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Abstract

In today modern life smart electrical devices are used to make the human lives more

comfortable. Actually, this is the combination of electronics and communications

that provides the opportunity for real time communication while the measured elec-

tricity by smart meters is sent to the energy provider. In this way smart meters in

residential areas play an important role for two way interaction between several users

and energy provider. Solving an optimization problem with regard to consideration

of satisfaction of both sides of users and energy providers tends to achieve the opti-

mum price that is sent to the users to optimize their consumption in peak demand

periods that is the main goal of demand response management programs. As nowa-

days the renewable energy plays an important role in providing the request of the

users specially in residential areas consideration of the concept of uncertainty is an

important issue that is considered in this thesis. Therefore, solving the optimization

problem in presence of load uncertainty is important topic that is investigated. An-

other interesting issue is consideration of users’ number variation in presence of load

uncertainty in dynamic pricing demand response programs which gives the advan-
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tage of having good estimation of optimum consumption level of users according to

the optimum announced price. In this thesis these issues are considered for solving

an Income Based and Utility Base optimization problems that are further explained

in upcoming chapters. In chapter III ,which provides the first contribution of the

thesis a novel algorithm called Income Based Optimization (IBO) is defined and

compared with previously proposed Utility Based Optimization problem (UBO).The

price, users’ consumption versus provided energy capacity by energy provider in 24

hours period are simulated and analysed. The effect of variation in other parameters

dependant to the cost imposed to the energy provider and the parameters that affect

the users level of satisfaction is also evaluated.

In Chapter IV, existence of load uncertainty is considered in proposed UBO algorithm

when it is assumed that number of users in each time slot is varying based on differ-

ent distributions such as Uniform or Poison. The results for the average gap between

energy provider’s generating capacity and consumption of the users are compared

with when number of users kept constant in presence of load uncertainty in 24 hours

period. Moreover, the effect of different distributions on the gap between generating

capacity and the users consumption is evaluated assuming the number of users are

increasing and following the distributions. The results for the announced price in 24

hours period is also evaluated and further is extended to the average announced price

with respect to increase in number of users when it is assumed that user entry and

departure type is varying based on different distributions and the load uncertainty

also is existed.

In chapter V, the proposed IBO algorithm in chapter three is further extended to

the Uncertain IBO and is called UIBO. Therefore, it is assumed that bounded un-
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certainty is added to the users consumption. This algorithm is further extended in a

way that variation in number of users is considered based on different distributions.

The results are evaluated for the average gap between generating capacity and users

consumption in 24 hours period and is further extended with respect to considera-

tion of the increasing pattern for the number of users in presence of load uncertainty

and different types of distributions for the users number variation. With respect to

consideration of UIBO algorithm the price in 24 hours period is evaluated and the

results are further extended to evaluate the average price with respect to increasing

pattern for number of users that are varying based on different distributions when

the bounded uncertainty is added to the users consumption. Moreover, the achieved

gain of the proposed algorithm based on the ratio of the variation of the announced

price to the varying number of users is evaluated. Finally chapter VI provides the

conclusion and suggestion for future work.
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Acronyms

Acronyms and abbreviations

x Users consumption

L Generated Capacity

α Predefined constant in utility function

w Users class indicator

k kth timeslot

i ith User

mk
i Minimum power consumption for user i in kth timeslot

Mk
i Maximum power consumption for user i in kth timeslot

δki Variation of load demand for ith user and kth timeslot

σ2 Variance of noise

ak, bk, ck Cost function coefficients in kth timeslot

U(.) Utility function

W (.) Welfare function
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C(Lk) Cost function

ξ Maximum magnitude of load uncertainty

E(.) Expectation

N Number of users

P Poisson distribution

U Uniform distribution

C constant

N
{p,u,c}
k∈k users variation based on different distributions in kth timeslot
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Chapter 1
Introduction

In this thesis the interaction between several users and an energy provider is consid-

ered in a smart environment that includes smart meters that are connected to the

energy provider. The main goal is to provide benefit for each sides (i.e. users and

energy company).

Nowadays, electricity is the most important part of human lives. The electricity is

produced in power grid, and is widely used in commercial and residential areas. In

this research we focus on residential areas and interaction between several users with

distributed company that is called Energy Provider. In residential areas, at homes,

there are many appliances that consume electricity, from small water heater to large

electrical vehicles that consume high amounts of electricity for charging. The Elec-

trical grid involves different parts including generation, transmission, distribution

company and finally end users, while generating company is responsible for produc-

ing the electricity and send it to transmitters through the electrical grid. An electric

grid is a network of energy providers and users that are connected by distribution
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CHAPTER 1. INTRODUCTION

lines. The generating company produces the electricity. The electricity might be pro-

duced from various sources, such as wind, coal, solar, etc. Then, it is transferred to

the distributed company that is responsible to buy electricity from wholesale market

and sale it to the users based on their requirements. In previous traditional grids the

interaction between distributed companies and users was off-line, which means this

is not two way interaction between users and energy provider. However, the need

for two way interaction between users and energy provider shifted the traditional

power grids to the most advanced Smart Grids. A Smart Grid is a system which

includes a variety of smart operational and energy measures including smart meters,

smart appliances, renewable energy resources, and energy efficiency resources such

as batteries that store energy in a case to be used in certain peak periods. In this

area of research control of production and distribution of electricity specially in peak

demand periods are important aspects that are studied in many literatures.

The concept of Smart Grid, at first, started with the notion of advanced meter-

ing infrastructure to improve performance of grid as well as supply reliability and

then extended to the increased and bidirectional interaction between wholesale mar-

kets/transmission operation and retail markets/distribution operations [2]. Histor-

ically, the prospect of increasing the efficiency of system operation in power grids

and the existing investment in the generation and transportation of electricity has

been the key driver for introducing Demand Response Management (DRM) which

nowadays involves various kinds of programs with the goal of control the load balance

specially in peak periods. Implementation of Advance Metering Infrastructure (AMI)

and other Smart Grid technologies will further increase the use of DRM resources in

everyday operations [3]. The AMI has benefits for customers in a way that enhances
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billing accuracy, informed decision on energy usage, earlier identification of outages,

prompts accelerated response and reduces costs, etc. This is also important to con-

sider the role of DRM under markets in Smart Grid as experience with energy markets

has shown that we need DRM to avoid occurrence of energy market crisis,as it can

control the peak periods by definition of suitable programs, otherwise the power off

might happen in some peak periods that is absolutely not desirable. DRM controls

the energy demand and loads during critical peak situations to achieve a balance

between electrical energy supply and demand. In this way, it can achieve better uti-

lization of available energy and results in better and more reliable system [2]. The

effort of operators to guide the consumption of end users through suitable pricing

policies is referred to as DRM [4]. The US department of energy classifies DRM into

two categories as having two options: price based and incentive based options. Which

price based options is primarily offered technology to residential areas [5]. DRM is

considered as one of the ingredients of Smart Grid as it deals with various aspects of

it, as well as providing optimization solutions to overcome restrictions that occur in

critical peak demand periods. Controlling the users’ demand specially in peak time

periods increases the grid security. Matching power production to power consump-

tion is a complex problem in conventional energy grids. It becomes more complex

by the introduction of renewable sources, that might exhibit significant output fluc-

tuations due to their uncertain behaviour in certain time period. This problem can

be mitigated by installing a network in the grid which is connected to the smart

meters that control the power consumption of users by managing the energy cycles of

various devices while also enabling information exchange between users and energy

providers [6, 7, 8]. The flow of information between meters and the energy provider

3
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can be combined with pricing strategies so as to encourage a better match between

power production and consumption. This provide two way interaction between both

sides of residential and energy providers. [9, 10, 11, 12, 13]. As the main difference

between traditional grids and Smart Grids is that the later provides two way flow

of information and electricity between suppliers and consumers, therefore study in

that area to improve the Smart Grids is an important aim that is followed by sev-

eral research in that area. DRM plays crucial role in such a smart environment as

it can enhance the efficiency of the grid by suggestion to the users the controlling

and scheduling programs. in that case the consumptions of the users and generation

of energy provider would be corresponded. There is many literature about demand

response connectivity and information flow in Smart Grid. With respect to impor-

tance of DRM programs, in this thesis it is tried to define a novel objective function

optimization problem to provide benefit for both users and energy providers. In this

way we define and analysis an income based optimization. The average price, aver-

age load in 24 hours period as well as comparison over the gap between generating

capacity and users consumption with/without presence of load uncertainty and user

number variation are investigated. Therefore, it is assumed that number of users are

varying based on different distributions in each hour .

Through sending and receiving the information in the grid there are uncertainties

in accuracy that might be happen as a result of using renewable energy to provide

electricity, i.e. wind/solar nowadays are very common in residential areas. Therefore,

investigation in this area has been conducted to solve the optimization problem in

presence of load uncertainty in the Smart Grid. The effect of increasing the number

of users in a certain period of time which is divided into time slots that the number

4
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of users is kept constant in each slot is studied and is compared with respect to con-

sideration of uncertainty in variation of number of users in each slot. In this way,

users entry and departure type, when it is assumed to be varied in each time slot,

follows Poisson or Uniform Distribution. The result is compared with the case the

number of users is constant. In this case, with respect to consideration of existence

of load uncertainty, three different systems based on users entry and departure types

are defined and compared. The definition of these systems is based on variation in

number of users in each time slot, that is assumed to be based on Poisson and uniform

distribution. These systems are called Poisson Distribution System Analyse (PDSA),

Uniform Distribution System Analyse (UDSA) and are compared with a system in

which the number of users is kept constant that is called Constant System Analyse

(CSA).

As the main goal in DRM programs is maximizing the benefit of energy provider,

when satisfaction of users is also achieved, two different objective functions are inves-

tigated with and without consideration of load uncertainties. These Optimizations

are called Utility Based Optimization(UBO) and Income Based Optimization(IBO),

in presence of load uncertainty we call the IBO, Uncertain IBO (UIBO) and the UBO,

Uncertain UBO (UUBO) respectively. Investigation over the price, average load and

average gap between users consumption and energy provider generation is considered

for both IBO and UBO algorithms with and without presence of load uncertainty,

as well as user number variation in each time slot. The new proposed IBO algo-

rithm which is presented in [2] is different with previously proposed UBO in [14] in

case that in IBO optimum satisfaction of users is considered by solving their welfare

optimization problem and is multiplied to the price that users pay to achieve the
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income which is aimed to be maximized considering minimizing the cost of providing

electricity from the energy provider while in UBO it is the utility of users which is

considered and subscribed by the cost imposed to energy provider. As the outline

of the first contribution of this thesis related to the new proposed IBO algorithm in

[2] we evaluate the price and investigate over the average load with respect to con-

sidering variation in number of users regardless of presence and availability of load

uncertainty. Moreover, another contribution of this thesis in [4] is that the previously

proposed UBO is enhanced in a way to consider load uncertainty subject to variation

of users entry and departure type based on different distributions. The outline is

related to evaluation of the average gap between consumed power and generating

capacity as well as investigation over the price in 24 hours according to certain types

of distributions. Another interesting outline of this thesis is also to improve the new

proposed IBO algorithm in [3] with respect to adding load uncertainty in the users

consumption and considering user number variation based on different distributions.

As the outline , evaluating the average price and gap between generated capacity and

user consumption is investigated.

For future research in this area consideration of the effect of load uncertainty and user

number variation in the other types of utility functions rather than proposed UBO in

[14] is suggested for further investigation. For example the Logarithmic utility func-

tion added with certain type of uncertainty with respect to different distributions

for users entry and departure type for description of interaction between users and

energy provider is suggested for further future investigation. The evaluation of the

average gap between generating capacity and user consumption as well as study over

the effect of different distribution types on the average load with regard to proposed
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logarithmic objective function is suggested for further future study in DRM area.

With respect to the other types of previously proposed utility functions rather than

one which is studied in this thesis another interesting suggestion for future research

is to solve the problem of maximizing the net benefit of energy provider in a way

that is mentioned in the proposed IBO algorithm with and without consideration of

load uncertainty. There are more suggestions for future research that will be further

explained in chapter 6 of this thesis.

In this thesis, the literature review section in Chapter 2 discusses about different as-

pects of DRM and gives the broad understanding of the demand response programs

and related issues. Chapter 3 introduces the new algorithm that is called IBO, which

is based on net benefit maximization of energy provider when the satisfaction of users

is also achieved. In Chapter 4 load uncertainty and user number variation for each

slot of the period of 24 hours of a day is investigated with respect to consideration of

UBO algorithm. Chapter 5 discusses the load uncertainty and users number varia-

tion of the proposed IBO algorithm. Finally, Chapter 6 provides the conclusion and

future work.
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Chapter 2
Literature Review

2.1 Introduction

With respect to improvement in AMI technology the concept of Smart Grid started

with goal of having more reliable, secure and advanced grid. The aim is negotiation

of energy provider and users in order to get advantage from real time interaction,

by producing optimum amount of electricity and sailing it to the consumers. There

are different parameters that affects the consumption level of users, for instance

time of day, kind of appliance that is using, type of users that affects their level of

satisfaction, all these aspects affect the demand for electricity. Therefore, in some

hours of the day the consumption reaches to its maximum value. In this situation

energy provider obliged to provide the extra amount of electricity by buying from the

wholesale market that is not beneficial as the same day price is usually high. In this

way different types of DRM is designed to control the users’ demand specially in peak
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periods. There are different types of DRM, however, real time pricing is one of the

most important DRM programs as control the demand by announcing the appropriate

price on real time to the users. It is assumed that users are equiped with smart meters

and smart meters are connected to the Local Area Network (LAN). Therefore, solving

an optimization problem in which satisfaction and benefit of both sides of users and

energy provider is considered is an important target for investigation. There are

many literature study social welfare optimization from different point of view. There

are also different techniques for solving the problem. Therefore, the first step for

solving the optimization problem is to translate it into mathematical language. The

mathematical modelling is needed to describe the system. Then the mathematical

model is used for formulation of the problem. In order to solve the problem different

techniques existed that can be used depending on the kind of problem. In this section

DRM in Smart Grid is considered and is explained from the various aspects.

