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“If I could do it all over again, and relive my vision in the twenty-first century, I

would be a microbial ecologist. … Into that world I would go with the aid of

modern  microscopy  and  molecular  analysis.  I  would  cut  my  way  through

clonal  forests  sprawled  across  grains  of  sand,  travel  in  an  imagined

submarine through drops of water proportionately the size of lakes, and track

predators and prey in order to discover new life ways and alien food webs”

-  A  quote  from  E.  O.  Wilson,  co-author  of  “The  Theory  of  Island

Biogeography” (1967). I fear too much of my time as a PhD student has been

spent in front of a computer, and not enough piloting imagined submarines...
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Abstract

Abstract

Microorganisms are the most ubiquitous, diverse, and functionally important

organisms  on  Earth,  yet  their  ecological  patterns,  and  the  underlying

causative  processes  that  determine  their  distributions  over  large  spatial

scales,  remain  poorly  understood.  Therefore,  I  test  for  macroecological

patterns and processes within microbial communities. I use a combination of

data  generating  approaches  including  meta-analysis,  published  sequence

datasets  and  databases,  and  high-throughput  sequencing,  coupled  with

modern statistical methods. Firstly, I show that metagenomic sequencing, is

superior  to  amplicon  sequencing  as  a  method  of  surveying  microbial

biodiversity, as it detected more diversity at all  taxonomic levels. However,

cost  analysis  shows  that  metagenomics  is  prohibitively  expensive  for

macroecological studies, where many samples are required. I find that classic

macroecological  patterns,  such  as  the  distance-decay  of  similarity,  are

context-dependent  and  vary  according  to  ecological  context,  and

methodological  differences.  I  therefore  make  recommendations  for  future

analyses of spatial analyses of microbial communities. Furthermore, I show

that whilst  microbial  communities may exhibit  distance-decay relationships,

they do not necessarily form biogeographic regions, highlighting a difference

in the macroecology of micro- and macroorganisms. I build on this finding by

showing that different regional microbial communities can show considerably

different responses to the same environmental gradient, hinting that regional

communities  play  an  important  role  in  determining  microbial  community
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composition  at  local  scales.  Finally,  I  investigate  whether  regional-scale

climatic variables determine the distributions of microorganisms. I show that

the climatic  drivers and influence of  these drivers varies strongly between

microbial  taxa,  suggesting  that  different  microbial  taxa  have very  different

macroecologies. I conclude that macroecological patterns in microorganisms

may not be as general as in “macroorganisms”, and can be highly context-

dependent,  varying  with  taxon,  regional  metacommunity  dynamics,  or

methodological  choices.  Careful  consideration of these factors is  therefore

required  when  attempting  to  understand  how  microbial  communities  will

respond to future environmental changes.
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Chapter 1

Chapter 1

Introduction

Macroecology

Macroecology - Seeing The Wood For The Trees

Ecology is the scientific study of the distribution, abundance, and activity of

organisms in time and space.  Brown and Maurer (1989) are credited with

popularising the term “macroecology” in their synthesis paper. The authors

recognised a need for a new approach, expressing their dissatisfaction at the

ability  of  (then)  contemporary  ecological  approaches  to  answer  “big”

questions,  and  to  draw useful  generalisations  on  the  ecology  of  species.

Conservation ecology was typically concerned with relatively few species or

populations,  and  often  over  relatively  small  spatial  scales,  thus  making  it

difficult  to  extrapolate  conclusions  to  other  species,  populations,  or

geographic regions. Experimental ecology on the other hand is too simplistic

and  unable  to  replicate  the  complexity  of  real  ecological  communities.

Therefore, a new approach was required, that considered multiple species,

populations,  and  (spatial  or  temporal)  scales  (Keith  et  al.,  2012),  and  so

macroecology was born.

Macroecology is  perhaps easier  to  define  through examples  than via  any

colloquial  definition.  For  instance,  Brown  (1995)  cites  the  example  of

determining  the  extinction  risk  of  species  under  climate  change.  A typical
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ecological approach might be based around experimental manipulations to

determine the effects of climatic change on individual populations. However,

such  an approach would  require  excessive  extrapolation  of  the  results  to

other populations in order to determine the global effect of climate change on

a given species. In contrast, a macroecological approach might utilise data on

many populations, and use general ecological laws such as the species-area

relationship to determine the risk of extinction for a given species.  Brown,

(1995) argues that macroecology, is not a distinct sub-discipline of ecology,

but  a  philosophical  approach  to  addressing  research  questions  that  were

previously  beyond  the  scope  of  other  ecological  disciplines.  Therefore,

macroecology is not solely focused on any one aspect of ecology. Instead, it

is  an  approach  to  addressing  ecological  hypotheses  or  questions,  often

utilising large datasets in order to elucidate general patterns and processes in

ecology.

Is Macroecology Biogeography?

Another similar (to macroecology) field is biogeography. Biogeography is a

discipline  that  studies the distribution  of  organisms in  space and time,  by

combining ecology with phylogeny  (Brown and Lomolino, 1998). Compared

with biogeography, macroecology is a relatively recently developed field (Nee,

2002). Macroecology undoubtedly shares traits with biogeography in that both

are  concerned  with  studying  species'  distributions,  considering  large

spatiotemporal  scales,  and  using  large  datasets.  As  a  consequence,  the
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similarities with  biogeography invoked suggestions that  macroecology was

merely  a  rebranding  of  biogeography  (Fisher,  2002).  However,  such

suggestions  were  rejected  on  the  basis  that  macroecology  seeks  a  more

mechanistic, process-based understanding of the general statistical patterns

observed in nature (Blackburn and Gaston, 2002a), and that macroecology is

not  solely  concerned  with  “large”  scales,  but  “large”  questions  (Marquet,

2002).

Arguably, the semantics of whether these two research fields are distinct, is

perhaps  irrelevant.  What  is  important,  is  that  the  development  of

macroecology  as  a  discipline  has  stimulated  a  great  volume  of  research

searching for general patterns in ecology at a variety of spatiotemporal scales

in  a  variety  of  organisms  (Brown,  1999).  The  body  of  research  that  has

arisen,  as  a  result  of  the  stimulus  provided  by  macroecology,  is  a  better

validation  of  macroecology  than  any  paper  dealing  with  semantics  and

definitions of the word (Riddle, 2005; Keith et al., 2012).

Methods and Data in Macroecology

From  its  origins,  macroecology  has  been  a  heavily  quantitative  research

programme,  relying  on the  examination  of  statistical  patterns  to  illuminate

underlying ecological mechanisms (Ruggiero and Hawkins, 2006; Beck et al.,

2012; Blackburn and Gaston, 2006). Primarily, the reliance of macroecology

on statistical patterns is largely due to the same reasons that macroecology

17



Chapter 1

as  a  field  was  developed;  that  incorporating  multiple  scales,  and  the

complexity of natural systems are both necessary to understand ecological

mechanisms.  For  these  reasons,  the  statistical  methods  utilised  by

macroecologists must be able to detect ecological signal amongst the noise

(unexplained variation) of the natural world.

Macroecological datasets may vary in two main properties, which determine

their appropriateness to addressing specific hypotheses or questions. These

properties are grain and extent (Fig. 1.1). Extent describes the size of the

study system (either spatially or temporally) over which measurements are

taken,  whilst  grain  describes  the  size  of  the  space  represented  by  an

individual  measurement,  or  the  resolution  of  the  data.  For  example,  in  a

survey of plant biodiversity in a field, the extent would be the area over which

quadrats are placed, whilst the grain could be considered as the quadrat size.

Macroecologists typically make use of large extent, and large grain data. That

is,  the  data  represent  a  large  spatiotemporal  scale,  and  individual

measurements may represent large spatial areas or temporal periods within

this (Beck et al., 2012). Both grain and extent have been shown to influence

the nature and detection of macroecological patterns (Rahbek, 2005; Hulme,

2008;  Steinbauer  et  al.,  2012).  Therefore,  careful  consideration  of  these

properties is required to ensure the data are suitable to test the hypothesis in

question (Blackburn and Gaston, 2002b).
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Whilst differences in grain and extent may influence ecological perception,

other  biases  may  also  be  present  that  may  ultimately  effect  ecological

inference.  Imperfect  detection  of  species  may  lead  to  false  absences,  in

which the species is erroneously recorded as absent from a sample (Royle et

al.,  2005;  Guillera-Arroita,  2017),  or  false  positives,  in  which  a  species  is

mistakenly recorded as positive  (Pillay  et al., 2014; Chambert  et al., 2015).

Such  errors  can  be  caused  by  suboptimal  sampling  techniques,  or

identification  errors.  Spatial  biases  may  be  present,  in  which  the  data  or

sampling do not adequately represent the study extent  (Yang  et al., 2013),

perhaps due to under-, or over-sampling in certain areas.

Figure  1.1 Climate  data  for  the  United  Kingdom and  NW Europe.  Study

extent (A) indicates the spatial  scale of the dataset, whilst grain (B) is the

resolution of each measurement, or in this case, the pixel size.
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Furthermore, macroecological datasets often exhibit statistical properties that

effect the inference of patterns. For instance, environmental predictors may

be  co-linear,  potentially  making  it  difficult  to  decipher  the  true  causative

relationships driving the pattern of interest (Dormann et al., 2013). Data may

also  exhibit  spatial  (or  temporal)  autocorrelation,  whereby  measurements

taken close together  (in  space or  time)  are  likely  to  influence each other

(Segurado  et al., 2006; Dormann, 2007), violating the assumption of many

statistical tests that observations are independent from each other.

The macroecological approach to addressing hypotheses in ecology therefore

requires  highly  robust  statistical  methods  in  order  to  address  potentially

confounding biases, and account for the complexity present in nature (McGill,

2003; Blackburn, 2004; Beck et al., 2012).

Microorganisms

Ubiquitous Microorganisms

Fossil  evidence  dating  back  at  least  3.5  billion  years  suggests  that

microorganisms were the first inhabitants of Earth. It is widely postulated that

Bacteria represent the oldest domain, with Archaea evolving from Bacteria at

least 3.5 billion years ago (Shen et al., 2001). The Archaea are thought to be

the origins of Eukaryotic life on Earth (Woese et al., 1990), with the recently

described  “Asgard”  superphylum,  a  potential  link  between  these  domains
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(Zaremba-Niedzwiedzka et al., 2017). Whilst some consider viruses to be part

of  the  tree  of  life,  I  do  not  consider  them within  the  scope of  this  thesis

(Moreira and López-García, 2009).

Microorganisms have evolved to occupy every available niche on Earth, and

are  truly  ubiquitous  in  the  environment,  defining  the  known  limits  of  life

(Hallsworth  et  al.,  2007).  Microorganisms  are  also  recognised  as

phylogenetically and functionally highly diverse. Their ubiquity,  activity,  and

functional capabilities mean they are drivers of Earth's biogeochemical cycles,

and thus contribute greatly to global ecosystem processes (Falkowski  et al.,

2008) as well as being mediators of human health and disease. Thus, the

study of microbial ecology has widespread implications for our understanding

of disease, ecosystem functioning and processes, and the origins of life on

Earth.

The Problematic Study of Microorganisms

Until recently, microbial ecology has lagged far behind other ecological fields.

Principally,  this was due to problematic methodologies associated with the

study  of  microorganisms.  Being  microscopic,  simple  tasks  such  as

enumerating  and  identifying  them  requires  advanced  methods.  Van

Leeuwanhoek was the first to observe microbial life through a self-constructed

microscope, and he dubbed the organisms “wee animalcules”  (Lane, 2015).

However,  whilst  microscopy  remains  a  valuable  technique  in  microbial
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ecology,  it  is  not  an  effective  way  of  enumerating  or  identifying  the

microorganisms in environmental samples. This is because microorganisms

can have extremely high population densities and display cryptic speciation, a

phenomenon in which organisms resemble each other morphologically, yet

are phylogenetically distinct  (Martiny et al., 2006). For this reason, microbial

ecologists must typically use molecular methods to directly study the genetic

material  present  in  microbial  cells  in order  to enumerate the diversity  and

abundance of microorganisms in the environment.

Molecular Methods in Microbial Ecology

The  molecular  methods  typically  utilised  in  microbial  ecology  studies  are

based on the genetic material present in microorganisms, DNA or RNA. The

genetic material must first be extracted from the microbial cells present in the

environmental sample(s) of interest. The aim of DNA (or RNA) extraction is to

obtain  a  pure  and  unbiased  DNA  sample,  free  from  environmental

compounds  that  might  inhibit  downstream analyses  (Martin-Laurent  et  al.,

2001). Typically, a single phylogenetically or, functionally informative marker

gene  is  amplified  from  the  original  sample  using  the  polymerase  chain

reaction (PCR). Primers are chosen to amplify this gene, that should ideally

target all of the organisms of interest, and exclude those not of interest. In

practise, this is challenging and therefore a great emphasis is placed upon

optimising primer designs for various applications in microbial ecology (Wang

and Qian, 2009; Klindworth et al., 2013; Hugerth et al., 2014). The resulting
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“amplicon” (pool of amplified genes), can then be subjected to a variety of

different analyses, dependent on the goal of the research and the available

resources.

The simplest approaches to studying microbial diversity are those referred to

as  “fingerprinting”  methods.  In  these  methods,  mixed  amplicons  are

separated out in a gel based on their melting or denaturing properties (as in

DGGE), or are sheared into fragments of differing sizes (as in TRFLP). The

amplicon of each taxon will  have different denaturing properties, or will  be

sheared  at  specific  points,  resulting  in  distinctly  sized  fragments.  These

fragments are then separated out on a gel (Green et al., 2014; Tebbe et al.,

2015).  The  resulting  bands  within  the  gel  can  then be interpreted as  the

presence of a given taxon, and the composition of microbial communities can

be  compared  across  samples.  This  data  can  be  used to  compare  the  α-

(within sample) and composition (β-diversity) of microbial communities. It is

also  possible  to  infer  the  relative  abundance  of  the  taxa  based  on  the

“intensity”  of  bands.  However,  the identity  of  the taxa present  can not  be

gained from fingerprinting approaches alone, and so fingerprinting is of limited

use.

Therefore, to identify the taxa present, sequencing must be undertaken. Early

sequencing approaches involved the creation of a clone library, followed by

Sanger sequencing. After PCR amplification of the marker gene, the mixed
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amplicon is then separated by inserting into a plasmid (small section of DNA).

A bacterial host is then transformed with the plasmid, and within the bacterial

cells, the plasmid is amplified. Positive clones are then selected at random for

sequencing  (Leigh  et  al.,  2015).  By  comparing  the  resulting  sequence  to

carefully curated databases, the identities of the organisms present can be

revealed (DeSantis et al., 2006; Wang et al., 2007). Clone library sequencing

enables analyses of both α-,  and β-diversity,  in addition to quantifying the

relative  abundance  of  microbial  taxa.  However,  the  workflow  involved  in

creating a clone library is relatively slow, and Sanger sequencing is costly and

low-throughput, as only single DNA sequences can be obtained at a time. As

a  result,  clone  library  analysis  is  not  suitable  for  diverse  microbial

communities, where many sequences are needed.

The “Omics” Revolution

Driven  by  the  need  for  more  sequencing  depth  to  adequately  sample

microbial diversity, the development of “omics” methods has allowed microbial

ecologists to delve ever deeper into microbial  communities.  Whilst  Sanger

sequencing  require  separation  of  the  amplicon,  high-throughput  amplicon

sequencing (also known as metagenetic sequencing or metabarcoding) using

a next-generation sequencing platform does not. These platforms are able to

sequence many millions of amplicons at a time, thus generating far larger

datasets more rapidly, and at a far cheaper price (Loman et al., 2012; Quail et

al., 2012). Whilst the cost of reagents is higher, “omics” methods allow far
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greater  sequencing coverage,  and have yielded insight  into  the enormous

taxonomic and functional diversity present in microbial communities (Roesch

et al., 2007; Caporaso et al., 2012).

High-throughput amplicon sequencing is able to characterise the diversity of

microbial  communities  based  on  a  single  amplified  gene.  However,

metagenomic sequencing is able to characterise taxonomic, and functional

diversity.  Unlike  amplicon  sequencing,  metagenomics  does  not  require

amplification  of  a  particular  gene.  Instead,  extracted  DNA  is  randomly

sheared  into  fragments.  These  fragments  represent  not  only  taxonomic

genes, but also house-keeping, and functional genes. The fragmented DNA is

then  sequenced  on  a  next-generation  platform,  yielding  insight  into  the

taxonomic and metabolic diversity within microbial communities (Dinsdale et

al., 2008).

Bioinformatics

After  sequencing,  the  resulting  sequence  dataset  requires  careful  quality

control  in  order  to  yield  biologically  meaningful  conclusions.  Therefore,

rigorous  bioinformatic  analyses  have  become  a  standard  part  of  modern

molecular  microbial  ecology  workflows  (Dumbrell  et  al.,  2016).  Next-

generation sequencing platforms are known to have higher error rates than

traditional  Sanger sequencing approaches, and may produce lower quality

sequences. It is therefore necessary to remove low quality sequences from
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the dataset,  or to trim sequences to remove low quality base calls.  These

processes  have  been  shown  to  improve  the  consistency  of  sequence

datasets (Bokulich et al., 2013; Schirmer et al., 2015).

If the sequences are from an amplicon sequencing run, sequences can then

be grouped into operational taxonomic units (OTUs). OTUs act as a pseudo-

species  concept  in  molecular  microbial  ecological  analyses,  and  help  to

reduce  the  enormous  complexity  of  next-generation  amplicon  sequencing

datasets into data that is more easily analysable. An enormous amount of

research has focussed on developing  and improving  algorithms to  cluster

sequences  into  OTUs  (Edgar,  2010;  Schloss,  2013;  Mahé  et  al.,  2014;

Rognes et al., 2016). The choice of OTU clustering algorithm has been shown

to have significant impacts on the ecological conclusions gained in microbial

ecology studies, thus careful consideration is required when choosing how to

cluster OTUs (Lekberg  et al., 2014; He  et al., 2015; Kopylova  et al., 2016).

Recently, there has been a movement towards using exact sequence variants

(ESVs) as an alternative to OTUs (Callahan et al., 2017). ESVs do not group

similar  sequences,  instead  they  represent  groups  of  identical  (or  near

identical) sequences. ESVs supposedly offer improved taxonomic resolution

to OTUs as they “split”,  rather than “lump”,  closely related taxa.  However,

ESVs are only valid if  the dataset is completely free of sequencing errors

(otherwise,  erroneous  ESVs  are  created),  an  assumption  that  is  rarely

verified,  even  after  quality  control  of  sequences  (Schirmer  et  al.,  2015).
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Furthermore,  it  is  unclear whether ESVs represent a taxonomic entity  any

more ecologically meaningful than OTUs (Berry et al., 2017).

After  OTUs  have  been  created,  taxonomy  can  be  assigned.  Various

algorithms have been created to assign taxonomy to marker gene sequences

(Altschul et al., 1990; Wang et al., 2007; Edgar, 2016; Bokulich et al., 2017),

whilst  the availability of  high-quality  and well  curated sequence databases

largely varies between marker genes and taxa (DeSantis et al., 2006; Cole et

al., 2013; Guillou et al., 2013; Quast et al., 2013; Deshpande et al., 2015). For

example, the bacterial (and archaeal) 16S rRNA gene has several large, and

curated databases available for taxonomy assignment,  whilst  other marker

genes are less comprehensively covered by taxonomic databases.

The  workflow  described  above  is  typical  for  an  amplicon  sequencing

approach in  microbial  ecology  (Dumbrell  et  al.,  2016).  However,  it  is  also

possible to assess taxonomic diversity from metagenomic analyses. Within

the metagenome are fragments of the commonly studied taxonomic marker

genes used in amplicon sequencing  (Guo  et al.,  2016). Various algorithms

have been developed to identify and extract commonly studied marker gene

sequences from metagenomes  (Sharpton  et al., 2011; Bengtsson-Palme  et

al., 2015). In theory, such an approach should be beneficial over amplicon

sequencing,  as  the  biases  associated  with  primer  selection  and  PCR

amplification are avoided. However, only a small fraction of the sequences
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originate from marker genes and therefore, much greater sequencing depth is

required  for  metagenomics  to  be  a  viable  method for  surveying  microbial

diversity.  The  compromise  between  reducing  bias  at  the  cost  of  extra

sequencing depth remains to be determined.

Microbial Macroecology

“Everything Is Everywhere” (EiE)

The first hypothesis relating to microbial macroecology can be attributed to

Dutch microbiologist Lourens Baas Becking. Having microscopically studied

the  microorganisms  found  in  hypersaline  environments,  Baas  Becking

concluded that “Everything is everywhere but, the environment selects” (Baas

Becking,  1934).  Within  this  eloquent  statement,  Baas  Becking  made  two

predictions  about  the  macroecology  of  micoorganisms.  Firstly,  that

microorganisms are dispersed ubiquitously. He postulated that their small size

and often high population densities would allow them to passively disperse

over large geographic distances e.g. by wind or oceanic currents. Secondly,

EiE  states  that  the  environment  selects  (de  Wit  and  Bouvier,  2006).  This

suggests  that  whilst  micoorganisms  may  be  dispersed  ubiquitously,  we

observe  distinct  microbial  communities  in  different  habitats  because  of

environmental selection.

Community Assembly in Microbial Communities

The widespread uptake of molecular methods to study microbial communities
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allowed microbial ecologists to test the EiE hypothesis in a variety of microbial

habitats.  The  two  predictions  made  by  EiE  are  compatible  with  two

competing, but not mutually exclusive, theories to describe how communities

assemble, neutral theory and niche theory.

Niche  theory  suggests  that  the  species  in  a  community  are  only  able  to

coexist if  they have different environmental preferences, or resource uses,

known as niche differentiation.  There  are  many different  interpretations  of

what a niche actually is. Perhaps the most general definition of the niche is

the Hutchinsonian definition, which states that the niche of an organism can

be  thought  of  as  an  “n-dimensional  hypervolume”,  each  axis  of  which

represents an aspect of the environment (both biotic and abiotic) for which the

species has limits. Within the limits of all axes, exists the niche of the species,

or the set of environmental conditions that allow it to survive and reproduce

indefinitely  (Hutchinson,  1957).  More  specific  definitions  include  the

Grinnellian niche which describes the niche as the set of (often abiotic) non-

interactive  environmental  conditions  required  by  the  species,  whereas the

Eltonian  niche  defines  the  niche  as  the  resources  required  by  a  species

(Soberón,  2007).  If  a  microbial  community  assembles  under  niche theory,

there will be a close relationship between environmental conditions, and the

composition and diversity of the community.

Whilst niche theory focuses on the differences between species in terms of
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their interactions with their environment, neutral theory's central tenet is that

all species (within a trophic level) are ecologically identical  (Hubbell, 2001).

Neutral  theory therefore suggests that species arrive in,  and are lost from

communities  as  a  result  of  stochastic  processes  such  as  migration,

immigration, birth and death. Under neutral assembly, relationships between

microbial communities and the environment are not predicted, instead neutral

theory predicts that communities will decrease in compositional similarity with

increasing distance, as a result of decreased dispersal between them. Neutral

theory has arguably been one of the most controversial ecological theories in

recent history, particularly because it suggests that species are ecologically

equal,  whilst  most  ecologists  focus  on  the  difference  between  species

(Hubbell, 2006). Yet, neutral theory has been successfully invoked to explain

high diversity maintained in some communities including tropical forests, coral

reefs, and to a lesser extent, microbial communities (Hubbell, 1997; Condit et

al., 2002; Dumbrell et al., 2010).

Niche and neutral theory are not the only community assembly theories, and

various  attempts  have  been  made  to  integrate  these  seemingly  polar

ideologies (e.g. Tilman, 2004, Vellend 2010). In reality, it is likely that, to some

extent, most communities are subjected to both niche and neutral processes,

and various studies suggest that the relative roles of each may be dependent

on the spatial scale at which we observe them (Chase, 2014).
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Environmental Filtering in Microbial Communities

Under niche based community assembly, and consistent with EiE, microbial

communities  are  expected to  show close relationships  with  environmental

factors.  The  process  by  which  mal-adapted  taxa  are  excluded  from  the

community is referred to as “environmental filtering”. Environmental filtering

can be thought  of  as  a stack  of  sieves,  in  which  the  the  least  restrictive

environmental variables are the upper most sieves with the largest mesh, and

therefore exclude the fewest taxa. Lower “sieves” represent more restrictive

environmental  variables,  and  thus  the  community  composition  may  show

stronger  correlation  with  these  variables.  The  concept  of  environmental

filtering  has  been  questioned  in  the  wider  field  of  ecology,  as  it  may  be

indistinguishable  from demographic  variables  or  competition  (Cadotte  and

Tucker, 2017).

The range of  environmental  filters  that  can act  on  a microbial  community

represent the environment at a range of spatial scales. The spatial scale at

which microbes perceive,  and interact  with,  their  environment is  incredibly

small, often at the micron scale. Therefore, most microbial ecology studies

focus  on  environmental  factors  that  act  over  comparably  small  scales,

although this is somewhat limited by the resolution at which we are able to

quantify the environment (Fierer, 2008). In soils, factors such as pH (Lauber

et  al.,  2009;  Dumbrell  et  al.,  2010) have  frequently  been  shown  to  be

important, whereas in aquatic environments, factors such as salinity correlate

31



Chapter 1

well with microbial community structure (Logares et al., 2013).

The link  between  small-scale,  local  environmental  variables  and  microbial

community structure represents something of a spatial paradox in microbial

macroecology in that, the grain of studies is very small, yet the extent can be

incredibly  large.  Furthermore,  a  result  of  the  focus  on  small-scale

environmental factors is that the role of larger scale environmental  factors

have remained relatively understudied in microbial macroecology. In particular

the role of climate in determining the distributions of microorganisms is poorly

understood, and warrants further research (Pajunen et al., 2016; Kivlin et al.,

2017).

Whilst many macroecological studies on microorganisms focus on abundant

habitats  such  as  soils,  locally  extreme  systems  represent  unique  and

interesting  systems  in  which  to  study  environmental  filtering  of  microbial

communities  (Maček et al., 2016). Extreme systems are often characterised

by  the  presence  of  one  or  more  that  are  significantly  different  from  the

surrounding  millieu. For example,  in hypersaline systems (such as coastal

solar salterns) the salinity of water can be an order of magnitude higher than

the surrounding seawater (Antón et al., 2000). Such systems enable microbial

ecologists  to  examine the  effects  of  individual  environmental  variables  on

microbial  communities  whilst  minimising  the  influence  of  other,  potentially

confounding  variables.  These  properties  have  made  locally  extreme
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environments  well  studied  systems  to  examine  the  effects  of  single

environmental variables on microbial communities  (e.g. Dillon  et al., 2013).

However, the macroecology of these systems is still poorly understood in that,

the generality of community-environment relationships between such systems

has  not  been  well  addressed  (Sharp  et  al.,  2014).  By  studying  spatially

replicated,  locally-extreme  environmental  gradients  such  as  geothermally

warmed stream systems, the generality of patterns in microbial  community

could be illuminated, helping us to understand the unifying macroecological

processes acting on microbial communities.

Dispersal and Distance-Decay of Similarity

Due to the EiE hypothesis, the potential for dispersal limitation and neutral

community assembly in microbial communities has received great attention.

EiE suggests that microbes have extremely high dispersal probabilities, and

are  therefore  able  to  access  all  suitable  habitat,  leading  to  cosmopolitan

distributions. Early work on some microbial taxa supported the idea of high

dispersal  and  cosmopolitanism  in  microorganisms.  A study  of  ciliates  in

freshwater  ponds  yielded  surprisingly  high  local:global  species  richness

ratios,  leading  to  the  conclusion  that  geographically  distinct  communities

should  not  differ  much  in  composition  (Finlay,  2002).  However,  the

conclusions were largely rejected by microbial ecologists because the method

of  identification  (microscopy)  did  not  adequately  address the  possibility  of

cryptic  species  within  ciliates,  and  therefore  likely  overestimated  the
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local:global  species  ratio  (Katz  et  al.,  2005).  Additionally,  because  of  the

uncertainty  around  estimates  of  global  microbial  richness,  the  validity  of

local:global  richness  ratios  is  highly  questionable  (Foissner,  2006).  Other

studies provide evidence for widespread cosmopolitanism by illustrating the

potential  for  global  dispersal  in  microorganisms,  for  example  via  wind

(Herbold et al., 2014).

Despite this, many studies have reported evidence for dispersal limitation in

microorganisms, in contrast to EiE. In particular, a multitude of studies have

reported distance-decay relationships (Whitaker et al., 2003; Dumbrell et al.,

2010; Martiny et al., 2011; Wetzel et al., 2012; Bahram et al., 2013; Milici et

al.,  2016).  This  relationship  describes  the  way  in  which  the  similarity  in

composition of communities decreases with increasing geographic distance

between them (Fig. 1.2; Nekola and White, 1999). Distance-decay curves are

often interpreted as evidence of dispersal limitation, as microorganisms may

only disperse to nearby communities, thus leading to more compositionally

similar  communities.  Though,  it  is  worth  noting  that  distance-decay

relationships may also arise due to spatial structure in the environment (e.g.

where  the  environment  is  spatially  autocorrelated).  Studies  have  reported

distance-decay relationships in a variety of microbial taxa, over a variety of

spatial  scales.  However,  many  studies  have  failed  to  observe  such

relationships (e.g. Queloz et al., 2011). The generality of this macroecological

relationship within microbial  communities is therefore unclear,  and requires
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further study (Soininen et al., 2007).

Figure  1.2 Two  potential  relationships  between  community  similarity  and

geographic  distance.  A  typical  distance-decay  curve  (solid)  in  which

community  similarity  declines  with  increasing  distance  due  to  dispersal

limitation or  spatially  autocorrelated environmental  conditions.  Alternatively,

community  similarity  may be unrelated  to  geographic  distance (dashed)  if

species are dispersal unlimited.

35



Chapter 1

Thesis Rationale

Microorganisms are the most ubiquitous, numerous, and diverse organisms

on Earth, playing key roles in mediating ecosystem level processes, that in

turn, benefit human society (Falkowski et al., 2008). The widespread uptake

of high-throughput sequencing technologies to study microbial communities in

great detail  has revolutionised our understanding of microbial ecology. The

past two decades of research in microbial ecology has shifted the view of

microbial  communities  from  being  entirely  structured  by  the  environment

(Finlay, 2002), to being highly complex, with a myriad of ecological processes

and interactions shaping them  (Martiny  et  al.,  2006;  Hanson  et  al.,  2012;

Barberán et al., 2014). However, few universal patterns have emerged from

this research and therefore, the generality of various relationships in microbial

ecology remain unclear. As a result,  the application of ecological theory to

understand the assembly, diversity, and activity of microbial communities is

limited to a “one size fits all” approach, which may radically underestimate the

complexity of microbial macroecology.

