79.70%) 

AF8 

(82.55%) 

AF8 

(82.55%) 

Fz (63%) 
P8 

(80.25%) 

Fz 

(69.03%) 

T8 

(85.05%) 

I_Overt run 2 

FPz 

(58.13%) 

PO7 

(66.80%) 

FP1 

(55.25%) 

PO7 

(72.70%) 

FP1 

(24.75%) 

PO8 

(74.48%) 

FP1 

(45.45%) 

P5 

(73.35%) 

Covert run 1 
F1 

(73.98%) 

F1 

(73.98%) 

F3 

(53.75%) 

PO4 

(79.18%) 

F3 

(60.65%) 

CP4 

(75.13%) 

FP2 

(80.75%) 

FP2 

(80.75%) 

Covert run 2 
 T8 

(75.40%) 

T8 

(75.40%) 

AF3 

(45.83%) 

P5 

(70.20%) 

AF3 

(59.98%) 

AF7 

(76.65%) 

AF3 

(73.93) 

T8 

(81.83%) 
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Participant 3  

S
P

E
E

C
H

 M
O

D
E

 
Overt run 1 

C3 

(44.55%) 

FC4 

(67.43%) 

C3 

(53.85%) 

C1 

(66.68%) 

PO3 

(63.20%) 

PO8 

(78.43%) 

PO3 

(67.28%) 

P10 

(73%) 

Overt run 2 
F5 

(51.55%) 

P8 

(73.33%) 

F5 

(60.13%) 

FC4 

(71.65%) 

F5 

(64.08%) 

F2 

(76.93%) 

F5 

(58.80%) 

FC1 

(70.28%) 

I_Overt run 1 
FC5 

(58.85%) 

P10 

(75.08%) 

CP3 

(67.30%) 

Cz 

(87.50%) 

FC5 

(72.48%) 

P10 

(87.45%) 

C4 

(72.13%) 

C1 

(83.73%) 

I_Overt run 2 
F5 

(59.38) 

F8 

(71.80%) 

F4 

(54.48%) 

F8 

(72.53%) 

F4 

(60.50%) 

P4 

(76.35%) 

POz 

(66.88%) 

TP8 

(73.08%) 

Covert run 1 
F5 

(83.78%) 

AF7 

(85.73%) 

F5 

(91.24%) 

F5 

(91.24%) 

F5 

(89.23%) 

F5 

(89.23%) 

F5 

(88.15%) 

F5 

(88.15%) 

Covert run 2 
F5 

(51.33%) 

P8 (72%) 
F5 

(48.48%) 

O2 

(79%) 

F5 

(51.20%) 

O1 

(78.83%) 

F5 (62%) 
C5 

(81.80%) 

Participant 4  

S
P

E
E

C
H

 M
O

D
E

 

Overt run 1 
F6 

(59.25%) 

T8 

(72.15%) 

FP1 

(74.95%) 

T8 

(76.05%) 

FP1 

(58.90%) 

P1 

(70.23%) 

CP5 

(55.38%) 

TP7 

(75.70%) 

Overt run 2 
F6 

(61.95%) 

F8 

(71.03%) 

F5 

(64.05%) 

P10 

(66.98%) 

FP2 

(52.75%) 

TP8 

(65%) 

AF7 

(71.08%) 

AF7 

(71.08%) 

I_Overt run 1 
P5 

(66.55%) 

AF8 

(77.13%) 

Fz 

(56.33%) 

AF8 

(71.53%) 

Fz 

(53.65%) 

AF8 

(72.78%) 

Iz 

(75.48%) 

Iz 

(75.48%) 

I_Overt run 2 

F5 

(57.80%) 

FC6 

(69.55%) 

PO4 

(70.83%) 

FC6 

(76.95%) 

PO4 

(70.30%) 

Oz 

(76.10%) 

PO4 

(67.40%) 

F8 

(73.40%) 

Covert run 1 
F5 

(64.38%) 

T7 

(67.05%) 

F5 

(67.48%) 

F8 

(69.33%) 

A7 

(65.68%) 

F8 

(75.68%) 

FT7 

(61.90%) 

FT8 

(65.20%) 

Covert run 2 

FPz 

(58.68%) 

PO4 

(63.88%) 

FC1 

(52.48%) 

Oz 

(75.95%) 

AF7 

(51.12%) 

PO4 

(73.75%) 

AF7 

(56.48%) 

PO4 

(66.50%) 

 

ACC: Accuracy. CSP_CH: The channel was chosen from CSP channel selection method. BEST_CH: 

The channel that actually performed the best out of 64 channels.  Yellow (highlighted) results: The best 

accuracy results for two runs for each participant.  

For channel selection, the CSP method (see CSP_CH in Table 5.1) yielded rather 

unsatisfactory results. Classification results with this method were worse than when the 

best channel was chosen by skipping the CSP stage and using only the best 
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classification results from all 64 channels (i.e. BEST_CH in Table 5.1). CSP-based 

channel selection could reduce computational time by not requiring classification using 

all 64 channels but on average it achieved 16.125% less than the BEST_CH method. 

Discussion 

In [141], various cognitive tasks were compared with the idle state and the motor 

imagery tasks achieved the best accuracy with a value of 73% on average for 7 subjects. 

By using this value as a benchmark, it can be seen that the present study achieved rather 

satisfactory results, even though there were some differences between their methods 

and ours, especially with regards to the duration of the active state tasks, i.e. 10 s in 

[141] vs. 5 s  in ours. 

The physiological locations which had the maximum differences in EEG signals 

between the idle and sound production states can be seen in Figure 5.3.  The Figure 

illustrates the distribution of the best channels that are shown in Table 5.1. As can be 

observed from Figure 5.3, it is difficult to interpret the physiological map,  something 

which can partly be attributed to the well-known poor EEG spatial resolution resulting 

from volume conduction effects. 
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Figure 5.3. Best channels location for each speech mode [5]. 

 

However, the map for the Covert state does show a higher concentration of 

channels (AF7, F5, F3 and F1) around Broca’s area, which was more in line with our 

expectations.  

In terms of overall classification accuracy, possible biases towards the active or 

idle states can be investigated. Table 5.2 shows the true positive rates for active and 

idle states for the best runs (as seen in Table 5.1 above) for each participant. As can be 

noticed from Table 5.2, active states (Covert, Overt, and I_Overt) have higher true-

positive values than the idle state. This result is possibly produced by the biased number 

of training set trials for each run (30 active state trials vs. 10 idle state trials, the number 

of idle states is 1/3 of the speech states). This is something that will require to be 

rectified in future works of this study. 

Keeping in mind that the main purpose of this study was to test cognitive tasks 

for their potential use in an asynchronous onset detection, an obvious limitation of this 

work was the use of a cue-based protocol.  More specifically, the recorded EEG signals 
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contain stimulus-timing information (via event related potentials) that would not be 

deliberately present in a true self-paced BCI. However, we are hopeful that the results 

are still useful in asynchronous BCIs as the same green circle was present in both the 

active and idle state initiation, and so our promising classification results reflect the 

actual separation between the active states. In the worst-case scenario, the methods 

reported here can be easily used in cue-based BCIs as well. 

 

Table 5.2. Idle and Speech states accuracy for each participant [5]. 

 

Run / Channel / 

Window_length 

Idle state 

Correct / Input 

(Accuracy) 

Active state 

Correct / Input 

(Accuracy) 

Participant 1 Covert run 1 / F3 / 1.5 s 

161 / 200  

(80.5%) 

504 / 600  

(84%) 

Participant 2 Covert run 2 / T8 / 3.0 s 

140 / 200 

(70%) 

506 / 600 

(84.3%) 

Participant 3 Covert run 1 / F5 / 1.5 s 

178 / 200 

(89%) 

547 / 600 

(91.2%) 

Participant 4 Covert run 1 / F8 / 2.0 s 

116 / 200 

(58%) 

504 / 600 

(84%) 

 

5.3 Experiment 2 (Siren-like sound production task) 

In this experiment, a modified cue-based protocol was used in order to focus on 

distinguishing between the active and idle states. Users were free to spontaneously 
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control the timing of execution of the active task. Self-reporting by means of a key-

press was used in order to determine the time location of the active state data. 

Methodology 

(A) Covert siren sound production and Idle state definition 

In this experiment, the active state and the idle states were defined as follows: 

• Active state (Siren): covert production of siren-like sounds (e.g., ‘wee-woo wee-

woo’) as well as simultaneous auditory recall (imagination of hearing the siren 

sound). During the imagination of ‘wee’ syllable, participants were instructed to 

think of a high pitch sound  and they were to think of a low pitch sound during 

the word ‘woo’.  

• Idle state (Idle): This would be equivalent to a null state in a self-paced BCI. 

Participants were instructed to think of nothing in particular and to keep their 

eyes open to prevent generating strong alpha waves. 

 

In terms of covert production, participants were not allowed to imagine tongue, 

mouth, or any body movements in order to reduce the motor imagery related signals. 

(B) Experiment Protocol 

Figure 5.4 shows the recording procedure for one trial. There were two different 

protocols: 

• Protocol A (marker-task design): the participant pressed a key on the 

keyboard at a time determined by him/herself (within a 100s recording 

period). Then, immediately after pressing the key, the subject performed 

either the active or idle state. 
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• Protocol B (task-marker design):  the participant first executed the active or 

idle task for a few seconds and then pressed the same key as in protocol A.   

 

 

The same key was pressed in both protocols in order to eliminate class-dependent 

information related to the motor task of pushing the key. 

 

 

Figure 5.4. EEG data recording protocol for each trial (A: marker-task design, B: task-marker design) 

[4]. 

Each experiment had 6 runs, i.e., three for protocol A and three for protocol B. 

Protocols A and B were mix-ordered (i.e., ‘ABABAB’ for three subjects and 

‘BABABA’ for two subjects) to minimize sequence-dependent results. In each run, 

there were 40 trials, which contained 20 siren states and 20 idle states, in random order. 
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The category cue at the beginning of each trial randomly shows either an up-

arrow or an ‘X’, which indicates active and idle states, respectively. The category cue 

was presented on a monitor for 2s and disappeared to reduce class-dependent visual 

event related potentials during the self-paced task.  5s of data post (i.e., protocol A) or 

prior to (protocol B) the key press were used for epoching.  

Compared to our previous study in [5], which used a standard cue-based protocol, 

the present protocols has the advantage that subjects have freedom (within 100s) as to 

when to execute the active or idle states. This makes our results more relevant towards 

onset detection in truly self-paced BCIs. 

(C) Data Acquisition & Signal Processing 

The experiments were done in accordance with the University of Essex Ethics 

Committee guidelines.  

Five healthy subjects (normal or corrected-to-normal vision, ages 20-25) 

participated in this experiment. One of the participants had previous experience with 

BCIs; four participants were naïve subjects. Each subject was sat down on a medical 

chair and the computer monitor was set 1m away from the participant’s face. Based on 

the 10-20 layout system, 64 electrodes were placed on the head; one reference channel 

was recorded from the right earlobe. EEG data was acquired via the BIOSEMI 

Actiview software at 256 samples/s and they were transferred to the PC through TCP/IP 

communication. Off-line data analysis was performed with MATLAB.  

EEG data for classification consisted of one single window pre or post key-press 

(depending on whether protocol A or B was used). The three different data segment 

lengths investigated were 1.0s, 2.0s and 3.0s (one single window), as measured from 

the key-press event. The segmented EEG signals were band-pass filtered (zero-lag 
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Butterworth filter, order 5) with cut-off frequencies at 4Hz and 120 Hz, and notch 

filtered (BW filter, order 5) at 49-50 Hz to remove mains interference. 

(D) Wavelet Transform 

Wavelet transforms offer time-frequency features and they have performed well 

with non-stationary brain signals [142]. In this experiment, Wavelet Packet 

Decomposition (WPD) was applied to the pre-processed EEG data. The wavelet 

decomposition process divides the original signal into low (approximation) and high 

(detail) pseudo frequency components and down-samples to half of its original 

sampling rate at each decomposition level [116].  

Figure 5.5 shows the WPD tree used in this experiment. The signals were 

decomposed up to level 5. Initially, each of the 62 nodes (i.e., level_1: 2, level_2: 4, 

level_3: 8, level_4: 16 and level_5: 32) and from all 64 channels were used for feature 

extraction and were used individually as inputs for the classifier. The best node and 

best channels were then determined from the classification results.  

 

Figure 5.5. Wavelet Packet Decomposition tree [4]. 
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Further, three different wavelets (db2, coif2 and sym2) were employed due to 

their simplicity and common use in EEG signal analysis. 

(E) Classification 

A linear Support Vector Machine (SVM) was applied for classification. SVM 

finds optimal class separating hyper planes by maximizing the margin between classes 

[123]. The LIBSVM software [143] was used for training and testing the SVMs. The 

C value was set to default 1 as different C values showed no significant hyperplane 

changes in our data set. Feature vectors from the wavelet transform were used as inputs 

to the SVM. Each training/testing run was performed with 20-fold cross validation to 

improve the reliability of the classification results.  

Results 

Table 5.3 shows true-positive classification accuracy results (with standard 

deviations). There are five subjects and each participant recorded 6 runs in total (i.e., 

three protocol A runs, and three protocol B runs). The (yellow) highlighted results 

represent the best averaged performance result out of three different wavelets using a 

1second time window length.  

Figure 5.6 shows the averaged (including all runs, wavelets and window sizes) 

accuracy results for protocols A and B, respectively. As can be seen from the figure, 

protocol B performed slightly better than A, except for participant 1. In detail, the 

Wilcoxon test p values were 2.6e-04, 0.001, 0.03 and 1.8e-04 for participants 1, 2, 4 

and 5, respectively, which means that there are significant differences between the 

protocols for these participants. Differences in protocol-dependent results were not 

found to be significant for participant 3 (p = 0.137). So, in short, these results show that 

protocol B gives better classification results for most participants. 
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Figure 5.6. The averaged performance results from each participant with different protocol [4]. 
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Table 5.3. Performance results for each participant [4]. 