2.2 Smart Grid

Smart Grid generally is related to using remote control and automation systems

that provides a two way communication technology between different parts of the

grid including generation, transmission, distribution companies and consumers. The

Smart Grid offers many benefits for both sides of energy provider company and

consumers, mostly seen in big improvements in energy efficiency on the electricity

grid and in the energy users’ homes, as it provides the opportunity for two way

negotiation between subscribers and providers. There were issues related to the

traditional grids, for instance for a century, the required data for producing the
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electricity was gathered while utility companies used to send their workers out to

gather this information. They were responsible for reading the meters, measuring

voltage and even also looking for broken equipments. With respect to improvement

in electrical devices and appliances nowadays many options and products are being

made available to electricity industry to modernize it. The grid refers to the network

that carry electricity from the electric plants where it is generated to consumers. The

Smart Grid means using a LAN connecting different parts of the electric utility grid.

It includes adding a two way digital communication technology to devices associated

with the grid. Each device on the network is equipped with sensors to gather data

(e.g power meters, voltage sensors, fault detectors, and etc.). Also, the Smart Grid

provides a two way digital communication between the device in the field and the

utility operation section. A key feature of the Smart Grid is automation technology

that lets the utility adjust and control each individual device or millions of devices

via a remote control. One of the most important issues in Smart Grid is how to deal

with users over consumption in peak demand periods. In this way DRM is used to

tackle this problem in critical peak demand periods. Table 2.1, in [1] illustrates the

difference between existing grid and the power grid.
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Table 2.1: A brief comparison between the existing grid and the smart grid [1]

Existing Grid Smart Grid
Electromechanical Digital
One-Way communica-
tion

Two-way communi-
cation

Centralized generation Distributed genera-
tion

Few sensors Sensors throughout
Manual monitoring Self-monitoring
Manual restoration Self-healing
Few customer choices Many customer

choices
Limited control Pervasive control

                       The Smart Grid As an advanced Grid  

Figure 2.1: Illustration of a Smart home that is equipped with AMI technology
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2.2.1 Features of the smart grid

Shifting from the previous traditional grids to the Smart Grid provides many advan-

tages that are explained as bellow :

Reliability: The Smart Grid makes use of technologies such as state estimation, that

improve fault detection and allow self-healing of the network without doing manual

works. This will ensure more reliable supply of electricity [15].

Efficiency: There are many contributions to overall improvement of the efficiency of

energy infrastructure which are anticipated from the deployment of smart grid tech-

nology, in particular including DRM, for example turning off air conditioners during

short-term spikes in electricity price and reducing the voltage when possible on dis-

tribution lines are some basic examples of advantages of the Smart Grid. Therefore,

in general DRM programs increases the efficiency of the grid in the Smart Grids.

Market-Enabling: The Smart Grid allows for systematic communication between sup-

pliers as they announce the energy price and consumers as their behaviour affect on

their consumption and permits both the suppliers and the consumers to be more flex-

ible and sophisticated in their operational strategies. It means that when consumers

consumption is controlled the peak hours is reduced and therefore the announced

price will be controlled. This controlled price affect the electricity market. It can

improve the electricity marketing economically.

As, it is mentioned in previous section the Smart Grid consists of different parts. The

Advanced Metering technology plays an important role in Smart Grid, more specifi-

cally in DRM. Figure 2.2, shows the AMI in the Smart Grid as it plays an important

role in DRM.

12
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                            Advanced Metering Infrastructure in the Smart Grid  

Figure 2.2: AMI as part of Smart Grid

2.3 Fundamentals of DRM

The most importance of DRM is that it controls the energy demand and loads dur-

ing critical peak situations to achieve a balance between electrical energy supply and

demand. In this way, it can achieve better utilization of the available energy and

cause better and more reliable system [2] in which the grid is protected from sud-

den electrical changes. The US department of energy classifies Demand Response as

having two options: Price Based and Incentive Based options. Which Price Based

options and Direct Load Control which is one of the Incentive Based options are

13
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primarily offered technologies to residential areas [5]. The DRM is considered as one

of the ingredients of Smart Grid as it deals with various aspects such as providing

optimization solutions to overcome restrictions that occur in critical peak demand

periods.

There are broad literatures about demand response connectivity and information

flow in Smart Grid. DRM programs applied between Independent System Operators

(ISOs) and whole sail markets, transmission system, distribution systems and cus-

tomers. In this thesis, the interaction between distribution system and consumers is

considered. In general, DRM in Smart Grid is divided into price based and incentive

based programs which are explained briefly in the following sections.

2.3.1 Price Based DRM

This category involves programs that are listed as :

• Real Time Pricing (RTP) in which price of the unit electricity consumption is

periodically changed.

• Time Of Use (TOU) tariffs which include various tariff for different time in-

tervals of a day or seasons of a year and give customers time varying rates

that reflect the cost of electricity in different time periods. If the price changes

between hours or time periods are significant, customers adjust the timing of

their flexible loads in order to take advantage of lower price periods [3, 16, 17].

• Critical Peak Pricing (CPP) that changes normal peak price with a higher price

to provide reliability to the system. In this method of DRM, TOU prices are

14
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used except for certain peak days.

In general, it can be concluded that while the RTP describes a system that charges

different retail electricity prices for several hours of the day as well as for different

days, under TOU the retail price varies in a preset way within certain blocks of time

[5]. In [18], a multi-layer DRM in which a utility can announce a limit for the demand

and allocate the reduction to each user consumption and each of the users will have

the freedom to choose what kind of loads to be controlled is considered. From the

provider side the problem is solved as kind of resource allocation problem and from

the users side the problem is solved as a kind of energy management tool within the

network. This proposed approach can be customized to perform DRM in different

sizes of the network. For instance, at the feeder, at the distribution circuit, and at

the substation level. There is the work in about economic factors related to the type

of DRM [19, 20, 11, 21]. The work in [5] provides broad investigation about DRM

options and compares various schemes with each other. The most important factor

associated with these two types of programs is the fluctuation of price rate.

2.3.2 Incentive Base DRM

According to Department of Energy (DOE) Incentive Based DRM can be listed as :

Direct Load Control, Interruptible/Curtailable service (I/C), Demand Bidding/Buy

Back, Capacity Market Program (CAP), Ancillary Service Markets (A/S) [2]. In gen-

eral Incentive Based demand response can be considered as a program that requests

consumers to hand in the load control rights to utilities with some contracted limits

and incentives. This category requires more efforts from the utility side to take into
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consideration the system reliability, economic dispatch, consumer comfort and so on.

As a type of mature Incentive Based demand response, Direct Load Control has been

thoroughly studied. These programs provide customers with load reduction incen-

tives. The incentives might be separated from, or additional to, their retail electricity

rate, which may be fixed (based on average costs) or time-varying. Load reductions

are needed and requested either when the system reliability conditions are treated or

when prices are too high [2].

Fig 2.1, depicts the differences for operational time scale between incentive based and

price based DRM. As it is appear various programs require different time scales. It

should be considered in various timing periods in incentive based DRM the price is

kept constant and consumers are incentivized to consume less energy based on the

announced rate from the retailer that procures the electricity from the whole sail mar-

ket. With respect to the importance of real time interaction between producers and

consumers in the next subsection Real Time Pricing in demand response programs

will be studied further.

16



CHAPTER 2. LITERATURE REVIEW

 

Figure 2.3: Illustration of how DRM works from the aspect of allocated timing pro-
grams

It should be considered in various timing periods in incentive based DRM the price

is kept constant and consumers are incentivized to consume less energy based on the

announced rate from the retailer. The study on kind/name of DRM effect on con-

sumer behaviour reveals that end users are more interested to participate in real time

price base DRM because in residential areas it makes possible two way negotiation

between users and retailer that in this thesis is called energy provider.
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2.4 DRM based on Real Time Pricing in the Smart

Grid

Two way interaction between users and energy provider in today’s Smart Grid leads

to Real Time Pricing that provides the opportunity for both sides i.e. users and

energy providers to maximize their own benefit through sending and receiving the

information which is the price and consumed energy during different time slots.

In this way, an optimization problem must be defined and solved by each side of

users and energy provider separately. There are broad literature about this concept

[14, 22, 17, 2, 3, 5, 18, 23, 24, 25, 26], that aim at maximizing social welfare which

depends to some parameters such as type of appliance, time of day, number of users

and etc. For solving the optimization problem several techniques might be used.

For example, in [14], the original objective function is decomposed into several sub

problems and each of them is solved by users and energy provider. As utility maxi-

mization has been used in many literature, it is tried to have a grasp to this concept

by defining a new algorithm based on energy providers’ Income Maximization with

respect to satisfaction of all users. As it is expected the users consume energy more

wisely when they are informed the updated price . The results have been proposed

in [27]. Also,investigation over the effect of uncertainty as a result of using renewable

energy or any unexpected events that may affect the consumption on users utility

function has been considered. [28] discusses about the consideration of the effect

of various types of the load uncertainty. According to the work in [29] Real Time

Pricing (RTP) links hourly prices to the change that may occur in real time or day

ahead cost of power, which means that hourly price rate is evaluated on real time or
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based on the historical data on day ahead.

The power grid consists of several parts, the generators, transmitters, distributors

and end users. According to [30] Independent Power Producers (IPPs) sale energy

to wholesale purchasing agency company, and Distribution Companies (Discos) pro-

cure energy from them and sale to the users. We call the Disco as energy provider

which procures electricity from wholesale market, and announces the price based on

its interaction with users. There are some parameters such as the time of a day, the

number of users, the type of appliance and etc. that affect the announced price and

consumption level of users. In order to achieve the goal of DRM, which is providing

the maximum benefit for energy provider in a way that satisfaction of consumers is

also achieved, several techniques have already been proposed to solve the optimiza-

tion problem (i.e. Dynamic programming, Stochastic programming, etc.)

As is mentioned, with respect to the importance of research over DRM, there are

broad related literature about it and the problem of providing benefit and satisfac-

tion for both sides of users and energy provider has been formulated and solved in

several ways. In this thesis basically it is focused on real time pricing as based on [14].

This is one of the most effective tools that encourage users to consume more efficiently.

The Chapter 3 focuses on Real Time Pricing (RTP) in Smart Grid, with regard to the

description of the interaction between several users and an energy provider through

a model that has a goal of providing net benefit maximization to the energy provider

when satisfaction of consumers is considered as well. In the proposed model in Chap-

ter 3, the interaction between users and energy provider is considered in a way that

24 hours of a day is divided into 24 time slots and at the beginning of each time

slot energy provider sends the updated price to the users based on aggregation of
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their optimum consumption as well as optimal generated capacity that is evaluated

in the time frame between two time slots . Then, users optimize their consump-

tion level based on the announced price. Then, the generated capacity is evaluated

based on the optimum price in the period between two time slots. This algorithm

is described in [27]. The interaction between energy provider and users for updating

the consumption level of the users based on the optimal announced price is done in

a way that users receive the optimal price and update their consumption based on

the announced optimal price at the beginning of each time slot. Also the updated

generated capacity based on the optimal price is achieved in the period between two

time slots. At the beginning of each time slot the updated price is evaluated based on

the optimal consumption and generating capacity. This proposed algorithm that is

called IBO is compared with UBO that is explained in [14]. Moreover, in this thesis

the effect of having load uncertainty is modelled as a kind of random variable which

is added to the users’ consumption. Also, variation in number of users in each time

slot according to different distribution models is considered and analysed.

There are broad ranges of efforts such as practicing different types of DRM that have

already been done to improve performance of the grid. Different aspects have already

been considered to provide the satisfaction for both sides of users and energy provider.

For instance, decreasing the gap between generated capacity and consumption, that

is studied in [27], [14] is one target that has already been considered. Other aspects

such as type of appliance, proper scheduling day time, effect of energy storage for

proper scheduling to increase the social welfare, etc, also are interesting issues that

have been studied in [31], [32].

Based on the importance of RTP that increases the efficiency of the grid broad lit-
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erature exist. For instance, in [32] the social welfare problem is solved with respect

to consumers utility maximization. The welfare is defined as the level of users sat-

isfaction subscribed by the cost imposed to the Energy provider. In that research a

general optimization is solved in the presence and without the presence of uncertainty

as a result of renewable energy resources. Also a model including some consumers

that each one uses different appliance is considered. Each type of appliance that a

consumer may use is modelled as well. However, the responsiveness of the different

levels of society which refers to the kind of user, i.e. industry, residential, etc. to spe-

cific price is not explained. This is further shown in [14] over description of parameter

w as a factor that describes the kind of users. Moreover, the proposed algorithm is

an off line algorithm as all decisions are made at once before day starts. Therefore,

the users and energy provider do not benefit from two way real time interaction. In

[21], also the study in [14] is improved in a way that for each specific appliance of

each user a utility function is proposed. Then, the problem of social welfare opti-

mization assuming there are some devices that store energy is solved. To solve the

optimization in the presence of uncertainty non-linear programming is used. How-

ever, the author does not describe a proper algorithm in case that uncertainty due

to renewable exists. Scheduling and shifting the demand from on peak to off peak

periods is an important way to control the demand in peak hours. In [33] an algo-

rithm with goal of shifting over consumption of users from peak to off- peak or mid-

peak periods is proposed. However, it does not discuss how this shifting may affect

the welfare as well as the users consumption and generated capacity. In [14], [17] a

general utility function that depends to not only the consumption level of users, and

the parameter which implies how different users respond to specific price is defined.
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For example, if a user is from a residential group of the proposed society his response

to specific announced price is different with a user who is from the industry section.

This affects the utility function of users. Although it seems that the model is able

to describe the interaction procedure between energy provider and users clearly, it

does not discuss the net benefit maximization of the energy provider with respect

to consideration of users’ optimal demand. Moreover, it doesn’t discuss the effect

of uncertainty related to the uncertain behaviour of users. For example, this paper

dose not discuss about the effect of using renewable energy in utility of the users.

Moreover, although, the proposed algorithm in that paper tries to solve the social

welfare optimization problem, but it does not discuss over the effect of increasing the

number of users on average consumed load.