Spatial processes (processes that influence the emigration and immigration of

organisms into an environment e.g. dispersal) have provided a stimulus for

much research in microbial ecology (Green et al., 2004), principally due to the

provocative lack of importance placed on spatial processes by EiE. Yet, few

general  principles as to  when spatial  processes are,  or are not important,

have  emerged.  Furthermore,  it  is  unclear  whether  the  spatial  processes
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operating  on  microbial  communities  are  capable  of  producing  regional

patterns, similar to those observed for “macroorganisms”. Similarly, the role of

small  scale environmental  factors in structuring microbial  communities has

been extensively studied. But again, the generality of environmental drivers

across systems has been understudied, and therefore the consistency with

which  spatially  distinct  microbial  communities  respond  to  environmental

change is unknown  (Telford  et al., 2006). Finally, microbial ecologists have

tended  to  focus  on  environmental  drivers  that  operate  over  small  spatial

scales, such as the physicochemical environment. This has resulted in the

influence  of  environmental  factors  that  operate  over  larger  spatial  scales,

such as regional climate, being largely ignored. The vulnerability of microbial

communities to large scale environmental changes, such as climate change,

is therefore unknown. Consequently, the general aim of this thesis is to take a

“macroecological”  approach  to  examining  the  factors  that  structure

environmental  microbial  communities,  and  to  test  the  generality  of  these

factors across systems and microbial taxa.

Thesis Structure

• In Chapter 2, I test which method of sequencing (amplicon sequencing

or metagenomic sequencing) detects the most diversity from microbial

communities, and whether the difference in cost is favourable.

• In  Chapter  3,  I  examine  the  generality  of  a  macroecological

relationship, the distance-decay of similarity, in microbial communities.
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I  test  whether  this  relationship  varies  by  biological  context,  or

methodological differences between studies.

• In Chapter 4, I test the effects of spatial processes on extremophilic

microbial  communities.  Specifically,  I  examine  whether  microbial

communities  may  form  biogeographic  regions,  as  observed  for

“macroorganisms”. Additionally, I test whether individual microbial taxa

show biogeographically structured distributions.

• Within Chapter 5, I investigate the generality of environment-diversity

relationships  in  microbial  communities,  using  a  set  of  spatially

replicated thermal gradients around the Arctic circle.

• In  Chapter  6,  I  investigate  the  extent  to  which  climate  controls  the

distribution  of  microbial  taxa  over  global  scales,  and  whether  this

varies between and within microbial taxonomic groups.
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Abstract

Choosing  the  optimal  method  of  quantifying  biodiversity  within  microbial

communities is of central importance to all microbial ecologists. Two methods

frequently utilised to quantify the number of microbial taxa in an environment

are amplicon-, and metagenomic sequencing. Amplicon sequencing relies on

amplification  of  a  marker  gene,  whilst  metagenomics  allows  “shotgun”

sequencing of DNA. Here, I  sought to test which method is better able to

quantify the number of species, both at the operational taxonomic unit level

(OTU), and phylogenetic level. To do this, I assembled a dataset of paired

metagenomic and amplicon sequence datasets, consisting of over one billion

sequences,  and covering a variety  of  biomes and sequencing platforms.  I

extracted putative 16S rRNA gene fragments from metagenomic data, and

clustered them along with  16S rRNA gene amplicon sequences against  a

non-redundant  (clustered at  99% sequence similarity)  custom database of

16S rRNA gene sequences. At the OTU level, diversity was greater in the

metagenomic  datasets,  and  the  difference  between  metagenomic  and
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amplicon datasets  was larger  for  more  diverse communities.  Furthermore,

phylogenetic diversity was also significantly greater in metagenomic datasets,

at  every  rank  from  phylum  to  genus.  Trends  in  α-diversity  observed  in

amplicon  datasets  were  accurately  reflected  in  metagenomic  datasets,

showing  that  the  same  ecological  conclusions  are  reached  with  either

approach. I also determined the cost associated with producing appropriately

sized metagenomic sequence datasets,  and found that in most cases, the

cost was an order of magnitude higher than amplicon sequencing. Overall,

whilst metagenomic sequencing is able to detect more taxa and OTUs than

amplicon sequencing, the cost of metagenomics as a method of surveying

microbial  diversity  remains prohibitively  expensive,  especially  so when the

microbial communities are highly diverse and a large number of samples are

required. In most cases, amplicon sequencing therefore remains a favourable

option in terms of the balance between cost and ability to detect microbial

diversity.
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Introduction

Accurately quantifying the diversity of microbial communities remains one of

the  central  challenges  to  microbial  ecologists  (Locey  &  Lennon,  2016;

Schloss  et  al.,  2016).  The  vast  majority  of  microbial  life  is  not  (easily)

cultivable  (Staley  &  Konopka,  1985) and  thus,  molecular  methods  have

become the dominant approach to address this problem. Rapid technological

progress  in  molecular  microbial  ecology,  driven  by  next-generation

sequencing (NGS) developments over the last two decades, has made this

possible. These sequencing platforms allow the high-throughput sequencing

of many millions of DNAs in parallel, shedding light on the enormous diversity

of microbial communities  (Sogin  et al., 2006; Roesch et al., 2007, Aslam et

al., 2017, Clark et al., 2017).

Generally,  high-throughput  sequencing  approaches  can  be  categorised  as

amplicon-based or metagenomic. In both approaches, DNA is initially extracted

from  the  sample  of  interest.  In  amplicon  sequencing  (also  referred  to  as

metagenetic  sequencing  or  metabarcoding),  a  single  phylogenetically

informative marker gene is chosen to be sequenced. An ideal marker gene

should be conserved (present) across all of the taxa of interest, providing a

genetic target that, with an appropriate primer set, can be used to study the

entire  range  of  organisms  of  interest  in  a  given  environmental  sample.

Additionally, a marker gene should show some variability between taxonomic

groups,  as  this  will  allow  the  delineation  and  identification  of  different
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taxonomic groups present in the community. Frequently studied marker genes

include the 16S rRNA gene to study Bacteria and Archaea (e.g. Roesch et al.,

2007), 18S rRNA or cytochrome oxidase I genes to study Eukarya (e.g. Bik et

al.,  2012;  Fayle  et  al.,  2015),  the  ITS region  to  study  fungal  communities

(Schoch  et  al.,  2012),  or  specific  functional  genes associated  with  specific

lineages (e.g. the hydrazine oxidoreductase gene to study anammox bacteria,

Lansdown et al., 2016). The gene is then amplified via the PCR reaction, with

specific  primers,  before  being  sequenced on a next-generation  sequencing

platform. This is by far the most common approach used in microbial ecology

and has dramatically contributed to our understanding of microbial  diversity

(Schloss et al., 2016).

However, despite its widespread use, amplicon sequencing is flawed. Several

steps throughout the workflow of preparing samples for amplicon sequencing

have been shown to introduce bias to the results, with potential effects on

estimates of microbial diversity. These biases are predominantly introduced

by the necessity for PCR amplification of marker genes. Initially, the selection

of suboptimal primers can influence the results even before PCR. Rarely do

primer sets ever target 100% of the target organisms, and this can lead to

entire taxonomic lineages remaining unamplified, and therefore missing from

the sequence dataset (Jeon et al., 2008; Hong et al., 2009). Furthermore, the

different properties of individual marker gene sequences can influence the

efficiency  of  amplification  during  PCR.  The  relative  content  of  guanine-

51



Chapter 2

cytosine  (G-C)  base  pairs  in  a  sequence  can  affect  how easily  the  DNA

denatures  during  denaturation  steps  in  PCR.  G-C  base  pairs  form  three

hydrogen  bonds,  as  opposed  to  two  hydrogen  bonds  formed  between

adenine and thymine (A-T), meaning that marker gene sequences with many

G-C bases may resist denaturation, and therefore amplify less efficiently (Aird

et al., 2011). Furthermore, if marker gene sequences are of variable length,

shorter  sequences are  often  preferentially  amplified  over  long  sequences,

resulting in taxa with longer marker genes being under-represented in the

sequence dataset (Huber  et al., 2009; Bellemain  et al., 2010). Formation of

chimeric  sequences,  artificial  hybrid  sequences  produced  as  a  result  of

incomplete  primer  extension,  have  the  potential  to  inflate  estimates  of

microbial  diversity,  and  may  be  mistakenly  interpreted  as  novel  diversity

(Ashelford et al., 2005; Pinto & Raskin, 2012), although chimeric sequences

can  be  removed  during  bioinformatic  analyses  (e.g.  Edgar  et  al.,  2011).

Finally, other aspects of the PCR procedure have also been demonstrated to

potentially bias sequencing datasets if not appropriately controlled such as,

the  number  of  PCR  cycles  and  use  of  different  polymerase  enzymes

(Fonseca et al., 2012; Pinto & Raskin, 2012). Combined, these biases can

lead to erroneous conclusions about the ecology of microbial  communities

(Jumpponen, 2007; Bergmann et al., 2011; Fredriksson et al., 2013), although

this is not universal (Cotton et al., 2014). 

An  alternative  approach  to  amplicon  sequencing  is  to  use  metagenomic
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sequencing  (also  referred  to  as  “shotgun  sequencing”).  Here,  instead  of

amplifying a gene of interest, total DNA is sheared into smaller fragments that

are  easier  to  sequence.  These  fragments  therefore  represent  not  only

phylogenetic marker genes, but also functional, and “housekeeping” genes

associated with the microbiota,  as well  as extra-cellular and non-microbial

DNA. The library of DNA fragments are then sequenced in a high-throughput

manner.  Short  DNA  sequence  fragments  can  then  be  aligned  and

computationally  assembled  into  longer  fragments,  referred  to  as  contigs.

Contigs can then be aligned to genomic databases in order to infer functional

capacity and taxonomic composition (Sharpton, 2014), allowing identification

of the organisms present, and their functional capabilities. 

Additionally,  fragments  of  taxonomic  marker  genes  (see  above)  can  be

bioinformatically “mined”, allowing analyses of microbial diversity (Bengtsson-

Palme et al., 2015; Guo et al., 2016). The major advantage of this workflow is

that it  circumnavigates PCR amplification, therefore negating the effects of

primer-  and  PCR-associated  biases.  However,  the  compromise  is  that,

because  taxonomically  informative  marker  genes  (such  as  the  16S rRNA

gene) often represent < 1% of the total sequences in the dataset (Guo et al.,

2016), enormous sequencing depth may be required to obtain enough marker

gene  fragments  to  sufficiently  sample  the  community,  thereby  limiting  the

number  of  samples  that  can  be  sequenced  at  once.  For  analyses  of  β-

diversity (between site/sample diversity), where large numbers of samples are
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required,  amplicon  sequencing  may  be  most  appropriate  method  of

quantifying the microbial  community,  as many samples can be multiplexed

(sequenced  on the  same run)  and  any  biases  are  likely  to  be  consistent

across samples. Instead, metagenomic sequencing is a promising technique

for studies of α-diversity (within site/sample diversity), in which the taxonomic

diversity of a smaller number of samples is the desired information.

However,  the  usefulness  of  metagenomics  for  quantifying  α-diversity  in

microbial communities depends on its ability to detect extra diversity, and the

financial cost of such an approach. Few studies have previously compared

the  ability  of  metagenomic  and  amplicon  sequencing  to  detect  microbial

diversity, and none have quantified the potential difference in cost of these

two approaches. Therefore, I sought to determine whether metagenomic or

amplicon sequencing quantifies the most microbial diversity, at both the OTU

level,  and  taxonomic  level.  Furthermore,  I  analysed  the  cost  of  these

approaches to determine whether the difference in cost would promote the

use of one approach over the other.
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Methods

Data Sources

I initially  downloaded  8  datasets  comprising  of  paired  metagenomic,  and

amplicon sequence datasets (Table 2.1) from the mg-RAST server (Meyer et

al., 2008), Sequence Read Archive database (Leinonen et al., 2010), or other

data repositories described in each manuscript. Whilst I did not perform an

exhaustive literature search for suitable datasets, these studies represent a

variety of biomes, sequencing platforms, and sequencing depths, allowing a

robust  and  representative  comparison  between  these  two  molecular

workflows.

Bioinformatic Analyses

A schematic of all bioinformatic analyses is provided (Fig. 2.1). For sequence

datasets where quality scores were provided, quality trimming was conducted

using  Sickle  (Joshi  &  Fass,  2011),  with  a  quality  threshold  of  Q20  and

discarded sequences shorter than 100 nucleotides, as filtering low quality and

short  reads  has  been  shown  to  improve  estimates  of  microbial  diversity

(Bokulich et al., 2013). Datasets from Illumina sequencing platforms (HiSeq or

MiSeq) consisting of forward and reverse reads were pair-end aligned using

the Pear algorithm implemented in the PandaSeq software  (Masella  et al.,

2012;  Zhang  et  al.,  2014),  as  pair-end  alignment  reduces  error  rates  in

Illumina sequence datasets (Schirmer  et al., 2015). To extract putative 16S

rRNA gene  sequences  from the  metagenomic  sequence  datasets,  I  used
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Metaxa2  (Bengtsson-Palme  et  al.,  2015),  which  identifies  marker  gene

sequences using hidden Markov models.

In  order  to  compare  the  diversity  between  (metagenomic  and  amplicon)

datasets,  it  is not possible to directly compare sequences. Normally,  in an

amplicon sequencing approach, sequences are clustered against each other

into  operational  taxonomic  units  (OTUs),  at  a  given  sequence  similarity

threshold  (often  97%).  However,  because  metagenomic  16S  rRNA gene

fragments represent discontinuous parts of the entire 16S rRNA gene, they

can not be directly compared with the amplicon sequences, as it would be

impossible  to  determine  whether  an  amplicon  sequence  and  a  non-

overlapping metagenomic 16S rRNA fragment belong to the same species or

not. Therefore, in order to compare the diversity recovered by each method at

the OTU level, a closed-reference OTU clustering strategy (also known as

phylotyping)  was  chosen.  Here,  sequence  reads  are  clustered  against  a

reference database of near full length 16S rRNA gene sequences. Therefore,

even  non-overlapping  fragments  should  theoretically  map  to  the  same

database sequence. To do this, a non-redundant version of the RDP bacterial

16S rRNA database  (Cole  et  al.,  2013) was  created.  This  involved  using

VSEARCH  (Rognes  et  al.,  2016) to  de-replicate  the  original  database  to

remove any duplicate sequences, sort the unique sequences by length, and

finally clustering at 99% sequence similarity. This was done to remove highly

similar  sequences  from the  database  that  could  cause  metagenomic  16S

56



Chapter 2

fragments to map to different OTUs, artificially inflating our estimates of alpha

diversity in metagenomic libraries (where fragments may not overlap). Having

created  the  reference  database,  I  mapped  marker  gene  sequences  (from

metagenomic  and  amplicon  datasets)  against  this  database  at  a  97%

similarity threshold using VSEARCH.
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Figure 2.1 A schematic view of the bioinformatics workflow used to analyse

and compare metagenomic and amplicon sequence datasets.
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Table 2.1. Details of the sequence datasets used in this study.

Dataset Biome Sequencing platform Number of paired samplesb

Aslam et al. (2016) Desert soil Pyrosequencing (amplicon)
Illumina MiSeq (Metagenome)

1

Chan et al. (2015) Spring Illumina HiSeq (Metagenome)
Illumina MiSeq (amplicon)

1

Delforno et al. (2017) Wastewater Illumina HiSeq (Metagenome)
Illumina MiSeq (amplicon)

1

Gibbons et al. (2014) River sediment Illumina HiSeq (Metagenome)
Illumina MiSeq (amplicon)

14

Muegge et al. (2011) Zoo animal faeces Pyrosequencing 38

Navarrete et al. (2015) Forest soil Pyrosequencing (amplicon)
Illumina HiSeq (metagenome)

15

Steven et al. (2012) Desert soil Pyrosequencing 6

Turnbaugh et al. (2009) Human gut Pyrosequencing 18 metagenome-V2 16S rRNA
18 metagenome-V6 16S rRNA

a In studies where different sequencing platforms were used to generate metagenomic and amplicon libraries, this is indicated 
in parentheses.
b Refers to the number of samples from each study for which sequence data could be obtained and paired sequence datasets 
could be verified.
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In addition to comparing amplicon and metagenomic sequencing at the OTU

level, I also compared them at the phylogenetic level. To do this, taxonomy

was assigned to all amplicon and metagenomic 16S rRNA gene fragments

using the RDP classifier  (Wang  et al., 2007), set to a minimum confidence

threshold of 0.7. Any non-bacterial sequences (such as archaeal 16S rRNA

fragements) were excluded from taxonomic analyses.

Statistical Analyses

To  analyse  whether  metagenomic  or  amplicon  sequencing  recovers  more

OTUs or taxa, I first rarefied OTU tables and taxonomic tables for each pair

(amplicon  and  metagenome)  of  samples,  to  whichever  sample  had  the

smallest number of 16S rRNA sequences. This was to ensure that unequal

library sizes did  not  bias our  results,  as diversity  is  known to  be strongly

influenced by library size (Gihring et al., 2012). I then used negative binomial

generalised linear mixed effects models (GLMMs) to test whether amplicon or

metagenomic  sequencing  recover  significantly  different  OTU or  taxonomic

richness  (Bolker  et al., 2009). These models allow modeling of count data,

which is non-normally distributed (as it is integer and bound by 0), without

transformation, improving interpretation (O’Hara and Kotze, 2010). I included

a study specific intercept in all models to account for the expected differences

in OTU or taxonomic richness between datasets from different biomes (e.g.

soils  are  expected  to  be  richer  than  gut  microbiomes).  For  analyses  of

taxonomic diversity, I created separate models for each of the five taxonomic
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ranks  provided  by  the  RDP  classifier  (phylum,  class,  order,  family,  and

genus).

To examine the cost of each approach I first obtained cost estimates for the

three  different  sequencing  platforms  utilised  by  the  studies  featured  here

(Table 1).  These were obtained from  Quail  et al.  (2012) and  Loman  et al.

(2012),  and were calculated by dividing the cost  per run by the expected

output (to obtain a cost per base), and then multiplying by the average read

length of each platform (to obtain a cost per sequence). These costs provide

a  useful  estimate  of  the  relative  costs  associated  with  each  sequencing

approach.  I  then  estimated  the  cost  of  each  sequence  dataset.  For

metagenomes, I estimated the number of metagenomic sequences required

to yield a number of 16S rRNA fragments equivalent to the corresponding

amplicon dataset.
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Results

Our  initial  dataset  consisted  of  1.16  billion  metagenomic  and  amplicon

sequences. Quality filtering reduced this total  to 1.03 billion sequences, of

which 1.02 billion were metagenomic sequences, and 2.86 million were from

amplicon datasets. Quality filtered metagenomic datasets contained a mean

of  9.14  million  sequences  (std.  error  =  2.27  million),  whereas  amplicon

datasets contained a mean of 25,558 sequences (std. error = 4,567).

Figure  2.2 (A)  The  proportion  of  metagenomic  sequences  identified  as

putative  bacterial  16S  rRNA fragments  within  each  dataset,  and  (B)  the

relationship between total metagenome library size and the number of 16S

rRNA fragments. The grey dashed line represents the fit of a linear regression

(slope = 0.56, P < 0.001, adj-R2 = 0.86).

62



Chapter 2

Using Metaxa2, putative bacterial 16S rRNA fragments were extracted from

the  metagenomic  datasets.  Between  57,  and  169,553  fragments  were

extracted  from  metagenomic  libraries,  which  represented  on  average

0.0022% (std. error = 0.00027) of the total library size (Fig. 2.2A). There was

a strong, positive relationship between the (log) library size of a metagenome

and the (log) number of bacterial 16S rRNA fragments detected (Fig. 2.2B;

slope = 0.56, P < 0.001, adj-R2 = 0.86).

Figure  2.3 The  proportion  of  metagenomic  16S  rRNA  fragments  and

amplicon  sequences  matching  the  non-redundant  RDP  database,  at  a

similarity threshold of 97%.

Diversity Analyses

In order to compare the diversity obtained via metagenomic and amplicon

sequencing approaches, 16S rRNA sequences and fragments were clustered
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against a non-redundant version of the RDP database. Mixed effects models

revealed  that  overall,  metagenomic  datasets  obtained  significantly  higher

coverage  in  the  reference  database  than  amplicon  datasets  (Fig.  2.3;

coefficient = 0.85, z = 2.52, P < 0.05).

Figure  2.4 The  relationship  between  OTU  richness  within  amplicon  and

metagenomic  datasets.  The  dashed  line  shows  a  1:1  relationship,

representing equal OTU richness in both datasets. OTU richness between the

two dataset types were strongly and significantly correlated (Pearson’s ρ =

0.97, P < 0.001).

Analysis of the OTU richness recovered by each method showed that alpha

diversity patterns observed in amplicon datasets were strongly correlated with

those in corresponding metagenomic dataset (Pearson’s ρ = 0.97, P < 0.001).

Furthermore, GLMM analysis showed that metagenomic sequence datasets
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recovered  significantly  more  OTUs  than  amplicon  datasets  (Fig  2.4;

coefficient = 0.77, z-value = 6.60, P < 0.001).

Figure 2.5 The taxonomic richness of each sample, at each taxonomic rank

defined  by  the  RDP  classifier.  Metagenomes  tend  to  recover  greater

taxonomic richness, even at higher taxonomic levels, but especially at lower

taxonomic levels (genus).

When taxonomic  richness  was  analysed  instead  of  OTU richness,  similar

patterns  were  observed.  At  all  taxonomic  ranks  analysed,  metagenomes

tended to recover significantly greater taxonomic richness than corresponding

amplicon data, and this effect was more evident at lower taxonomic ranks
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(e.g. genus) than at higher ranks (Fig.  2.5 and Table 2.2).  As with OTUs,

taxonomic  alpha  diversity  was  strongly  correlated  between  amplicon  and

metagenomic datasets, for all taxonomic ranks (P < 0.001 for all taxonomic

ranks; Fig. 2.6).

Figure 2.6 The relationship between the taxonomic richness from amplicon

and  metagenomic  datasets.  Panels  represent  each  taxonomic  level,  and

dotted lines represent a 1:1 relationship.  Taxonomic richness was strongly

and significantly correlated between datasets at every taxonomic level (P <

0.001 in all cases).
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Table 2.2 Results from negative binomial GLMMs testing for differences in

taxonomic  richness  between  metagenomic  and  amplicon  datasets.  At  all

taxonomic  ranks,  metagenomes  were  found  to  be  significantly  richer,  as

indicated by the positive coefficient values.

Taxonomic
rank

Estimated
coefficient

Standard
error

Z-value P-value

Phylum 0.10 0.04 2.28 < 0.05

Class 0.08 0.03 2.74 < 0.01

Order 0.06 0.03 2.37 < 0.05

Family 0.09 0.02 4.15 < 0.001

Genus 0.20 0.02 8.06 < 0.001

Cost Analysis

Figure 2.7 The estimated cost of each sample for both metagenomic and
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amplicon sequencing datasets. The cost of the metagenomic datasets was

calculated for the number of sequences needed to yield an equivalent number

of 16S rRNA fragments as the corresponding amplicon dataset.

For  each  sample,  I  calculated  the  cost  of  sequencing  a  metagenome of

sufficient size to produce an equivalent number of 16S rRNA fragments to the

corresponding amplicon dataset. The difference in costs between amplicon

and metagenomic approaches varied greatly between studies (Fig. 2.7), but

metagenomes  were  on  average  36.6  times  more  expensive  than  the

equivalent amplicon cost. Only in the Navarette 2015 study was the total cost

of metagenome sequencing not an order of magnitude greater than the cost

of amplicon sequencing. This was due to expensive pyrosequencing being

used for amplicon sequencing whilst the Illumina HiSeq, the cheapest of the

three platforms, was used to sequence metagenomes, thus minimising the

difference in cost.
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Discussion

Within  this  study,  I  compared  the  ability  of  two  common  sequencing

approaches, amplicon sequencing and metagenomic sequencing, to quantify

α-diversity  in  bacterial  communities.  To  do  this,  I  assembled  the  largest

dataset of paired metagenomic and amplicon samples to date consisting of

over 1 billion sequences to date, and the first representing multiple biomes. I

show that metagenomic sequencing recovers more diversity at both the OTU

and  taxonomic  levels  when  differences  in  library  size  are  accounted  for.

However,  I  also  found that  the  costs  associated  with  the  two sequencing

approaches can be vastly different. In all studies aside from one, the cost of

producing a metagenome that yields an equivalent number of 16S sequences

to the corresponding amplicon dataset was an order of magnitude higher than

the  cost  of  the  amplicon  dataset.  The  results  clearly  demonstrate  the

advantages of metagenomic approaches in terms of quantifying more taxa

(and  OTUs),  but  also  highlight  that  this  extra  diversity  comes  at  a  large

financial  cost,  thereby limiting  the usefulness of  metagenomics in  multiple

sample studies (Neufeld, 2017).

Against  expectation,  metagenomic  sequencing  recovered  more  taxonomic

diversity than amplicon sequencing at all taxonomic levels including. Amplicon

sequencing  is  known  to  exclude  certain  taxa  due  to  suboptimal  primer

coverage  (Hong  et  al.,  2009).  Primers  are  typically  tested  for  coverage

properties against databases of full  length marker genes  (Klindworth  et al.,
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2013; Hugerth et al., 2014). However, this has the potential to lead to a cycle

in which novel taxa may be missed by primers, and therefore are less likely to

be discovered and added to databases, resulting in reduced discovery rates

of novel organisms. In contrast, I have shown that metagenomics facilitates

the discovery of greater taxonomic richness, even at more basal taxonomic

ranks. This finding is in contrast to recent findings by  Tessler  et al. (2017),

who found that amplicon sequencing recovered more families and phyla than

did metagenomic sequencing. However, this is explained by the fact that the

authors  did  not  perform  any  normalisation  between  amplicon  and

metagenome library  sizes.  As I  have shown,  16S rRNA fragments  almost

always represent < 1% of the total metagenome library size, meaning that in

most studies, the number of metagenomic 16S sequences is fewer than the

corresponding amplicon dataset. Therefore, amplicon datasets may recover

more  taxonomic  diversity  in  an  absolute  sense,  but  once  normalised,

metagenomes recover more.

By  mapping  both  metagenomic  16S  rRNA  fragments  and  amplicon

sequences to a database of near full length 16S rRNA sequences, I was also

able to compare the two sequencing approaches at the OTU level,  unlike

previous comparative studies (e.g. Tessler et al., 2017). However, the fact that

metagenomic 16S rRNA fragments will likely map to different regions of the

16S gene represents something of a caveat to our study. This is because

different regions of the 16S rRNA gene show different rates of evolution, and
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therefore differ in their ability to resolve closely related taxa. One approach to

deal with this is to choose a region for which many metagenomic fragments

overlap, as in Guo et al. (2016). However, this does not make good use of the

data, as fragments that do not overlap the chosen region are discarded, even

though they may still  be informative.  An alternative  approach might  be  to

apply a gene-region-specific sequence similarity threshold. This would allow a

higher threshold to be used for fragments that map to well conserved regions,

whilst  a  lower  threshold  could  be  used  for  fragments  that  map  to  hyper-

variable regions. However, such an approach would not be trivial. A database

of full length (or near full length) marker genes would be required to ensure

that  marker  gene  fragments  are  mapped  to  the  correct  gene  region.

Furthermore,  robust evolutionary models would be required to ensure that

hyper-variable and conserved gene regions are correctly characterised, and

that appropriate sequence similarity thresholds are calculated. However, the

use  of  locus  specific  sequence  similarity  thresholds  could  be  a  robust

alternative to using static sequence similarity thresholds.

Whilst metagenomics is able to recover more diversity than an equivalently

sized  amplicon  sequence  dataset,  the  cost  of  metagenomics  is  still

prohibitively  high  for  its  application  as  a  method  of  surveying  microbial

diversity. Here, I illustrated that in all but one of the studies used, the cost to

sequence a sufficiently a metagenome of equal depth to an amplicon, would

be at least an order of magnitude higher than amplicon sequencing. In all of
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the studies used, Bacteria were the focal taxa, and it is known that they are

reasonably abundant in all of the studied biomes. However, if a less abundant

group  of  microbes  were  of  interest  (e.g.  Archaea  of  Fungi),  the  need  for

greater sequencing depth would be exacerbated, increasing the relative cost

even  more.  In  contrast,  amplicon  sequencing  carries  the  advantage  that

organisms  which  are  very  rare  in  the  environment  can  still  be  targeted

(Lansdown  et  al.,  2016).  Therefore,  whilst  metagenomics  shows  great

promise  as  a  method  for  recovering  hitherto  unknown  microbial  diversity

(Neufeld,  2017),  it  is  currently  not  a  cost  effective  means  of  doing  so,

particularly in biogeographic studies where a large number of samples are

often required to achieve sufficient spatial  or temporal replication to test a

given hypothesis.

Conclusions

By comparing the diversity within amplicon and metagenomic datasets, I have

shown that metagenomic sequencing is able to quantify more diversity at both

the  taxonomic  and  OTU  level.  Patterns  of  alpha  diversity  were  highly

correlated  between  datasets,  indicating  that  metagenomes  are  able  to

successfully mirror the ecological patterns observed within amplicon datasets.

However,  in order to extract an adequate number of 16S rRNA fragments

from a metagenome, far larger sequencing depth is required, meaning that

the difference in cost between metagenomic and amplicon sequence datasets

often  spans  an  order  of  magnitude.  The  difference  in  cost  means  that
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metagenomic  sequencing  remains  prohibitively  expensive  as  a  method  of

surveying microbial diversity, particularly when many samples are required.

Therefore, until the price of metagenomic sequencing decreases sufficiently,

amplicon  sequencing  will  remain  the  most  frequent  method  of  surveying

microbial diversity.
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Abstract

Ecological communities closer together in space and time, are generally more

similar than those further apart,  as defined by the distance-decay (d-d) of

similarity relationship. Historically, microorganisms were assumed to defy this

relationship due to their  capacity  for  long distance,  passive dispersal,  and

high population densities. Yet, recent studies have recorded highly variable d-

d  relationships  in  a  range  of  microbial  communities  from  disparate

environments, using very different methods. The range of biological contexts

incorporated  by  these  studies  could  explain  the  differing  distance-decay

relationships reported as the dispersal of microorganisms may vary between

different  study  systems,  or  spatial  scales.  Furthermore,  methodological

differences between studies will differ in their ability to detect rare species,

thereby leading to contrasting estimates of compositional similarity between

communities.  Therefore,  I  sought  to  understand  whether  the  variability  in

microbial  d-d  relationships  is  caused  by  different  study  methodologies,  or

biological contexts. To do this, I conducted an exhaustive meta-analysis and

79



Chapter 3

gathered data on 287 microbial  d-d relationships. Given that  most  studies

statistically test for d-d relationships using the Mantel correlation test, I used

the Mantel correlation coefficient as a measure of effect size. I found that d-d

relationships were weakly but significantly related to measures of community

coverage, whilst different community quantification methods (e.g. community

fingerprinting,  high-throughput  sequencing,  morphological)  only  effected

statistically-significant d-d relationships. The use of phylogenetic community

similarity  indices  resulted  in  significantly  weaker  d-d  relationships  than

compositional  similarity  metrics  (e.g.  Jaccard’s  or  Bray-Curtis  index).

