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Abstract

The 3-dimensional assignment problem, also known as the Solid Assignment Problem

(SAP), is a challenging problem in combinatorial optimisation. While the ordinary or

2-dimensional assignment problem is in the P-class, SAP which is an extension of it, is

NP-hard. SAP is the problem of allocating n jobs to n machines in n factories such that

exactly one job is allocated to one machine in one factory. The objective is to minimise

the total cost of getting these n jobs done. The problem is commonly solved using exact

methods of integer programming such as Branch-and-Bound (B&B). As it is intractable,

only approximate solutions are found in reasonable time for large instances. Here, we

suggest a number of approximate solution approaches, one of them the Diagonals Method

(DM), relies on the Kuhn-Tucker Munkres algorithm, also known as the Hungarian As-

signment Method. The approach was discussed, hybridised, presented and compared

with other heuristic approaches such as the Average Method, the Addition Method, the

Multiplication Method and the Genetic Algorithm. Moreover, a special case of SAP which

involves Monge-type matrices is also considered. We have shown that in this case DM

finds the exact solution efficiently.

We sought to provide illustrations of the models and approaches presented whenever

appropriate. Extensive experimental results are included and discussed. The thesis ends

with a conclusions and some suggestions for further work on the same and related topics.
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Chapter 1

Methods of Optimisation

1.1 Introduction

Optimisation is a mathematical process. It strives to minimise the cost of production or

to maximise the efficiency of production, possibly subject to constraints. Such problems

have typically many different solutions; we aim to find the optimum or near optimum

solutions. Studying the constraints and special cases using the optimisation process will

guide us to know if there is an optimum solution, an unbounded one or there is no

solution i.e. the problem is infeasible. Proper procedures and appropriate methodology

are necessary to find the optimum solution or show that it is unbounded or does not exist.

An optimisation algorithm is the process or the procedure to find an optimum or a

satisfactory solution. If we have a problem with an initial solution in the first stage, it is

possible to improve it in subsequent stages using an improvement procedure. We repeat

the procedure until reaching a satisfactory or optimum solution.

The methods used to find the optimal solution can be classified into many categories

2
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based on the nature of the optimisation problem. Optimisation is categorised according

to the linearity and/or the non-linearity of the objective function and the constraints. For

example optimisation is called quadratic if the objective function is quadratic and the

constraints are linear.

Optimisation is the operation of maximising or minimising an objective function pos-

sibly subject to constraints. The mathematical representation of such a problem is

maximize/minimize f (x), x = (x1, x2, . . . , xn)T
∈ Rn.

Subject to : φ j(x) = 0, ( j = 1, 2, ...,M),

λk(x) ≤ 0, (k = 1, 2, ...,N),

(1.1)

where f (x), φ j(x) and λk(x) are functions of x = (x1, x2, . . . , xn)T
∈ Rn. In (1.1), vectors

x = (x1, x2, . . . , xn)T are the decision variables. f (x) is called the objective function and,

φ j(x) = 0 and λk(x) ≤ 0 are called the equality constraint and the inequality constraint

respectively. The feasible region/search space consists all x points that satisfy all the

constraints, [5, 6].

Decision variables can be continuous, discrete or mixed i.e. both real and integer

points. In continuous problems the decision variables take real values, and in the discrete

ones, they take integer values. If the problem does not have any constraints, it is called

an unconstrained optimisation problem. Otherwise, it is constrained, [5, 6].

Definition 1.1.1 Let a real valued function f be defined over a feasible set S ⊂ Rn. The

solution x∗ is said to be in the neighbourhood of all solutions if there exists an ε > 0 such

that |x − x∗| < ε.
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For continuous optimisation problems, ε is usually a small positive number larger than 0.

For combinatorial problems, for instance, it can be defined as the number of changes in

the permutation, [6].

Definition 1.1.2 Let a real valued function f be defined over a set S ⊂ Rn. A solution x∗ is

said to be a global maximum if f (x∗) ≥ f (x), ∀ x ∈ S ⊂ Rn. If f (x∗) ≤ f (x), ∀ x ∈ S ⊂ Rn, the

solution x∗ is said to be a global minimum, [7].

Definition 1.1.3 Let a real valued function f be defined over a set S ⊂ Rn. A solution x∗ is

said to be a local maximum if f (x∗) ≥ f (x), ∀ x ∈ N(x∗, ε). If f (x∗) ≤ f (x), ∀ x ∈ N(x∗, ε), then

x∗ is said to be a local minimum, where N(x∗, ε) denotes the ε-neighbourhood of x∗, [7].

The difference between AP and SAP is that, AP deals with n×n dimensions while SAP deals

with n × n × n dimensions or indices, the complexity of solving AP in linear polynomial

time is O(n3) as it will be explained in the next section. The Three dimensional assignment

problem is NP-hard problem and can be solved only for limited size problem not more

than n = 26. We applied different approaches to solve SAP with large sizes problems in

less time. For more details on the thee assignment problem, see Burkard, [8].

1.2 The Hungarian Method

The Hungarian method is an algorithm to solve two dimensional assignment problems

(AP). To solve the problem is to assign n number of sources to n destinations allowing

only one source to be assigned to one destination at the same time. The objective is to

calculate the minimum allocation cost. There are n! ways to assign n resources to n tasks,
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that means as n becomes large the problem needs too many trials.

The assignment and the transportation problems both can be solved by using the sim-

plex linear programming technique. The assignment is a special case of the transportation

problem where the supplies and demands are equal to one. Both problems can be solved

by using different algorithms, [9]. The following Theorem 1.2.1 is useful to apply the

Hungarian method [10].

Theorem 1.2.1 If a number added or subtracted from all of the entries of any row or

column of a cost matrix, then the optimal assignment for the resulting cost matrix is also

an optimal assignment for the original matrix.

Algorithm 1 applies Theorem 1.2.1 for a given n × n cost matrix to find an optimal

assignment.

Algorithm 1: The Hungarian Method
1: Subtract the row minimum from each row.
2: Subtract the column minimum from each column.
3: Cover all zeros with minimum number of lines.
4: Optimality Condition

• If the number of lines is equal to n. An optimal assignment of zeros is possible.
Match the zeros to the original matrix and obtain the optimal solution. Stop.

• If the number of lines is less than n. The optimal assignment is not possible. Go
to 5.

5: Select the minimum uncovered number, subtract it from each uncovered row, then
add it to each covered column.

6: Go to 3.
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The following Example 1.2.1 explains how to apply the two assignment Hungarian

method.

Example 1.2.1 A company has four workers available to do work on four separate jobs.

Only one worker can work on any one job. The cost is given in Table 1.1. The objective is

to minimise the total cost of the assignment.

Jobs
Workers J1 J2 J3 J4

W1 10 04 05 09
W2 02 06 07 08
W3 03 05 06 02
W4 04 03 08 07

Table 1.1: Assignment costs for four workers to do four jobs

Apply Algorithm 1, we have the subtraction of minimum number of each row table

and the subtraction of minimum number of each column table.

Jobs
Workers J1 J2 J3 J4

W1 6 0 1 5
W2 0 4 5 6
W3 1 3 4 0
W4 1 0 5 4

Table 1.2: Subtracting the minimum number of each row

Jobs
Workers J1 J2 J3 J4

W1 6 0 0 5
W2 0 4 4 6
W3 1 3 3 0
W4 1 0 4 4

Table 1.3: Subtracting the minimum number of each column

Table 1.5 shows the final optimal costs, the total cost = 12. The first worker will do the
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Jobs
Workers J1 J2 J3 J4

W1 6 0 0 5
W2 0 4 4 6
W3 1 3 3 0
W4 1 0 4 4

Table 1.4: The boxed positions of the workers to do the jobs

Jobs
Workers J1 J2 J3 J4

W1 10 4 5 9
W2 2 6 7 8
W3 3 5 6 2
W4 4 3 8 7

Table 1.5: The optimum allocation costs

third job, the second worker will do the first job, the third worker will do the fourth job

and finally the fourth worker will do the second job. For mor examples and details [11].

1.3 Complexity and NP-Completeness

The time complexity of an algorithm is the number of operations it requires in the worst-

case to solve a problem of a given size. Big−O notation is used to represent the dominant

aspect of the required computation. If the argument of the O − notation is a polynomial

function P, the algorithm is said to be ”efficient”. Otherwise, it is ”inefficient” and the

problem is intractable, [12].

A problem is referred to as tractable if a polynomial-time algorithm can solve it.

Otherwise, it is said to be intractable; in other words, no polynomial-time algorithm can

solve the problem. However, in practice, some exponential time algorithms work well on

instances that have small input length, [12].
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A problem is in the non-deterministic polynomial (NP) class, if the answer to its

decision problem form can be verified in polynomial time. There is another class of

problems called NP-hard. They do not necessarily have to be in NP and they do not

have to be decision problems. A problem is said to be in NP-hard class if it can be solved

in polynomial time and also another problem in NP-complete class can be reduced to it

in polynomial time. A problem is said to be in NP-complete class, if it is in both NP-

hard and NP-class and all other problems in NP-class can be reduced to it in polynomial

time, [12, 13].

The SAP is known as one of the interesting and challenging problems in combinatorial

optimisation. SAP models find applications in optimal allocation, minimal idling time

of a rolling mill, optimal location of production plants in regions, optimum number of

satellites in different directions and orbits for maximisation of the scanned regions. As

described in the facility location context, non-polynomial problem deals with assigning n

type-1 entities and simultaneously n type-2 locations to n destinations. The problem is to

assign all entities to different destinations with the goal of minimising the total cost.

The complexity of the problems are classified based on their difficulties to solve.

The problem is P-class if it is solved in polynomial time. The computation is bounded

by the power of the problem’s size and the number of steps to solve it. All decision

problems are classified as P-class if we can solve them by a deterministic Turing machine

in polynomial time. Examples of P-class problems are shortest path problem, assignment

and transshipment, transportation problems, allocation and scheduling problems.

All decision problems are classified as NP-class if the answer to the instances solution is

YES and have efficiently verifiable proof. The solutions are efficient in terms of the values
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of the decision variables when it reaches the optimum and using a reliable algorithm with

less calculations and in short time. An efficient and acceptable proof of the solution is also

required. Hence NP-class is a decision problem that can be easy to verify but difficult to

find an efficient solution and test them in polynomial time.

Mertens and Stephan, [14] showed that a problem is said to be NP-hard if an algorithm

for solving it can be translated into one to solve any other NP problem. It is much easier

to show that a problem is NP than to show that it is NP-hard. A problem which is both

NP and NP-hard is called an NP-complete problem.

A problem is NP-hard if the algorithm that solve it can be used as a solution approach

to any NP-class problem. A problem P is said to be NP-hard if all variables of NP

polynomially reduce to P. A decision problem is NP-complete (NPC) when it is both in

NP and NP-hard. NP-complete is the hardest problem of NP problems and it can only

be solved by non-deterministic polynomial time. The following Venn diagram 1.1 shows

that when P ⊆ {NP ∩NP-hard}, P is NP-complete.

Decision making for mangers in the industry is important, problems where the answer

required is either YES or NO are called decision problems. The focus is on the relations

that polynomially bounded, the relation R ⊆ {0, 1}×{0, 1} is polynomially bounded if there

exist a polynomial p such that (x, y) ∈ R it holds that |y| ≤ p(|x|).

The polynomial class problem P can be defined as, let (x, y) ∈ R or state that no such

y exists. Hence the class P related to the class of search problems that can be solvable in

polynomial time or we can say that there exists a polynomial-time algorithm that given x

find y such that (x, y) ∈ R or state that no such y exists Goldreich, [15]. Woeginger, [16]

explained in his survey the exact algorithms for NP-hard problems. The exact solution can
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NP NPC

NP − hard

P NPC

Figure 1.1: Venn diagram explains the complexity relationship

be reached in polynomial time P taking in consideration the input data size which relies

on the usage of the computer memory storage or the execution time of the algorithm.

The second type of decision problems is called NP. Sometimes a problem cannot be

solved because of its complexity or the solution cannot be accepted or rejected because the

final outcome is unknown and there is no method to determine if the solution is correct or

incorrect. SAP is NP-hard problem, the difficulty of solving it increases as the dimensional

size or indices n of the problem increases, Karp, [17].

The minimisation problem of the special cases of geometric versions of the 3-dimensional

assignment problem under general norms was also proven to be NP-hard, while the max-

imisation problem was solvable in a polynomial time, Custic et al. [18]. The third type

of decision problems is called NP-complete, a polynomially bounded relation is defined

as NP-complete if it is in NP-hard and every set in NP-hard is reducible to it. In the same

way as testing the NP problems it is required at least one verifying proof to be accepted
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when the answer is YES.

1.4 Solution Approaches to Optimisation Problems

In this section, exact methods, approximation algorithms and meta-heuristic methods will

be reviewed.

1.4.1 Exact Methods

Exact methods are used to find the optimum solution for a given combinatorial problem.

The drawback of these methods is that, as the size of the instance increases, the total

computation time increases excessively. Nevertheless, instances of small size can be

solved efficiently by these methods. Some of them will be referred to in the following

methods. Branch-and-Bound (B&B) and Dynamic Programming (DP) [19, 20] are two

of the classical methods that give exact optimum solutions by partially searching the

feasible solution set. In B&B, a branch is a subset of solutions of the partitioned problem,

and the bound is the lower bound computed that helps to find the optimum. The B&B

algorithmic framework has been used successfully to find exact solutions for a wide array

of optimization problems. [6,21]. B&B uses a tree search strategy to implicitly enumerate

all possible solutions to a given problem, applying pruning rules to eliminate regions

of the search space that cannot lead to a better solution. There are three algorithmic

components in B&B that can be specified. These components are the search strategy,

the branching strategy, and the pruning rules. As DP solves sub problems, it keeps the

solutions as a future reference, i.e if it finds the same sub problem uses the result that was
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stored. In order to find the optimum value it starts from the bottom sub problem and goes

to the main problem, which also guarantees that the sub problems are solved, [6, 22].

The cutting-plane method is another rigorous approach for combinatorial problems.

In this method, the feasible set is renewed by adding linear inequalities at each iteration.

These inequalities are referred as cuts. This method is inefficient, and has low convergence

rate, [23, 24].

Although the cutting-plane method is said to be inefficient itself, it was combined with

B&B; the Branch and Cut Algorithm is the result, [23, 24].

1.4.2 Approximation Algorithms

Approximation algorithms for combinatorial problems do not necessarily provide an op-

timal solution. However, they approximate the optimum solution to within a guaranteed

error value α, [25, 26].

Greedy and local search algorithms are two standard approximation algorithms. In

the greedy algorithm each step guarantees that the solution provided is locally optimal.

The local search algorithm, on the other hand, starts with an initial solution and iteratively

improves it by making changes to find a better local optimum solution, [27].

1.4.3 Meta-heuristics

Most optimisation problems, including non-trivial 3D assignment problems, are NP-

hard. Thus, exact algorithms are inefficient and costly, especially when the problem size

is large. Instead of finding the optimum solution, meta-heuristics generally find good

approximations to it in acceptable computational times. For this, they are widely used
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in the literature in the last decade, or so, [28]. They are, in general, a combination of the

random search and the local search, [26]. Some well-known meta-heuristic methods and

the ones developed recently will be reviewed in the following.

Definition 1.4.1 Heuristic

The term heuristic is used in mathematics for algorithms to solve a problem which

is hard to find an exact solution. Select the best solution among all the outcomes of the

heuristic algorithm used.

The presumed best solution, if it is found will need to be tested and approved in order

to be accepted. The heuristic algorithms usually find a solution near to the optimal, easy to

implement and fast in time. Rafael and Reinelt [29] explained different heuristic methods.

Definition 1.4.2 Meta-heuristic

It is a high-level problem-independent algorithmic framework that provides a set of

guidelines or strategies to develop heuristic algorithms [30].

1.4.4 Review of Meta-heuristic Methods

As said earlier, combinatorial or discrete optimisation problems are often computationally

demanding. They more often than not belong to the so-called NP-hard class of problems,

[12], [31]. As such, it is not reasonable to expect exact solutions to perform well when

solving large and practical instances. Thus, approximation methods, heuristics and meta-

heuristics, are almost the norm when it comes to solving them, [6, 32, 33].
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1.4.5 Simulated Annealing

Simulated Annealing (SA) was introduced by Kirkpatrick et al., [1]. It is inspired by the

annealing process of metals which involves slowing down heated metal. It is important to

choose the appropriate initial temperature and the cooling down rate to avoid imperfec-

tions. Here, the temperature is denoted by t, kB is the Boltzmann’s constant, [28], and the

current candidate solution cold is replaced by cnew, if the newly generated solution is better.

But, if cnew is worse than the current solution, then it may be accepted with probability P

given by the below formula. This process is implemented for global optimisation. The

cooling schedule has nothing to do with the constraints of the problem, for instance. It

is there to regulate the convergence of the process to a cooled state which then points to

local optima. If the cooling is too fast then convergence will not be to good local optima.

If it is slow then it has more chances of finding the global optimum. The strength of SA is

in its ability to get out of local optima, i.e. unstuck!

P(t, cnew, cold) = e
−(value(cnew)−value(cold))

kB t , t ≥ 0, (1.2)

to replace the current solution cold. This is what allows SA to escape from the local optima.

The pseudo-code of SA is given as in Algorithm 2 .

1.4.6 Genetic Algorithm

The Genetic Algorithm (GA) was developed by Holland, [2]. It is based on the idea of

natural selection. The algorithm works with three operators; crossover, mutation and

reproduction. Basics of GA are discussed below.
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Algorithm 2: Simulated Annealing, [1]
t← initially a high temperature;
cold ← some initial guess;
cbest ← cold;
Repeat

cnew ← update (cold);
If value(cnew)< value(cold) or rand[0, 1] < P Then

cold ← cnew;
Reduce the temperature t;

End If
If value(cold)¡value(cbest) Then

cbest ← cold;
End If

Until Best solution is found, or termination criterion is reached, or t ≤ 0;
Return Best solution cbest as the candidate optimum solution.

Initial Population A predetermined number of individuals is randomly generated to form

an initial population. The basic GA starts with this population.

Fitness Function This measure is essential for the implementation of GA. It allows to

randomise individual solutions in the population. It is often the objective function of the

optimisation problem.

Selection of Parents The main idea of selection is choosing individuals from the popula-

tion to be parents to new individuals. The latter are expected to be better than the parents.

There are different selection methods such as the Roulette Wheel and Tournament Selec-

tion, [34].

Genetic Operators: There are three such operators.

Crossover Operator The crossover operator selects a random point which shows a position

on the individual. Then, parts of two selected individuals are exchanged to generate two

new individual. This procedure is called a single-point crossover. Another type is called

two-point crossover. In this variant, two random positions are selected and parts of
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parents are exchanged, [34].

Mutation Operator A predetermined number of individuals are mutated. This is done by

changing/flipping some of the entries of an individual. This operator helps exploration in

GA.

Reproduction Operator This copies good individuals into the new population as they are.

Stopping Criteria The algorithm stops when the number of generations reaches a prede-

termined maximum number of generations. Another commonly used stopping criterion

is the maximum number of generations without improvement in the current best, [2, 26].

The pseudo-code of the algorithm is as in Algorithm 3.

Algorithm 3: Genetic Algorithm, [2]
f ← Objective function
Generate an initial random population of individuals (Parents),

Repeat
Select the number of individuals based on the rate,
Generate new offspring using crossover (with probability pc)
or mutation (with probability pm),

Evaluate the fitness of the children,
Update the population,
Update the generation counter,

Until (The stopping criteria is met)
Return Current best solution as candidate optimum.

1.4.7 Discrete Particle Swarm Optimisation

Discrete Particle Swarm Optimisation (DPSO) was introduced by Kennedy and Eberhart,

[35]. It is based on flocking birds, fish schooling and any animals when moving as a group.

Each particle in a swarm represents a solution. Each particle moves in a multidimensional

search space for exploration and exploitation. In Discrete PSO or DPSO, and binary DPSO,

in particular, [4], each particle is considered as a position in an N-dimensional space and
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each entry of a particle position can take value 1 or 0 which mean ”included” and ”not

included”, respectively. Each particle also has a velocity vector attached to it, [3]. The

velocity vector is updated at each iteration using two pieces of information. One is the

current best, pbest, that a particle achieved and the other is the best kept in the memory

from the beginning of the algorithm, nbest. The equations below are used to update the

velocity and position vectors [3]:

vi(t + 1) = vi(t) + ρ1C1(pbesti − Xi(t)) + ρ2C2(nbesti − Xi(t)). (1.3)

where vi denotes the velocity of the ith particle, and t denotes time. ρ1 and ρ2 are random

values between [0, 1] and C1 and C2 are learning factors.