In [28], the optimization problem is solved with load uncertainty. In this case the

actual power consumption of users is considered when a random variable representing

load uncertainty is added to it. This variable reflects several variations in practical

environment, such as effect of uncertainty in production of wind turbines or solar

energy. The effect of this load uncertainty is shown on the price. However, it hasn’t

been investigated over the net benefit of energy provider. Moreover, although the

author shows the effect of increasing the number of users on optimal price, but it

dose not discuss about the randomly variation in the number of users in each time

slot. The effect of load uncertainty on average welfare has not been investigated as

well. In [34], the logarithmic utility function has been proposed and the price function

is defined. However, the effect of load uncertainty on the proposed utility function

has not been investigated. Also, the effect of users entry and departure type on the

average gap between generation and consumption is not studied as well.
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With respect to consideration of load uncertainty [35, 36, 37, 38, 39, 40, 41, 42, 43,

44, 45] adding users number variation to the constraint of proposed optimization

problem is a novel idea that in this thesis will be explained further. Also, for solving

the optimization problem many research have already been studied. [46, 47, 48, 49,

50, 51, 52, 53] that explain the techniques for solving an optimization problem. The

technique that is used in this literature is Lagrange Relaxation, which is a strong

technique for solving optimization problems that are defined based on appropriate

constraints. According to [54], demand response issues can be investigated from

several aspects. In this research, because of the importance of using Real Time

Pricing in residential areas, this topic will be investigated.

2.5 RTP Issues

According to [54], Real Time Pricing DRM is generally performed in the residential

areas instead of commercial and industrial sectors, since residential users are more

sensitive to the electricity price, which means that their response to price variation

is more sensible. Based on two way communications, smart metering could gather

detailed information of users electricity usage patterns and provide automatic control

to household appliances. In that case, the problem of providing benefit of energy

provider when satisfaction of users also achieves is mathematically modelled and

solved.
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Optimized 

consumption 

Figure 2.4: Illustration of the interaction between users and Energy provider in the
Smart Grid with respect to important factors from their sides

Figure 2.4 illustrates the interaction between users and energy provider with respect

to the points that are important for each side. The models in DRM defines based on

different scenarios. For instance the scenario that is considered in this thesis is based

on the interaction between one energy provider and several users, however, there are

other scenarios based on the interaction between multi energy providers and several

types of users.
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2.5.1 DRM problem Formulation

Demand response is usually formulated as the following mathematical problems.

Utility maximization : from the social perspective, the grid aims to increase the

sum of comfort obtained by each user and to decrease the expense imposed to the

energy provider. For example, the objective in [14] is to maximize the grids social

welfare, i.e., the sum of utility functions of all users minus the cost function of the

power utility, while the energy demand is constrained by the limited supply capacity.

The price and demand interact with each other in a distributed manner, and finally

converge to a winwin agreement beneficial to both the power utility and all users.

Specially, if there is excess demand, additional energy would be bought from the spot

electricity market to balance supply with demand [11], [55]. Thus, the social welfare

maximization is to maximize the users utility minus the procurement capacity cost,

the day ahead reserving energy cost and the real time balancing energy cost. The

authors in [23] additionally involve the cost of operating rechargeable batteries in the

utility maximization problem since the introduction of energy storage could further

improve the performance of demand response. Therefore, the social welfare is the

total user comfort minus the power utility cost and the energy storage operational

cost. From the users point of view, it is desired to increase the level of satisfaction

and to decrease the value at their electricity bill. For example, the goal in [56] is to

maximize the users individual welfare, i.e. the value at their comfort minus payment.

Similarly, the work in [57] is to maximize the profit of operating PHEVs, i.e. the

revenue obtained by selling electricity minus the cost of charging vehicles.
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Cost minimization: From the power utility viewpoint, it is desired to decrease the

expense of generating and delivering electricity. The objective in [58] is to minimize

the cost function imposed to the power utility. From the users viewpoint, it is desired

to decrease the value at their individual electricity bill. For example, the goal in [59]

is to minimize the energy bill of an air conditioner under the constraint that the

indoor temperature is kept inside a user defined range. Similarly, the work in [60] is

to minimize the electricity payment of a water heater on the condition that the water

temperature reaches the predetermined comfort constraint.

Price prediction: Real time pricing has been widely considered to be one of the

most efficient and economic price based programs, but if the power utility releases

electricity rate only one hour ahead of time, the price prediction capability will be

required by demand response. The authors in [58] found that the electricity price has

high statistical correlations with the prices on yesterday, the day before yesterday,

and the same day last week.

Other related issues such as renewable energy in [61, 62, 63], and energy storage are

also investigated in [21], [64].

Renewable energy: integrating the uncertain and intermittent renewable generation

(such as wind turbines and solar photovoltaic panels) into the bulk generation will

be challenging, due to the reliability requirement that the generation and load should

always remain balanced [61, 62, 63].

Energy storage: taking advantage of energy storage, users can charge their batteries

or PHEVs within off-peak periods, and discharge them to drive other appliances

within peak periods, instead of using the expensive electricity from the grid [21].
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However, if all users try to charge their energy storage at the same time, it will cause

an additional peak load and would make the grid vulnerable and unreliable. To

alleviate such issues, the work in [64] strategically guides users when to charge and

discharge their batteries or PHEVs. As an Example for a mathematical modelling

and formulation in DRM, UBO [14] algorithm is explained in the next section.

2.5.2 UBO Problem Formulation

In this section , the problem of optimizing benefit for both users and energy provider

using UBO algorithm is formulated. In [14], each user intends to choose its con-

sumption level to maximize its own welfare function. However, individually optimal

consumption levels may not be socially optimal for a general price announced by the

energy provider. Therefore, the sum of all utility functions minus the cost imposed to

the energy provider is adopted as the UBO and is maximized with goal of maximizing

the utility function of all subscribers and minimizing the cost imposed to the energy

provider.

The problem is formulated as the following equation:

max
xki ∈Iki , Lmin

k ≤Lk≤Lmax
k k∈K,i∈{N}

∑
k∈K

∑
i∈{N}

U(xki , w
k
i )− Ck(Lk)

subject to
∑
i∈{N}

xki ≤ Lk,∀k ∈ K
(2.1)
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According to [14], the problem is solved for one time slot and further is extended to

k time slots. Therefore instead of the problem (2.1), the problem (2.2) is solved.

max
xki ∈Iki , Lmin

k ≤Lk≤Lmax
k k∈K,i∈{N}

∑
i∈{N}

U(xki , w
k
i )− Ck(Lk)

s.t.
∑
i∈{N}

xki ≤ Lk,∀k ∈ K
(2.2)

In above formula, Iki indicates the range for minimum and maximum consumption of

the users. It is assumed that 24 hours of the day is divided into 24 time slots. The

K is the set of all time slots. The Ck(Lk) achieves from [14] and the i is the users

indices. Also Lk is the energy that is provided by energy provider. It is assumed that

Lk units of energy which is provided in each slot is bounded between maximum and

minimum value. It is also assumed that the minimum value of provided energy is

more than minimum consumption level of users and the maximum value is not more

than maximum consumption of the users. The parameter U describes the proposed

utility function which has the characteristics that are explained in chapter three and

indicates the level of satisfaction for the users.

2.6 How to solve DRM problems?

Demand response is usually formulated as optimization problems, which are solved

by various approaches.

One of the most applied approaches for solving DRM problems is Convex optimiza-

tion. It is the problem whose objective and constraint functions are convex. Demand
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response is usually formulated as utility maximization or cost minimization. It is

noted that the utility function is concave, whereas the cost function is convex. The

constraint functions of demand response are usually convex, or especially, linear. For

example, the energy demand of one user is constrained by lower and upper bounds

in [65], [14]. The minimum energy consumption level represents the baseline demand

from must run household appliances such as refrigerator that should be on the whole

day, whereas the maximum energy consumption level indicates the total energy de-

mand if all appliances are on. In addition, users are concerned about whether their

tasks will be completed within a time period, which means that the aggregate energy

consumption should not be less than a threshold before a deadline [66], [23]. There

are other approaches for solving the optimization problem in demand response pro-

grams. One of the most useful approaches is the game theory that studies selfish

and rational individuals, and/or a model of interactive decision making processes.

This approach is considered from various aspects. In [67, 64, 68, 69] this approach

is also investigated. Another approach is Dynamic programming that decomposes

the complex problem into a sequence of sub problems. Such a method consumes less

time than heuristical approaches, especially for the sub problems with overlapping

characteristics. This approach is studied in [70, 71, 72]. Another useful approach

in solving demand response programs is Markov Decision Process that refers to se-

quential decision making based on periodic or continuous observation on Markov

random dynamic systems. Due to the future price uncertainty, the problem of energy

consumption scheduling to minimize the electricity bill of a whole day is naturally

cast as a Markov decision process [73]. The basis is to assume that future prices

depend on certain probability density functions, but independent of past prices and
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user activities. Similarly, with the uncertainty of wind generation, the reliability of

smart grids will be affected, which is treated as a multi time scale Markov decision

process,which is studied in [74]. In this thesis the problem of maximizing the income

of energy provider subscribed by the cost imposed to it is defined and solved based

on the Lagrangian relaxation technique. The next section describes the Summary of

contribution of this thesis.

2.7 Summary of Contributions

In this section the benefit function optimization problem of energy provider with

respect to its net benefit maximization is defined. This is calculated according to its

Income which has been considered based on aggregation of users’ optimal demand.

Also, the effect of increasing the number of users on average load including generated

capacity from the energy provider’s side and total consumption of users from users’

side has been considered and is compared with previously proposed utility based

Optimization in [14]. Therefore, the following contributions are investigated:

• The general Income Based Optimization problem has been proposed in Chapter

3. This optimization problem is solved by energy provider and is based on

the maximization of energy provider’s net benefit with respect to its Income

which achieves from the aggregation of the users’ optimal demand multiplied to

the price that is announced to the users. The existence and uniqueness of the

optimal solution for the proposed IBO is proved and the feasible set is achieved.

The comparison between UBO and IBO with respect to the average load and
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price has been investigated. The effect of increasing the number of users on

average load has been investigated.

With respect to consideration of what already has been discussed the following ques-

tions will be investigated :

• How to solve the DRM problem in a way that maximum benefit of energy

provider as well as the satisfaction of consumers achieves?

• How the change in some parameters such as number of users affect the generated

capacity of energy provider and the consumption level of users?

Based on the algorithm in [27], the energy provider sends updated price to the users

at the beginning of each time slot. Users optimize their consumption level based on

the announced price and update their optimum consumption. In the period between

two time slots, the optimal price and generated capacity is evaluated by solving the

objective function. Then the optimal price is announced to the users and the sum of

users’ optimal consumption is sent to the energy provider. The generating capacity

is updated by the energy provider in the period between two time slots. For the next

time slot, the updated price achieves from the aggregation of users’ optimal demand

as well as the generated capacity provided by energy provider in each time slot.

The effect of uncertainty in users’ consumption is also investigated. With respect to

consideration of load uncertainty the actual power consumption can be considered as

adding δki as a random variable representing the load uncertainty that could reflect

several variations in the grid. It could be used to model the variations of the load

demand within a time slot or the distortion in the communication channel. In this
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case several models such as Gaussian model, Bounded uncertainty model and etc.

are investigated in [28]. Therefore, the research over the following questions has been

investigated. :

• How the proposed IBO is affected with respect to consideration of renewable

energy that causes uncertainty in users’ consumption?

• How the problem of utility/income maximization can be solved with respect to

different types of uncertainty models such as Poisson or Uniform distribution

for users’ entry and departure type?

These problems are analysed in chapter four and five of this thesis. In this case, the

previous IBO algorithm is considered when some noise is added on the consumption

level of the users. The new algorithm is called UIBO, which captures the effect of

variation in number of users also appears in the constraint.

In the proposed optimization problem, the optimal value of the consumption level

of the users is considered. The price is updated at the beginning of each timeslot,

using the gradient projection technique. Also, solving the problem with respect to

different user number variations entry and departure types is considered. An interest-

ing contribution that is further suggested as future work is solving the problem with

regard to competition of two energy providers. In [17], this approach is considered

for UBO. It can be further expanded over IBO as well. Investigation on different

types of utility functions also is an interesting point that can be investigated further

in future research.
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There is a substantial amount of study on various forms of load side management,

from classical direct load control to the more recent real time pricing [75, 76, 32]. The

focus of some of this investigations is on optimization methods that minimize genera-

tion cost [77, 78, 79, 80]. Some investigations may follow the approach of maximizing

utility profit or minimizing deviation from users’ desired consumption as stated in

[81, 82, 83]. Renewable resources can fluctuate rapidly and by large amounts. As,

their level of penetration increases, the need for regulation services and operation re-

serves also increases [84], [85]. It can be provided by additional units at a higher cost

or may be supplemented by real time pricing demand response as has already been

implemented in [86, 87, 88, 89]. Demand response will not only be invoked to shave

peaks and shift load for economic benefits, but will increasingly be called upon to

improve security and reduces reserves [90]. In today’s Smart Grids, direct interaction

among energy providers and users has great importance in the users real life [14]. The

glancing overview on demand response highlights its importance to be studied from

different perspectives. Demand response must allow participation of large groups of

users, and must also be dynamic and distributed. A glancing overview on demand

response management programs from different aspects has been explained in [27],

[91] respectively. The proposed algorithm in [27] is based on maximization of energy

provider’s income when satisfaction of consumers is considered as well. In this case,

it is assumed that the energy provider solves an income based objective function that

involves the optimized consumption level of users. In [91], real time pricing is consid-

ered when users are served by multiple energy providers. To match the consumption

with provided supply, Real-Time Pricing (RTP)-based energy consumption schedul-

ing scheme is considered, which consists of energy consumption allocation, energy

33



CHAPTER 2. LITERATURE REVIEW

provider selection and real-time pricing. In [34], a logarithmic objective function has

been proposed to describe a distributed framework for demand response and users’

adoption is also considered. In case of existence of renewable energy resources, the

concept of load uncertainty has been studied in [28]. However, investigation over

variation in the number of users based on proposed distributions which is studied

in this thesis is a new concept under consideration. Smart Grid provides more ef-

ficient control over producing the electricity not only in residential areas, but also

in commercial and industry section. Moreover, it plays an important role in de-

creasing the electricity consuming during the periods that maximum consumption is

achieved. The most important ingredient of smart grid involves smart meters that are

connected to the LAN. This provides two way interactions among users and energy

providers, with the aim of reducing the peak power consumption in peak periods,

which is the goal DRM [75], [76]. Recent interests in DRM has been towards real

time interaction between users and energy providers via Energy Management System

(EMS) which may be used as a component of the smart meter [28]. It makes the

best use of electricity according to the announced energy price from the provider. In

[58], real time pricing is considered with the goal of minimization of the price and

the time. The key point is the achievable optimality when user type is considered

to be confidential [14], [28]. In many investigations load uncertainty is considered in

the context of forecasting the load or modelling upon stochastic [75], [92] in a way

that the problem of DRM is solved with respect to consideration of different type

of uncertainty. In [28], load uncertainty captures measurement errors through the

communication links and the distributed algorithm in [58] is taken into account for

various load uncertainty models. Although, [28] shows how diverse models of load
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uncertainty affect the consumption as well as the generating capacity, it does not

discuss the effect of user distributions in certain periods. Therefore, in this work the

effect of different distributions over variation in number of users that may enter to

the grid is considered when it is assumed that number of users may vary randomly

or based on Poisson process or may even be kept constant. The results are compared

with [28] where load uncertainty is considered as bounded uncertainty that is added

to the users’ consumption. The contributions to this section can be summarized as

below:

• The utility function is updated based on bounded uncertainty that is added to the

consumption level of users, then three types of users’ variation are modelled. Users

whose variation is considered to be random, users whose variation is according to

the Poisson process, and users that do not vary, and their number is kept constant.