Distance-decay  relationships  were  significantly  weaker  in  soils  than  other

study  systems,  but  significantly  stronger  in  host-associated  systems,

potentially reflecting the ecological properties of the host taxon. The strength

of the d-d relationships was also positively related to the spatial scale of the

study but, against expectation, did not vary between different study taxa. I

conclude  that  the  microbial  d-d  relationship  is  dependent  on  biological

context, but that methodological choices by the researcher can also strongly

influence the strength of this relationship. I provide suggestions for selecting

methods  that  will  minimise  methodological  noise,  and  enhance  ecological

signal.
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Introduction

The  distance-decay  (d-d)  of  community  similarity  is  one  of  the  most

commonly  studied  relationships  in  macroecology  (Nekola  &  White  1999;

Condit et al. 2002; Soininen et al. 2007). The relationship quantifies how the

similarity  of  community  composition  decays  with  increasing  geographic

distance between communities, such that communities close together contain

more similar species assemblages than those further apart. Distance-decay

relationships are able to inform us about the dispersal abilities of organisms

present  in the community,  the connectivity  of  communities,  as well  as the

spatial configuration of the environment. Consequently, the relationship is of

great  importance  in  understanding  the  spatial  configuration  of  global

biodiversity,  with  potential  implications  for  conservation  efforts  (Nekola  &

White,  1999).  Accordingly, the relationship has been well  studied across a

wide  range  of  organisms  with  varying  dispersal  abilities  and  ecological

properties,  revealing  distance-decay  relationships  over  a  range  of  spatial

scales.

One group of organisms previously thought to defy the d-d relationship are

microorganisms.  One  of  the  earliest  hypotheses  about  the  potential  for

microbial  distance-decay  relationships  was  formulated  by  Dutch

microbiologist,  Baas-Becking.  Within  this  hypothesis,  Baas  Becking

postulated that “Everything is everywhere but, the environment selects” (Baas

Becking 1934). The rationale behind this hypothesis was that microorganisms
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should be efficient dispersers, as their small size may facilitate long distance,

passive dispersal  (Wilkinson  et al.,  2012).  Additionally,  the high population

densities  often  observed  in  environmental  microbial  communities,  might

facilitate dispersal through “mass effects”, whereby organisms disperse from

areas of high density  to less favourable habitat  (Shmida & Wilson, 1985).

Therefore, “Everything is everywhere” suggests that microbial distance-decay

relationships are exclusively the result of spatially structured environmental

factors (Finlay & Fenchel 2004, Hanson et al., 2012). This interpretation of the

microbial d-d relationship is compatible with niche theory, which posits that

communities  are  assembled  form  as  the  result  of  interactions  between

species with the environment (Holt, 2009). Therefore, spatial processes play

a lesser role in the formation of microbial d-d relationships.

However,  modern  molecular  evidence  suggests  that  the  causes  of  d-d

relationships are considerably more complex than “Everything is everywhere”

(Hanson et al., 2012). The rapid development of molecular methods to study

microbial communities, coupled with the provocative nature of “Everything is

everywhere”,  has resulted in  an  explosion of  studies testing the distance-

decay  relationship  in  microbial  communities.  These  studies  have  yielded

mixed  results.  A  number  of  studies  have  found  no  correlation  between

microbial community composition and distance (Hazard et al. 2013; Kivlin et

al. 2014), showing that communities separated by large geographic distances

can be equally similar to those separated by small distances. However, many
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studies have reported relationships, varying in steepness, between microbial

community composition and geographic distance for a range of spatial scales

and taxa (Dumbrell et al. 2010; Martiny et al. 2011; Barreto et al. 2014), even

when spatially autocorrelated environmental gradients have been accounted

for  (e.g.  Green  et  al.,  2004).  These  results  suggests  that  microbial

communities may be structured by spatial processes, and not solely by the

environment,  in  disagreement  with  “Everything  is  everywhere”  and  niche

theory.  This  finding  is  concordant  with  neutral  theory,  suggesting  that

stochastic processes, such as dispersal, can contribute to the composition of

a  community  (Hubbell,  2001).  The  ability  of  ecologically  very  different

processes (niche and neutral)  to generate d-d relationships suggests that,

variability in this relationship may be related to organisms’ dispersal abilities,

connectivity and/or spatial distance between communities, and environmental

heterogeneity.  Therefore,  biological  context  may  explain  the  disparity  in

reported microbial d-d relationships.

Here, context could be considered to be the organisms studied (e.g. Bacteria,

Archaea, Fungi, Protists etc.), the study system in question (soil, freshwater,

extreme  systems),  or  the  spatial  scale  of  the  study.  Distance-decay

relationships  may  vary  by  taxonomic  groups  if  dispersal  is  a  trait-based

process, for example varying cell sizes (Wilkinson et al. 2012; Soininen et al.

2013).  Different  study  systems  may  also  influence  the  rate  of  the  d-d

relationship  as  previously  reported  (Soininen  et  al.  2007).  This  may  be
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because  environments  differ  in  connectivity,  for  example,  host  associated

communities may be poorly connected due to the restricted dispersal/range

size  of  the  host,  and  therefore  will  exhibit  steeper  distance-decay

relationships.  Additionally,  environments  will  differ  according  to  the

physicochemical  gradients  they  are  able  to  support.  Stable,  undisturbed

habitats such as soils have been shown to support considerable pH gradients

over relatively short distances (e.g. Dumbrell et al. 2010), resulting in stronger

distance-decay  relationships.  In  contrast,  well  mixed  surface  waters  may

support  far  more  diffuse  gradients,  resulting  in  shallower  distance-decay

curves. Finally, the spatial extent of a study could influence the observed d-d

relationship.  Larger  spatial  scales  may  result  in  a  decrease  in  dispersal

between  communities,  and  greater  environmental  heterogeneity,  both  of

which  should  result  in  steeper  d-d  relationships  (Martiny  et  al. 2011).  In

contrast, studies covering small spatia extents will likely sample more similar

communities, that may be better connected by dispersal, leading to a shallow

d-d relationship.

On  the  other  hand,  methodological  differences  between  studies  may

contribute to variability in microbial distance-decay relationships. From serially

sequencing clone libraries, through community fingerprinting methods,  and

most  recently  high-throughput  sequencing,  previous  research  into  the

microbial d-d relationship is based upon a plethora of methods with varying

degrees  of  taxonomic  resolution  and  community  coverage  (Muyzer  1999;
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Glenn 2011). These methodologies differ markedly in their ability to quantify

microbial  communities,  and  in  particular  the  rare  species  that  form  the

majority of a microbial community. Methods that are only able to quantify the

most  common  (and  widespread)  species  (such  as  morphological,  or

community fingerprinting methods) are likely to miss the rare, restricted taxa.

The result of this is that communities will appear artificially similar, resulting in

a weaker distance-decay relationship. In contrast, methods that adequately

quantify  the “rare biosphere”,  such as high-throughput  sequencing,  will  be

able  to  better  detect  the  species  that  differ  between  communities,  and

therefore  more  accurately  quantify  the  community  similarity,  resulting  in

stronger d-d relationships. In addition to the varying methods used to quantify

microbial communities, there are now an array of indices available to quantify

the (dis)similarity between microbial communities, including qualitative (based

on presence/absence of  species),  quantitative (based on composition  and

abundance  of  species),  and  phylogenetic  (based  on  relatedness  of

communities).  Such indices have different properties in terms of  how they

weight rare or common species, and in how they are influenced by sample

sizes or species richness (Baselga 2012; Beck et al. 2013), as well as what

they quantify (e.g. phylogenetic similarity versus compositional similarity). The

use of different indices could contribute to the strength of a distance-decay

relationship.  For  example,  phylogenetic  indices  may  result  in  weaker

distance-decay relationships because communities can be phylogenetically

closely related, but may differ at the operational taxonomic unit (OTU) level

85



Chapter 3

(e.g. Bryant et al., 2008).

Given the variability in microbial d-d relationships reported in the literature, I

sought  to  understand  whether  methodological  or  contextual  differences

between  studies  may  influence  reported  d-d  relationships  in  microbial

communities. To do this, I conducted a meta-analysis to synthesise available

data on the microbial distance-decay relationship, and test whether factors

relating to methodological or contextual aspects of each study influence this

relationship. Specifically, I test the following hypotheses:

 H1: Bacteria will  show weaker d-d relationships than other microbial

groups due to their smaller size and higher population densities.

 H2: Soils and host-associated study systems will  show stronger d-d

relationships than other systems due to their ability to maintain steep

physicochemical  gradients,  or  limited  range  size  of  the  host  taxon,

respectively.

 H3:  The  spatial  extent  of  a  study  will  be  positively  related  to  the

strength of a d-d relationship, as larger scale studies will incorporate

greater environmental heterogeneity, and lower dispersal between the

most distant communities.

 H4: Higher resolution community quantification methods, such as high-

throughput sequencing, will yield stronger d-d relationships due to their

ability to quantify rare taxa and resolve closely related taxa, and thus

more accurately quantify community (dis)similarity.
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 H5:  Sampling  depth  (e.g.  number  of  sequences,  or  number  of

individuals  counted)  will  be  positively  related  to  the  strength  of  d-d

relationships, for the same reason as in H4.

 H6:  The  strength  of  d-d  relationships  will  vary  between  similarity

indices,  and  in  phylogenetic  methods  will  result  in  weaker  d-d

relationships than compositional metrics. 
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Methods

Meta-Analysis

In  order  to  test  the  effects  of  ecological  context  and methodology on the

microbial  d-d  relationship,  I  first  conducted  a  systematic  literature  search

using the Web of Science search portal. To do this, I designed five different

search terms in order to maximise the size of the resulting dataset,  whilst

minimising irrelevant (e.g. studies of “macroorganisms”) studies (Table 3.1).

All  five  searches  were  conducted  on  08/06/2017,  and  all  search  results

published between 1900-2017 were retained. I downloaded all search results

from Web of Science and used the “metagear” package (version 0.4) in R

(version 3.4.1) to manually screen abstracts for suitability for inclusion in our

study (R Development Core Team 2016; Lajeunesse 2016). Suitable studies

were defined as those that indicated a test of the relationship between spatial

or geographic distance.
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Table 3.1 Details of the five Web of Science search terms and, the number of hits. A Web of Science search history file is

provided in the Supplementary Material.

Search Search terms Search results

1 TS = (biogeograph*) AND TS = (bacteria* OR archaea* OR microb* OR microorganism*) 1,872

2 TS = (macroecolog*) AND TS = (bacteria* OR archaea* OR microb* OR microorganism*) 85

3 TS  =  ("everything  is  everywhere")  AND  TS  =  (bacteria*  OR  archaea*  OR  microb*  OR
microorganism*)

53

4 TS  =  ("geographic  distance")  AND  TS  =  (bacteria*  OR  archaea*  OR  microb*  OR
microorganism*)

133

5 TS = ("distance decay") AND TS = (bacteria* OR archaea* OR microb* OR microorganism*) 107

* is a wildcard to allow searches to match multiple terms, e.g. microb* could match “microbiome”, “microbial”, and “microbe”
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I focussed on studies that had tested the distance-decay relationship using

the Mantel correlation test, as this is the most common method of testing this

relationship in microbial  ecology (Ramette, 2007; Lisboa  et al.,  2014),  and

provides an easily  interpretable effect  size measure (Harrison,  2010).  The

Mantel test is used to test for correlation between two distance matrices (i.e.

community  dissimilarity  and  geographic  distance).  Mantel  correlation

coefficients vary between -1 and 1, with values of 1 indicating strong positive

correlation,  0  indicates no/weak correlation,  and -1 shows strong negative

correlation. To standardise correlation coefficients between studies that had

used  similarity  matrices,  rather  than  dissimilarity  matrices,  I  multiplied  the

former by -1, so that all correlation coefficients reflect the correlation between

dissimilarity and geographic distance. For clarity, here a Mantel correlation

coefficient of  1 indicates a strong d-d relationship. Partial  Mantel  statistics

(which are able to test for correlation between two matrices whilst controlling

for a third) were excluded as they may be heavily influenced by which other

variables are included in the test, and are therefore not easily comparable

between studies. In order to test our hypotheses, I recorded several variables

relating to the ecological context of each study, as well as the methods used

(Box 3.1).

Box 3.1 Details of the explanatory variables extracted from each study.

Community characterisation method

This refers to the method used to quantify the species present in their sample and
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their abundances (if applicable). Each d-d relationship was categorised into either

high-throughput sequencing (HTS; Pyrosequencing, Illumina, Ion Torrent, Pac-Bio),

community  fingerprinting  (ARISA,  TRFLP,  DGGE,  PhyloChip),  or  other  (Sanger

sequencing, morphological identification).

Sequencing depth

This refers to the sequencing depth in sequencing based studies, or number of

individuals  counted in  morphological  based studies.  For  sequencing studies,  we

recorded the number of sequences after rarefaction, or if this was not given, the

average number of sequences per sample. As it is hard to quantify the resolution of

fingerprinting  approaches,  we  recorded  these  as  NA and  excluded  them  from

analyses involving sequencing depth.

Sampling effort

This  variable  represents  the number  of  individual  communities/samples  used to

formulate the d-d relationship.

Dissimilarity index

We  recorded  the  dissimilarity  index  from  which  each  d-d  relationship  was

calculated.  After  these had been recorded,  we categorised them as abundance

based  (Bray-Curtis,  Horn-Morisita,  Euclidean,  Hellinger,  Theta),  binary  (Jaccard,

Raup-Crick,  Sørensen,  Simpson,  βsim),  or  phylogenetic  (Unifrac,  Rao,  β-mean

nearest taxon distance, β-mean pairwise distance).

Study taxon
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We  categorised  d-d  relationships  into  broad  taxonomic  categories  (Archaea,

Bacteria, Eukarya, Fungi). If a d-d relationship was based on multiple taxa, then an

appropriate category was added as necessary (I.e. bacteria + archaea).

Scale

We recorded scale as the maximum distance separating communities (in km). If this

was not stated in text or provided in supplementary material (e.g. in a geographic

distance matrix), it was calculated from given geographic coordinates,  or estimated

from the d-d graph itself or from scaled maps, if no coordinates were provided.

Biome

We categorised d-d  relationships  based on their  biome (agriculture,  air,  aquifer,

indoor, coral, desert, dune, flower, forest, grassland, ice, lake, marsh, mine, ocean,

paddy,  river,  sediment,  sewer,  sponge),  reflecting  the  type  of  environment  the

communities occupied.

Environmental material

This  variable  represents  the  type  of  material  that  the  sampled  communities

occupied. We categorised d-d relationships as air, host, sediment, soil, or water.

P-value

As an additional comparison, we also recorded P-values for d-d relationships where

possible. We recorded unadjusted P-values, and here use a global alpha value of

0.05 for simplicity, regardless of multiple tests conducted by each study.

Statistical Analyses

92



Chapter 3

In  order  to  determine  whether  d-d  relationships  varied  between  categoric

variables (as in H1, H2, H4, and H6), I used ANOVA tests. To test hypotheses

3 and 5, I used linear regressions. I first log transformed both study scale and

sequencing depth as these variables spanned several orders of magnitude.
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Results

The Web of Science searches resulted in 2,250 search hits (Table 3.1). After

removing duplicate hits (i.e. studies that appeared in multiple searches), this

number decreased to 2,031 hits. Manual screening of the abstracts yielded

547  studies  that  were  deemed  to  be  potentially  suitable  for  use  in  this

analysis.  A total  of  287  Mantel  correlation  coefficients  were  successfully

obtained from 108 studies represented in 33 journals (Figs. 3.1). Of the 439

studies that were unsuitable for inclusion within this analysis, most had not

tested  for  correlation  between  geographic  distance  and  community

(dis)similarity (although the abstract still contained the search terms), whilst

others  had  used  different  methods  (e.g.  multilocus  sequence  typing  on

individual  species,  or  spatial  eigenvector  analysis).  Reported  Mantel

correlation coefficients ranged from -0.24 to 0.95, with a mean of 0.27 (std.

error = 0.014).

94



Chapter 3

Figure 3.1 The cumulative number of distance-decay (d-d) relationships and

publications  included  in  this  study,  through  time.  Studies  referes  to  the

number of publications in which microbial d-d relationships are tested, whilst

data points refers to the number of d-d relationships reported.

Influence of Biological Context on the Distance-Decay Relationship

In order to determine whether different ecological contexts can influence the

strength  of  d-d  relationships,  the  influence  of  ecological  factors  including

study taxa, study system, and spatial scale were tested. Within the dataset,

the most  commonly studied taxa were Bacteria,  followed by Fungi,  micro-

Eukaryotes, and Archaea. No significant difference was found in the Mantel
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coefficients  associated  with  each  taxa  (F5,  281 =  1.39,  P =  0.23),  in

disagreement  with  H1.  Examining  only  statistically  significant  Mantel

coefficients revealed marginally significant differences between taxa (F5, 172 =

2.51,  P < 0.05) with studies incorporating both bacteria and fungi  (n = 3)

simultaneously,  being  significantly  lower  than  studies  on  Archaea  (Tukey

HSD; P < 0.05).

Figure  3.2  Mantel  correlation  coefficients  from  microbial  communities

sampled from different  environmental  materials.  Larger  Mantel  coefficients

indicate stronger distance-decay relationships.

Of  the  20  different  biomes  recorded,  11  had  fewer  than  three  d-d
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relationships, and these biomes were excluded from biome analyses. The

most frequently studied biomes were grasslands (n = 62), forest (n = 57), and

lakes (n = 44). Mantel coefficients differed significantly between biomes (F8, 262

=  8.80,  P <  0.001),  in  partial  agreement  with  H2.  Specifically,  sponge

associated communities displayed higher coefficients than all  other biomes

(Tukey HSD;  P < 0.05 in all cases), and grassland communities had lower

coefficients than most other biomes (Forest, lake, ocean, river, sediment, and

sponge. Tukey HSD; P < 0.05 in all cases). Furthermore, the different types of

environmental  materials  sampled  showed  significant  differences  in  Mantel

coefficients (Fig.  3.2;  F4,  280 = 7.35,  P < 0.001).  Surprisingly,  soils showed

significantly lower coefficients than host-associated, sediment, or water  d-d

coefficients (Tukey HSD; P < 0.01 in all cases), in contrast with H2.

Finally,  concordant  with  H3,  there  was  a  significant,  positive  relationship

between the (log) spatial scale and the Mantel coefficient (slope = 0.016, P <

0.001, adj-R2 = 0.12), showing that studies with larger spatial extents tend to

find  stronger  correlations  between community  dissimilarity  and  geographic

distance  (Fig.  3.3).  This  relationship  held  when  only  significant  Mantel

coefficients were examined, and after accounting for sampling effort (slope =

0.016,  P <  0.001,  adj-R2 =  0.13).  Sampling effort  was not  correlated  with

spatial  scale  (Pearson’s  ρ  =  0.03,  P =  0.64),  showing  that  studies  that

incorporate  larger  spatial  scales,  do  not  necessarily  incorporate  more

samples.
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Figure 3.3 The relationship between Mantel correlation coefficients and the

geographic extent over which the distance-decay relationship was measured.

The solid line shows the fit of a linear model (slope = 0.016,  P < 0.001, adj-R2

= 0.12). The positive relationship indicates that larger scale studies tend to

record stronger distance-decay relationships.

Influence of Methodological Factors on the Distance-Decay Relationship

To  determine  whether  the  microbial  distance-decay  relationship  may  be

influenced  by  methodological  factors,  I  tested  whether  the  method  of

community  characterisation,  sampling  depth,  or  choice  of  community

similarity index influence the Mantel correlation coefficient. In contrast to H4,

high-throughput  sequencing  methods  (HTS)  did  not  result  in  significantly

higher Mantel coefficients compared to fingerprinting methods, or other low
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resolution methods (Figure 3.4A; F2, 284 = 0.19, P = 0.83). However, when only

statistically significant (alpha = 0.05) Mantel coefficients were examined (Fig.

3.4B),  high-throughput  sequencing  based  studies  showed  higher  Mantel

coefficients, approaching statistical significance (F2, 175 = 2.73, P = 0.07).

Figure  3.4 (A)  All,  and  (B)  only  statistically  significant,  Mantel  correlation

coefficients (RMantel) from studies based on high-throughput sequencing (HTS),

community fingerprinting approaches (such as DGGE or TRFLP), or other low

resolution/throughput  methods  (morphological  identification,  Sanger

sequencing).  Larger  Mantel  coefficients  indicate  stronger  distance-decay

relationships.

Sequencing depth was also significantly and positively related to the Mantel

coefficient, albeit with a small effect size (slope = 0.02,  P < 0.05, adj-R2 =

0.02), supporting the hypothesis (H5) that greater sequencing depth would

result in stronger d-d relationships. Sequencing depth was not correlated to
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sampling effort  (Pearson’s ρ  = 0.03,  P =  0.64),  showing that  studies with

greater sequencing depth did not necessarily incorporate more samples.

Figure 3.5 Mantel correlation coefficients from distance-decay relationships

based  on  (A)  different  dissimilarity  indices  and,  (B)  different  types  of

dissimilarity  index.  Index types reflect  the  different  data  requirements  and

type of distance (e.g. community composition or phylogenetic relatedness).

Larger Mantel coefficients indicate stronger correlation between community

dissimilarity and geographic distance.

In  line with  H6,  significant  differences were detected between dissimilarity

indices (F14,  271 = 4.96,  P < 0.001). Several indices were excluded from this

analysis as they had too few occurrences to calculate a reliable estimate of

the central  tendency (indices with < 4 occurrences were excluded).  Tukey

HSD tests showed Mantel coefficients from Raup-Crick and Unifrac indices
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were significantly lower than Bray-Curtis (P < 0.01 in each case, Fig. 3.5A),

whilst Sørensen based coefficients were higher than Euclidean, Raup-Crick,

and Unifrac indices (P < 0.01 in all cases, Fig. 3.5A). Furthermore, Mantel

coefficients were significantly different between index types (Fig. 3.4B; F2, 284 =

5.41, P < 0.01), and Tukey HSD tests showed that Mantel coefficients based

on phylogenetic distances were significantly lower than both abundance (P <

0.01) and binary based indices (P < 0.05), supporting H6.
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Discussion

Two decades of research into the spatial ecology of microbial communities

has resulted in a highly variable impression of the microbial distance-decay

(d-d) relationship. Our meta-analysis of 287 microbial d-d relationships has

revealed two main findings. Firstly,  d-d relationships may be influenced by

methodological choices, including the sequencing depth used and the type of

dissimilarity index. Secondly, as expected, the d-d relationship also appears

to be dependent on various aspects of biological context, with different d-d

relationships observed between different biomes and spatial scales.

The rapid development of  methods in microbial  ecology has improved our

ability to detect and characterise ecological patterns in microbial communities,

with high-throughput sequencing (HTS) platforms able to quantify microbial

communities in ever increasing detail (Roesch  et al. 2007; Caporaso  et al.

2012). The tremendous sequencing depth of HTS platforms allows them to

illuminate the “rare biosphere” (Caporaso  et al., 2012), thus elevating them

over  other  approaches  such  as  “fingerprinting”  which  tend  to  capture  a

smaller proportion of the community. Initially, our results suggested that HTS-

based  approaches  yielded  similar  strength  d-d  relationships  to  lower-

resolution  methods,  such as  fingerprinting  and lower  throughput  methods,

such as Sanger sequencing, suggesting that the massive sequencing depths

offered  by  HTS  platforms  are  not  necessary  to  capture  these  ecological

patterns (van Dorst et al. 2014). However, when I examined only statistically
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significant d-d relationships, the relationships derived from HTS approaches

were stronger than other approaches. The ability of different methods to alter

the  strength  of  the  d-d  relationship  is  expected  for  two  reasons.  Firstly,

fingerprinting  and  HTS approaches  capture  microbial  diversity  at  different

taxonomic  resolutions.  Comparative  approaches  have  shown  that

fingerprinting approaches such as ARISA may be comparable to HTS data at

the phylum level for instance (Gobet et al. 2014). Fingerprinting methods are

therefore  limited  in  that  they  may  not  detect  compositional  differences

between communities at increasingly fine taxonomic resolutions (Ramette &

Tiedje 2007; Bissett et al. 2010, Hanson et al., 2012). This may weaken the d-

d relationship in instances where communities are similar at the family level,

but dissimilar at finer taxonomic levels. Secondly, fingerprinting methods are

less able to sample from the “rare biosphere”, unlike HTS approaches. This is

significant as, microbial communities often follow an occupancy-abundance

relationship  in  which  the  most  common  organisms  are  also  the  most

widespread,  and  the  rarer  organisms are  the  most  restricted  (Soininen  &

Heino 2005; Liu  et al. 2015).  Therefore, sampling only the most common,

widespread  organisms  should  flatten  the  d-d  relationship  by  making

communities appear artificially similar in composition (e.g. Zinger et al., 2014).

This is in contrast to a recent study, that demonstrated spatial  turnover in

communities is adequately reflected by “common species” alone in various

freshwater  communities  (Heino  &  Soininen  2010).  However,  microbial

communities are often enormously diverse and exhibit extremely “long tailed”
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species  abundance  distributions,  such  that  the  vast  majority  of  microbial

species in a community  are “rare” (Hong  et al. 2006; Galand  et al. 2009;

Locey & Lennon 2016). Therefore, it is likely that in microbial communities,

common species alone may not adequately reflect patterns in spatial turnover

(Galand et al. 2009).

Another methodological choice that was found to influence the strength of the

microbial  d-d  relationship  is  the  choice  of  dissimilarity  index.  Dissimilarity

indices can vary in the type of data they consider (quantitative vs qualitative),

the type of distance they quantify (compositional vs. phylogenetic), and the

weight they place on common, rare, or absent species (Anderson et al. 2011).

Within  this  study,  I  found  significant  differences  in  the  d-d  relationship

between different indices, and between different index types. In particular, d-d

relationship  using  phylogenetic  indices  were  significantly  flatter  than

compositional  indices,  whereas  there  was  no  difference  between  binary

(presence/absence) and abundance based indices. Phylogenetic dissimilarity

metrics  may  result  in  lower  Mantel  correlation  coefficients  for  the  same

reason that fingerprinting methods do; because communities predominantly

differ at fine taxonomic resolutions. This means that whilst communities differ

in exact species or OTU composition, they can still be phylogenetically closely

related, as communities may be highly similar at higher taxonomic ranks. In

contrast,  community  composition  metrics  give  no  weight  to  how  related

communities  are  at  broader  taxonomic  levels.   The  result  of  this  is  that
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communities appear more similar when phylogenetic indices are used (Bryant

et al.,  2008),  potentially resulting in flatter  d-d relationships (and therefore

lower Mantel coefficients). This effect might be exacerbated when all sampled

communities are from environmentally similar sites, which select for particular

taxonomic groups. For example, extremophilic habitats such as solar salterns,

can  be  highly  similar  at  broad  taxonomic  levels,  yet  distinct  at  the

OTU/species level (Zhaxybayeva et al. 2013; Clark et al., 2017).

Surprisingly, no difference was observed between quantitative and qualitative

dissimilarity indices. This suggests that qualitative compositional differences

between communities drive d-d relationships rather than quantitative changes

in species composition and abundance. In agreement with previous studies

that  have  applied  both  binary  and  abundance  based  indices,  these  two

measures of community similarity are likely to be highly correlated (Martiny et

al. 2011), and result in similar estimations of d-d relationships (e.g. Green et

al.  2004,  Glassman  et  al.  2015).  This  analysis  also  revealed  that  classic

dissimilarity  metrics,  such  as  Bray-Curtis  or  Jaccard's  index,  are

overwhelmingly  the  most  frequently  used  in  studies  of  microbial  d-d

relationships.  These indices are  undoubtedly  amongst  the most  frequently

used, not only in microbial ecology, but also more widely in ecology. I draw

attention to several contemporary indices that may better suit  the types of

questions microbial ecologists ask as well as the properties of the data they

generate.  Classic  metrics  do  not  take  into  consideration  co-occurrence
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information present within the data, which could increase understanding in

microbial communities where there are many possible biotic interactions. To

this end, a new family of metrics have been defined that account for species

co-occurrence  as  well  as  shared  taxa  (Schmidt  et  al. 2017).  Additionally,

many indices rely on equal sample sizes, and are sensitive to differences in

species  richness  (Green  &  Bohannan  2006),  with  potentially  confounding

effects  on  d-d  relationships  (Baselga  2007).  Chao  et  al.  (2005)  therefore

extended  classic  indices  such  as  Jaccard  and  Sørensen  to  account  for

unobserved  species,  and  to  make  them less  sensitive  to  variable  sample

sizes, reducing the need for post-sequencing normalisation of sample sizes

(McMurdie & Holmes 2014). Finally, many indices (such as Jaccard, Bray-

Curtis,  and  Sørensen)  are  known  to  merge  true  compositional  turnover

(replacement of species) and nestedness (whereby communities are subsets

of one another). To combat this, modified versions of classic indices such as

Jaccard,  Sorensen,  and  Bray-Curtis  have  been  developed,  allowing  the

partitioning of community similarity metrics into their turnover and nestedness

components.  This should enable a more mechanistic understanding of the

processes behind d-d relationships (Baselga 2010, 2013; Podani & Schmera

2011). I echo the call of Green and Bohanan (2006) for microbial ecologists to

exercise more care in their choice of dissimilarity metrics, especially now that

many are implemented in popular and freely accessible analysis software,

such as R (e.g. Baselga and Orme 2012).
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Whilst  significant  differences were  found between  different  methodological

approaches, I also found differences relating to the biological context of each

study. Against expectation, soil based studies had weaker d-d relationships

than studies using other environmental materials. Soils are relatively stable

habitats, in that they maintain physical structure and are therefore capable of

maintaining significant  environmental  gradients over relatively small  spatial

scales. Therefore, I expected the combination of high habitat heterogeneity

coupled  with  limited  opportunity  for  dispersal  to  result  in  stronger  d-d

relationships  than  for  example,  oceanic  waters,  where  physicochemical

gradients  are  more  diffuse.  It  is  possible  that  the environmental  gradients

present in soils do not change linearly over geographic distance, for example

if the similar environmental conditions are patchily distributed. Alternatively,

soil microorganisms may be able to disperse more effectively than previously

thought, perhaps via association with other soil  organisms (Warmink  et al.,

2011), migratory species such as birds (Bisson et al., 2007), wind blown soil

particles (Kellogg & Griffin 2006; Favet et al., 2013), or via bioaerosols (Joung

et al., 2017).