Xi(t + 1) =


1 if sig(vi(t + 1)) > ri

0 otherwise
(1.4)

where sig(vi(t + 1)) is the sigmoid function,

sig(vi(t + 1)) =
1

1 + exp(−vi(t + 1))
. (1.5)

The pseudo-code of DPSO is given as Algorithm 4:

1.5 Linear, Non-Linear and Integer Programming Problem

A general optimisation problem is to select n decision variables x1, ..., xn from a given fea-

sible region in such a way to optimise (minimise or maximise) a given objective function,
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Algorithm 4: Discrete Particle Swarm Optimisation, [3, 4]
Initialize with a randomly generated N − dimensional swarm with P particles
Repeat

For all swarm i
If f (Xi) > f (pbesti) Then pbesti = Xi; End If
If f (pbesti) > f (nbesti) Then nbesti = pbesti; End If

End For
For all swarm i

Update the velocity and the position vectors;
End For

Until The stopping criteria is reached.
Return Best solution as candidate optimum

Max or Min Z = f (x1, x2, ..., xn), (1.6)

The optimisation problem can be with constraints or without constraints. The general

mathematical formulation for the linear programming problem is,

Min or Max Z = c1x1 + c2x2 + ... + cnxn. (1.7)

Subject to: a11x1 + a12x2 + ... + a1nxn (≤=≥) b1 (1.8)

a21x1 + a22x2 + ... + a2nxn (≤=≥) b2 (1.9)

...

am1x1 + am2x2 + ... + amnxn (≤=≥) bm (1.10)

x1, x2, ..., xn ≥ 0, (1.11)

where x1, x2, ..., xn are the decision variables.

c j, ( j = 1, 2, ...,n) is the cost or the profit to the jth variable.
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bi, (i = 1, 2, ...,m) is the requirement of the ith constraint.

x1, x2, ..., xn ≥ 0 is the set of non-negative restriction. The linear programming problem

can be written in canonical form as follows;

Max Z = cTx (1.12)

Subject to: Ax ≤ b (1.13)

x ≥ 0, (1.14)

where x is an n-dimensional column vector of decision variables, cT is an n-dimensional

row cost or profit vector and b is an m-dimensional column requirement vector, A is an

m × n matrix of coefficients and T is the transpose sign. The strict condition is that each

component of x either zero or non-negative value.

The non-linear programming problem is similar to the linear programming. Both

are formulated of objective function, constraint equations and variables bound. The

difference is that the non-linear programming problems are included in at least one non-

linear function either in the objective or in one or in all the constraint equations.

The Integer Programming Problem (IPP) is a branch of mathematical programming

and used for many discrete problems. In real life, the variables of many problems are

not always continuous. They are restricted in discrete problem to be integers. An integer

programming is linear if some or all the constraint variables are integers and both the

objective function and the constraints are linear. IPP generally are much more complicated

than linear programming problems, Bosch, [36].

Definition 1.5.1 Uni-modular Matrix
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A square integer matrix A is called uni-modular if | det A|= 1.

Definition 1.5.2 Totally Uni-modular Matrix

An integer matrix A ∈ Rm×n is totally uni-modular if every square non-singular sub-

matrix of A is uni-modular or the determinant of each square sub matrix of A is 0,−1, or

+1.

Theorem 1.5.1 If an integer matrix A ∈ Rm×n is totally uni-modular, then every vertex

solution of Ax ≥ b is integral.

Theorem 1.5.2 If an integer matrix A ∈ Rm×n is totally uni-modular, then both the primary

and dual are integer programming problems.

From the definitions 1.5.1 and 1.5.2 and the theorems 1.5.1 and 1.5.2 it is clear that there

is a relation between the totally uni-modular and the solution of the integer programming

problem. If we can prove that the problem is totally uni-modular then it has a solution.

For more information about uni-modular matrices, [37]. Integer programming problems

can be classified into three types as follows;

1. Pure Integer Programming.

2. Mixed Integer Programming.

3. Binary or {0, 1} Integer Programming.

The general mathematical formulation for Pure and mixed integer programming can
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be written as follows,

Max Z =

n∑
j=1

c jx j (1.15)

Subject to:
n∑

j=1

ai jx j ≤ bi (i = 1, 2, ...,m) (1.16)

x j ≥ 0 ( j = 1, 2, ...,n) (1.17)

x j integer for some or all ( j = 1, 2, ...,n). (1.18)

The general mathematical formulation for the {0, 1} integer programming is written as

follows;

Max Z =

n∑
j=1

c jx j (1.19)

Subject to:
n∑

j=1

ai jx j ≤ bi (i = 1, 2, ...,m) (1.20)

x j ∈ {0, 1} for all ( j = 1, 2, ...,n). (1.21)

For more details and examples about integer programming see, [9, 38].

1.6 Thesis Aims and Objectives

The aims and objectives of this thesis are to investigate SAP in terms of formulation,

solution approaches and implementation for large scale instances. They also include

efficiency, reliability and robustness of solutions. Note that solving SAP approximately

is often the only reasonable expectation since large instance as intractable. In fact, exact

solutions can only expected when dealing with low dimensional instances of SAP, i.e. n ≤
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26. Furthermore, the solution to these instances are still costly in terms of computational

time.

There are various methods to find an optimum or near-optimum solution for different

types of SAP problems based on a number of ideas and philosophies. Broadly speaking,

they can be exact or approximate, heuristic, meta-heuristic and ad hoc. The issue is to

choose the right approach for a given instance. And, as said earlier, because of the NP-

Complete nature of SAP, exact approaches are really of limited use. That is why, in this

thesis, the emphasis is on approximate, heuristic and hybrid methods. Some of these

already exist and we use them for comparison purposes and or in hybrid meta-heuristic.

Others, however, are new and introduced for the first time here.

One of the methods introduced here, namely the Diagonals Method (DM), as well as

some other heuristic approaches are applied by first converting the problem from three

dimensional into the more tractable well know 2-dimensional version. This then allows us

to apply and take advantage of the well understood Hungarian method. The Hungarian

method is known to solve the problem in polynomial time with complexity O(n3).

The different heuristic approaches used to solve SAP in this thesis are Average Cost

Method (ACM), the Addition Method (AM), the Multiplication Method (MM) and the

Genetic Algorithm (GA). The aim is to understand why the methods work at all, how

reliable they are, how robust, accurate and efficient compared to other approaches. The

heuristic approaches DM, AM and MM are fast; for example, the total average execution

time for the DM is 0.0462s while it is 436.7797s for the same problem using Branch-and-

Bound; please see chapter 3, Table 3.5, for explanation. An important aspect of our work

is that we can solve instances of the problem with much larger size going up to n = 1000;
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a feasible solution is guaranteed by all these methods. Of course, their quality may well

be the issue in some cases.

Although the basic feasible solution is not always close to the optimum, there is still

a benefit from the speed and efficiency of the algorithm to solve the problem and get

approximate solution for larger size problem.

By using different methodology, it helps to understand the complexity of the problem

and why it is difficult to solve (NP-hard or NP-complete).Using different methodology

help identify and compare the advantage and disadvantage of each method

Tie case may happen in any methodology. A tie case means that there are several

different optimum solutions in stages. The results of the tie case will be misleading because

there is no specific guide on selection which can effect the final optimum solution. The

tie cases happen because of the nature of the numbers (integers, real , normal distribution

or extreme). This phenomena was studied and explained with examples to show the

effectiveness of tie when there are many choices to select the same cost of allocation and

how it will divert the optimum solution.

Two methods have been applied using the Genetic Algorithm (GA). Both methods

have two stages to obtain the fitness function. The first method generates a random

permuted number in both stages. The second method generates a random permuted

number function in the first stage but in the second stage the Hungarian Method has

been applied. Crossover, Mutation, Elitism and Roulette wheel selection were used to

generate the population using chromosomes and genes. Examples and have been given

and comparisons to show the difference between the two methods.

Finally we discussed SAP with Monge Matrices. Two theorems and a lemma with
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proof are established related to Monge sequence. We explained the problem by using

examples and algorithms. Some useful ideas and observations also have been discussed.

1.7 Thesis Organisation

This thesis is organised as follows. In Chapter 1, we have explained some useful mathe-

matical information about optimisation and combinatorial problems such as the integer

programming problem. We also discussed the exact and approximation methods.

In Chapter 2, we have reviewed the literature and the related topics to our study. We

have explained the two dimensional assignment and its algorithm. We have discussed

both types of the three dimensional assignment problems, the first type is SAP and the

second type is the planer problem.

Chapters 3, 4, 5 and 6 contribute the novel work of the thesis. In Chapter 3, We initiate

the idea of the Diagonals Method (DM). It is a new approach to solve SAP and to find an

optimum or near optimum solution.

Chapter 4, provides three further methods. The Average Cost Method (ACM) dealt

with the SAP as in the DM but instead of summing the diagonals of the factories, the

method is based on the relation between the amount of cost of every individual allocated

worker and the average cost of the non-allocated workers. The Addition Method (AM)

and the Multiplication Method (MM) are two methods discussed in Chapter 4

The Genetic Algorithm is discussed in Chapter 5. We have shown two methods to

solve SAP. Permute function is used to randomly generate the selection of factories in the

fitness function.



1.8. Summary 25

Chapter 6, provides Monge Sequence Method and explain it in detail. We have ex-

plained some aspects of the theoretical part of the problem and consider an algorithm

constructed to solve SAP.

Finally, Chapter 7 presents the conclusions of this research, and avenues of future work

that opens up new research and further exploration.

1.8 Summary

In this chapter we have briefly described the background to optimisation and reviewed

the most common approaches to its solution. These can be exact, approximate of

heuristic/meta-heuristic. The two dimensional assignment problem was explained with

the Hungarian algorithm and a simple example is given and solved in section 1.2. The

aims and objective of the thesis were discussed in Section 1.5. We have also presented the

organisation of the thesis.



Chapter 2

Literature Review and Mathematical

Background

2.1 The Two Dimensional Assignment Problem

In Chapter 1 section 1.2 we discussed briefly the two dimensional assignment problem

and the Hungarian algorithm. The aim of this section is to describe the two dimensional

assignment (AP) or the linear sum assignment problem (LSAP) and review the literature

on the problem and the main approaches to solve it.

Definition 2.1.1 The Assignment Problem

Suppose there are n tasks, the matrix C = {cij} is the allocation costs for all tasks i to

agents j where (i and j = 1, 2, ...,n). The requirements are to assign all n tasks to all n

agents such that only one task in each row is assigned to only one agent in each column.

The objective function is to minimise the allocation costs, [39].

26
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The mathematical formulation of the assignment problem can be expressed as follows.

Let there are n tasks to be assigned to n agents such that one task is assigned to only one

agent, let i and j = 1, 2, ...,n, represent tasks and agents receptively. Let C = {ci j} be the

cost of performing ith task by jth agent. Let X = {xi j} be the number of the ith task assigned

to the jth agent.

xi j =


1 if task i is assigned to agent j

0 otherwise

(2.1)

Total cost = c11x11 + c12x12 + ... + cnnxnn,

The mathematical formulation for the AP can be written as follows,

Min Z =
∑n

i=1
∑n

j=1 ci jxi j, (2.2)

Subject to:
∑n

j=1 xi j = 1, ∀i ∈ I. (2.3)∑n
i=1 xi j = 1, ∀ j ∈ J. (2.4)

xi j ∈ {0, 1}, (2.5)

where I and J are two disjoint sets with |I| = |J| = n.

Definition 2.1.2 The Linear Sum Assignment Problem

Burkard, [40] defined LSAP through a graph theory model as follows; consider a

bipartite graph G = (U,V; E) having a vertex of U for each row, V for each column and

a cost C = {cij} associated with Ei,j where (i and j = 1, 2, ...,n). The problem is then to

determine a minimum cost perfect matching in G (weighted bipartite problem: find a

subset of edges such that each vertex belongs to exactly one edge and the sum of the costs
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of these edges is a minimum).

The two dimensional assignment problem in general can be solved by linear program-

ming method. The transportation problem is a special case of linear programming and

the assignment problem is a special case of the transportation problem where the supplies

and demands are equal to one. Both the assignment and transportation problem can be

solved by the simplex method, [9].

Kuhn, [41], Tucker, [39] and Munkres, [42] studied and developed an algorithm known

as the Hungarian method to solve the two dimensional assignment problem, the objective

was to do all n allocations at minimum cost.

The generalised assignment problem (GAP) is concerned with assigning n jobs to n

machines such that each job is assigned to exactly one machine, while the total resource

capacity is not exceeded. The objective function of the GAP is to minimise the total

allocation cost. Fisher, [43] showed this problem to be NP-hard.

Nauss, [44] studied the elastic generalised assignment problem (EGAP). The version of

the GAP will be affected by the cost and it will be violated if additional cost is added. Also

he studied another version which allowed assessing the cost if the job was not completed

in time because of not using the resources in an optimum way as required.

Martello and Toth, [45] considered the minimum-maximum version of the generalised

assignment problem. Krumke and Thielen, [46] considered a variant of the generalised

assignment problem; they studied in detail the complexity of different versions of the

problem.

Alni, [47] presented two exact algorithms for the general assignment problem (GAP)

using the Hungarian method which require O(n3) time and O(n) space. She also presented
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an O(n3) algorithm for solving a special case of the GAP.

2.2 The Three Dimensional Assignment Problem

The study of AP and GAP extended to the three dimensional assignment problem or SAP.

The difference between AP and SAP is that AP deals with n × n dimensional problems

while SAP deals with n × n × n dimensional problems. There are two types of the three

dimensional assignment problems. The first type is called the axial three dimensional

assignment problem and the second is called the planar three dimensional assignment

problem.

From a combinatorial point of view, one of the most important properties of SAP or

multidimensional assignment problems is that they generally fall in the category of NP-

hard problems, Garey and Johnson, [48] while AP can be solved in a polynomial time,

Kuhn, [41].

The applications of SAP are common in the real world, as in scheduling workers to

jobs in factories, vehicle routing, supply chain management and for many other problems.

Many methods and algorithms have been designed in the last decades such as B&B,

heuristics and meta-heuristics. Pierskalla, [49] proposed the method of integer program-

ming to solve SAP using B&B. Balas, [50] described B&B algorithm for solving the axial

index assignment problem. Instead of using linear programming relaxation, their pro-

cedure was to find good lower bounds in their Lagrangian relaxation algorithm which

incorporate the facet of the SAP polytopes. They used a modified sub-gradient optimisa-

tion to solve the Lagrangian relaxation. The primal dual heuristic was applied to obtain
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an improved approximate solution.

Crama and Spieksma, [51] considered a distance defined on a set of points used

two heuristic methods to solve the three-dimensional assignment problem and to find

a minimum-weight collection of N triangles covering each point exactly once. They

considered the special cases of SAP where a distance (verifying the triangle inequalities)

is defined on the set of points. They presumed that (TA) is the cost of the sum of the

lengths of triangle sides and (SA) is the length of its shortest sides. They proved that

(TA) and (SA) were both NP-hard. They represented heuristics which always find a

feasible solution. The algorithms were different from B&B and the heuristic reduction

method. Computational experiments indicated that the performance of these heuristics

was excellent on randomly generated instances of (TA) and (SA).

Gwan and Qi, [52] discussed the inequalities for the three dimensional assignment

polytopes and they identified two new classes of facets in the work of Balas and Saltzman,

[53] and Balas and Qi, [54]. The polytopes P of order n of SAP is mathematically defined

as follows.

Consider three disjoint n-sets and the collection of all weighted triplets with one ele-

ment in each n-set. The three-index assignment (or three-dimensional matching) problem

asks for a minimum-weight set of triplets that partitions the union of the three n-sets. It
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can be stated as {0, 1} programming problem.

Min Σ{ci jkxi jk : i ∈ I, j ∈ J and k ∈ K} (2.6)

Subject to: Σ{xi jk : j ∈ J, k ∈ K, ∀i ∈ I} (2.7)

Σ{xi jk : i ∈ I, k ∈ K, ∀ j ∈ J} (2.8)

Σ{xi jk : i ∈ I, j ∈ J, ∀k ∈ K} (2.9)

xi jk ∈ {0, 1},∀ i, j and k, (2.10)

where I, J and K are three disjoint sets with |I| = |J| = |K| = n. let A be the coefficient matrix

for the constraints 2.7 - 2.10. Then R = I ∪ J ∪ K is the row index set of A. Let S be the

column index set of A. Let GA be the intersection graph of A. Then S is the node set of

GA. Let P = {x ∈ Rn3 : Ax = e, x ≥ 0}. where e = (1, 1, ..., 1)T
∈ Rn3

,

then Pl = {x ∈ conv{0, 1}n3 : x ∈ P} is the three index polytopes of order n. Balas and

Saltzman suggested two new facets called bull facet and comb facet [53].

Burkard, [55] studied SAP with decomposable cost coefficients. In their paper they

investigated a special case of SAP in which they can decompose the cost coefficients di jk into

the product of three values ai, b j and ck. The maximization problem was proved to be solved

in polynomial time by sorting the cost coefficients sequences ai, b j and ck in increasing

order. They used Hardy, [56] proposition about the n elements permutations sequences

and other lemmas and theorems to prove that minimisation problem of SAP remains

NP-hard. They had considered some special cases which were solved in polynomial time.

Cao, [57] proposed an efficient implementation of the Munkres algorithm for the

assignment problem using MATLAB. We have used this code as a function to find the
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optimum allocation for n × n dimensional factories.

Hahn, [58] studied the exact solution of emerging quadratic assignment problem

(EQAP) and suggested a taxonomy that provided a framework to help using and ex-

tending the problem.

Anuradha and Pandian, [49] proposed a reduction method which is not based on

the Hungarian assignment for finding an optimal or near optimal solution to SAP. We

compared the result of the example they had used with our DM algorithm.

Pandian and Kavitha, [59] studied the sensitivity analysis of the fuzzy solid assignment

problem; they explained different methods of solving type II sensitivity analysis. It was

demonstrated the parametric method provides a better type II sensitivity range than the

labelling algorithm.

Easterfield, [60] presented an algorithm for AP. It was a non-polynomial O(2nn2) time

approach, based on iterated application of a particular class of admissible transformations.

Kuhn, [41] and Tucker, [39] presented the famous Hungarian method, the Primal-Dual

(PD) algorithm was applied and it was the first polynomial-time method to solve AP. The

original formulation solves the problem in O(n4) time. Munkres, [42] used a different and

improved algorithm to solve the AP.

Edmonds and Karp, [61] showed that shortest path computations on the reduced costs

produce an O(n3) time algorithm for the AP.

The first O(n3) algorithm for AP had been introduces by Dinic and Kronrod, [62].

But the best time complexity for a Hungarian algorithm is O(n3) proposed by Lawler in

1976 [10].
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2.3 Types of the Solid Assignment Problems

In this section we introduce two types of SAP, the first is the axial 3-index assignment

problem and the second is called the planar 3-index assignment problem. The SAP is

famous and well known problem in combinatorial optimisation field of study and has been

investigated thoroughly in the literature, [63]. SAP was introduced by Pierskalla, [64] used

B&B algorithm to solve the problem. Pierskalla explained that the extended dimension

could be space or time [49].

2.3.1 The 3-Index Assignment Problem

The first type of SAP or the 3-index assignment problem can be defined as follows.

Definition 2.3.1 The First Type of the SAP

Given three disjoint n-sets I, J,K and a weight function ω : I × J × K→ R+, it asks for a

collection of triples M ⊆ I × J × K such that each element of each set appears is exactly in

one triple, and the function ω is minimized.

The first type of SAP mathematical formulation is as follows.

Minimise Z =

n∑
i=1

n∑
j=1

n∑
k=1

ωi jkxi jk. (2.11)

Subject to:
n∑

j=1

n∑
k=1

xi jk = 1, ∀i ∈ I, (2.12)

n∑
i=1

n∑
k=1

xi jk = 1, ∀ j ∈ J, (2.13)

n∑
i=1

n∑
j=1

xi jk = 1, ∀k ∈ K, (2.14)

xi jk ∈ {0, 1}, ∀ i ∈ I, j ∈ J and k ∈ K. (2.15)
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Let An denote the {0, 1} matrix corresponding to the constraints 2.12 - 2.15, which has n3

columns and 3n rows. Notice that hereafter n denotes the cardinality of each set being

”assigned”, hence the number of variables is n3. For a survey on the 3-index assignment

problem and more details, see Spieksma, [63]. Karp, [17] showed that the SAP is NP-hard.

Spieksma, [65] defined the geometric three dimensional assignment problems as follows.

Definition 2.3.2 The Geometric 3-Dimensional Assignment Problem

Given three sets A,B and C, each set with n × n elements, and a cost function

c : A×B×C→ R+. The goal is to partition A∪B∪C into n three triples ti = (a j(i), br(i), cl(i))

such that to minimise
∑n

i=1 c(ti).

2.3.2 The Planar 3-Assignment Problem

The second type is the Planar 3-Assignment Problem (P3AP) or the Planar 3-Index As-

signment Problem (P3IAP). The objective of the P3AP is to find the minimum assignment

cost among the elements of three distinct sets demanding that every pair of elements, each

representing a different set, appears in the same solution exactly once, in other words the

P3AP is defined as follows.

Definition 2.3.3 The Planar 3-Assignment Problem

Given three n-sets A1, A2 and A3. For each triple in A1 ×A2 ×A3 there is a real weight

number ωi jk known for all i ∈ I, j ∈ J and k ∈ K. The problem is to find n2 triples such that

each pair of elements from (A1 ×A2)∪ (A1 ×A3)∪ (A2 ×A3) is in exactly one triple. Hence

the required output in the P3AP is to find n2 triples containing each pair of indices exactly

once. The optimum solution is either to maximise or to minimise the sum of the weights
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ωi jk.