 

Time Windows 

1.0 s 2.0 s 3.0 s 

Wavelet Wavelet Wavelet 

db2 coif2 sym2 db2 coif2 sym2 db2 coif2 sym2 

Accuracy % (± Standard Deviation σ) 

P
a

rt
ic

ip
a
n

t 
1

 

A Run1 

71.25 

(±10.8) 

74.37 

(±12.5) 

73.75 

(±10.7) 

71.88 

(±15.1) 

73.13 

(±18.7) 

70.63 

(±14.2) 

71.88 

(±11.4) 

71.87 

(±14.5) 

72.50 

(±13.2) 

A Run2 

76.88 

(±13.0) 

77.50 

(±14.4) 

76.25 

(±11.4) 

77.50 

(±8.67) 

73.75 

(±8.98) 

80.00 

(±11.0) 

80.63 

(±10.3) 

79.38 

(±10.9) 

78.75 

(±12.9) 

A Run3 

74.38 

(±15.4) 

77.50 

(±14.4) 

77.50 

(±12.6) 

75.63 

(±13.1) 

76.88 

(±13.6) 

78.75 

(±15.2) 

80.63 

(±13.1) 

76.88 

(±10.9) 

79.38 

(±8.38) 

B Run4 

72.50 

(±11.9) 

70.00 

(±12.4)  

71.88 

(±14.5) 

63.75 

(±14.6) 

68.75 

(±15.4) 

67.50 

(±14.3) 

68.75 

(±13.7) 

66.88 

(±13.0) 

75.00 

(±11.4) 

B Run5 

81.88 

(±11.1) 

81.25 

(±11.8) 

78.75 

(±10.0) 

82.50 

(±8.50) 

70.00 

(±14.2) 

71.25 

(±13.5) 

76.25 

(±13.4) 

72.50 

(±11.2) 

78.75 

(±16.7) 

B Run6 

76.25 

(±17.6) 

76.25 

(±16.2) 

70.62 

(±13.6) 

70.63(±

12.9) 

71.88 

(±15.1) 

73.75 

(±12.1) 

66.2 

5(±16.2) 

66.88 

(±18.2) 

65.00 

(±14.9) 

P
a

rt
ic

ip
a
n

t 
2
 

A Run1 

73.75 

(±15.1) 

66.88 

(±12.9) 

76.88 

(±14.2) 

71.88 

(±10.6) 

76.88 

(±15.3) 

74.38 

(±15.9) 

75.63 

(±13.1) 

67.50 

(±15.9) 

71.25 

(±15.2) 

A Run2 

76.25 

(±14.5) 

80.00 

(±11.7) 

73.13 

(±14.7) 

78.13 

(±15.1) 

72.50 

(±7.69) 

80.00 

(±13.0) 

75.63 

(±17.4) 

80.62 

(±13.1) 

71.25 

(±14.6) 

A Run3 

76.25 

(±16.7) 

80.00 

(±11.0) 

76.25 

(±10.6) 

79.38 

(±11.6) 

77.50 

(±13.8) 

77.50 

(±14.9) 

82.50 

(±17.4) 

81.88 

(±14.3) 

80.00 

(±14.2) 

B Run4 

84.37 

(±11.4) 

78.75 

(±13.5) 

82.50 

(±13.0) 

79.38 

(±10.9) 

80.63 

(±13.1) 

79.38 

(±13.6) 

75.00 

(±13.4) 

81.88 

(±11.8) 

78.75 

(±11.5) 

B Run5 

75.63 

(±13.1) 

82.50 

(±14.8) 

80.00 

(±15.3) 

75.63 

(±11.8) 

75.63 

(±12.5) 

70.63 

(±11.6) 

73.75 

(±15.1) 

73.75 

(±13.4) 

71.87 

(±16.7)  

B Run6 

78.13 

(±11.3) 

77.50 

(±11.9) 

75.63 

(±12.4) 

80.00 

(±14.8) 

83.13 

(±10.1) 

82.50 

(±14.8) 

86.25 

(±12.0) 

87.50 

(±9.06) 

79.37 

(±12.9) 

P
a

rt
ic

ip
a
n

t 
3
 

A Run1 

73.75 

(±12.7) 

75.00 

(±14.0) 

81.88 

(±15.4) 

76.88 

(±11.7) 

75.63 

(±15.4) 

80.63 

(±10.3) 

75.00 

(±13.4) 

74.38 

(±15.9) 

83.13 

(±10.9) 

A Run2 

71.88 

(±18.5) 

68.75 

(±12.5) 

81.88 

(±12.5) 

72.50 

(±13.8) 

66.25 

(±16.2)  

71.25 

(±17.2) 

69.38 

(±13.7) 

71.88 

(±13.4) 

70.00 

(±12.4) 

A Run3 

69.38 

(±19.2) 

78.75 

(±13.5) 

66.25 

(±13.5) 

78.13 

(±13.9) 

76.88 

(±10.9) 

72.50 

(±11.1) 

78.13 

(±11.3) 

75.00 

(±14.0) 

75.63 

(±11.1) 
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B Run4 

76.88 

(±12.9) 

75.63 

(±11.8) 

71.88 

(±16.2) 

76.88 

(±12.3) 

82.50 

(±11.7) 

74.38 

(±14.3) 

73.75 

(±10.6) 

71.25 

(±14.7) 

72.50 

(±16.0) 

B Run5 

71.88 

(±13.3) 

75.63 

(±15.9) 

73.75 

(±17.6) 

71.87 

(±13.9) 

79.38 

(±11.6) 

75.00 

(±12.8) 

86.25 

(±11.4) 

71.88 

(±17.1) 

85.63 

(±11.6) 

B Run6 

71.88 

(±13.4) 

64.37 

(±14.2) 

75.63 

(±13.7) 

83.13 

(±10.9) 

78.13 

(±12.7) 

80.63 

(±15.4) 

76.25 

(±9.85) 

71.25 

(±16.2) 

77.50 

(±13.8) 

P
a

rt
ic

ip
a
n

t 
4

 

A Run1 

80.63 

(±11.8) 

80.00 

(±10.3) 

76.25 

(±12.7) 

81.25 

(±11.1) 

75.63 

(±16.5) 

78.75 

(±12.2) 

73.75 

(±13.4) 

75.00 

(±12.1) 

72.50 

(±12.5) 

A Run2 

66.25 

(±19.9) 

77.50 

(±12.5) 

77.50 

(±17.0) 

70.63 

(±17.3) 

78.13 

(±9.83) 

75.63 

(±14.3) 

71.88 

(±16.7) 

73.13 

(±14.7) 

76.25 

(±14.5) 

A Run3 

79.38 

(±11.7) 

83.13 

(±14.7) 

77.50 

(±14.4)  

80.00 

(±11.7) 

75.63 

(±15.9) 

75.00 

(±14.0) 

75.00 

(±12.8) 

76.88 

(±14.2) 

76.88 

(±12.9) 

B Run4 

76.25 

(±16.2) 

73.75 

(±15.6) 

83.13 

(±11.6) 

70.63 

(±10.1) 

75.00 

(±12.8) 

78.13 

(±12.0) 

77.50 

(±12.5) 

75.00 

(±17.2) 

69.38 

(±13.1) 

B Run5 

71.88 

(±12.1) 

83.75 

(±10.0) 

78.13 

(±13.3) 

88.13 

(±9.49) 

80.63 

(±11.0) 

81.25 

(±17.4) 

81.25 

(±13.8) 

79.38 

(±10.9) 

79.38 

(±15.3) 

B Run6 

81.88 

(±11.1) 

79.38 

(±15.3) 

73.13 

(±12.3) 

76.25 

(±10.6) 

76.88 

(±16.8) 

80.00 

(±13.7) 

- - - 

P
a

rt
ic

ip
a
n

t 
5
 

A Run1 

85.63 

(±10.9) 

77.50 

(±10.4) 

89.38 

(±11.6) 

78.13 

(±16.1) 

81.88 

(±11.8) 

82.50 

(±13.1) 

75.63 

(±12.5)  

80.00 

(±13.7) 

76.88 

(±10.1) 

A Run2 

83.75 

(±11.5) 

75.63 

(±15.4) 

77.50 

(±12.6) 

76.88 

(±14.7) 

80.63 

(±11.0) 

76.88 

(±14.2) 

80.63 

(±9.49) 

70.00 

(±16.9) 

73.13 

(±13.6) 

A Run3 

68.75 

(±14.9) 

71.25 

(±14.7) 

67.50 

(±14.2) 

74.38 

(±11.1) 

69.38 

(±11.8) 

70.63 

(±14.8) 

69.38 

(±13.1) 

65.63 

(±9.83) 

71.88 

(±13.3) 

B Run4 

89.38 

(±10.1) 

89.38 

(±11.6) 

84.38 

(±12.1) 

84.38 

(±10.6) 

87.50 

(±11.5) 

81.88 

(±13.1) 

86.88 

(±9.49) 

86.88 

(±13.1) 

86.25 

(±8.00) 

B Run5 

81.25 

(±14.9) 

73.75 

(±11.4) 

78.75 

(±15.2) 

63.75 

(±8.00) 

71.25 

(±15.7) 

75.00 

(±19.4) 

76.88 

(±15.3) 

78.13 

(±15.6) 

78.75 

(±14.6) 

B Run6 

76.25 

(±12.7) 

76.25 

(±18.1) 

85.00 

(±11.2) 

75.63 

(±15.4) 

77.50 

(±12.5) 

71.88 

(±15.1) 

70.63 

(±13.6) 

78.13 

(±10.7) 

70.63 

(±12.3) 

A, B run: The recording protocol either ‘A’ or ‘B’, which are explained in the methodology section. 

Yellow (highlighted) results: Accuracy from one channel (gave highest accuracy) in 1s window for each participant. 

* Participant 4: B run6, 3.0s time window size were removed due to miss-pressed keyboard marker input  
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In terms of data segment sizes, 1s, 2s and 3s segments were compared. Figure 

5.7 shows averaged true positive accuracy values including all wavelet type and both 

protocol types, for each subject. 

 

 

Figure 5.7. The averaged performance results from each participant with different time windows [4]. 

 

As can be seen from the Figure 5.7, the 1s second time window segment worked 

best for 3 of the 5 participants. But most of the time the differences were insignificant. 

In detail, the p values between the 1s and 2s window conditions were 0.04, 0.95, 0.02, 

0.85 and 0.006 for participants 1, 2, 3, 4 and 5 respectively. For 1s vs. 3s windows, the 

p values were 0.11, 0.73, 0.08, 0.15 and 0.002. This shows that only subject 5 gave 

significantly better results with the 1s window. In addition, for the 2s vs. 3s comparison, 

p values were all higher than 0.05. Therefore, there is significance in some cases but 

not consistently. From this result, the 1s window length can be regarded the most 

efficient window as it can minimise computational power with small window size and 

increase system speed compared to longer windows. For this reason, the highest 
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accuracies were chosen from the results for the 1s window (yellow highlighted). The 

best true positive rates were 76.88%, 79.58%, 76.67%, 80.2% and 82.71% for 

participant 1, 2, 3, 4 and 5, respectively. 

In terms of electrode location, for participant 1, P5, TP8 and P1 worked the best 

(yellow highlighted part). For participant 2 channel P8, P6 and P8; for participant 3: 

FC8, T7 and FT7; for participant 4: CP2, CP6 and TP8; and, for participant 5: AF8, P9 

and F2 were found to work the best from the runs with the 1s time window length. 

Brain activity related to covert siren sound production appeared all around the 

head, not only at Broca’s and Wernicke’s areas. This shows that the physiological 

location for the covert siren sound production is difficult to identify. 

Discussion 

This experiment investigated the potential of a new method for onset detection 

towards asynchronous BCIs. Siren-like sound covert production and recall were 

classified against the idle (no task) state in an off-line system.  

Wavelet packet decomposition was employed for feature extraction and the 

wavelet type slightly affected the performance results. The best decomposition level 

and node for each participant was different. For participant 1, the nodes with the highest 

classification rates were 61, 44 and 40 (the node numbering system can be found in 

Figure 5.5 above), respectively for the three runs (highlighted in yellow). For 

participant 2 the best nodes were: 19, 61 and 29; for participant 3: 52, 54 and 62; for 

participant 4: 55, 54 and 25; and, for participant 5: 6, 11 and 57. The best wavelet varied 

depending on the participant, window size and protocol type. This suggests that 

optimised wavelet design should be used. In [144], a simple evolved pseudo-wavelet 

was introduced. The wavelet sample coefficient was evolved to be optimised to the 
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specific EMG or EEG signal by a genetic algorithm. In [118], the P300 EEG signal 

classification rate was improved by around 10% and 12% with the use of evolutionary 

wavelets. This method could also be used in order to improve performance.  

From a performance point of view, five subjects achieved a 76.88%, 79.58%, 

76.67%, 80.2% and 82.71% true positive rate, respectively. This showcased 

competitive results compared to systems based on typical motor-imagery tasks [10, 18].  

Therefore, there was the potential of testing in a real online situation for further analysis 

so we repeated this experiment in real online onset detection settings. 

5.4 Summary and Conclusions 

The scope of the first experiment was to investigate the use of basic and intuitive 

speech production related tasks towards their future use in onset detection of 

asynchronous BCIs. The Idle states (i.e. relaxed, non-specific states) were separated 

against the Covert, I_Overt, and Overt high tone speech sound production states. The 

Covert state produced the best classification rate vs. the Idle state (82.41%, 81.20%, 

85.12% and 74.72%, respectively) compared to the Overt vs. Idle state for all 

participants (p≪0.05). The Covert state also provided better classification results vs. 

the Idle state than the I_Overt state for participants 1, 2 and 3, and equally good results 

with the I_Overt state for participant 4. 

The best window length values (as measured from the time when the 'start' cue 

appeared) were 1.5 s for participants 1 and 3, 2 s for participant 4 and 3 s for participant 

2, providing a hypothetical maximum bit transfer rate of 32.95, 16.24, 34.05 and 22.42 

bits/minute, respectively, for each participant.  
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Including CSP in the channel selection process produced worse results than 

skipping the CSP stage and choosing instead the best channel based solely on the 

classification performance by using individual channels. 

The goal of the second experiment was to investigate the use of covert siren 

sound production in order to distinguish active states from the idle state for onset 

detection in asynchronous BCIs. Time window segments of 1 s, 2 s and 3 s were tested 

with two different protocols (A and B) and the results showed that protocol B (task-

marker design) provided better results than protocol A (marker-task design) for most 

subjects. However, different window segment sizes did not show significant 

differences. For this reason, the highest accuracy results were chosen from the 1 s 

window configuration which achieved true-positive performance values of 76.88%, 

79.58%, 76.67%, 80.2% and 82.71% for participant 1, 2, 3, 4 and 5, respectively. 

Based on these two experiments, speech-related cognitive tasks showed that they 

can be distinguished from the idle state for an onset detection system in BCIs. In 

addition, the performance results were very promising in offline settings. For this 

reason, further experiments were carried out with the speech-related cognitive tasks for 

an onset detection system, which will be discussed in the following chapters.  

The findings in this chapter showed promising results compared to other motor 

imagery onset detection studies (e.g., [10, 18]). These new sound-production related 

cognitive task experiments (offline cue-based) could provide useful background 

information for other BCI studies. 
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6 Onset Detection Technique for Brain-Computer 

Interfaces using Sound-production Related 

Cognitive Tasks in Simulated-online System 

(Based on a paper [1]) 

6.1 Introduction 

This chapter is based on a published journal paper [1].  

In the Chapter 5, new novel high-tone and siren-like sound production related 

cognitive tasks were proposed and investigated in order to classify them against the 

idle state for onset detection in offline settings which showed some potential. 

Before moving this investigation (offline, cue-based) forward to online onset 

detection BCI systems and choosing the most appropriate speech related cognitive 

tasks, simulated-online settings with a self-paced experiment paradigm were tested in 

this chapter as a prototype towards a practical online system. High-tone and siren-like 

sound production related cognitive tasks were tested and compared to covert and 

inhibited overt speech modes. 

In addition, a new performance evaluation metric for self-paced BCIs, called the 

true-false-positive score, was proposed in this research (details in section ‘Performance 



 Department of Computer Science and Electronic Engineering, University of Essex  

136 
 

Assessment Score’) as there is no common and standardised performance assessment 

method of self-paced BCI systems that takes into account the idle period length, which 

is a very important aspect of self-paced system. 

Averaging the results from the best performing IC tasks for all seven participants, 

a 77.7% True-Positive (TP) rate was achieved in an offline testing. For the simulated-

online analysis, the best IC average TFP score was 76.67% (87.61% TP rate, 4.05% 

false-positive rate). The results were very promising compared to other motor imagery 

onset detection studies, which reported the values of 72.0% and 79.7% as their best TP 

rates and which, crucially, did not take timing errors into account [10, 18].  Therefore, 

this new sound imagery onset system showed good potential to be used in self-paced 

BCIs for further online real-life setting investigation (as will be discussed in Chapter 

7). 

 

6.2 Methodology 

Sound-production Related Tasks and Idle State Definition 

In this experiment, there were two different mental tasks for the onset switch, and 

two modes for each task. Firstly, the modes are separated as in inhibited overt (IO) and 

covert (C) sound production. Secondly, high tone (High) and siren-like (Siren) sound 

production mental tasks were tested. For the non-control state, idle (Idle), i.e., non-

specific states were also recorded (to avoid confusion, the term ‘idle’ alone will be used 

in the remaining parts of this paper). The start and duration of the tasks was controlled 

spontaneously by the user (assisted by a specially designed time-keeping interface, 
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described below). To minimise artefacts generated from muscle signals, participants 

were instructed to avoid any unnecessary body movement, but they were still allowed 

to blink or move their eyes when needed (the artefact rejection methods are explained 

later in this paper). 

