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Abstract
The equations used to account for the temperature dependence of biological pro-
cesses,	including	growth	and	metabolic	rates,	are	the	foundations	of	our	predictions	of	
how	global	biogeochemistry	and	biogeography	change	in	response	to	global	climate	
change.	We	review	and	test	the	use	of	12	equations	used	to	model	the	temperature	
dependence of biological processes across the full range of their temperature re-
sponse,	 including	 supra-		 and	 suboptimal	 temperatures.	 We	 focus	 on	 fitting	 these	
equations	to	thermal	response	curves	for	phytoplankton	growth	but	also	tested	the	
equations	on	a	variety	of	traits	across	a	wide	diversity	of	organisms.	We	found	that	
many	of	the	surveyed	equations	have	comparable	abilities	to	fit	data	and	equally	high	
requirements	 for	data	quality	 (number	of	 test	 temperatures	 and	 range	of	 response	
captured)	but	lead	to	different	estimates	of	cardinal	temperatures	and	of	the	biological	
rates	at	these	temperatures.	When	these	rate	estimates	are	used	for	biogeographic	
predictions,	differences	between	 the	estimates	of	even	 the	best-	fitting	models	 can	
exceed	the	global	biological	change	predicted	for	a	decade	of	global	warming.	As	a	
result,	studies	of	the	biological	response	to	global	changes	in	temperature	must	make	
careful	consideration	of	model	selection	and	of	the	quality	of	the	data	used	for	para-
metrizing these models.
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1  | INTRODUCTION

Temperature is one of the most important environmental drivers of 
physiology	and	thus	has	important	implications	for	the	biogeography	
of	 all	organisms	and	how	 they	will	 respond	 to	global	environmental	
change.	Predicting	the	biological	response	to	changes	in	temperature	
is	thus	a	key	endeavor	in	biology,	and	thousands	of	studies	have	mea-
sured the response of biological processes to temperature. Data on the 
temperature response of over 200 traits covering a wide taxonomic 
breadth	(>300	species	across	all	domains	of	life)	have	been	compiled	

(Dell,	Pawar,	&	Savage,	2011;	Gillooly,	2001;	Parent	&	Tardieu,	2012).	
Even	 for	a	 single	 trait	 and	a	 single	group	of	organisms,	 for	example	
phytoplankton	growth	rate,	over	200	studies	have	been	 inventoried	
(Thomas,	Kremer,	Klausmeier,	&	Litchman,	2012;	Thomas,	Kremer,	&	
Litchman,	2016).	These	datasets	have	been	used	to	establish	funda-
mental	metabolic	 scaling	 rules	 (Dell	et	al.,	2011;	Gillooly,	2001)	and	
biogeographic	theories	(Seto	&	Fragkias,	2007).	In	addition,	tempera-
ture	response	curves,	whether	derived	from	in	situ	measurements	of	
abundance along natural temperature gradients or from in vitro mea-
surements	from	laboratory	experiments,	are	used	extensively	for	the	
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TABLE  1 Nonexhaustive	list	of	equations	that	have	been	employed	to	describe	the	relationship	between	growth	or	metabolic	rates	and	
temperature across the full response range

Formula Equations
Number of 
parameters References

4 4 (Li	&	Dickie,	1987)	citing	(Hinshelwood,	1947)

5 4 (Li	&	Dickie,	1987)	citing	(Johnson,	Eyring,	&	
Williams,	1942)

6 6 (Heitzer	et	al.,	1991)

7 4 (Montagnes	et	al.,	2008)	citing	(Schoolfield,	
Sharpe,	&	Magnuson,	1981)

8 3 (Li	&	Dickie,	1987)	citing	(Stoermer	&	Ladewski,	
1976)

9 4 (Montagnes	et	al.,	2008)

10 4 (Thomas	et	al.,	2012)	citing	(Norberg,	2004)

11 3 (Montagnes	et	al.,	2008)

12 3 (Montagnes	et	al.,	2008)	citing	(Flinn,	1991)

13 4 (Ratkowsky	et	al.,	1983)

14 5 (Kamykowski,	1986)

15 5 (Boatman	et	al.,	2017)
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prediction	 of	 the	 effects	 of	 climate	 change	 on	 the	 biogeography	 of	
organisms	 [e.g.,	 (Beaugrand,	Goberville,	Luczak,	&	Kirby,	2014)],	 the	
risks	of	extinctions	(e.g.,	Sinervo	et	al.,	2010),	and	global	biogeochem-
ical	cycling	[e.g.,	 (Cox,	Betts,	Jones,	Spall,	&	Totterdell,	2000)].	These	
essential	predictions	depend	on	our	ability	to	accurately	and	precisely	
model temperature response and parameterize these equations for a 
large	variety	of	traits	and	a	diversity	of	species.