The planar formulation of P3AP as an integer linear program is as follows. Given real

weights ωi jk find a vector x ∈ Rn3 which satisfies

Minimise Z =

n∑
i=1

n∑
j=1

n∑
k=1

ωi jk xi jk. (2.16)

Subject to:
n∑

i=1

xi jk = 1, ∀ j, k ∈ I (2.17)

n∑
j=1

xi jk = 1, ∀ i, k ∈ J (2.18)

n∑
k=1

xi jk = 1, ∀ i, j ∈ K (2.19)

xi jk ∈ {0, 1}, ∀ i ∈ I, j ∈ J and k ∈ K (2.20)

Frieze, [66] proved that P3AP is NP-complete even when ωi jk ∈ {0, 1}.

2.4 The Characteristics of the Assignment Problems

Until now, the assignment problems have been dealt with independently. A lot of attempts

were given to developing a unified approach, and different types of researches were done

in the last decades. The individual problems of the assignment can be divided into four

by the following characteristics.

1. Dimensionality:

The dimension of the objective function; as it is known, the assignment problems

can be two, three or multidimensional problems.
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2. Degree:

The objective function varies from linear, quadratic, cubic, bi-quadratic and higher

degrees.

3. Mapping:

In some problems, the allocations are one-to-one such as two dimensional assign-

ment problems while they are many-to-one in the generalised assignment problem.

4. Linearisation:

Linearisation and relaxation options which depend on the level of reformulation

required.

2.5 Related Mathematical Methods

There are many methods to find the exact or approximate solution of SAP. We will explain

some of these methods and the differences between them. We will also discuss the

characteristic and the complexity of each one. The methods are divided into three parts

as follows.

1- Branch-and-Bound (B&B).

2- Primal-Dual Implicit Enumeration.

3- Special Cases.



2.5. Related Mathematical Methods 37

2.5.1 Branch-and-Bound

The Branch-and-Bound (B&B) technique is a common algorithm to solve the integer

programming problems. The basic concept is to branch or divide the problem into sub-

problems and conquer (fathom) the unrequired branch in each stage. By partitioning the

feasible solutions, it is dividing or branching the problem into two sets. Bounding the

good or the best solution in the subset, conquered (fathomed) the worst or the unrequired

set. Continue this process until the optimum solution is reached. The classical B&B is

able to solve both discrete and continuous problems, it was first introduced by Land and

Doig, [67].

The algorithm application varies from problem to another depending on the specificity

of each problem. B&B uses the basic tree enumeration method. It first solves a linear

programming problem by relaxing the integral conditions; if the resultant solution is an

integer, then the problem is solved; otherwise a tree search proceeds.

The disadvantage of the B&B technique, is that is much slower than other approximate

methods and it often leads to exponential time but if it is used in a proper way and applied

carefully it can run fast and reach an optimum solution in a reasonable time.

Poole, [68] defined the B&B search as to maintain the lowest-cost for a problem. The

objective and the cost can be reached through a certain path of a tree.

Suppose that ZLP and ZRIPP are the objective functions of the linear programming and

the relaxed integer programming problem respectively, then the concepts of bound on the

optimal integer value are:

• For maximisation problem, the optimum relaxed objective value function is an upper
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bound on the integer value.

ZLP ≥ ZRIPP, an upper bound.

• For minimisation problem, the optimal relaxed objective value function is a lower

bound on the optimal integer value.

ZLP ≤ ZRIPP, a lower bound.

• The optimal solution to a LP relaxation of an RIPP gives us a bound on the optimal

RIPP functions value.

Suppose this cost is bound. If the search encounters a branch or a path p such that cost

(p) + h(p) ≥ bound, path p can be pruned. If a non-pruned path to a goal is found, it must

be better than the previous best path. This new solution is remembered and the bound is

set to the cost of this new solution. Then the search continues until you reach the best. The

following B&B Algorithm 5 explains how to solve an integer programming relaxation.

Algorithm 5: Branch-and-Bound
1: Relax the integer programming problem (RIPP).
2: Divide a problem into subproblems.
3: IF RIPP has no feasible solution, then there is no solution. END IF
4: IF RIPP has an integer feasible solution,

compare the feasible solution with the best solution known (the incumbent).
5: IF RIPP has a solution that is worse than the incumbent,

change the incumbent to be the best solution.
6: IF RIPP has an optimal solution but not all integer are better than the incumbent,

divide this subproblem further.
7: Go to 2.
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2.5.2 The Primal-Dual Implicit Enumeration Method

Balas, [69] used the method of implicit enumeration which is often used to solve integer

programming problems. It is based on the fact that each variable must be equal to 0 or 1

to simplify both the branching and bounding components.

The tree technique used in implicit enumeration is similar to B&B and the branching

variable must be either 0 or 1. Suppose a {0, 1} problem has n variables then it has exactly

2n possible solutions and this makes it difficult to examine all the possibilities especially

if n is large. Using the tree search will help to examine some of the feasible solutions and

exclude the infeasible or unrequired solutions.

2.5.3 Special Cases

Crama and Spieksma, [51] considered that the SAP where the cost coefficients fulfil some

special triangle inequalities. This makes the problem easier to approximate but it still

remains NP-hard.

Burkard, [55] considered that SAP case with decomposable cost coefficients ωi jk =

aib jck. So given three n-elements sequences ai, bi and ci of non-negative numbers, there

are two permutations φ and ψ such that
∑n

i=1 aibφ(i)cψ(i) reaches its minimum (maximum)
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respectively. The formulation of the SAP will be as follows.

Min ( Max ) Z =

n∑
i=1

n∑
j=1

n∑
k=1

aib jckxi jk. (2.21)

Subject to:
n∑

i=1

n∑
j=1

xi jk = 1, ∀k = 1, ...,n, (2.22)

n∑
i=1

n∑
k=1

xi jk = 1,∀ j = 1, ...,n, (2.23)

n∑
j=1

n∑
k=1

xi jk = 1,∀i = 1, ...,n, (2.24)

xi jk ∈ {0, 1}. (2.25)

The change of the decomposable cost coefficient at the objective function ωi jk = aib jck will

affect the computational complexity.

2.6 Summary

In this chapter we went through the literature and the mathematical background related

to the linear assignment and the three dimensional assignment problems. Many methods

and algorithms have been designed in the last decades such as B&B method, heuristics

and meta-heuristics.

We have discussed the general linear assignment problem and two types of the SAP, the

first SAP is the 3-index assignment problem and the second is the planar 3-dimensional as-

signment problem. We also listed four characteristics of the SAP, the related mathematical

methods and mentioned some special cases to solve the SAP.



Chapter 3

The Diagonals Method

3.1 Introduction

The Diagonals Method (DM) is a new heuristic for solving SAP. The aim is to find an

optimal or near optimal solution for the three dimensional assignment problems. In the

last several decades there were many attempts of solving this type of assignment problem.

The SAP can be solved exactly for small size instances but it becomes more difficult

when the size of the problem is larger. Balas and Saltzman, [50] used the Lagrange

relaxation method to find the exact solution for the first type of SAP, the axial three

dimensional problem up to size n = 26. There were many attempts to solve the problems

in special cases, [55]. Pierskalla used the B&B algorithm tree technique to solve the

problem. The SAP was mentioned by Pierskalla in 1967, [64].

The DM is a fast algorithm for larger problems. Like all heuristics, we guarantee a

feasible solution, but we sacrifice optimality for solution efficiency. We have tested the

problem for n size up to 1000 and we obtain feasible solutions in few seconds. Obtain-

41
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ing good solution, fast is important compared to obtaining exact ones only for limited

dimensions in lengthy procedures requiring long time to process.

The DM is based on counting the maximum summation of both the diagonal and the

anti-diagonal cost of each factory. Then we have rearranged the factories in descending

or ascending order according to their maximum diagonal summation costs, that means

the factory with the maximum summation of its diagonal or anti-diagonal cost will be

allocated first. After rearranging the factories in descending or ascending order we allocate

them individually one by one using the Hungarian method. The DM and how to apply

the Hungarian algorithm will be explained with examples in more details later in this

chapter.

We have used MATLAB software to generate and run our code, the Munkres function

also had been used which implemented by Cao, [57] to assign the required allocations.

3.2 The Target of the Heuristic Diagonals Method

The target of applying DM is to reach an optimum (minimum cost) or near optimum

solution to SAP and determine the best allocation. Although the three-dimensional SAP

is NP-Hard, the DM was successfully applied to allocate and schedule a problem with size

up to n = 500 with a reasonable elapsed time. The characteristic property of DM algorithm

is to re-arrange the initial sources (Factories) according to their maximum diagonal and

anti-diagonal costs in descending or ascending order. The other important property for

the DM is converting the problem from three dimensions into two and solving it by

applying the Hungarian method. As it is known that the Hungarian method solves the
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problem in polynomial time with complexity O(n3), [47].

Solving SAP with size n = 2 is easy; simply count all the four possible allocations

and select the minimum cost allocation. It is always easy to do that and have an exact

solution, because we are simply selecting the minimum from all the four (22 = 4) possible

combinations. To explain how to reach an optimum solution let us assume that we have

two factories. In each factory there are two machines, our target is to assign two workers

such that each worker does only one job on only one machine in only one factory and vice

versa. The given costs matrix C = {ci jk} is to allocate the job Ji to the machine M j in the

factory Fk where (i, j and k = 1, 2). The cost C = {ci jk} for each factory is explained in Table

3.1. The optimal solution can be reached by selecting the minimum sum of the possible

Factories F1 F2

Machines M1 M2 M1 M2

Jobs J1 c111 c121 c112 c122

J2 c211 c221 c212 c222

Table 3.1: SAP, two factories costs matrix

four combinations that satisfy the constraints of SAP, while the other combinations are

either similar to the selected combination or do not satisfy the constraints. In the following

table we have explained how to select the minimum sums of the allocated costs.

Z = Min {c111 + c222, c121 + c212, c112 + c221, c122 + c211} (3.1)

As we have mentioned earlier, SAP was solved by Pierskalla in 1967 using B&B method.

Problems with sizes up to n = 26 have been solved with exact solution. The reason for

this bound of the size n is the large combination and the requirement of large memories

for the input and output data during the search procedure of the B&B. We can solve SAP



3.2. The Target of the Heuristic Diagonals Method 44

for small sizes n number problems but it will be too difficult to solve when n becomes

large and it will be hard to find an exact solution when the size of the problem increases.

For example to solve the SAP with a size n = 26, the number of combinations of the

solutions of the problem is equal to 226. The problem can be solved and reached an exact

solution for n = 26 using the B&B method. It is clear that the number of combination

is 226 = 67, 108, 864. Imagine the number of combinations when the size of the problem

increased to n = 27, the number of combinations is 227 = 134, 217, 728. It is almost twice

the problem’s size n = 26.

Hence the objective of our work is to solve SAP and due to the way B&B do the search,

our investigation aim is to develop algorithms that are based on a different search strategy

to be able to solve bigger size of SAPs.

We have used the outcomes of the B&B method to help us test all the methods that we

have established and compare their results. Mart’i, [29] suggested the error percentage

deviation

Percentage Deviation = | (Copt − CA)/Copt | ∗ 100, (3.2)

where CA is the approximate value of the solution delivered by the heuristic method and

Copt is the optimum value of the given example, as a measure of robustness.

Definition 3.2.1 Upper and Lower Diagonal Lines
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Let C = {cij} be a square matrix such that

C =



c11 c12 · · · c1n

c21 c22 · · · c2n

...
...

. . .
...

cn1 cn2 · · · cnn


,

where (i, and j = 1, 2, 3, · · · ,n). The summation of the diagonal elements in C is an upper

diagonal line (UDL) or simply an anti-diagonal line such that.

UDL =

n∑
i=1

j=(n−i+1)

ci j = c1n + c2(n−1) + · · · + cn1. (3.3)

The summation of the diagonal elements in C is a lower diagonal line (LDL) or simply a

diagonal line such that

LDL =

n∑
i=1

cii = c11 + c22 + · · · + cnn. (3.4)

Example 3.2.1 This example is explaining both UDL and LDL.

Let C = {cij} be the costs of a square matrix with dimension 3 × 3 such that

C =


3 6 5

6 1 7

8 2 9


.

UDL = 5 + 1 + 8 = 14 and LDL = 3 + 1 + 9 = 13.
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3.3 The Structure of the Diagonals Method

The Diagonals Method (DM) is a new heuristic approach to solve the SAP. The benefit

of the DM is that it is easy to construct. It is also fast. Therefore, we can use it for large

dimension problems. The basic feasible solution can be used as a useful and good initial

starting solution for the B&B method for instance.

SAP can be constructed of n factories and there are n machines in each factory. We have

n workers and each is responsible to do one job on one machine in one factory. For each

job to be done by the workers there is a cost ci jk to be consider for each worker doing the

job in the factory. The SAP can be constructed as it is shown in Table 3.2. The problem

consists of n factories and there are n machines in each factory. We have n workers and

each worker is responsible for only one job on only one machine in only one factory. For

each job to be done by the workers there is a cost ci jk to be consider for each worker doing

the job in the factory.

Factories F1 F2 · · · Fn

Machines M1 M2 · · · Mn M1 M2 · · · Mn · · · M1 M2 · · · Mn

J1 c111 c121 · · · c1n1 c112 c122 · · · c1n2 · · · c11n c12n · · · c1nn

Jobs J2 c211 c221 · · · c2n1 c212 c222 · · · c2n2 · · · c21n c22n · · · c2nn
...

...
...

...
...

Jn cn11 cn21 · · · cnn1 cn12 cn22 · · · cnn2 · · · cn1n cn2n · · · cnnn

Table 3.2: The Construction table of Factories, Machines, Jobs and costs
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The following Algorithm 6 explains the steps of the Diagonal Method.

Algorithm 6: The Diagonal Method
1: Initialise the problem, set n ≥ 2. to be the number of jobs, machines and factories.
2: If SAP is not balanced add zero costs to the rows or columns as appropriate to

balance it.
3: Let i, jand k = 1, 2, ...,n be the indices number of the jobs, machines and factories

respectively.
4: Let the matrix C = {cijk} be the allocation costs, where i, j and k = 1, 2, ...,n.
5: Select the maximum sum of the upper (UDL) or the lower (LDL) diagonal line for

each factory individually.
6: Re-arrange the factories in descending or ascending order according to their

maximum diagonal sum.
7: Apply the Hungarian method to the first factory and assign the worker with the

minimum cost ci jk to do the job Ji on the machine M j in the factory Fk.
8: Remove F1 completely, delete Ji and all M j from all the remaining factories.
9: If two factories remain go to 10 otherwise go to 7.

10: Calculate the allocation cost of the last two factories as follows;(
c111 c121 c112 c122

c211 c221 c212 c222

)
.

Select the minimum cost from the four combinations set,
{c111 + c222, c121 + c212, c112 + c221, c112 + c211 }.

11: Sum all the allocation costs from 7 and 10. Stop.

3.4 Numerical Examples

In this section, numerical examples are presented to explain the methodology of the

proposed DM and to discuss the different observations that arise in these examples.

Example 3.4.1 In this example we will apply the DM to solve SAP by applying the Hun-

garian method, the Definition 3.2.1 and the Algorithm 6. Let C1 , C2 and C3 be three square
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matrices, each of size n = 3 as follows.

C1 =


4 2 3

6 4 3

2 1 4


, C2 =


5 2 1

3 1 6

6 2 4


, C3 =


4 3 1

2 5 2

3 1 4


.

Put the matrices in descending order according to their maximum UDL or LDL as it was

explained in Definition 3.2.1 and calculate the total optimal cost in each matrix using the

Hungarian method. Then we will find the assignment allocations for each matrix taking

in consideration SAP constraints.

From C1 the maximum value of the sum of the upper and lower diagonal lines are as

follows; UDL = 3 + 4 + 2 = 9 and LDL = 4 + 4 + 4 = 12, the Max{UDL, LDL} = 12.

Applying the Hungarian method, the row vector index is [2 3 1] or it can be represented

as C(row, column); C1(1, 2) = 2, C1(2, 3) = 3 and C1(3, 1) = 2. The total assignment cost is

the sum of all allocation costs, 2 + 3 + 2 = 7.

Repeating the same procedure on C2 we will have; UDL = 1 + 1 + 6 = 8 and LDL =

5 + 1 + 4 = 10, the Max {UDL, LDL} = 10. Applying the Hungarian method, the row

vector allocation’s index is [3 1 2] or C2(1, 3) = 1, C2(2, 1) = 3 and C2(3, 2) = 2. The total

assignment cost is the sum of all allocation costs, 1 + 3 + 2 = 6.

Repeating the same procedure on C3, we have; UDL = 1 + 5 + 3 = 9 and LDL = 4 + 5 +

4 = 13. The Max{UDL, LDL} = 13. Applying the Hungarian method, we have, the row

vector allocation’s index is [3 1 2] or C3(1, 3) = 1, C3(2, 1) = 2 and C3(3, 2) = 1. The total

assignment cost is the sum of all allocation costs, 1 + 2 + 1 = 4.

Hence we have the set {12, 10, 13}of maximum values of UDL and LDL for C1,C2 and C3
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respectively. Rearrange them in descending order we have C3 , C1 and C2. Assign the op-

timum allocation’s values to the first matrix C3 using the Hungarian assignment method

to do the allocation as follows;

C3 =


4 3 1

2 5 2

3 1 4


, C1 =


4 2 3

6 4 3

2 1 4


, C2 =


5 2 1

3 1 6

6 2 4


.

Apply the Hungarian assignment method. The allocation values for the first matrix C3 is

C3 =


− − 1

2 − −

− 1 −


.

Select the first minimum number C3(1, 3) = 1, remove matrix C3 then delete the first row

and the third column from the remaining matrices C1 and C2. The deletions we made will

prevent the other workers from doing the job allocated to the first worker subject to the

constraints. The remaining matrices are as follows;

C1 =


6 4

2 1

 , C2 =


3 1

6 2

 ,
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or their concatenated 2 × 4 matrix

C1C2 =


6 4 3 1

2 1 6 2

 .

As mentioned in Algorithm 6, only two matrices remain; apply step 10 and select the

minimum cost from the four choices set of the matrix C1 and C2 as follows; {c111 +

c222, c121 + c212, c112 + c211, c122 + c211} and c122 + c211 = 1 + 2 = 3,

is the minimum cost allocated in the last two remaining matrices. Let us assume that

the matrices C1, C2 and C3 be the cost values for three factories named F1, F2 and F3

respectively. Let the jobs J1, J2 and J3 be the jobs to be assigned to the machines M1, M2

and M3 respectively in each factory.

To obtain the minimum allocation in each factory, the cost we have obtained from C3

is 1. It is obvious that the first worker is allocated to do J1 on M3 in F3, the second worker

is allocated to do J2 on M2 in F2 and the third worker is allocated to do J3 on M1 in F1 or

we can write the optimal allocation in all the factories are as follows.

Factory 1 : Job 3 : Machine 1 = 02.

Factory 2 : Job 2 : Machine 2 = 01.

Factory 3 : Job 1 : Machine 3 = 01.

The total minimum cost = 2 + 1 + 1 = 4.

Example 3.4.2 Anuradha and Pandian, [70] solved this example by a reduction method.

We will solve it using DM. Suppose that there are three factories denoted by F1, F2 and

F3, three machines denoted by M1, M2 and M3, and three jobs denoted by J1, J2 and J3.

It is known that ci jk is the cost of the assigning Job Ji to be performed by Machine M j in
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the Factory Fk. Besides, three machines, three factories and three jobs can be associated

with only one of the others, that is, only one job on only one machine in only one factory.

The assignment costs ci jk are given in Table 3.3. We use the diagonals method to compare

the solution with the result obtained by D. Anuradha and P. Pandian. It is only a basic

feasible solution not an optimum.

Factories F1 F2 F3

Machines M1 M2 M3 M1 M2 M3 M1 M2 M3

J1 10 08 12 09 10 27 15 10 13
Jobs J2 08 06 07 09 06 12 07 11 12

J3 09 07 06 10 07 12 08 06 08

Table 3.3: Example 3.4.2 Costs Matrix.

Let the matrices C1, C2 and C3 be the cost matrices for the three combinations of jobs (J1, J2,

J3), machines (M1, M2, M3) and factories (F1, F2, F3) respectively, then calculate the upper

and lower diagonal lines for each factory. Let C1 be the cost matrix for factory F1 such

that,

C1 =


10 08 12

08 06 07

09 07 06


.

LDL = 22 and UDL = 27. Let the maximum diagonal value be d1 = Max{22, 27} = 27. The

Hungarian allocation cost = 10 + 6 + 6 = 22. Let C2 be the cost matrix for factory F2 such

that

C2 =


09 10 27

09 06 12

10 07 12


.
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LDL = 27 and UDL = 43. Let the maximum diagonal value be d2 = Max{27, 43} = 43.

The Hungarian allocation cost = 09 + 06 + 12 = 27.

Let C3 be the cost matrix for factory F3 such that

C3 =


15 10 13

07 11 12

08 06 08


.

LDL = 34 and UDL = 32. Let the maximum diagonal value be d3 = Max{34, 32} = 34.

The Hungarian allocation cost = 10 + 7 + 8 = 25.

Rearranging the maximum diagonal values d1, d2 and d3 for the three factories F1, F2 and

F3 in descending order, we get C2, C3 and C1.