Originally, I expected that studies of aquatic microbial communities may show

the weakest d-d relationships as riverine or oceanic hydrology may provide an

effective dispersal mechanism, thus homogenising microbial communities and

presenting more diffuse environmental gradients over larger spatial  scales.

Contrarily,  I  found  that  aquatic  communities  actually  showed stronger  d-d
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relationships  indicating  increased  spatial  turnover  in  aquatic  microbial

communities.  Soininen  et  al.  (2007)  recorded similar  distance-decay rates

between  terrestrial,  marine  and  aquatic  ecosystems,  showing  that  biome-

dependent d-d relationships may be a feature of microbial communities. Host-

associated  communities  showed  relatively  strong,  but  variable  d-d

relationships. I suggest that this is caused jointly by the ecology of the host

species, in combination with the degree of host specificity with the associated

microbial  community.  For example, if  the host is not dispersal  limited, and

associates with a large variety of microorganisms, then the d-d relationship

may be relatively flat. However, if the host is dispersal limited, and associates

with  a very specific microbiome, the d-d relationship might be steeper.  To

develop our understanding of the macroecology of host-associated microbial

communities,  an  interesting  approach  would  be  to  compare  microbial  d-d

relationships  of  sessile  and  motile  hosts  (motile  host-associated  d-d

relationships were excluded in this analysis), as incorporating the ecology of

the host (e.g. movement, interactions, range size) would likely provide further

explanatory power.

Finally, I also found a relationship between the strength of the d-d relationship

and the spatial scale over which the study was conducted. Scale-dependent

d-d relationships have previously been reported (Bissett  et al. 2010; Martiny

et al. 2011; Soininen et al. 2011), albeit with contrasting results. Our results

are comparable to those of Martiny  et al. (2011) and Soininen  et al. (2011)
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who reported that d-d relationships for various microbial communities were

generally  steeper  as  greater  spatial  scales  were  incorporated.  The  scale

dependence of this relationship may be explained by greater environmental

heterogeneity  in  large  scale  studies,  thus  communities  are  subjected  to

different  environmental  filters,  resulting  in  more  dissimilar  communities.  In

combination  with  this,  communities  separated  by  very  large  geographic

distances  should  have  minimal  dispersal  between  them,  assuming

connectivity  is  linearly  related  to  geographic  distance.  Alternatively,  this

observation may be a statistical artefact, caused by studies with very large

spatial  extents  incorporating  many  zero  similarity  community  comparisons

(i.e.  communities  with  no  species  in  common),  therefore  biasing  our

quantification  of  the  d-d  relationship  (Millar  et  al. 2011;  Steinbauer  et  al.

2012).  This  point  highlights  that  careful  consideration  is  required  in  the

statistical  analysis of d-d relationships, especially when incorporating large

geographic extents or highly dissimilar communities.

Despite its common use in the literature as evidence for neutral processes in

microbial ecology, the d-d relationship alone does not provide evidence for

neutral processes acting on microbial communities. As discussed previously,

d-d  relationships  can  arise  from  spatially  autocorrelated  environmental

gradients as well as dispersal limitation (Nekola & White 1999). Furthermore,

dispersal  limitation  itself  is  not  solely  a  property  of  ecological  neutrality.

Dispersal limitation may be stochastic as predicted by neutral theory (Chave
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2004),  but  also  by  asymmetric  dispersal  abilities  between  organisms

(Salomon  et al. 2010; Liu & Zhou 2011), thus violating the central tenet of

neutral  theory;  that  organisms  are  ecologically  equivalent  (Hubbell  2001).

Thus,  caution  is  urged in  attributing  distance-decay relationships  to  either

niche  or  neutral  processes  without  further  evidence,  for  example  from

examining  species-abundance  distributions  (e.g.  Dumbrell  et  al.  2010).

However,  this  is  not  to  say that  examining distance-decay relationships is

futile  as  the  relationship  jointly  reflects  species  turnover  due to  historical,

environmental,  and  spatial  factors,  all  of  which  are  important  factors  to

consider in studying biodiversity (Nekola & White 1999). 

Moving beyond distance-decay relationships, focussing on other factors that

influence the compositional similarity of microbial communities should provide

interesting  results.  For  example,  quantifying  the  extent  to  which

microorganisms  differ  in  their  dispersal  abilities,  and  what  traits  are

responsible  for  these  differences  may  help  to  provide  information  on  the

biogeography  of  microorganisms  at  the  population  level,  and  given

appropriate statistical approaches may allow us to predict the range size and

habitat  occupancy  of  different  microbes.  Furthermore,  it  is  commonly

assumed that the connectivity between communities is linearly related to the

spatial distance between communities. However, given that different dispersal

vectors  may disperse microorganisms over  differing  geographic  distances,

this assumption may not be valid. Therefore, the growing movement towards
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examining the role of connectivity per se (Declerck et al. 2013; Vannette et al.

2016), rather than using geographical distance as a proxy, will likely provide a

fruitful  direction  for  spatial  microbial  ecology.  By  modeling  the  dispersal

process itself and quantifying connectivity, a more mechanistic understanding

of the spatial ecology of microbial communities could be gained.
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Chapter 4

Biogeography  at  the  Limits  of  Life:  Do  Extremophilic  Microbial

Communities Show Biogeographic Regionalisation?

Acknowledgements: Mégane  Mathieu,  Léonie  Mourot,  Laurent  Dufossé,

Graham JC Underwood, Alex J Dumbrell and Terry J McGenity

Abstract

Aim

Biogeographic  regions  are  the  fundamental  geographic  units  for  grouping

Earth's biodiversity. Biogeographic regionalisation has been demonstrated for

many  higher  taxa,  such  as  terrestrial  plants  and  vertebrates,  but  not  in

microbial  communities.  Therefore,  we  sought  to  test  empirically  whether

microbial communities, or taxa, show patterns consistent with biogeographic

regionalisation.

Location

Within halite (NaCl) crystals from coastal solar salterns of West Europe, the

Mediterranean, and East Africa.

Time period

Modern (2006 – 2013).

Major taxa studied

Archaea.

Methods
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Using high-throughput Illumina amplicon sequencing, we generated the most

high-resolution characterisation of halite-associated archaeal communities to

date,  using  samples  from  17  locations.  We  grouped  communities  into

biogeographical clusters based on community turnover, to test whether these

communities  show  biogeographic  regionalisation.  To  examine  if  individual

taxa, rather than communities, show biogeographic patterns, we also tested

whether the relative abundance of individual genera may be indicative of a

community’s  biogeographic  origins   using  machine  learning  methods,

specifically random forest classification.

Results

We found that the rate of community turnover was greatest over sub-regional

spatial  scales  (<  500  km)  whilst  at  regional  spatial  scales,  turnover  was

independent  from  geographic  distance.  Biogeographic  clusters  of

communities were either not statistically robust, or lacked spatial coherence,

inconsistent  with  biogeographic  regionalisation.  However,  we  identified

several archaeal genera that were good indicators of biogeographic origin,

providing classification error rates of < 10%.

Main conclusions

Overall,  our  results  provide  little  support  for  the  concept  of  biogeographic

regions in these extremophilic  microbial  communities,  despite the fact  that

some  taxa  do  show  biogeographic  patterns.  We  suggest  that  variable

dispersal  ability  among  the  halite-associated  Archaea  may  disrupt

biogeographic patterns at the community level, preventing the formation of
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biogeographic  regions.  This  means  that  the  processes  that  lead  to  the

formation  of  biogeographic  regions  operate  differentially  on  individual

microbial taxa rather than on entire communities.
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Introduction

The classification of Earth’s biota into biogeographic regions separated by

dispersal  barriers,  has  captivated  ecologists  for  centuries  (Sclater,  1858;

Wallace,  1876).  The  concept  of  biogeographic  regionalisation  has  yielded

insight into the origins of biodiversity and areas of endemism (Lamoreux  et

al., 2006), informed us of species' conservation status (Buckley & Jetz, 2007),

and  revealed  historical  connectivity  between  communities (Cowen  et  al.,

2006).  However,  early  attempts  to  define  these  regions  have  been

superseded  by  more  quantitative  methods,  improving  the  robustness  and

reproducibility of region delineations (Kreft & Jetz, 2010; Vilhena & Antonelli,

2015;  Dapporto  et  al.,  2015).  Coupled with  these new methods,  the  ever

increasing availability of species distribution data has renewed interest in the

concept of biogeographic regionalisation. As a result, a far greater range of

taxa have been studied than ever before in order to  define biogeographic

regions (Holt  et al., 2013). Yet, our knowledge about how Earth's biota may

be  divided  into  biogeographic  regions  is  still  overwhelmingly  based  on

multicellular  (and  usually  large)  eukaryotes.  Many  inconspicuous,  but

functionally  critical  organisms,  such  as  microorganisms,  remain  poorly

studied. Consequently, it is unknown whether microbial communities may be

grouped into biogeographic regions, similar to those observed for higher taxa.

Microorganisms  are  arguably  the  most  functionally  diverse  and  important

organisms on Earth (Dinsdale et al., 2008; Fierer et al., 2012), driving every

121



Chapter 4

biogeochemical  cycle  (Zak  et al.,  2003;  Falkowski  et al.,  2008).  Originally,

microorganisms were assumed to have cosmopolitan distributions with their

small  size  and  high  population  densities  making  them  effective  passive

dispersers  (Baas  Becking,  1934;  Finlay,  2002).  From  this  assumption,  it

follows  that  biogeographic  regionalisation  may  not  be  possible  because

dispersal limitation is required for areas of endemism to occur (Ficetola et al.,

2017)  and  produce  regions  with  distinct  communities.  In  contrast  to

cosmopolitanism,  many  recent  studies  have  documented  relationships

between community turnover (the replacement of species) and geographic

distance, indicative of dispersal limitation (e.g. Dumbrell et al., 2010; Lear et

al., 2014), hinting that biogeographic regionalisation of microbial communities

could be possible. However, whilst the composition of microbial communities

has been shown to differ over biogeographic regional scales, a formal test of

whether  microbial  communities  exhibit  biogeographic  regionalisation  is

lacking.

In order to test for the presence of biogeographic regionalisation in microbial

communities, an ideal model community should have relatively low diversity,

inhabit  isolated  environments,  and  show  a  priori evidence  of  dispersal

limitation. The halite-associated Archaea fulfil these criteria. These Archaea

typically  belong to  the  class  Halobacteria  (more  commonly  referred  to  as

haloarchaea)  and  are  a  major  component  of  halite  endolith  communities

(Henriet  et al.,  2014).  Their  entombment into the brine inclusions of halite
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crystals is believed to be an escape mechanism from desiccation and the

increasingly chaotropic conditions present in evaporating brines (Hallsworth

et al., 2007). Within these pockets they are able to survive over geological

time  scales  (McGenity  et  al.,  2000;  Gramain  et  al.,  2011).  As  with  many

extremophilic  microbial  communities,  the  halite-associated  Archaea  are

typically  less  diverse  than  other  microbial  systems,  facilitating  more

exhaustive sampling of the total diversity and improving detection of the less

abundant  endemic  taxa,  which  are  indicative  of  biogeographic  regions.

Furthermore,  these  Archaea  occupy  isolated  “habitat  islands”  that  are

physicochemically  distinct  from  the  surrounding  environment.  Many

haloarchaea are obligately halophilic and lyse in less saline conditions (Oren,

1994)  such  as  seawater,  rendering  the  surrounding  environment  a

physiological dispersal barrier. Finally, halite crystals form under highly similar

conditions worldwide, i.e. saturated NaCl, thus ensuring that species filtering

by  the  environment  is  low compared  with  many  other  environments.  Any

physicochemical  differences  between  halite  crystals,  e.g.  caused  by

underlying geology or climate, should themselves be spatially auto-correlated,

meaning that species filtering by the environment should enhance, rather than

obscure,  biogeographic  clustering.  Such  systems  are  therefore  ideal  for

studies  of  community  turnover  and  biogeography  (Santos  et  al.,  2016).

Previous studies of halophilic microbial communities have found evidence of

community turnover at regional scales (Pagaling et al., 2009; Zhaxybayeva et

al., 2013), suggesting the potential for biogeographic regions to form. Overall,
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these  properties  render  the  halite-associated  Archaea  an  ideal  system in

which to test for biogeographic regionalisation of microbial communities.

Therefore, we examine the regional turnover (replacement of species over

biogeographic regional scales), of halite-associated archaeal communities to

test  whether  communities  group  together  in  a  manner  consistent  with

biogeographic regionalisation. Using high-throughput Illumina HiSeq amplicon

sequencing,  we  characterise  the  archaeal  communities  of  halite  from  17

locations, spanning three geographic regions. We apply robust biogeographic

clustering methods to determine the extent to which archaeal communities,

and taxa, show spatial patterns consistent with biogeographic regionalisation.

We propose the following three hypotheses:

1: a) There will be a significant relationship between community turnover and

geographic distance, and b) the rate of community turnover will be greater at

biogeographic regional scales than at within region scales.

2:  Communities  will  form  biogeographic  clusters  that  are  statistically  well

supported and spatially coherent.

3:  The  presence  and  abundance  of  some  archaeal  taxa  can  predict  the

(bio)geographic origin of each community.
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Methods

We obtained 27 halite samples (in triplicate) from 17 locations in the years

between 2006 and 2013 (Fig. 4.1 and Appendix S8). A photographic record of

the samples and further details can be found in the supporting information

(Appendix S1). We recorded the grain size, which reflects the time taken for

the  crystals  to  form,  and the  impurity  colour,  which  provides a qualitative

measure of the types of impurities and physicochemical environment present

within the crystal  (Sonnenfeld,  1995).  Samples were stored in the dark at

room temperature.

Figure 4.1 Map of sample locations. Further details of samples are available

in Appendix S1. The left panel is zoomed in on the grey region in order to

distinguish multiple locations along the South West coast of Europe.

Molecular Analyses
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DNA was  extracted  from  a  0.25  g  aliquot  of  each  sample  using  MoBio

PowerSoil DNA isolation kits following the manufacturer’s instructions (MoBio

Laboratories  Inc.,  Carlsbad,  CA,  USA).  To  characterise  the  archaeal

communities, we used a Nextera XT dual indexing strategy which involves

PCR amplification of a phylogenetic marker gene, followed by a secondary

short-cycle PCR amplification in which dual Nextera indices are added to the

amplicon for multiplexing of samples. We targetted a ~570 bp region of the

16S  rRNA  gene  with  the  Archaea  specific  primers  344F  (5'-

ACGGGGYGCAGCAGGCGCGA-3',  Raskin  et  al.,  1994)  and  915R  (5'-

GTGCTCCCCCGCCAATTCCT-3', Stahl & Amann, 1991), both of which were

modified  to  contain  Illumina specific  overhang sequences.  The 16S rRNA

gene was amplified in 25 µl reactions with 12.5 µl of REDTaq® ReadyMixTM

(Sigma-Aldrich Co.), 5 µl of each primer (1 μM) and 2.5 µl of template DNA.

The PCR protocol  included an initial  denaturation step at 95°C for 5 min,

followed by 32 cycles of 95°C for 45 s, 60°C for 45 s and 72°C for 1 min. After

a final extension step of 72°C for 5 min, PCR products were held at 4°C. We

purified PCR products using Agencourt AMPure XP PCR Purification beads

(Beckman  Coulter  Ltd,  High  Wycombe,  UK)  following  Illumina’s  “16S

Metagenomic  Sequencing  Library  Preparation”  document

(https://goo.gl/3Y7oY4).

The index PCR was carried out in 50 µl reactions with 25 µl of KAPA HiFi

HotStart ReadyMix (KAPA Biosystems, Wilmington, MA, USA), 5 µl each of
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sample specific i5 and i7 Nextera XT index (Illumina),  10 µl of PCR-water

(Bioline  Reagents  Ltd,  UK)  and  5  µl  of  purified  PCR  product.  PCR  was

conducted with an initial denaturation at 95°C for 3 min, followed by 8 cycles

of 95°C for 30 s, 55°C for 30 s and 72°C for 30 s. Again, a final extension step

was included at 72°C for 5 min, after which PCR products were held at 4°C.

PCR products were purified using Agencourt  AMPure XP PCR Purification

beads  (Beckman  Coulter  Ltd,  High  Wycombe,  UK)  and  quantified  on  a

POLARstar Omega (BMG LABTECH GmbH, Germany) plate reader using

the PicoGreen® dsDNA assay. PCR products were then pooled in equimolar

concentrations. The size and concentration of the resulting pool was checked

using  an  Agilent  2100  Bio-analyser.  Sequencing  was  carried  out  on  an

Illumina HiSeq 2500 on rapid-run mode, producing 2 x 300 bp sequences, at

The  Earlham  Institute  (formerly  The  Genome  Analysis  Centre,  Norwich

Research Park, Norfolk, UK). 

Bioinformatic Analyses

Due to  the  length  of  the  amplicon,  forward  and  reverse  sequences  were

unable to be pair-end aligned and so all  analyses were based on forward

sequences  only.  This  approach  has  been  shown  to  have  little  effect  on

ecological conclusions  (Werner  et al.,  2012),  and in our case, the forward

sequence spans the V3 region of the 16S rRNA gene, which has been shown

to  perform  well  for  profiling  archaeal  communities (Yu  et  al., 2008).

Sequences were processed according to guidelines outlined in (Dumbrell  et
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al., 2016). Briefly, we quality trimmed sequences using Sickle (Joshi & Fass,

2011) at a threshold of Q20, trimming only the 3  end of the sequence andʹ

discarding  sequences  with  ambiguous  nucleotides.  Quality-trimmed

sequences  were  error-corrected  using  the  BayesHammer  algorithm

implemented in SPAdes version 3.10.1, with default parameters (Bankevich

et  al.,  2012;  Nikolenko  et  al.,  2013).  We  removed  primer  sequences,

calculated  library  sizes  for  each sample,  and discarded sequences <  230

nucleotides in length using Linux shell commands. Samples with excessively

small library sizes (<20,000 sequences) were excluded from further analyses.

We  used  VSEARCH  (Rognes  et  al.,  2016)  to  cluster  sequences  into

operational taxonomic units (OTUs). First, sequences were de-replicated and

singleton sequences discarded, as they are more likely to be artefacts (Flynn

et  al.,  2015).  We  then  clustered  sequences  into  OTUs  at  97% and  99%

sequence similarity (referred to as 97% dataset and 99% dataset). The 97%

similarity threshold is the most frequently used, corresponding approximately

to  intra-genus  level  similarity  (Yarza  et  al.,  2014).  The  99%  threshold

approximates  to  species-level  similarity.  We  screened  OTUs  for  chimeras

against  the  RDP  database  (Cole  et  al.,  2009)  using  VSEARCH,  and

discarded putative chimeras.

Taxonomy was  assigned  to  OTUs using  the  RDP classifier  (Wang  et  al.,

2007) with a minimum confidence threshold of 0.7.  We discarded all  non-
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archaeal  OTUs.  Specific  OTUs  of  interest  were  identified  using  BLAST

searches against NCBI’s 16S ribosomal RNA sequence database (Altschul et

al., 1990).

Statistical Analyses

We rarefied OTU tables to  the smallest  library size in  each dataset (97%

dataset;  27,554  sequences,  99%  dataset;  26,578).  We  checked  whether

sample  age  was  influencing  the  OTU richness  or  community  composition

using a negative binomial GLM and permutation-based multivariate analysis

of variance (PERMANOVA), respectively.

In order to address our first  hypothesis,  we quantified community turnover

using the βsim index, which purely quantifies community turnover, the process

relevant  to  biogeographic  regionalisation  (Baselga,  2010),  and  not

nestedness,  whereby communities  are  subsets  of  each other.  Geographic

distances  between  sampled  communities  were  calculated  as  geodesic

distances (Hijmans, 2016). We then tested for correlation between community

turnover  and  geographic  distance  using  Mantel  tests,  with  Spearman’s

correlation  coefficient  and  10,000  permutations.  We  fitted  piece-wise

regressions  to  determine  breakpoints  in  the  relationship,  showing  the

geographic distance at which the slope of the relationship changes (Castro-

Insua et al., 2016).
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To investigate our second hypothesis, we adopted a clustering approach as

described by Kreft  & Jetz (2010).  Briefly,  this approach involves clustering

communities based on the βsim turnover matrix, creating a dendrogram. This

dendrogram can be split into  k clusters representing bioregions. The quality

and biological interpretability of the resulting clusters are then checked via

statistical  metrics  and  mapping.  Biogeographic  regionalisation  may  be

inferred when clustering solutions are both statistically robust and spatially

coherent. 

To  cluster  communities,  we  used  three  different  clustering  algorithms  to

ensure  our  conclusions  were  robust.  The  unweighted  pair-group  method

using arithmetic averages (UPGMA) defines the distance between clusters as

the average distance between all the communities within each cluster. Kreft &

Jetz  (2010)  found that  UPGMA best  preserved  information  present  in  the

original  distance  matrix.  Dapporto  et  al. (2015)  also  compared  clustering

algorithms on datasets of varying completeness. They found that for less well

sampled datasets, the Ward method clustered communities most accurately,

whereas for intensely sampled datasets, PAM produced the most accurate

clusters. To cluster the communities, we used the methodology described by

Dapporto  et al. (2015). This approach overcomes the biases introduced by

having zero similarity or tied values in the dissimilarity matrix  (Bloomfield  et

al., 2017), by repeatedly reshuffling the matrix and re-clustering communities.

The final  clustering solution is then determined by the frequency at which
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pairs of communities are clustered together in the randomly generated cluster

solutions, allowing a more robust final clustering solution. We set the number

of matrix randomisations to 50, and the number of clusters (k) from 2 to 16.

For each value of k, we assessed the statistical support of the cluster solution

with two metrics, “mean silhouette width” and “explained dissimilarity”. The

first metric, “mean silhouette width”, is a commonly used metric to evaluate

clustering  solutions  and  ranges  from -1,  indicating  that  most  communities

have been incorrectly clustered, to 1 indicating that most communities are

correctly clustered. Values below 0.25 are qualitatively considered to show

little  evidence  of  true  clustering  between  the  communities  (Kaufman  &

Rousseeuw, 1990). Our second metric, “explained dissimilarity” (Holt  et al.,

2013),  is  a  ratio  of  sums  of  mean  dissimilarity  within  regions  to  total

dissimilarity over the entire dissimilarity matrix. “Explained dissimilarity” tends

towards 1 as  k tends towards the number of  communities.  We follow the

approach of Holt et al. (2013), who indicated that a threshold of 0.9 provides

sufficient  support  to  infer  regionalisation.  However,  we  also  examined  the

cluster solution that produced the greatest incremental increase in “explained

dissimilarity”,  which  we  refer  to  as  the  “knee  solution”,  as  this  has  been

proposed to be a more suitable indicator of optimum cluster number (Kreft &

Jetz,  2013).  After identifying statistically  supported clustering solutions,  we

determined  the  spatial  coherence of  clusters  by  mapping them.  To  check

whether the measured physicochemical parameters (grain size or impurity)

explained any clustering patterns observed, we used PERMANOVA analysis.
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We  included  location  as  the  first  variable  in  the  model  to  account  for

confounding  spatial  effects.  Statistical  significance  of  physicochemical

variables  was  then  assessed  based  on  the  “marginal”  effects  (e.g.  after

controlling for spatial location), with 999 random permutations. We conducted

non-metric  multidimensional  scaling  (NMDS)  analysis  as  a  means  of

visualising these results.

To test our third hypothesis, we investigated whether the relative abundance

of halite-associated archaeal genera could predict the biogeographic origin of

a  given  community  using  the  machine  learning  method,  random  forest

classification. Random forests provide an effective method for classification in

ecology (Cutler et al., 2007) and are built from an ensemble of classification

trees, in which observations of the dependant variable form the leaves and

independent variables form the branches. Each tree is trained on a subset of

observations and independent variables, and the overall classifier is built by

combining predictions from these trees to obtain a more robust classification.

We summed the abundances of all OTUs identified to the genus level, and

converted these abundances to relative abundances. OTUs not identified to

genus  were  excluded  from  this  analysis.  We  classified  communities  (see

Appendix  S8)  based  on  their  biogeographic  region  (classes:  Palearctic,

Saharo-Arabian, Madagascan as defined by Holt  et al. (2013)), geographic

region  (classes:  E  Europe,  W Europe,  Mediterranean  or  W  African),  and

nearest ocean (classes: Atlantic or Indian). We initialised 10,000 trees and
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each tree was trained on six archaeal genera. We normalised the sample size

from each class to the size of the smallest class to minimise the effects of

class size imbalance (e.g. more observations of European communities than

African  communities).  Additionally,  for  the  biogeographic  and  geographic

classifiers, we dropped excessively small classes (Saharo-Arabian; n = 4 and

West African;  n = 3), to further reduce the imbalance between classes. We

evaluated the overall  accuracy of each classifier using the out-of-bag error

rate,  which  quantifies  the  classifier's  ability  to  correctly  classify  a  given

community when it is excluded from the training set. We determined which

archaeal  genera  were  the  best  predictors  of  biogeographic  origin  by

quantifying variable importance, using the mean decrease in accuracy (MDA),

and mean decrease in Gini-index (MDGI).  The MDA shows the change in

accuracy  of  the  classifier  with  and  without  a  given  variable.  Important

variables will result in a large decrease in accuracy when they are excluded

from the classifier, resulting in large MDA values. MDGI shows the purity of

the  groups  created  when  the  classifier  splits  the  dataset  using  a  given

predictor. A good predictor will create homogeneous groups in which all data

points belong to the same class, resulting in a large decrease in MDGI. We

also examined partial dependence plots (Hastie et al., 2009). In the context of

our  study,  these  plots  show  how  the  probability  of  a  community  being

classified into a given biogeographic region changes in relation to the relative

abundance of a given archaeal genus.
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All analyses were conducted in R (R Developement Core Team, 2016), using

the “vegan” (Oksanen et al., 2015), “recluster“ (Dapporto, Ramazzotti,  et al.,

2015), and “randomForest” (Liaw & Wiener, 2002) packages.
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Results

Diversity of Halite-Associated Archaea

An initial 17.8 million sequences were reduced to 10.33 million after quality

trimming.  Error  correction,  length  filtering,  and  removal  of  small  samples

further  decreased this  total  to  10.29 million  sequences.  These sequences

clustered  into  1,581  and  10,346  OTUs  at  the  97%  and  99%  similarity

thresholds,  respectively.  Sixteen  non-archaeal  OTUs  (12  Bacteria,  4

unclassified)  were  removed  from each  dataset,  comprising  a  total  of  294

sequences (< 0.0001% of total  sequences).  Of the archaeal OTUs, 45.2%

were identified to genus level from the 97% dataset, and 59.5% from the 99%

dataset (Appendix S4). At the 99% similarity level, these OTUs represented

40 genera from 5 families (Appendix S2) as identified by the RDP taxonomy;

the Halobacteriaceae, Haloferacaceae, Natrialbaceae, Methanosarcinaceae,

and Nitrososphaeraceae. Most OTUs (58% from 97% dataset, 79.9% from

99% dataset) were restricted to 20 or fewer samples, but 5 OTUs in the 97%

dataset  and  3  OTUs in  the  99% dataset  were  detected  in  every  sample

(Appendix S5). BLAST analysis of these OTUs revealed their most closely

related species  as  Halobacterium noricense (OTU1),  Halorubrum orientale

(OTU2),  Halorubrum  sodomense (OTU21),  Halolamina  sediminis (OTU5),

Halolamina salina (OTU92510).

Sample age did not significantly affect OTU richness (97% dataset; slope =

-0.01,  z-statistic = -0.30,  P = 0.77, 99% dataset; slope = -0.02,  z-statistic =
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-0.83, P = 0.41), whilst PERMANOVA analyses showed that age had a small,

but significant, effect on turnover (97% dataset;  pseudo-F1,  74 = 2.50, R2 =

0.03, P = 0.03, 99% dataset; pseudo-F1, 74 = 3.13, R2 = 0.04, P = 0.003).

How is Community Turnover Related to Geographic Distance?

Mantel tests used to investigate the relationship between community turnover

and geographic  distance,  showed significant  and positive  relationships  for

both datasets (97% dataset; rMantel  = 0.26,  P < 0.0001, 99% dataset; rMantel =

0.31,  P <  0.0001),  which  supports  hypothesis  1a.  However,  piece-wise

regressions between geographic distance and community turnover suggested

that this correlation was largely driven by high turnover at small spatial scales

(Fig. 4.2). For both (97% and 99%) datasets, a steep positive relationship was

found  at  smaller  spatial  scales  with  break-points  estimated  at  420.5  km

(standard  error  =  46.9  km)  and  334.6  km  (standard  error  =  23.7  km)

respectively.  After these breakpoints,  community turnover was independent

from geographic  distance  (Fig.  4.2).  Davies  tests  confirmed  that  the  pre-

breakpoint slope was significantly greater than the post-breakpoint slope (P <

0.0001 in both cases), showing that the greatest rate of community turnover

was at small, sub-regional scales, and so rejecting hypothesis 1b.
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Figure  4.2 The  relationship  between  community  turnover  and  geographic

distance, for 97% and 99% similarity operational taxonomic unit (OTU) tables.

Values close to 0 indicate pairs of communities highly similar in composition,

whereas values close to 1 indicate communities with few OTUs in common.

Dashed lines indicate breakpoints (distance in km at which slope changes),

which were estimated as 420.5 km (std. error = 46.9 km) and 334.6 km (std.

error = 23.7 km). Mantel tests showed statistically significant correlation in

both cases (P < 0.0001 in both cases).

Do Microbial Communities Cluster into Biogeographic Regions?

We  determined  whether  archaeal  communities  group  into  biogeographic

regions  by  applying  three  different  clustering  algorithms  (UPGMA,  Ward,

PAM).  To  assess  the  degree  of  biogeographic  clustering  within  these
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communities, we first determined the appropriate number of clusters (k) into

which our communities should be grouped by examining the cluster quality

(using “mean silhouette width” and “explained dissimilarity”) for values of  k

from 2-16. For the 97% dataset, statistical support for cluster solutions was

poor, as the “mean silhouette width” never exceeded 0.25 for any value of k

(Fig. 4.3A). In contrast, for the 99% dataset, all  three clustering algorithms

exceeded  0.25  for  values  of  k >  12,  showing  that  reasonable  statistical

support  was  gained  when  communities  were  grouped  into  more  than  12

regions. All three clustering algorithms yielded similar results when assessed

by  the  “explained  dissimilarity”  metric  (Fig.  4.3B).  “Explained  dissimilarity”

values > 0.9 were considered to provide good support  for  a  given cluster

solution. To satisfy this threshold, communities were grouped into 8-10 (97%

dataset) or 9-12 (99% dataset) clusters, depending on the cluster algorithm

used.  For  both  97% and  99% datasets,  the  Ward  algorithm required  the

fewest  clusters  to  reach  this  threshold,  and  UPGMA the  most.  We  also

identified the number of clusters, (k), that resulted in the greatest increase in

“explained dissimilarity” (“knee solutions”). For the 97% dataset, this occurred

when communities were clustered into 3 (PAM, Ward) or 4 (UPGMA) clusters.