In more detail, the states were defined as follows: 

• Inhibited overt sound-production Tasks: 

Inhibited overt sound-production is different from our normal overt sound-

production. Aside from the cognitive effort, it will involve tensioning of the vocal 

cords but there is no actual sound production that can clearly be heard.   

Inhibited overt high tone production (IO_High): participants were instructed to 

produce an ‘um’ sound effort with a high pitch that they can comfortably produce 

for a couple of seconds, but high enough that they think it is an unusual tone and 

not something they would imagine in a normal situation. 

Inhibited overt siren-like sound production (IO_Siren): the siren-like sound 

effort was defined as ‘wee-woo wee-woo’. ‘Wee’ syllable denotes high notes, 

whereas ‘woo’ expresses low pitch.  Participants were instructed to produce this 

sound effort for a couple of seconds. 

• Covert sound-production Tasks: 

Covert sound-production was a pure imagination process. Thus, there should be 

no tensioning of any organs related to sound-production. Participants were 

instructed to imagine making the ‘sound’, which of necessity included imagining 

hearing the sound (auditory imagery / auditory recall). Auditory imagery refers 

to mental imagery in sound perception without an actual external auditory stimuli 

[145]. In terms of functional neuroanatomy the processes involved in covert 
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speech have not be fully elucidated, but it is known that it involves the auditory 

cortex (around Brodmann areas 41, 42 and partially 22 [146]) and, for speech-

related imagery, Wernicke’s area (Brodmann area 22).  Also, the auditory system 

has been shown to play an important role in overt speech production by giving 

internal feedback [147], it is possible that a similar role is played in covert sound-

production. 

Covert high tone production (C_High): Imagining high tone production (as 

explained above for the IO_High task). 

Covert siren-like sound production (C_Siren): Participants were instructed to 

imagine making siren-like sounds in covert mode. 

• Idle state (Idle): This is a non-control or null state. The participants were 

instructed to not think of any of the above IC task states and to stay calm and 

relax.  

 

During all above tasks, participants were not allowed to imagine tongue, mouth, 

lips, or any other body movements to avoid motor-imagery related signals.  

Experiment Interface Design 

While the tasks were controlled spontaneously by the users, it was necessary to 

provide them with a means to estimate the length of time gone by when executing a 

task in order to ensure that the IC task lasted sufficiently long to yield enough data to 

achieve a high classification rate, but not so long that it would lead to such high timing 

errors as to render the self-paced approach useless.  Having in mind the typical task 

duration in cue-based BCIs, we chose an approximate recommended task duration of 
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3s, but bear in mind that the user was still free to start and stop the task at any time 

that suited them, within a 30s window (the maximum duration of each NC state 

within a trial so that the experiments did not run for an unnecessarily long time). 

 

 

Figure 6.1. The chosen time-keeping interface design. Users fix their eyes on the central cross and 

estimate their task time as the light grey progress bar grows clockwise [1]. 

 

To record onset tasks and idle states for simulated-online scenarios (i.e., treating 

the data trials sequentially rather than as independent random trials), the time tracking 

interface needs to be suitable for actual online self-paced onset detection systems even 

during recording of the training. Thus, there were three main functional requirements: 

a) The interface should minimise visual event-related potentials (VEP). b) The 

computer must be able to time-stamp events. And, c) as explained above, the user must 

be able to estimate task duration. To satisfy these requirements, a few different 

recording interfaces were considered as candidates and the circular progress bar 

interface shown here was chosen based on the facts of 1) minimum eye movement, 2) 
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minimum ERP generation, and 3) usability (defined as ease of use in this study) from 

three experienced BCI users (i.e., PhD students in our BCI group). To determine the 

size of the interface, we considered two literature sources.  In [148] competing stimuli 

located less than 5° of visual angle from the central stimulus were shown to affect 

SSVEP responses. In [149], similar effects were observed in a P300-based BCI. As a 

result, to avoid these proximity issues, the diameter of the interface’s inner circle was 

set to 9cm and the distance between the monitor and participants was set to 50cm. This 

leads to about 10° of viewing angle. The viewing angle from the fixation cross to any 

circular moving object was just above 5°. In addition to this, background and objects 

colour were chosen to be dark achromatic colours to minimise ERPs. As shown in 

Figure 6.1, the progress bar in the interface continuously filled with light grey for 12 

seconds and then with slightly darker grey (the jump in brightness was small to 

minimise VEP), followed by light grey again.  

Experimental Protocol 

Participants performed one run for each task, chosen pseudo-randomly to 

minimise sequence-dependent effects (randomisation between runs). In each run, 

participants executed the same task 30 times. They knew which task to perform as they 

were told about the task, by the experimenter, before each run. Task randomisation 

within a run was unnecessary and undesired in our case as this is only relevant in a 

multi-task scenario (e.g., motor imagery for left hand vs. right hand vs. feet vs. tongue, 

etc.). In our case, on the other hand, the intended task-versus-idle scenario is one in 

which the end-user would execute the same imagery task every time.  I.e., in an onset-

detection problem it would make no sense to mix the tasks, as this is not what will be 

happen in online use.  
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Between each 30-trial run, participants had short breaks (1-3min, as desired). The 

total experiment time did not exceed one hour beyond electrode cap set up and 

explanation of the experiment to the participant. 

The experiments were done in accordance with the University of Essex Ethics 

Committee guidelines. 

 

 

Figure 6.2. EEG data recording procedure for 1 trial [1]. 

 

Figure 6.2 represents the recording procedure for one trial. Users were required 

to stay in the idle state for at least 3s, after which they were free to execute one of the 

cognitive tasks at any time up to 30s from the beginning of the trial. Immediately after 

they executed a task for about 3s (aided by the time-keeping interfaces) they were 

required to press the space key on the keyboard to signal the end of a trial and to provide 

a time stamp for performance evaluation of the system.  The minimum idle state of 3s 

was chosen to prevent task time-proximity effects in the EEG. On the other hand, the 
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maximum idle state 30s was chosen based on a previous study [4] that explored 

different ways of time-stamping active states and in which participants were given a 

window of up to 100s within which to execute the self-paced task. In that study all 

participants spontaneously executed a given active task within 15s after a trial began. 

For this experiment, an extra 15s were included to prevent participants from rushing. 

During the whole experiment the same key (the space key) was pressed following 

a self-paced task to prevent class-dependent information from any motor-related signal. 

In addition, data 0.5s prior to and 0.5s after the space key (shaded area is Figure 6.2) 

were discarded from the analysis to avoid motor-imagery related data leading to IC 

false-positives.  

Seven healthy subjects (4 males, 3 females) participated in the experiments. They 

all had normal or corrected vision and were aged between 22 and 27. Three participants 

had previous experience with BCIs and two of them had participated in a previous study 

on covert sound production for onset detection [4]. The other four participants were 

naïve subjects. Each subject was sat on a medical chair comfortably and a monitor was 

placed 50cm away from subject’s face. A keyboard was placed on their lap to press the 

space bar for the end-of-trial marker. 

Offline and Simulated-online Evaluation Definition 

In this experiment, the recorded data were analysed in offline and simulated-

online scenarios, as follows. 

Offline evaluation: The continuously recorded EEG data was segmented into 

0.5s time windows without any overlapping. Then, these segments were separated into 

task and idle states based on the timing protocol shown in Figure 6.2. If a segmented 

0.5s window included both idle and task states, it was discarded, as were the 0.5s before 
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and after the key-press stamp. After segmentation, half of the epochs for each state 

were randomly selected for training and the other half were used for testing data. The 

randomisation-training-testing cycle was repeated 20 times. Offline evaluation gives a 

preliminary idea about how well the system can distinguish active tasks from idle states 

for onset detection and the results can more easily be compared to other BCI systems. 

However, the offline evaluation has drawback towards real onset detection system as 

it ignores sequence effects (such as possible priming, habituation, etc.) of onset tasks.  

Simulated-online evaluation: Data segmentation was done as in the offline study, 

but with two crucial differences: a) no data windows were discarded unless EOG was 

automatically detected by the system (using the EOG detection algorithm described 

below), and b) epoch randomisation was not applied in order to preserve the online-

like time structure of the data. Instead, the first 15 trials (half of the recorded trials 

within a run) were used for training; the subsequent 15 trials were used for testing. Data 

were not discarded in the manner done in the offline approach because in real online 

situations there is no end-of-trial marker.  

 

Data Recording and Signal Pre-Processing 

A Biosemi (TM) ActiveTwo system was used with the Actiview software for 

recording data. 64 electrodes were placed based on 10-10 layout system and 2 reference 

electrodes were placed on the left and right earlobes. In addition, 1 electrode was setup 

to detect EOG artefacts. Sampling rate 512 samples/s was chosen to ensure recording 

up to the high gamma band (100 Hz) based on 3dB-point (half power point) of the 

equipment bandwidth around 104 Hz. In BCI studies, high gamma waves have not been 

investigated very often due to increased contamination by muscle artefacts, but 
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previous work by others [65, 67, 150] has shown significant high gamma wave activity 

associated with some language tasks, hence its inclusion here. On the other hand, 

recording at a higher rate was not necessary as our interest in EMG was only for artefact 

removal purposes and, further, sampling at a higher rate could have led to increased 

EMG-related aliasing in the EEG signals.  

Continuously recorded EEG data were segmented with 0.5s window length. The 

data were band-pass filtered (zero-lag Butterworth filter, order 4) with cut-off 

frequencies at 2 Hz and 100 Hz. Then a notch filter (zero-lag Butterworth filter, order 

4) was applied at 49-51 Hz to reduce mains interference. To remove common 

environmental noise, the averaged of the two earlobe reference channels was subtracted 

from all 64 scalp channels.  

EOG Artefact Detection 

 

 

Figure 6.3. Block diagram of EOG artefact detection method [1]. 

 

An EOG channel was placed above the corrugator muscle and was used for EOG 

detection at the forehead region. Figure 6.3 illustrates the procedure for automatic EOG 

detection. A discrete wavelet transform (DWT) with Haar mother wavelet (because it 
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resembles eye blink ocular artefacts [108]) was applied to the EOG channel. The 

decomposition level, 6, was chosen as it showed satisfactory results in [108, 129]. The 

pseudo-frequency of the level 6 approximation component was 0-8Hz in our case.  

In the DWT process, detail parts were removed and then the signal was 

reconstructed. This is because the papers [108, 129] showed that the EOG artefacts 

usually appear in lower frequency range (around 0-13 Hz). Thus, one would expect to 

find the strong wavelet coefficients in the approximation part. For this reason, all of the 

detail parts were removed, and the signal was reconstructed only with approximation 

coefficients. The staircase waveform result showed clear EOG artefact detection in 

their cases as well as in our study (showed in Figure 6.4). 
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Figure 6.5. Participant 1’s first 10s data (A) Pre-processed EOG channel. (B) EOG artefact detection 

process applied with wavelet transform. (C) Standard deviation of 0.5s data from (A) [1]. 
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To detect EOG artefacts, two conditions needed to be met: i) a standard deviation 

(std, calculated for each from 0.5s non-overlap window segment) jump by a factor of 

3, and ii) using a wavelet coefficient threshold, as follows. If we compare Figure 6.5A 

and B, the EOG detection plot (B, based on the wavelet coefficients at decomposition 

level 6) can be seen to have large rising/falling edges. When the standard deviation (std) 

was found to jump by a factor of 3, the subsequent data were treated as possible EOG 

artefact candidates. Within the EOG artefact region, the smallest rising/falling step area 

was chosen as a threshold in order to avoid discarding false EOG positives that may 

result from applying only the 3std condition. E.g., in Figure 6.5B, between 5s and 6s 

we find a pattern that can be deemed to be border line EOG artefact and, within that 

region, the smallest step is 20V. This value was half powered (-3db) and the result 

was chosen as a threshold. To reduce onset false positives, once the EOG artefact 

contaminated time-locations are detected, the data for those segments were discarded 

from further analysis. 

EEG Feature Extraction 

In order to analyse the EEG signal, two different feature extraction methods were 

used, band power and wavelets.  For the band power a Fast Fourier Transform was 

applied to the pre-processed EEG signals and its power (i.e., the squared FFT) were 

selected as features from eight different frequency ranges; Freq1: 2-4Hz (Delta), Freq2: 

4-8Hz (Theta), Freq3: 8-12Hz (Alpha), Freq4: 12-16Hz (Low Beta), Freq5: 16-20Hz 

(Beta), Freq6: 20-30 (High Beta), Freq7: 30-42Hz (Low Gamma) and Freq8: 42-100Hz 

(High Gamma).  

The second feature extraction method was the discrete wavelet transform. It 

offers time-frequency features and performs well with non-stationary brain signals 
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[142]. Pre-processed EEG signals were decomposed and their coefficient vectors from 

levels 6Approximation, 6Detail, 5D, 4D, 3D and 2D (representing the pseudo 

frequency bands Wave F1: 2-4Hz, Wave F2: 4-8Hz, Wave F3: 8-16Hz, Wave F4: 16-

32Hz, Wave F5: 32-64Hz and Wave F6: 64-100Hz respectively) were calculated and 

their variances (for dimensionality reduction purposes) were used as features. The 

mother wavelet ‘db2’ was chosen because of its simplicity and common use in EEG 

signal analysis [151-153] (also, in our previous study [4] we found that the choice of 

wavelet type - db2, coif2, or sym2 - did not significantly affect sound-production 

related onset detection). While it is possible that an extensive study including various 

other wavelet types and orders (and, for that matter, other JTFA and non-JTFA 

approaches) could lead to improved results, our study was meant to focus on the use of 

covert sound-production in onset detection.  

Classification 

The above feature extraction method produced hundreds of features, i.e., 

(64ch*7band power + 64ch*5wavelet = 768 features), so feature selection had to be 

applied to reduce feature set size and class overlap, and to improve computational 

efficiency. To this end, the Davies-Bouldin index (DBI [119, 120]) was applied. The 

DBI is a cluster overlap measure. Smaller DBI values indicate better class separation, 

with lower class overlap and larger distance between classes. Thus, DBI values for each 

feature were sorted in ascending order and an integer value DBI threshold from 1 to N 

was obtained for each participant. The features which had DBI value less than the 

threshold were selected as a feature set for further analysis.  The DBI threshold was 

chosen as follows. 
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Figure 6.6. Sample training true-positive rates for idle, task periods, and total performance (from 

participant 1, inhibited-overt siren task). The horizontal axis shows 7 approximate DBI values for 

illustration purposes [1]. 

 

The DBI threshold was chosen based on the training set’s classification result 

(see Figure 6.6). Due to the different sizes of the idle and task states (the idle period is 

much longer than tasks), classification results could be biased towards the idle state 

(see points DB=1 and 2 in the figure). By increasing the DBI threshold (e.g., from 2 to 

3), the task state’s true-positive rate increases while the idle true-positive rate decreases.  

This behaviour continues until the individual TP rate continuously decreases for both 

idle and task states.  However, in every case there is an optimum DBI value at which 

the overall TP rate is maximised (e.g., at DBI=4 in Figure 6.6). Thus, the DBI threshold 

was chosen so that it gave the highest overall true-positive rate for the training data. 

After feature selection was performed, Linear Discriminant Analysis (LDA) was 

applied for classification. LDA was chosen due to its simplicity and low computational 

power [122] as well due to its widespread use in BCI research. The feature vectors from 

the feature selection process were used as inputs to the LDA. For the offline analysis, 
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pseudo-randomisation of the choice of training and testing set epochs was done 20 

times and results obtained for each randomisation stage. 