C2 =


09 10 27

09 06 12

10 07 12


, C3 =


15 10 13

07 11 12

08 06 08


, C1 =


10 08 12

08 06 07

09 07 06


.

Starting from the first descending order factory cost C2. The minimum assignment cost

of factory C2 is 06 and it is allocated to J2 in M2.

C2 =


09 − −

− 06 −

− − 12


.

Delete the second row and the second column from both C3 and C1 respectively and follow
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the steps of Algorithm 6 we have,

C3 =


15 13

08 08

 , C1 =


10 12

09 06

 ,

or C3C1 the concatenated 2 × 4 matrix,

C3C1 =


15 13 10 12

08 08 09 06

 .

Since only two factories are left, as mentioned in step 10 of Algorithm 6, we select the

minimum cost from the four choices set of the two factories F3F1 costs matrix C3C1 as

follows;

{15 + 06, 13 + 09, 10 + 08, 12 + 08}. Hence, 10 + 08 is the minimum cost allocated in the last

two remaining factories, where 10 is the minimum cost in F1 and 08 is the minimum cost

in F3. The allocation in all the factories are as follows.

Factory 1 : Job 1 : Machine 1 = 10.

Factory 2 : Job 2 : Machine 2 = 06.

Factory 3 : Job 3 : Machine 3 = 08.

Total minimum cost = 24.

Let solve the problem by arranging the factories in ascending order C1,C3 and C2.

C1 =


10 08 12

08 06 07

09 07 06


, C3 =


15 10 13

07 11 12

08 06 08


, C2 =


09 10 27

09 06 12

10 07 12


.
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Starting from the first ascending order factory cost C1. The minimum assignment cost of

factory one C1 is 06 and it is allocated to J2 in M2. There is a tie as the minimum value

6 appears in two allocations but we will select only the first minimum value of the row

vector of the Hungarian assignment allocation [10 06 06]

CF1 =


10 − −

− 06 −

− − 06


.

Delete the second row and column from both C3 and C2 respectively and follow the steps

of the diagonal algorithm we will have,

C3 =


15 13

08 08

 , C2 =


09 27

10 12

 .

or C3C2 the concatenated 2 × 4 matrix

C3C2 =


15 13 09 27

08 08 10 12

 .

Since only two factories are left, as mentioned in step 10 of Algorithm 6, select the

minimum cost from the four choices set of the two factories F3F2 as follows;

{15 + 12, 13 + 10, 09 + 08, 27 + 08}.

Hence, 09 + 08 is the minimum cost allocated in the last two remaining factories, where
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09 is the minimum cost in F2 and 08 is the minimum cost in F3. The minimum allocation

in all the machines are as follows.

Factory 1 : Job 2 : Machine 2 = 06.

Factory 2 : Job 1 : Machine 1 = 09.

Factory 3 : Job 3 : Machine 3 = 08.

Total minimum cost = 23.

It is clear that the total minimum cost 23 is the same as the result that is found by

Anuradha and Pandian. Both previous results of 24 and 23 are not optimal because the

following allocation is better and an optimal solution.

Factory 1 : Job 2 : Machine 3 = 07.

Factory 2 : Job 1 : Machine 1 = 09.

Factory 3 : Job 3 : Machine 2 = 06.

Total optimal cost = 22.

3.5 Case Study: Hybridisation of the Diagonals Method

To judge the results of our basic feasible solution in all the methods that we have estab-

lished, we will use the B&B method to hybridise the solution and reach a better improved

solution. We have notice that applying the DM with larger sizes dimension is fast and run

in seconds. for example the test results we have obtained from applying DM for problems

with different size n as it is explained in the Table 3.4.

The DM was tested for problems with size up to n = 500 and the number of the variables

was equivalent to 5003 = 125000000 on a normal memory capacity laptop computer. This
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n Cost Time in Seconds No. of Variables No. of Combinations
100 82 1.768860 1,000,000 1.267651 e30

150 67 6.572607 3,375,000 1.427248 e45

200 95 17.442538 8,000,000 1.606938 e60

250 73 39.178091 15,625,000 1.809251 e75

300 71 75.413410 27,000,000 2.037036 e90

350 111 135.038553 42,875,000 2.293499 e105

400 146 221.470414 64,000,000 2.58225 e120

450 105 350.552412 91,125,000 2.907355 e135

500 62 516.558064 125,000,000 3.273391 e150

Table 3.4: Case Study: Large Sizes DM

size of problem is no way to be solved by using the B&B method because of the large size

of the problem and the huge number of combinations is equivalent to 2500 = 3.273391 e150.

The variable are randomly selected from normal distribution generated MATLAB function

equal to f ix(100 ∗ rand(n,n,n)) of two integer digits.

In this case study the exact cost and execution time in seconds are represented by (B&B

Cost) and (B&B Time) respectively for SAP. We also represent the heuristic cost and time

of the diagonal method as (DM Cost) and (DM Time). To hybridise we have considered

the diagonal method cost (DM Cost) to generate an initial feasible solution (X0) in the

hybridised B&B such that: (X0 = DM X0 Cost) and the DM hybridisation time is (DM X0

Time). In other words we have used the hybridisation technique by applying the outcome

cost of the DM and using it as an initial basic feasible solution in B&B method. We have

discussed B&B hybridisation and compared the obtained result as it is shown in Table 3.5.

The results are reordered in 12 tables. The data is randomly selected for the problems of

size 4 and dimension 4× 4× 4 up to size 26 and dimension 26× 26× 26; each time we have

increased the size of the problem by 2. We have compared the total average cost and time

of each problem solved by B&B, DM and the hybridised DM X0. Graph 3.1 to Graph 3.4
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give further explanations.

n B&B Cost B&B Time DM Cost DM Time DM X0 Cost DM X0 Time
4 49.42 0.2530 94.28 0.0164 49.42 0.0490
6 36.64 0.3294 90.76 0.0128 36.64 0.1893
8 24.42 0.9433 99.00 0.0229 24.42 0.7347
10 20.79 2.5689 112.38 0.0266 20.79 2.2989
12 21.28 7.4436 95.31 0.0315 21.28 7.2635
14 18.05 17.5816 111.58 0.0361 18.05 17.2285
16 19.43 31.2333 105.40 0.0409 19.43 30.6277
18 17.91 126.8548 114.23 0.0347 17.91 121.5693
20 12.74 51.6672 97.32 0.0614 12.74 50.1720
22 13.28 445.9688 151.39 0.0608 13.28 429.8912
24 10.84 1599.6080 125.39 0.1231 10.84 1410.3500
26 11.36 2956.9040 100.29 0.0878 11.36 2894.0040

Average 21.35 436.7797 108.11 0.0462 21.35 413.6982

Table 3.5: DM: Case Study Hybridisation

In the first column of Table 3.5, n is the size of the problem or the dimension n× n× n.

We have applied five instances SAP problem randomly selected and calculate the average

time in seconds and cost. The second and third columns are the average cost and time for

the instances where B&B method was used. The fourth and fifth columns are representing

the average cost and time for the same five instances of the DM and the last two columns

represent the hybridisation of the DM method. The outcomes of the DM was used as an

initial basic feasible solution in B&B then we calculated the hybridised average cost and

time for the same five instances.

The Figure 3.1 shows the average cost comparison for five instances with randomly

selected costs and different sizes starting from size 4 to 26. The 12 tables related to

this graph are listed in this section. The comparison was between B&B, DM and the

hybridisation DM X0. It is clear from the graph that the cost of DM is large compared to

the cost obtained by B&B but it becomes the same cost when we applied the hybridisation

technique. The Figure 3.2 shows the average time comparison for the same 12 tables.
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The completion time of the DM is considerably shorter than B&B, while the hybridisation

DM X0 is shorter than B&B. From Table 3.5; the Figures 3.3 and 3.4 show the average of

the total cost and the time comparisons for B&B, DM and the hybridisation DM X0. The

DM cost is larger than B&B, but when we apply the outcomes of DM as an initial basic

feasible solution as a warm start of B&B or hybridisation of it we have obtained the same

cost with less time as it is shown in Figure 3.4.

n B&B cost B&B time DM cost DM time DM X0 cost DM X0 time
1 4 56.828 0.64069 125.62 0.040929 56.828 0.038089
2 4 65.668 0.42096 84.953 0.031383 65.668 0.061518
3 4 26.889 0.03039 110.61 0.0052278 26.889 0.027384
4 4 30.097 0.09662 30.097 0.0022864 30.097 0.049261
5 4 67.602 0.07655 120.14 0.0023353 67.602 0.068543

Average 4 49.4168 0.25304 94.284 0.0164323 49.4168 0.048959

Table 3.6: Five instances average comparison (4 × 4 × 4)

n B&B cost B&B time DM cost DM time DM X0 cost DM X0 time
1 6 34.466 0.83146 119.96 0.044511 34.466 0.12887
2 6 28.204 0.07844 104.96 0.0077563 28.204 0.073163
3 6 29.859 0.18503 94.099 0.003989 29.859 0.20151
4 6 46.509 0.17658 83.794 0.003614 46.509 0.17691
5 6 44.175 0.37538 50.997 0.0039847 44.175 0.36587

Average 6 36.6426 0.32938 90.762 0.012771 36.6426 0.1892646

Table 3.7: Five instances average comparison (6 × 6 × 6)

n B&B cost B&B time DM cost DM time DM X0 cost DM X0 time
1 8 31.13 2.4214 59.779 0.044532 31.13 1.7393
2 8 25.389 0.93663 67.5 0.036858 25.389 0.5444
3 8 21.068 0.77812 26.84 0.011915 21.068 0.8235
4 8 27.613 0.17273 236.45 0.01398 27.613 0.17624
5 8 16.888 0.40768 104.42 0.0071936 16.888 0.39004

Average 8 24.4176 0.94331 98.9978 0.02289572 24.4176 0.734696

Table 3.8: Five instances average comparison (8 × 8 × 8)
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n B&B cost B&B time DM cost DM time DM X0 cost DM X0 time
1 10 16.288 3.7124 66.25 0.057581 16.288 2.8588
2 10 21.63 1.9913 108.3 0.044436 21.63 1.6032
3 10 26.222 0.30373 160.43 0.011376 26.222 0.28832
4 10 13.79 0.84317 161.7 0.011521 13.79 0.85477
5 10 26.037 5.9938 65.199 0.0080316 26.037 5.8893

Average 10 20.7934 2.56888 112.376 0.02658912 20.7934 2.298878

Table 3.9: Five instances average comparison (10 × 10 × 10)

n B&B cost B&B time DM cost DM time DM X0 cost DM X0 time
1 12 25.738 16.678 135.76 0.062476 25.738 16.334
2 12 19.98 3.5679 78.345 0.044485 19.98 3.1509
3 12 21.573 5.0089 59.821 0.019917 21.573 5.1153
4 12 20.421 8.5269 71.134 0.015202 20.421 8.4408
5 12 18.712 3.4361 131.47 0.015376 18.712 3.2764

Average 12 21.2848 7.44356 95.306 0.0314912 21.2848 7.26348

Table 3.10: Five instances average comparison (12 × 12 × 12)

n B&B cost B&B time DM cost DM time DM X0 cost DM X0 time
1 14 17.567 5.9759 179.19 0.064642 17.567 5.1514
2 14 19.523 25.491 118.73 0.053921 19.523 24.912
3 14 18.924 11.887 76.499 0.023935 18.924 12.111
4 14 14.854 10.97 49.303 0.020406 14.854 10.179
5 14 19.37 33.584 134.16 0.017498 19.37 33.789

Average 14 18.0476 17.5816 111.576 0.0360804 18.0476 17.22848

Table 3.11: Five instances average comparison (14 × 14 × 14)

n B&B cost B&B time DM cost DM time DM X0 cost DM X0 time
1 16 20.511 4.3335 76.219 0.064598 20.511 3.5903
2 16 17.918 63.964 100.42 0.058687 17.918 65.099
3 16 20.96 62.44 91.407 0.031104 20.96 59.328
4 16 19.763 16.059 140.54 0.022227 19.763 16.244
5 16 17.992 9.37 118.41 0.028062 17.992 8.8774

Average 16 19.4288 31.2333 105.399 0.0409356 19.4288 30.62774

Table 3.12: Five instances average comparison (16 × 16 × 16)
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n B&B cost B&B time DM cost DM time DM X0 cost DM X0 time
1 18 16.854 197.59 128.32 0.038865 16.854 196.19
2 18 20.62 288.23 73.877 0.029698 20.62 269.21
3 18 14.533 83.776 73.432 0.037877 14.533 78.338
4 18 18.199 5.048 187.4 0.032592 18.199 5.0294
5 18 19.35 59.63 108.14 0.034578 19.35 59.079

Average 18 17.9112 126.855 114.234 0.034722 17.9112 121.56928

Table 3.13: Five instances average comparison (18 × 18 × 18)

n B&B cost B&B time DM cost DM time DM X0 cost DM X0 time
1 20 9.1919 11.551 73.636 0.068706 9.1919 10.625
2 20 16.595 25.212 132.28 0.085912 16.595 22.89
3 20 10.166 60.299 96.4 0.030842 10.166 59.936
4 20 15.142 62.851 86.479 0.034181 15.142 59.666
5 20 12.629 98.423 97.822 0.087455 12.629 97.743

Average 20 12.74478 51.6672 97.3234 0.0614192 12.74478 50.172

Table 3.14: Five instances average comparison (20 × 20 × 20)

n B&B cost B&B time DM cost DM time DM X0 cost DM X0 time
1 22 11.018 29.944 175.32 0.098285 11.018 26.656
2 22 12.465 341.18 186.62 0.053231 12.465 323.47
3 22 16.259 864.33 151.9 0.051155 16.259 856.45
4 22 15.08 872.33 109.73 0.057362 15.08 824.76
5 22 11.558 122.06 133.37 0.044006 11.558 118.12

Average 22 13.276 445.969 151.388 0.0608078 13.276 429.8912

Table 3.15: Five instances average comparison (22 × 22 × 22)

n B&B cost B&B time DM cost DM time DM X0 cost DM X0 time
1 24 9.4895 609.24 66.812 0.049442 9.4895 624.92
2 24 11.422 1544.9 189.72 0.16449 11.422 1468.6
3 24 11.871 4155.1 152.04 0.10504 11.871 3299.3
4 24 10.427 684.2 146.12 0.055228 10.427 661.22
5 24 10.973 1004.6 72.257 0.24106 10.973 997.71

Average 24 10.8365 1599.61 125.39 0.123052 10.8365 1410.35

Table 3.16: Five instances average comparison (24 × 24 × 24)
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n B&B cost B&B time DM cost DM time DM X0 cost DM X0 time
1 26 9.9917 609.51 74.298 0.12552 9.9917 556.08
2 26 11.43 990.91 100.9 0.069959 11.43 937.94
3 26 11.667 3488.2 73.559 0.06185 11.667 3402.4
4 26 12.51 5396.4 112.69 0.076044 12.66 5594.2
5 26 11.205 4299.5 140.02 0.10544 11.205 3979.4

Average 26 11.36074 2956.9 100.293 0.0877626 11.39074 2894.004

Table 3.17: Five instances average comparison (26 × 26 × 26)
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3.6 The Diagonals Method: Tie Cases

The tie case always happened when we have random large numbers. The problem arises

when there are similarity to the number required selection and a decision will be necessary

to decide which number is to be chosen.

The Tie case happened when a specific selection occurs in different positions in one

stage or more with same number. The question is; shall we choose the first, the last or a

random number from that stage. Mainly the programmers selected the first number in

their code to break the tie.

Sometimes this selection is not accurate and will affect the final result.Tie break here

is often carried out through random selection. In our case we break the tie by selecting

the first minimum number. In case the size of the problem is not large and we have the

option to change the selected number and comparing the result, then this will be useful.

Example 3.6.1 shows that changing the tie number will give a better solution for this size

4 problem.

Example 3.6.1 Tie Example Size 4

In this problem, we will discus how the tie number will affect the final result.

Let A,B,C and D be four matrices representing to the cost of SAP allocations. The alloca-
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tion must satisfy SAP conditions that have been explained in the previous sections.

A =



8 6 9 9

9 0 9 4

1 2 1 8

9 5 9 1


, B =



4 6 6 6

9 0 7 1

7 8 7 7

9 9 3 0


, C =



2 6 4 1

0 3 3 4

0 9 7 4

8 0 7 6


, D =



7 6 9 7

7 1 3 2

2 1 5 5

6 4 2 6


.

Rearrange the above matrices in descending order according to their maximum diagonals,

we have;

B =



4 6 6 6

9 0 7 1

7 8 7 7

9 9 3 0


, A =



8 6 9 9

9 0 9 4

1 2 1 8

9 5 9 1


, C =



2 6 4 1

0 3 3 4

0 9 7 4

8 0 7 6


, D =



7 6 9 7

7 1 3 2

2 1 5 5

6 4 2 6


.

Applying the Hungarian method to the first matrix B, the allocation will be the set of circled

numbers {4,0,7,0}. To select the minimum numbers of this set we have two options either

to select the zero costs c2,2 or c4,4 from matrix B. If we select the first cell c2,2 and proceed, the

initial basic feasible solution is 8, while if we select the other cell c4,4 the optimal solution

is 6 which is better. Since the size of the problem is not large, it is possible to select and

control the minimum cost but it will be more difficult and complicated when the size of

the problem is large.

Example 3.6.2 Tie Example Size 3

In this example we will discuss the tie situation for size 3 problem. The tie is more
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complicated although the size of the problem is 3.

Let C = {cijk} be the cost matrix for the SAP.

C =


10 09 09 09 09 10 15 07 08

09 06 09 10 09 07 10 11 06

12 09 06 27 12 09 13 12 08


.

Let C1, C2 and C3 denote the cost of the three factories F1,F2 and F3 such that,

C1 =


10 09 09

09 06 09

12 09 06


.

Calculate the UDL and LDL of the first factory from the matrix C1 then select the max-

imum value and denote it d1. Obtain the optimum allocation cost using the Hungarian

method. The outcomes are as follows.

LDL = 22 and UDL = 27, d1 = Max{LDL, UDL} = 27.

The optimum allocation cost = 10 + 6 + 6 = 22.

Applying the same procedures on the factory F2 from the matrix C2 we have,

C2 =


9 9 10

10 9 7

27 12 9


.

LDL = 27 and UDL = 46, d2= Max{LDL, UDL} = 46.

The optimum allocation cost = 9 + 10 + 9 = 28.
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Applying the same procedures on factory F3 from the matrix C3 we have,

C3 =


15 7 8

10 11 6

13 12 8


.

LDL = 34 and UDL = 32, d3 = Max{LDL, UDL}= 34.

The optimum allocation cost = 7 + 10 + 8 = 25.

Arrange the factories cost matrices C1,C2 and C3 in descending order with respect to their

diagonal values as follows.

d1 = 27, d2 = 46 and d3 = 34.

The descending order of the diagonal lines will be

d2 = 46, d3 = 34, d1 = 27.

Hence the descending order of the factories costs is {C2,C3,C1} accordingly.

Rename the factories as C2 = C′

1, C3 = C′

2 and C1 = C′

3 and arrange them in descending

order,

C
′

1 =


09 09 10

10 09 07

27 12 09


, C

′

2 =


15 7 8

10 11 6

13 12 8


, C

′

3 =


10 09 09

09 06 09

12 09 06


.
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Start from factory C′

1,

C
′

1 =


09 09 10

10 09 07

27 12 09


.

Apply the Hungarian method, to get the allocations and values in factory C′

1 as follows.

C
′

1(1, 1, 1) = 9, C
′

1(2, 2, 1) = 9 and C
′

1(3, 3, 1) = 9.

The assignment values row vector = [1 2 3] = [09 09 09]. The minimum assignment

value is 09 and there are three values that have the same minimum value. In such a

case we say that the problem has a tie. We can not judge which assignment value is

the best without solving the problem and try all the three values. If we start from the

first minimum value C′

1(1, 1, 1) and allocate the minimum assignment value 09 to job J1,

machine M1 in factory F′1 then delete the first row and the first column from both C′

2 and

C′

3. The remaining matrices are as follows;

C
′

2 =


11 06

12 08

 , C
′

3 =


06 09

09 06

 ,

or C′

2C′

3 the concatenated 2 × 4 matrix

C
′

2C
′

3 =


11 06 06 09

12 08 09 06

 .

Since only two factories remain, as mentioned in step 10, select the minimum cost from



3.6. The Diagonals Method: Tie Cases 69

the four possible choices of the two factories C′

2C′

3 as follows,

{11 + 06, 06 + 09, 06 + 08, 09 + 12}.

Hence, 06 + 08 is the minimum cost allocated to the last two remaining factories, where

06 is the minimum cost in C′

3 and 08 is the minimum cost in C′

2. The optimal allocation in

all the factories are as follows;

Factory C′

1 : Job J1 : Machine M1 = 09.

Factory C′

2 : Job J3 : Machine M3 = 08.

Factory C′

3 : Job J2 : Machine M2 = 06.

Total minimum cost = 23.