Currently,	 there	 is	 no	 consensus	 on	 the	 “best”	 equation	 to	 em-
ploy	 for	modeling	 the	 thermal	 response	of	abundance	and/or	meta-
bolic	 rates,	 and	 it	 is	 likely	 that	 different	 processes	 require	 different	
equations.	Here,	we	review	the	equations	available	for	modeling	the	
thermal	 response	 and	 test	 them	 on	 highly	 resolved	 measurements	
for	 seven	 phytoplankton	 species	 and	 published	 data	 covering	 a	 di-
versity	 of	 physiological	 traits	 across	 a	 large	 taxonomic	 breadth.	We	
used	 subsampling	 from	 the	 highly	 resolved	 phytoplankton	 growth	
measurements	to	assess	the	effect	of	data	quality	on	the	error	in	the	
estimate of temperature response parameters and rates. The results 
of	 this	analysis	were	used	 to	establish	nominal	data	quality	 require-
ments and to include robustness in the choice of equations. The effect 
of	model	choice	and	data	quality	is	then	compared	to	the	amount	of	
change	predicted	in	the	biogeography	of	a	phytoplankton	in	response	
to global warming.

1.1 | Review of temperature response equations

The features of the temperature response that is of paramount impor-
tance include the cardinal temperatures that define the temperature 
range	 (Tmin,	Tmax),	 the	 optimum	 temperature	 at	which	 the	 response	
is	maximal	 (Topt),	and	the	sensitivity	of	the	response	to	temperature	
change around Topt or as the temperature of the environment ap-
proaches Tmin or Tmax.	 In	addition	to	three	equations	of	response	to	
suboptimal	 temperatures	 (Tmin to Topt,	 Equations	 1–3,	 Supporting	
Information),	at	 least	12	different	equations	have	been	proposed	to	
account	 for	 the	 temperature	dependence	of	growth	 rate,	metabolic	
rates,	or	abundance	across	the	full	 range	from	Tmin to Tmax	 (Table	1,	
Equations	4–15).	Different	equations	may	lead	to	different	predicted	

responses	to	global	warming	or	imply	that	different	mechanisms	un-
derlie	 the	 temperature	 response.	 Furthermore,	 different	 traits	 (e.g.,	
growth	and	speed	of	movement)	have	different	activation	rates,	cur-
vature,	 and	 skew	 (Dell	 et	al.,	 2011),	 although	 these	 differences	 de-
pend	both	on	model	choice	and	on	data	quality	(Pawar,	Dell,	Savage,	
&	Knies,	2016).	It	has	also	been	suggested	that	activation	rates	differ	
between	taxa,	but	that	these	differences	are	also	partly	dependent	on	
the	equation	used	(Chen	&	Laws,	2016).

A	 number	 of	 studies	 have	 tested	 the	 quality	 of	 a	 few	 of	 these	
equations	for	a	specific	process	(e.g.,	growth	rate	or	photosynthesis)	
and	species	(Angilletta,	2006;	Li	&	Dickie,	1987;	Montagnes,	Morgan,	
Bissinger,	Atkinson,	&	Weisse,	2008).	In	these	studies,	model	selection	
was	based	on	a	measure	of	equation	fit	 to	the	data	 (e.g.,	 likelihood)	
with	a	penalty	for	the	number	of	parameters	(e.g.,	by	use	of	the	Akaike	
information	criterion	–AIC-	).	In	addition	to	likelihood-	based	selection,	
one	needs	to	consider	the	accuracy	of	the	estimates	of	key	parameters	
such	as	the	cardinal	 temperatures	 (e.g.,	 the	optimum,	minimum,	and	
maximum temperatures Topt,	Tmin,	Tmax)	 and	 the	 robustness	of	 these	
estimates	 to	 changes	 in	 data	 quality.	 For	 example,	 equations	 with	
few	parameters	that	assume	a	symmetric	response	around	Topt would 
underestimate the Topt	of	a	negatively	skewed	response	but	may	still	
have	the	lowest	AIC	(be	selected	as	the	“best”	equation)	for	datasets	
with few measurements.