Whereas  for  the  99%  dataset,  the  greatest  increase  in  “explained

dissimilarity” was found when communities grouped into 3 (UPGMA, Ward) or

4 (PAM) clusters.
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Figure 4.3 The statistical support, quantified as (A) mean silhouette width and

(B) explained dissimilarity, of cluster solutions from 2 – 16 clusters, for both

97% and 99% operational  taxonomic unit  (OTU) datasets.  Lines represent

three different clustering algorithms used; partitioning around medoids (PAM),

unweighted pair group method (UPGMA), and Ward clustering (Ward). In (A),

silhouette widths < 0.25 (grey dotted line) are interpreted as showing poor

clustering in the data and in (B) explained dissimilarity of > 0.9 indicates a

good cluster solution.

We  examined  the  spatial  coherence  of  cluster  solutions  for  the  minimum
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number  of  clusters  (k)  required  to  exceed  the  “explained  dissimilarity”

threshold of 0.9,  as well  as solutions that yielded the greatest increase in

“explained  dissimilarity”.  For  both  97%  and  99%  datasets  and  all  three

clustering algorithms, mapping revealed poor spatial coherence (Fig. 4), in

disagreement with hypothesis 2, suggesting little support for biogeographic

regionalisation.

Figure 4.4 The cluster  memberships  (indicated by  colour  and number)  of

communities for each clustering algorithm, for both 97% and 99% operational

taxonomic  unit  (OTU)  datasets.  For  each  algorithm,  the  cluster  solution

shown is for the minimum value of k (number of clusters) that exceeded the

explained dissimilarity threshold of 0.9.
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There  was  a  large  degree  of  mixing  between  communities  on  the  West

European  coastline,  Mediterranean,  and  Madagascar,  counter  to  our

expectation  that  communities  in  these  regions  would  cluster  separately.

Mapping  of  the  “knee solutions”  again  revealed  clusters  with  poor  spatial

coherence,  with  many  European  communities  clustering  together  with

Madagascan communities (Appendix S6). NMDS and PERMANOVA  showed

that archaeal communities clustered only weakly by impurity, but not by grain

size (Fig. 4.5).

Figure 4.5 Non-metric multidimensional scaling (NMDS) analysis of  halite-

associated archaeal communities. Each point represents a single community,

and  points  closer  together  represent  compositionally  more  similar
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communities.  Communities  do  not  appear  to  cluster  by  halite  properties.

Permutation-based multivariate analysis of variance (PERMANOVA) revealed

that, after accounting for spatial location, grain size had no significant effect

on community composition (pseudo-F1, 55 = 2.09, R2 = 0.01, P = 0.06), whilst

impurity had a significant, but negligible effect (pseudo-F1, 55 = 3.15, R2 = 0.02,

P < 0.05).

Can Certain Haloarchaeal Genera Be Used as Indicators of a Community's

Biogeographic Origin?

We tested whether the abundance of certain archaeal genera could predict

any of three classifiers (biogeographic region, geographic region, and nearest

ocean) of a community,  using random forest classification (RFC). All  three

classifiers performed well  with comparable accuracies (ocean; error rate =

9.33%, biogeographic region;  error rate = 8.45%, geographic region;  error

rate = 8.33%), showing that the biogeographic origin of a community can be

predicted accurately from the relative abundance of individual genera. Each

classifier was able to predict communities from different biogeographic origins

with  similar  accuracy,  suggesting  that  archaeal  relative  abundances  were

equally  useful  predictors  for  all  classes.  The  oceanic  RFC classified  with

similar accuracy those communities nearest to the Atlantic or Indian Ocean,

with class errors of 8.9% and 10.5% respectively. The biogeographic region

RFC identified communities from the Palearctic region with a 7.7% class error

rate, and those from the Madagascan region with a 10.5% class error rate,

142



Chapter 4

whilst the geographic region RFC more accurately classified West European

(class error = 7.5%) and Mediterranean (class error = 7.7%) communities,

than East African communities (class error = 10.5%). 

Figure  4.6 (A)  The  relative  abundance  of  the  genus Haloquadratum,  in

samples  of  different  geographic  origins  (W.  Eur  =  West  Europe,  Med  =

Mediterranean, E. Afr = East Africa). (B) A partial dependence plot based on a

random forest classification. Class probability shows the probability that the

random forest classifies a sample to each class (denoted by different line and
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point styles). As the relative abundance of Haloquadratum was notably higher

in the Mediterranean, the Mediterranean class probability increased rapidly.

To  determine  which  archaeal  genera  were  the  best  predictors  of  a

community’s oceanic, biogeographic, or geographic origin, we quantified the

importance of each variable (genus) to each RFC (Appendix S3).

Haloquadratum was  the  best  genus  for  classifying  geographic  region,

followed by Halapricum and Halobaculum. Partial dependence plots revealed

that,  as  the  relative  abundance  of  Haloquadratum exceeded  0.01,  the

probability  of  the  community  being  classified  as  Mediterranean  increased

greatly (Fig. 4.6B), reflecting its higher relative abundance in the region (Fig.

4.6A). In contrast, the genera Halarchaeum and Halohasta were the best for

classifying a community’s nearest oceanic or biogeographic region, according

to both metrics of variable importance (MDA and MDGI). When the relative

abundance  of  Halarchaeum exceeded  0.02,  a  classification  of  the

community’s nearest ocean and biogeographic region as the Indian Ocean

and  Madagascan  biogeographic  region  respectively,  was  most  likely

(Appendix S7). The finding that certain archaeal genera are good predictors

of a community's (bio)geographic origin supports hypothesis 3.
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Discussion

We  studied  halite-associated  Archaea  to  determine  whether  archaeal

communities  can  be  clustered  into  biogeographic  regions  comparable  to

those observed for most higher organisms.  Our results show that,  despite

community turnover correlating with geographic distance over small  spatial

scales  (<  500  km),  communities  do  not  cluster  into  spatially  coherent

biogeographic  regions.  We  found  little  statistical  support  for  clustering

communities  into  few  (2-3)  biogeographic  regions,  which  would  be  the

number  of  regions  expected  for  higher  organisms  such  as  terrestrial

vertebrates (Holt et al., 2013) or plants (Takhtajan, 1986). Furthermore, when

we  clustered  communities  into  a  greater  number  of  regions,  the  spatial

configuration  of  these  regions  was  not  consistent  with  biogeographic

regionalisation.  Lastly,  we  demonstrated  that  whilst  communities  may  not

show the expected biogeographic patterns, some individual  genera do, as

their  abundances  were  found  to  be  good  predictors  of  the  biogeographic

origin of the community. 

Numerous studies have demonstrated that microbial communities differ over

continental  to  regional  scales  (Whitaker  et  al.,  2003;  Papke  et  al.,  2003;

Lauber et al., 2009), including studies on halophilic microbes (Pagaling et al.,

2009; Zhaxybayeva et al., 2013). However, to our knowledge, no studies have

quantitatively tested whether such differences are consistent with the concept

of biogeographic regionalisation, thus it remains unknown as to whether the
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processes  that  shape  microbial  communities  are  capable  of  forming

biogeographic patterns over the spatial scales relevant to other organisms.

Glassman  et al. (2015) examined fungal spore banks of soils across North

America  showing  that  community  turnover  was  significantly  related  to

geographic  distance  and,  using  ordination  techniques,  that  fungal

communities appeared to group in a regional  manner.  Consistent with our

study, they found that the highest rate of community turnover occurred over

sub-regional scales, as evidenced by their Mantel correlogram, which shows

change from positive to negative correlation over spatial scales of ~500 km.

Initially, this might indicate that microbial biogeographic regions are smaller

than  those  defined  for  higher  taxa,  and more  comparable  to  sub-regions.

However, in our study, this idea is poorly supported by the fact that even for

larger values of k (indicating more and smaller regions), the spatial coherence

of these clusters was poor. A global study of soil fungi (Tedersoo et al., 2014)

revealed  communities  that  did  not  cluster  in  a  spatially  coherent  manner,

which  is  in  contrast  to  the  findings  of  Glassman  et  al. (2015)  and  in

agreement  with  our  results.  For  instance,  fungal  communities  of  Europe

clustered with those of North America, and those of Oceania clustered with

South America. Furthermore, a study of the bacterial communities on Tamarix

spp. leaf surfaces showed that communities clustered in a manner at odds

with their spatial configuration (Finkel et al., 2012). Specifically, communities

from around the Dead Sea (Middle East) clustered more closely with those

from  the  Sonoran  Desert  (N.  America)  than  Mediterranean  communities.
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Combined  with  our  results,  these  studies  provide  further  evidence  that

biogeographic regionalisation may be unlikely in microbial communities.

One possible reason for no evidence of biogeographic regionalisation in these

communities is that some halophilic Archaea may be differentially susceptible

to  long-distance  dispersal.  Previous  studies  of  halophilic  microbial

communities have identified several potential mechanisms for long distance

dispersal  of  haloarchaea.  Despite  the  hostility  of  this  environment,  animal

vectors  may  passively  disperse  viable  Archaea  between  sites.  Organisms

such as birds and invasive invertebrates such as brine shrimp (Artemia spp.)

have  been  found  to  harbour  diverse  haloarchaea  (Brito-Echeverría  et  al.,

2009; Riddle  et al.,  2013; Yim  et al.,  2015),  which may help them spread

between habitat islands. Furthermore, wind or human mediated dispersal of

halite crystals may disperse entombed haloarchaea. Wind is known to play a

role in dispersing free-living microbes over continental distances (Kellogg &

Griffin, 2006; Favet et al., 2013) and is likely to disperse small halite crystals,

along with endolithic microbes, over such distances. Human transport of salt

as a commercial product and as a de-icing agent on roads may also aid the

dispersal  of  halite  endolithic  communities.  However,  such  dispersal  would

select  for  those Archaea capable of survival  in halite crystals,  filtering out

some taxa as evidenced by the disparity  between brine and halite crystal

archaeal  communities  described  previously  (Henriet  et  al., 2014).  Finally,

dispersal  via  seawater  could  be  possible  for  some haloarchaeal  taxa,  as
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viable  cells  have  been  isolated  from  seawater  and  coastal  sediments

(Rodriguez-Valera et  al.,  1979;  Purdy  et  al.,  2004).  Seawater  may  also

provide a means of dispersal between ancient and modern halite deposits

(McGenity et al., 2008). Ancient halite deposits can become exposed in deep

water horizons where they may dissolve, creating stratified deep-sea brines,

which are a potential source of extremely halophilic Archaea (Antunes et al.,

2011). However, while short-term (~24 hour) or partial survival at seawater

salinity has been found in a number of haloarchaea (Torreblanca et al., 1986),

the majority of genera detected in this study, particularly the most abundantly

detected genera, are known exclusively from hypersaline habitats, and there

cells lyse at seawater salinity. Therefore, seawater is an unlikely medium for

their dispersal. Furthermore, the deposition of cells from ancient halite into

modern  hypersaline  environments  would  most  likely  occur  over  regional

extents  (e.g.  due  to  oceanic  currents),  thus  increasing  the  compositional

similarity  of  sites  within  a  region.  Finally,  even  with  connectivity  between

ancient and modern halite, there is no guarantee that those cells will become

established  and  multiply (Jones  et  al.,  2017).  Therefore,  the  influence  of

ancient  haloarchaea  on  the  clustering  patterns observed  here  should  be

minimal.  Even  so,  the  degree  to  which  other  potential  dispersal  vectors

contribute  to  connectivity  between  sites  is  unknown  and  warrants  further

research,  as connectivity  between contemporary halite  deposits  may be a

better measure of isolation for these communities than geographic distance

alone.
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An  alternative  explanation  as  to  why  biogeographic  clustering  was  not

observed in these archaeal communities is that, environmental filtering due to

physicochemical  differences  between  the  halite  crystals  could  obscure

biogeographic clustering. Within hypersaline systems, salinity (concentration

of  sodium  chloride;  NaCl)  has  been  shown  to  be  the  predominant

physicochemical  variable  causing  environmental  filtering  of  microbial

communities  (Benlloch  et  al., 2002;  Casamayor  et  al., 2002;  Baati  et  al.,

2008;  Herlemann  et  al., 2011).  However,  the  role  of  physicochemical

differences in structuring microbial communities between hypersaline habitats

is  less  well  known,  as  most  research has focussed  on  within-site  salinity

gradients. Despite this, we suggest that physicochemical differences between

halite samples are unlikely to explain the clustering patterns observed. Halite

is an evaporite mineral, formed by the precipitation of sodium chloride from

concentrated brine. Given that halite precipitates only when the concentration

of NaCl (sodium chloride) exceeds approximately 32% w/v (McGenity  et al.,

2000), it is not possible for large differences in NaCl concentrations to occur

between  sites.  Furthermore,  since  all  the  halite  samples  used  here  were

formed in the same way (i.e. by progressive evaporation of seawater), the

precipitation point of halite is most likely similar across sites. Other ions are

also present  in  varying  concentrations within  the source brines that  could

have an effect on the composition of archaeal communities within the brine.

Differences in the concentrations of these ions may be caused by differing
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underlying geology, or by differing climate. However, both geology and climate

are  themselves,  spatially  autocorrelated.  Therefore,  if  physicochemical

differences between habitats dictate differences in the microbial communities,

we  would  expect  these  effects  to  enhance  any  biogeographic  clustering,

because  sites  within  the  same  region  will  have  physicochemically  similar

brines.  Yet,  we  observed  little  evidence  of  environmental  filtering  on  the

microbial communities, suggesting that the physicochemical environment has

a minimal influence on our conclusions.

The  fact  that  these  dispersal  vectors  are  likely  to  selectively  disperse

haloarchaea with differing physiological capabilities may explain why, despite

finding no evidence of biogeographic regionalisation at the community level,

our  population  level  analyses  revealed  several  haloarchaeal  genera  with

distinct  biogeographic patterns.  The square haloarchaeon,  Haloquadratum,

was found to be a good indicator of geographic region as it  was found in

abundance in the Mediterranean, yet was scarce in West Europe and East

African.  Despite  this,  Haloquadratum has  been  detected  globally  in

hypersaline brines (Oh et al., 2010; Podell et al., 2014; Di Meglio et al., 2016).

A previous study of halite-associated Archaea found Haloquadratum to be a

very  small  component  of  the  halite-associated  community,  despite  being

highly abundant in the hypersaline brine that was the source of the halite

(Henriet  et al., 2014). Furthermore, Gramain et al. (2011) demonstrated that

Haloquadratum resumed growth  slowly  after  halite  entombment  compared

150



Chapter 4

with other haloarchaea, inferring that it is a relatively poor survivor in halite.

Yet, this fails to parsimoniously explain our finding that  Haloquadratum was

an abundant member of Mediterranean halite samples. Significantly, Gramain

et  al. (2011)  also observed that  the recovery time of  Haloquadratum was

dramatically  enhanced  when  co-entombed  with  the  geographically

widespread  halophilic  bacterium,  Salinibacter  ruber  (Antón  et  al.,  2008;

Ventosa, et al., 2015; Di Meglio et al., 2016). Despite the ubiquity of S. ruber

in hypersaline environments, metabolomic profiles of geographically distant

strains  show  biogeographic  patterns  (Rosselló-Mora  et  al.,  2008).  We

speculate that the presence of a particular S. ruber variant or other halophilic

organism in this region may facilitate the survival of Haloquadratum in halite,

perhaps via metabolite transfer (Bolhuis et al., 2004; Elevi Bardavid & Oren,

2008).  We also  identified  Halarchaeum as  the  best  genus in  predicting  a

sample’s oceanic and biogeographic origins, as it  was largely restricted to

Madagascan  samples.  Despite  this  finding,  Halarchaeum spp.  have  been

isolated  previously  from  globally  distributed  commercial  salt  samples

(Minegishi  et al.,  2010; Youssef  et al.,  2012; Shimane  et al.,  2015) hinting

that, despite its wide distribution, it may only be highly abundant in certain

regions.

Conclusions

Overall, we found little evidence to support the existence of biogeographical

regions in communities of  extremely halophilic  Archaea. We demonstrated
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that,  despite  finding  evidence  of  a  distance  decay  relationship  in  these

communities, clustering them into regions did not produce spatially coherent

regions. We suggest that the cause of this may be long distance dispersal of

some  haloarchaeal  taxa  as  we  identified  three  particularly  abundant  and

widespread  species  that  were  universally  detected  across  all  samples.

However,  certain  individual  taxa  are  able  to  accurately  indicate  a  given

community's  biogeographic  origins,  suggesting  highly  differential  dispersal

abilities in haloarchaea. Taken together, our results suggest that geographic

distance alone may be a poor indicator of isolation in microbial communities,

and that more work is needed to examine the role of connectivity in microbial

biogeography.
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Abstract

The temperature-diversity relationship underpins the near universal increase

of biodiversity towards equatorial regions. This relationship is well established

across  many  “higher”  taxa,  but  the  effects  of  temperature  on  microbial

communities  are  poorly  understood,  especially  as  temperature  is  often

confounded by other variables. Therefore, the influence of temperature on the

diversity, and composition of microbial communities was investigated using a

series of spatially replicated, geothermal stream systems distributed around

the  Arctic  circle  (Alaska,  Greenland,  Iceland,  Kamchatka,  and  Svalbard).

Each  stream system represents  a  thermal  gradient  ranging  from ~2  to℃

>30 , allowing the effects of temperature to be quantified in the absence of℃

confounding  factors.  The  diversity  and  composition  of  stream  sediment

microbial  communities  was  quantified  using   high-throughput  DNA

metabarcoding. The α- and β-diversity, and composition of communities was

then  modeled  in  relation  to  stream  temperature.  As  expected,  large

differences in the temperature-diversity relationship were observed between
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taxonomic groups, but unexpectedly, also between different stream systems.

Temperature-abundance  models  revealed  that  Archaea,  Bacteria,  and

Eukarya  have  different  predicted  thermal  optima,  hinting  at  niche

differentiation  between  broad  microbial  taxonomic  groups.  Furthermore,

partitioning  of  β-diversity  metrics  showed  that  compositional  change  in

microbial communities along temperature gradients was predominantly due to

species turnover, than nestedness (the ordered loss of species). The results

show  that  temperature-diversity  relationships  do  not  generalise  across

microbial  taxa,  or  regional  communities.  These  findings  have  important

implications for our understanding of the potential impacts of global warming

on microbial communities, as changes in communities are likely to be highly

context-dependent, and warrant further attention.
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Introduction

One of  the  most  universal  patterns  to  emerge  from macroecology is  that

biodiversity tends to peak in equatorial regions, and declines towards polar

regions.  Many  hypotheses  have  been  proposed  to  explain  this  pattern

(Gaston, 2000; Hillebrand, 2004). Among them is the temperature hypothesis,

which  proposes  that  the  higher  metabolic  rates  in  warmer  conditions

facilitates more rapid rates of evolution, thus generating higher biodiversity

within warm, equatorial  regions (Clarke & Gaston, 2006).  This relationship

has  been  shown  in  a  wide  range  of  conspicuous  “higher”  taxa  in  both

terrestrial and marine environments, but more rarely in microbial communities

(Furhman et al., 2008).

Microorganisms fulfil key roles in most of Earth’s biogeochemical cycles and

have profound impacts on ecosystem functioning. Despite this, the effects of

temperature on the structure and diversity of microbial communities are not

well  understood.  Many  studies  have  focussed  on  temperature  controlled

mesocosm experiments (e.g.  Rillig  et  al.,  2002;  Bálint  et  al.,  2015;  Yvon-

Durocher  et  al.,  2015;  Treseder  et  al.,  2016).  However,  experimental

approaches alone are often unable to replicate the true complexity of natural

systems,  and  are  often  not  run  over  long  enough  time  periods  to  yield

conclusions of macroecological significance. 

Observational  studies  have  the  power  to  incorporate  the  ecological
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complexity  encountered in  natural  systems,  and  are  more  likely  to  reflect

long-term  ecological  dynamics.  However,  observational  studies  may  be

confounded  by  other  variables  (Woodward  et  al.,  2010)  such  as  the

physicochemical  environment,  yielding  variable  results  on  the  effects  of

temperature  on  microbial  α-  and  β-diversity  (within  and  between  sample

diversity, respectively; Yim et al., 2006; Purcell et al., 2007; Cole et al., 2013;

Wang et al., 2013; Plebani et al., 2015; Zhou et al., 2016). Furthermore, many

observational studies focus on thermal gradients present within single sites

(e.g. Yim et al., 2006; Cole et al., 2013), or single taxonomic groups, meaning

that the potential for site-, or taxon-specific relationships between temperature

and  community  structure  remain  unaddressed.  Therefore,  the  effects  of

temperature on microbial biodiversity and community structure, remain largely

unclear.

In  order  to  combat  issues  of  confounding  factors  and  ecological  realism,

whilst  also allowing the generality  of  relationships to be assessed,  careful

study system selection is required.  Ideally,  a study system should contain

spatially replicated thermal gradients and an absence of confounding factors,

whilst still incorporating the complexity and realism of natural systems. Under

these  criteria,  geothermal  systems  offer  great  promise  as  “natural

laboratories”  in  which  to  determine  the  effects  of  temperature  on  various

ecological  phenomena  (O’Gorman  et  al.,  2014).  The  geothermal  stream

systems  situated  around  the  Arctic  circle  (Alaska,  Greenland,  Iceland,
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Kamchatka, and Svalbard) present a series of high latitude, replicated thermal

gradients, ideal for testing the consistency of temperature effects on microbial

communities.  Each stream system represents a thermal gradient spanning

from ~2°C to > 30°C, and the streams in each system occupy a restricted

latitudinal  range,  minimising  the  effects  of  confounding  spatial  factors

(O’Gorman  et  al.,  2014).  Additionally,  these streams are  groundwater  fed,

meaning that minor differences in water chemistry do not confound changes

in temperature (O’Gorman et al., 2014). These properties have yielded great

insight into the effects of warming on a number of ecological properties such

as  body  size  (Adams  et  al.,  2013),  productivity  (Demars  et  al.,  2016;

O’Gorman et al., 2016) and trophic-web dynamics (Woodward et al., 2010).

I  therefore  exploit  the  spatially  replicated  nature  of  these  systems  to

investigate how temperature effects the diversity and structure of microbial

communities  in situ,  across different sites and microbial  taxonomic groups.

Specifically,  I  address  three  main  questions:  (i)  What  is  the  relationship

between temperature  and diversity  in  microbial  communities,  and  to  what

extent does this vary between different geographic regions? (ii) What is the

effect of temperature on microbial community structure, and how does this

vary  within  and  between  taxonomic  groups?  (iii)  Is  β-diversity  related  to

changes in temperature in microbial communities, and if so, how do microbial

communities change along thermal gradients? To date, this study represents

the most well replicated study of microbial community dynamics in response
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to temperature in natural systems, and is the first to address the generality

and causes of temperature effects on microbial community ecology.
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Methods

Stream  sediment  and  adjacent  soil  samples  were  collected  from  5  sites

distributed around the Arctic circle (Fig. 5.1), during 2013. The top 2-3 cm of

stream  sediments  were  sampled  in  triplicate,  and  adjacent  soils  were

sampled  once,  to  provide  a  comparison  between  different  micro-habitats.

Samples were collected  from between 4 and 6 points  along each stream

system, representing a range of stream water temperatures. Samples were

preserved in ethanol and stored at 4°C for downstream molecular analyses.

Figure 5.1 Global map of study sites centered on the North Pole (triangle).

Rings represent latitudinal increments of 15°.
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Molecular Analyses

To profile the microbial communities in our samples, I used next-generation

sequencing  on  an  Illumina  HiSeq  2500,  broadly  following  Illumina’s  “16S

Metagenomic  Sequencing  Library  Preparation”  protocol.  The  Nextera  XT

indexing  strategy utilised  in  this  protocol  incorporates  two rounds of  PCR

amplification, firstly to generate the amplicon library, and secondly to attach

sample  specific  indices  to  allow  multiplexing  of  samples.  After  thoroughly

evaporating  excess  ethanol,  DNA was  extracted  from each  sample  using

MoBio Powersoil DNA extraction kits (MoBio Laboratories Inc., Carlsbad, CA,

USA), following the manufacturers instructions. In order to test for taxonomic

differences in  temperature relationships,  I  analysed the Archaea,  Bacteria,

and Eukarya, by targeting them with domain specific primer sets For Bacteria,

the primer pair Bact-0341-b-S-17 and S-D-Bact-0785-a-A-21 (Klindworth  et

al.,  2013) were used and for Archaea the primer pair 344F (Raskin  et al.,

1994) and 915R (Stahl  &  Amann,  1991)  were  used,  both  of  which  target

regions of the 16S rRNA gene. For Eukarya I used 574*f and 1132r (Hugerth

et al., 2014) to target a region of the 18S rRNA gene. 

All first round PCR amplifications were carried out in 25 µl reactions, using

12.5  µl  of  REDTaq®  ReadyMixTM  (Sigma-Aldrich  Co.)  for  Archaea  and

Bacteria, or KAPA HiFi HotStart ReadyMix (KAPA Biosystems, Wilmington,

MA, USA) for Eukaryotes, 5 µl  of each primer (1 μM), and 2.5 μl  of  DNA
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template. Where necessary, 0.05 μl of T4 Gene32 protein (Roche Diagnostics

lid, Sussex, UK) was added to PCR reactions to prevent inhibition from humic

acids or other inhibitors (Kreader, 1996). Thermal cycling conditions for the

first round of PCR amplifications were as follows; initial denaturation of DNA

at 95°C for 5 mins, followed by 32 cycles of 95°C for 45 s, primer annealing

for 45 s (Archaea; 60°C, Bacteria; 55°C, Eukarya; 51°C), and 72°C for 1 min.

After a final extension step at 72°C for 5 min, PCR products were held at 4°C.

PCR products were purified using  Agencourt AMPure XP PCR Purification

beads  (Beckman  Coulter  (UK)  Ltd,  High  Wycombe,  UK),  following  the

protocol in the Illumina “16S Metagenomic Sequencing Library Preparation”

document.

For each of the three primer sets used, a second round of PCR was carried

out  in  50 µl  reactions with  25 µl  of  KAPA HiFi  HotStart  ReadyMix (KAPA

Biosystems, Wilmington, MA, USA), 5 µl each of i5 and i7 Nextera XT index

(Illumina), 10 µl of PCR water (Bioline Reagents Ltd, UK ) and 5 µl of purified

PCR product. Thermocycling conditions followed initial denaturation at 95°C

for 3 min, followed by 8 cycles of 95°C for 30 s, 55°C for 30 s and 72 for 30 s.

A final  extension  step  was  included  at  72°C  for  5  min,  after  which  PCR

products were held at 4°C. PCR products were, again, bead purified using

Agencourt AMPure XP PCR Purification beads (Beckman Coulter Ltd, High

Wycombe, UK).
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Amplicon  library  DNA concentrations  were  quantified  on  a  POLAR  star

Omega  (BMG  LABTECH  GmbH,  Germany)  plate  reader,  using  the

PicoGreen® dsDNA assay.  For  each  primer  set,  samples  were  pooled  in

equimolar concentrations. The size and concentration of the resulting pool

was verified on an Agilent 2100 Bio-analyser. Sequencing was carried out on

an Illumina HiSeq 2500 set to rapid run mode, which generated 2 x 300 bp

reads  at  The  Earlham  Institute  (formerly  The  Genome  Analysis  Centre,

Norwich Research Park, Norfolk, UK). 

Bioinformatic Analyses

As the  length  of  the  amplicons from the  archaeal  and eukaryotic  specific

primers  exceeded  the  limit  for  obtaining  reliable  paired-end  overlaps,  I

analysed only the forward reads as they were higher quality  than reverse

reads  (data  not  presented).  This  approach  has  been  shown to  have little

effect on ecological conclusions  (Werner  et al.,  2012), and has been used

previously  for  microbial  ecological  analyses  (Clark  et  al.,  2017).  For  the

bacterial  sequences, paired-end reads could be overlapped. Sickle version

1.33 was used to quality trim the reads  (Joshi & Fass, 2011) at the default

quality threshold (Q20). Trimming at the 5’ end of the read was suppressed

and trimmed reads shorter than 275 nucleotides,  or containing ambiguous

base  calls  (“N”)  were  discarded.  Error  correction  was  done  using

BayesHammer  (Nikolenko  et al.,  2013) as implemented in SPAdes version

3.7.1  (Nurk  et al.,  2013), with default parameters. The bacterial 16S rRNA
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sequences  were  then  paired-end  aligned  using  PANDAseq  version  1.33

(Masella  et  al.,  2012) with  the  PEAR algorithm  (Zhang  et  al.,  2014) and

default parameters. VSEARCH version 2.3.2 (Rognes et al., 2016) was then

used to de-replicate reads and remove singletons, as these are more likely to

be  non-biological  (Behnke  et  al.,  2011;  Flynn  et  al.,  2015).  Reads  were

clustered into operational taxonomic units (OTUs) at 97% sequence similarity,

using VSEARCH. Taxonomy was assigned to archaeal and bacterial OTUs

using the RDP classifier and database (Wang et al., 2007; Cole et al., 2014),

with a confidence threshold of 0.7. For the eukaryotic OTUs, I used the RDP

classifier on the PR2 database, which contains curated protistan 18S rRNA

gene sequences  (Guillou  et al., 2013). Any non-domain specific OTUs from

each  dataset  were  removed  prior  to  statistical  analyses.  Additionally,  any

eukaryotic OTUs identified as Metazoan (animal)  or Embryophycaea (land

plants) were removed to ensure that only microbial Eukarya were included. All

analyses were conducted using the Bio-Linux 8 operating system (Field et al.,

2006).