Following the same procedure for the second minimum assignment value, we have the

value C′

1(2, 2, 2) = 09. Allocate the minimum assignment value 09 to job J2, machine M2 in

factory C′

1 then delete the second row and the column from both C′

2 and C′

3. The remaining

matrices are as follows,

C
′

2 =


15 08

13 08

 , C
′

3 =


10 09

12 06

 ,

or C′

2C′

3 the concatenated 2 × 4 matrix,

C
′

2C
′

3 =


15 08 10 09

13 08 12 06

 .

Since only two factories remain, as mentioned in step 10, select the minimum cost from

the four possible choices of the two factories C′

2C′

3as follows,
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{15 + 06, 08 + 12, 10 + 08, 09 + 13}.

Hence, 10 + 08 is the minimum cost allocated to the last two remaining factories, where

10 is the minimum cost in C′

3 and 08 is the minimum cost in C′

2. The minimum allocations

in all the factories are as follows;

Factory C′

3 : Job J1 : Machine M1 : = 10.

Factory C′

1 : Job J2 : Machine M2 : = 09.

Factory C′

2 : Job J3 : Machine M3 : = 08.

Total minimum cost = 27.

Following the same procedure for the third minimum assignment value, we have the

value C′

1(3, 3, 3) = 09, allocate the minimum assignment value 09 to J3, M3 in factory C′

1

then delete the third row and the third column from both C′

2 and C′

3. The remaining

matrices are as follows,

C
′

2 =


15 07

10 11

 , C
′

3 =


10 09

09 06


or the C′

2C′

3 concatenated 2 × 4 matrix

C
′

2C
′

3 =


15 07 10 09

10 11 09 06

 .

Since two factories are left, as mentioned in step 9, select the minimum cost from the four

possible choices of the two factories C′

2 and C′

3 as follows;

{15 + 06, 07 + 09, 10 + 11, 09 + 10}.

Hence, 07 + 09 is the minimum cost allocated to the last two remaining factories, where
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09 is the minimum cost in C′

3 and 07 is the minimum cost in C′

2. The minimum allocation

in all the factories are as follows;

Factory C′

1 : Job J3 : Machine M3 = 09.

Factory C′

2 : Job J1 : Machine M2 = 07.

Factory C′

3 : Job J2 : Machine M1 = 09.

Total minimum cost = 25.

We have obtained three solutions because of the tie problem. Because we cannot avoid

the tie, our code starts with the first minimum number. The tie can happen at any stage

of the problem.

3.7 Summary

We have discussed the Hungarian assignment problem and stated an algorithm to solve

the two dimensional assignment problem. We have explained the target, the structure

and stated an algorithm called the DM. Definitions and numerical examples are given

to explain the procedures of the DM. A case study of the effect of tie allocation problem

on the optimal solution is considered and explained with examples. A case study of the

hybridisation of the DM and comparisons of the costs and times between the DM and the

B&B methods are studied and explained with graphs and tables.



Chapter 4

Further Heuristic Approaches to SAP

4.1 Introduction

In the previous chapter we have solved the SAP using DM. We have dealt with calculating

the upper and lower diagonal lines of the problem. Then we have reduced the problem

by deleting the allocated job, machine and factory from our calculations. Although the

basic feasible solution is not always close to the optimum, we benefit from the speed and

efficiency of the algorithm to solve the problem and get approximate solution for higher

size problems.

In this chapter we study three more heuristic methods. The first is the Average Cost

Method (ACM), the second is the Addition Method (AM) and the third is the Multipli-

cation Method (MM). Algorithms, examples and case studies were given for all the three

methods. Our target is to find a better approach to solve SAP. All the methods used

guarantee a basic feasible solution for higher size SAP. We have used different types of

normal random numbers generates using MATLAB. For example see the tables listed in

72
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this chapter and Table 4.1

The average cost method will approach the solution in a different way to DM. We

took in consideration a simple technique to do the allocations. The basic idea depends on

connecting the cost of the allocation of the selected job and add it to the average cost of

the other non-selected jobs, machines and factories.

The addition method relies on adding the costs for each worker in each factory, then

forming a two dimensional matrix to which we apply the Hungarian method for allocation.

The multiplication method is similar to the addition method, the only difference being

to multiply the cost of each worker in the factories to form a new two dimensional matrix

to which we apply the Hungarian method. All these three methods are described through

algorithms, examples, case studies and graphs.

4.2 The Average Cost Method

The Average Cost Method (ACM) approaches the solution in a different way to solve

SAP. We took in consideration to use simple techniques to do the allocations. The basic

idea depends on connecting the cost of the allocation of the selected job and add it to the

average cost of the other non-selected jobs, machines and factories. This method can be

considered as a basic stage of a dynamic model. Algorithm 7 explains the approach and

how to apply it.

The average cost method as its name says dealings with calculating an average of the

remaining unallocated costs. The idea is to start from selecting the first cost c111 allocated

to the first worker to do the first job J1 on the first machine M1 in the first factory F1. Then
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we calculate the average cost for all the non allocated costs after deleting the first row and

the first column from all the non-allocated jobs, machines and factories. We added the

selected cost and the average cost. Then repeat this process for all the n3 costs we have

and select the minimum sum. The method is explained in details through an algorithm,

examples, case study and graphs.
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Algorithm 7: The Average Cost Method
Step 1: Initialisation:
Set the size of the problem to be a non negative integer number n.
Let A = 0, where A is the average cost for the non-selected indices.
Let the initial cost ci jk = 0, where (i, j and k = 1, 2, ...,n).
Let S be the sum of the cost ci jk and the average cost A, where S = 0 or S = ci jk + A.

Step 2: Calculating the average cost A:
The following points explain how to calculate and select the average cost A,

1. Start the first allocation, job J1 and select the cost ci jk = c111, where c111 is the cost
of allocating the first job to the first machine in the first factory.

2. Delete the first row from each job.

3. Delete the first column from each factory.

4. Remove the first factory that c111 is related to.

5. Calculate A the average of the remaining costs RC.

6. Calculate the sum S; by adding the cost c111 to A.

7. Repeat 1-6 for all jth machine of the first job in the kth factories.

8. Repeat 1-7 for all the workers who do the jobs of SAP.

9. Select the minimum S. If there is a tie, select the first one or select S with
minimum cost ci jk

Step 3: Allocation:

1. Allocate ci jk related to the selected S from step 2, points (1-9).

2. Delete the ith row and all the jth columns crossing the allocated cost ci jk from SAP,
remove the ith factory Fi.

3. Terminate if all jobs are allocated. Calculate the total sum of all allocated cost.
Otherwise, go to Step 2.
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The following Example 4.2.1 explains how to apply Algorithm 7 to solve SAP.

Example 4.2.1 Let us consider a SAP with three jobs J1, J2 and J3, three machines M1, M2

and M3 and three factories F1, F2 and F3. Let C1, C2 and C3 be the costs of allocation of the

jobs, machines and factories for SAP respectively as follows.

C1 =


8 9 2

9 6 5

1 0 9


, C2 =


9 9 1

1 4 4

9 8 9


, C3 =


7 0 6

9 8 7

6 9 7


.

Suppose that C = {ci jk}, where (i, j and k = 1, 2, 3) be the allocation costs for the previous

three jobs, machines and factories as it is shown in the following matrix;

C =


08 09 02 09 09 01 07 0 06

09 06 05 01 04 04 09 08 07

01 0 09 09 08 09 06 09 07


.

The target is to find the minimum allocation cost applying the ACM. To solve the example,

apply Algorithm 7. Select the first cost c111 = 08 from C then delete row 1, columns 1, 4

and 7 from C and remove all the remaining cost C1 of factory F1, we have the remaining

costs;

RC =


04 04 08 07

08 09 09 07

 .
Calculate the average of the remaining costs, A = RC/8, hence A = 56/8 = 7. Repeat

the same process and calculate the average cost A for all the costs that belong to C. Let
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AA = {Aij} be the outcome matrix of the corresponding average A′s values for C.

AA =


7.000 6.500 6.750 6.375 6.375 6.625 5.875 5.875 4.750

6.125 6.750 7.125 5.250 5.250 5.750 6.000 6.000 6.625

4.875 5.500 5.875 5.375 5.375 6.625 4.785 4.875 6.875


To find the sum S for all the costs, simply add the two matrices C and AA, we have the

following matrix;

S =



15.000 15.500 8.750 15.375 15.375 7.625 12.875 5.875 10.750

15.250 12.750 12.125 6.250 9.250 9.750 15.000 14.000 13.625

5.875 5.500 14.875 14.375 13.375 15.625 10.875 13.875 13.875


.

Select the minimum number (circled) 5.500, if there is a tie ( more than one minimum

number), break the tie by selecting the first minimum number. In this example we do not

have a tie. Hence the job J3 is scheduled to the machine M2 in the factory F1, the allocation

cost related to it is the boxed 0 in the above array C. The next step is to remove the first

factory, the third job and the second machine. Repeat the steps 1, 2 and 3 of Algorithm 7.

We have C′, AA′ and S′ as follows.

C′ =


9 1 7 6

1 4 9 7

 , AA′ =


7 9 4 1

6 9 1 9

 , S′ =


16 10 11 7

7 13 10 16


The minimum cost of S′ is the circled 7 and the minimum related cost in C′ is the boxed

6, which means that job J1 is allocated to machine M3 in factory F3. Apply steps 1, 2 and 3
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of Algorithm 7 and we will have the final step with the following outputs:

C′′ = 1 , AA′′ = 6, S′′ = 7.

The final allocation is that job J2 is allocated to the machine M1 in factory F2 and the cost

of the allocation is the boxed 1. Hence the total minimum cost is 0 + 6 + 1 = 7.

4.3 Case Study

Here, we have selected five instances randomly with different sizes problems as it is

shown in Table 4.1. All the tables related to the average calculations of this table are listed

below. For each five instances with a specific size started from dimension 4 × 4 × 4 to

26 × 26 × 26 we have calculated the minimum cost and the possible allocations using the

B&B method, the ACM and the Hybridisation techniques.

We have considered the outcome costs of the ACM as an initial basic feasible solution

to start the B&B. This hybridisation techniques have been used to see if there is any effect

on the execution time.

From Table 4.1 and the Figures 4.1 to 4.4, it is clear that the cost of the ACM is larger

than that of B&B for all the 12 tables with five instances listed in this section, but the costs

of the hybridisation of ACM is equal to all the costs of the B&B. It is clear from Figure

4.2 that the time of the ACM is considerably small comparing to both the B&B and the

hybridisation ACM, also it is noticeable that the time of the hybridisation ACM is less

than that of the B&B. The data in both Figures 4.3 and 4.4 are obtained from Table 4.1, the

average total costs and times are measured for the B&B, the ACM and the hybridisation
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n B&B Cost Sec ACM Cost Sec ACM X0 Cost Sec
4 49 0.0373206 70.8 0.00564684 49 0.03449
6 34.2 0.2414712 106 0.0216724 34.2 0.254528
8 24.2 0.753232 169 0.0512444 24.2 0.757932
10 22.6 2.8664 166.6 0.145536 22.6 2.87816
12 14.4 4.00974 300.2 0.303232 14.4 4.06066
14 11.2 21.82838 352 0.586508 11.2 21.65406
16 9.8 54.77274 326.4 1.17676 9.8 54.85742
18 8.2 83.1472 443 2.16982 8.2 82.5324
20 4.6 258.3854 457 4.00552 4.6 256.1862
22 2.4 545.421 588.8 7.45002 2.4 521.2882
24 2.2 2301.196 643.8 12.0346 2.2 2288.138
26 1.4 5781.52 785.2 18.9008 1.4 5755.1

Average 15.35 754.514907 367.4 3.90427997 15.35 748.9785042

Table 4.1: Case Study: ACM Hybridisation

of ACM in all the tables listed in this section. Figure 4.3 shows that the Average total costs

of the B&B is equal to the hybridisation of ACM but the average total costs of ACM is too

large. Figure 4.4 shows that the time of the hybridisation of ACM is slightly less than the

B&B, it is clear that the time of ACM is considerably smaller than both the B&B and the

hybridisation of ACM. Hence the ACM is running considerably fast and the hybridisation

of ACM is running in less time than the B&B with same outcomes.
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n B&B cost Time/sec AM cost Time/sec B&B X0 cost Time/sec
1 4 40 0.022237 40 0.0041906 40 0.022084
2 4 57 0.033655 84 0.0039938 57 0.035617
3 4 33 0.060169 75 0.0089276 33 0.042337
4 4 44 0.025459 44 0.00609 44 0.026355
5 4 71 0.045083 111 0.0050322 71 0.046057

Average 4 49 0.037321 70.8 0.00564684 49 0.03449

Table 4.2: Average Method: Five instances average comparison (4 × 4 × 4)

n B&B cost Time/sec AM cost Time/sec B&B X0 cost Time/sec
1 6 24 0.16955 69 0.016163 24 0.17053
2 6 28 0.097782 160 0.018943 28 0.084838
3 6 21 0.095614 60 0.036119 21 0.080912
4 6 56 0.71314 166 0.016051 56 0.80303
5 6 42 0.13127 75 0.021086 42 0.13333

Average 6 34.2 0.241471 106 0.0216724 34.2 0.254528

Table 4.3: Average Method: Five instances average comparison (6 × 6 × 6)

n B&B cost Time/sec AM cost Time/sec B&B X0 cost Time/sec
1 8 30 1.1826 130 0.04812 30 1.1488
2 8 25 0.28687 163 0.051687 25 0.28905
3 8 24 0.16907 158 0.052278 24 0.17619
4 8 24 1.4897 123 0.051323 24 1.5225
5 8 18 0.63792 271 0.052814 18 0.65312

Average 8 24.2 0.753232 169 0.0512444 24.2 0.757932

Table 4.4: Average Method: Five instances average comparison (8 × 8 × 8)
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n B&B cost Time/sec AM cost Time/sec B&B X0 cost Time/sec
1 10 23 1.6918 179 0.12193 23 1.6918
2 10 24 2.1254 143 0.13554 24 2.1039
3 10 16 2.1423 152 0.15774 16 2.0749
4 10 25 5.3332 163 0.17689 25 5.4463
5 10 25 3.0393 196 0.13558 25 3.0739

Average 10 22.6 2.8664 166.6 0.145536 22.6 2.87816

Table 4.5: Average Method: Five instances average comparison (10 × 10 × 10)

n B&B cost Time/sec AM cost Time/sec B&B X0 cost Time/sec
1 12 14 2.7462 241 0.28215 14 2.7456
2 12 14 3.2458 352 0.29756 14 3.2701
3 12 16 8.1875 291 0.29327 16 8.3561
4 12 15 3.7642 262 0.29804 15 3.7218
5 12 13 2.105 355 0.34514 13 2.2097

Average 12 14.4 4.00974 300.2 0.303232 14.4 4.06066

Table 4.6: Average Method: Five instances average comparison (12 × 12 × 12)

n B&B cost Time/sec AM cost Time/sec B&B X0 cost Time/sec
1 14 17 37.995 291 0.58292 17 34.672
2 14 14 41.427 315 0.57463 14 44.31
3 14 8 15.635 342 0.5901 8 15.3
4 14 7 1.7359 367 0.59605 7 1.5893
5 14 10 12.349 445 0.58884 10 12.399

Average 14 11.2 21.82838 352 0.586508 11.2 21.65406

Table 4.7: Average Method: Five instances average comparison (14 × 14 × 14)

n B&B cost Time/sec AM cost Time/sec B&B X0 cost Time/sec
1 16 13 109.74 394 1.1144 13 108.81
2 16 10 100.38 218 1.1844 10 101.97
3 16 8 3.992 285 1.2069 8 4.06
4 16 5 7.7437 364 1.2012 5 7.8311
5 16 13 52.008 371 1.1769 13 51.616

Average 16 9.8 54.77274 326.4 1.17676 9.8 54.85742

Table 4.8: Average Method: Five instances average comparison (16 × 16 × 16)
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n B&B cost Time/sec AM cost Time/sec B&B X0 cost Time/sec
1 18 10 45.768 398 2.1274 10 45.571
2 18 8 61.176 399 2.1738 8 62.056
3 18 5 103.81 457 2.1892 5 103.5
4 18 11 175 406 2.1714 11 171.77
5 18 7 29.982 555 2.1873 7 29.765

Average 18 8.2 83.1472 443 2.16982 8.2 82.5324

Table 4.9: Average Method: Five instances average comparison (18 × 18 × 18)

n B&B cost Time/sec Average cost Time/sec B&B X0 cost Time/sec
1 20 8 417.81 421 3.8634 8 398.23
2 20 2 127.07 427 3.9904 2 126.06
3 20 5 350.17 572 3.8909 5 345.04
4 20 3 56.967 468 4.3926 3 56.761
5 20 5 339.91 397 3.8903 5 354.84

Average 20 4.6 258.3854 457 4.00552 4.6 256.1862

Table 4.10: Average Method: Five instances average comparison (20 × 20 × 20)

n B&B cost Time/sec AM cost Time/sec B&B X0 cost Time/sec
1 22 3 2399.9 573 6.9149 3 2285.6
2 22 2 112.01 570 6.7059 2 112.32
3 22 3 154.87 411 8.6768 3 150.51
4 22 1 12.142 641 8.183 1 12.078
5 22 3 48.183 749 6.7695 3 45.933

Average 22 2.4 545.421 588.8 7.45002 2.4 521.2882

Table 4.11: Average Method: Five instances average comparison (22 × 22 × 22)

n B&B cost Time/sec AM cost Time/sec B&B X0 cost Time/sec
1 24 3 3810.1 829 11.7 3 3731.6
2 24 2 305.78 635 11.41 2 295.99
3 24 1 3730.4 555 13.746 1 3602
4 24 2 2658 636 11.552 2 2797.1
5 24 3 1001.7 564 11.765 3 1014

Average 24 2.2 2301.196 643.8 12.0346 2.2 2288.138

Table 4.12: Average Method: Five instances average comparison (24 × 24 × 24)
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n B&B cost Time/sec AM cost Time/sec B&B X0 cost Time/sec
1 26 1 5769.7 742 18.914 1 5765.8
2 26 2 5807.8 648 18.887 2 5822.7
3 26 1 5721.3 522 18.917 1 5716.8
4 26 1 5804.4 1007 18.893 1 5735.1
5 26 2 5804.4 1007 18.893 2 5735.1

Average 26 1.4 5781.52 785.2 18.9008 1.4 5755.1

Table 4.13: Average Method: Five instances average comparison (26 × 26 × 26)

4.4 The Addition Method

In this section we have applied a new approach to find the basic initial solution to SAP.

The problem can be solved based on two stages. The first stage is to convert the SAP

from three dimensional problem into two dimensions linear problem by using addition

operator.

The methodology of the Addition Method (AM) is simply adding the costs of allocation

machines for each worker in each factory while in the second stage we applied the well

known Hungarian method, [42]. This method is good for large dimension problems and

it is significantly faster compared to other methods. Algorithm 8 described the procedure

of AM.
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Algorithm 8: The Addition Method
1: Input n the number of jobs, machines and factories, where n ≥ 2.
2: Input Ci jk the matrix of the allocation costs, where (i, j and k = 1, 2, ...,n).
3: Add the costs of each of the n machines in all the factories allocated to all the jobs.

n × n costs matrix is formulated.
4: Apply the Hungarian assignment method to the n × n matrix formulated from (3).
5: Formulate another linear n × n dimensional costs matrix of the allocated machines in

the factories selected from (4).
6: By applying the Hungarian assignment method again, we will reach the required

allocation of jobs, machines and factories.
7: Sum the selected allocations total costs. Stop.

The following Example 4.4.1 explains how to apply AM to SAP.

Example 4.4.1 Let us consider the size of the problem as n = 4. Let C be the allocation

costs matrix for all the jobs, machines and factories as shown in the following matrix;

C =



8 6 9 9 4 6 6 6 2 6 4 1 7 6 9 7

9 0 9 4 9 0 7 1 0 3 3 4 7 1 3 2

1 2 1 8 7 8 7 7 0 9 7 4 2 1 5 5

9 5 9 1 9 9 3 0 8 0 7 6 6 4 2 6


.

Our target is to obtain an optimum or near optimum solution for a SAP allocation. To

solve this example, apply step (3) to convert the problem from three dimensions to two;

we will have S as a 4× 4 matrix. We have added the costs of workers on the machines for
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every job at each factory as follow;

S =



32 22 13 29

22 17 10 13

12 29 20 13

24 21 21 18


.

Using step 5 and applying the Hungarian method we will have the allocation in boxed

figures as follows;

S =



32 22 13 29

22 17 10 13

12 29 20 13

24 21 21 18


.

These boxed figures represent the original allocation of jobs to the machines in the factories

as it is shown as follows;

C =



8 6 9 9 4 6 6 6 2 6 4 1 7 6 9 7

9 0 9 4 9 0 7 1 0 3 3 4 7 1 3 2

1 2 1 8 7 8 7 7 0 9 7 4 2 1 5 5

9 5 9 1 9 9 3 0 8 0 7 6 6 4 2 6


.

The next step is to select the allocated costs and arrange a linear 4 × 4 matrix SS. The

step will convert the problem from three dimensions into two. Now we can apply the

Hungarian assignment method again and we have converted the matrix SS with circled
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allocation costs as follows;

SS =



2 6 4 1

7 1 3 2

1 2 1 8

9 9 3 0


.

The allocation of jobs, machines and factories are,

Factory F1 : Job J3 : Machine M3 = 1.