Also, the effect of increasing the number of users over the average gap and also price

is investigated.

2.8 Related works

There is a lot of investigations related to the stochastic approach of load side man-

agement in which the constraint of objective function is defined based on different

aspects, such as type of appliance. However, consideration of the concept of vari-

ation in the number of users with regard to stochastic approaches in the objective

function’s constraint is a novel study point which is investigated in this thesis.

There are many research on the effect of renewable energy, that is investigated from
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different aspects [93]. Some aspects focus on game theory approaches [94]. RTP

is also investigated from the communication aspects [95]. The study over unstable

energy providers and malicious users is also done by [96]. The concept of security

in the smart grid is studied in [97]. In [98], a stochastic model for residential elec-

tric vehicles (EV) based on charging demand in smart grid is studied. Given that

characteristics of extra load consumption follow people driving behaviours, random

parameters such as arrival time and charging time of vehicles therefore determine the

expected demand. In this case, a model for uncoordinated charging power demand of

an EV based on stochastic process is developed and illustrated for different charging

time distributions.

In [99], the impact of prices on users’ load profiles when users are equipped with

energy consumption scheduling devices is studied. The iterative stochastic approx-

imation is used to design two RTP algorithms. The proposed algorithms eliminate

the need to know the structure of the objective function. To simulate the operation

of devices and users price responsiveness, a System Simulator Unit (SSU) is proposed

that employs approximate dynamic programming. Simulation results reveal that us-

ing these algorithms reduces peak to average ratio and helps users reduce their energy

expenses as well. In [100], an optimization based real time residential load manage-

ment algorithm considering load uncertainty with respect to statistical estimation

with the goal of minimizing energy payment for each user is proposed. In problem

formulation, different types of constraints on the operation of various appliances such

as must run or controllable-interruptible/non interruptible appliance have been pro-

posed. The proposed algorithm benefits both users and energy providers by reducing

energy expenses and improving peak to average ratio of the aggregate load demand.
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Formulation of an optimization problem to minimize the electricity payment of users

when only an estimate of users’ future demand is available is considered. In [3], an

optimization model to adjust the hourly load level of a given consumer in response

to hourly electricity prices has been proposed. The objective of the model is to max-

imize the utility of the consumer subject to a minimum daily energy-consumption

level, maximum and minimum hourly load levels, and ramping limits on such load

levels. In [101], it has been shown that output symbols according to Poisson process

coincides with the utilization factor of the channel on the real time basis. It means

minimizing loss probability achieves the maximum spare time to transmit another in-

formation. A class of sources including Poisson process and continious Markov chain

has been specified that traverses a finite state space and arbitrary random stay time.

It is shown that the necessary and sufficient condition for the coincidence of values

between the loss probability and utilization factor is that for each state, the stay time

obeys an exponential distribution. This achieves the minimum loss probability.

In [102], decision making under uncertainty in energy systems has been studied.

The decision making chain is fed by input parameters that are usually subject to

uncertainties. The art of dealing with uncertainties has been developed in various

directions. The new standard classification of modelling technique of uncertainties

is proposed and compared. Based on the proposed comprehensive classification, it is

concluded that each method is suitable for a specific type of uncertainty.

In [28], the proposed utility framework and distributed algorithm of real time pricing

that is proposed in [14] has been extended to include the effect of uncertainty. The

effect of diversity in types of load uncertainty on power consumption and generating

capacity is evaluated. It is shown that load uncertainty increases the price.
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Chapter 3
Optimal Real-time Pricing(ORTP) based

on Income Maximization for Smart Grid

3.1 Introduction

Electricity is provided through an infrastructure consisting of electric utilities, power

plants and transmission lines. Considering increased expectations of consumers, the

lengthy process of exploiting new energy resources as well as the reliability issues indi-

cates the importance of developing new methods to increase grid efficiency. According

to [27] currently, the electricity is not efficient in most buildings. For instance, plug in

hybrid electric vehicles potentially double the average household billing for consumed

load. All these reasons indicate the importance of DRM. There is a wide range of

DRM such as voluntary load management and direct load control. As it is mentioned

in Chapter 2 in general DRM has been divided into incentive based and price based
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options. This thesis focuses on RTP which is offered by an energy provider and is

announced to multiple users. In this case, a novel algorithm for the future smart

grid is proposed. The algorithm is based on the net benefit maximization for the

energy provider in a way that the satisfaction of consumers is considered as well. In

this way, the algorithm achieves the goal of demand management programs which

is benefit and satisfaction maximization for both sides of energy provider and users

correspondingly.

3.1.1 M

otivation In this chapter an Income based optimization problem is defined and solved.

This algorithm is based on optimization of the net benefit of energy provider. Ac-

cording to [103] the Income is the sum of all the wages, salaries, profits, interests

payments, rents, and other forms of earnings received,etc. in a given period of time.

Income per capita has been increasing steadily in almost every country. Many factors

contribute to people having a higher income such as education, globalisation political

circumstances such as economic freedom and peace. Increase in income also tends to

lead people choosing to work less hours. Developed countries (defined as countries

with a developed economy) have higher incomes as opposed to developing countries

tending to have lower [104]. The concept of income in electricity marketing is an

important factor that is studied from the point of users behaviour affect on their

consumption as well as the provided amount of electricity. The concept of Electricity

Marketing is important and affects the economy of countries. This topic is mostly

related to consumers behaviour. Definition of an utility function depending on users
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consumption is important to solving the problem of maximizing the benefit of both

sides of users as well as energy providers and minimizing the cost imposed to provider

of electricity. There are many literature study in that area. For instance, in [105], [11]

the social welfare problem is solved with respect to consumers’ utility maximization.

In these works a general objective function in the presence and without the presence

of uncertainty is solved. Also, a model including some consumers that each one uses

different appliance is considered. Each type of appliance that a consumer may use

is modelled as well. However,as it is mentioned in chapter two the responsiveness

of different levels of society to specific price is not explained. This is further shown

in [21] over description of parameter which describes the kind of users in the utility

function. Moreover, the proposed algorithm is an off-line distributed algorithm, as

all decisions are made at once before the day starts. Therefore, the users and energy

provider do not benefit from two way real time interaction. However, solving the

problem with respect to consideration of two time scale is a point that is considered

in that study. The works in [58, 14, 17] improves [21] in a way that for each specific

appliance of each user a utility function is proposed. And, then the problem of social

welfare optimization in a way that it is assumed there are some devices that store

energy is solved.

In [14], a general utility function, dependent on not only the consumption level of

the users, but also dependant to a parameter which implies how different users re-

spond to specific price is defined. The technique used is Lagrange decomposition

approach, which decomposes the problem into solvable sub problems that are solved

by the users and energy provider separately. Although, it seems that the model is

able to describe the interaction procedure between energy provider and users clearly,
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but it does not discuss over net benefit maximization of the energy provider with

respect to consideration of optimum users’ demand. Moreover, it does not discuss

the effect of uncertainty related to the uncertain behaviour of users. The proposed

algorithm in [14] tries to solve the social welfare optimization problem, but it does

not discuss the effect of increasing the number of users on average consumed load.

Also, solving an optimization problem regarding the income of energy provider with

consideration of consumers’ satisfaction has not been considered in [106, 55, 107].

In this thesis the net benefit function optimization problem is solved. Also, the ef-

fect of increasing the number of users on average load including generated capacity

from the energy providers’ side and total consumption of users from users’ side has

been considered and is compared with previously proposed utility based optimization

in previous related works. The contributions of this chapter can be summarized as

below:

• A new income based algorithm is proposed which describes the interaction

between users and energy provider.

• The general income based optimization problem is proposed. This optimization

problem is solved by energy provider and is based on the maximization of

energy providers’ net benefit with respect to its income which achieves from

the aggregation of the users’ optimal demand.

• The comparison between UBO and IBO regarding the average load is consid-

ered.

• The effect of increasing the number of users on average load is investigated.
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The rest of this chapter is organized as follows: Section 3.2 describes the system

model, Sections 3.3 and 3.4 discuss over problem formulation and problem solving,

Section 3.5 is about the proposed distributed algorithm, Section 3.6 provides the

simulation results, and finally section seven is the conclusion. The flowchart in Figure

3.1 shows the required steps that each side of users and energy provider considers

with respect to the proposed algorithm.

Figure 3.1: The required steps for negotiation between users and energy provider in
the proposed algorithm
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3.2 System Model

It is assumed that the users have smart meters which are connected to the energy

provider by means of a LAN. The LAN provides the opportunity for two way com-

munication between smart meters and the energy provider. It is also assumed that

N users connect with one energy provider. There are some factors that each side of

users and energy provider considers for negotiation with each other. From the energy

providers’ side, it is the aggregation of users’ optimal demand that is considered to

offer the appropriate price to the users. And from the users side it is the time of the

day as well as the price that affects their consumption.

According to our proposed model, the 24 hours of a day is considered as the operation

cycle of the users and is divided into some periods that are called time slots. The

beginning of each time slot is called updating time. It is assumed that through the

interaction between the energy provider and the users, they evaluate their optimum

energy level at the beginning of each time slot by solving their welfare optimization

problem. Therefore, the algorithm starts with an initial price which is updated based

on aggregation of the users’ optimal demand as well as the generating capacity at

beginning of each updating time and also optimum generated capacity is provided

by energy provider during the period between two updating times. In our proposed

model, the updating time happens at the beginning of each time slot. Therefore,

in the next updating time the same procedure is repeated and users optimize their

consumption level based on the announced price.
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3.2.1 User Objective Function

It is assumed that each user is an independent decision maker. The energy demand of

the users may vary based on different parameters. For example, the time of the day,

the season, the electricity price and etc. All these parameters affect the consumption

patterns of users. Different response of different users to various prices can be modeled

analytically regarding the concepts of micro economics. The utility function is defined

as U(x,w) in which x represents the consumption level of users and w indicates the

type of use. It is assumed that the utility functions have two important properties:

first, the utility functions are non-decreasing which implies:

∂ U(x,w)

∂x
≥ 0 (3.1)

And also if the second order derivative of U be considered as marginal benefit, it is

non increasing, which means it should be less than zero:

∂2 U(x,w)

∂x2
≤ 0 (3.2)

It is also assumed that for a fixed level of x the larger w achieves a larger utility.

This property can be written as :

∂ U(x,w)

∂w
≥ 0 (3.3)
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According to [14] various choices of utility functions are widely used in the commu-

nications and networking literature [105]. However, recent reports indicate that the

behaviour of power users can also be accurately modelled by certain utility functions

[108]. In this thesis, we consider quadratic utility functions corresponding to linear

decreasing marginal benefit [109]:

The equation below describes the proposed utility function

U(x,w) =


wx− α

2
x2 0 ≤ x ≤ w

α
w2

2α
x ≥ w

α

(3.4)

In above formula, U is the proposed utility function. According to [14], [27], α is a

positive predefined constant parameter which bounds the consumption of users in the

proposed utility function. This parameter characterizes the saturation point of the

utility. The higher the α the lower the power consumption to reach the saturation

point [28]. Moreover, x is a power consumption level for each user. The welfare

function of the users is defined as:

W (x,w) = U(x,w)− fx (3.5)

Where f is the price. This price is the rate which is announced by energy provider

at the beginning of each time slot. At the beginning of each slot users optimize their

welfare as it is shown below:

Max(W (x,w)) (3.6)
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In this case the equation (5.5) is solved as Equation (3.7):

x∗k(
∑
i∈N

wi, fk) =

∑
i∈N wi − fk

α
(3.7)

In this literature, the optimal consumption level for the users, regarding the con-

straints that bounds x between its maximum and minimum values, is achieved by

solving (3.6) putting its first order derivative equal zero. The maximum of x is when

the users turn on all their appliances including their lumps and its minimum level

achieves when only the refrigerated is on.

3.2.2 Energy Providers Cost function

In this section a cost function which indicates the cost of providing Lk units of energy

which is offered by the energy provider in each time slot k is suggested. According

to [14], [27]

the cost function of providing electricity is assumed to be increasing and strictly

convex.

CK(Lk) = akL
2
k + bkLk + ck, ak > 0, bk, ck ≥ 0 (3.8)

In the above cost function the coefficients are pre-determined parameters where it is

assumed that ak > 0, bk, ck ≥ 0 [14]. It is also assumed that these coefficients are eval-

uated based on hourly negotiation between energy provider and wholesale electricity

market. The proof of convexity is explained in [58], with regard to consideration of
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two assumptions:

1. The cost functions are increasing, in the offered energy capacity, that is repre-

sented in Equations (3.9) and (3.10):

Ck(L̂k) ≤ CK(L̃K) ∀(L̂k) ≤ L̃K (3.9)

2. The cost functions are strictly convex. That means for each k, any 0 ≤ θ ≤ 1

and L̂K , L̃K ≥ 0 then :

Ck(θL̂k + (1− θ)L̃k ) ≤ Ck(L̂k) + (1− θ)Ck(L̃k) (3.10)

Therefore, Linear Piecewise Cost functions (LPC) and Quadratic Cost Functions

(QCF) are two example cost functions that satisfy those assumptions.