Both	the	temperature	range	and/or	the	temperature	resolution	
of	experimental	or	observational	studies	may	be	constrained	by	lo-
gistical	 considerations	and/or	experimental	 goals	 (Figure	1).	These	
constraints	on	data	quantity	and	quality	can	affect	model	selection	
and the associated mechanistic biological interpretations of fitted 
parameters	such	as	the	activation	energy,	which	provides	an	index	
of the increase in performance with increasing temperature when 
temperature	 is	suboptimal	 (Knies	&	Kingsolver,	2010;	Pawar	et	al.,	
2016).

Even	the	minimal	requirement	to	avoid	overfitting,	that	the	num-
ber of temperatures measured must exceed the number of parame-
ters	in	an	equation,	is	often	not	met.	There	is	a	risk	that	fundamental	
postulates,	 such	 as	 the	 existence	 of	 a	 strong	 relationship	 between	

F I G U R E  1 Characteristics	of	existing	datasets	for	the	determination	of	thermal	response	curves.	(a)	Number	of	temperatures	in	the	most	
comprehensive	meta-	analysis	database	currently	compiled,	excluding	studies	with	two	or	fewer	temperatures	and	three	studies	with	more	
than	75	temperatures	(Dell	et	al.,	2013).	Median	and	mean	number	of	temperatures	is	3	and	5.7,	respectively.	71%	of	temperature	responses	
only	cover	the	supra-		or	suboptimal	part	of	the	temperature	range	and	84%	do	not	have	more	than	7	temperatures	and	thus	cannot	be	used	
to	parameterize	all	equations	in	Table	1.	(b)	Number	of	temperatures	in	each	study	of	the	growth	response	of	phytoplankton	to	temperature	
(Thomas	et	al.,	2012).	The	median	number	of	temperatures	is	6	and	69%	of	temperature	responses	do	not	have	more	than	7	temperatures	and	
cannot	be	used	to	parameterize	all	equations	in	Table	1.	A	large	proportion	of	studies	do	not	cover	supra-		and	suboptimal	temperature	ranges
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microbial	biogeography	and	thermal	niche,	and	predictions	of	the	re-
sponse	to	global	change	may	be	biased	by	fitting	equations	to	data	of	
insufficient	quality.	This	is	because	estimates	of	the	numerical	values	
of equation parameters are expected to depend on both the tempera-
ture	resolution	of	the	data	and	the	location	(relative	to	Topt)	and	extent	
of	the	temperature	range	(relative	to	Tmin and Tmax)	over	which	data	are	
collected.	However,	the	effect	of	data	quality	on	the	inferences	that	
can be made when modeling temperature response across the range 
from Tmin to Tmax	has	not	been	tested	previously.

Although	suboptimal	temperature	responses	are	usually	explained	
by	thermodynamic	activation	and	have	been	extensively	studied,	sev-
eral	putative	mechanisms	are	proposed	for	the	supra-	optimal	decline	
in	biological	activity	and	 these	 remain	 to	be	extensively	 tested.	The	
decline can be attributed to the denaturation of one or more rate lim-
iting	enzymes	(Corkrey,	Olley,	Ratkowsky,	McMeekin,	&	Ross,	2012).	
However,	 enzyme	denaturation	 usually	 occurs	 at	much	 higher	 tem-
peratures	than	the	optimal	 temperature	for	most	physiological	 rates	
measured.	The	decline	 in	 rate	at	 supra-	optimal	 temperatures	 for	 in-
dividual	 enzymes	 (Hobbs	 et	al.,	 2013)	 or	 bulk	 processes	 (Schipper,	
Hobbs,	 Rutledge,	 &	 Arcus,	 2014)	 may	 be	 explained	 by	 changes	 in	
heat	capacity	of	the	system	driven	by	protein	dynamics	(the	number	
of	 available	 modes	 associated	 with	 covalent	 bonds).	 Ecological	 ex-
planations	 have	 also	 been	 suggested	 for	 the	 supra-	optimal	 decline,	
as	temperature	alters	abiotic	and	biotic	conditions.	For	example,	gas	
solubility	decreases	with	 temperature.	 Increasing	 temperature	could	
thus	 lead	 to	 increasing	CO2	 limitation	 for	 photosynthetic	 processes	
in	aquatic	photoautotrophs	or	increasing	oxygen	limitation	for	respi-
ration	across	all	aquatic	organisms	 (Pörtner,	2010;	Pörtner	&	Knust,	
2007).	This	limitation	could	potentially	extend	to	terrestrial	organisms	
in	terms	of	changes	in	partial	pressure	with	temperature,	but	findings	
are	inconclusive	(Klok,	Sinclair,	&	Chown,	2004).