EMG Artefact Handling 

A challenge in all BCIs, but more so when the gamma band is included in the 

analysis, is to ensure that classification results are based on brain signals alone, as much 

as possible, and are not contaminated by potentially class-dependent EMG. In an EMG 

artefact BCI survey [130], it was shown that 67.5% of the BCI studies included in the 

survey did not mention whether they handled EMG artefacts or not and 12.1% did not 

remove EMG artefacts. 

EMG artefacts are particularly important for IC state onset detection as switching 

from an ‘idle’ state to an IC state may produce involuntary facial twitches that can 

produce class-dependent EMG artefacts, especially in frontal area EEG, more so than 

when switching between various IC states.  EMG (and other facial artefacts) must thus 

be minimised. 

Independent component analysis (ICA) and blind source separation by canonical 

correlation analysis (BSS-CCA) are the two mostly used EMG removal techniques in 

BCIs. Research papers [19, 98] showed BSS-CCA outperformed ICA and it was more 

suitable for EMG removal thus BSS-CCA was chosen for this experiment.  

CCA measures the linear relationship between two multi-dimensional signals 

[131]. It can be used to solve BSS problem (proposed in [132]) by taking multi-channel 

EEG as a first variables and temporally delayed version as a second variables [97]. The 

threshold of autocorrelation coefficient ρ was chosen as 0.35 based on the study in 

[133]. If there was no source that has less than the threshold ρ, the last source (from 

descending order sort) that has the lowest autocorrelation coefficient was removed. 
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Performance Assessment Score 

For the event by event performance evaluation, the true-false difference rate was 

suggested in [154] for self-paced BCIs. However, there are some issues with this 

approach. Due to the difficulty in measuring true-negatives during idle state, [154] 

proposed a false-positive rate as ‘FP/(E+FP)’, where FP is the number of false-

positives and E is the number of task state onset events. This false-positive rate was 

subtracted from the true-positive rate. However, the number of task events and idle 

events are independent in self-paced system. Yet, the method in [154] would yield the 

same score even if two different systems have different lengths for the idle states but 

have the same amount of false-positives. The system with longer idle periods should 

yield a higher score as this system makes less frequent IC onset false-positives, and is 

thus more robust, but that is not what the index in [154] would indicate   

Thus, to address the limitations in [154], we propose a new performance 

evaluation score, called true-false-positive score (TFPScore), defined as follows: 

 

 TFP𝑆𝑐𝑜𝑟𝑒  (%) =  
(𝑇𝑃 + α)

(𝑡𝐸 + α)
∗ (1 −

(𝐹𝑃 + α)

(𝑖𝐸 + α)
)

2

∗ 100 Equation 6-1 

 

where TP and FP are the numbers of true-positive and false-positive 500ms-windows, 

respectively in this study. tE and iE refer the number of IC task onset events and idle 

events, respectively. ‘α’ is set to 0.1, which is a very small number chosen merely to 

avoid division by zero while still minimising effects on the results. To define iE more 

clearly, the different online system time periods will be defined as follows: 
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• Recording Time: Total recording time for a run without any stops and 

interruptions. 

• Task Period: Total task activation time, i.e., the sum of all task activation 

periods (from the beginning of task activation to the stop). This variable 

includes a timing error tolerance region (described below in Results & 

Discussion). If the experiment is designed to maintain the task activation state 

until the user receives feedback, then the tolerance region is not included.       

• Refractory Period: Period in which the signal is ignored after the task activation 

or false-positive, i.e., the machine ignores incoming data while it executes 

whatever function is required after onset detection. 

• Idle Period: Total idle state period, Idle Period = Recording Time - Task 

Period - Refractory Period. 

 

iE will be defined as the number of shifting windows that give classification results as 

Idle (e.g., assuming a non-overlapping window size of 500ms, a 1s idle period gives iE 

= 2).  The behaviour of Equation 6-1 is shown in Figure 6.7. Ignoring α for simplicity, 

we obtain the following behaviours, all of which are correct:  

• When FP is zero, TFP will vary with iE, so, everything being equal, longer idle 

periods will yield higher performance scores. 

• By multiplying (1-FP rate) to TP rate, the score is reduced if FP is increased. 

• If FP is zero, the score will be near TP and will depend on idle period size. 

• FP_rate=top/bottom.  The square power of (1-FP rate) will give more 

reasonable scores than by removing the power of 2. For example, TP=6 and 

FP=0 give a TFT score around 60%. The score will be similar when TP=7 and 
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FP=3 in panel A (i.e., with the power of 2).  However, without the power of 2 

(panel B), a score near 60% would be obtained with TP=7 and FP=7, which 

does not make sense as a system with TP=6 and FP=0 is clearly much better 

than one with TP=7 and FP=7. For this reason, the square power was chosen 

after investigation with many scenarios. 

 

 

Figure 6.7. TFP Score graph. A) applies (1-FP rate) 2, as in Equation 6-1, while B) is without the square 

power. Ranges: TP= 0-10, FP= 0-50, tE=10 and iE=50, TFT=0-100. NB: (1-FP rate)^2 refers to (1- 

(FP+a)/(iE+a))^2 in Equation 6-1 [1]. 
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6.3 Results 

Offline Testing Evaluation 

 

Table 6.1. Offline testing accuracy from four different sound-production related onset tasks for all 

subjects [1]. 

 

 

Table 6.1 shows classification accuracy for all seven subjects and four different 

onset tasks. The Bold and Italic results represent the highest accuracy out of four 

different onset tasks for each participant. If there is no significant difference between 

the highest values (as measured by a Wilcoxon test p-value), both results are marked 

as Bold and Italic. 

For participants 1, 3 and 7 covert high tone sound-production (C_High) achieved 

significantly higher accuracy (i.e., average true positive rate when discriminating 

between idle and task) than the other three tasks (p-value ≪ 0.05).  For participants 2, 

3 and 6 the inhibited overt high tone sound-production (IO_High) task achieved the 

highest accuracy. For participants 4 and 5 there was no significant difference between 

tasks.  
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Based on the average values shown at the bottom of Table 6.1, the C_High task 

led to better results, followed by IO_High, IO_Siren and C_Siren. There was no 

significant difference between C_High, IO_High and IO_Siren but C_Siren showed 

significant worse result than other tasks. It is thus advisable to determine the best onset 

task on an individual basis. 

In terms of average performance for each subject, participant 3, 6 and 7 achieved 

relatively high values. Participant 7 had experience in similar experiments from our 

previous study in [4], so he/she was expected to achieve high performance. However, 

participant 3 and 6 were naïve subjects. Also, participants 4 (experienced) and 5 (naïve) 

showed somewhat low performance results compared to other participants, yet they 

were experienced users. This suggests that previous experience has no significant effect 

on performance. 

The average true positive rate across all tasks and subjects was 73.76%. However, 

this value rose to 77.7% if only the best task for each subject was considered. 

Simulated-online Testing Evaluation 

Figure 6.8 shows output testing results for participant 6’s IO_High onset task, for 

illustration purposes. It was chosen because the results contain moderate amounts of 

true-positive and false-positive events, so it allows us to discuss both cases. The 

horizontal axis represents the time scale in terms of sample windows, one sample 

representing a 0.5s window. 

 



 Department of Computer Science and Electronic Engineering, University of Essex  

156 
 

 

Figure 6.8. Simulated-online output results for participant 6’s inhibited overt high tone onset task. The 

time scale is shown in terms of sample windows, one sample representing a 0.5s window.  ‘Button 

marker’ denotes a key press after a 3s task was finished [1]. 

 

The vertical axis is binary; a value of 1 indicates a non-idle state, while 0 

indicates an idle state. The blue, top line depicts actual onset states as determined from 

the user’s input by pressing space bar after executing a non-idle cognitive task. The 

green plot (testing output) shows the IC task periods as determined by the LDA 

classifier. 

The red plots (Vote 1 to Vote 6) represent results from an applied voting system, 

designed to assess sensitivity to false and true events, as follows: Six sequential 

windows (3s data: 0.5s windows*6) from the testing output were selected and a voting 

process was applied. Within those 6 sequential windows the machine detected N onset 

events. ‘Vote N’ denotes the number of onset windows required for the machine to 

determine that a real onset has occurred. E.g., ‘Vote 2’ indicates that the machine 

required 2 (not necessarily consecutive) of the 6 windows to yield 1 as output in order 
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to accept an event as being an onset. This process was continuously done by moving a 

jumping 0.5s windows (i.e., a sliding window with no overlap) from the beginning to 

the end of the recorded data. As can be seen from Figure 6.8, the incidence of false-

positives decreases from Vote 1 to Vote 6. However, true-positives also decreased (and 

in varying degrees, depending on the participant). For this reason, it was necessary to 

find an optimum voting level to minimise false events while maximising true ones. 

This was done based on a true-false-positive score (discussed below). 

 

 

Figure 6.9. True-positive and False-positive definition in the simulated-online situation [1]. 

 

For classification performance assessment, it is difficult to achieve sample by 

sample labelling in self-paced BCIs as well as in this simulated-online recording 

protocol. Thus, event by event (i.e., one 0.5s window at a time) labelling was adopted. 

True-positive and false-positive events were defined as shown in Figure 6.9. Although 

participants were instructed to perform a given task for approximately 3s, we included 

a timing error tolerance region (TETR) to investigate possible timing errors and their 

effect on system performance. Two different TETR values were investigated in this 
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study, i.e.: the original 3s epoch was padded with the following window lengths on 

each side:  0.5s (i.e., 0.5s+3s+0.5s = 4s TETR) and 1.5s (6s TETR). 

In this experiment, only rising edges from the output graph were only considered 

as onset. There are three different cases depending on the time location of rising edges. 

Case 1 indicates the machine-detected rising edge appeared within a TETR and this 

was treated as true-positive. If there were multiple rising edges in a single TETR (as in 

case 2), only one true-positive was accepted and others were discarded. Case 3 is an 

example of a false-positive event. If a rising edge appeared outside the TETR, it was 

regarded as a false-positive even if remaining machine-detected onset window 

overlapped with an actual event. If multiple rising edges were detected outside the 

tolerance region, all of them were considered as false-positives. 

 

Table 6.2. Simulated-online performance results. True-false-positive score with optimal voting level. 4s 

of Timing error tolerance region (TETR) [1]. 
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Table 6.3. Simulated-online performance results. True-false-positive score with optimal voting level. 6s 

of Timing error tolerance region (TETR) [1]. 

 

 

Table 6.2 and Table 6.3 show simulated-online testing results for each onset task. 

The values were calculated based on the true-false-positive score (TFP, described 

above) and the numbers in a square bracket represent the number of true-positives (TP), 

false-positives (FP). The total number of actual task onset events (tE) was 15 for all 

runs. The values shown on the tables for voting level are the ones that gave the highest 

TFP% score out of six votes.  

Two different TETR sizes (4s and 6s TETR) were compared. Larger TETRs 

increase the chances of detecting true-positive events, while at the same time leading 

to less frequent false-positives. However, the TFP% score takes into account the total 

idle period length. Thus, if there was no significant difference in the number of true 

and false-positives for different TETR values, the smaller TETR, which yields a longer 

idle period, would give a higher TFP% score. The average results showed that 6s TETR 

(from Table 6.3) has higher score than 4s TETR (from Table 6.2). It leaves us further 

investigation to find out optimal TETR in usability point of view as a system would 

give quicker response with smaller TETR. It would be our future study to move online 
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system. In terms of the best voting level sensitivity, results varied widely depending on 

subject and tasks.  

The average TFP score (across participants) for each of the onset tasks were 

57.71%, 53.63%, 58.17% and 59.47% (for C_High and C_Siren, IO_High, IO_Siren, 

respectively) with 4s TETR and 67.79%, 65.10%, 68.49% and 70.13% with 6s TETR. 

Both results show that IO_Siren task has higher score followed by IO_High, C_High 

and C_Siren. However, it all vary depends on subjects. When we average the highest 

TFP scores for each participant, the overall TFP score was 67.12% (TP rate= 72.38%, 

FP rate=3.78%) with 4s TETR and 76.67% (TP rate= 87.62%, FP rate=4.05%) with 6s 

TETR. 

6.4 Discussion 

Self-Paced EEG-based BCIs (SP-BCIs) have traditionally been avoided due to 

two sources of uncertainty: (1) when an intentional command is precisely sent by the 

brain, i.e. the command onset detection problem, and (2) how different the intentional 

command is when compared to non-specific (or idle) states. Performance evaluation is 

also a problem and there are no suitable standard metrics available. In this Chapter, we 

attempted to resolve these issues.  

Self-paced covert sound-production related cognitive tasks (i.e. high pitch and 

siren-like sounds) were used in order to distinguish between Intentional Commands 

(IC) and idle states. The IC states were chosen for their ease of execution and negligible 

overlap with common cognitive states. Band power and a digital wavelet transform 
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were used for feature extraction, and the Davies–Bouldin index was used for feature 

selection. Classification was performed using linear discriminant analysis.  

Performance was evaluated under offline and simulated-online conditions. For 

the latter, a performance score, called true-false-positive (TFP) rate, ranging from 0 

(poor) to 100 (perfect), was created in order to take into account both classification 

performance and onset timing errors. Averaging the results from the best performing 

IC tasks for all seven participants, a 77.7% True-Positive (TP) rate was achieved in 

offline testing. For the simulated-online analysis the best IC average TFP score was 

76.67% (87.61% TP rate, 4.05% false-positive rate).  

Comparison with Other Studies 

It is very difficult to directly compare our results with other typical motor-

imagery onset detection systems as there is no common evaluation method. In addition, 

many studies have shown performance results (such as the hit rate) that can only be 

applied to their own experimental settings (e.g. [8, 10, 24, 25]). Other studies have 

shown only the classification accuracy. In [82], the average TP rate for three subjects 

for the idle vs. motor-imagery state was 86.7% and the number of false-positive events 

was 5.7, however, there was no information regarding the idle period length, and they 

also calculated the false-positive rate by treating the number of onset events ‘E’ as a 

true-negative, which is something we do not agree with. . In [10], the motor-imagery 

versus non-control state achieved a classification accuracy of around 79.67% on 

average for three subjects. In [18], six different mental tasks versus the idle state 

achieved between around 55% (Auditory imagery) and 72% (Motor-imagery) values 

of offline TP rates on average for 5 subjects. In [88], the researchers classified motor-

imagery tasks vs. the idle state and they used two two-class classifiers for three different 



 Department of Computer Science and Electronic Engineering, University of Essex  

162 
 

classes (left hand and right foot imagery vs. idle). If the feature did not belong to motor-

imagery tasks, they assumed it belonged to the idle state. They achieved around true-

positive rates of 40% in an offline analysis.  

Compared to the results from the above studies, our results (i.e. around 76.67% 

of TFP score: 87.62% TP rate, 4.05% FP rate) look promising. Furthermore, none of 

the above studies investigated onset timing errors and none attempted to produce a 

system that would work with a timing error as small as 3 s. In addition, our score system, 

which was based on TFP, is more complete and more conservative than those of 

previous approaches, making it suitable for future use in asynchronous BCIs.  

It is possible that improved results could be obtained by including other wavelet 

types and orders as well as other feature domains and classifier types.  However, we 

believe that the fact that such simple features (based on the db2 wavelet) and classifiers 

(LDA) yielded encouraging results, indicates that the proposed method has a potential 

for further applications in BCIs. 

These results were very promising and competitive to other studies. Moreover, 

based on our literature review and to the best of our knowledge, there is no reported 

covert sound-production onset detection system for spBCIs. Results showed that the 

proposed onset detection technique and TFP performance metric have a strong 

potential for use in SP-BCIs. 

Even though the timing interface we designed was considered to minimise visual 

event-related potentials by applying a circular progress bar with a high viewing angle 

based on the published literature, there could still be some VEPs that remained. 