Piece-wise linear functions and quadratic functions are two example cost function

that satisfy those assumptions. In our research we use the piece-wise linear cost

function for more simplification in the solution of the objective function that further

will be explained. Equation (3.11) describes the proposed cost function:

Ck(Lk) =


akLk + bk Lmin ≤ Lk ≤ Lk

akLmax + bk Lk ≥ Lmax

(3.11)

Where ak > 0, bk ≥ 0. The index k indicates the kth timeslot and Lmin and Lmax

achieve from aggregation of minimum and maximum required load correspondingly. It
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is assumed that the minimum required average load is guaranteed by energy provider.

Also, the energy provider never provides more than maximum required average load.

This means that generated capacity is also between the maximum and the minimum

required average load.

3.3 Problem Formulation

3.3.1 IBO Problem Formulation

In this section,the interaction between the users and energy provider as an opti-

mization problem is formulated and the existence and uniqueness of the solution

is analysed the feasible set is found. In this model, the energy provider announces

the price of electricity in real-time based on the aggregation of optimum consumption

level of users which achieves from (3.6). The formulation of the optimization problem

is done as below:

max
xki ∈Iki , Lmin

k ≤Lk≤Lmax
k k∈K,i∈{N}

∑
k∈K

∑
i∈N

(xki )
∗(fk)fk − Ck(Lk)

s.t.
∑
i∈{N}

xki ≤ Lk,∀k ∈ K
(3.12)

We call this objective function IBO as instead of the utility, in proposed Algorithm

in [14] this is the income which is subscribed from the cost with goal of providing net
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benefit of energy provider with respect to consideration of users’ satisfaction. In this

objective function, fk is a variable which indicates the fee that is paid by the users

according to the announced price from the energy provider and x* is a function of

fk which is achieved from solving (3.6). Also, K is the set of all time slots. As it is

mentioned in chapter two we solve the problem in one time slot and then expand it

to the K time slot,in a way that the users optimize their consumption based on the

evaluated price in the previous slot and the same procedure is repeated. In the next

chapter the algorithm is explained. The Figure 3.2 indicates the procedure. It should

be noted that the cost is assumed to be fixed per time slot. However, its variation

is based on the aggregation of users consumption achieved at the beginning of each

time slot.
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Figure 3.2: Illustration of the operation of the proposed algorithm and the interac-
tions between the energy provider and subscribers in the system

Therefore, we solve equation (3.13) instead, and further expand it over the set of K

time slots.

max
xki ∈Iki , Lmin

k ≤Lk≤Lmax
k k∈K,i∈{N}

∑
i∈N

(xki )
∗(fk)fk − Ck(Lk)

s.t.
∑
i∈{N}

xki ≤ Lk,∀k ∈ K
(3.13)
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One advantage of this idea is that the IBO provides the net benefit for energy provider

in a way that satisfaction of all consumers has been considered , however, unlike UBO

it is not needed to decompose the problem to sub problems that should be solved

by users and energy provider separately. Moreover, without consideration of load

uncertainty the generated capacity and users’ consumption correspond and converge

to maximum required load. In another word, the energy provider dose not feel too

much changes in its electricity procurement because of the extra users demand. In

thesis, it is assumed that the users utility function is defined based on small values

for predefined parameter α, that means that the users can consume electricity in

larger range of demand. Figure 3.3 describes how users with different parameter w

achieve to their maximum level of satisfaction . It is appear that users with lower w

has lower utility or in another word their level of satisfaction is lower in comparison

with users with higher parameter w. As, it is shown in Chapter 2 and according

to [78], the defined utility function depends on a predefined parameter called α.

Based on the utility formulation in 3.4 the parameter α and w reacts in a same way,

that means the more α refers to higher level of satisfaction or utility for the users.

The proposed IBO algorithm is defined in a way to provide satisfaction for lower

economical level of the society which gets to their maximum level of satisfaction with

lower level of consumption. However, this algorithm is further analysed for larger

values of parameter w.
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Figure 3.3: Sample utility functions for power subscribers (α= 0.3) [14]

3.4 Problem Solving

The main goal of this part is the investigation over the feasible set with respect to

all its constraints for the problem (3.12). In order to prove availability of feasible

set, the Lagrangian relaxation technique is used for finding out the feasible set over

optimum value of f and L which represent the price and generating capacity. The

Lagrangian is evaluated as [14], when λk is the Lagrangian multiplier :
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Λ(fk, Lk, λk) =
∑
i∈N

(xki )
∗(fk)fk − Ck(Lk)− λk((xki )∗(fk)− LK) (3.14)

The technique for solving the optimization problem is also explained in [14]. Accord-

ing to [27], [110], the feasible set is achieved as (3.15):


λk = ak

f ∗k (
∑

i∈N wi, ak) =

∑
i∈N wi + ak

2

L∗k(
∑

i∈N wi, f
∗
k ) =

∑
i∈N wi − f ∗k

α

(3.15)

This feasible set is guaranteed as long as (3.16) is satisfied,

0 ≤ (xki )
∗(fk) ≤ (

wi
α

) and Lmin ≤ Lk ≤ Lmax. (3.16)

Also f ∗k (
∑

i∈N wi, ak) can be written as (3.17):

f ∗k (
∑
i∈N

wi, ak) = α
∑
i∈N

x∗(fk) + ak (3.17)

According to [27], for updating the price the equation below using gradient projection

method is used.

fk+1 = fk + γ[
∑
i∈N

xk∗i (fk)− L∗k(fk)]]+ (3.18)

The above formulation for price and capacity indicates that the price is updated in

each time slot as soon as the aggregation of optimized demand is revealed and then
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the optimum value for capacity provided by energy provider is achieved. In this

formulation γ is the step-size, xk∗i (fk) and L∗k(fk) are the optimal consumption and

generated capacity correspondingly. The flowchart below describes how the overall

system works with respect to consideration of IBO algorithm.

 

Figure 3.4: Illustration of how IBO works in DRM

.
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3.5 Distributed DRM Algorithm

In this section the proposed algorithm is explained. This algorithm which is proposed

in [27] describes the interaction procedure between users and energy provider.

Algorithm 3.1 Executed by each user i ∈ N (IBO)

1: Initialization
2: for all t ∈ T do
3: Receive the new value of fkt from the energy provider
4: Update the consumption value by solving (3.6)
5: Communicate the updated value of x∗ki (fkt ) to the energy provider.
6: end for

Algorithm 3.2 Executed by energy provider (IBO)

1:Initialization
2:repeat
3:If this is the beginning of each time slot k ∈ K
4:Compute the new value of fk

∗ using (3.17).
5:Broadcast the new value of fK to all users.
6:else
7:Update the capacity value Lk by solving (3.15)
8:Receive xki (fk) from all users
9:Update total load
10:end
11:Until end of the intended period.

From the users’ side, the algorithm 3.1 is executed by each user i. Also, Algorithm

3.2 is described from the point of view of energy provider. In above algorithms the

interaction between users and the energy provider is shown. The algorithm starts

with the initial price which is evaluated by energy provider at beginning of each time

slot. In the period between two time slot the sum of optimal consumption of users

and also optimum generated capacity of energy provider is evaluated. The updated

price is announced to the users and the same procedure is repeated in a way that
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again at the beginning of each timeslot updated optimal price is announced to the

users and users optimize their consumption again. Figure 3.2 illustrates how energy

provider and users interact in IBO.

3.6 Performance Evaluation

In this section , the simulation results are presented and also the proposed algorithm

is discussed as well. It is assumed that the number of users, N, is equal to 10. The

entire time cycle is divided into 24 time slots, representing 24 hours of the day. The

minimum and maximum power requirements vary in each time slot. While it is

assumed that the maximum power requirement is when all the appliances are in use

and the minimum power requirement is when only appliances such as fridges are on.

We also assume that the parameter w is selected from the interval [1,4] and remains

fixed through the interval. The parameter α is assumed to be small enough to let

users to consume more energy in order to consider users with higher saturation rate,

according to 3.2.1. Table 3.1 shows the considered parameters and their notations.

To have a base line, we consider the proposed algorithm in [14], and we call it UBO ,

Table 3.1: Description of effective parameters (IBO)

PARAMETER VALUE
No. of Users 10,20,30

Time of Day (hr) [1,24]
Class of User’s [1,4]

Coefficients of Construction
a k = 0.01,0.1,0.6,1

b k=0
α 0.005
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and compare it with our proposed IBO. The results of running UBO algorithm shows

that generated capacity and total power consumption correspond and are bounded

between the maximum and minimum required load. For small values of parameter

α simulation results show that using IBO algorithm, users may have use up to their

maximum demand. Simulation results have been shown in Figure 3.5. It is assumed

that the gap appears in the time slot between 10-12 AM and the simulation results

is considered for 24 hours timing period.

 

Figure 3.5: Comparison between average load for IBO and UBO algorithm for N=10
user
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As, it is appear from Figure 3.5 the average load for IBO and UBO algorithms is

limited between maximum and minimum power requirements. This result achieves

according to 2.1 for UBO as well as 3.12 constraint of the proposed optimization

problem. Moreover,it is assumed that according to the proposed scenario the users

achieves to their maximum level of satisfaction with lower consumption. Figures 3.3

and 3.5 illustrate the in this proposed scenario users in IBO consume more average

load.

Figure 3.6: Effect of increasing the number of users on average load for UBO [14]
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Figure 3.7: Effect of increasing the number of users on average load for IBO

Figures 3.6 and 3.7 describes the effect of increase in number of users for both UBO

and IBO algorithms. It is expected that when number of users increase the consump-

tion also increases. The simulation results confirm both algorithms.

59



CHAPTER 3. OPTIMAL REAL-TIME PRICING(ORTP) BASED ON INCOME
MAXIMIZATION FOR SMART GRID

 

Figure 3.8: Effect of Parameter α on average load, α = 0.05
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Figure 3.9: Effect of Parameter α on average load, α = 0.005

Figures 3.8 and 3.9 describes the effect of the parameter α on the average consumed

load. As, it is appear from these two figures when the parameter α is smaller the

GAP between generating capacity and consumption for UBO is lower in comparison

with IBO Algorithm. The reason is related to the effect of this parameter on the price

as in IBO this parameter affects the price in a way that the more α the more the price

which announced to the users. Therefore, the larger values of this parameter causes
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more gap between generating capacity and consumption. According to Figure 3.3,

the physical meaning of this parameter is closely related to the parameter w which

indicates level of satisfaction for users per amount of consumption.

Figure 3.10: Effect of Parameter ’a’ on Price

Figure 3.10 describes the effect of the coefficients of cost function on the price. As,

it is expected increase in coefficients of the cost function directly affect the price.

According to the solution of the optimization problem in IBO algorithm the price

is dependant to the coefficient of cost function, therefore increase in this parameters

affect the price. Figure 3.10 illustrates the effect of increase in this parameter for

different hours of the day.
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3.7 Summary

In today’s smart grid, DRM plays an important role to increase the efficiency of

the grid. There are various ranges of DRM programs, such as direct load control,

voluntary load management, etc. However, Real Time Pricing is one of the most

important programs in residential areas. With respect to the importance of dynamic

pricing in smart grid a novel income based algorithm is proposed and is compared

with previously suggested utility based algorithm.

Simulation results confirm that the performance of the proposed IBO algorithm re-

garding the small values of parameter α in utility function is better in case of con-

sumption up to the maximum demand. The effect of increasing the number of users

regarding the optimum price is considered as well. Simulation results show that when

number of users increases the consumption for both IBO and UBO algorithms also

increases. However, the gap between low and high number of users for IBO is lower

in comparison with UBO.

In the next section solving the optimization problem with regard to load uncertainty

in consumption is suggested. In this way, it is assumed that the problem is solved

when bounded uncertainty is added to the consumption of the users. It can be mod-

elled in a way to assume that load uncertainty is existed due to using renewable

energy such as wind, solar and etc. In this case several uncertainty models can be

considered as the added noise to consumption, which in this thesis it is focused on

bounded uncertainty model which is described in [28].
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Chapter 4
An Optimal Real Time Pricing Algorithm
under Load Uncertainty and User Number
Variation in Smart Grid

4.1 Introduction

In this section we discuss about the effect of renewable energy in consumption of the

users and generation of the energy provider with goal of solving the DRM problem

with the aim of maximizing benefit of both sides with respect to consideration of the

effect of uncertainty in user number variation based on different distribution models.

In this case it is important to have a glance on renewable energy which affects the

utility as well as the cost in DRM.

According to [111], increasing renewable electricity generation is an essential com-

ponent in achieving a doubling of the renewable energy share in the global energy

consumption. It should be noted that this transition is technically feasible, but will
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require upgrades of old grid systems. The reason we study uncertainty in this chapter

is basically related to some forms of renewable electricity, notably wind and solar,

which are dependent on an ever fluctuating resource such as wind or sun. As electric-

ity supply must meet electricity demand at all times, efforts are required to ensure

that electricity sources or electricity demand is available for the grid in presence of

uncertainty. In other words the grid should be able to absorb this variability as

a result of renewable energy. Distributed renewable generation specially when the

smaller-scale systems are matter, usually privately owned or might be operated by

energy companies, represent a new and different business model for electricity. Tra-

ditional utilities are often uneasy about allowing such systems to connect to the grid

due to concerns over safety, effects on grid stability and operation, and the difficulties

in valuing and pricing their generation. This point make highlight the importance of

smart grid in comparison with traditional grids.

The cost of fossil fuelled generating technologies is mostly higher than renewable

electricity generating technologies. This also highlight the importance of study in

that area. It should be noted that although renewable energy is cost effective in

some points, but developing countries do not have access to sufficient basis to in-

vest in renewable. However, due to advantages of running renewable energy in this

chapter we discuss DRM with respect to uncertainty assuming appear as a result of

uncertainty in renewable. One of the principal challenges in operating an electric-

ity system is ensuring that the demand for electricity is always exactly equal to the

supply. This is discussed in chapter two. In essence, a smart grid plays an impor-

tant role to integrate renewable with a wide range of diverse electricity resources.

For instance, in case a PV system and a set of commercial and industrial electricity
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consumers on an interruptible rate, all tied together with smart grid If the output of

the PV system drops due to a cloud, then the smart grid interrupts service to those

customers on the interruptible rate, and then when the cloud moves on, their service

resumes. Therefore, it is important to define and solve DRM problems in presence

of uncertainty.