Several equations have been proposed to model the full functional 
response of biological rates to temperature from the minimum to max-
imum	temperatures	that	will	support	growth	(Table	1,	nonexhaustive	
and	new	models	emerging,	DeLong	et	al.,	2017).	Small	differences	in	
the shape of the response curve can have major implications for pre-
dicting	performance	in	the	field	[reviewed	in	(Dowd,	King,	&	Denny,	
2015)]	and	for	interpretation	of	the	mechanism(s)	driving	the	activa-
tion	and	deactivation	process.	Four	of	the	12	equations	in	Table	1	are	
based	on	thermodynamics	of	chemical	reactions	(Equations	4,	5,	6,	7,	
review	of	equations	 for	enzyme-	catalyzed	 reaction	 rates	 in	 (DeLong	
et	al.,	2017)]	and	involve	various	combinations	of	exponential	depen-
dencies on temperature. Two other equations that include exponential 
functions	make	no	claim	to	a	mechanistic	underpinning	and	are	purely	
empirical	 (Equations	11,	12).	Equations	8	and	9	are	modifications	of	
a	 Gaussian	 function,	 while	 Equations	 13	 and	 14	 are	 second-	order	
polynomial,	 and	 all	 four	 are	 again	 strictly	 empirical.	 Finally,	 the	 last	
equation	 in	Table	1	 (Equation	15)	 is	also	empirical	but	uses	 the	sine	
function.	Some	of	the	simpler	equations	(three	parameters)	are	sym-
metric	around	the	optimal	temperature,	but	most	equations	presented	
can	capture	the	commonly	observed	negative	skew	found	in	tempera-
ture	response	curves	(steeper	inactivation	at	temperatures	above	Topt 
than activation at temperature below Topt).

The	first	attempts	to	quantify	the	functional	response	of	rate	(μ)	
to	temperature	(T),	the	μ-	T	curve,	were	based	on	analogies	between	
microbial growth rates and chemical reaction kinetics. Recent studies 
suggest that all biological growth rates can be modeled as if growth 
is	 controlled	 by	 the	 activation	 and	 denaturation	 of	 a	 single	 limiting	
enzyme	(Corkrey	et	al.,	2012).	The	simplest	of	these	(Equation	4)	as-
sumes that the observed rate is the difference between two opposing 
processes,	both	of	which	follow	the	Arrhenius	equation;	in	this	equa-
tion,	the	coefficients	within	the	exponential	 functions	are	activation	
energies.	When	applied	to	a	chemical	reaction,	the	parameter	“a”	is	a	
rate	constant	with	units	of	inverse	time	per	degree	Kelvin	(e.g.,	s/°K),	
b = ΔH‡	(enthalpy	of	activation;	units	of	kilocalories/mole),	c = ΔH	(en-
thalpy	of	reaction;	units	of	kilocalories/mole),	d = ΔS	(entropy	of	reac-
tion;	units	of	kilocalories/mole	per	°K).	An	earlier	equation	(Equation	5)	
describes	the	situation	where	active	and	thermally	denatured	forms	of	
an	enzyme	exist	in	a	reversible	thermodynamic	equilibrium.	The	most	
complicated	of	these	equations	is	the	“master	equation”	(Equation	6)	
of	Heitzer,	Kohler,	Reichert,	 and	Hamer	 (1991),	which	assumes	 that	
the	active	 form	of	 the	 rate-	limiting	master	enzyme	 is	 in	equilibrium	
with	 two	 inactive	 states	 that	 result	 from	 high-	temperature	 or	 low-	
temperature	 denaturation.	 When	 low-	temperature	 denaturation	
is	 excluded,	 this	 master	 equation	 simplifies	 to	 Equation	 7.	 In	 both	
Equations	 6	 and	 7,	 “a”	 is	 the	 rate	 at	 the	 reference	 temperature	 of	
298.15°K	(=25°C).