However, the conditions between the idle and active task periods were the same, 

therefore we can assume that there were no VEP related class separation effects.  
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6.5 Summary and Conclusions 

This study presented a methodology to address three current issues in self-paced 

BCIs: a) determining when an Intentional Command (IC) is sent by the brain to the 

machine, b) reliably discriminating between intentional brain activity and brain states 

that are non-specific or not relevant to the human-machine interaction and c) the lack 

of a suitable standard scoring system for performance evaluation in self-paced BCIs.  

Averaging all results across all seven participants, the best idle vs. IC offline 

performance was obtained with the Covert High tone (C_High) sound production 

imagery (74.89% True Positive (TP) rate). A 77.7% TP rate was achieved when only 

the best IC task for each individual participant was used for obtaining the average 

results.  These offline results refer to a 3 s timing window, i.e. a 3 s timing uncertainty 

as to when an actual IC onset occurred. We believe this value is acceptable for most 

BCI scenarios. For the on-line simulation analysis, the IO_siren yielded the best overall 

results based on the TFP score (68.49%). The average TFP score considering only the 

best IC task for each participant was 76.67%. The true positive and false positive rates 

for the latter TFP score were 87.61% and 4.05%, respectively. 

While there are no studies against which our results can be directly compared, 

previous similar IC onset detection studies using motor imagery have yielded a best 

classification (true positive rates) of 72.0% [18] and 79.7% [10],  without taking into 

account though timing errors. In this respect, we believe that our results and the 

proposed methods may be of use to other self-paced BCI researchers. 

This chapter showed that our new sound-production related cognitive task onset 

detection system can be used for online situations based on the results from the 
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simulated online experiment.  Having this as a basis, Chapter 7 will discuss the actual 

online onset detection system in real-life scenarios.  

The new TFP score system is more complete and more conservative than the ones 

from previous approaches, making it suitable for future use in asynchronous BCIs, 

which provides a great contribution to the field by giving standardised metrics for 

evaluation.  
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7 Comparison Study between Sound-production 

Related Cognitive Task vs. Motor-imagery for 

Onset Detection in Online Real-life Task Scenarios 

(Based on a paper [3]) 

7.1 Introduction 

This chapter is based on a published conference proceeding [3]. 

In Chapter 6, sound-production related cognitive tasks were tested for onset 

detection of BCIs in a simulated-online setting with a self-paced paradigm before they 

were used in an online experiment. 

In this chapter, the novel intuitive sound imagery self-paced onset detection 

system is tested in an online situation, which turns a messenger dialogue on when a 

message arrives by executing an onset task in real-life scenarios (e.g. watching video, 

reading text).  

This chapter consists of two different experiments. Section 7.2 shows a 

comparison study between our sound imagery and the typical motor imagery approach 

for the messenger onset task in order to demonstrate the advantages of our proposed 

method over the motor imagery for a self-paced onset detection BCI system. The results 
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showed that the sound imagery onset task achieved a 84.04%, 80.84% and 77.17% 

value of TFP score with the sliding image, watching video and reading text scenario, 

respectively on average for twelve subjects (significantly better than the motor imagery 

task except for the reading scenario, which had no significant difference).  In addition, 

the sound imagery task showed a significantly faster response and better usability than 

the motor imagery onset task. 

In Section 7.3 the sound imagery onset detection system was tested at outdoor 

laboratory settings (an outdoor cafeteria area) in order to demonstrate real-life uses and 

investigate the limitations of moving BCIs towards real-world settings. The results 

showed that the outdoor lab task had significantly worse TFP scores than the ones from 

the indoor lab settings in all daily-life scenarios. It also showed some potential 

problems from using BCIs in real-world applications, based on users’ questionnaires, 

which can provide useful background information to other self-paced real-world BCI 

studies.  

 

7.2 Sound-imagery vs. Motor-imagery for Onset Detection 

Cognitive Task Description 

In this experiment, two different cognitive tasks were tested for the sake of 

comparison. One was motor imagery, which is a typically used mental task in the BCI 

field. It is performed by the imagining of limb movements such as from the hands, feet 

or the tongue [9]. In our experiment, participants were instructed to imagine their 

primary hand and wrist movement. 
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The other task was a sound-production related cognitive task (Sound  Imagery 

(SI) proposed in our previous studies [4, 5]). The task had showed encouraging results 

in an offline semi self-paced onset detection system (Chapter 6).  For this reason, we 

used this SI task in an online experiment in order to test it in real-life task scenarios and 

to compare it with a typically used motor imagery task. In this experiment, participants 

were instructed to imagine producing an ‘um’ sound with a high tone in a covert (i.e. 

imaginary) manner, which necessarily overlaps with auditory recall (auditory imagery 

[145]). In addition, there should be no tensioning of any organs related to the sound-

production in order to ensure the purely covert task execution. The high pitch tone level 

was chosen by the participants based on sounds they could comfortably generate for a 

couple of seconds but high enough to think that they were unusual tones to be used in 

a normal daily life situation.  

As this experiment was about online self-paced onset detection, the idle state (i.e. 

non-control or null state) had to be defined for training purposes so that the Intentional-

Control (IC) task state could be reliably distinguished from the idle state. To this end, 

participants were instructed not to think of any IC tasks and to stay calm and relaxed 

for the idle state recordings.  

 

Experimental Paradigm 

Twelve healthy subjects (ages between 19 and 27, 10 males and 2 females) with 

normal or corrected vision participated in the experiments. Four of them (P3, P4, P10 

and P12) had previous experience in other BCI experiments and the remaining eight 

were naïve subjects. Each subject was sitting comfortably on a medical chair and a 

monitor was placed 50 cm away from the subject. A keyboard was placed on their lap 
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in order to give feedback to the system. The experiments were conducted in accordance 

with the University of Essex Ethics Committee guidelines. 

 

 

Figure 7.1. Messaging system interface example from the experiment. ((A): new message alert, (B): 

message dialogue, (C): user feedback panel and (D): time keeping interface) [3]. 

 

The experiment was designed to simulate a message opening system when a new 

message arrived during realistic daily-life task situations (i.e. watching video, reading 

text from a book). Figure 7.1 shows an example of the system interface. On the 

background of the screen, a video clip was playing and a subject was watching it while 

panels (A), (B) and (C) were hidden from the screen. Once the new message arrived 

(randomly between 5 s and 15 s in order to prevent subject anticipation), panel (A) 

smoothly and slowly slid into the side of the screen in order to minimise any Visual 

Event-related Potentials (VEPs). Then, the participants could either keep watching the 

video without trying to open the message, or they could open the message dialogue (B) 

by executing the Sound Imagery (SI) task state discussed in previous sections. The 

participants could perform the SI task action at any point as the system was self-paced. 
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However, they were asked to execute their onset at least 2 seconds after the new 

message dialogue had appeared, in order to eliminate any other even-related potentials 

(e.g. negative potentials or P300) so that the results were entirely based on the SI tasks. 

While participants were executing their SI task, they could estimate how long it took 

them to open the message dialogue by referring to the time keeping interface (D). This 

round shape progress bar continuously filled from a light grey to a dark grey colour for 

12 seconds, followed by dark to light grey again. There were small marks at each 1 

second interval so participants could estimate their task execution time.  As a result, 

the users could provide feedback to the PC on whether its response was correct (True- 

Positive, TP) or not (False-Positive, FP) as well as the execution time if it was a TP. 

After this feedback, panels (A), (B) and (C) disappeared. The process from (A) to (C) 

comprised a trial and each single run consisted of 15 trials. Each participant had to go 

through three different runs (different background daily-life tasks). Background daily-

life tasks were randomly ordered for testing for each participant in order to prevent any 

sequence-dependent results. 

 

Daily-life Task Scenarios 

There were three different experimental scenarios. In the first two scenarios, the 

participants were instructed to open a message dialogue (as explained above) while 

they were on two different daily life scenarios (one was watching  video and the other 

was reading text). The above message opening onset detection system was tested 

separately on each of the two daily tasks. The last experimental scenario was the sliding 

image task. The participants were presented an image and if they wanted to slide the 

image to see the next one, they executed the mental task. In this scenario, there was no 
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external stimuli such as a message alert.  Consequently, the participants controlled the 

system in a 100% self-paced approach. These three different experimental scenarios 

were chosen because they are very common scenarios for most people in real-life 

situations.  

In terms of material, a documentary titled “BBC - The Blue Planet” [155] was 

used for the video watching task as it requires low cognitive load and emotional 

neutrality [156, 157]. For the reading task, a book titled “English Fairy Tales” [158] 

was used as it does not have any complex text and is emotionally neutral as well.  Hence, 

the material had reduced cognitive loads for both native and non-native English 

speakers. In the sliding image task, natural images from [159] were used. The images, 

shown in Figure 7.2, were selected in order to keep emotional neutrality (wild 

background scenery without animals).  

 

 

Figure 7.2. Example images for the sliding image task [159]. 
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Signal Pre-Processing & Artefacts Handling 

An Enobio (dry electrode equipment [160]) system was used for data acquisition. 

17 electrodes were placed on the head based on a 10-20 layout and 1 reference channel 

was recorded on the right-side earlobe. Three extra external channels were placed on 

the forehead and both the right and left temples (anterior-most edge of the temporalis 

muscle) based on [23] in order to detect an Electrooculogram (EOG) and 

Electromyogram (EMG) for artefact removal purposes. The sample rate was 500 S/s 

(equipment bandwidth: 0-125 Hz) in order to ensure that all the EEG rhythms, up to 

some high gamma band, can be analysed. High gamma waves have not been widely 

used in BCIs due to concerns over contamination with EMG artefacts. However, 

studies have shown high gamma activity associated with language tasks [65, 67, 150].  

It was therefore included in the experiments and EMG artefacts handling methods were 

applied to avoid EMG-related classification results.  

EEG data were wirelessly transferred from the Enobio to a PC via Bluetooth. 

These EEG data were bandpass filtered (Butterworth filter, order 5) with cut-off 

frequencies at 4 Hz and 100 Hz followed by a notch filter (Butterworth filter, order 5) 

at 49-51 Hz in order to remove mains interference. Then, the data were segmented with 

a 0.5 s window length.  

The segmented data underwent automatic EOG detection based on [129]. A 

Discrete Wavelet Transform (DWT) with a Haar mother wavelet (decomposition level 

6) was applied to the external channel that was placed on the forehead. If the external 

channel’s data were detected as EOG artefacts, the data segment was rejected from 

further analysis. If there was no EOG artefact, the EEG data were passed on to the 

EMG artefact removal process. 
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For automatic EMG removal, the Blind Source Separation by Canonical 

Correlation Analysis (BSS-CCA) was used, which is a very common and widely used 

EMG removal technique in BCIs. The threshold of the autocorrelation coefficient ρ 

was chosen at 0.35 based on [133]. Then, these pre-processed and EOG/EMG artefacts 

handled EEG data was used for feature extraction and classification. 

 

Feature Extraction & Classification 

In this experiment, four different feature extraction techniques were applied to 

the artefact-handled data. An AutoRegressive Model (AR model, Burg’s method) with 

order number 6 was applied based on [12]. The model coefficients were used as features. 

The second method was Band Power (BP) extraction with a Fast Fourier Transform 

(FFT). There were seven different bands: 4-8, 8-12, 12-16, 16-20, 20-30, 30-42 and 42-

100 Hz. Each band’s FFT value was square powered and it was used as a feature. The 

third method was the Common Spatial Pattern (CSP). EEG source components were 

sorted in order to maximise the variance in one class and minimise it in the other class. 

Then, the first three and last three EEG source component variances were taken and 

linear regression was applied. The slope of the fitted line was used as a feature. The 

last feature extraction method was the Discrete Wavelet Transform (DWT). The data 

were decomposed up to level 7 and detailed parts, which represent the pseudo 

frequency bands of around 4-8, 8-16, 16-31, 31-62 and 62-100 Hz, were taken. From 

each detail part, the variance was calculated from the coefficients for dimensionality 

reduction. The mother wavelet ‘db2’ was chosen because of its common use in BCIs. 

These four different feature extraction techniques were chosen as together they cover 

the time, frequency, spatial and time-frequency domains. 
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These feature extraction processes generated hundreds of feature points for each 

channel.  Therefore, a feature selection method was required. In this experiment, the 

Davis-Bouldin Index (DBI [120]) was used. The optimal DBI threshold was calculated 

from the training data for each subject and task. Then, features that had below threshold 

DBIs were used for classifications. 

For the classification, the Linear Discriminant Analysis (LDA) was used. It was 

chosen because of its simplicity and low computational power [122].  Therefore, it suits 

the online classification for real-time processing as well as being a widely-used 

technique in BCIs.  

 

Spatial and Spectral Analysis for Sound-imagery Task 

In this section, spatial and spectral characteristics will be analysed for the sound 

imagery task. As the experiment was online, this analysis was carried out with the 

training dataset, which was recorded as an offline setting. 
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Figure 7.3. 17 electrodes placement used in this experiment. 

 

For the spatial analysis, the Common Spatial Pattern (CSP) was found based on 

the electrode placement in Figure 7.3. Figure 7.4 shows the visual pattern for each 

subject and the average result. The pattern varies depending on the subject because of 

the characteristic of EEG. However, the average result shows that channels around F3, 

P3 and T7, which are located near Broca’s and Wernicke’s area that are related to 

speech, had a big pattern difference between the idle and sound imagery task period. 

In similar fashion, channel F8 also showed some pattern difference. 
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Figure 7.4. Common spatial pattern for each subject and average result. Left: minimum variance for the 

idle period state. Right: minimum variance for the sound imagery task. 

 

In addition to the CSP analysis, the channels that had the best class separability 

based on the feature selection method are shown in Figure 7.5. From each participant, 

the 10 best feature points were selected based on the DBI feature selection method and 



 Department of Computer Science and Electronic Engineering, University of Essex  

176 
 

their channel numbers were counted and summed up from twelve subjects. As can be 

seen from the Figure, channel F3 was selected the most amount of times as the best 

class separable channel, followed by channel T7. It shares some common results with 

the CSP spatial analysis by having the same F3 and T7 channels that are located near 

Broca’s and Wernicke’s area. 

 

 

Figure 7.5. Spatial analysis with the DBI feature selection method.  

 

In terms of spectral domain analysis, the frequency band that had the most class 

separability was found in similar fashion. From the 120 feature points (the best 10 

features from each of the twelve subjects), the wavelet transform feature was selected 

the most times (56 times), followed by the band power feature (44 times) and 

autoregressive model feature (20 times). The common spatial pattern feature was not 

selected at all from all subjects. From those 56 DWT and 44 band power features, 

frequency bands were counted to find out which range was selected the most as the best 
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class separable frequency band. As can be observed from Figure 7.6 (top part), the 

pseudo-frequency band of 16-31 Hz was selected the most times followed by the range 

31-62 Hz for the DWT feature. On the other hand, in the band power feature in Figure 

7.6 (bottom part), the 20-30 Hz band was selected the most times. A review paper [37] 

reported that some studies suggested that the 30 Hz range should be elicited by 

linguistic processing of meaningful words but not of meaningless non-words. However, 

our high pitch sound imagery task showed the best class separability versus the idle 

state with the range of around 20-30 Hz. 

 

 

Figure 7.6. Spectral analysis with DBI feature selection method. 
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Performance Evaluation Method 

 

Figure 7.7. User feedback process during the online experiment for performance evaluation [3]. 