In this section [28], is extended and three types of variation based on different distri-

butions for users entry and departure have been considered . It is assumed that with

respect to the consideration of load uncertainty, the number of users might be consid-

ered to be constant, vary based on uniform distribution or vary according to Poisson

distribution. Consideration of uncertainty in number of users affects the consumption

level of users as well as generating capacity. The idea of adding uncertainty to users

utility subject to the consideration of different types of distributions for variation in

users entry and departure and investigation over the gap between generating capac-

ity and users consumption is the base line for this chapter. Figure 4.1 describes a

flowchart for the required steps we consider for solving the DRM problem in presence

of load uncertainty and user number variation, that for UBO algorithm is studied in

this chapter. As, it is shown in figure 4.1 the output of the overall system depends

on the kind of DRM problem which is selected. It should be noted depending on the

proposed scenario different algorithms might be chosen to solve the DRM problem.

This figure in general represents the system framework.

66



CHAPTER 4. AN OPTIMAL REAL TIME PRICING ALGORITHM UNDER
LOAD UNCERTAINTY AND USER NUMBER VARIATION IN SMART GRID

 

Figure 4.1: Flowchart for representation of the overall system framework

4.2 System model

Information exchange among energy provider and consumers happens at the begin-

ning of each time slot. The proposed model in this chapter is similar to the proposed

model in Chapter 3, however, different from [28] which explains that the power con-

sumption may deviate from what was negotiated at the information exchange section

due to load uncertainty with the constant consumers , in this chapter it is assumed
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that number of users may vary different distributions. It is also assumed that the

energy provider is obliged to provide enough electricity to cover the minimum power

consumption requirement. In this chapter, we consider three types of systems that

perform based on different users entries or departure types. In this case it is assumed

that the rate of users’ departure or entries may be constant as in [28]. The investiga-

tion over such a system is called Constant System Analysis (CSA), and is compared

with systems where the number of users may vary randomly or based on Poisson

process, that are called Uniform Distribution System Analysis (UDSA) and Poisson

Distribution System Analysis (PDSA) respectively.

4.3 Utility Function and Energy Cost Model

4.3.1 Consumer Utility function

The utility function shows the level of satisfaction of consumers. The proposed utility

function in [58] is considered to be quadratic with saturation. Equation (3.1) repre-

sents the proposed utility function regardless of load uncertainty. In [28], the effect of

load uncertainty appears in the utility function. The proposed utility function with

regard to load uncertainty is defined as below:
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Ũ(x,w) =

 wx− (α
2
)x2 − α

2
σ2
δ 0 ≤ x ≤ w

α

w2

2α
− α

2
σ2
δ x ≥ w

α

(4.1)

It is assumed that a random variable which represents the load uncertainty is added to

the consumption level of users. Therefore, actual power consumption is represented

as x̃i
k = xki + δki . Where δki represents several variations of the load demand within a

time slot that might be as a result of renewable fluctuations. It is assumed that the

variance of δki is equal to σ2
δ . Thus according to (4.1) load uncertainty reduces the

utility proposed in (3.1) on the average. In [28], different uncertainty models have

been analysed. However, in this thesis it is focused on bounded uncertainty model

which limits the variation of the load demand between a maximum and minimum

value.

4.3.2 Supplier Cost function

The cost function of providing electricity is assumed to be increasing and strictly con-

vex. Therefore, linear piece-wise cost functions (LPC) and quadratic cost functions

(QCF) are two example cost functions that satisfy those assumptions. The proposed

cost function is the same as (3.8) that have the characteristics of (3.9) and (3.10).
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4.3.3 Optimization problem

In [14], RTP is formulated as maximization of social benefits among the consumers

and the energy provider, based on the subscription of aggregation of users’ utility of

energy provider cost function, while the constraint is the summation of the power

consumption not exceeding the generating capacity at each timeslot. As maximiza-

tion of aggregation of all users’ utility functions and minimization of the cost imposed

to energy provider is the goal that is followed by each sides of users and the energy

provider, therefore, mathematically the optimization problem can be written as (2.1),

(2.2). However, each user may choose his own optimal consumption level to maximize

his welfare, which is described as the subscription of users’ utility function of the cost

imposed by the energy provider to the user. It should be noted that the individual

optimized consumption level of users may not be socially optimized. In this case,

the sum of all users’ utility function minus the cost that is imposed by the energy

provider is considered as the proposed objective function, while the consumption level

of all users is adopted with limited source of energy which is provided by the energy

provider.

The technique for solving optimization problem is explained in [112]. Also, the prob-

lem can be solved separately at each time slot by users and also the energy provider.

In this case, each user determines the optimal consumption xk∗i from

xk∗i = arg max
xki ∈Iki

U(xki , w
k
i )− λkxki (4.4)

Where λk is the Lagrange multiplier representing the energy price. Then xk∗i is sent
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to the energy provider who determines the optimal Lk from

L∗k = arg max
Lmin
k ≤Lk≤Lmax

k

λkLk − CkLk (4.5)

The energy provider updates the price λk according to the gradient projection method.

λkt+1 = [λkt − γ(∂(λkt ))/(∂λ
k)]+ =

[λkt + γ(
∑
i∈N

(x∗ki (λkt )− Lk(λkt ))]
(4.6)

Hence, the price is updated based on the above formulation. Where t is the iteration

index and γ is the step size chosen to be small enough for convergence. The algorithm

can be used to solve the optimization problem without knowing the ωki . With regard

to the consideration of the effect of load uncertainty, the maximization problem in

(2.2) can be written as [92], [28]:

max
xki ∈Iki , Lmin

k ≤Lk≤Lmax
k k∈K,i∈{N}

∑
k∈K

∑
i∈N

E(U(x̃ki , ω
k
i )− Ck(Lk))

subject to
∑
i∈{N}

xki + δki ≤ Lk,∀k ∈ K
(4.7)

According to [28], it is assumed that bounded uncertainty is added to the users’

consumption, therefore the left hand side of the constraint in the above objective

function might be written as (4.8):
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∑
i∈N

(xki + δki ) =
∑
i∈N

(xki ) +
∑
i∈N

(δki ) ≤

∑
i∈N

(xki ) + |
∑
i∈N

(δki )| ≤
∑
i∈N

(xki ) +
∑
i∈N

|(δki )| ≤

∑
i∈N

(xki ) +Nε

(4.8)

It is assumed that | δki |≤ ε, ∀i ∈ N ,∀k ∈ K and ε is maximum magnitude of load

uncertainty. The constraint in (4.8) can be written as:

∑
i∈N

(xki ) ≤ Leffk ,∀k ∈ K, (4.9)

Where Leff∗k = L∗k − Nε. It must be noted that the change in price affects the

consumption and generating capacity . The equation (4.6) also is updated based on

bounded uncertainty and can be written as [107]:

λkt+1 = [λkt − γ(∂(λkt ))/(∂λ
k)]+ =

[λkt + γ(
∑
i∈N

(x∗ki (λkt )− L
∗eff
k (λkt ))]

+
(4.10)
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Therefore,problem (2.1) might be written as [28]:

max
xki ∈Iki , Lmin

k ≤Lk≤Lmax
k k∈K,i∈{N}

∑
k∈K

∑
i∈{N}

Ũ(xki , w
k
i )− Ck(Lk)

subject to
∑
i∈{N}

xki ≤ Leff∗k , ∀k ∈ K
(4.11)

In this section, the models for variation of number of users are considered and com-

pared. Therefore equation(4.9) is rewritten as(4.12) which is represented in [107]:

∑
i∈N

xki ≤ Lk − E(N
(p,u,c)
k∈k )ε ,∀k ∈ K (4.12)

Where N
(p,u,c)
(k∈k) represents the number of users in kth timeslot, with regard to it’s

variation that may be considered based on Poisson process or uniform distribution,

or may be kept constant which is represented by p, u, c. Therefore, the proposed

objective function with regard to consideration of the bounded uncertainty model

can be written as :

max
xki ∈Iki , Lmin

k ≤Lk≤Lmax
k k∈K,i∈{N(p,u,c)

(k∈k) }

∑
k∈K

∑
i∈{N}

U(x̃ki , w
k
i )− Ck(Lk)

subject to
∑
i∈{N}

xki ≤ Lk − E(N
(p,u,c)
k∈k )ε ,∀k ∈ K

(4.13)

For solving this optimization problem, when the number of users vary, the average

number of users in the interval is considered as the expectation of E[N
(p,u)
(k∈k)] which

represents PDSA and UDSA respectively. It is assumed that E(δki ) is equal to zero,

73



CHAPTER 4. AN OPTIMAL REAL TIME PRICING ALGORITHM UNDER
LOAD UNCERTAINTY AND USER NUMBER VARIATION IN SMART GRID

which means that zero mean load uncertainty is considered. Therefore, considering

variation in number of users, equation (4.13) can be written as:

max
xki ∈Iki , Lmin

k ≤Lk≤Lmax
k k∈K,i∈{N(p,u,c)

(k∈k) }

∑
k∈K

∑
i∈{N}

Ũ(xki , w
k
i )− Ck(Lk)

subject to
∑
i∈{N}

xki ≤ Lk − E(N
(p,u,c)
(k∈k) )ε ,∀k ∈ K

(4.14)

Where Ũ is defined as (4.1). In the rest of the paper, the results for these three

systems, with regard to bounded uncertainty are compared . Therefore,(4.4), (4.5) is

written as (4.15), (4.16):

x̃∗ki = arg max
xki ∈Iki

U(xki , w
k
i )− λkx̃ki (4.15)

Leff∗k = arg max
Lmin
k ≤Lk≤Lmax

k

λk(L
eff∗
k )− Ck(Lk) (4.16)

Figure 4.2, describes the interaction procedure between subscribers and energy provider

with regard to consideration of load uncertainty.
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Figure 4.2: Illustration of the operation of the proposed algorithm and the interac-
tions between the energy provider and subscribers in the system [107]
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It is obvious from figure (4.2), that parameter λk which is assumed to be the an-

nounced price is sent to the subscribers and then the optimum consumption level of

users is sent back to the energy provider .

The optimum consumption level of users is assumed to be affected by a randomly

generated noise. The optimum generated capacity is evaluated and the price is up-

dated as well.

With regards to consideration of the load uncertainty, the effective value of the gen-

erating capacity which is dependent on the number of users and parameter ε that is

assumed to be a constant value, is updated in each time slot. It is assumed that the

number of users vary based on the three types of users entry and departure includ-

ing Uniform Distribution, Poisson Distribution and when the number of users kept

constant.

In the next section, the distributed algorithm which explains the interaction proce-

dure between users and the energy provider with regard to consideration of three

types of users variation in presence of load uncertainty will be explained.

4.4 Distributed Algorithm

In the proposed distributed algorithm in [14], it is assumed that the number of users

in each interval is kept constant, and the interaction between users and the energy

provider is done in each timeslot using a LAN that is connected to the energy con-

sumption controller unit .

In this section, it is assumed that users’ arrival and departure may vary based on
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Poisson Distribution or Uniform Distribution. According to [28], when bounded un-

certainty applies to the grid, the constraint in objective function would be dependent

on the number of users, therefore variation in the number of users based on different

distributions affects the outcome of the proposed algorithm. Also, because of the un-

certainty, the expectation of output from [28] running the Algorithms several times

is considered.

Also, the variation in the number of users is considered between two timeslots. There-

fore, the proposed algorithm in [14] is changed and explained in algorithms 4.1 and

4.2 from the users and the energy provider’s side respectively.

According to the Algorithms with regard to three different proposed users’ entry and

departure type the users receive the announced price from the energy provider at

the beginning of each timeslot. Each user optimizes his consumption level based on

(4.15) and sends it to the energy provider.

Algorithm 4.1 Executed by each user i ∈ N(UUBO)

1: Initialization
2: Generate users interval/departure based on Poisson/Uniform distribution or set

it as a constant value.
3: for all t ∈ T do
4: Receive the new value of λkt from the energy provider
5: Update the consumption value by solving(4.15)
6: Communicate the updated value of x∗ki (λkt ) to the energy provider.
7: end for
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Algorithm 4.2 Executed by Energy provider (UUBO)

1: Initialization
2: repeat
3: Generate users interval/departure based on Poisson/Uniform distribution or set

it as a constant value.
4: if t ∈ T then
5: Compute the new value ofλkt using(4.10).
6: Broadcast the new value of λkt to all users
7: else
8: Update the capacity value Leff∗k by solving(4.16).
9: Receive the Updated optimum consumption level of all users by solving(4.15).
10: Update the total load.
11: Accumulate the results for each time running the program
12: Average the results
13: Receive the new value of λkt from energy provider
14: Update the consumption value by solving (4.15)
15: Communicate the updated value of x∗ki (λkt ) to energy provider.
16: end if
17: Until end of intended period.

With regard to users’ entry and departure type, the energy provider computes the

new value of price at the beginning of each timeslot and broadcast it to the users.

At the moment the energy provider updates the optimum generating capacity based

on updated optimum consumption level that is received from users. The average of

results after several times running the algorithm is shown in the next section.

4.5 Simulation results and discussion

In this section, simulation results with regard to bounded uncertainty model for

UUBO considering PDSA, UDSA and CSA are compared. The aim of this part is

to investigate the effect of the distribution of users’ interval and departure with and
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without consideration of load uncertainty on the average gap which might be appear

between users’ consumption and generating capacity in some time slots. Also, the

effect of increasing the number of users is analysed as well. Simulation assumptions

and parameters are described as explained in Table (3.1). However it is assumed that

number of users are kept constant or varies based on Poisson or Uniform distribution.

It is assumed that the variation in number of users obtains the values in a 24 hour

time period. The consumer type represents the class of user that might be from a

higher or lower level of society as it is explained in Chapter 3. It is also assumed

that the minimum and maximum power requirement varies throughout the day, but

remains fixed during a one hour period. The simulation results in this thesis are

implemented by MATLAB. According to the algorithm the code starts with some

initial values for the price and maximum and minimum consumption level of users.

It is assumed that users consume more than equal the pre-defined consumption level

and also the generating capacity dose not exceeded the maximum users’ consumption.