Despite	clear	deviations	from	this	pattern,	including	skew,	mod-
eling the temperature dependence of biological rate as a Gaussian 
distribution	(Equation	8)	has	been	attractive	to	ecologists	in	part	be-
cause	 of	 its	 simple	 parameterization	 (Angert,	 Sheth,	&	Paul,	 2011;	
Dowd	et	al.,	2015).	The	Gaussian	equation	may	be	specifically	suited	
to modeling aggregated responses that are the sum of individual re-
sponses.	For	example,	although	it	may	not	be	an	adequate	equation	
for	the	temperature	response	for	a	single	species,	it	may	be	the	cor-
rect	equation	for	the	response	of	a	community	that	consists	of	many	
species with different values of Topt. Equation 8 describes a normal 
distribution,	where	the	parameter	“a”	is	the	rate	at	the	optimal	tem-
perature	 (Topt)	which	 is	 found	 at	 the	midpoint	 of	 the	 temperature	
range	and	the	parameter	“b”	is	the	standard	deviation	(also	in	units	
of	 temperature).	Montagnes	et	al.	 (2008)	modified	 this	equation	 to	
obtain	 a	 modified	 Gaussian	 function	 that	 allows	 for	 the	 asymme-
try	 around	 the	 optimum	 temperature	 often	 seen	 in	 the	μ-	T	 curve	
(Equation	9).

Thomas	 et	al.	 (2012)	 referencing	 (Norberg,	 2004)	multiplied	 the	
quadratic	 by	 an	 exponential	 function	 to	 obtain	 Equation	 10.	 In	 this	
equation,	there	 is	a	reference	temperature	(Tref)	 that	determines	the	
location of the maximum of the quadratic portion of the function. 
This	 is	a	generalization	of	 the	function	proposed	by	Norberg	 (2004)	
in	which	the	values	of	“a”	and	“c”	were	based	on	the	Eppley	function	
(a	=	0.59/d;	c	=	0.0633/°C).

All	 of	 the	 equations	 considered	 to	 this	 point	were	 either	 based	
on theoretical considerations related to chemical reaction kinetics 
(Equations	4–7)	or	allowed	direct	estimation	of	ecologically	relevant	
parameters such as Topt	or	the	thermal	niche	width	(Equations	8–10).	
Two	other	equations	do	not	have	a	theoretical	basis	nor	do	they	allow	
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ecologically	relevant	temperatures	to	be	estimated	directly.	These	are	
based	on	a	second-	order	polynomial	 (Equations	11,	12)	 (Montagnes	
et	al.,	2008).

None of the equations examined to this point include the lower 
and	upper	temperature	limits	for	biological	rates	(Tmin,	Tmax)	as	fitted	
parameters.	However,	Tmin and Tmax,	 along	with	 the	 temperature	 at	
which	the	biological	rate	is	maximum	(Topt)	are	the	cardinal	tempera-
tures that are often of most interest to ecologists. Some of these 
equations	may	be	reformulated	to	include	some	of	the	cardinal	tem-
peratures,	 for	 example	 Equation	 10	 to	 include	Tmin and Tmax	 (Baker	
et	al.,	2016).	For	equations	lacking	specific	cardinal	temperatures,	the	
cardinal	temperatures	can	be	estimated	from	the	fitted	equation	(see	
Methods	section).

Finally,	we	turn	to	three	equations	where	Tmin and Tmax are among 
the	 parameters	 found	 directly	 in	 the	 equation	 (fitted	 parameters),	
rather than needing to be calculated from the equation. These are 
the	empirical	equations	of	Ratkowsky,	Lowry,	McMeekin,	Stokes,	and	
Chandler	(1983)	(Equation	13)	and	Kamykowski	(1985)	(Equation	14),	
and	an	empirical	equation	that	 is	a	modified	sine	function	Boatman,	
Lawson,	and	Geider	(2017)	(Equation	15).	The	modified	sine	function	
also	returns	the	maximum	rate	(Rmax)	at	the	optimum	temperature	as	
a	directly	fitted	parameter,	and	Topt can be calculated from the other 
fitted parameters. This equation also includes parameters that charac-
terize	the	skewness	(a)	and	kurtosis	(b).

This is not a comprehensive account of all available equations 
to equation temperature response. Some equations have been pro-
posed for the purpose of simulation and are difficult to fit to data 
(e.g.,	Follows,	Dutkiewicz,	Grant,	&	Chisholm,	2007).	Other	equations	
are	minor	variations	of	equations	we	have	included	[e.g.,	(Beaugrand	
et	al.,	2014)	contains	an	equation	that	is	comparable	to	Equation	8].