Factory F2 : Job J4 : Machine M4 = 0.

Factory F3 : Job J1 : Machine M1 = 2.

Factory F4 : Job J2 : Machine M2 = 1.

The total minimum cost = 4.

The final circled allocations are assigned in C costs matrix as follows;

C =



8 6 9 9 4 6 6 6 2 6 4 1 7 6 9 7

9 0 9 4 9 0 7 1 0 3 3 4 7 1 3 2

1 2 1 8 7 8 7 7 0 9 7 4 2 1 5 5

9 5 9 1 9 9 3 0 8 0 7 6 6 4 2 6


.

The total cost is the summation of the circled costs 1 + 0 + 2 + 1 = 4.
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4.5 Tie Cases

In this section we consider the different tie cases that play important roles and affect the

results of the solution of SAP. One of the points is the nature of the data used, if the data

are homogeneous or not, or there are extreme values among the data either very small or

very large this will divert the results. For example, if we look at the allocation costs, we

will notice that some of the costs are extremely large and some times the data look like

similar or very close to each other. This situation makes it very difficult to decide which

allocation cost to select. If this happened we call it a tie case or a tie situation.

Let us consider the 4×4×4 dimensions SAP problem. As it has been discussed before,

the allocation costs is given as follows;

C =



3 4 2 3 2 4 4 2 1 4 4 4 2 2 4 4

2 6 2 2 3 4 2 3 3 3 3 3 3 1 4 5

3 4 3 2 5 2 1 5 3 4 3 3 4 2 3 3

6 2 4 1 2 5 2 3 3 5 2 2 3 4 3 2


.

Apply Algorithm 8 by adding the allocation costs of the machines in each factory

and applying the Hungarian method, we have different results as it is explained in the

following tie cases;
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4.5.1 Tie problem: Case 1

S =



12 12 13 12

12 12 12 13

12 13 13 12

13 12 12 12


, SS =



3 4 2 3

3 4 2 3

4 2 3 3

3 5 2 2


.

C =



3 4 2 3 2 4 4 2 1 4 4 4 2 2 4 4

2 6 2 2 3 4 2 3 3 3 3 3 3 1 4 5

3 4 3 2 5 2 1 5 3 4 3 3 4 2 3 3

6 2 4 1 2 5 2 3 3 5 2 2 3 4 3 2


.

The solution is the sum of all the allocated costs 2 + 3 + 2 + 2 = 9.

4.5.2 Tie problem: Case 2

S =



12 12 13 12

12 12 12 13

12 13 13 12

13 12 12 12


, SS =



2 2 4 4

3 3 3 3

3 4 3 2

2 5 2 3


.

C =



3 4 2 3 2 4 4 2 1 4 4 4 2 2 4 4

2 6 2 2 3 4 2 3 3 3 3 3 3 1 4 5

3 4 3 2 5 2 1 5 3 4 3 3 4 2 3 3

6 2 4 1 2 5 2 3 3 5 2 2 3 4 3 2


.

The solution after applying the Hungarian method is the sum of all the allocated costs
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2 + 3 + 2 + 2 = 9.

4.5.3 Tie problem: Case 3

S =



12 12 13 12

12 12 12 13

12 13 13 12

13 12 12 12


, SS =



2 4 4 2

2 6 2 2

4 2 3 3

3 5 2 2


.

C =



3 4 2 3 2 4 4 2 1 4 4 4 2 2 4 4

2 6 2 2 3 4 2 3 3 3 3 3 3 1 4 5

3 4 3 2 5 2 1 5 3 4 3 3 4 2 3 3

6 2 4 1 2 5 2 3 3 5 2 2 3 4 3 2


.

The solution after applying the Hungarian method is the sum of all the allocated costs

2 + 2 + 2 + 2 = 8.

4.5.4 Tie problem: Case 4

S =



12 12 13 12

12 12 12 13

12 13 13 12

13 12 12 12


, SS =



2 4 4 2

3 3 3 3

3 4 3 2

3 4 3 2


.
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C =



3 4 2 3 2 4 4 2 1 4 4 4 2 2 4 4

2 6 2 2 3 4 2 3 3 3 3 3 3 1 4 5

3 4 3 2 5 2 1 5 3 4 3 3 4 2 3 3

6 2 4 1 2 5 2 3 3 5 2 2 3 4 3 2


.

The solution after applying the Hungarian method is the sum of all the allocated costs

2 + 3 + 2 + 3 = 10.

4.5.5 Tie problem: Case 5

S =



12 12 13 12

12 12 12 13

12 13 13 12

13 12 12 12


, SS =



3 4 2 3

3 3 3 3

4 2 3 3

2 5 2 3


.

C =



3 4 2 3 2 4 4 2 1 4 4 4 2 2 4 4

2 6 2 2 3 4 2 3 3 3 3 3 3 1 4 5

3 4 3 2 5 2 1 5 3 4 3 3 4 2 3 3

6 2 4 1 2 5 2 3 3 5 2 2 3 4 3 2


.

The solution after applying the Hungarian method is the sum of all the allocated costs

2 + 3 + 2 + 2 = 9.

As we can see from the five tie problem cases, there are different results and the best

solution is tie problem case 3 where the minimum allocation cost is 8. But unfortunately

non of the cases reach the optimum solution as the method failed to reach the best result

because the nature of the input data. Although the problem is small size, we have 5 cases.



4.6. Case Study: Different Functions for the Addition Method 93

This method is good if the problem’s size is large. The data will disperse in a large space.

Although we have five options but the optimum was not obtained. The best solution is

as follows;

S =



12 12 13 12

12 12 12 13

12 13 13 12

13 12 12 12


, SS =



1 4 4 4

3 1 4 5

5 2 1 5

6 2 4 1


.

C =



3 4 2 3 2 4 4 2 1 4 4 4 2 2 4 4

2 6 2 2 3 4 2 3 3 3 3 3 3 1 4 5

3 4 3 2 5 2 1 5 3 4 3 3 4 2 3 3

6 2 4 1 2 5 2 3 3 5 2 2 3 4 3 2


.

The optimum solution is the sum of all the allocated costs 1 + 1 + 1 + 1 = 4.

4.6 Case Study: Different Functions for the Addition Method

In this case study we have used two different functions A1 and A2 with random selecting

data. We applied the AM starting from size 50 up to 800. The AM reaches an optimum

solution and total cost is zero in fast time, the two functions used to generate two sets of

different random unbiased data. The first function A1 = fix(10 ∗ rand(n,n,n)) generate

random data using MATLAB code, the second function A2 = fix(a + (b−a). ∗ rand(n,n,n))

generate random numbers, where a = 0, b = 10.

Table 4.14 shows that when the size of the problem starts from n = 50 we reach near
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optimum solution, but at size n = 100 up to n = 800 we reached the optimum solution

and the total cost is zero from both unbiased functions A1 and A2 with considerable times

1113.1 and 1101.6 seconds for both functions.

In Table 4.15 we used another two functions to generate unbiased random data with

different range of decimal numbers, A3 = (100 ∗ rand(n,n,n)) is the first function and

A4 = fix(a+ (b−a). ∗ rand(n,n,n)) is the second function where a = 0, b = 100. Because we

used real numbers it is obvious that with increasing the size of the problem, the total cost

decreases and that is clear from the random distributed function A4. We have reached

optimum or near solution at problem size 400, the cost is 2 and the time is 47.4575 seconds.

The four functions that generate random numbers simply spread out the uniformly

generated numbers in different intervals and with larger ranges the chance of having Tie

cases is possible.As it is shown in Table 4.14 and Table 4.1.

A1 A2

n Total Cost Time (Sec) Total Cost Time (Sec)
50 1 0.0716 1 0.0709

100 0 0.2516 0 0.2578
150 0 0.7901 0 0.7920
200 0 2.4401 0 2.4200
250 0 6.0753 0 6.0536
300 0 12.4541 0 12.2679
350 0 22.4312 0 22.5187
400 0 47.5084 0 47.4077
450 0 85.9222 0 85.1503
500 0 139.6855 0 138.2706
550 0 211.0530 0 209.8084
600 0 307.1052 0 303.1334
650 0 432.1390 0 441.6483
700 0 599.0299 0 603.1973
750 0 798.3316 0 827.4262
800 0 1113.1 0 1101.6

Table 4.14: AM: The A1 and A2 total cost comparisons
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A3 A4

n Total Cost Time(Sec) Total Cost Time(Sec)
50 108.2962 0.0845 78.0000 0.0793

100 103.3870 0.2906 55.0000 0.2785
150 120.1544 0.9324 49.0000 0.8483
200 109.8225 2.6417 24.0000 2.6401
250 128.3742 6.4571 26.0000 6.6330
300 128.6120 13.0053 16.0000 13.0731
350 124.5820 23.1420 8.0000 23.2739
400 133.4406 48.4694 2.0000 47.4575
450 126.9781 85.5552 1.0000 85.2628
500 129.9565 138.1425 2.0000 137.9296
550 128.6686 209.0964 0 213.7691
600 132.6624 312.9279 1.0000 316.2109
650 140.2924 448.8763 0 436.7286
700 141.5285 583.4882 0 591.5969

Table 4.15: AM: The A3 and A4 total cost comparisons.

We used other two different random Poisson distribution functions B1 and B2. Monte

Carlo simulation applied for 20 instances started from n = 10 up to n = 500 with different

intervals. The average results that we obtained are more accurate and reliable than the

previous results generated from single instance of A1,A2,A3 and A4 functions. The two

functions B1 and B2 that generate the random numbers simply spread out the Poisson

generated numbers in different mean (λ) and with large size problems up to n = 500,

the result converges to small cost. (λ = 3) applied in Poisson formula of the results in

Table 4.16 and (λ = 5) in Table 4.17. The mathematical formula for Poisson distribution

function is as follows;

f (x | λ) =
λx

x!
e−λ; x = 0, 1, . . . ,∞. (4.1)

Where the mean is λ and the standard deviation is
√
λ.
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n Instances B1 Average Cost B1 Average Time (Sec)
10 20 5.85 0.0042106
20 20 5.7425 0.0081049
30 20 3.3871 0.012325
40 20 2.6694 0.023673
50 20 1.6835 0.03754
60 20 0.63417 0.056388
70 20 0.53171 0.081303
80 20 0.62659 0.11717
90 20 0.23133 0.16443

100 20 0.061566 0.21835
110 20 0.0030783 0.28375
120 20 0.050154 0.37438
130 20 0.0025077 0.48059
140 20 0.00012538 0.61178
150 20 0.050006 0.78012
160 20 0.00012502 0.99111
170 20 6.2508 exp(−06) 1.2447
180 20 3.1254 exp(−07) 1.627
190 20 1.5627 exp(−08) 2.0574
200 20 0 2.5709
250 20 0 6.4788
300 20 0 13.23
350 20 0 23.534
400 20 0 49.101
450 20 0 87.738
500 20 0 144.200

Table 4.16: AM: The Poisson B1 comparisons, λ = 3 for 20 instances.
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n Instances B2 Average Cost B2 Average Time (Sec)
10 20 16.300 0.0097539
20 20 25.265 0.0095567
30 20 31.863 0.016358
40 20 34.943 0.03632
50 20 38.847 0.05577
60 20 41.292 0.067569
70 20 42.865 0.10935
80 20 45.693 0.13912
90 20 46.235 0.19125

100 20 47.012 0.27391
110 20 47.001 0.35474
120 20 49.450 0.45579
130 20 49.673 0.56916
140 20 51.034 0.70500
150 20 49.252 0.90868
160 20 50.463 1.10020
170 20 48.873 1.35250
180 20 46.994 1.65290
190 20 46.500 2.05740
200 20 45.175 2.78240
250 20 37.900 6.84280
300 20 30.195 13.5870
350 20 23.860 25.1420
400 20 19.943 51.4130
450 20 15.497 87.1970
500 20 12.025 142.680

Table 4.17: AM: The Poisson B2 comparisons, λ = 5 for 20 instances.



4.7. The Multiplication Method 98

4.7 The Multiplication Method

The Multiplication Method (MM) is another approach to find the basic initial solution to

SAP. It is similar to the previous AM. The only difference is applying the multiplication

instead of the addition operator. The problem can be solved based on two stages. The

first stage is to convert SAP from three dimensional into two dimensions linear problem

. We will simply multiply the costs of allocation machines in each factory while in the

second stage we will use the well known Hungarian method, [42].

In the first stage will convert the problem from SAP into a linear two dimensional

problem. In the second stage applying the Hungarian method twice to solve the problem

and reach an optimum or near solution. This method is suitable for small and medium

size problems, because of the nature of the multiplication operator, the multiplication

process effect will increase significantly when the size of the problem become larger. MM

is relatively faster compared to other methods. Algorithm 9 shows the procedures of

MM;

Algorithm 9: The Multiplication Method
1: Input n to be the number of jobs, machines and factories, where n ≥ 2.
2: Input Ci jk to be the matrix of the allocation costs, where (i, j and k = 1, 2, ...,n).
3: Multiply the costs of all n machines in each factory allocated to all the jobs.

Formulate an n × n costs matrix.
4: Apply the Hungarian method to the n × n matrix formulated from 3.
5: Formulate another linear n × n costs matrix of the allocated machines in the factories

selected from 4.
6: By applying the Hungarian method again, we will reach the required allocation of

jobs, machines and factories.
7: Sum the allocation total costs. Stop.

Example 4.7.1 explains how to apply the MM to solve the SAP.
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Example 4.7.1 Let the dimension of the problem is n = 4, the objective function is subject

to SAP constraints. Let us assume that C be the allocation costs matrix for all the jobs,

machines and factories as shown in the following C cost matrix;

C =



81 63 95 95 42 65 67 65 27 69 43 18 70 65 95 75

90 09 96 48 91 03 75 17 04 31 38 48 75 16 34 25

12 27 15 80 79 84 74 70 09 95 76 44 27 11 58 50

91 54 97 14 95 93 39 03 82 03 79 64 67 49 22 69


.

Our target is to reach an optimum or near optimum for allocation of SAP. We applied

Algorithm 9 step 3. Multiply the costs of each row (Machines) in each square matrix

(Factories), the outcomes are as follow;

S =



46054575 11889150 1441962 32418750

3732480 348075 226176 1020000

388800 34374480 2859120 861300

6673212 1033695 1243776 4983594


.

Using step 5 and applying the Hungarian method we will have the allocation in the boxed

numbers as follows;

S =



46054575 11889150 1441962 32418750

3732480 348075 226176 1020000

388800 34374480 2859120 861300

6673212 1033695 1243776 4983594


.
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These boxed numbers represent the original allocation of jobs to the machines in the

factories as it is shown as follows;

C =



81 63 95 95 42 65 67 65 27 69 43 18 70 65 95 75

90 09 96 48 91 03 75 17 04 31 38 48 75 16 34 25

12 27 15 80 79 84 74 70 09 95 76 44 27 11 58 50

91 54 97 14 95 93 39 03 82 03 79 64 67 49 22 69


.

The next step is to select the boxed cost and arrange a linear 4 × 4 matrix cost SS.

Applying the Hungarian assignment method again, we will have the following matrix in circled

allocations.

SS =



27 69 43 18

75 16 34 25

12 27 15 80

95 93 39 03


.

The allocation jobs, machines and factories are as follows;

Factory F1 : Job J3 : Machine M3 = 15.

Factory F2 : Job J4 : Machine M4 = 03.

Factory F3 : Job J1 : Machine M1 = 27.

Factory F4 : Job J2 : Machine M2 = 16.

The final circled allocations are assigned in C costs matrix as follows;

C =



81 63 95 95 42 65 67 65 27 69 43 18 70 65 95 75

90 09 96 48 91 03 75 17 04 31 38 48 75 16 34 25

12 27 15 80 79 84 74 70 09 95 76 44 27 11 58 50

91 54 97 14 95 93 39 03 82 03 79 64 67 49 22 69


.
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The total cost is the summation of the circled costs = 15 + 03 + 27 + 16 = 61.

4.8 Summary

We have designed new heuristic approaches to solve SAP. They are the Average Cost

Method (ACM), the Addition Method (AM) and the Multiplication Method (MM). The

algorithms have been presented, illustrated and tested on some small size problems.

Comparisons tables of the AD with large size problems by using Poisson distribution

with random generating numbers explains the convergence of the total cost to zero which

indicate that the solution is either optimal or near optimal solution. Moreover, a review of

the literature relevant to the problem has been presented. The main issue is to understand

why the method works at all, how reliable it is, how robust, accurate and efficient it is

compared to other approaches.



Chapter 5

The Genetic Algorithm

5.1 Introduction

The Genetic Algorithm (GA) is a directed search algorithm based on the mechanics of

biological evolution. Developed by John Holland, [2], the idea is to use genes and chro-

mosomes as encoding techniques. The following definitions are useful to understand the

terms used in genetic algorithms.

Definition 5.1.1 Fitness Function

Fitness function is used to rank solutions against each other. It is often the objective

function of the optimisation problem in hand.

Definition 5.1.2 Elitism

Elitism is a method used to guarantee keeping the good or the best chromosome that we

need to use them in the next generated population.

When we apply crossover and mutation on the chromosomes, there is a chance that

102
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we will miss selection of the good or best chromosomes. To avoid the loss of the best

chromosomes, while generating new population, we are using elitism method to select the

good chromosomes and copying them to the next generation. The rest of chromosomes

are done in classical way. Elitism can increases the performance of the GA to be fast,

because it prevents losing the best found solution.

Definition 5.1.3 Reproduction

Parents are selected at random with selection chances biased in relation to chromosome

evaluations.

The cycle of the reproduction of a population from the parents and children explained in

the following relationship;

Reproduction −→ Children / Parents

↓ ↑

Population.

Definition 5.1.4 Modifications

The affects happened on chromosomes by changing the structure of them when applying

mutation or crossover (recombination).

The chromosomes and mutations are playing an important rule in changing and improv-

ing the structure of the children, generation after generation. The following relationship

shows the modification of the children.
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Children −→ Modification (chromosomes and mutation)

↓

Modified Children.

Definition 5.1.5 Evaluation Operator

Evaluation is the operator that link between the fitness function that we wanted to solve

and the GA coding. The evaluator is responsible to assign the chromosome of the child a

fitness measure.

The following relationship of modifying the children using the evaluation operator as

follows;

Modified Children

↓

Evaluation (assign a fitness measure) −→ Evaluated Children.

Definition 5.1.6 Roulette Wheel Selection

Parents are selected according to their fitness values. The better chromosomes have more

chances to be selected. Imagine a roulette wheel where all chromosomes in the population

are placed and the area each chromosome has corresponds to its fitness function, like on

a circle divided into different pie sectors, then a marble is thrown there and it selects the

chromosome. Chromosomes with higher rank fitness will be selected more times.

Definition 5.1.7 Steady State Selection

Some population with good chromosomes replaced other with bad chromosome in each

generation.
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The following points are representing the basic outline of the genetic algorithm to solve

SAP.

1. Initialisation

Initialisation is the starting phase to create genes and chromosomes. After defining

the size n of SAP, generate random population of size N chromosomes. Each chro-

mosome has a number of genes. N is not fixed and its variation depends on the size

n of the problem. If n is large the population N is large too and N > n > 0.

2. Fitness Function

The fitness function is to evaluate the function f (x) of each chromosome x in the

population. The fitness function for SAP is to minimise f (x) subject to the constraints

as it was mentioned in Chapter 2, Equations 2.6 to 2.10. C = {ci jk} is the cost or the

weight of allocating.

3. New Population

Until the mating in the pool is completed, the new population can be created by

repeating the process using one or more of the following operators;

• Selection

Selection is a procedure to select chromosomes (parents) in the population

for reproduction, selecting two chromosomes according to their fitness. The

process determines which to be kept and allowed to reproduce and which to be

removed. There are different techniques to implement selection in the genetic

algorithms, we used roulette wheel, rank and steady state selection operators.

There are different selection’s operators such as;
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(a) Tournament.

(b) Roulette Wheel.

(c) Proportionate.

(d) Rank.

(e) Steady State.

(f) Others.

• Crossover

It is a second operator to select randomly two parents with a crossover proba-

bility from the population, either to select a single point or several points of the

chromosome from each parent. Crossover two parents to form new children.

For two points crossover; select randomly a segment size of genomes from

both parents, crossover them to form new offspring (children). If no crossover

performed, it means that offspring is an exact copy of parents.

• Mutation

The mutation is a third operator to select randomly a chromosome from the

population. With a mutation probability, mutate a new offspring by selecting

randomly two genomes from a parent chromosome from the population and

swap or flip their positions in the same chromosome.

• Accepting

By accepting the procedure of mating it means we accept to place new offspring

in a new population.

4. Replace
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Replace the old generation by a new generated population for further run of the

algorithm.

5. Test

The running process is tested to see if the conditions have been satisfied. It will

terminate and stop if it is satisfied and return the best solution in current population.

6. Repeat

Repeat the process if it is not satisfied to find better fitness function.

5.2 The Genetic Algorithm for SAP

The fitness function is to optimise the total cost of SAP subject to the constraints where

the allocation costs are known. To simplify the problem, presume that one allocation is

successful; mathematically it is ON and it is represented by 1, if it is not allocated it is

OFF and it represented by 0. Suppose a size 3 SAP problem with costs as shown in the

following Table 5.1.