In order to analyse the result sets of users according to different distributions are

produced. Then run the program for several times and take the average of the

results. Figures 4.3, 4.4 and 4.5 illustrate the gap between generated capacity and

power consumption. When it is assumed that the number of users is equal 10 users

and 24 hours period of a day is considered for the simulation for PDSA, UDSA

and CSA. As, it is appear the gap between generated capacity and consumption for

UDSA is more than two other distributions. One reason would be the larger variance

of uniform distribution in comparison with Poisson distribution as it is explained in

[113]. Simulation results show that when number of users increases the gap between

generated capacity and consumption decreases as expected because of the increase
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in users average consumption. We analyses the results for UDSA to investigate the

effect of increase in number of users when it is increased to 50 and 100 users to see

how it affects the gap between generrated capacity and consumption. As, it is appear

from Figures 4.6 and 4.7, when number of users with respect to UDSA increases the

gap between generated capacity and consumption decreases. For CSA and PDSA

which the gap is less than UDSA the same result is achieved with respect to increase

in number of users. Figure 4.8 illustrates the effect of increase in number of users on

the gap between generated capacity and consumption when it is assumed that the

average number of users increases up to 100. As, it is obvious when number of users

increase the gap decreases,which is expected due to increase in users consumption.
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Figure 4.3: Comparison over the Gap between generated capacity and Consumption
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Figure 4.4: Comparison over the Gap between generated capacity and Consumption
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Figure 4.5: Comparison over the Gap between generated capacity and Consumption
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Figure 4.6: Comparison over the Gap between generated capacity and Consumption
N=50
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Figure 4.7: Comparison over the Gap between generated capacity and Consumption
N=100
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Figure 4.8: Comparison over the Gap between generated capacity and Consumption
N=100

86



CHAPTER 4. AN OPTIMAL REAL TIME PRICING ALGORITHM UNDER
LOAD UNCERTAINTY AND USER NUMBER VARIATION IN SMART GRID

Figure 4.9: Comparison over the Gap between generated capacity and Consumption
N=30
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Figure 4.9 indicates that the gap between generating capacity and consumption for

PDSA is close to CSA, which is because of equal variance and mean in Poisson

distribution which is its characteristics. It is appear that when number of users

in a period between two time slot is kept constant in comparison with availability

of distributions there are more user entry and departure happening that affect the

gap. In that case the average gap for CSA is lower in comparison with PDSA.

Moreover, as it is mentioned beforehand, due to larger variance of uniform distribution

in comparison with Poison distribution the distance between curves in Poisson and

uniform distributions is more than the distance between curves between Poisson and

when number of users is kept constant in certain timing period. Simulation results

are considered for comparison over UUBO with regard to PDSA, UDSA and CSA in

terms of average gap between generating capacity and consumption in different time

slots. This gap appears because of consideration of the effect of load uncertainty

which affects the generating capacity provided by energy provider [28]. According

to [28] the generating capacity is also affected by the variation in number of users

which is studied in [114]. Also, it is assumed that the energy provider procure the

electricity from a wholesale market and provides exceeded than the requirements

of the users. In another word users may consume up to the maximum provided

electricity, however their consumption do not exceed the provided energy. Therefore,

the gap appears as a result of consumer’s behaviour. Depending on the kind of user

some subscribers may achieve their maximum satisfaction with higher/lower amount

of consumed electricity that this also can affect the gap between power requirement

and the generating capacity. The announced price affects the users consumption.

As, the announced price depends on the generating capacity and the consumption
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therefore load uncertainty and user number variation affects on it. Previously the

study for UBO algorithm was done in [14]. According to [114] for systems PDSA

and UDSA with respect to UUBO algorithm, the average gap for PDSA is lower in

comparison with UDSA. It means that when users’ arrival and departure in each time

slot is according to the Poisson process, the average gap is lower in comparison with

when users’ arrival and departure is based on uniform distribution that is because

of the announced price in PDSA which affects the users consumption. Also, when

the number of users in each slot is kept constant, the average gap in CSA is lower

in comparison with UDSA and PDSA. Investigation over the average gap between

energy consumption and generated capacity in 24 hours of the day, given that the

average number of users is increasing, reveals that when the number of users increases,

the average gap decreases. Also, the average gap for UDSA is higher in comparison

with two other systems. Comparison over PDSA and CSA also shows that the average

gap between generated capacity and the consumption for PDSA is higher than CSA,

that is because of the proposed price which is dependant to the generating capacity

which is affected by the user number variation in each time slot.
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Figure 4.10: Comparison over the price for CSA, UDSA and PDSA, N=10
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Figure 4.11: Comparison over the price for CSA, UDSA and PDSA, N=10
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4.6 Summary

With respect to the importance of demand response management (DRM) in today’s

smart grid investigation over DRM programs is important topic that is followed by

utility companies. The main goal for these programs is providing satisfaction for both

sides of users and the energy provider. Utility based objective (UBO) function which

was discussed in [58] does not discuss over the effect of load uncertainty . Uncertain

utility based objective (UUBO)function which was presented in [28] does not consider

the effect of variation in the number of users on the gap between generated capacity

and consumption. In this thesis, three different distributions for users’ interval and

departure in a specific period to describe the effect of users’ variation based on differ-

ent distributions on evaluated gap between generated capacity and consumption, as

well as the price is proposed. In that case the problem with respect to consideration

of the effect of load uncertainty in the constraint of the proposed objective function

in presence of load uncertainty is formulated. These distributions describe the users’

departure and interval based on Poisson process, uniform distribution and constant

number of users that are called PDSA, UDSA and CSA respectively. As in DRM pro-

grams the users consumption and generating capacity affects the announced price and

vice versa, therefore in this section the difference between users’ power consumption

and energy provider generating capacity is considered as the gap which represent the

waste of energy. The lower the gap the more satisfaction for both sides achieves in a

way that users optimum consumption corresponds the provided power capacity by the

energy provider. In this section the effect of consideration of different distributions

for users entry and departure type in presence of load uncertainty is analysed. Simu-
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lation results reveals that the power consumption and generating capacity as well as

the price are affected by the users entry and departure type. In order to analyse the

system, three proposed distributions in presence of load uncertainty is investigated.

It is shown that when number of users increases the gap between generated capac-

ity and the consumption decreases. This is because of the increased aggregation of

users’ consumption that means the increased demand in a predefined period, which

in this thesis is considered to be 24 hours period. The increased demand affects the

announced price and the announced price at the beginning of each time slot in a way

that the more the number of users the more the price and the less the gap for three

proposed distributions in presence of load uncertainty.
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Chapter 5
An Income-Based Real-Time Pricing
Algorithm Under Uncertainties in Smart
Grid

5.1 Introduction

With respect to importance of uncertainty in DRM programs in this section the study

in Chapter 3 is improved in a way that load uncertainty is considered for the proposed

IBO and then the results is further extended subject to variation in number of users

based on different distributions. In this way UDSA, PDSA and CSA distributions

are considered for the proposed IBO with respect to load uncertainty which in this

section is called Uncertain IBO (UIBO). The algorithm achieves the goal of demand

management programs based on real time pricing in which benefit of energy provider

as well the satisfaction of consumers are both achieved, with respect to variation

in number of users based on different distributions in 24 timing periods. According

to the broad investigations about real-time pricing in smart grid, the problem of
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providing benefit and satisfaction for both sides has been solved in several ways.

However, the concept of consideration of variation in number of users in each slot is a

new idea that is discussed in this section. For demand response programs regardless

of consideration of load uncertainty many investigations have already been done. As

an example, in [105, 11, 58, 14, 27] the social welfare problem is solved regarding

consumers’ utility maximization. As, it is mentioned in the second chapter of this

thesis with regard to the fact that the electricity is provided through an infrastructure

consisting of electric utilities as well as other parts of the grid increased expectations

of consumers, the lengthy process of exploiting new energy resources as well as the

reliability issues indicates the importance of developing new methods to increase grid

efficiency. In this section the study is focused on the effect of load uncertainty as well

as variation in number of users based on different distributions effect on the average

gap between power consumption and generating capacity. As, the announced price

affects the users behaviour in this section price variation in 24 hours of a day is

considered and the effect of users entry and departure distribution types on it is

analysed further. The flow chart below indicates how the overall system works.
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Figure 5.1: Description of how the overall system is working with respect to UIBO
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5.2 System Model

The model which is considered in this section is similar to the described model in

Chapter 4, however, it is different from what is explained in [28] which explains that

the power consumption may deviate from what was negotiated at the information

exchange section. In that case due to load uncertainty with the constant consumers

using the electricity, it is assumed that number of users may vary randomly or based

on Poisson distribution. It is assumed that the energy provider is obliged to provide

enough electricity to cover the minimum power consumption requirement. Also, dif-

ferent, from Chapter 4 which solves the UBO, the income based problem is solved .

According to the definition of a system, a system is defined as a group of independent

items that interact regularly to perform a task. In this section, three types of systems

that perform based on different users’ entry or departure type has been investigated.

In this case it is assumed that the rate of users’ departure or entry may be constant

as in [28] that is called Constant System Analysis (CSA), which is compared with

systems where the number of users may vary randomly or based on Poisson process,

that are called Uniform Distribution System Analysis (UDSA) and Poisson Distribu-

tion System Analysis (PDSA) respectively. In this section, these three systems with

regard to the consideration of the income based objective function in presence of load

uncertainty are investigated.
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5.2.1 Users’ Objective Function

It is assumed that each user is an independent decision maker. The energy demand

of the users may vary based on different parameters. For example, the time of the

day, the season, the electricity price, etc. All these parameters affect the consumption

patterns of users. Different response of different users to various prices can be modeled

analytically with regard to consideration of the concepts of microeconomics. Also,

it is dependant to the kind of appliances each user may use. As, it is explained

in Chapter 3, the utility function is defined as U(x,w) which indicates the level of

satisfaction of each user. When the x represents the consumption level of users that in

this section is considered with respect to added bounded uncertainty to it and the w is

the parameter that shows how different types of users response to specific price, which

is explained with further details in chapter three, in a way that the it’s graph describes

this parameter. The assumptions for the proposed utility functions are described as

follow: first, the utility functions are non-decreasing which implies: It is assumed that

the minimum required average load is guaranteed by energy provider. Also, energy

provider never provides more than maximum required average load. This means

that generated capacity is also bounded between maximum and minimum required

average load. The proposed objective function has the same properties as explained

in Chapter 3. However, different form it, the generating capacity is affected by user

number variation that is considered to be varied based on the Poisson and uniform

distributions the same as we considered previously for UBO and now we extend it

for UIBO which is further explained in Section 5.3.
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5.3 Problem Formulation

According to equations (4.8), (4.12), the problem (3.8) can be written as below.

Where Leff∗k = L∗k − Nε. It must be noted that the change in price affects the

consumption and generating capacity . Therefore, problem in this chapter is written

as:

Max
xki ∈Iki , L

effmin
k ≤Leff

k ≤Leffmax
k k∈K,i∈{N}

∑
k∈K

∑
i∈{N}

x̃k
∗
fk − Ck(Lk)

subject to
∑
i∈{N}

xki ≤ Leff∗k ,∀k ∈ K
(5.1)

With respect to three different users entry and departure type, Equation (4.9) can

be written as : ∑
i∈N

xki ≤ Lk − E(N
(p,u,c)
k∈k )ε ,∀k ∈ K (5.2)

Where N
(p,u,c)
(k∈k) represents the number of users in kth timeslot, with regard to consid-

eration of it’s variation that may be considered based on Poisson process or Uniform

Distribution, or may be kept constant which is represented by p, u, c.

For solving this optimization problem, when the number of users vary, the average

number of users in the interval is considered as the expectation of E[N
(p,u)
(k∈k)] which

represents PDSA and UDSA respectively. It is assumed that E(δki ) is equal to zero,

which means that zero mean load uncertainty is considered. Therefore, considering

variation in number of users, equation (5.1) can be written as:

maximize
xki ∈Iki , Lmin

k ≤Lk≤Lmax
k k∈K,i∈{N(p,u,c)

(k∈k) }

∑
k∈K

∑
i∈{N}

x̃∗k.fk − Ck(Lk)

subject to
∑
i∈{N}

xki ≤ Lk − E(N
(p,u,c)
(k∈k) )ε,∀k ∈ K

(5.3)
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Figure 5.2, describes the interaction procedure between subscribers and energy provider

regarding consideration of load uncertainty.
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Figure 5.2: Description of the interaction between users and energy provider with
respect to UIBO algorithm

5.4 Problem Solving

In this section, the Lagrangian relaxation technique is used in order to find out

the feasible set over optimum value of f and L. The Equation (3.14) describes this
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technique. It should be noted that in this chapter also this technique is considered

with respect to load uncertainty, which is assumed to be bounded and therefore is

restricted between a maximum and minimum value. In this Section, Equation (3.9)

is considered with respect to load uncertainty. Therefore the feasible set is achieved

as below:


λ = ak

f̃ ∗k (
∑

i∈Ñ wi, ak) =

∑
i∈Ñk

wi + ak

2

L̃∗k(
∑

i∈Ñ wi, f
∗
k ) =

∑
i∈Ñk

wi − f ∗k
α

(5.4)

x∗k(
∑
i∈Ñ

wi, f̃k) =

∑
i∈Ñ wi − f̃k

α
(5.5)

Ñk = N
(p,u,c)
k∈K (5.6)

f̃k = f
(p,u,c)
k∈K (5.7)

With respect to consideration of optimal consumption for the users the equation

below is achieved [115]:
f̃ ∗k (

∑
i∈Ñ wi, ak) = α

∑
i∈Ñ x

∗
k(f̃k) + ak

L̃∗k(
∑

i∈Ñ wi, f̃
∗
k ) =

∑
i∈Ñ wi − f̃ ∗k

2α∑
i∈N wi = α

∑
i∈Ñx

∗
k(f̃k) + f̃k

(5.8)

For updating the price the Equation (3.18) using gradient projection method is used

and then is updated based on the achieved optimal generated capacity from solving
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the UIBO.

fkt+1 = [fkt + γ(
∑
i∈N

(x∗ki − L
eff∗
k )]+ (5.9)

Where Leff∗k = L̃∗k − Nε. It must be noted that the change in price affects the

consumption and generating capacity.

5.5 Distributed DRM Algorithm

In this section the proposed algorithm has been explained. This algorithm describes

the interaction procedure between users and energy provider. From the users’ side

algorithm 5.1 is executed by each user i. Also, Algorithm 5.2 is described from the

point of view of energy provider. The proposed algorithms are explained below:

Algorithm 5.1 Executed by each user i ∈ N (UIBO)

1: Initialization
2: Generate users’ interval/departure based on Poisson/Uniform distribution or set it as a constant

value
3: for all t ∈ T do
4: receive the new value of fk

t from the energy provider
5: Update the consumption value by solving (3.7)
6: Average the results
7: Communicate the updated value of xk∗

i (fk
t ) to the energy provider.