2  | MATERIAL AND METHODS

2.1 | Measurement of phytoplankton growth rate

We	measured	the	temperature	dependence	of	growth	rate	for	seven	
taxonomically	 distinct	 phytoplankton.	Growth	 rates	were	measured	
at	a	high-	temperature	resolution	 (in	0.4–0.5°C	 increments)	with	ex-
tensive thermal coverage on either side of the temperature optima 
(18–39	 individual	 temperatures	 per	 species;	with	 at	 least	 two	 tem-
peratures	with	positive	growth	on	either	side	of	the	optima).	The	dif-
ferent	species	provide	different	expected	temperature	optima,	skew,	
and	spread	on	which	to	test	the	equations	(specific	rates	reported	in	
Fig.	S1).

The	 species	 assayed	 include	 a	 coccolithophorid,	 Emiliania hux-
leyi	 (CCMP	 370);	 a	 cyanobacterium	 Trichodesmium erythraeum 
IMS101;	 and	 two	 diatoms,	 Thalassiosira pseudonana	 (CCMP	 1335);	
Phaeodactylum tricornutum	(CCMP	2561);	two	chlorophytes	Dunaliella 
tertiolecta	 (CCAP1320)	 and	Pycnococcus provasolii (CCMP1203); and 
a	prymnesiophyte,	 Isochrysis galbana (Ply 546). Specific details of the 
media and light for each species are provided in the data file. The num-
ber of replicates at each temperature is in parenthesis next to each 
genus below.

Growth rates for Trichodesmium	[published	previously	in	(Boatman	
et	al.,	 2017)],	 Emiliania, Thalassiosira, and Phaeodactylum were mea-
sured	using	the	method	described	by	(Boatman	et	al.,	2017).	Briefly,	
cultures	were	grown	at	 low	volumes	 (5	ml)	 in	12	ml	glass	 test	 tubes	
in	a	thermal	gradient	block	(temperature	is	controlled	at	both	ends	of	
an aluminum block using circulating water baths and a linear tempera-
ture	 gradient	 forms	 across	 the	block).	As	 a	 proxy	 for	 biomass,	 daily	
measurements	of	fluorescence	(Fo)	were	made	on	dark-	adapted	cells	
(20	min)	 using	 a	 FRRfII	 Fastact	 Fluorometer	 (Chelsea	 Technologies	
Group	Ltd,	UK).	Cultures	were	kept	at	the	lower	section	of	the	expo-
nential	 growth	 phase	 and	optically	 thin	 to	 avoid	 nutrient	 limitation,	
self-	shading	and	to	minimize	CO2 drift.

For	Dunaliella	 (rep=2),	Pycnococcus	 (2)	 and	 Isochrysis	 (2)	 cultures	
were	 grown	 in	 24-	well	 microtiter	 plates	 sealed	with	 air	 permeable	
membranes.	Similar	 to	cultures	 that	were	grown	 in	glass	 test	 tubes,	
these	plates	were	also	grown	on	a	thermal	gradient	block	(described	
above).	The	surface	of	the	gradient	was	covered	with	1	cm	of	water	to	
enhance thermal conductance between the block and the well plates. 
Growth	of	the	cultures	was	assessed	by	a	daily	measurement	of	opti-
cal	density	at	660	nm	using	a	multiparameter	plate	reader	(FLUOstar	
Omega).

Growth	 was	 monitored	 during	 early	 exponential	 growth	 phase,	
and	the	exponential	growth	rate	(μ)	was	calculated	from	the	slope	of	
the	natural	log	of	fluorescence	or	the	natural	log	of	optical	density	as	
a function of time.

2.2 | Published data

In	order	to	provide	a	robust	test	of	the	thermal	response	between	taxa	
and	allow	 for	 a	 comparison	of	 fit	 between	 traits,	we	 supplemented	
our	 measured	 data	 (described	 above)	 with	 existing	 published	 data.	
We	used	the	biotraits	database	(Dell,	Pawar,	&	Savage,	2013),	a	da-
tabase	 of	 temperature	 response	 in	 phytoplankton	 growth	 (Thomas	
et	al.,	 2012),	 and	 additional	 data	 from	 the	 literature	 (sources	 cited	
in	data	file).	Datasets	with	positive	rates	for	at	 least	seven	different	
temperatures with at least two temperatures being above and two 
being below the optimal temperature were selected from the data-
bases. Datasets were not selected based on our proposed data qual-
ity	 requirements	 (see	 section	on	 “Data	quality	 requirements”	 in	 the	
results	section	below)	as	too	few	datasets	met	these	more	stringent	
requirements.