Statistical Analyses

In  order  to  determine the  relationship  between  temperature  and  microbial

diversity, I modeled OTU richness using negative binomial generalised linear

mixed effects models (GLMMs). Using these  generalised models allowed me

to directly model the count data (e.g. OTU richness) without transformation,

thus preserving interpretability (O’Hara & Kotze, 2010). I specified a random
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intercept  and  temperature  slope  with  respect  to  site  to  account  for,  and

quantify,  differences in the temperature-richness relationship between sites

(Bolker  et al.,  2009). Temperature was also included as a fixed effect with

both linear (Tlinear) and quadratic (Tquadratic)  terms. This allowed the modeled

relationship  to  take  on  a  unimodal  shape,  rather  than  a  biologically  less

plausible  linear  relationship  in  which,  richness  monotonically  increases  or

decreases. I accounted for heterogeneity in the number of sequences in each

sample  (library  size)  by  including  log(library  size)  as  the  first  term in  the

model.  This  approach  has  been  applied  successfully  in  other  microbial

ecology studies to incorporate the effects of differential sampling depth (e.g.

Bálint et al., 2015) and avoids the statistical pitfalls associated with rarefaction

(McMurdie & Holmes, 2014). To test whether accounting for site specificity in

the  temperature-OTU  richness  relationship  improved  model  fit,  I  used

likelihood ratio tests to compare models against a model with only a random

intercept. If  the temperature-richness relationship varied between sites, the

model with a site specific random slope should emerge as the better model.

To quantify the variance explained these models, I  calculated the marginal

and conditional R2 (Johnson, 2014). The marginal R2 (R2
marg) provides a metric

of  variance explained by the fixed effects  only  (e.g.  log(no.  sequences)  +

temperature + temperature2), whereas the conditional R2 (R2
cond) quantifies the

variance  explained  by  fixed  and  random  effects  together  (site  specific

intercepts and temperature slopes). As an additional measure of model fit, I

calculated the square of Pearson’s correlation coefficient between observed
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and  fitted  values.  Modeling  was  carried  out  independently  for  archaeal,

bacterial and eukaryotic datasets.

To examine the effect of temperature on microbes at the population level, I

used  multivariate  generalised  linear  models  (Wang  et  al.,  2012).  These

models  are  better  able  to  model  the  strong  mean-variance  relationship

present  in  over-dispersed count  data such as OTU counts (Warton  et  al.,

2016), providing more robust results than other methods, such as ordination

methods. To account for different library sizes, I included log(library size) as

an  offset  term.  This  approach  accounts  for  differential  sample  sizes  by

assuming proportionality between sequence numbers and OTU abundances

(e.g.  doubling  the  sequence  numbers  will  double  the  OTU  abundances),

which is the expected relationship. Again, temperature was included as both a

linear and quadratic term to allow responses to take on a unimodal shape. I

modeled OTUs that occurred in three or more samples, as OTUs confined to

fewer  samples  were  unlikely  to  yield  much  information.  In  order  to  test

whether different taxa show different temperature preferences, I  calculated

their  predicted  thermal  optima  (Topt).  To  do  this,  I  used  the  estimated

coefficients for both linear (T linear) and quadratic (Tquadratic) temperature terms

and calculated the thermal optima for  each OTU using equation 1.  I  then

tested for differences in Topt between taxa with an ANOVA test, followed by an

exploratory Tukey HSD post-hoc test.
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equation (1): Topt = - Tlinear / (2 * Tquadratic)

In  order  to  test  how  β-diversity  in  microbial  communities  is  related  to

temperature, I used distance-based correlations. Most methods of quantifying

β-diversity merge the two ways in which communities can change; through

nestedness (the ordered loss of species, Ulrich & Almeida-Neto, 2012) and

pure  species  turnover  (Baselga,  2010).  Therefore,  to  understand  how

communities change along thermal gradients, I partitioned β-diversity into its

turnover  and  nestedness  components,  βsim and  βnes  respectively  (Baselga,

2010;  Baselga & Orme, 2012).  The equations for  βsim and βnes are shown

below (equations 1 and 2), where a is the number of species shared by two

communities,  b is the number of species that only appear in site 1, and c is

the number of species that appear only in site 2:

equation 1: βsim = 
min(b , c)

a+min(b , c)

equation 2: βnes = 
max(b , c)−min(b , c)

2a+min(b , c )+max (b , c )
×

a
a+min(b ,c )

If βsim is related to temperature, then different species are replaced along the

temperature gradient, whereas if βnes is related to temperature, species are

not  replaced,  but  decrease  or  increase  their  abundance  such  that

communities along the temperature gradient are non-random subsets of each

other.  I  quantified  differences  in  temperature  between  samples  using
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Euclidean  distance.  To  test  the  correlation  between  the  two  β-diversity

components (βsim, βnes) and temperature, I used Mantel tests with Pearson’s

correlation coefficient and 10,000 Montecarlo permutations.

All statistical analyses were carried out using the R programming language (R

Core  Team,  2016) with  the  “lme4”  (Bates  et  al.,  2015),  “piecewiseSEM”

(Lefcheck, 2016), “mvabund” (Wang et al., 2012) and “vegan” (Oksanen et al.,

2015)  packages.  Graphics  were  created  with  the  “ggplot2”  package

(Wickham, 2009).
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Results

From  1.5  million  archaeal,  8.3  million  bacterial,  and  4  million  eukaryotic

quality  controlled  reads,  865  archaeal,  24,658  bacterial,  and  21,845

eukaryotic non-singleton OTUs were detected. Archaeal  communities were

dominated  by  unclassified  OTUs  from  the  phyla  Woesarchaeota  and

Euryarchaeota. Bacterial communities were highly diverse and 8 phyla were

represented by > 1,000 OTUs (Acidobacteria, Actinobacteria, Bacteroidetes,

Firmicutes,  Parcubacteria,  Planctomycetes,  Proteobacteria  and,

Verrucomicrobia). Discarding Metazoan and Embryophyte OTUs reduced the

number of Eukaryotic OTUs included in our analysis from 21,845 to 18,224.

The vast  majority  (80.2%) of  Eukaryotic  OTUs were not  identified beyond

“Eukaryota”,  suggesting taxonomic novelty  and/or poor  database coverage

during taxonomic assignment. Of those that were identified, many OTUs were

identified as fungi, with Cercozoa, Ochrophyta, Ciliophora, Chlorophyta, and

Stramenopiles all common.  

The Relationship Between Microbial Diversity and Temperature

I modeled the relationship between temperature and microbial diversity using

GLMMs.  In  archaeal  and  bacterial  communities,  the  relationship  between

temperature and OTU richness was not statistically significant (for both linear

and quadratic terms). In both cases, the random temperature slopes indicated

considerable  heterogeneity  between  sites.  In  particular,  archaeal  and

bacterial communities in Iceland and Svalbard showed dramatically different
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relationships  (Fig.  5.2)  compared  to  Alaska,  Greenland,  and  Kamchatka,

which all followed the expected unimodal shape. 

Figure  5.2 The  relationship  between  α-diversity  (OTU  richness)  and

temperature in all sites for Archaea, Bacteria, and Eukarya. Lines represent

the fit of generalised linear mixed effects models with site dependant random

intercepts and temperature slopes. Note that OTU richness values represents

raw counts that have not been normalised according to sequencing coverage,

whereas model fits have taken differential coverage into account.

Analysis  of  deviance  suggested  that  for  both  Archaea  and  Bacteria,

accounting for site specific temperature slopes significantly improved model fit

(Archaea;  χ2(2)  =  9.68,  P <  0.01,  Bacteria;  χ2(2)  =  8.54,  P <  0.05)  .

Additionally,  conditional  R2 values  were  far  larger  than  marginal  values
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(Archaea; R2
marg = 0.44, R2

cond = 0.93, Bacteria; R2
marg = 0.06, R2

cond = 0.99),

indicating  that  accounting  for  site  specific  differences  in  the  relationship

greatly increased the variance explained by the models. When Iceland and

Svalbard communities were removed, T linear was significant for Archaea (z =

4.34, coefficient = 0.53,  P < 0.001), and both terms became significant for

Bacteria  (Tlinear;  z =  2.86,  coefficient  =  0.14,  P <  0.01,  Tquadratic;  z =  -2.51,

coefficient = -0.08, P < 0.05).

In  Eukaryotic  communities,  Tlinear was  significant  and  negative  (z =  -2.29,

coefficient = -0.16, P < 0.05), but Tquadratic was not significant, suggesting that

the  relationship  with  richness  was  monotonic.  Estimation  of  the  random

slopes  between  sites  showed  that  the  relationship  was  also  consistently

observed,  with  a  similar  response  curve  fitted  to  each  country.  Including

random slopes in the model  did not significantly improve fit  over  a model

without  a  random  slope  term  (χ2(2)  =  0.74,  P =  0.69).  Furthermore,  the

difference between marginal and conditional R2 values was smaller (R2
marg =

0.64, R2
cond = 0.99) than for the Archaea or Bacteria, showing that random

effects  did  not  explain  as  much extra  variation.  Predictive  performance of

models was best for Bacteria, and worst for Eukarya (Fig. S1).

Effects of Temperature on Microbial Community Structure

To determine how temperature affects the structure of microbial communities,

I modeled the abundance of OTUs with multivariate GLMs. I  found that 252
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archaeal,  8,352  bacterial,  and  2,437  eukaryotic  OTU  abundances  were

significantly (P < 0.05) related to the linear temperature term (T linear), whereas

fewer OTU abundances were significantly related to Tquadratic (Archaea; 170

OTUs, Bacteria; 5,865 OTUs, Eukarya; 1,550 OTUs). Many OTUs from each

taxonomic group responded significantly to both temperature terms (Archaea;

112 OTUs, Bacteria; 3,185 OTUs, Eukarya; 1,289 OTUs). Of all  the OTUs

that responded significantly to both linear and quadratic temperature terms,

92.3% had  negative  coefficients  for  the  quadratic  term,  meaning  that  the

relationship  between  abundance  and  temperature  formed  the  expected

unimodal hump shape. For these OTUs, thermal optima (Topt) were calculated

using estimated coefficients (Tlinear and Tquadratic). Archaea were found to have

the highest Topt of ~19°C whereas Eukarya had the lowest at ~13.3°C (Fig.

5.3A). Analysis of variance showed that estimates of Topt varied significantly

between taxa (F2, 4232 = 69.7, P < 0.0001). Tukey’s HSD test revealed that Topt

was significantly different between all three domains (P <  0.05 in all cases,

Fig. 5.3B).
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Figure 5.3 (A) The estimated thermal optima (Topt) of OTUs that responded

significantly  to  both  temperature  terms  (T linear and  Tquadratic)  and  (B)  the

difference in mean Topt in degrees-Celsius between the microbial taxa.

The Relationship Between β-Diversity and Temperature

To determine how microbial communities change in relation to temperature

gradients,  I  partitioned  β-diversity  into  its  turnover  and  nestedness

components, and correlated these with changes in temperature. For all three

taxonomic  groups,  species  turnover  (βsim)  between  communities  was

significantly and positively correlated with changes in temperature (Fig. 5.4A-

C). This correlation was stronger for Bacteria and Eukarya (Bacteria; rMantel =

0.30, P < 0.001), Eukarya; rMantel = 0.25, P < 0.001) than for Archaea (rMantel =

0.13,  P < 0.001). In contrast, the nestedness component of β-diversity was

not related to changes in temperature in any of the three taxonomic groups

(Fig. 5.4D-F).  For archaeal  and bacterial  communities,  the correlation was
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both non-significant and weak (Archaea; rMantel = -0.01,  P = 0.61, Bacteria;

rMantel = -0.04, P = 0.83, Eukarya; rMantel = -0.15, P = 1).

Figure 5.4 The relationship between β-diversity of microbial communities and

pairwise differences in temperature between samples. Panels A-C show pure

species  turnover  (βsim)  whereas panels  D-F show nestedness (βnes).  Lines

represent the fit of a linear model and are presented to show the direction of

correlations,  solid  lines  show  statistically  significant  correlations  whereas

dashed lines show non-significant correlations.
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Discussion

Temperature-Diversity Relationships

I  examined  microbial  communities  along  five  parallel  thermal  gradients

situated  around  the  Arctic  Circle.  I  found  that  the  relationship  between

temperature and α-diversity was inconsistent across study sites for archaeal

and bacterial communities. Iceland and Svalbard communities showed  flatter

relationships between α-diversity and temperature, and were comparatively

depauperate of  species in  the warmer streams, especially so for  archaeal

communities.  The  inconsistency  of  reported  temperature-diversity

relationships  has  previously  been  discussed  by  Sharp  et  al.  (2014),  who

proposed  that  experimental  factors  such  as  lack  of  sequencing  depth  or

sampling  effort,  too  small  a   temperature  gradient,  and  poor  statistical

methodology  as  explanations  for  this  variability.  However,   these  results

clearly demonstrate variability in this relationships in an ideal model system,

with high sequencing coverage, and robust statistical methodologies. Instead

of being an experimental  or methodological artefact,  this study shows that

variability  in  temperature-diversity  relationships  is  a  real  ecological

phenomenon.  

I  propose  that  this  finding  is  due  to  differential  metacommunity  dynamics

between temperature gradients. The metacommunity describes a set of local

communities that are linked by dispersal (Logue et al., 2011), and therefore

the total diversity of organisms in a site. Within the stream systems studied
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here, different temperature communities are separated by a maximum of a

few  kilometers  (Woodward  et  al.,  2010).  Given  that  microbes  show  high

potential for dispersal (e.g. Favet  et al., 2013), and that streams offer highly

connected dispersal networks (Astorga et al., 2012), it seems highly likely that

communities  within  temperature  gradient  are  linked  by  dispersal.

Furthermore, the large geographic distances separating sites suggests that

dispersal between them should be minimal. Together, these properties show

that the communities studied here offer a relevant system in which to apply

metacommunity theory. The metacommunity of each site contains the species

available to fill the temperature niche space, thus determining the diversity of

communities  at  different  temperatures.  Metacommunities  are  themselves

determined  by  another  hierarchy  of  ecological  processes.  Differences  in

regional metacommunities can be caused by differing landscape properties

and varying rates and sources of propagule dispersal (Ryberg & Fitzgerald,

2015). The influence of different landscape properties (such as habitat area

and  isolation)  to  influence  metacommunity  composition  is  analogous  to

classic  Island  biogeography  theory  (MacArthur  &  Wilson,  1967).  In  island

biogeography, small and more isolated islands tend to be less diverse than

larger, more highly connected islands, because fewer dispersing propagules

reach these islands,  and extinction rates are higher (MacArthur  & Wilson,

1967).

In this study,  the temperature-diversity  relationships of two sites (Svalbard
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and Iceland) clearly stand out from the rest as they were flatter, and generally

contained fewer OTUs. These sites were also the smallest, and most isolated

sites, being relatively small islands, separated from large land masses by at

least several hundred kilometers. In contrast, the other three sites (Alaska,

Greenland,  and  Kamchatka)  are  all  connected  to  large,  continental  land

masses. It is perhaps likely that these smaller sites experience reduced rates

of  dispersal  and high local  extinction  rates,  thereby reducing the  diversity

present  in  their  metacommunities  (as  evidenced  by  their  lower  overall

diversity).  These  relatively  species  depauperate  metacommunities  might

therefore contain fewer species to fill the available temperature niche space,

resulting in markedly different temperature-diversity relationships. This idea is

congruent  with  the  metacommunity  framework  described by  Liebold  et  al.

(2004), and in particular their description of species-sorting as the process

that links local community composition to the metacommunity.

Previous evidence for a role of metacommunity dynamics in determining how

microbial  communities  respond  to  the  environment  is  scant  (though  see

Lindström  &  Langenheder  (2011)  for  a  comparison  of  metacommunity

concepts  with  microbial  community  assembly  concepts).  However,  the

presence  of  different  regional  metacommunities  is  a  parsimonious

explanation for the diversity patterns observed here, and may be of use in

explaining  other  instances  where  inconsistent  community-environment

relationships have been found (e.g. Telford et al., 2006).
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Effects of Temperature on Microbial Community Structure

Multivariate abundance models revealed different responses to temperature

by different microbial taxa, highlighting that even at broad taxonomic levels,

microbial  communities  exhibit  niche  differentiation  when faced  with  strong

environmental  gradients  (Dumbrell  et  al.,  2010).  Interestingly,  temperature

optima  predicted  by  the  models,  generally  agreed  well  with  previous

knowledge on the physiology and ecology of major microbial  lineages. For

instance, Eukaryotes are known to have a lower thermal limit to life (Tansey &

Brock, 1972; Rothschild & Mancinelli, 2001) than Bacteria, or Archaea (Blöchl

et al.,  1997; Kashefi  & Lovley, 2003) and it has been shown that Archaea

generally dominate numerically both in terms of individuals and diversity in

warmer habitats.

The finding of thermal niche differentiation between taxonomic groups at the

domain-level  has  important  implications  for  understanding  ecosystem

functionality. Certain functional roles, of importance at the ecosystem level,

are also conserved within these taxonomic groups. Of particular interest in the

context  of  current  climate  change,  is  the  microbial  cycling  of  methane.

Methanogenesis is an exclusively archaeal process (Liu & Whitman, 2008),

whereas methanotrophy is predominantly (but not exclusively) carried out by

Bacteria, in the Gamma- and Alpha-proteobacteria (McDonald  et al., 2008),

as well as the Verrucomicrobia (Dunfield et al., 2007). Previous studies have
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shown that the organisms linked to these processes respond to temperature

(Fey & Conrad, 2000, 2003; Börjesson et al., 2004; Mohanty et al., 2007; Fu

et al., 2015). Our results suggest that, under warming, microbial communities

may switch from predominantly methanotrophic to methanogenic. As methane

is  a  potent  greenhouse  gas,  this  represents  the  potential  for  a  positive

feedback  cycle  as  greater  atmospheric  [methane]  will  result  in  increased

warming.  This  possibility  is  further  backed  up  by  stoichiometric  analyses

which show that the ratio of CH4:CO2 increases with increasing temperature

(Yvon-Durocher et al., 2014). Further analyses of the activity and abundance

of  methane  cycling  microorganisms  in  these  habitats  warrants  further

research,  and  should  help  to  link  the  niche  differentiation  of  functionally

antagonistic microorganisms to ecosystem processes.

Additionally,  Eukaryotes  were  found  to  have  significantly  lower  predicted

thermal  optima  than  Bacteria,  or  Archaea.  Microbial  Eukarya,  such  as

protozoa, occupy trophic levels above Archaea and Bacteria, and therefore,

complex trophic structure relies  on the  presence of  eukaryotic  organisms.

Consequently,  there  is  potential  for  warming  to  considerably  reduce  the

complexity  of  trophic  webs by  decreasing  the  abundance and diversity  of

Eukarya in these habitats. In warmer communities, this could lead to predator

escape for Bacteria and Archaea, with unknown ecological  consequences.

Whilst experimental studies show that, in cooler temperatures, predation rates

of  microbial  Eukarya  on  Bacteria  are  positively  related  to  temperature
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(Sarmento et al., 2010). Thus, the effects of warming on microbial food webs

may be dependent on the temperature that communities currently occupy.

β-Diversity Patterns in Relation to Temperature

I  found  that  in  all  three  domains,  the  species  turnover  component  of  β-

diversity  correlated  with  changes  in  temperature,  but  the  nestedness

component did not. This shows that different species were present along the

thermal gradients, providing further evidence of niche differentiation among

the microbial communities. It is well known that distinct species of Archaea

and  Bacteria  occupy  warm  habitats  such  as  geothermal  springs,  and

therefore  not  surprising  that  we  detected  niche  differentiation  along  the

thermal gradients for these communities. Nevertheless, whilst this result is not

unexpected, it is novel and important in providing proof that the influence of

temperature  on  microbial  β-diversity  is  due  to  species  replacement,  and

simply  the  loss  of  species  with  small  temperature  niches.  Interestingly,  a

study of stream ciliate communities, in the same (Icelandic) stream system as

studied  here,  found  that  the  nestedness  component  of  β-diversity  better

correlated with changes in temperature (Plebani et al., 2015). In comparison

to Bacteria and Archaea, relatively few thermophilic Ciliates are known (Hu,

2014). Therefore, nestedness may be a plausible relationship for Ciliates, as

higher temperature communities may comprise of a subset of Ciliates with

broad  thermal  niches,  rather  than  mesophilic  species  being  replaced  by

thermophilic  species  (as  would  be  expected  if  species  turnover  was
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dominant).

Conclusions

I investigated how the diversity and composition of microbial communities is

related  to  temperature,  using  a  series  of  thermal  gradients  found  in

geothermal  stream  systems.  In  contrast  to  expectation,  I  show  that

discrepancies  in  the  microbial  diversity-temperature  relationships  are  not

merely methodological or statistical artefacts and do in fact, represent a real

ecological phenomenon that may be best explained by differential  regional

metacommunity dynamics. Furthermore, the results show that even at broad

taxonomic levels, microorganisms show thermal niche differentiation, adding

to  the  growing  body  of  evidence  for  thermal  niche  differentiation  among

microbial consortia (Garcia-Pichel  et al., 2013). Finally, I show that species

turnover, and not nestedness, is the dominant process underlying β-diversity

patterns in relation to temperature. The results have serious implications for

the  composition  and  functioning  of  microbial  communities  under  global

warming  as  shifts  in  diversity  may  be  spatially  inconsistent  due  to

metacommunity processes, and communities may show considerable shifts in

functionality, especially where functional roles are taxonomically conserved.
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Abstract

Climate change is projected to alter the distributions of species as they must

move to remain within their climatic niche. This is likely to cause considerable

changes in the functionality of ecosystems, and an increased likelihood of

extinction if  the range of a species shrinks. However,  whilst this has been

demonstrated  in  numerous  species,  the  potential  for  range  shifts  in

microorganisms  is  unknown,  as  the  link  between  climate  and  microbial

distributions is rarely examined. Therefore, understanding the extent to which

microbial  distributions  are  determined  by  current  climate  conditions  is

important in determining the potential for microbial range shifts to occur under

future climatic  conditions. To this  end,  using Bayesian species  distribution

modeling, I model the distributions of over 300 arbuscular mycorrhizal (AM)

fungi using climatic variables. I find that most fungal operational taxonomic

units (OTUs) show statistically supported relationships with multiple climatic

variables. However, the nature and identity of these climatic relationships vary

considerably between OTU definitions, and between and within AM fungal

taxa, especially at the genus level. Furthermore, I compared climatic models
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to null models using Bayes Factor analysis. For the majority of OTUs, there

was no support for climate as a driver of their distribution. Overall, the results

highlight whilst most AM fungal OTUs do not have a strong climatic niche,

those that do show climatic niche differentiation as their responses to climatic

drivers were different. Whilst most OTUs show little support for climatically

constrained distributions, the extent to which climate drives the distribution is

dependent  on  the  identity  of  the  AM  fungus  itself,  therefore  hinting  that

studies should focus on population level, rather than community, responses to

climate.  Our  findings  suggest  the  potential  for  novel  plant-AM  fungal

interactions, with unpredictable ecological consequences.
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Introduction

The Earth is currently undergoing incredibly rapid climate change. Such large

climatic changes are projected to have widespread and detrimental effects on

global biodiversity (Bellard et al., 2012) and, by extension, the functioning of

ecosystems  (Schröter  et  al.,  2005).  One  mechanism  by  which  this  may

happen is through climate induced range shifts (Parmesan and Yohe, 2003).

As the planet warms, species must move in order to track their thermal and

climatic  niche,  or  face  extinction.  For  many  species,  climate  change  is

projected  to  shift  species’  ranges  into  Polar  regions,  or  higher  altitudes

(Hickling  et  al.,  2006;  Parmesan  et  al.,  1999).  This  is  likely  to  result  in

widespread range reductions in most species, and therefore heightened risk

of  extinction  (Thomas  et  al.,  2004a).  Understanding  the  extent  to  which

species’  distributions  are  linked  to  climate  is  therefore  a  prerequisite  to

predicting  their  future  distributions,  potential  for  extinction,  and  the

functionality of novel ecosystems.

However, whilst much progress has been made in developing tools to quantify

the statistical relationships between climate and species’ distributions (Guisan

and Thuiller, 2005), the range of taxa to which such tools have been applied

is relatively narrow. In particular, conspicuous and charismatic taxa such as

insects, birds, and trees are well studied (e.g. Thomas et al., 2004b). Yet, the

potential  for range shifts in below-ground biota has lead to the systematic

exclusion  of  inconspicuous  but  functionally  critical  taxa,  such  as
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microorganisms (Fitter  et al., 2000). The vast majority of Earth’s biodiversity

and biomass belongs to microorganisms (Locey and Lennon, 2016).  Their

ubiquity, numbers, and functional capabilities mean they are key drivers of

Earth’s biogeochemical cycles with ecosystem wide impacts (Falkowski et al.,

2008).  However,  whilst  the  environmental  factors  determining  microbial

distributions  at  small  scales  are  well  studied,  the  extent  to  which  climate

determines their distributions is poorly understood. Critically, we therefore do

not  know  the  potential  for  climate  change  to  alter  the  distribution  of  key

groups  of  functionally  important  microorganisms,  and  by  extension  the

potential for changes in the ecosystem processes that they control.

One such group of functionally diverse microorganisms are the arbuscular

mycorrhizal  (AM) fungi  (phylum Glomeromycota).  These fungi  are obligate

plant-root endosymbionts, that associated with at least 2/3 of terrestrial plant

species, making them one of the most common symbioses in nature (Fitter et

al., 1997). By increasing the uptake of nutrients such as phosphorous from

the soil in exchange for carbon provided by the host plant, AM fungi can be

hugely beneficial to the host plant with profound impacts at the ecosystem

level (van der Heijden et al., 1998a, 1998b). However, the nature of plant-AM

fungal  interactions  can  vary  considerably  along  a  spectrum  from  highly

beneficial to the host plant, through neutral, to parasitic (van der Heijden et

al., 1998a; Johnson et al., 1997).
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Despite their obvious importance to ecosystem functionality, our knowledge

about the ecological drivers of AM fungal distributions is predominantly biased

towards  local-scale,  physicochemical  factors  (e.g.  Dumbrell  et  al.,  2010).

Much  attention  has  also  been  given  to  the  role  of  host-plant  community

composition  and  diversity  in  determining  the  range  of  AM  fungal  taxa

(Johnson  et al., 2004; Öpik  et al., 2009), though recent evidence suggests

that over global scales, biotic control (e.g. through host-specificity) over AM

fungal  distributions  is  minimal  (Lekberg  &  Waller,  2016).  However,

comparatively little is known about whether larger scale environmental filters,

such as climate, modulate AM fungal distributions and therefore, the potential

for range shifts in AM fungi under future climatic conditions remains unknown

(Fitter et al., 2000). Range shifts in AM fungi introduce the possibility for novel

AM fungal-host  plant  interactions  that,  given the  highly  context-dependent

nature of the AM fungal symbiosis, will  be difficult to predict the ecological

consequences of.  Therefore, understanding whether AM fungi  are likely to

experience range shifts,  is  key in  predicting ecosystem functionality  under

novel climatic conditions

Experimental  approaches  have  provided  evidence  that  AM  fungal

communities and taxa may respond to various factors associated with climate

change,  including  elevated  CO2,  increased  temperature,  and  decreased

precipitation  (Compant  et  al.,  2010).  Yet,  whilst  experimental  studies  are

useful  in  determining  the  local-scale  ecological  consequences  of  climate
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change,  they  are  not  able  to  determine  whether  AM  fungal  distributions

themselves are linked to climatic factors and for this reason, are of limited use

in  informing  us  about  the  potential  for  climate  driven  range  shifts  in  this

functionally important group of microorganisms. Therefore, I  sought to test

whether climate is linked to the distributions of AM fungal taxa over global

scales, using a species distribution modeling (SDM) approach (Pearson &

Dawson, 2003). To do this, occurrence data were obtained from the largest

available molecular database on AM fungi, and used to test which climatic

factors (if any) were related to their distributions. It has been suggested that

the taxonomic resolution at which AM fungi are studied can greatly alter our

perception of their ecology (Lekberg et al., 2014). In particular, overly broad

taxonomic resolutions may artificially expand AM fungal ranges by “lumping”

distinct AM fungal ecotypes with differing climatic niches (Bruns and Taylor,

2016),  obscuring  any  climatic  signal  present  in  the  distribution.  Thus,  by

increasing  the  taxonomic  resolution,  climatic  signal  (if  present)  should  be

enhanced. I  therefore used AM fungal  OTUs defined at multiple sequence

similarity thresholds to examine whether increasing taxonomic resolution may

reveal climatic signal in the distribution of AM fungi. Finally, I determined the

extent to which climatic factors are able to predict AM fungal distributions, and

therefore how likely AM fungi are to experience climatic range shifts.
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Methods

Occurrence Data

AM fungal occurrence data were obtained from the MaarjAM database (Opik

et al.,  2010). This database contains geo-referenced AM fungal 18S rRNA

sequence records, along with various contextual metadata, including sample

date  and  source.  I  downloaded  the  entire  MaarjAM  database  (accessed

24/02/2017)  and  cleaned  the  data  by  removing  any  records  with  missing

geographic coordinates, or genbank accession numbers. Geographical points

from which records were obtained were then assigned to 10 arc-minute grid

squares covering the terrestrial surface of the Earth. Grid square was then

used as a sample identifier with which to label sequence data.

The MaarjAM database automatically  assigns sequence records to  “virtual

taxa”  (Öpik  et  al.,  2009),  based  on  phylogenetic  and  sequence  similarity

criteria.  However,  it  has  been  suggested  that  more  specific  taxonomic

grouping may be required to study AM fungal ranges. Therefore, in order to

test  whether  climatic  drivers  emerged  at  higher  taxonomic  resolution,

sequences were clustered into operational taxonomic units (OTUs) at three

OTU definitions (97, 98, and 99% sequence similarity). This was achieved

using  VSEARCH  (Rognes  et  al.,  2016),  with  the  virtual  taxon  “type

sequences” as cluster seeds. The number of sequence records within each

grid square was recorded, along with the abundance of each OTU, in each

grid square.
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Climate Data

Climatic predictors were downloaded the “Bioclimatic” variables at a 10 arc-

minute resolution from the WorldClim 2 database (Fick and Hijmans, 2017).

These data consist of climatic layers, averaged over the past 50 years, and

are  frequently  used in  species  distribution  modeling  studies  (Hijmans and

Graham,  2006).  Here,  mean  annual  temperature  (bioclim_1),  temperature

seasonality (variability across seasons, bioclim_4), mean annual precipitation

(bioclim_12), and precipitation seasonality (bioclim_15) were used as climatic

predictors.  These variables are intuitive descriptors of  the average climate

condition and its seasonal variability, and were statistically representative of

the other climatic variables (Fig. 6.1). Details of other, unused variables are

provided below, along with their vector names as used in Fig. 6.1.