8: end for
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Algorithm 5.2 Executed by Energy provider (UIBO)

1: Initialization
2: repeat
3: Generate users interval/departure based on Poisson/Uniform distribution or set

it as a constant value.
4: if t ∈ T then
5: Compute the new value offkt using (5.9).
6: Broadcast the new value of fkt to all users
7: else
8: Update the capacity value Leff∗k by using (5.8)
9: Receive the Updated optimum consumption level of all users by solving (3.7)
10: Update the total load.
11: Accumulate the results for each time running the program
12: Average the results
13: Receive the new value of fkt from energy provider
14: Update the consumption value by solving (5.5)
15: Communicate the updated value of x∗ki (fkt ) to energy provider.
16: end if
17: Until end of intended period.

The proposed algorithm involves two parts which are solved by the users and energy

provider. At the beginning of each time slot users receive the updated price from

energy provider. It is assumed that number of users varying in the period between two

time slots. There are two distributions considered. The distributions are compared

with the state in which the number of users is kept constant. The users update their

consumption level and then send the updated consumption to the energy provider. It

is assumed that the algorithm starts with some initial price which is updated by the

energy provider at the beginning of each slot. It is executed by energy provider. Then

in the period between two timeslot, according to the aggregation of users optimal

demand energy provider procures the electricity from the wholesale market. Also, it

is assumed that provided electricity is not more than the maximum requirements of

the users. Because, in this section the effect of load uncertainty and users number
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variation is considered therefore the results are taken averaged. Algorithms (5.1)

and (5.2) describes the Uncertain IBO, which is called (UIBO), and the results for

this algorithm is further evaluated in the next section. The output of the algorithm

would be the updated price and the optimal generated capacity, that affects the users

consumption. In another way, the input of the algorithm would be the average number

of users, constant predefined values, such as α, initial value of price and coefficients

of the cost function which represents the cost imposed to the energy provider. It is

assumed that the cost imposed to the energy provider varies under economic situation

and affects the users level of satisfaction that obviously affect on their demand, which

can be reflected on the parameter α as is explained in Chapter 2. The performance

evaluation of the algorithm is examined in the next section. The focus on the next

chapter is on the gap between generated capacity and the consumption as well as the

announced price.

5.6 Performance Evaluation

The simulation parameters are as explained in Table (2.1) that shows the considered

parameters and their notations. Figures (5.3-5.8) represents the simulation results.

The simulator which is used in this section is MATLAB. Simulation results are

achieved the same way as explained in Chapter 4. However, in this part the results

are considered for UIBO algorithm. Figures (5.3) and (5.4) illustrate the appeared

average gap between generating capacity and power consumption for different distri-

butions. However, Figure (5.3) represents the results for N = 10 users while Figure

(5.4) improves the results for various average number of users based on different distri-

butions. In that case each point of Figure (5.4) is the average rate of 24 hours period
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gap between generating capacity and power consumption for increasing pattern of

user number variation that is considered to be based on different distributions. As it

is expected in general, increase in number of users increases the average aggregated

consumption which reduces the average gap between generating capacity and power

consumption. This trend is shown in Figure (5.4) with respect to different distribu-

tions. As it is appear from this figure, increase in number of users decreases the gap

between generating capacity and users power consumption for all three considered

distributions. However, according to [54] the variance of Uniform distribution is more

than Poisson which indicates the rate of variation in Uniform in comparison with no

distribution is more than Poisson.

Figures (5.5) and (5.6) investigate the price in a same way that was explained for the

average gap between generating capacity and consumption. Simulation results from

Figure (5.5) reveals the effect of different distributions in users entrance and depar-

ture type on the price in 24 hours period. Figure (5.6) reveals that when number of

users increases the price correspondingly also is increased that is expected. This is

based on the formula in Equation (5.9) which reveals that increasing the aggregation

of the consumption level of the users directly affects the price. In another word, the

price is directly dependant to the users power consumption. Again the reason for

difference between price in case uniform distribution is considered comparing with

constant number of users and the Poisson distribution is based on the difference in

variance of these two distributions, that is explained for the gap as well.

The importance of study in this area is for prediction of human behaviours. This is

an important issue in modelling and solving DRM problems.
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Figure 5.3: Comparison over the gap between generated capacity and consumption
for PDSA, UDSA and CSA ,N=10
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Figure 5.4: Investigation over the effect of increasing the average number of
users on average gap between generated capacity and consumption for different dis-
tributions
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Figure 5.5: Comparison over the price for CSA,UDSAand PDSA
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Figure 5.6: Investigation over the effect of increasing the number of users on price
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In this section the gains coming from the proposed method with respect to different

distributions is quantified . In this way the variation of the price over the variation in

number of users is considered.The reason we considered the gain in this way is because

of effect of price on users consumption and energy provider satisfaction. Therefore,

the formulation is considered as :

∆Pu,p,c
∆Nu,p,c

(5.10)

In above formulation ∆Pu,p,c represents variation in price based on different users

entry and departure type which is shown by u and p for Uniform and Possion distri-

butions correspondingly and also when number of users kept constant as well which is

shown by c. In the same way ∆Nu,p,c represents variation in number of users based on

different distributions. In this way with respect to Figure (5.6) and Equation (5.10)

the acheived gain for UDSA is about 1.5% when for PDSA it achieves 2.05% and for

CSA is obviously more than PDSA with same reason as explained in chapter four.

However, with respect to the achieved gain and the gap in Figure (5.4) it can be con-

cluded that the demand in UDSA is more than the actual consumption, that means

users consume up to the maximum provided generating capacity while their maxi-

mum demand is more than the provided capacity. The importance of investigation

over different types of distributions is related to prediction of consumers behaviours in

DRM programs. Understanding the consumer behaviour helps regulating agencies to

set up the appropriate pricing rule , more beneficial scheduling programs and finally

more consumer satisfactions with respect to satisfaction of distribution companies.
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5.7 Summary

In this section the proposed IBO algorithm in Chapter 3 is improved to uncertain

IBO or UIBO and is considered with respect to the load uncertainty and user number

variation. The results for average gap between generated capacity and consumed load

are compared for three different PDSA ,UDSA and CSA distributions for users entry

and departure type. The effect of increasing the number of users on the gap is also

investigated.

Moreover, The announced price is also evaluated in 24 hours period of time and then

the results are extended in a way that it is assumed that number of users are increasing

with respect to different distributions. All the results are achieved in a way that it

is assumed that there is one energy provider that is interacting with several users. It

is suggested for future research to investigate over the effect of load uncertainty with

respect to UIBO when multi energy providers are competing together. Moreover,

as additional improvement to that idea, investigation over different user number

distribution on the gap as well as the price when multi energy providers are competing

together in presence of load uncertainty is also suggested. In this section also the

gain of the proposed algorithm is defined as the ratio of the variation of announced

price to the user number variation. The results indicates the gain in PDSA is more

than UDSA. Which describes the users behaviour when their entrance and departure

distribution type is based on Poisson in comparison with Uniform and no distribution.

Investigation over the users behaviour is an important topic that is studied in many

DRM programs.
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Chapter 6
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In today’s modern society electricity and electrical appliances play an important role

in real-life. There are many appliances that use electricity from a small water heater

to electrical vehicles that needs large amounts of electricity value to be charged. The

rapid increase in using electric devices that provides daily requirements of consumers

tend to rapid increase in electricity consumption specially in some specific timing

periods. In this case the need for DRM programs in residential areas is undeniable.

DRM programs control the consumption in peak demand periods. These are divided

to incentive base and price based options. In incentive based DRM the consump-

tion is controlled by getting incentive or punishment to consumers based on their

amount of consumption in specific peak time periods. However, in price based DRM

the consumption is controlled based on the announced price to the consumers. In

this research, the focus is on price based options that nowadays are very common

in residential areas. In traditional grids the electricity consumption information was

measured manually and announced to the energy provider that basically is a distri-

bution company which procures electricity from the whole sail market that usually
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is a generating company. Then, the energy provider used to compute the price and

announce it to the consumers . The tariffs varied monthly or based on the sea-

son depending on the consumption level of the users. However, in those traditional

grids users did not get advantage from two way interaction with energy provider to

control their consumption in peak demand periods. Therefore, in the modern grids

the smart meters that are connected to the Local Area Network (LAN) provide the

opportunity for both sides of users and energy providers to benefit from two way

interaction with exchange of real time price information. These modern grids that

are called Smart Grids are designed to provide the benefit of both sides of users and

energy providers. The Smart Grid provides the smart environment in each part of the

generation, transmission, distribution and consumption section, for generating, trans-

mitting, distributing and consuming of electricity more wisely and beneficially. The

smart sensors in most applications provides fault detections and therefore increase

the performance of the grid. Smart meters in residential areas can measure the ap-

pliance consumption and report it to the energy provider. According to the kind of

DRM the energy provider controls the electricity consumption. In this research the

interaction between several users and an energy provider is considered and modelled

mathematically. It is assumed that an energy provider solves a problem that achieves

the optimal price which provides satisfaction of both users and energy provider. Ac-

cording to the previous investigations the optimization problem is dependent to the

utility of the users. The utility also is dependent to the users’ consumption. However,

in current research the proposed income based algorithm provides the net benefit of

energy provider with regard to consideration of users’ satisfaction. In Chapter 3,

the Income Based optimization that is called IBO is compared with Utility Based
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optimization which is defined based on solving an optimization of the users’ utility

subscribed by the energy providers’ cost. This Utility Based optimization problem

that is called UBO is proved to be solvable and the feasible set is achieved. The

technique for solving UBO is Lagrange Decomposition approach that decomposes

the problem into solvable sub problems. However, for IBO algorithm it is assumed

that the objective function is defined based on users’ optimal consumption,when the

optimal consumption is achieved according to the optimal announced price. For fu-

ture research solving the objective function in presence of load uncertainty and user

number variation is suggested especially when multi energy providers are competing

together and also with the users. In Chapter 3, investigation over the average gap

between generating capacity and power consumption , and the announced price is

taken into consideration.

As it is mentioned, it is assumed that smart meters in residential areas measure the

consumption and send it to the energy provider by means of a LAN. As in case users

use renewable energy, the effect of uncertainty affect the users’ consumption, hence

in Chapter 4 the effect of load uncertainty in proposed UBO with respect to consid-

eration of user number variation is studied. In previous research, the number of user

was kept constant, however in that Chapter, three different systems are defined in

which number of users is varying based on different distributions. It is assumed that

the users entry and departure is based on Poisson process, Uniform distribution or it

may kept constant. Therefore, in section four the effect of users’ entry and departure

type on average gap between generating capacity and users consumption as well as

announced price in presence of load uncertainty is studied. Also, the effect of increase

in number of users with respect to consideration of three proposed distributions is
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investigated. It is shown that with respect to consideration of the load uncertainty,

the gap exists that varies based on users’ entry and departure type. The effect of

increasing the number of users with respect to consideration of the load uncertainty

in UBO algorithm when user number variation is also considered shows that when

number of users increases the gap between generating capacity and consumption de-

creases, that is because increase in average users consumption. Moreover, increasing

the number of users increases the announced price. With respect to consideration of

IBO algorithm in Chapter 5, in presence of load uncertainty and user number vari-

ation investigation over each user’s average consumption versus generating capacity

in 24 hours period is considered for three different proposed distributions. Moreover,

it is shown that when number of users increases the average gap between generating

capacity and consumption decreases. Investigation over the announced price for three

different proposed distribution types for users entry and departure in 24 hours period

is shown. Moreover, it is illustrated that when number of users increases the average

announced price with respect to different distributions is also increased. The impor-

tance of study the concept of user number variation based on different distributions

and consideration of the load uncertainty is more highlighted when users behaviour

is modelled for DRM in Smart Grids. For future research in this area there would

be wide range of investigations that interestingly can be taken into consideration.

For instance, as it is mentioned in Chapter 2 there are many investigations over dif-

ferent types of utility functions to solve the DRM problems from different aspects.

For example, the quadratic utility functions have already been proposed . However,

based on mathematical characteristics of the suitable utility function that satisfy the

proposed conditions in Chapter 3, other types of utility functions might be proposed
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and enhanced. Another suggestion is improvement of the proposed IBO algorithm in

Chapter 3 with respect to consideration of multi energy providers that are competing

with each other. In Chapter 3 it is assumed that there is one energy provider and

there are several users that are connecting together, however solving the IBO opti-

mization problem with respect to competition of the energy providers is a new idea

that can be further developed with consideration of load uncertainty. Therefore, it

is also interesting to consider the effect of load uncertainty for IBO algorithm when

multi energy providers are competing together. This also again can be improved fur-

ther in a way that the effect of different distributions in the constraint of the proposed

problem be considered and the results get evaluated with respect to UIBO algorithm.

Investigation on three proposed distributions UDSA, PDSA, CSA with/without con-

sideration of load uncertainty is suggested with respect to UBO/IBO algorithm when

multi energy providers are competing with each other and they are connected to the

grid which consists of users that uses certain amount of electricity in certain period

of time. This also can be improved further when users also compete with each other.

The same idea also can be proposed for different utility functions. For example,

if users use certain types of appliances that add more constraints to the proposed

objective function the problem might be solved in another way. The other inter-

esting suggestion for future research is solving the DRM problem with respect to

different utility functions and different constraints when competition of multi energy

providers and users are considered. For example, the proposed Logarithmic utility

function in [34] can be considered with respect to load uncertainty and different types

of uncertainty models can be evaluated with respect to consideration of multi energy

providers and also it can be further improved when different types of distributions is
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considered in the constraint of the proposed objective function. It should be noted

that DRM is a wide area of research that is connected to different branches of science

such as economics as it uses mathematical economic electricity models, electronics

and communication as the concept of advanced metering is related to the electrical

appliances that are connected to the LAN, Management as it is related to putting

some proper scheduling programs to control the over consumption in peak demand

periods, and more specifically is related to mathematics as the problem of providing

the satisfaction of both sides of users and energy providers should be defined and

solved in an appropriate way.
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