Factories F1 F2 F3

Machines M1 M2 M3 M1 M2 M3 M1 M2 M3

J1 4 3 2 1 2 3 1 3 2
Jobs J2 1 2 3 4 5 3 4 2 1

J3 1 1 2 6 1 2 1 3 1

Table 5.1: GA: SAP costs matrix.

Rewrite Table 5.1 as it is shown in Table 5.2 where the allocations for a1 = {4,3,2 }, a2 =

{1,2,3 } and a3 = {1,3,2 }, same process applied to b1 = {1,2,3 }, b2 = {4,5,3 } and b3 = {4,2,1 },

finally c1 = {1,1,2 }, c2 = {6,1,2 } and c3 = {1,3,1 }.
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Factories F1 F2 F3

Machines M1 M2 M3 M1 M2 M3 M1 M2 M3

J1 a1 a2 a3

Jobs J2 b1 b2 b3

J3 c1 c2 c3

Table 5.2: GA: Symbolised Costs.

To solve SAP using the GA, SAP can be represented with a suitable fitness function

and generating a set of population. Let assume the random permuted number n = 1, 3, 2

or a1, b3, c2 and Table 5.3 shows the costs related to each allocation. Furthermore, the

Factories F1 F2 F3

Machines M1 M2 M3 M1 M2 M3 M1 M2 M3

J1 a1 = 4, 3, 2 - -
Jobs J2 - - b3 = 4, 2, 1

J3 - c2 = 6, 1, 2 -

Table 5.3: GA:Chromosome Allocations.

selected chromosome from Table 5.3 can be re-arranged as a two dimensional matrix, as

in Table 5.4. Selecting the second random permuted number, say n = 1, 3, 2 means we are

M1 M2 M3

J1 4 3 2
J2 4 2 1
J3 6 1 2

Table 5.4: GA: Chromosomes Matrix.

allocating the machines in the nominated factories (1,3,2). The new machine allocations

can be written as binary digit as follows; {100,001,010} which means J1 allocated to M1 in

F1, J2 allocated to M3 in F3 and finally J3 is allocated to M2 in F2 or the final binary allocation

is {(1,1,1), (2,3,3), (3,2,2)} and Table 5.5 shows that we have assigned the allocation. The

total sum is 4 + 1 + 1 = 6 and this is only one solution of many other solutions we need to

go through them.
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Factories F1 F2 F3

Machines M1 M2 M3 M1 M2 M3 M1 M2 M3

J1 4 - - - - - - - -
Jobs J2 - - - - - - - - 1

J3 - - - - 1 - - - -

Table 5.5: GA: Job Allocations.

The important question is, how do we assign the jobs to the machines in the factories?

It is important to understand the idea of this allocation as it plays an important role to

implement the fitness function. We used two methods to do the assignment of the jobs to

the machines in the factories and implementing the fitness function. These two methods

will be explained in more details with examples in the next section.

5.3 Implementing the Fitness Function

Two methods have been used to implement the fitness function. The first method depends

totally on selecting random permuted numbers twice to do allocation while the second

used random permuted numbers and the Hungarian method to do the allocation. To

implement the fitness function we will use random permutation encoding numbers which

is defined and explained as follows;

Definition 5.3.1 Randomly Permuted Encode Function

The Randomly Permuted Encode Function (RPEF) is used in scheduling or allocation

problems, such as the travelling salesman problem. It is useful for ordering problems. We

will apply random permutation encoding in calculating the initial solution for SAP. We

consider every chromosome as a string representing the factories or machines.

The following generating chromosomes are representing two strings of 12 random
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permuted numbers.

Chromosome A: 08 02 10 07 01 04 09 05 12 11 06 03

Chromosome B: 04 07 11 02 10 03 09 05 06 01 08 12

5.4 Random Permuted Numbers Method to Solve SAP

The basic steps of the random permuted numbers method (RPNM) are as follows;

1. Initialisation: Initialise the problem and select the number of machines = n, the pop-

ulation = N where, N > n and both n and N are non negative integer numbers.

2. Randomly Permuted Numbers: Generate random permute n numbers.

3. Allocation: Allocate the first random permuted number to the first job in the first

factory and the second random permuted number to the second job in the second

factory, continue until finishing all the permuted numbers. Assign the first set of

machines to the first job in the first permuted factory, continue the same procedure

and allocate all the sets of machines accordingly.

4. Machine allocations: Generate another random permuted n numbers to select the first

permute number of n and fix it to the machine to be allocated to the first job in the

first factory. Continue for all the remaining machines.

5. Total cost Calculate the total cost by adding the cost of each machine allocated to the

job in the factory.

Example 5.4.1 In this example we will explain how to calculate the fitness function ap-

plying method (RPNM), let the number of machines to be allocated in each factory is
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n = 4. There are four workers allocated to do the four jobs on the four machines in the

four factories such that each worker is allowed to do one job only on one machine in one

factory. The cost of doing the jobs on the machines in the factories are given in Table 5.6.

Factories F1 F2 F3 F4

Machines M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

J1 8 6 9 9 4 6 6 6 2 6 4 1 7 6 9 7
Jobs J2 9 0 9 4 9 0 7 1 0 3 3 4 7 1 3 2

J3 1 2 1 8 7 8 7 7 0 9 7 4 2 1 5 5
J4 9 5 9 1 9 9 3 0 8 0 7 6 6 4 2 6

Table 5.6: GA: SAP Size 4 Problem

Applying the basic steps of the random permuted function. Let us assume the numbers

(1 4 3 2) be the generated random permuted numbers for the machines is n = 4. Applying

the allocation step, the first permuted number is 1 so we shall allocate all the machines in

factory F1 to the job J1. Which means that J1 can be allocated to any machine in factory

F1. As from Table 5.7 , the costs of allocating J1 to do jobs in factory F1 are {8, 6, 9, 9},

repeat the same procedure for the second random permuted number 4 and the costs are

{7, 1, 3, 2}, for the third random permuted number 3 the costs are {0, 9, 7, 4} and finally the

fourth random permuted number 2 the costs are {9, 9, 3, 0}. The allocation positions are

explained in the following Table 5.7 and Table 5.8.

Machines M1 M2 M3 M4 Fi

J1 8 6 9 9 F1

Jobs J2 7 1 3 2 F4

J3 0 9 7 4 F3

J4 9 9 3 0 F2

Table 5.7: GA: Machine Allocations.

Next step is to start the allocations to achieve this, we will generate another n random permuted

numbers, let us say {3 1 4 2}. From Table 5.8, the distribution of the machines will be the third

machine M3 is allocated to the first job J1 in factory F1 and the cost of allocation is 9. Also, the first
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Factories F1 F2 F3 F4
Machines M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

J1 8 6 9 9 4 6 6 6 2 6 4 1 7 6 9 7

Jobs J2 9 0 9 4 9 0 7 1 0 3 3 4 7 1 3 2

J3 1 2 1 8 7 8 7 7 0 9 7 4 2 1 5 5

J4 9 5 9 1 9 9 3 0 8 0 7 6 6 4 2 6

Table 5.8: GA: SAP Allocation Costs Matrix.

machine M1 is allocated to job J2 in factory F4 and the cost of allocation is 7. Similarly, the second

machine M4 is allocated to job J3 in the factory F3 and the cost of allocation is 4. Finally, the second

machine M2 is allocated to job J4 in factory F2 and the cost of allocation is 9. The fitness function

is equal to the total sum of the allocation costs (9, 7, 4, 9), hence f (x) = 29. Table 5.9 and Table 5.10

show the circled costs of the allocated machined to the jobs in the factories. Until now we have

Machines M1 M2 M3 M4 Fi

J1 8 6 9 9 F1

Jobs J2 7 1 3 2 F4

J3 0 9 7 4 F3

J4 9 9 3 0 F2

Table 5.9: GA: The SAP Allocation.

Factories F1 F2 F3 F4
Machines M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

J1 8 6 9 9 4 6 6 6 2 6 4 1 7 6 9 7

Jobs J2 9 0 9 4 9 0 7 1 0 3 3 4 7 1 3 2

J3 1 2 1 8 7 8 7 7 0 9 7 4 2 1 5 5

J4 9 5 9 1 9 9 3 0 8 0 7 6 6 4 2 6

Table 5.10: GA: Circled Allocation Costs

calculated only one fitness function from the population. The total cost or the fitness value is the

sum of the allocated machine cost and it is equal to 29. Repeat the same procedures to calculate all

other fitness function for all the N population strings. After calculating all the population fitness

function costs, we rank all the costs obtained by arranging them in ascending or descending order.
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Next step is to apply the process of the roulette wheel operator to find the best solution among all

the fitness function costs.

5.5 Random Permuted Numbers and the Hungarian Method

The basic steps of the random permuted numbers and the Hungarian method are ex-

plained in the following Algorithm 10.

Algorithm 10: Randomly Permute Number and the Hungarian Method
1: Initialisation

Initialise the problem and select n factories, N population, where N > n > 0.
2: Permute Function

Generate n randomly permuted factory numbers.
3: Allocation

Allocate the first random number to the first job in the first factory and the second
number to the second job in the second factory, continue until finishing all the
permuted numbers. Assign the first set of machines to the first job in the first
permuted factory, continue the same procedure and allocate all the sets of machines
accordingly.

4: Hungarian Assignment
Assemble all the sets of machines from the previous 3, apply the Hungarian method
to the n × n selected set of Factories.

5: Total cost
Calculate the total cost of all the allocated machines by adding the cost allocation.
Stop.

As mentioned before, this is only one set of allocation for only one fitness cost. Selecting

a set of these chromosomes each time will enable us to generate the required population.

The next step is to find out the other sets of allocations and calculate the related cost to

each allocation. Then, sort all the costs in ascending or descending order and rank the

chromosomes accordingly in order to select the best or the minimum cost.

The selection of the best solution depends on some factors such as the number of

population, generation numbers, the type of chromosomes crossover (single or multiple),
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the mutation of the chromosomes and the number of elites. All these factors and their

percentages might affect the result and change the values of the fitness function, either to

improve or worsen the final solution.

Example 5.5.1 Using Example 5.4.1 , we will explain how to calculate the fitness function

applying the random permuted numbers and Hungarian assignment method. Apply

the first two steps and Table 5.7 from the previous example and applying the Hungarian

method we have the following solution as shows in Table 5.11, the circled numbers

represent the allocation of machines to jobs in the permuted factories. It is clear from

Machines M1 M2 M3 M4 Fi

J1 8 6 9 9 F1

Jobs J2 7 1 3 2 F4

J3 0 9 7 4 F3

J4 9 9 3 0 F2

Table 5.11: The SAP allocation.

Table 5.11 that machine M3 is allocated to job J1 in the first random permuted selected

factory F1, machine M2 is allocated to job J2 in the factory F4, machine M1 is allocated to

job J3 in the factory F3 and machine M4 is allocated to job J4 into the factory F2. The total

cost is 10.
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5.6 The Genetic Algorithm to Solve SAP

In this section we have used the GA method to solve the SAP with size n = 3.

let C = {cijk} be the cost of allocation as follows;

C =


81 91 27 96 95 14 79 03 67

90 63 54 15 48 42 95 84 75

12 09 95 97 80 91 65 93 74


.

The matrix cost is divided into three matrices, the first matrix is the cost of the first factory,

the second cost of the second factory and the third of the third factory. To initialise the

problem let us presume the following input data.

Population = 10.

Generations = 20

Crossovers = 7.

Mutation = 1.

Elite = 1.

Population Hungarian Fitness
permute numbers assignment value

3 1 2 2 3 1 154
2 3 1 3 2 1 110
1 2 3 3 1 2 135
2 1 3 3 2 1 142
1 3 2 3 1 2 202
3 1 2 2 3 1 154
2 1 3 3 2 1 142
3 1 2 2 3 1 154
3 2 1 2 3 1 57
1 2 3 3 1 2 135

Table 5.12: GA: Population numbers, Hungarian method and fitness value
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Re-arranging the fitnesses values in descending order and repeating the process ac-

cording the number of generations, G = 20. The final solution is as follows;

The population permuted is 3 2 1.

The Hungarian assignment cost is 2 3 1.

The Optimum cost is 57.

The final allocations and the costs are as it is explained in Table 5.13 Hence the final allo-

Factories F1 F2 F3

Machines M1 M2 M3 M1 M2 M3 M1 M2 M3

J1 - - - - - - 79 3 67

workers J2 - - - 15 48 42 - - -

J3 12 09 95 - - - - - -

Table 5.13: GA: The Final Allocations.

cations are;

First worker to do J1 on M2 in F3 = 03.

Second worker to do J2 on M3 in F2 = 42.

Third worker to do J3 on M1 in F1 = 12.

The optimum value is 57, it is the same value comparing to the classical B&B method, the

time was 0.29968 second while the execution time using B&B method was 0.55827 second.

MATLAB code used on the same Lenovo laptop device.

For the permuted method without applying the Hungarian method, we have solved

the same problem applying the random permuted function twice with the following data

initialisation,

Population number = 10.

Generation number = 5.
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Crossover number = 5.

Mutation number = 2.

Elite number = 2.

We have reached the same optimum value 57 and same allocation as the previous

method, the execution time is 0.098029 second while in B&B method is 0.57638 second.

5.7 Summary

We have solved the SAP using GA. Two methods have been used, the first method depends

on generating a randomly permuted number function twice. The first random number

is required to select the factories allocated to the workers to do the jobs and the second

random number is required to select the machines from the factories to be allocated to the

jobs, these allocations will enable us to calculate the fitness value.

The second method also generates a random permuted number function to select

the factories allocated to the workers to do the jobs as in the first method. But in the

second stage we have applied the Hungarian method to assign the required machine in

the factory to do the job, and to enable us to calculate the fitness value. We used crossover

and mutation in both methods.

The crossover we have applied depends on selecting a segment of a random chromo-

some, the effect is to change and improve the result by generating a new offspring while

the mutation will effect on the solution to maintain genetic diversity from one generation

of a population of genetic algorithm chromosomes to the next. Mutation changes one or

more gene values in a chromosome from its initial state. Changes on the probabilities
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number of the mutation might effect on the result of the problem as it was shown in

(Section 5.6).

Both methods are approaching good results for small size dimension problems as it

was shown in (Section 5.6), we have obtain optimum solution within 0.098029 second and

this result was better than the result obtained by B&B. Applying the Hungarian method

is more reliable than applying the random permuted number because it is biased and it

relies on the techniques used by the Hungarian method but the disadvantage is costing

some extra time and iterations. The other method is unbiased but needs large population

size and large number of generations especially in higher dimensions.



Chapter 6

SAP with Monge Matrices

6.1 Introduction

In this chapter we have studied two dimensional and multidimensional Monge array

sequences and some related properties. We also studied Supnick symmetric matrices and

the relation with Monge. We will discuss their related researches and the mathematical

formulation for solving the three dimensional assignment problem especially when the

cost conditions are restricted. The following general definitions are from Hoffman, [71],

Aggarawal, [72] and Supnick, [73].

The French scientist Monge, [74] studied the transportation problem. Hoffman, [71]

mentioned and named the property that satisfied the m× n array used by Monge to solve

the transportation problem. There is a plenty wealth of research work and applications

related to the axial and the planar three dimensional assignment problems using the two

dimensions and d-dimensional Monge array properties.

In this chapter we have dealt with a special case of multidimensional Monge, we have

119
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relaxed the constraints of the axial solid assignment problems using Monge properties

and applying an algorithm to find an exact solution for SAP.

Definition 6.1.1 An m×n two-dimensional array of real matrix A = {ai, j}, is called a Monge

array if it satisfies the following property:

ai1, j1 + ai2, j2 ≤ ai1, j2 + ai2, j1 , (6.1)

for all rows i1 and i2 and columns j1 and j2 satisfying 1 ≤ i1 ≤ i2 ≤ m and 1 ≤ j1 ≤ j2 ≤ n,

Definition 6.1.2 An m×n matrix A with unspecified elements is called incomplete Monge

matrix if and only if for all 1 ≤ i ≤ r ≤ m, 1 ≤ j ≤ s ≤ n, the following holds:

If all four entries ai j, ars, ais and arj are specified, then they fulfil the Monge property

ai j + ars ≤ arj + ais. (6.2)

Incomplete Monge matrices are a generalisation of standard Monge matrices, the values

of some entries are not specified and the Monge property only must hold for all specified

entries [75].

Definition 6.1.3 An m × n two dimensional array A = {ai, j} is inverse Monge if

ai, j + ai+1, j+1 ≥ ai, j+1 + ai+1, j,

for all i and j, 1 ≤ i < m and 1 ≤ j < n.



6.1. Introduction 121

Definition 6.1.4 An m × n two-dimensional array of real matrix A = {ai, j}, is called a

monotone if the maximum value in its ith row lies below or to the right of the maximum

value in its (i − 1)th row.

An array A is called totally monotone if every 2 × 2 sub-array (i.e., every 2 × 2 minor) is

monotone.

Definition 6.1.5 Aggarwal and Park, [76] generalized the property of Monge for n dimen-

sions as follows.

For d ≥ 2, and n1 × n2 × ... × nd d-dimensional array A = {ai1,i2...id} has the Monge property

if for each pair of entries ai1,i2...id and a j1, j2... jd we have,

as1,s2...sd + at1,t2...td ≤ ai1,i2...id + a j1, j2... jd (6.3)

where for 1 ≤ k ≤ d, sk = min{ik, jk} and tk = max{ik, jk}.

The following are several useful properties of Monge sequences.

1. Definition 6.1.2 is equivalent to the statement, a matrix A is a Monge array if

ai, j + ai+1, j+1 ≤ ai, j+1 + ai+1, j for all 1 ≤ i < m and 1 ≤ j < n.

2. If a sub array is selected from a certain row and a certain column from a Monge

array, then the selected subset will be a Monge array.

Definition 6.1.6 Supnick Matrix
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A symmetric n × n matrix A is called Supnick if

ai, j + ak,l ≤ ai,k + a j,l ≤ ai,l + a j,k, (6.4)

for all 1 ≤ i < j < k < l ≤ n.

6.2 Related Research Works

Burkard et al., [77] studied in their perspectives of Monge properties in optimisation,

they discussed both Monge matrices and arrays and their applications. They had put

many observations and fundamental properties of Monge arrays. Although many hard

problems had been solved in polynomial time when applying Monge properties with

some restrictions but still some problems need more attention to solve them. Burkard et

al. mentioned that they were not aware that; the problem of given a cost matrix C which

is not Monge and an instance I of a hard optimisation problem P, find a Monge matrix C′

is as close as possible to the optimal solution of the modified instance I′ .

Derigs et al., [78] presented a graphical bipartite two dimension problem using Monge

properties and observations, the idea of the method was to build an equivalent problem

to an arbitrary assignment and apply the Monge conditions.

Arora and Puri, [79] proposed a lexi-search approach to find an optimal solution for the

assignment problem. Optimum allocation time to assign m persons to n jobs where m < n.

This condition will allow one person to do more than one job and to start immediately

after finishing the first job in any order. The method and the results can lead to the relation

of the three dimensional assignment problem. Malhotra, [80].
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Rudolf, [81] answered the question of possibility of finding d permutations in a such a

way that the permuted array becomes a Monge array. An algorithm had been done to con-

struct such permutation. The permuted method was helpful to solve the d- dimensional

axial assignment problem efficiently.

Custic et al., [82] studied the planar 3-dimensional assignment problems with Monge-

like cost arrays. He proved that p layer-planar 3-dimensional assignment problems (p-

3PAP) is NP-hard for every fixed p ≥ 2. They had constructed a dynamic programming

algorithm for the P planar layer assignment problem (P-PLAP) on layered Monge arrays.

6.3 Monge Minimisation Algorithm

The benefit of using Monge array is the nature of the structure of the array. The Monge

structures allow us to use certain entries without the need of using the whole array and

this by itself will reduce the number of iterations. For example if we want to search for the

smallest number in m×n entries Monge array then we need only O(m+n) operations, [83].

There are many useful algorithms which can benefit from working on Monge arrays.

Example 6.3.1 Consider a convex polygon, remove two sides of this polygon to get two

chain of points P with m vertices and Q with n vertices. Let the vertices p1, ..., pm denote

the vertices of P in clockwise order and let q1, ..., qn denote the vertices of Q in counter-

clockwise order. The aim is to find the vertex pi of P and a vertex q j of Q to minimise the

Euclidean distance d(pi, q j) separating pi and q j. This problem can be solved using Monge

array as follows.

Consider A = {ai j} to be an m × n array where ai j = d(pi, q j). This array is Monge because
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if we consider any two rows i1 and i2 and two columns j1 and j2 such that 1 < i1 < i2 <

m and 1 < j1 < j2 < n. The entries a{i1, j1} and a{i2, j2} correspond to the opposite sides of

the quadrilateral formed by pi1 , pi2 , q j1 and q j2 and the entries a{i1, j2} and a{i1, j2} correspond

to the diagonal. By the quadrangle inequality (the sum of the lengths of the diagonal of

any quadrilateral is greater than the sum of the lengths of any pair of opposite sides), we

have

d(pi1 , p j1) + d(pi2 , q j2) ≤ d(pi1 , q j2) + d(pi2 , q j1).

Thus, A is Monge, and we have reduced to the problem of finding the smallest entry in

a Monge array.