• bioclim_2 – Mean diurnal range

• bioclim_3 – Isothermality (diurnal range / annual range)

• bioclim_5 – Maximum temperature of the warmest month

• bioclim_6 – Minimum temperature of coldest month

• bioclim_7 – Temperature annual range

• bioclim_8 – Mean temperature of wettest quarter

• bioclim_9 – Mean temperature of driest quarter

• bioclim_10 – Mean temperature of warmest quarter

• bioclim_11 – Mean temperature of coldest quarter

• bioclim_13 – Precipitation of wettest month
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• bioclim_14 – Precipitation of driest month

• bioclim_16 – Precipitation of wettest quarter

• bioclim_17 – Precipitation of driest quarter

• bioclim_18 – Precipitation of warmest quarter

• bioclim_19 – Precipitation of coldest quarter

Statistical Analyses

To  fit  climatic  species  distribution  models  to  AM  fungal  occurrence  data,

binomial  generalised  linear  models  (GLMs)  were  used  to  model  the

probability of occurrence of each AM fungal OTU in relation to the climatic

predictors.  Binomial  models  are  an appropriate  GLM for  modeling  integer

based  proportions,  where  the  proportion  represents  the  number  of

“successes” as a result of a number of Bernoulli trials, in our case a success

represents the presence of a given fungal OTU in a given grid square, whilst

each  sequence  record  represents  a  Bernoulli  trial.  Therefore,  we  are

modeling the probability that a given sequence record in a given grid square

represents a specific fungal OTU. Models were fit in a Bayesian framework

using  the  “R-INLA”  package  (Rue  et  al.,  2009).  For  each  model,  the

independent variable was the abundance of an OTU in each grid square, and

the number of Bernoulli trials was set as the number of records for each grid

square.
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Figure 6.1  PCA analysis of  Bioclimatic variables for observation points.  I

used  the  variables  mean  annual  temperature  (bioclim_1),  temperature

seasonality  (bioclim_4),  mean  annual  precipitation  (bioclim_12),  and

precipitation  seasonality  (bioclim_15),  as  these  variables  are  biologically

meaningful,  and represent  the main axes of  temperature and precipitation

well.

Prior to modeling, climate variables were scaled and centered by subtracting

the mean of each variable from each value, then dividing by the standard

deviation of each variable. Quadratic terms for both annual precipitation and

annual  temperature  were  included  in  each  model,  as  this  allows  a  hump
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shaped response curve to be fit. This is a biologically plausible relationship for

variables  where  the  probability  of  occurrence  is  expected  to  peak  at  an

“optimal” value. In contrast, seasonality variables were fit as linear terms only,

as quadratic terms for these variables would not have an intuitive biological

interpretation.  Models were created for  all  AM fungal  OTUs, at  each OTU

definition.

In order to test the importance of individual climatic predictors to each fungus’

distribution,  I  inspected  the  posterior  coefficient  estimates.  The  median

posterior coefficient estimate quantifies the average relationship between the

probability  of  presence,  and  the  climatic  covariate  of  interest,  whilst  the

credible interval of a coefficient is a measure of the certainty in the coefficient.

A variable  is  interpreted  as  having  statistical  support  if  the  95% credible

interval  does  not  contain  0  (i.e.  is  totally  negative,  or  totally  positive).

Practically speaking, this can be interpreted as showing a 95% probability that

there is a (positive or negative) relationship with the covariate, given the data.

The relative importance of each covariate to an OTU was estimated by the

magnitude  of  the  coefficient,  as  climatic  covariates  were  scaled  prior  to

modeling. I also examined the shape of the fitted response curves, according

to the quadratic coefficients. If these coefficients are negative, the response

curve will  follow a biologically plausible hump shape, indicating an optimal

climatic  condition.  If  the  quadratic  coefficients  are  positive,  they  response

curve  follows  a  biologically  implausible  u-shape,  indicating  increased
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probability of presence at extreme climatic values. If the credible interval for

quadratic coefficients contained 0, the response curve was considered to be

of “indeterminate” shape, as it could be unimodal, u-shaped, or flat.

To determine the relative goodness of fit of the models, comparisons were

made between climatic models and null, intercept only models for each OTU.

An intercept only model, assumes that the probability of presence is constant

across sites. The relative support for climatic, or null models was quantified

using Bayes Factors (BFs). Bayes Factors quantify the relative evidence for

one  model  over  another,  given  the  data  (Good  and  Hardin,  2009).

Pragmatically, a Bayes Factor of 1 indicates no support for either model. A

Bayes Factor of < 1, in this study, would indicate support for the null model,

and as BF → 0, relative support for the null model increases. Whereas, a BF

> 1, indicates support for the climatic model, and as BF → ∞, relative support

for the climatic model increases.
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Results

From an initial 24,872 records, data cleaning reduced the number of usable,

unique sequence records to 22,849. The remaining records represented 402

distinct grid squares (Fig. 6.2A), for which a complete set of climate data was

obtained.  These  records  represent  a  relatively  narrow  temporal  sampling

duration, with 95% of the “cleaned” records being published to the MaarjAM

database from 2008 onwards (Fig. 6.2B), indicating that differences in sample

times between records should have minimal influence on the results.

Figure 6.2 (A)  A map of  all  locations from which  sequence records were
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obtained (n = 402).  (B) A histogram of publication years for the sequence

records used in this study and, (C) the environmental sources of records used

within this study.

Furthermore, the vast majority (84%) of sequence records were obtained from

plant root samples, as opposed to (< 1%) spore traps, or (9.8%) soil samples

(Fig. 6.2C). Of the 352 virtual taxon type sequences obtained from MaarjAM,

334 were recorded at all three OTU definitions (97, 98, and 99% sequence

similarity). However, within the entire set of OTUs (at all similarity thresholds,

n = 1,018), only 372 had more than 10 presences, therefore only results for

these OTUs are presented, as OTUs with fewer presences are unlikely to

yield robust models or conclusions.

Determining Climatic Drivers

Of the 372 AM fungal OTUs considered, only 27 did not show statistically

supported relationships with any of the climatic covariates considered. For

those OTUs that did show statistically supported relationships with at least

one climatic covariate, most were related to at least 3 covariates, though this

varied between the different OTU definitions (Fig. 6.3). The linear temperature

term was the most frequently well supported climatic covariate overall at all

three OTU definitions (Table 6.1),  whilst  many OTUs were also related to

precipitation (linear term). 
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Figure 6.3 The number of climatic variables related to the distributions of AM

fungal operational taxonomic units (OTUs), at each OTU definition. Climate

variables were considered to show statistically supported relationships if the

95% credible interval did not bound 0. OTUs with a greater number of climatic

relationships represent fungi that may have more complex relationships with

climatic factors.

Whilst fewer OTUs were related to the quadratic terms for temperature and

precipitation  variables,  the  majority  of  those  that  were  showed  negative

coefficients (Fig. 6.4). This means that the response curve for these variables

forms  a  hump  shaped  relationship,  as  expected.  The  importance  of

seasonality (in terms of the number of OTUs related to it) in both temperature

and precipitation varied between OTU definitions.
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Table 6.1 The number of AM fungal operational taxonomic units (OTUs) with

statistically  supported  relationships  to  each  climatic  covariate,  at  each

similarity threshold. A climatic covariate was considered to show a statistically

supported relationship if the 95% credible interval excluded 0.

OTU
definitiona

Climatic covariate Number of OTUs with
relationships to covariate

97% Precipitation 93

Precipitation (quadratic) 65

Precipitation seasonality 62

Temperature 103

Temperature (quadratic) 62

Temperature seasonality 72

98% Precipitation 78

Precipitation (quadratic) 62

Precipitation seasonality 63

Temperature 93

Temperature (quadratic) 61

Temperature seasonality 59

99% Precipitation 37

Precipitation (quadratic) 17

Precipitation seasonality 25

Temperature 37

Temperature (quadratic) 27

Temperature seasonality 25
a OTU  definition  refers  to  the  sequence  similarity  at  which  OTUs  were
clustered, using the “type sequences” from the MaarjAM database as cluster
seeds.
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Figure  6.4 The  number  of  OTUs  showing  different  response  curves  to

quadratic temperature and precipitation terms. Inset shows the two response

curves  for  quadratic  terms,  if  coefficients  are  negative  (dashed  line)  the

response curve is a biologically plausible unimodal shape, whereas if they are

positive (solid line), a u-shaped curve is formed, possibly indicating a lack of

data. The response curve was considered indeterminate if the 95% credible

interval  contained  0,  as  this  indicates  the  coefficient  could  be  positive  or

negative.

Taxonomy Dependent Climatic Relationships

OTUs  representing  finer  taxonomic  groups  (99%)  did  not  show  stronger

relationships  with  environmental  covariates  than  broader  OTU  definitions

(97%), as the magnitude of coefficients did not show any clear increase as

finer OTU definitions were used (Fig. 6.5). This pattern was consistent when

OTUs were divided into taxonomic groups.
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Figure  6.5 Climatic  coefficients  of  operational  taxonomic  units  (OTUs)  at

each OTU definition. Lines connect OTUs formed from the same sequence.

At  more  specific  OTU  definitions,  the  magnitude  of  responses  towards

climatic factors did not get stronger, indicating that OTU definition had little

effect on the detection of climatic relationships.

At the order level, there were no obvious differences in any of the climatic

covariates between taxonomic groups (Fig. 6.6). Whilst at the genus level,

different AM fungal genera showed different responses to climatic covariates.

In  particular,  the  genera  Paraglomus and  Scutellospora appeared  distinct

from  other  AM  fungal  genera  in  their  response  to  climatic  covariates,

especially  as  they  were  showed  predominantly  positive  responses  to  the

linear temperature covariate, suggesting increased probability of presence in

warmer climates (Fig. 6.7). 
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Figure 6.6 Climatic coefficients (median posterior estimates) of operational

taxonomic  units  (OTUs)  within  different  AM  fungal  orders,  at  each  OTU

definition. Only two boxes are present for Paraglomerales as OTUs within this

order  had  too  few  presences  at  the  99%  OTU  definition  to  build  robust

models, and were excluded from further analyses.

The genus  Glomus contained the most OTUs of all  the AM fungal genera

considered (n = 116 OTUs at the 97% OTU definition), and this genus also

showed the greatest variability in responses to climatic covariates, suggesting

that climatic niches may vary within, as well as between AM fungal genera.
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Figure 6.7 Climatic coefficients (median posterior estimates) of operational

taxonomic  units  (OTUs)  within  different  AM  fungal  genera,  at  each  OTU

definition.

Overall Influence of Climate

To test the predictive ability of the climatic SDMs, they were compared to null

models, thus testing the relative evidence for climate driven distributions vs.

random distributions. Analysis of Bayes factors suggested that, in the majority

of OTUs, there was no evidence to suggest that climate based models were

better than null models, as the majority of Bayes factors were < 1, and close

to  zero,  supporting  the  null  model  over  the  climate  model  (Fig.  6.8).  In

contrast,  105  OTUs  in  total  (45,  42,  and  18  at  97,  98,  and  99%  OTU

definitions respectively)  had Bayes factors > 1, supporting climate models
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over  null  models,  to  varying  extents.  Thus,  the  extent  to  which  climate

modulates AM fungal distributions differs between OTUs.

Figure 6.8 Histogram of Bayes Factors (BFs) for each operational taxonomic

unit  (OTU),  at  each OTU definition.  Note  that  the  natural  log  of  BFs  are

presented for ease of visualisation. Bayes Factors to the left of the dashed

line (0 = log(1)), indicate support of a null intercept only model, whereas BFs

> 0 indicate support for climatic models. The further away from 0 a BF is, the

stronger the support for either model.
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Discussion

This  study  used  a  species  distribution  modeling  approach  to  determine

whether climate controls the distribution of arbuscular mycorrhizal  fungi  at

global scales. The results suggest that many AM fungi show at least some

relationship  to  climatic  variables,  although  the  nature  and extent  of  these

relationships  vary  between  taxa,  particularly  at  fine  taxonomic  resolutions

(sub-genus level). However, for the vast majority of AM fungi, climate-driven

distributions are not well supported and therefore, the importance of climate

to AM fungi appears to be restricted to certain AM fungi.

Most AM Fungi Are Not Climatically Controlled

These analyses offer the first insight into whether the distributions of multiple

AM fungi are linked to large-scale current climatic conditions. Strikingly, we

found that the majority of AM fungal OTUs showed little, or no support for

climate  effects  on  their  distributions.  In  fact,  for  many  of  the  OTUs,  null

models  (assuming  random distributions)  gained  greater  statistical  support,

further  highlighting  the  weak predictive  power  of  climatic  variables  on the

distributions of many AM fungi.

Previous research into the role of climate on the ecology of AM fungi has

tended to focus on community level effects (Torrecillas et al., 2013), making it

challenging to determine individual taxon responses to climate (Kivlin  et al.,

2017),  making  it  impossible  to  generalise  to  other  AM  fungal  taxa.
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Observational  studies  of  AM  fungi  have  reported  changes  in  community

composition  (Kivlin  et  al.,  2011),  diversity  (Torrecillas  et  al.,  2013),  and

colonisation (Zhang et al., 2016; Hu et al., 2013), in relation to climatic factors

such  as  temperature  or  precipitation.  By  manipulating  specific  climatic

variables,  experimental  approaches  have  also  demonstrated  climatic

influences on aspects of AM fungal ecology. Hawkes et al. (2011) found that

under  experimentally  induced  drought  conditions,  AM  fungal  communities

were more diverse and abundant than under non-drought conditions, whilst

root  colonisation  increased  under  elevated  precipitation  conditions.  In

addition,  temperature manipulations have demonstrated positive effects on

root  colonisation  (Rillig  et  al.,  2002),  and  spore  size  and  density  under

elevated temperatures (Zhang et al., 2016). These studies show that climatic

factors can influence AM fungi  from the  population  level  (changes in  root

colonisation  and  hyphal  length),  through  to  community  level  changes

(changes in  total  fungal  biomass,  and diversity).  Coupled  with  the  results

gathered here, this suggests that many AM fungi will be affected by climate

change, but these changes may manifest themselves at more local scales

than the global range of the species.

The lack of a relationship between climate and the distribution of many AM

fungi found in this study hints that climatically driven range shifts or changes

in range size may be unlikely for most AM fungi. If AM fungi are highly host-

specific, given the extensive evidence of climatic range shifts in host plant

219



Chapter 6 

species (Kelly and Goulden, 2008; Lenoir  et al.,  2008), then climate could

modulate  the  distributions  of  AM  fungi  indirectly  by  manipulating  the

distributions of their host-plant species. Under this scenario, there would be

no expected change in the functionality of the mycorrhizal symbiosis, as the

identity of the plant and AM fungus will  remain the same. However, global

studies of AM fungal ranges show that there is little coupling between the

ranges of specific AM fungi and host-plant species (Lekberg & Waller, 2016).

In this case, there may be a disconnect between the future ranges of host-

plants and AM fungi, as the plants may shift their ranges, whilst the AM fungi

will not. Here, the host-plant species may acquire novel AM fungal symbionts,

the  composition  of  which  may  be  determined  by  the  local  environment.

Furthermore, the local AM fungal community might play an important role in

the establishment of new host-plant species that may be experience range

shifts. AM fungi have previously been shown to influence the success of alien

plant species (Moora  et al.,  2011; Menzel  et al.,  2017), and it  is therefore

likely that AM fungi could have significant effects on future plant communities

through below-ground facilitation of host plants in novel climates. In this case,

the disconnect in the future ranges of host-plant species and AM fungi will

likely  result  in  novel  plant-microbe  interactions,  that  in  turn  will  lead  to

unpredictable ecological functionality.

Climatic Drivers and Influence Vary Between Taxa

Whilst  many  of  the  fungal  OTUs  showed  little  evidence  of  climatic
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distributions, some did, suggesting that the effects of climate on AM fungi are

likely  to  vary  between  and  within  AM  fungal  taxonomic  groups.  I  found

considerable variation in the nature of climatic relationships between different

AM fungal genera, and even within certain genera, such as  Glomus  sp., in

which  OTUs  showed  highly  variable  responses  to  climatic  variables.  This

finding  is  consistent  with  previous  research  that  showed that  colonisation

responses induced  by  drought  conditions  were  differentiated  between  two

species  of  Glomus (Davies  et  al.,  2002).  Furthermore,  Klironomos  et  al.

(1998)  showed  that  under  elevated  CO2  conditions,  the  colonisation  and

sporulation of  four AM fungal  species was variably  affected. More broadly

speaking,  niche differentiation  with  respect  to  physicochemical  parameters

has been shown to structure AM fungal communities, particularly along strong

physicochemical  gradients  (Dumbrell  et  al.,  2010),  and  in  wider  fungal

communities (Geml et al., 2012).

These results suggest that some AM fungi are likely to show climatic niche

differentiation.  This  finding  means  that  the  ecological  consequences  of

climate change on mycorrhizal mediated ecosystem processes are likely to

be unpredictable, as the extent to which mycorrhizal communities will change

in a given environment is dependent on the individual AM fungal taxa present.

Thus, further research should therefore consider population level effects in

parallel with community level effects in order to gain a more holistic view of

AM fungal ecology under future climatic conditions.
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Extensions and Applications of Microbial Species Distribution Modeling

Whilst the statistical approaches used here are robust, it would be remiss not

to  discuss  the  limitations  and  potential  future  directions  of  climatic  niche

modeling of microorganisms, and especially, AM fungi. A common caveat of

SDM approaches is the assumption of spatial independence, that is to say,

that  each  observation  has  no  influence  on  other  observations  (Dormann,

2007).  Biologically  speaking,  this  assumption  is  rarely  validated  as  many

species are dispersal  limited, meaning that observations close to a known

presence  are  more  likely  to  also  be  presences  than  observations  from

geographically distant sites (Lennon, 2000). For AM fungi, the validity of this

assumption is unclear as evidence for whether AM fungi are dispersal limited

or not, and at which spatial scales, is mixed (Lekberg et al., 2007; Dumbrell et

al., 2010; Davison et al., 2015; Kivlin and Hawkes, 2016). Additionally, from

community  based studies,  it  is  not  possible  to  tell  the  dispersal  status  of

individual  taxa.  Therefore,  an obvious extension to this study would be to

incorporate  the  effects  of  spatial  autocorrelation  within  the  data.  Bayesian

approaches  such  as  those  implemented  within  the  INLA software  would

probably  offer  the  most  computationally  tractable  method  to  do  this,

particularly as INLA is becoming more widely using in the SDM community

(e.g.  Blangiardo  et  al.,  2013).  In  addition  to  improving  the  fit  of  SDMs,

determining the importance of dispersal related processes to AM fungi would

offer further insight into the nature of range shifts under climate change. If AM
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fungi are unable to disperse efficiently over large geographic distances, they

may not be able to keep up with the rapid rates of climatic change projected

to occur over the coming decades (Engler et al., 2009). In this scenario, some

AM fungi may experience range contractions, and potentially increased risk of

local extinction. Better characterisation of the dispersal abilities of individual

microbial taxa would therefore improve our understanding about the potential

ecological  consequences  of  climate  change  on  microorganisms.  Such

knowledge would require the integration of macroecological approaches with

trait based modeling, informed by physiological and experimental studies of

AM fungal taxa.

Another potential direction for future work on AM fungal distribution modeling

would be to incorporate biotic interactions. Evidence for host specificity in AM

fungi  is  mixed,  and  may  be  context-dependent  (Douhan  et  al.,  2005;

Helgason  et al., 2007; Torrecillas  et al., 2012). However, jointly considering

the climatic niches of AM fungi and host-plant species may help to pinpoint

areas where the climatic niches of AM fungi and their host plants do, or do not

overlap.  In  turn,  this  would  help  identify  areas  of  potential  conservation

interest (where plant-fungus interactions are conserved), or research interest,

in areas where novel plant-fungus interactions may be likely to occur. Recent

developments in the field of statistical modeling now mean that joint species

distribution  models  (jSDMS)  are  computationally  tractable.  This  class  of

models allow simultaneous modeling of the distributions of multiple species

223



Chapter 6 

and importantly, it is possible to partition the effects of climatic covariates from

biotic interactions (Pollock  et al., 2014; Ovaskainen  et al., 2015). However,

such  models  have  remained  largely  under-utilised  within  the  microbial

ecology literature to date, despite their obvious usefulness (Björk et al., 2017).

Finally,  consideration  of  the  climatic  niches  of  the  AM fungi  present  in  a

habitat as “dormant” spores may help to build a predictive framework of the

types of plant-fungal interactions under future climate conditions. AM fungal

community  shifts  resulting  from activation  of  sporulated  fungi  are  likely  to

occur more rapidly than as a result of geographical range shifts. Therefore,

characterising the climatic niches of dormant fungi would allow prediction of

which members of the AM fungal spore bank may be more likely to become

active in the future. By incorporating knowledge on the types of interactions

these  fungi  have  with  their  plant  host  (e.g.  beneficial,  neutral,  parasitic;

Chaudhary et al., 2016), it may even be possible to predict the potential for

changes  in  ecosystem  functionality  from  above-  and  below-ground

interactions such as the AM fungal-plant symbiosis. 

Conclusions

In summary, climatic factors do not drive the distributions of most AM fungi,

suggesting that local-scale factors may be of greater importance. However,

some AM fungi do appear to show climatic niches, indicating that the potential

for  range shifts  to  occur  under  future  climatic  conditions is  taxon-specific,
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highlighting the need for microbial ecologists to consider individual taxa, as

well as communities in future research. Furthermore, the identity of climatic

variables driving some AM fungal distributions vary between taxa, adding to a

growing  awareness  that  microorganisms  may  show  climatic  niche

differentiation.  The  results  highlight  the  applicability  of  species  distribution

modeling  in  understanding  the  potential  impacts  of  climate  change  on

functionally important microorganisms.
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Chapter 7

General Discussion

Summary of Thesis Findings

Chapter 2 Summary

In  Chapter  2,  I  compared  whether  metagenomic,  or  amplicon sequencing

recovers  the  most  diversity  from  microbial  communities,  and  whether  the

additional  cost  of  metagenomic sequencing is  a worthwhile  compromise.  I

assembled a dataset of published sequence data in which samples had been

sequenced by both metagenomic, and amplicon sequencing. Results showed

that,  once  differences  in  sequence  numbers  had  been  controlled  for,

metagenomic  sequencing  recovered  a  greater  number  of  operational

taxonomic units  (OTUs).  Furthermore,  metagenomic sequencing recovered

more taxonomic diversity than amplicon sequencing, even at basal taxonomic

levels (from genus, to phylum). However, in all studies (except one), the cost

of metagenomic sequencing to generate the same level of coverage provided

by amplicon sequencing was at least an order of magnitude higher. I conclude

that  whilst  metagenomic  sequencing  offers  increased  ability  to  recover

microbial  diversity,  currently,  the cost  of  this approach is still  prohibitive in

many cases (Neufeld, 2017).

Chapter 3 Summary

In  Chapter  3,  I  tested  the  generality  of  macroecological  relationships  in
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microbial communities, and whether such relationships vary due to ecological,

or  methodological  reasons.  To  do  this,  I  conducted  a  meta-analysis  of

microbial  distance-decay  (d-d)  relationships.  For  each  distance-decay

relationship, I recorded factors relating to methodological approach, including

the sequencing depth, sampling effort, and molecular approach, and factors

describing the biological context of each relationship, such as the scale, focal

taxa,  and  study  system.  Both  methodological  and  biological  contextual

aspects  significantly  influence  the  strength  of  microbial  distance-decay

relationships. Factors relating to community coverage tended to weakly, but

significantly  affect  the  strength  of  d-d  relationships,  whereas  choice  of

dissimilarity index had a stronger effect. In particular, phylogenetic distance

metrics resulted in weaker d-d relationships. Additionally, these results also

showed that biological factors such as scale and study system resulted in

different d-d relationships. These results highlight that methodological choices

are capable of biasing our perception of macroecological patterns in microbial

communities.  Furthermore,  the  results  from  Chapter  3  demonstrate  that

macroecological  relationships  vary  between  biological  contexts,  and  are

therefore not universal within microbial communities.

Chapter 4 Summary

In Chapter 4, I examine the role of spatial processes in structuring microbial

communities over macroecological scales, and whether such processes result

in macroecological patterns comparable to higher organisms. I characterised
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the extremophilic archaeal communities from halite crystals, gathered over

continental scales. I found that over small spatial scales (< 300 km), species

turnover in these communities was strongly related to geographic distance,

indicating limited dispersal between sites. However, at larger scales, turnover

was not related to distance, and communities did not cluster together in a

spatially coherent manner. Finally, I tested for archaeal genera indicative of

specific biogeographic regions, and was able to identify several genera that

were good indicators of  geographic origin.  Overall,  results from Chapter 4

indicate that extremophilic microbial communities may be organised by spatial

factors operating at small, rather than regional, spatial scales. Furthermore,

the influence of spatial processes is likely to be different between microbial

taxa.  Collectively,  these  results  indicate  the  need  to  consider  ecological

patterns at the population level, as well as at the community level.

Chapter 5 Summary

Within Chapter 5, I examine the relationship between environmental gradients

and microbial communities, and whether the relationship generalises across

microbial taxa and geographic distance. I comprehensively characterised the

sediment microbial communities (Archaea, Bacteria, and Eukarya) from five

parallel  geothermally  warmed  stream  systems  situated  around  the  Arctic

circle. The results showed that in three sites, microbial communities followed

the expected  unimodal, hump shaped relationship between temperature and

diversity,  whereas in  two sites,  the relationship is  flat.  Multivariate  models
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revealed that  the predicted thermal  optima of  microbial  taxa  was different

between Eukarya (lowest  thermal  optima),  Bacteria,  and Archaea (highest

thermal  optima).  Finally,  by  partitioning  β-diversity  into  nestedness  and

species turnover components, the results showed that microbial communities

change  along  environmental  gradients  predominantly  due  to  species

replacement (turnover), rather than species loss (nestedness). Results from

Chapter  5  highlight  that  regional-scale  metacommunity  dynamics  may

influence  the  extent  to  which  the  environment  structures  microbial

communities (Telford et al., 2006), as the two smallest and most isolated sites

showed  very  different  relationships  to  the  other  three.  Furthermore,  by

showing that microbial taxa have different thermal optima, and that species

turnover  occurs  over  temperature  gradients,  the  results   comprehensively

demonstrate  that  niche  differentiation  plays  a  major  role  in  structuring

microbial  communities over  strong environmental  gradients.  The results  of

Chapter  5  have  important  implications  in  understanding  how  microbial

communities may change under global warming over macroecological scales.

Chapter 6 Summary

In  Chapter  6,  I  investigated  whether  the  distributions  of  microorganisms,

specifically  the  arbuscular  mycorrhizal  (AM)  fungi,  are  driven  by  modern

climatic conditions. If they are, microbes may experience range shifts under

future climate change scenarios, which in the case of AM fungi, may result in

novel  plant-fungus  interactions,  with  unknown  consequences  for  plant
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productivity.  I  obtained  distribution  data  from  the  AM  fungal  database,

Maarjam  (Opik  et  al.,  2010),  and  used  species  distribution  models  to

investigate whether their distributions are linked to climate. Results showed

that  different  AM fungi  respond  to  different  climatic  drivers,  and  that  this

climatic niche differentiation emerged at the genus level,  rather than more

broad taxonomic levels. However, the results also showed that for most AM

fungi, at most taxonomic resolutions, climate was a relatively poor predictor of

their distribution, and in most cases climatic species distribution models were

not statistically supported over random null  models. These results suggest

that climatically driven geographic range shifts are unlikely in many AM fungi.

They also  suggest  that  climatic  niche  differentiation  between  different  AM

fungi  means  that  microbial  communities  should  be  considered  at  the

population  level  when  modeling  the  potential  effects  of  climate  change.

Additionally,  the  results  hint  at  the  possibility  of  novel  plant-fungus-

environment  interactions,  which  are  likely  to  have  highly  unpredictable

ecological consequences at the ecosystem level.

Sampling Microbial Communities for Macroecological Studies

Sequencing Microbial Communities

Throughout  this  thesis,  I  have utilised high-throughput  sequencing data to

characterise  the  composition  and  diversity  of  microbial  communities.  The

ability  of  modern  molecular  methods  to  delve  into  previously  unobserved

parts  of  the  microbial  biosphere  facilitates  tests  of  macroecological
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hypotheses in microbial communities (Barberán et al., 2014). In Chapter 2, I

show that  metagenomic  sequencing allows superior  sampling  of  microbial

diversity when compared to amplicon sequencing. However, the requirement

for  much  greater  sequencing  depth  in  metagenomic  sequence  datasets

means  that  the  financial  cost  of  such  an  approach  could  be  an  order  of

magnitude higher. Coupled with the fact that macroecological datasets often

require high sampling effort in order to gain the necessary statistical power,

the trade-off  between sequencing depth and sampling effort  represents an

unacceptable  compromise.  In  comparison,  amplicon  sequencing  offers  a

more favourable cost:sequencing depth ratio,  and has the benefit  of being

able  to  target  specific  groups  of  organisms.  Therefore  the  most  optimal

method  of  sampling  microbial  biodiversity  for  testing  macroecological

hypotheses is currently still amplicon sequencing, although decreasing costs

will eventually make metagenomics a more favourable option (Neufeld, 2017).

Within  Chapters  4  and  5,  I  used  extremely  high-throughput  amplicon

sequencing using the Illumina HiSeq platform. In Chapter 4, the extremely

high coverage offered by this approach near comprehensive coverage of the

haloarchaea present within halite crystals. In the context of the chapter, this

allowed quantification of even the very rare organisms, that are more likely to

be endemic to specific regions (Liu et al., 2015). A lower coverage approach

may  have  missed  these  taxa,  and  therefore  communities  might  appear

artificially similar to each other. In turn, this may have affected the clustering
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of  communities  and  the  ecological  conclusion  that  extremophilic  microbial

communities do not form biogeographic regions.

In Chapter 5, amplicon sequencing was used to specifically target different

microbial  taxonomic groups present  in  Arctic  stream sediments.  Here,  the

ability to target specific taxonomic groups of organisms was invaluable. Within

this  chapter,  it  was  found  that  microbial  taxonomic  groups  differ  in  their

temperature-richness relationships. By targeting specific groups of organisms

using amplicon sequencing,  I  was able to  ensure that  sequencing was of

sufficient  depth  to  provide  adequate  coverage  for  each  taxonomic  group

(Archaea, Bacteria, and Eukarya) in order to robustly model the temperature-

diversity  relationship  of  each  taxonomic  group.  In  this  instance,  if  lower

sequencing depth approaches were used, the most diverse samples would

have been inadequately  sampled,  inevitably  leading to  flatter  temperature-

diversity relationships. Chapter 5 therefore highlights the benefit of being able

to  allocate  sequencing  coverage to  specific  taxonomic  groups  in  order  to

ensure  that  they  are  adequately  sampled  before  making  ecological

inferences.