 

As the study was about an online onset detection system, a performance 

evaluation took place with the subjects’ feedback. Figure 7.7 shows the feedback 

process. If the machine classified the incoming EEG data as an onset (intentional 

control) event from the user, a message window would appear on the screen with a 

feedback panel (A). The panel (A) could also be opened manually by pressing the ‘Esc’ 

button on the keyboard to indicate a True-Negative (TN) action.  If the event was 

indeed an intended action, the user would choose ‘YES’.  Otherwise the user would 

choose ‘NO’ for a False-Positive (FP). If the user chose ‘YES’, the feedback panel 

would change to (B) in order to clarify whether it was an actual thought command (i.e. 
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sound-production) or a manually opening of the message (TN action). Subjects were 

asked to press the ‘Esc’ button when the continuous onset command (up to 11 seconds) 

did not work. If it was an intentional thought command, users were directed to panel 

(C) and were asked how much time had lapsed from the start of the onset until the 

message dialogue was opened. This will be regarded as a True-Positive (TP) with 

additional system response speed information (less than 3 s, 3-5 s, 5-7 s, 7-9 s or 9-11 

s). 

Based on the number of TP and FP, the True-Positive rate (TP rate = number of 

TP / number of TP + TN) and False-Positive rate (FP rate = number of FP / Idle 

event) was calculated. The definition of the number of idle events is important for the 

calculation of the FP rate. Firstly, the idle period was defined as: total recording time 

– task activation period – refractory period. The refractory period is the period during 

which a signal is ignored for classification after the TP or FP action (i.e. while the 

message is opened for user feedback).  Therefore, the total number of idle events which 

can yield output from the classifier was idle period (sec) / windows length (sec). In our 

case this was idle period / 0.5s. In addition, the  True-False-Positive score (TFPScore) 

[1] was also calculated in order to take the idle period length into account for the final 

score in the self-paced system. 

 

Results for section 7.2 

Table 7.1 shows the classification performance with the True-Positive (TP) rate 

and False-Positive (FP) rate on both the Sound Imagery (SI) and Motor Imagery (MI) 

tasks in the sliding image task scenario. The twelve subjects’ average TP rate for the 

sound imagery task was 88.3% while the motor imagery task had a 73.3% rate. Only 
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one out of twelve participants (P3) showed that the motor imagery task’s TP rate was 

higher than the sound imagery task’s and P5 showed the same TP rate with a lower FP 

rate in the sound imagery task. In terms of the Wilcoxon test p value, the sound imagery 

onset detection task had a significantly higher (p value at 0.033) TP rate than the motor 

imagery task. Even though the average FP rate in sound imagery had a lower value of 

2.6% than the motor imagery at 4.8%, there was no statistically significant difference 

with a p value of 0.451. 

 

Table 7.1. Online onset detection performance results in the sliding image scenario. 

 Sliding Image Scenario 

Sound Imagery Motor Imagery 

TP rate (%) FP rate (%) TP rate (%) FP rate (%) 

P1 66.7 5.9 60 23.0 

P2 100 4 93.3 3.2 

P3 73.3 1 80.0 2.9 

P4 93.3 9.4 86.7 3.9 

P5 86.7 0.5 86.7 2.7 

P6 80 5.5 60.0 5.2 

P7 86.7 4 46.7 0.8 

P8 93.3 0 33.3 0.0 

P9 100 0.9 93.3 9.1 

P10 93.3 0 73.3 0.5 

P11 100 0 86.7 2.5 

P12 86.7 0 80.0 3.5 

Avg 88.3% 2.6% 73.3% 4.8% 
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Table 7.2 shows classification performance results in two different daily-life task 

scenarios. In the watching video scenario, the 12 subjects’ average showed an 86.1% 

TP rate for the SI task and 63.9% for the MI task. All the subjects had a higher TP rate 

with the SI than the MI task except for participant 3. The Wilcoxon test p value was 

0.031, which depicts that SI had a significantly higher TP rate than the MI task. On the 

other hand, the average result of the FP rate shows that the SI task’s FP rate is slightly 

higher than the one of the MI task but there is no significant difference with a p value 

of 0.259. In the reading text scenario, the average TP rate of the SI task was 81.1% and 

77.2% for the MI task. Even though the SI task showed a slightly better TP rate result, 

there was no statistically significant difference between them with a p value of 0.243. 

The FP rate also showed that the SI task provided a slightly better result (smaller FP 

rate) but the difference was minor.  

 

Table 7.2. Online onset detection performance results for watching video and reading text in daily-life 

scenarios. 

 

Watching Video Scenario Reading Text Scenario 

Sound Imagery Motor Imagery Sound Imagery Motor Imagery 

TP rate 

(%) 

FP rate 

(%) 

TP rate 

(%) 

FP rate 

(%) 

TP rate 

(%) 

FP rate 

(%) 

TP rate 

(%) 

FP rate 

(%) 

P1 
80 7.6 46.7 1.4 53.3 8.2 80 11 

P2 
93.3 1.5 73.3 2.6 100 1.7 73.3 2.5 

P3 
46.7 1.7 60 1.2 33.3 2.1 80 2.6 

P4 
100 6.9 86.7 4.3 93.3 4.2 86.7 6.7 
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If the two-different daily-task scenarios are averaged, the TP rate of the SI task 

is significantly higher (83.6%) than the one of MI (70.6%) with a p value of 0.0106. 

There is, however, no significant difference with the FP rate. 

Although it is difficult to directly compare our results with other onset detection 

systems as the experiment environment and tasks are different, our SI task showed a 

relatively high TP rate. In [10], three subjects produced on average a classification TP 

accuracy of 79.67% between the motor-imagery task and the non-control state. In [18], 

six different mental tasks versus the idle state showed TP rates of between 55% 

(auditory imagery) and 72% (motor-imagery) on an average over five subjects in an 

offline setting. Compared to these results, our 88.9% (in the video-watching case) and 

78.9% (in the text-reading case) TP rates look very promising even though our study 

was carried out for more realistic scenarios than the ones previously reported by others.  

P5 
86.7 1.9 46.7 1.5 66.7 3.7 80 3.7 

P6 
86.7 6.8 60 1.5 73.3 5.5 73.3 2.6 

P7 
86.7 6.4 20 0.5 86.7 3.9 46.7 0 

P8 
73.3 0.7 20 0 100 2.6 66.7 0.1 

P9 
100 0.9 93.3 4.3 93.3 0.6 80 2.7 

P10 
86.7 0.6 73.3 0.2 86.7 0 86.7 0.5 

P11 
100 0 100 4.1 100 0.4 100 2.1 

P12 
93.3 6.5 86.7 1.5 86.7 2.5 73.3 1 

Avg 
86.10 3.40 63.90 1.90 81.10 2.90 77.20 3.00 
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In order to take into account all the true-positives, false-positives and the idle 

period length at the same time, as they are very important aspects of performance 

evaluation in self-paced BCI systems, the  True-False-Positive score (TFPScore) 

suggested in [1], was calculated and discussed here. Table 7.3 shows TFP scores for 

each participant with three different daily-life task scenarios. 83.3% (10 out of 12) of 

the participants showed that the sound imagery onset detection task performed better 

in TFP score than the motor imagery task in both the sliding image and watching video 

scenario. 66.7% (8 out of 12) of the participants showed a higher TFP score with the 

sound imagery task for the breading text scenario. Participant 3, who had previous 

experience in BCIs, showed that the motor imagery task performed constantly better 

than the sound imagery task in all the daily-life scenarios but other participants, such 

as P4, P10 and P12, who also had BCI experience, did not follow the same pattern. 

Only two out of nine subjects showed that the MI task had a higher TFP score. From 

the naïve subjects, 87.5% (21 out of 24 cases) of them showed a higher TFP score with 

the SI task. 

 

Table 7.3. True-False-Positive score result comparison between the sound-imagery and motor-imagery 

task in three different daily-life task scenarios. 

 True-False-Positive Score (TFP score %) 

Sliding Image Scenario Watching Video Scenario Reading Text Scenario 

SI MI SI MI SI MI 

P1 59.16 35.66 74.05 45.57 49.03 63.02 

P2 92.15 87.40 90.56 69.69 96.60 69.75 

P3 72.01 75.45 45.38 58.75 32.22 75.88 

P4 76.53 80.00 86.69 79.18 85.50 75.07 
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P5 85.84 82.12 83.42 45.53 61.87 74.09 

P6 71.56 54.05 75.24 58.34 65.50 69.62 

P7 79.84 46.25 75.64 20.30 79.98 47.00 

P8 93.29 33.75 72.45 20.52 94.88 66.72 

P9 98.13 77.17 98.24 85.36 92.14 75.66 

P10 93.38 72.80 86.75 73.51 86.76 86.75 

P11 99.89 82.32 99.96 91.95 99.13 95.76 

P12 86.67 74.56 81.65 84.17 82.43 71.96 

Avg 84.04 % 66.79 % 80.84 % 61.07 % 77.17 % 72.61 % 

 

 

Figure 7.8. Averaged True-False-Positive score result comparison between the sound-imagery and 

motor-imagery task in three different daily-life task scenarios. 
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Figure 7.8 shows the twelve subjects’ averaged TFP score for each daily-life task 

scenario. The sound imagery onset detection task produced a significantly higher TFP 

score than the motor imagery task with a p value of 0.035 and 0.04 for the sliding image 

and watching video scenario, respectively. However, there was no statistically 

significant difference for the reading text scenario even though the TFP score was 

higher for the SI task. 

 

 

Figure 7.9. Averaged onset system response speed comparison between the sound imagery and motor 

imagery in three different daily-life task scenarios. 

 

In terms of system response speed, the users’ feedback from Figure 7.7 (C) was 

used in order to calculate the onset response time. Figure 7.9 shows the twelve subjects’ 

averaged onset speed for the SI and MI tasks. The SI task required 3.93 s, 4.03 s and 

4.28 s on average for the sliding image, watching video and reading text scenario 
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respectively, while the MI one required 4.8 s, 5.83 s and 5.75 s. In all of the three-

different daily-life task scenarios, the SI task had a significantly faster onset response 

than the MI task by having a p value of 0.0262, 0.0119 and 0.0055, respectively.  

 

Discussion for section 7.2 

This experiment investigated an online onset detection method for BCIs by 

opening a message when it arrived in two different daily-life task scenarios (watching 

video and reading text) and in the sliding image task. Our new sound imagery task and 

typical motor imagery task were tested and compared.  

In terms of system performance, the sound imagery task achieved a 84.04%, 

80.84% and 77.17% value of TFP score for the sliding image, watching video and 

reading text scenario, respectively on average for twelve subjects.  In contrast, the 

motor imagery task achieved values of 66.79% (significantly worse), 61.07% 

(significantly worse) and 72.61% (no significant difference), respectively.  In addition, 

the system speed showed a significantly faster response with the sound imagery than 

the motor imagery task.  

From a usability point of view, participants completed a short survey at the end 

of the experiment regarding the level of difficulty of use of the two different SI and MI 

tasks. 0 depicts very easy to use and 10 represents very difficult to use. On average, SI 

received a value of 4.42 while MI received 6.42. Nine out of twelve (75%) subjects 

marked a lower value (easier to use) for the SI than the MI. Only participants P3, P4 

and P12 said that the MI was easier. These three participants were BCI research 

students, who had experience in MI but not SI. On the other hand, one BCI research 

student and all the other naïve subjects marked the SI as easier to use. The p value of 
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twelve subjects was 0.0108.  Therefore, the SI task was significantly easier to use than 

the MI one for the onset detection of BCIs. 

Based on these results, our new sound imagery task outperformed over the motor 

imagery task for the self-paced onset detection BCI system not only in performance but 

also in usability and system speed.  Therefore, this prototype of onset detection system 

showed some strong potential to use BCIs in real-life applications (compared to the 

typical motor imagery task) and it will move the BCI field a significant step forward 

once it is developed further by improving current EEG recording issues such as 

practicality and usability. 

 

7.3 Online Sound-imagery Onset Detection at an Outdoor 

Laboratory Environment 

Experimental Paradigm 

Seven out of the previously mentioned twelve subjects participated further in an 

outdoor laboratory experiment (P2, P3, P5, P6, P7, P8 and P9). They were chosen as 

they agreed to run an extra experiment in an open space. All the experimental settings 

were the same as the ones in the indoor laboratory. The sound imagery onset detection 

task with three daily-life scenarios was only tested in this experiment in order to avoid 

the total experiment time exceeding 1 and half hours, which meant that the participants 

could maintain a concentration level similar to the in-lab SI task. The only difference 

from the indoor laboratory experiment was the recording place. The outdoor laboratory 

experiment took place at a cafeteria called ‘Zest’ at the University of Essex. Figure 
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7.10 shows the environment with a 360° photo. During the experiment, there were no 

restrictions such as people passing by, coffee machine noise or background music. It 

was a typical cafeteria environment without any external control. 

 

 

Figure 7.10. Outdoor laboratory experiment environment (Cafeteria) 360 ° photo. More detailed photos 

can be found in Appendix A. 

 

A new training session was conducted in the cafeteria and all the algorithms and 

testing sessions were exactly the same as the indoor laboratory experiment. During the 

experiment, the noise level was recorded with the Cirrus CRL 2.22 sound level meter 

device [161] and the ‘Sound Meter’ Android application [162] on a Oneplus2 

smartphone [163]. Table 7.4 shows the noise level during the outdoor cafeteria 

experiment. On average the environmental noise was around 38.6 dB with background 

music playing, people talking, etc. The maximum noise during the experiment was 

around 73 dB on average (e.g. coffee machine noise, loud music playing, etc.). On the 
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contrary, the noise level inside the laboratory experiment was near to 0 as it was a 

specially designed room for BCI experiments. 

 

Table 7.4. Average and max noise level for each participant during the outdoor cafeteria experiment. 

Noise level P2 P3 P5 P6 P7 P8 P9 

Average 38 (dB) 36 (dB) 47 (dB) 42 (dB) 31 (dB) 42 (dB) 34 (dB) 

Max 73 (dB) 75 (dB) 72 (dB) 71 (dB) 68 (dB) 75 (dB) 77 (dB) 

 

Results for section 7.3 

Table 7.5 shows the true-false-positive score result for the outdoor laboratory 

experiment. On average the seven subjects achieved scores of 56.54%, 53.46% and 

58.01% for the sliding image, watching video and reading text scenario, respectively. 

The TFP score was dramatically different depending on the subject. For example, P5 

achieved a score of 75.78% and 85.77% in the sliding image and watching video 

scenario, respectively while P6 had a TFP score of 20.24% and 7.19%, respectively. 

 

Table 7.5. True-False-Positive score result for sound-imagery onset detection in three different daily-

life scenarios at outdoor laboratory (cafeteria) settings. 

 Sound Imagery True-False-Positive Score (TFP score %) 

Sliding Image Scenario Watching Video Scenario Reading Text Scenario 

P2 66.40 53.39 59.99 

P3 38.25 58.24 45.36 

P5 75.78 85.77 62.37 
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P6 20.24 7.19 33.52 

P7 61.29 57.83 58.04 

P8 59.56 49.92 80.57 

P9 74.27 61.89 66.20 

Avg 56.54 % 53.46 % 58.01 % 

 

Figure 7.11 shows the comparison results between the indoor and outdoor 

laboratory experiments for the SI onset detection task in three different daily-life task 

scenarios. From all the scenarios, the outdoor lab task showed significantly lower TFP 

scores with a p value of 0.004, 0.045 and 0.010 for the sliding image, watching video 

and reading text scenario, respectively (12 subjects for the indoor lab results vs. 7 

subjects for the outdoor lab results). Participant 6 in particular, showed a huge decrease 

in the outdoor settings (-51.32%, -68.05% and -31.98% for the three different daily-life 

tasks). On the other contrary, participant 3 and 5 showed a slight increase with the 

watching video and reading text scenarios.  
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Figure 7.11. True-false-positive score comparison between the indoor lab and  outdoor lab experiment 

in three different daily-life task scenarios. 
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Figure 7.12. Averaged onset system response speed comparison for the sound imagery task between the 

lab and the outdoor lab experiment. 