Gerhard J Woeginger, [84] and Burkard, [77], applied Monge array to solve some

problems related to the travelling salesman problem. They use the definition of Supnick

matrix with relation to Monge and use the properties of Monge array.

Burkard et al., [77] defined a Supnick matrix A= {ai j} as a symmetric Monge matrix

which satisfies the property,

ai, j + ar,s ≤ ai,s + ar,s, (6.5)

for all i, j, r and s with 1 ≤ i < r ≤ n and 1 ≤ j < s ≤ n. Hence a Supnick matrix satisfies

the inequality Equation 6.5 and ai, j = a j,i for all i and j. Also the sum matrix Aij = ai + a j

is a Supnick matrix for all real numbers a1, a2, ..., an, as the sum matrix Aij satisfies the

inequality 6.4.

Supnick, [73] proved that with distance matrices the optimum travelling salesman

problem (TSP) tour is easy to find when the distance matrix is Supnick, the following
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theorem gives the shortest TSP and the longest TSP tours.

Theorem 6.3.1 Let A = {ai j} be an n × n Supnick matrix. The shortest and the longest TSP

tour are given by the following permutation respectively,

σmin = 〈1, 3, 5, 7, 9, 13, ..., 14, 12, 10, 8, 6, 4, 2〉. (6.6)

σmax = 〈n, 2,n − 2, 4,n − 4, 6, ..., 5,n − 3, 3,n − 1, 1〉. (6.7)

The short permutation σmin is to start visiting the odd cities in increasing order and then

the even in decreasing order. This distribution is an optimum solution for all the instances

of Supnick TSP.

Definition 6.3.1 An n × n matrix A = {ai j} is a relaxed Supnick matrix, if

ai j + ai+1, j+1 ≤ ai, j+1 + ai+1, j, for all 1 ≤ i < j − 1 ≤ n − 2. (6.8)

Deineko et al., [85], had shown that the TSP on a relaxed Supnick matrix, which can also

be viewed as a one-sided Monge matrix, is NP-hard.

6.4 Monge Array

In this section we have listed some basic graph theory definitions, to explain the graph

theory related to Monge sequences. The following definitions are borrowed from the

book, Introduction to graph theory , of Wilson, [86].

A simple graph G = (V,E) consists of a non-empty set representing vertices, V, and a
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set of unordered pairs of elements of V representing edges, E.

A simple graph has no arrows, no loops, and cannot have multiple edges joining vertices.

Two vertices V1,V2 of a graph are said to be adjacent if {V1,V2} is an edge of the graph.

The diameter dim of a graph G is the maximal distance d between any two points on the

graph. If the graph is not connected, its diameter is infinite.

Definition 6.4.1 A graph is bipartite if its set of vertices can be split into two parts V1,V2,

such that every edge of the graph connects a V1 vertex to a V2 vertex. More generally, a

graph is bipartite if and only if all cycles in the graph have even length.

Definition 6.4.2 A graph in which every pair of vertices is adjacent. Such a graph is

sometimes called Kn, where n is the number of vertices. For example, a triangle is a

complete graph namely K3, but no other polygon is.

A directed graph in which each graph edge is replaced by a directed graph edge, also

called a digraph. A directed graph having no multiple edges or loops.

An acyclic digraph is a directed graph containing no directed cycles, also known as a

directed acyclic graph or a DAG. Every finite acyclic digraph has at least one node of out

degree 0.

Definition 6.4.3 A Hamiltonian path in a graph G is a path that goes through each vertex

of G once. If the initial and final vertices are adjacent then the path can be completed to

a Hamiltonian circuit. The paths and circuits can be hard to find, or even to tell whether

they exist on a given graph G.

Aggarwal et al., [87], suggested an efficient algorithm for finding a minimum weight

K-link path in graph with Monge property and applications, they called the Graph G =
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(V,E) a K-linked path if the path contain exactly K arcs, where G be a weighted, complete,

directed acyclic graph (DAG), with the vertex set V = {v1, v2, ..., vn}, and denoted w(i, j) be

the weight for 1 ≤ i ≤ j associated with the arc (i, j). A weighted DAG, G, satisfies the

concave Monge condition if wi, j + wi+1, j+1 ≤ wi, j+1 + wi+1, j holds for all 1 < i + 1 < j < n, and

satisfies the convex Monge condition if the inequality is reversed.

The application of geometric path related to Monge sequences graphs using the min-

imum K-link path method has several applications which were discussed by Aggarwal

et al. and the complexity of each application also had been explained. Various type of

applications will be discussed in the following sections of this chapter.

6.5 Monge Sequence Special Case for SAP

In this section we have studied a special case of SAP with Monge sequence. We solve it

for the three dimensional assignment problems (SAP) after relaxing the constraints of the

problem to satisfy Monge sequence requirements. We have found an exact solution for n

dimensional assignment problems. The cost matrix A= {ai j} for (i and j = 1, 2, ..,n,) and

for all k layers where k = 1, 2, ...,n, was restricted to be totally monotone Monge sequence

with a constant cost differences δi j = (ai, j+1 − ai, j) for all layers k = 1, 2, ...,n and 1 ≤ i ≤ n

and 1 ≤ j < n.

We have constructed two formulas. The first one is to calculate the exact solution for

the three dimensional assignment problems SAP with the relaxation of the cost differences

δi j, 1 ≤ i ≤ n and 1 ≤ j < n for any finite number n of dimensions. The second formula is to

generate a totally monotone Monge sequence cost matrix while fixing the total cost. The
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MATLAB is used to program the two algorithms. Some useful observations discussed

relate to the Hungarian method.

To simplify the problem, consider SAP with size n . It is also proposed that the total

cost for the first factory is less than the total cost of the second factory and so on for all

the n factories. Same amount of wages are given for doing the required n jobs when

they finished all the tasks. The mathematical formulation of this problem is similar to

the d-dimensional Monge sequences. The mathematical formulation was explained by

Burkard et al., [77] and Rudolf, [88].

In this section we have used the same mathematical notation and the formulations

used by Burkard.

Let C be an n1 × n2 × ... × nd array, for d ≥ 3 and define Nk = {1, 2, ...,nk}, where

k = 1, 2, ..., d. S is called a d-dimensional sequence subject to the array C if the ordered

elements are formulated in the Cartesian product N = N1 × ... × Nd. Furthermore, let

I = {(ik
1, i

k
2, ..., i

k
d) such that ik

l ∈ Nl, where 1 ≤ l ≤ d, 1 ≤ k ≤ q} be a set of N of cardinality q

and define Lk(I) = {i1
l , ..., i

q
l } as the list of all integers which occurs as l-th coordinate of an

element in I.

A set I ⊆ N is said to be feasible with respect to d-tuples (i1, i2, ..., id) ∈ N if and

only if for all k = 1, 2, ..., q the entry ik is contained at least once in the list Lk(I). If I is

feasible but no proper subset of I is feasible, then I is said to be minimal. Finally, Let

M(I) = {(i1, i2, ..., id) such that ik ∈ Lk(I)}, i.e. M(I) contains all d-tuples (i1, i2, ..., id) ∈ N

which can be formed by choosing ik from the list Lk(I) for all k = 1, 2, ..., d.

Comparing the previous formulation with the following d-dimensional Monge sequence,

a sequence C is called a d- dimensional Monge sequence with respect to the array C if the
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following condition is satisfied, Rudolf, [88].

Let (iI
1, i

I
2, ..., i

I
d) ∈ S. Then for each set I = {(ik

1, i
k
2, ..., i

k
d) such that ik

l ∈ Nl, 1 ≤ l ≤ d, 1 ≤ k ≤ q}

which is minimal with respect to (iI
1, i

I
2, ..., i

I
d) we need to have that whenever (iI

1, i
I
2, ..., i

I
d) is

the element which occurs first in S among all element of M(I) then,

c[iI
1, i

I
2, ..., i

I
d] + min

φ2,...,φd
{

q∑
k=2

c[ik
1, i

φ2(k)
2 , ..., iφd(k)

d ]} ≤
∑

( j1, j2,..., jd)∈I

c[ j1, j2, ..., jd] (6.9)

has to hold, where φ2, ..., φd are bijections acting on the set {2, ..., q}.

The following theorem is the generalization of Hoffman classical result on the Hitch-

cock transportation problem.

Theorem 6.5.1 The lexicographical greedy algorithm determines an optimal solution of

the axial d-dimensional transportation problem (dTP) for all feasible right- hand side

vectors ak, k = 1, 2, ..., d if and only if the underlying cost array C is a Monge array.

The axial d-dimensional assignment problem (dAP) is a special case of the (dTP) where in

(dAP) ak
i = 1 for all k = 1, 2, ...,nk, in addition to that all the variables xi1,2,...,d are integral. In

general (dAP) is an NP-hard problem but if the cost array C is a Monge array, then the

solution is optimal according to Theorem 6.5.1.

6.6 Special Case of the d-Dimensional Assignment Prob-

lem

Given n disjoint n-sets array A1,A2, ...,An, each matrix Ai with totally monotone Monge

sequence has n × n elements. Let a weight function ω : A1 × A2 × ... × An → R+, asks for
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a collection of n-sets M ⊆ A1 ×A2 × ... ×An such that each element of each set appears in

exactly one n-set, and the function ω is minimized. The following Theorem 6.6.1 gives a

useful formula for calculating the optimum solution.

Theorem 6.6.1 The optimal cost C for a totally monotone Monge sequence A = {A1,A2, ...,An}

d-dimensional assignment problem is,

C = d × a11 + δ × (d3 + d2
− 2d)/2, (6.10)

where, a11 is an initial cost ∈ A1, d is the dimensional number of the problem, and δ is the

differences between two costs such that δ = (ai, j+1 − ai j), for all 1 ≤ i ≤ n and 1 ≤ j < n.

Proof of Theorem 6.6.1

Let C1 = a11 be the initial cost of the Al matrix, we can write Cj as follows,

Cj = Cj−1 + δ × (j − 1)(d + 2), for all j ≥ 2. (6.11)

C1 = a11, C2 = C1 + δ × (2 − 1)(d + 2), ...,Cd = Cd−1 + δ × (d − 1)(d + 2),

adding C1,C2, ...,Cd we have

C =

d∑
l=1

(a11 + δ × (l − 1)(d + 2)). (6.12)

Simplifying the above equation we have,

C = (a11 + δ × (1 − 1)(d + 2)) + (a11 + δ × (2 − 1)(d + 2)) + · · · + (a11 + δ × (d − 1)(d + 2)).

C = d × a11 + δ × (d + 2) × {1 + 2 + · · · + (d − 1)}.
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C = d × a11 + δ × (d + 2) × {(1 + (d − 1)) × (d − 1)/2}.

C = d × a11 + δ × d × (d + 2) × (d − 1)/2.

C = d × a11 + δ × (d3 + d2
− 2d)/2.

The following example shows how to find the total optimum cost for 3-set of totally

monotone matrices each of them has 3 × 3 dimension.

Example 6.6.1 Let A1,A2 and A3 be three totally monotone Monge sequences with 3 × 3

dimension. Applying Theorem 6.6.1 to find the optimum SAP allocation.

A1 =


02 04 06

08 10 12

14 16 18


, A2 =


04 06 08

10 12 14

16 18 20


, A3 =


06 08 10

12 14 16

18 20 22


.

It is clear that a11 = 2, d = 3 and δ = 2, inserting these data in the Equation 6.10 we have

the optimum solution C = 36. It is also obvious that if we select any different combination

of three elements in the matrices, we will have the same result.

6.7 Observations:

1. Applying the Hungarian method to Example 6.6.1, the minimum assignment allo-

cation cost for A1 = 30 and all other combinations will give us the same minimum

allocation cost 30.

2. The minimum cost of A1 is equal to the maximum cost of A1.

3. Both previous observations are applied to both A2 and A3.
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4. The total cost of A1 < A2 < A3, where A1 = 30, A2 = 36 and A3 = 42.

5. It is clear that the differences between the optimum cost of the three matrices A1,A2

and A3 is constant and for this example is equal to 6.

From observation (5) we can conclude that the differences between the optimum cost of

the three matrices A1,A2 and A3 can be written as follows;

Lemma 1 Let A = {ai, j} where (i and j = 1, 2, ...,n) be totally monotone Monge sequence.

Let z1, z2 and z3 be the optimum allocation costs for A1,A2 and A3 ∈ A respectively then,

z3 − z2 = z2 − z1 = δ × d, (6.13)

where d is the dimension number of the array and δ = ai, j+1 − ai j for all 1 ≤ i ≤ n and

1 ≤ j < n.

The next Theorem 6.7.1 is the generalization of Theorem 6.6.1 to be used for selecting an

arbitrary Al. It is not necessary to be in sequenced order, while the optimal cost C remain

not changed and it is a totally monotone Monge sequence d-dimensional assignment

problem.

Theorem 6.7.1 The optimum cost for a totally monotone Monge sequence d-dimensional

assignment problem is,

C = d × a11 + δ
d−1∑
l=1

lml+1, (6.14)

where a11 is an initial cost ∈ A1, d is the dimensional number of the problem, δ is the

differences between two costs such that δ = (ai, j+1 − ai j) for all 1 ≤ i ≤ n and 1 ≤ j < n and
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ml = (all − a11)/(δ(l − 1)) where 2 ≤ l ≤ d.

Proof of Theorem 6.7.1

let C1 = a11 be the initial cost of the Al matrix, we can write Cl as follows,

C j = a11 + ( j − 1) × δ ×ml, (6.15)

where ml = (all − a11)/(δ × (l − 1)), for l ≥ 2. Applying Equation 6.15, for j = 1, 2, ..., d, we

have,

C1 = a11,C2 = a11 + δ ×m2,C3 = a11 + 2 × δ ×m3, ...,Cd = a11 + (d − 1) × δ ×md. (6.16)

By adding all the terms of Equation 6.16, we will have;

C = d × a11 + δ
∑d−1

l=1 lml+1.

The following Example 6.7.1 shows how to find the total optimum cost for three set

of totally monotone matrices each of them has 3× 3 dimension but they are not sequences

in order.

Example 6.7.1 Let A1,A2, ...,A6 be six different arrays, each of them is a totally monotone

Monge sequence array. We will select any three arrays and try to apply Theorem 6.7.1

A1 =


02 04 06

08 10 12

14 16 18


, A2 =


14 16 18

20 22 24

26 28 30


, A3 =


40 42 44

46 48 50

52 54 56


,
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A4 =


48 50 52

54 56 58

60 62 64


, A5 =


56 58 60

62 64 66

68 70 72


, A6 =


66 68 70

72 74 76

78 80 82


.

Let the matrix A be the concatenated of the matrices A1, A3 and A6, we will calculate SAP

allocation to A. From the initial array A1 we have the cost a11 = 2, δ = 2 and the dimension

of the array (number of matrices) is d = 3. We will calculate m2 for the array A3 and m3

for the array A6 using the formula in equation 6.15, ml = (all − a11/(δ× (l− 1)) as follows,

m2 = (48 − 2)/(2 × (2 − 1)) = 23 and m3 = (82 − 2)/(2 × (3 − 1)) = 20.

Using Equation 6.16 of Theorem 6.7.1 and applying the above data, we have the optimum

costs C = (3 × 2) + 2 × (23 + 2 × 20) = 132.

6.8 Summary

The ordinary or 2-dimensional assignment is in the P-class. SAP, which is an extension

of it, is NP-hard. It is commonly solved using exact methods of integer programming

such as Branch-and-Bound. However, in general, it is intractable and only approximate

solutions are found in reasonable time. Here, we find an exact solution to the problems

with the condition of Monge sequence property applied to the pay off cost matrix.

We have established two theorems and proved them. Several useful observations re-

lated to theorems and a lemma were discussed in this chapter. The relaxation of constraints

of SAP has been discussed and explained with examples especially when we relaxed the

objective function and make the cost of SAP to be fixed for all the workers doing jobs

in the factories. We have shown that applying Monge properties with relaxation of the
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constraints; SAP can be solved for large size problem in linear polynomial time.

We explained the problem by using examples and algorithms. Some useful ideas and

observations also have been discussed.



Chapter 7

Conclusion

7.1 Conclusion

This thesis proposes combinatorial new heuristic approaches to solve SAP. The algorithms

have been presented, illustrated and tested on some small size problems. Hybridisation of

the heuristic approach with B&B has been implemented. The mathematical background

and the literature relevant to the problem were considered in Chapter 2. We explained

the 2-dimensional assignment problem and the well-known Hungarian method. We have

given the characteristics of the assignment problem and explained all the points.

We focused especially, on the first type of the 3-dimensional solid assignment problem

which is an extension of the 2-dimensional assignment problem. The second type is called

the planar 3-dimensional problem. The mathematical formulation and the differences

among all the assignment models were explained in this thesis. The classical B&B is a

common method to find the exact solution for limited size problems SAP up to n = 26.

We have explained several methods in Chapter 2 such as the (0,1) integer B&B tech-
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nique, primal-dual implicit enumeration and some special approaches. We have used

MATLAB source code to implement the methods and solve instances of the problems

considered in this thesis.

In Chapter 3, we presented DM which it solved SAP. The main issue is to understand

why the method works at all, how reliable it is, how accurate and efficient it is compared

to other approaches. The algorithm of the DM starts by re-arranging the n factories

in an ascending or descending order, then the allocation of the factories is carried out

individually one by one. The importance of this procedure is the reduction of the size of

the problem by one in each iteration during the execution of the program. This reduction

of the size makes it running fast and completing the execution of the source code in a

short time.

The large size of solving SAP is another benefit of the DM. As we have explain that

SAP was solved for size n = 26, we have managed to solve SAP for size up n = 500 in

516.558064 seconds as it was shown in Chapter 3 Section 3.5, the fast solution and the

large size problem are useful achievement.

Three more heuristic approaches have been considered in Chapter 4. The first is called

the Average Cost Method (ACM). The ACM technique is simple but not as efficient as the

DM especially when the size of the problem is large comparing to a small size problem,

costly and large execution time.

The second and third approaches considered in Chapter 4 are called the Addition

Method and the Multiplication Method. The basic idea in both methods is to convert

SAP from three dimensions to two dimensions. Then apply the Hungarian assignment

problem twice to reach the allocation. To achieve this idea in the AM problem, we add
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all the allocation costs in each factory for each worker in order to achieve a square matrix

with n × n dimension. Then by applying the Hungarian assignment method for the first

time it will guarantee the allocation of the machines in the factories while applying the

Hungarian assignment method for the second time it will guarantee the allocation of the

workers with their nominating cost to do the jobs on the machines in the factories.

The same process is applied in the Multiplication Method. The only difference is we

multiply all the allocation costs in each factory for each worker instead of adding them.

The advantages of AM are that it is fast and can solve large size problems up to n = 800.

The algorithm can converge to the minimum cost easily sometimes. The disadvantage

is, it can be effected by the nature of the random numbers or costs used (zeros, small or

large number). Also when we used the addition operation in each row vector n times this

might lead to a tie and make the selection ineffective.

The advantages of the MM are that it is fast and it can solve large size problems up

to n = 800. If the cost matrix have many zeros this will accelerate the procedure and the

results are accurate. The disadvantage is that if the cost numbers are large and do not

have zero costs it will only work on limited size problems.

In Chapter 5 we have solved the SAP using GA method. Two methods have been

used, the first depends on generating randomly permuted function twice. The second

GA method is also generates a random permuted function only once. Both methods find

good results for the small size problems.

In Chapter 6 we have dealt with a special case SAP having of Monge matrix. We

have used the Monge properties and relaxed the constraints of SAP. We considered an

algorithm to solve SAP for a large size problem and managed to find an exact minimum
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allocation.

We have exploited Monge properties and some useful conditions. The algorithm is

not complicated and is fast. We established two theorems related to Monge sequence

and proved them. We explained the problems and illustrated them. Some useful ideas

and observations have also been discussed. This special case of SAP is linear and can be

solved in polynomial time.

For the future work there are a lot of potentials ideas to extend the research work

of this theses. For example, applying the Genetic Algorithm for all the approaches we

discussed. The SAP can be investigated and solved in conduction with the methods

outlined in the thesis to reach even better results. Using the GA with different approaches

of the crossover, roulette wheel, tournament election, mutation , single or multi points

crossover chromosomes.

As we have seen that all the methods constructed in this thesis can solve SAP with

high dimensions up to size n = 800 (memory constraint) within seconds and a feasible

solution is guaranteed in all the methods. While the Branch-and-Bound can only solve a

limited size problem with longer execution time.

It is important to investigate and research how to minimise the impact of the Tie cases

on reaching an optimum cost solution. We have discussed this problem and explained

the effects of the Tie on the objective solution and how the solution divert far from the

objective solution because of the Tie and the unwise selection of the cost when the Tie

happened.

In this thesis we have discussed the first type of the 3-dimensional Solid Assignment

Problem (SAP) in details. It is important if to apply all the constructed methods to solve
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SAP type two; the Planar Solid Assignment Problem. We have discussed the mathematical

formulation of this method.

It is observed that if the Tie case occurs, then a major impact on the optimal solution

might occur. More thorough research works are required to study this phenomena in such

a way to avoid or prevent the solution from diversion. Avoid the Tie will help to obtain

an optimal or near optimal solution.
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