Databases and Open Data in Microbial Macroecology

Whilst  the generation of new empirical  datasets is often necessary to test

(macro)ecological hypotheses, the culture of data sharing in microbial ecology

allows ecological  or methodological  hypotheses to be tested on previously
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published datasets.  In  Chapter  2,  I  utilised previously published sequence

datasets that contained both metagenomic, and amplicon sequence data, in

order  to  test  which  sequencing  method  recovered  the  most  diversity.

Sequence  data  were  obtained  from  a  number  of  sources  including  the

European nucleotide  archive  (Leinonen  et  al.,  2011a),  the  sequence read

archive  (Leinonen  et  al.,  2011b),  and  the  MG-Rast  server  (Meyer  et  al.,

2008).  The resulting dataset contained more than 1.1 billion sequences in

total,  spanning  multiple  sequencing  platforms,  sequencing  depths,  and

biomes. The results showed that metagenomic sequencing recovered more

diversity  than  amplicon  sequencing,  and  that  this  conclusion  held  across

sequencing platforms, biomes, and different sequencing depths. However, the

difference in cost between the two sequencing approaches was dependent on

the  platform  that  had  been  used  for  each  sequencing  approach.  In  this

context, the ability to combine datasets from a wide variety of biomes and

sequencing technologies allowed far greater insight and more generalisable

conclusions than if all sequence data had been generated in one sequencing

run. The findings of this chapter therefore built on previous comparisons of

metagenomic  and  amplicon  sequencing  that  had  generated  data  on  a

restricted range of sequencing platforms or environmental contexts (Poretsky

et al., 2014; Tessler et al., 2017). The ability to access large volumes of raw

sequence data  quickly  in  order  to  test  hypotheses highlights  the  value  of

sequence data repositories to macroecological, and bioinformatics research.
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In  addition  to  data  repositories,  more  specific,  purpose-built  and  curated

databases  also  enable  the  assemblage  of  datasets  of  use  for  testing

macroecological hypotheses. In Chapter 6, I utilised the database MaarjAM in

order to obtain global occurrence data for a variety of arbuscular mycorrhizal

(AM) fungal taxa (Opik et al., 2010). The main purpose of this database is to

contain DNA sequences associated with AM fungi, in order to build a large

taxon-specific  database of  all  known AM fungal  sequences.  However,  the

additional strength of this database is in the metadata associated with the

sequence  records,  which  provides  information  including  geographic

coordinates,  sampling year,  and sample source.  This  metadata allows the

sequence records to be more useful to other researchers by providing more

contextual  information  in  an  accessible  format.  In  turn,  this  facilitates  the

integration of these data with other datasets, such as climate data (Chapter 6)

in order to test hypotheses. Furthermore, datasets with global extent (as is

the case with MaarjAM) offer the opportunity to test macroecological theory

without  the  enormous  logistical  and  financial  difficulty  associated  with

generating new global datasets.

Data  sharing  in  ecology  is  still  a  hotly  debated  (Reichman  et  al.,  2011;

Hampton  et al.,  2013),  but widely encouraged ethos. In microbial  ecology,

many  of  the  field  specific  journals  request  that  any  sequence  data  are

uploaded to publicly accessible data repositories as a condition of publication.

Whilst  enforced,  this  has  lead  to  the  development  of  a  minimum  set  of
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standards with which sequence data should be shared (Yilmaz et al., 2011),

thus ensuring that such data remain relevant and useful in the future.

Statistical Methods to Analyse Macroecological Relationships

The widespread uptake of high-throughput sequencing in microbial ecology

has resulted in datasets with unusual or idiosyncratic properties that require

careful consideration during statistical analyses. Challenges associated with

the analysis of microbial datasets are the often extremely large numbers of

species,  sparseness  (high  proportion  of  zeros),  a  strong  mean-variance

relationship, and non-normality, all of which may violate the assumptions of

common statistical tests (Warton et al., 2012; Bálint et al., 2016). Throughout

this  thesis,  I  have  used  advanced  statistical  methods,  rarely  applied  in

microbial ecology studies, in order to overcome these problems. In Chapter 5,

the strong mean-variance relationship of OTU richness data, combined with

the fact  that  count  data are  non-normally  distributed (because counts  are

integers  and  bound  by  0)  meant  that  the  assumption  of  standard  linear

regression analyses are violated (Ver Hoef & Boveng, 2007; O’Hara & Kotze,

2010). In particular, failing to account for the mean-variance relationship can

influence estimates of  model  parameters  (Ver  Hoef  & Boveng,  2007)  and

common model selection criteria such as AIC (Richards, 2008). Therefore, the

use  of  generalised  linear  models  circumvented  the  need  for  data

transformation,  resulting in  more  intuitive  model  outputs  (O’Hara  & Kotze,

2010).  Furthermore,  explicitly  accounting  for  the  strong  mean-variance
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relationship  present  in  the  data  allowed  models  to  account  for  over-

dispersion, and therefore make accurate parameter estimates (Warton et al.,

2016).

In addition to the challenging statistical properties associated with microbial

datasets, the choice of appropriate indices to describe community properties,

such as β-diversity, in microbial ecology has contributed to difficulty in testing

macroecological theory. The past two decades has seen a considerable body

of research devoted to the development of improved indices to quantify β-

diversity  in  ecology,  which  has  lead  to  more  accurate  and  interpretable

indices. Yet, the uptake of these new indices to quantify β-diversity has been

slow  within  microbial  ecology,  perhaps  due  to  uncertainty  about  how

applicable such indices are to microbial communities, or more likely due to a

lack of integration between the fields of microbial and statistical ecology. In

Chapter 3, I recorded the range of indices used to test for distance-decay

relationships within microbial ecology, and found that classic indices such as

Bray-Curtis and Jaccard's index are overwhelmingly the most frequent choice.

However,  these  indices  have  been  shown to  blur  the  two  ways  in  which

communities can change, through species turnover or nestedness (Baselga,

2010). This makes it difficult to determine the nature of changes occurring in

microbial  communities;  are  species  being  replaced  along  environmental

gradients, or are species being lost from the community, resulting in nested

subsets?  A new generation of  turnover  indices  have been developed that
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allow the separation of these two components, allowing for better insight into

how microbial  communities are changing in space, or along environmental

gradients (Baselga, 2010, 2012). In Chapter 4, I used the βsim index to cluster

communities in order to test for biogeographic regions. This index represents

a better choice than classic indices as it purely quantifies species turnover,

which  is  the  process  relevant  to  biogeographic  regionalisation,  and  not

nestedness  (e.g.  biogeographic  regions  are  not  nested  subsets  of  each

other).  Furthermore,  in  Chapter  5,  I  partitioned  the  β-diversity  of  stream

sediment  microbial  communities  into  it's  nestedness  and  turnover

components, in order to determine the nature of community changes along

thermal  gradients.  This  analysis  revealed  that  communities  change  along

temperature gradients through species turnover, as distinct species occupy

different  parts  of  the  temperature  gradient.  In  contrast,  there  was  no

relationship between changes in temperature and the nestedness component

of community turnover, showing that cold or hot sediment communities are

not merely subsets of diverse “warm” communities,  in contrast to previous

results (Sharp et al., 2014).

Recently developed community similarity indices are now able to account for

unobserved species (Chao et al., 2006), uncertainty in species' occurrences

(Barbosa,  2015),  and interactions between species  (Schmidt  et  al.,  2017).

These indices, along with those described previously  (e.g. Baselga, 2010),

represent  exciting  opportunities  for  microbial  ecologists  to  move  “beyond
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Bray”,  and  to  more  adequately  test  their  hypotheses  about  the  nature  of

changes in microbial community composition. The results of Chapter 3, along

with  Chapters  4  and  5,  illustrate  that  the  choice  of  similarity  index  can

influence our perception of microbial macroecology, and careful consideration

is needed in order to choose the most appropriate index to address a given

hypothesis.

Microbial Study Systems for Macroecological Studies

The choice of study system can dramatically enhance or obscure patterns

and processes in macroecological studies of microbial communities (Chapter

3).  Microbial  communities  have  been  shown  to  respond  to  environmental

variables that are structured at a variety of spatial scales (e.g. climate vs pH;

Dumbrell  et  al.,  2010;  Pajunen  et  al.,  2016).  Therefore,  choosing  an

appropriate study system to test for the processes or patterns of interest is

key. Previous research has argued that experimental systems are ideal for

testing hypotheses about microbial ecology (Jessup et al., 2004). However, it

is often not possible to test macroecological theories in a laboratory setting,

whilst  field  based  experiments  offer  relatively  limited  opportunities  (Bell,

2010).  Furthermore,  in  congruence  with  “macroecological  thinking”,  field

based studies often fail to replicate the complexity found within nature, and

often provide over-simplified results that are of limited generality to the natural

world (O’Gorman et al., 2014). This point is particularly relevant to Chapter 6,

which  examined  the  extent  to  which  current  climate  determines  the
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distribution  of  arbuscular  mycorrhizal  fungi  over  global  scales.  In  situ

manipulations of single climatic factors such as temperature or precipitation

often show strong community responses to these factors (e.g. Hawkes et al.,

2011) yet, at the global scale, the distributions of many AM fungi are only

weakly related to climate (Chapter 6). Therefore, whilst natural systems may

be challenging due to the presence of confounding factors, by accounting for

the complexity  of  the natural  world,  rather  than trying to remove it,  better

generalisations  can  be  made,  and  unifying  ecological  principles  can  be

determined.

Microbial Macroecology

Generality of Macroecological Relationships

One  of  the  major  themes  of  macroecological  research  is  the  search  for

general  patterns and unifying theories that  unite  the ecologies of  different

organisms  (Keith  et  al.,  2012).  In  microbial  macroecology,  it  has  been

suggested  that  the  application  of  existing  ecological  theory  to  microbial

communities  will  likely  be  the  most  fruitful  approach,  circumventing  the

requirement for new theory  (Prosser  et al.,  2007).  However,  whilst  studies

comparing the macroecological patterns of micro- and “macroorganisms” are

useful and interesting (e.g. Horner-Devine et al., 2007; Astorga et al., 2012),

this  has  meant  that  the  generality  of  macroecological  patterns  within

microorganisms has remained largely under-explored.  
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In Chapter 3, I found that the strength of the distance-decay relationship in

microbial  communities  can  vary  according  to  several  biological  contextual

aspects including study system, and scale, showing that the rate at which

community similarity decays with distance is not universal across microbial

communities in different habitats.  Furthermore, in Chapter 5 I find that the

relationship between microbial community diversity and temperature can vary

considerably between study systems separated by thousands of kilometers.

This  is  in  contrast  to  previous  studies  showing  that  this  relationship  is

conserved across microbial communities  (Sharp  et al., 2014), and suggests

that metacommunity dynamics and the availability of species to fill  specific

niches might  have a role  in determining the generality  of  macroecological

relationships  in  microbial  communities  (Telford  et  al.,  2006).  Finally,  in

Chapter 6, I find that the drivers and explanatory power of climatic variables

on arbuscular  mycorrhizal  fungal  distributions varies considerably  between

and within different AM fungal taxa. This suggests that AM fungi show climatic

niche differentiation, and therefore will show different patterns of occurrence

in relation to climatic variables.

Combined,  these  results  highlight  that  macroecological  relationships  in

microbial communities are unpredictable, whilst addressing some of the key

unanswered questions in microbial  macroecology  (Lennon & Locey, 2017).

The results gathered here suggest that metacommunity dynamics (Chapter

5),  taxon-dependent  niche  differentiation  (Chapters  5  and  6),  biological
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context  (Chapter  3),  and  methodology  (Chapter  3)  may  all  influence  the

presence  and  detectability  of  macroecological  relationships  in  microbial

communities.  Therefore,  understanding  the  generality  of  macroecological

dynamics, and the factors that lead to idiosyncratic relationships in microbial

macroecology  could  result  in  new theory  to  describe  the  macroecological

processes that determine microbial community structure.

Spatial Processes in Microbial Macroecology

Due  to  the  provocative  nature  of  EiE,  a  common  theme  present  in  the

microbial  ecology  literature  is  the  balance  between  the  environment  and

spatial processes in determining the composition and structure of microbial

communities (van der Gast, 2015). Previous research has frequently framed

such questions by investigating whether microbial communities assemble by

niche (environmental) or neutral (random dispersal and speciation) processes

(e.g. Dumbrell  et al., 2010; Ofiteru  et al., 2010; Lekberg  et al., 2007). This

body of research has yielded much insight into the often strong effect of the

environment on microbial communities, but also into the less well understood

role  of  spatial  processes  in  determining  microbial  community  composition

over a range of spatial  scales. Often, the decay of similarity in community

composition  with  increasing  geographic  distance  between  communities  is

interpreted as evidence of  neutral  processes in  the assembly of  microbial

communities,  as neutral  theory predicts  that  species will  disperse more to

neighbouring habitat  patches than to  distant ones  (Rosindell  et al.,  2011).
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However,  species  within  microbial  communities  can  have  very  different

distributions,  and  many species  may  be  found in  distant  sites,  but  not  in

neighbouring sites (Chapter 4), making them poor indicators of a community's

geographic origin.  Given that the environment in which we sampled these

communities was highly similar meaning that environmental effects are less

likely,  two  explanations  remain.  The  first  is  that  connectivity,  rather  than

geographic distance per se, determines the probability of dispersal between

sites. In previous distance-decay studies within microbial  ecology, distance

and connectivity are assumed to be closely related, and therefore close sites

are presumed to be more well connected, facilitating dispersal between them.

However, empirical tests of this assumption are lacking  (Müller  et al., 2014;

Vannette et al., 2016). Certain dispersal mechanisms or vectors could provide

dispersal  “motorways”  connecting  communities  separated  by  large

geographic distances. Intuitive examples in which connectivity may “override”

distance are in stream networks  (Niño-García  et al., 2016), ocean currents

(Müller  et al.,  2014), or animal migration routes (e.g. birds). In all  of these

examples, there is a clear mechanism by which long distance dispersal might

connect  geographically  distant  communities,  or  there  is  the  potential  for

asymmetric dispersal between sites. Connectivity may therefore be a viable

explanation for the lack of biogeographic regionalisation seen in communities

of  extremophilic  microorganisms  (Chapter  4).  However,  connectivity  is

potentially difficult to quantify, and may be easier to infer  ad hoc  (e.g. after

examining compositional similarity),  especially if  the dispersal vector is not
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known. Therefore, careful consideration of study system is required in order

to address hypotheses relating to connectivity in microbial communities.

The second explanation is that dispersal itself is a non-neutral process (Lowe

&  McPeek,  2014).  If  dispersal  is  a  neutral  process,  all  species  should

disperse  equally  successfully,  and  therefore  the  commonest  species  in  a

community will have the best chance to disperse to distant sites. However, in

extremophilic  communities,  this  is  not  necessarily  true,  as  less  abundant

species were often observed in geographically distinct communities, making

them  poor  indicators  of  a  community's  geographic  origin  (Chapter  4).

Asymmetric dispersal  ability  between species could explain these species'

wide distributions, as they may possess traits or behaviour that facilitates their

long-distance  dispersal.  In  microorganisms,  dispersal-related  traits  may

include the ability to enter a vegetative state in order to survive suboptimal

environmental conditions  (Norros  et al., 2014, 2015), or having a small cell

size to facilitate aeolian (wind) dispersal  (Wilkinson, 2001; Wilkinson  et al.,

2012).  Alternatively,  the  ability  to  survive  in  dispersible  environmental

material, such as halite crystals, could allow long distance dispersal, via wind

blown particles for example.   

In addition to determining the composition of microbial communities, spatial

processes  may  also  influence  how  microbial  communities  are  shaped  by

environmental  gradients  (Chapter  5,  Telford  et  al.,  2006).  The relationship
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between community diversity and an environmental gradient is determined by

the niche use of the species pool available to colonise the habitat. Therefore,

spatial processes such as dispersal may therefore determine the size of the

species pool available to colonise a habitat, which in turn, will determine how

diversity  at  the  community  level  is  related  to  an  environmental  gradient

(Telford et al., 2006). 

Climate change and Microorganisms

Microorganisms may be the most vulnerable organisms to climate change,

and may also have the largest impact on ecosystem functioning under climate

change  (Singh  et  al.,  2010).  Microorganisms  do  show  relationships  with

factors associated with climate (change) including temperature  (Chapter 5,

Zhou et al., 2016; Sharp et al., 2014), and precipitation (Chapters 6, Angel et

al.,  2010).  However, the results gathered here indicate that the impacts of

climate change on microbial communities are unlikely to be uniform. Changes

in the diversity and composition of microbial communities are likely to vary

spatially  according  to  the  regional  metacommunity  (Chapter  5),  whereas

changes in  the  functionality  of  microbial  communities may depend on the

identity  of  organisms  present  within  the  community  and  their  relative

contributions to ecosystem functioning (Chapter 6).

Evidence  for  whether  functionality  is  linked  to  diversity  within  microbial

communities is mixed (Nannipieri & Ascher, 2003; Peter et al., 2011; Peter &
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Sommaruga,  2016),  and may depend on the function and identity  of  taxa

within a community. This suggests that whilst climate change may affect the

diversity of microbial communities, it is currently unclear as to whether this will

lead to a change in  functionality.  Therefore,  a better  understanding of  the

identity of microorganisms that drive functionality, and their susceptibility to

climate change is needed in order to build a more predictive model of how

climate change will  affect  microbial  ecosystem processes  (Compant  et al.,

2010).

In addition to effecting microbial communities, climatic changes may also act

differentially  on  microorganisms  at  other  levels  of  biological  organisation,

such  as  the  population  level.  Niche  differentiation  with  respect  to  climate

means that the relative effects of climate on different microbial taxa will likely

be variable, as the distributions of different taxa are linked to different climatic

drivers,  or  the  strength  of  relationship  between  climate  and  distribution  is

different (Chapter 6). In this case, the potential for climate to affect microbially

mediated  ecosystem  processes  is  highly  dependent  on  identity  of  the

organisms  present  in  a  habitat,  meaning  that  specific  knowledge  on  the

functionality  of  individual  taxa  is  required  in  order  to  build  a  predictive

understanding of climate change.

A “one size fits all” approach to predicting the impacts of climate change on

microbial  communities,  populations,  and  functioning  is  therefore  not
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appropriate and will result in poor predictions. In order to build more accurate

predictive models for microbial functioning under climate change, all levels of

biological  organisation  should  be  considered  including  metapopulation

dynamics, and niche differentiation between populations.

Future Work

Are Biotic Interactions Important?

Over  macroecological  scales,  the  distributions  of  microbial  taxa  are

determined by interactions with the environment, as well  as their dispersal

and connectivity between habitat patches. However, biotic interactions may

also  play  a  large  role  in  controlling  the  distributions  of  microorganisms

(Larsen et al., 2012). Microbial taxa do not exist in isolation, they are part of

diverse  communities  and  may  interact  with  other  microorganisms,  or

“macroorganisms”.  These interactions  may be obvious in  some cases,  for

example between endosymbiotic fungi and their host plants, but often may be

more subtle, for example between microorganisms occupying different steps

of  biogeochemical  cycles.  Such  interactions  may  determine  the  spatial

configuration of microorganisms, particularly at small scales e.g. in stratified

biofilms (Elias & Banin, 2012). However, it is largely unknown as to whether

biotic interactions between microorganisms, or between microorganisms and

“macroorganisms” could be capable of structuring microbial communities over

macroecological  scales.  In  particular  it  is  unknown  whether  strong  biotic

interactions  could  maintain  the  coexistence  of  species  outside  of  their
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physicochemical niches. An example of one such possible interaction would

be  the  co-occurrence  of  the  archaeon,  Haloquadratum  walsbyi,  with  the

bacterium, Salinibacter ruber. (Gramain et al., 2011) showed that the survival

of H. walsbyi in laboratory formed halite crystals was dramatically enhanced

in  the  presence  of  S.  ruber, perhaps  due  to  co-metabolism  of  certain

compounds  (Elevi  Bardavid  &  Oren,  2008).  Other  evidence suggests  that

such  interactions  may  be  relatively  common  in  halophilic  microbial

communities  (Elevi  Bardavid  et  al.,  2008).  In  this  instance,  the  traditional

niche  concepts  of  the  fundamental  niche  (the  entire  range  of  survivable

conditions),  and  the  realised  niche  (the  conditions  in  which  the  species

actually  occurs)  are  not  intuitive.  Biotic  interactions are usually  thought  to

restrict the fundamental niche, with the resulting realised niche representing a

subset  of  the fundamental  niche.  However,  in  this  case biotic  interactions

extend  the  fundamental  niche,  resulting  in  a  larger  realised  niche.  It  is

arguable that the fundamental and realised niche concepts do not adequately

describe  this  concept,  and  the  development  of  new  niche  concepts  to

incorporate  the  role  of  facilitation  may be required,  although arguably  the

concept of biotic interactions extending the fundamental niche has not been

well characterised in the wider field of ecology (Bruno et al., 2003).

Uniting Experimental Manipulations with Metacommunity Theory

It  has  been  argued  that  in  situ experimental  manipulations  of  microbial

communities may offer better insight into the effects of environmental change
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on microbial communities, than through observation based studies (Jessup et

al., 2004). Experimental manipulations have been widely employed to study

the potential effects of climate change on microbial communities (e.g. Hawkes

et  al.,  2011;  Steven  et  al.,  2012;  Heinemeyer and Fitter,  2004).  However,

these  studies  have  yielded  varying  results,  perhaps  due  to  regional

metacommunity processes (Chapter 5), making it difficult to discern general

impacts  of  climatic  change  in  microbial  communities.  Therefore,  explicitly

accounting  for  macroecological  processes,  such  as  metacommunity

dynamics, by conducting spatially replicated experimental manipulations over

large  geographic  extents  represents  an  elegant  way  of  integrating  the

reductionist  approach  of  experimental  ecology  with  the  complexity  and

unifying principles of macroecology  (Lessard  et al.,  2012).  For example, a

series  of  artificial  warming  experiments  set  out  over  a  latitudinal  gradient

would allow a test of the whether regional metacommunities determine the

response to temperature at local scales. If  they do, one might expect that

equatorial regions should show a higher thermal richness optima, as there are

likely  to  be  more  species  adapted  to  warm  conditions  present  in  the

metacommunity. In contrast, polar regions might have lower thermal richness

optima as there are fewer warm-adapted microbes, and therefore the majority

of  microbial  diversity  would  be  cold-adapted.  Such  a  study  could  be

conducted empirically or, given the number of similar previous experiments,

may be possible via meta-analysis of previously published experiments. By

uniting small scale experimental approaches with macroecological theory, a
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more  realistic  understanding  of  how  climate  change  affects  microbial

communities could be gained.
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Appendix 1

Figure 3.S1 The number of distance-decay relationships used in this analysis

from different journals. Only the most frequent 15 journals are shown.
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Figure  3.S2 The  relationship  between  Mantel  correlation  coefficients  and

sampling depth. The solid line is the fit from a linear model (slope = 0.02, P <

0.05,  adj-R2 =  0.02).  Sampling  depth  refers  to  the  sequencing  depth  of

sequence-based  approaches,  or  the  number  of  individuals  counted  for

morphological studies. Fingerprinting studies are excluded from this analysis.
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Appendix 2

Table 4.S1 Photographic record of all halite samples used in this study. Scale

shows mm increments.

Sample photo Notes Location Sample 
code

Pure white,
grain size ~ 
1mm

Aigues Mortes, 
South France

AIGX

Pure white, 
grain size 1-
2mm

Algarve, Portugal ALGX

Slight grey 
hue, grain 
size 1-3mm

Bourgneuf, West 
France

BOUX
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Light grey 
hue, grain 
size 1-3mm

Cadiz, South Spain CADX

Pure white, 
grain size 
~1mm

Camargue, South 
France

CAM1_X

Pure white, 
grain size 
~1mm

Camargue, South 
France

CAMX

Pure white, 2-
7mm

Cyprus FALX
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Light grey 
hue, grain 
size 1-3mm

Fuencaliente, 
Canary Islands

FUENX

White, grain 
size ~1mm

Guerande, West 
France

GUE1_X

Grey-green, 
grain size 1-
4mm

Guerande, West 
France

GUE2_X

Light grey 
hue, grain 
size 1-2mm

Guerande, West 
France

GUE3_X
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Pure white, 
grain size ~ 
1mm

Ibiza, Balearic 
Islands

IBIX

Pure white, 
grain size 
~1mm

Ifaty, Madagascar IFA1_X

Pure white, 
grain size 
~1mm

Ifaty, Madagascar IFAX

White, grain 
size 1-2mm

St. Leu, Reunion 
Island

LEU1_X
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Pure white, 
grain size 
~1mm

Mauritius MAU1_X

Pure white, 
grain size 
~1mm

Mauritius MAU2_X

Pure white, 
grain size 1-
2mm

Mauritius MAU3_X

White, grain 
size ~1mm

Mayotte MAYX
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White, grain 
size ~1mm

Noirmoutier, West 
France

NOI1_X

Slight grey 
hue, grain 
size 1-2mm

Noirmoutier, West 
France

NOI2_X

White, grain 
size ~ 1mm

Noirmoutier, West 
France

NOI3_X

White, grain 
size ~1mm

Aveiro, Portugal PORX
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White, grain 
size 1-2mm

Ile de Re, West 
France

SRE1_X

White, grain 
size 1-2mm

Ile de Re, West 
France

SREX

Grey-green 
hue, grain 
size 1-3mm

Ile de Re, West 
France

SRE2_X

Strong grey 
hue, grain 
size 1-3mm

St. Armel, West 
France

STAX
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Table 4.S2 The number of operational taxonomic units (OTUs) in each family

identified to each genus. OTUs not identified to the genus level are binned

under “unclassified” in the relevant family. OTUs not identified to family level

are binned under the taxonomic group they were able to be identified to.

Archaeal family Genus Number of OTUs

Halobacteriaceae Haladaptatus 4

Halapricum 3

Halarchaeum 5

Haloarchaeobius 2

Haloarcula 20

Halobacterium 55

Halococcus 13

Halomarina 4

Halomicroarcula 35

Halomicrobium 9

Halorhabdus 6

Halorientalis 31

Halorubellus 13

Halorussus 10

Halosimplex 5

Halovenus 21

Natronoarchaeum 4

Natronomonas 63

Salarchaeum 7

Salinirubrum 1

Unclassified 
Halobacteriaceae

545

Haloferacaceae Halobaculum 8

Halobellus 41

Haloferax 1

Halogeometricum 2

Halogranum 3

Halohasta 13

Halolamina 64

Halonotius 7
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Halopenitus 5

Haloplanus 31

Haloquadratum 10

Halorubrum 58

Salinigranum 4

Unclassified 
Haloferacaceae

52

Methanosarcinaceae Methanohalobium 1

Natrialbaceae Haloterrigena 9

Halovivax 3

Natrinema 4

unclassified_Natrialbaceae 14

Nitrososphaeraceae Nitrososphaera 2

Unclassified Archaea Unclassified 18

Unclassified Euryarchaeota Unclassified 4

Unclassified Halobacteria Unclassified 232

Unclassified Nanohaloarchaeota Candidatus Nanosalina 137

Unclassified Woesarchaeota Unclassified 2

272



Appendices

Table 4.S3  The top ten archaeal genera that contribute to the accuracy of

each classifiera,  as  defined by  node purity  and classifier  accuracy.  Higher

values  for  mean  decrease  in  Gini  index  or  accuracy  indicate  a  greater

contribution to the accuracy of the classifier.

Classifier Node purity Accuracy

Genus Mean decrease
in Gini index

Genus Mean decrease
in accuracy

Ocean Halarchaeum 2.20 Halarchaeum 48.14

Halohasta 1.86 Halohasta 42.22

Halomicrobium 1.17 Halomicrobium 34.42

Halovenus 1.02 Halomicroarcula 28.13

Halapricum 0.99 Halosimplex 27.38

Halosimplex 0.94 Halovenus 25.45

Halorubrum 0.81 Halorubrum 25.00

Halomicroarcula 0.78 Halapricum 24.74

Halobaculum 0.65 Halobacterium 24.31

Halobacterium 0.55 Candidatus 
Nanosalina

22.24

Geographic 
region

Haloquadratum 2.82 Haloquadratum 58.08

Halapricum 2.52 Halapricum 55.39

Halobaculum 1.84 Halobaculum 47.21

Halarchaeum 1.48 Halarchaeum 42.38

Halomicrobium 1.15 Halohasta 37.37

Halohasta 1.13 Salinigranum 35.15

Salinigranum 1.09 Natrinema 34.08

Haloarcula 0.93 Halomicrobium 32.98

Halorhabdus 0.92 Halorubrum 32.66

Natrinema 0.91 Halomicroarcula 32.30

Biogeographic
region

Halarchaeum 2.17 Halarchaeum 48.34

Halohasta 1.89 Halohasta 44.58

Halovenus 1.18 Halovenus 31.50

Halapricum 1.15 Halomicrobium 30.34

Halomicrobium 0.97 Halosimplex 30.23

Halosimplex 0.92 Halapricum 28.92

Halobaculum 0.84 Halomicroarcula 26.39

Halorubrum 0.75 Halorubrum 25.69
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Halomicroarcula 0.64 Halobacterium 25.07

Halorubellus 0.58 Salarchaeum 24.96
a Three classifiers were constructed to classify the nearest ocean, geographic region, and a 
priori defined biogeographic region of each community based on the relative abundances of
haloarchaeal genera.

Figure 4.S1 The number of operational taxonomic units (OTUs) identified to

each taxonomic level. The number of OTUs ranged from 1,581 in the 97%

dataset to 10,346 in the 99% dataset.
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Figure 4.S2 The occupancy and abundance of all operational taxonomic units

(OTUs). Total abundance is the abundance of each OTU in the entire dataset,

prior to rarefaction. The total number of samples used in the study was 75.

Figure 4.S3 The cluster memberships (indicated by colour and number of

label)  of  communities  for  each  clustering  algorithm,  based  on  the  “knee
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solution”. This is the clustering solution that yielded the greatest increase in

explained dissimilarity. Panel columns show results from the three different

clustering  algorithms  used  which  were  unweighted  pair  group  method

(UPGMA), partitioning around mediods (PAM), and Ward clustering method.

Figure 4.S4 Partial dependence plots showing how the relative abundance of

the genus, Halarchaeum, influenced the class probabilities of the (A) oceanic

and  (B)  biogeographic  region  random  forest  classifiers.  Increased  class

probability indicates a higher probability that the random forest classifier will

identify a community as belonging to a given class.
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Appendix 3

Figure  5.S1  The  observed  and  predicted  OTU  richness  for  each  of  the

taxonomic groups. Predictions are from the generalised linear mixed effects

models as described in the manuscipt. The square of Pearson’s correlation

coefficient is included as an indicator of the predictive performance of each

model.  The  dashed  line  indicates  a  1:1  relationship  between  fitted  and

observed values.
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