 

In terms of system response speed, Figure 7.12 shows the seven subjects’ 

averaged onset task speed comparison between the indoor lab and outdoor lab 

experiment. The indoor lab setting achieved a response time of 4.01 s, 4.62 s and 4.33 

s for the sliding image, watching video and reading text scenario, respectively.  In 

contrast, the outdoor setting reported time values of 5.79 s (significantly slower), 5.27 

s (no significant difference) and 5.10 s (no significant difference), respectively. Even 

though only the sliding image scenario had a significantly slower system response and 

the others had no significant difference, it was clearly shown that the outdoor setting 

had a slower onset response time on average, which could make it harder for users to 

control the system. 
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Figure 7.13. EEG signal noise example (Channel Cz) from Participant 6 at the outdoor laboratory. Top 

figure: raw EEG data. Bottom figure: bandpass filtered data (4-100 Hz). The red rectangle indicates the 

moment when the participant experiences a coffee machine noise disturbance (noise decibels rose to 71 

dB from 32 dB). 

 

With regards to the signal noise at the outdoor lab setting, Figure 7.13 shows its 

sample. The sample signal which was taken from Participant 6 (channel Cz) represents 

the moment when the coffee machine noise suddenly disturbed the environment with a 

noise level of 71 dB (sudden increase from 32 dB). The red rectangle represents this 

moment. As can be observed, the raw EEG signal (top figure) shows sudden noise 

interference. Even though the EEG signal was bandpass filtered (bottom figure, 4-100 

Hz), the signal noise is still visible. These noisy signals were reported all around the 

channels quite a few times during the outdoor lab experiment by not only Participant 6 

but also by other subjects as well (never reported in the indoor experiment). The signal 
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noises from environmental interference would be one of the main reasons that makes 

it more difficult for the users to control the onset task at an outdoor setting than the 

indoor laboratory experiment.   

In addition, at the end of the outdoor experiment, the participants completed a 

short survey regarding their concentration level. The ‘0’ value indicated that the 

concentration level at the outdoor laboratory setting was the same as the indoor 

experiment and the ‘10’ value represented that it was extremely difficult to concentrate 

compared to the indoor settings. On average, the score was around 5.86 (P2: 8, P3: 7, 

P5: 0, P6: 9, P7: 2, P8: 6 and P9: 9). Participant 5 and 7 gave a score of ‘0’ and ‘2’, 

respectively, while other subjects found it was more difficult to concentrate and use the 

onset detection messaging system. In addition to the score, they also listed their 

disturbances during the outdoor experiment. They commonly answered the following: 

1. Other people’s noise (talking, ordering food, etc.). 2. Kitchen noise and food smell 

(coffee machine, grinder, etc.). 3. Visual distractions (outdoor view, people passing by, 

etc.). 4. Background music. 

 

Discussion for section 7.3 

This experiment extended the previous online message opening onset detection 

method to outdoor laboratory settings in order to investigate its potential issues and to 

compare the performance difference between the indoor and outdoor laboratory 

settings.  

From a performance point of view, for all the scenarios the outdoor lab task 

showed significantly lower TFP scores with a p value of 0.004, 0.045 and 0.010 for the 

sliding image, watching video and reading text scenarios, respectively. In general, the 
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outdoor lab setting deteriorates in performance. Some cases (e.g. P6) showed a 

dramatic decline from around 70.8% to around 20.3%.  Furthermore, subjects 

commonly answered that it was more difficult to concentrate at the outdoor cafeteria 

than in the indoor lab and they also listed disturbances (e.g. noise, visual distraction). 

However, P3 and P5 showed a slight increase even if it was not significant.  As a result, 

it can be said that the TFP scores vary according to each subject but they generally 

produce worse results in the outdoor settings than the indoor laboratory.  

In terms of system response speed, the outdoor lab setting experiment had a 

slower onset speed than the indoor one. Even though only the sliding image task 

scenario had a significantly slower response speed and the other two, the reading text 

and watching video scenario, had no significant difference, this may still have 

happened due to the small sample size (7 participants). Moreover, the slower system 

speed and lower performance results may have been caused because of the noise of the 

signal. As it was discussed in the previous sections, the outdoor experimental EEG 

signals contain some noise from all around the channels and for all the subjects, 

whereas they had no such noise in the indoor lab experiment. They mainly appeared 

when the environmental noise suddenly increased (e.g. sudden coffee machine 

operation). This could be one of the main reasons why participants answered it was 

more difficult for them to control the onset system in the outdoor experiment. 

However, there is one big limitation in this experiment. As was already 

mentioned, the main goal of this chapter was to investigate the performance difference 

between our new sound imagery approach and the typical motor imagery.  Therefore, 

the first indoor laboratory experiment was firstly conducted continuously to all the 

subjects and then the outdoor laboratory experiment was tested. We are well-aware of 

the fact that the biased recording order could impact the results, therefore it had to be 



 Department of Computer Science and Electronic Engineering, University of Essex  

196 
 

randomised. However, installing the experiment equipment in an outdoor cafeteria area, 

returning it to the indoor laboratory and setting it up again requires more time than the 

opposite.   Therefore, in order to minimise the biased recording order effects (e.g. 

tiredness and boredom), there was a small tea/coffee break in-between the two 

experiments and the total experiment time did not exceeded 1 and half hours, which 

could maintain the participants’ concentration level similar to one in the indoor lab 

experiment.  

The experiment indicated the problems of moving BCIs towards real-life settings 

with daily-life task scenarios at an outdoor cafeteria area and the performance results 

were compared with the ones from the indoor lab experiment. This is a quite important 

and essential investigation at this stage in the BCI field, in order to use them in real-

world applications apart from research-oriented indoor laboratory experiments. For this 

reason, the investigated experiment can be a useful background study to other self-

paced real-world BCIs. 

 

7.4 Summary and Conclusions 

The scope of this chapter was to investigate how well our new sound imagery 

task works for a self-paced onset detection system in real-life scenarios by comparing 

it to a typical motor imagery task. In addition, it was tested at outdoor laboratory 

settings in order to explore potential real-world BCI uses. From a performance point of 

view, our novel sound imagery task showed a significantly better TFP score in the 

sliding image (84.04%) and watching video (80.04%) scenario (opening message onset 
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task) than in the motor imagery task (66.79% and 61.07%, respectively).  Furthermore, 

the reading text scenario also reported a higher performance result with our approach 

(77.17% SI vs 72.61% MI). Moreover, the sound imagery task showed a significantly 

faster system response (4.08 s SI vs 5.46 s MI on average for the three scenarios) and 

had a significantly better usability (easier to use) score than the motor imagery. In the 

outdoor laboratory experiment, the participants listed noises (e.g. kitchen sounds, 

background music, etc.) and visual distractions (outside view, people passing by, etc.) 

as the main problem of using BCIs in outdoor real-world settings. From a performance 

point of view, on average the outdoor laboratory experiment showed a significantly 

worse TFP score (56%) than the indoor one (80.68%). 

Based on these results, our novel sound imagery onset detection system 

outperformed the motor imagery one and it showed a great potential. This could be a 

significant step forward for the BCI field which is mainly restricted in research-oriented 

indoor laboratory settings with the use of motor imagery and cue-based studies.  
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8 Overall In-depth Discussion 

The motivation of this thesis was to develop a more practical and usable BCI 

system as current BCIs are generally restricted in research at indoor laboratory settings. 

For this reason, a self-paced (asynchronous) approach needed to be investigated as it 

provides increased autonomy, flexibility, and interaction with the environment to the 

users, which is more suitable than cue-based (synchronous) BCIs for the ultimate aim 

of expanding the use of BCIs not only in laboratory settings but also into the real-world. 

However, self-paced BCIs have a great difficulty in identifying intentional commands 

and non-control states, which is called the onset detection problem.  Therefore, this 

thesis has investigated onset detection for self-paced BCIs. 

For the onset detection system, a novel sound imagery (sound-production related 

cognitive tasks) has been proposed as it has a couple of clear advantages over motor 

imagery (the mostly used method based on the literature review) and other cognitive 

tasks for onset detection: 1) Intuitiveness; the sound imagery task is easy to produce 

and control voluntarily as most people constantly ‘speak’ internally or imagine many 

words in normal life. 2) It is advantageous for people with motor disabilities for whom 

motor imagery tasks may not be suitable, which is an important target population for 

BCIs. 3) Our new sound imagery task does not significantly overlap with other 

common spontaneous and frequent daily-life cognitive states. On the other hand, motor 

imagery or word/syllable/letter production tasks would not be suitable for the onset 
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detection system in practical (real-world) applications, as the machine would not be 

able to distinguish between whether the onset was the actual command, and other body 

movements / conversation. 4)  The chosen task has no dependence on the user’s mother 

language. In addition to these advantages, Chapter 7 showed that our sound imagery 

task outperformed the motor imagery in terms of performance, system speed as well as 

usability score for onset detection in real-life scenarios. This will be discussed in the 

‘findings and implications of the research’ section 8.1. 

In summary, the scope of this thesis was to propose a novel onset detection 

method for self-paced BCIs and the new sound imagery task was investigated in order 

to show the potential of moving current laboratory based BCIs to outdoor real-world 

uses. In order to achieve this goal, various experiments have been carried out.  The 

findings and implications of the research will be shown and discussed in section 8.1, 

followed by its scientific contributions and limitations in sections 8.2 and 8.3, 

respectively. 

 

8.1 Findings and Implications of the Research 

Distinguishing the Sound Imagery Task vs the Idle State for Onset Detection 

In Chapter 5, high pitch tone and siren-like sound imagery tasks were tested 

against the idle state with various speech modes (Overt, Inhibited overt and Covert) in 

offline settings (cue-based approach) in order to see the potential of using sound 

imagery tasks for onset detection. For the high pitch tone sound imagery task, the covert 

speech mode achieved the highest classification accuracy of around 80.9% on average 
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for four subjects. In the siren-like sound imagery task experiment, five subjects 

averaged a true-positive rate of around 79.2%. The results showed a quite promising 

performance in offline settings so further experiments were conducted. 

Chapter 6 compared high pitch tone and siren-like sound imagery tasks in a 

simulated-online situation in order to choose the most appropriate speech related 

cognitive task before switching to an online real-life task scenario experiment. In order 

to simulate the self-paced online recording modality, a new circular progress bar that 

was recording the interface was suggested, which offers the users the option of self-

paced task execution.  

In terms of performance results, the high pitch tone sound imagery task showed 

a slightly better classification accuracy than the siren-like sound imagery for both the 

covert and inhibited overt speech modes (C_High: 74.89%, C_Siren: 70.88%, IO_High: 

74.84 and IO_Siren: 73.76). In the covert speech mode, the high tone sound imagery 

task showed a significantly higher accuracy than the siren-life sound imagery task. 

However, there was no significant difference between the two sound imagery tasks in 

the inhibited overt speech mode. In a simulated-online condition, a new performance 

assessment method, called the True-False-Positive (TFP) score was suggested for a 

self-paced system evaluation. The overall TFP score was 76.67% (True-positive rate: 

87.62% and False-positive rate: 4.05%) for seven subjects. There was also no 

significant difference between the sound imagery task modes and the highest 

performance results would all vary depending on the subject.  Therefore, the high pitch 

tone sound imagery task was chosen for the next online experiment as it showed a 

higher performance in the offline setting and it was easier to produce than the siren-

like sound imagery task.  In addition, the covert speech mode was chosen as it restricts 
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any speech related organ motor imagery so that it can be clearly compared to the motor 

imagery task. 

It was difficult to compare our experiment results with other onset detection 

studies as there was no common evaluation method. Many of them just showed 

performance results that can only be applied to their own experimental settings such as 

the hit rate (e.g. [8, 10, 24, 25]). In [82], the average TP rate for the idle vs. motor 

imagery task was 86.7% (with false positive events being 5.7 times greater) but there 

was no information regarding the idle period length. In [10], the motor-imagery versus 

non-control state achieved a 79.67% classification accuracy on average for three 

subjects. In [18], six different mental tasks versus the idle state had been tested and 

they achieved between an around 55% (Auditory imagery) and 72% (Motor-imagery) 

TP rate on average for 5 subjects in an offline setting. In [88], researchers classified 

motor-imagery tasks vs. the idle state and they used two two-class classifiers for three 

different classes (left hand and right foot imagery vs. idle). They achieved true-positive 

rates of around 40% in an offline analysis. 

Compared to these studies, our sound imagery onset detection method achieved 

quite competitive results (76.67% TFP score, 87.62% TP rate, 4.05% FP rate). 

Furthermore, none of the above studies considered the self-paced approach. However, 

our study contemplated all the information about the idle period length and self-paced 

task execution while recording data, which makes it more suitable for future uses in 

self-paced BCIs.  
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Comparison of Sound Imagery vs Motor Imagery for Onset Detection 

Based on the previous offline and simulated-online experiment results, the online 

onset detection system was tested in section 7.2. A message opening / sliding image 

onset task was designed for watching video and reading text daily-life scenarios. In 

these simulated daily-life situations, motor imagery and our sound imagery tasks have 

been tested and compared.  

In terms of performance comparison, our covert high pitch tone sound imagery 

task achieved TFP scores of 84.04%, 80.84% and 77.17% with a sliding image, 

watching video and reading text scenario, respectively on average for twelve subjects. 

On the other hand, the motor imagery task produced a significantly worse TFP score 

in the sliding image (66.79%) and watching video (61.07%) scenarios. However, in the 

reading text scenario motor imagery gave a lower result of 72.61% but there was no 

significant difference with the sound imagery task. 83.3% (10 out of 12) of the 

participants showed better performance results with the sound imagery task than the 

motor imagery, one participant had the same result for both and only one participant, 

who had previous motor imagery BCI experience produced a better performance result 

with motor imagery. However, other three participants who also had BCI experience 

produced a better result with the sound imagery task.  

In terms of system speed, the sound imagery onset response time was 

significantly shorter than the motor imagery task on average for twelve subjects from 

all daily-life scenarios. The sound imagery vs motor imagery time responses were 3.93 

s vs 4.8 s, 4.03 s vs 5.83 s and 4.28 s vs 5.75 s for the sliding image, watching video 

and reading text scenario, respectively. This greater response speed is a huge advantage 

in self-paced BCI systems as it is an important aspect of usability. From a usability 

point of view, nine out of twelve (75%) subjects answered that the sound imagery task 
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was easier to use than the motor imagery task for the onset detection. The remaining 

three subjects were BCI research students, who had experience in motor imagery but 

not in sound imagery tasks. On the other hand, one research student and all naïve 

subjects answered that the sound imagery task was easier to use. They marked the score 

on a scale from 0 (very easy to use) to 10 (very difficult to use) and the average score 

was 4.42 for the sound imagery and 6.42 for the motor imagery task. The difference 

was statistically significant.  

Based on these results, our new sound imagery task outperformed the motor 

imagery one for the self-paced onset detection BCI system not only in performance but 

also in usability and system speed.  Therefore, this prototype of onset detection system 

showed some potential for applying BCIs to real-life uses (compared to typical motor 

imagery tasks) and it will take the BCI field a significant step forward once it is 

developed further. 

In terms of spatial characteristics for the sound imagery task, a common spatial 

pattern showed that channels around F3, P3 and T7, which are located near Broca’s 

and Wernicke’s area (well-known area for speech related tasks), produced a pattern 

difference between the idle and the sound imagery task period.  In addition, from the 

feature selection procedure, channel F3 was selected the most amount of times as a best 

class separable channel, followed by channel T7, which shares a common result with 

CSP spatial analysis. In the spectral domain analysis, the frequency band 20-30 Hz 

feature was selected the most amount of times from the feature selection procedure.  

The work in [37] reported that some studies  suggested that the 30 Hz range was elicited 

by the linguistic processing of meaningful words but not of meaningless non-words. 

However, our high pitch sound imagery task showed the best class separability versus 
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the idle state with the range of around 20-30 Hz. This requires some research questions 

to be investigated further. 

 

Towards Outdoor Laboratory Real-world BCI uses 

As it was discussed in previous sections, current BCI studies are generally 

restricted in research only at indoor laboratory settings or they work only in a specific 

way once all the circumstances are met. It is very difficult to be used like a daily-based 

system such as smartphone voice activation (e.g. Android - Google now / IOS – hey 

siri) due to bad usability and practicality that stems from low accuracy, inconvenient 

EEG device wear, etc. For this reason, we investigated an online message opening onset 

detection system at outdoor laboratory settings in order to showcase the potential 

problems of using BCIs in real-world applications and to compare the performance 

difference between indoor and outdoor laboratory settings. 

In order to simulate the practical applications in a real-life situation, the dry EEG 

device (Enobio system) was used and the experiment took place at an outdoor cafeteria 

area.  The experimental design was the same as in the indoor laboratory setting. The 

performance of the outdoor experiment showed significantly smaller TFP scores from 

all daily-life scenarios by producing values of 56.54% (sliding image), 53.46% 

(watching video) and 58.01% (reading text) on average for seven subjects. Some 

participants (e.g. P6) showed a dramatic decrease from around 70.8% to 20.3%. On the 

other hand, participants 3 and 5 reported some performance increase with the watching 

video and reading text scenario even though it was a very small amount (no significant 

difference). Although the performance varied depending on the subject, it generally 

produced worse results for the outdoor experiment and the participants commonly 



 Department of Computer Science and Electronic Engineering, University of Essex  

205 
 

answered it was more difficult for them to concentrate and control the task (except P5 

and P7 who mentioned it was similar). The participants also listed their discomforts 

during the outdoor experiment. They commonly answered the following: 1. Other 

people’s noise (talking, ordering food, etc.). 2. Kitchen noise and food smell (coffee 

machine, grinder etc.). 3. Visual distractions (outside view, people passing by, etc.). 4. 

Background music. 

This study compared results between indoor and outdoor settings and showed the 

problems of moving BCIs towards real-life applications with daily-life task scenarios, 

which is an essential investigation at this stage in order BCIs to move forward.  

Therefore, it could be a useful background study for other self-paced real-world BCI 

areas of research. 

 

8.2 Scientific Contributions 

A Novel Onset Detection Method 

In this research, a novel onset detection system was suggested with sound 

imagery (sound production related cognitive task).  As it was discussed, there are a 

couple of clear advantages of our suggested sound imagery over other cognitive tasks 

(e.g. motor imagery/word/syllable/letter production tasks): 1) Intuitiveness. 2) Useful 

for people with motor disabilities 3) No significant overlap with other common 

spontaneous and frequent daily-life cognitive states. 4) No dependence on the user’s 

mother language. In addition to this, our research results showed a significantly better 

performance with our sound imagery approach than the motor imagery task for onset 
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detection in daily-life task scenarios. It had a significantly higher true-false-positive 

score and it was substantially faster and easier to use (better usability based on a 

subjects’ survey).  Furthermore, the new onset detection method had been tested at 

outdoor laboratory settings in order to test its real-world uses and investigate current 

issues of moving BCIs forward to outdoor laboratory settings. 

Based on our thorough literature review, none of the works on onset detection or 

self-paced BCIs used a speech or sound-production related approach (they mostly used 

motor imagery).  Therefore, this new finding will impact the BCI field especially in 

self-paced onset detection studies and lead it towards real-life uses. From a short-term 

point of view, this study will give some background guidelines about the sound imagery 

onset detection system. In the long-term, once the system is developed further (like 

Google now or Siri), this onset detection technique can be implemented to any other 

cue-based BCI study in order to make it a self-paced system by giving onset freedom 

to users.  Therefore, the current novel study will provide the guidelines and suggest the 

direction of future BCIs in terms of practical applications in the real-world.  

 

New EMG Artefacts Handling Method 

Electromyography (EMG) artefacts are a well-known problem not only for BCIs 

but also for other EEG related studies such as brain mapping and clinical areas.  

Therefore, EMG artefact handling is an essential procedure but commonly used Blind 

Source Separation (BSS) methods (e.g. BSS-CCA, ICA, PCA, etc.) could remove not 

only EMG artefacts but also some useful EEG sources [19-22]. For this reason, a new 

novel technique for statistically selecting EMG artefact contaminated EEG Channels 

(EMG-CCh) was proposed in Chapter 4 in order to minimise useful information loss.  
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The EMG-CChs are selected based on the statistical analysis (determining 

whether the artefacts played a significant role in class separation) between facial EMG 

electrodes and scalp EEG channels. Our method can be applied as a simple EMG 

contaminated channel rejection or it can be combined with any other pre-existing EMG 

handing procedure by selectively handling artefacts. In this  Chapter, we have discussed 

comparing results between typical BSS techniques to all channels vs. BSS to EMG-

CChs with our onset detection data and BCI competition IV data set 2a (online material 

[23]). The performance results showed that our EMG-CChs selection and handling 

method had better class separation than typical BSS approaches. More specifically, 

significant improvements (p<0.05) in class separation were found when using 

autoregressive coefficients extracted from our onset data in 79% of the cases for ICA, 

53% for PCA and 11% for BSS-CCA. Only 7% (ICA), 4% (PCA) and 3% (BSS-CCA) 

of the tests became significantly worse with our approach; the rest of the cases yielded 

no statistically significant differences in terms of class separation performance. With 

the BCI competition data we saw an improvement in 60% of the cases for ICA and 60% 

for BSS-CCA when using autoregressive coefficients as features.  

The method can be used on its own for channel rejection or it can be combined 

with pre-existing artefact handling techniques and it showed significant class 

separation improvement (compared to existing techniques) with both our data and the 

BCI competition data set in many cases. For these reasons, we believe this method can 

be of use for other EEG studies and in a long-term view, it will impact the field in terms 

of artefact removal technique. 
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New Performance Evaluation Method 

So far, there is no common and standardised evaluation method for self-paced 

BCIs.  Therefore, the performance results are all varying depending on the case. For 

example, some papers (e.g. [8, 10, 24, 25]) just report performance results that can only 

be applied to their own system such as hit rate, which makes it difficult to compare 

with other studies. For this reason, we proposed a new performance evaluation metric 

for self-paced BCIs, called the True-False Positive (TFP) score that considers all the 

conditions of true-positive, false-positive and the idle period length, which is a very 

important aspect. For example, if two systems have the same number of true-positives 

and false-positives but one system has a longer idle period, then it certainly is a better 

system as it has a smaller false-positive ratio during the experiment.  Therefore, we 

proposed a new performance evaluation metric that takes all these matters into account 

and can be used from all self-paced BCI systems as a standard evaluation metric (this 

metric was peer reviewed in a journal paper [1]). Once this metric is widely used in 

self-paced BCI studies, it would provide a lot of benefits to the field as all systems can 

be clearly compared with this standard. 

 

8.3 Limitations of the Project 

There were a couple of limitations during this research which will be discussed 

in this section. 
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Biased Sample Population and Statistical Limitation 

A limitation of this thesis was the number of sample sizes and characteristics of 

the participants who took part in the experiments. Some studies (i.e. Chapter 5:  Offline 

testing, section 7.3:  Outdoor testing) had not a large enough sample population, 

therefore the significant test had to be carried out with a multi-run/trials base. In 

addition, participants were recruited from the University of Essex, therefore they were 

mostly academic people (aged 18-28), who were very familiar with working 

environments where computers are involved (some of them were even from the BCI 

group). Furthermore, there were no participants with motor disabilities who are also an 

important target population for BCIs (but it would not be a huge problem in our sound 

imagery task unlike other motor imagery BCI studies). Therefore, there were some 

biased sample characteristics in this thesis and it should be taken into account for future 

study. 

 

Limitation Regarding the BCI System Design 

In the final online experiment, the self-paced message opening onset interface 

was designed in a PC-based rather than an actual mobile messenger application. The 

reason was that we wished to remove any unexpected artefacts related to mobile 

network signals and to minimise any event-related potentials (visual and auditory), in 

order to ensure the onset detection task was purely based on the sound imagery in this 

investigation stage. For this reason, even though we tried our best to simulate the real-

life use of the BCI system, there could be some differences if the system is tested with 

a real mobile based messenger application. 
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Online Experiment Recording Order  

As it was mentioned in the previous sections, there was one limitation in the 

online outdoor experiment (Chapter 7) with regards to the recording order. The indoor 

laboratory experiment was continuously conducted at first to all the subjects, followed 

by the outdoor experiment. We were well-aware that this biased recording order could 

impact the final results, therefore it had to be variable in a randomised way for the 

subjects. However, installing BCI equipment to an outdoor cafeteria area first and then 

return it indoors requires more time and costs more human resources than the opposite. 

In addition, the main goal of the Chapter was to investigate and compare the motor 

imagery and our sound imagery task for onset detection at indoor laboratory settings.  

Therefore, the indoor experiment was conducted first when the participants were at 

their best condition. However, in order to minimise the biased recording order effects, 

there was a small tea/coffee break in-between the two experiments and the total 

experiment time did not exceed 1 and half hours, which can maintain the participants’ 

concentration level in a similar way as in the indoor lab experiment. 

 

Possible issue with the experimental protocol 

In order to minimise Visual Event Related Potentials (VEPs) during the onset 

task activation, we designed a circular progress bar, which considered a visual angle 

that would avoid VEPs, in an offline and simulated-online experiment. In online real-

life scenario experiments, message arriving notification could generate some VEPs 

even though we applied a very slow sliding notification (from the right side corner) in 

order to minimise it.  In addition, especially in a watching video scenario, named “BBC 

- The Blue Planet” [155], this technique was used as it requires low cognitive load and 
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emotional neutrality [156, 157] but there could be some unknown possible VEPs 

effects.  

Furthermore, there could be a possible overlap of mental tasks. In order to test 

pure sound-production related cognitive tasks for onset detection, the participants were 

not allowed to measure the time during the task activation.  After this stage, they could 

estimate their task activation time by referring to the circular progress bar. However, 

there could still exist some counting task overlap as it was difficult to clearly separate 

them especially when the participants were asked to give their activation time in order 

to evaluate their onset response speed. The users would only start monitoring the clock 

if they had intended to do an onset task.  Consequently, while it is possible that the 

onset detection may have been affected by involuntary counting, the chances of false 

positives were very low as no counting would occur during the idle period. However, 

compared to another study [18] (mental arithmetic: subtraction task vs the idle state), 

which was similar to the counting task, this study produced a lower performance value 

(around 73% accuracy for 5 subjects on average) than our 80.42 TFP score (85.2% TP 

rate) according to our results. This shows that the sound imagery task had a clearer role 

as a main task than the counting task.  

However, the possibility of these unknown effects was the same on both of our 

sound imagery tasks and motor imagery onset tasks as all the experimental settings 

were the same.  Therefore, our results (significantly better for the sound imagery onset 

task than motor imagery) are still very meaningful in terms of the advantages of sound 

imagery over motor imagery for the onset detection system. 
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9 Conclusions & Future Work 

This project was undertaken in order to develop a novel method of onset 

detection in Brain-Computer Interfaces (BCIs). It suggested intuitive sound imagery 

tasks (sound-production related cognitive tasks) in order to increase the usability and 

practical uses of BCI systems towards real-world self-paced BCI applications apart 

from the current research-oriented laboratory settings. Although the contributions and 

limitations of the research were discussed in detail in Chapter 8, the major 

achievements can briefly be summarised as: 

• A novel onset detection system was suggested with a sound imagery task. 

It is very intuitive and it does not significantly overlap with other common, 

spontaneous cognitive states, which makes it feasible to be used in daily-

life situations. The performance results showed a significantly better TFP 

score with the use of sound imagery than with the typical motor imagery 

task for onset detection. In addition, the proposed system showed a 

significantly faster onset response and that it was easier to use (better 

usability based on a subjects’ survey) than the motor imagery task.  

 

• A novel EMG artefact contaminated EEG channel selection and handling 

method was proposed. It showed a significant class separation 
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improvement (which minimises information loss) compared to current 

blind source separation techniques with the use of both our data and the 

BCI competition data set. 

 

 

• A new performance evaluation metric for self-paced BCIs, called the 

True-False-Positive score (TFP score) was proposed. So far and to the 

best of our knowledge, there has been no common and standardised 

performance assessment method that takes into account all the true-

positives, false-positives and the idle period length at the same time.  

Therefore, this new metric would provide a lot of benefits to the BCI field 

as all the systems can clearly be compared to this standard.  

 

Despite the substantial progress which has been made in the BCI field with this 

research, there are still areas for further investigation and research questions. A number 

of possible future studies could investigate the following: 

• Moving to additional real application experiments: 

Our onset detection system was tested in a simulated messenger 

application in various daily-life task scenarios. However, further 

investigation with real smartphone-based messenger applications would 

be of interest. Instead of a few hours of simulated experiment, a couple 

of days of continuous daily usability test would give us a lot of 

information with regards to the practical use of the sound imagery onset 

detection system. It could be compared to other mental tasks (e.g. motor 

imagery) as well. 
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• Onset system prototype development for other cue-based BCIs: 

Based on our experimental results, the onset detection application can be 

developed further and it can be a prototype for the smartphone/mobile 

BCI as is the ‘Google now’ or ‘IOS Hey Siri’ command. Alternatively, it 

can be extended to a smart-home application system. This prototype 

development can be used as a tool kit in order to design any cue-based 

BCIs in a self-paced system. 

 

• More thorough investigation in the brain physiology field for the sound 

imagery task: 

Besides the engineering technological works, a more in-depth brain 

physiology study can be carried out. Broca’s area and Wernicke’s area 

are well-known parts of language and speech related processing and we 

also found that these areas were elicited (based on feature selection) for 

the sound imagery. However, we were not able to see the brain 

physiological pathway for the sound imagery task execution. The 

Wernicke-Geschwind model is a widely used pathway model but some 

literature studies (e.g. [27]) insist that it has some errors and is 

oversimplified.  Therefore, more in-depth brain physiological findings 

would be an interesting topic for future work. 

 

In addition, there are a couple of remaining challenges in onset detection for BCIs 

and questions on how some of these challenges may be tackled: 

• Better performance: 
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Even though our new sound-production related cognitive onset task 

showed significantly better performance results than the typical motor 

imagery approach, a higher performance accuracy would be needed for a 

real-world onset detection BCI system. If the BCI system is being used 

as a daily-life device, the onset detection system should have a near to 

zero false-positive with acceptable true-positive events. Otherwise, 

frequent false-positive action would waste resources (e.g. battery life) and 

lead to low usability. A possible solution to this is adaptive learning. 

Optimal signal processing and a feature extraction process would surely 

increase performance. However, an adaptive learning system available to 

the user, which finds the optimal processing for a specific user, would 

resolve the issue. If the user uses the onset detection system more 

frequently, it would improve the system performance. Also, finding the 

optimal feature extraction parameter would be needed such as optimising 

the AR model order for future works. 

 

• Better usability: 

Even though we used an Enobio (dry electrode equipment [160]) system 

with 17 electrodes for better usability compared to the gel type EEG 

device, it is still difficult to say it is a user-friendly machine designed for 

daily-use. For this reason, a small mobile (compact) device would be 

necessary for using the onset detection BCI system in real-world 

applications. However, the use of only the EEG system would provide 

limited information if the number of channels is reduced.  Therefore, a 

hybrid device such as a combination of EEG and fNIRS (e.g. [164])  
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could be a possible answer for this. In addition, shortening the onset time 

response would increase usability of the system as well. Even though our 

method showed a faster onset speed than that of the motor imagery 

approach, its time windows can be further decreased by optimising 

processing algorithms to individual users (e.g., via adaptive learning / 

genetic algorithms).  
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Appendix 

A. Online outdoor laboratory experiment environment photos 
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