2.3 | Equation fitting

We	implemented	the	fitting	of	all	equations	in	an	R	package	available	
on	Comprehensive	R	Archive	Network	(CRAN	temperatureresponse).	
The	 equations	 were	 fit	 to	 data	 using	 a	 modified	 Levenberg–
Marquardt	algorithm	(Elzhov,	Mullen,	Spiess,	Bolker,	&	Mullen,	2015;	
More,	1978).	This	algorithm	allows	robust	fitting	of	nonlinear	equa-
tions,	even	when	reliable	starting	parameters	cannot	be	established.	
When	equation	parameter	values	represent	features	of	the	dataset,	
the	 starting	 values	were	 estimated	 from	 the	 dataset	 (e.g.,	 the	a in 
Equations	8–10	was	set	as	the	maximum	rate	in	the	dataset,	Tref,	Topt,	

https://cran.r-project.org/web/packages/temperatureresponse/index.html
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Tmin,	Tmax	were	set	to	the	mean,	the	median,	the	minimum,	and	the	
maximum	temperature	of	the	dataset,	respectively).	When	this	was	
not	possible,	starting	values	for	the	parameters	were	the	fitted	pa-
rameters	from	the	source	publications	for	the	equation,	or	a	param-
eter	set	that	ensured	a	downward	parabola-	like	shape.	In	equations	
requiring	 inputs	 in	°K,	values	were	converted	 in	 the	equation	 from	
°C.	The	equations	were	fit	to	positive	nonzero	data	averaged	across	
replicates at each temperature. This is essential for equations with 
either	asymptotic	or	exponential	relationships	of	rate	with	tempera-
ture	at	the	extremes,	because	zero	values	reported	from	above	Tmax 
or below Tmin have high leverage on the equation fit and lead to poor 
predictions	within	the	biokinetic	range.	For	appropriate	equation	fits,	
the	only	null	rates	that	should	be	included	are	Tmax and Tmin,	which	
cannot	be	determined	before	fitting.	As	a	result,	no	zero	values	were	
kept.	However,	measurements	extending	to	the	limits	of	the	growth	
range,	that	is,	including	zero	values,	would	be	necessary	for	the	most	
accurate parametrization of some equations.

From	equation	fits,	cardinal	temperatures	were	extracted	(Sinclair	
et	al.,	2016).	These	included:

Topt: the temperature at which the maximum rate is predicted to be 
achieved,	which	was	determined	using	numeric	optimization.

T50	min and T50max:	the	lowest	and	highest	temperatures	at	which	50%	
of the maximum rate is predicted to be achieved. This was calcu-
lated	as	the	roots	of	the	function	when	50%	of	the	predicted	maxi-
mum	rate	was	removed	(R	package	rootSolve).

Tmin and Tmax	(CTmin and CTmax):	temperatures	within	which	a	positive	
rate is predicted. This was calculated as the roots of the function. 
Some	 equations	 are	 asymptotic	 and	 therefore	 would	 not	 pre-
dict	zero	or	negative	rates,	 in	which	case	Tmin and Tmax cannot be 
determined.

Activation	 and	 deactivation	 rates	were	 calculated	 from	 the	mean	
of	value	of	 the	derivative	across	sub-		 (Tmin to Topt)	 and	supra-		 (Topt to 
Tmax)	 optimal	 temperatures,	 respectively.	 Skew	was	 calculated	 as	 the	

difference	between	activation	and	deactivation	(i.e.,	a	negative	skew	in-
dicates	that	deactivation	is	steeper	than	activation).

Equations	were	 ranked	on	each	dataset	using	Bayesian	 informa-
tion	criterion	(BIC).	The	difference	between	equations	in	model	quality	
across	datasets	was	 tested	using	a	Kruskal–Wallis	 rank	sum	test	on	
BIC-	based	ranks	followed	by	the	associated	post	hoc	pairwise	com-
parison	(Giraudoux,	2017;	Siegel	&	Castellan,	1988).	The	same	conclu-
sions	arise	when	other	measures	of	model	quality	were	used;	values	
for	Akaike	information	criterion	(AIC)	and	the	AIC	corrected	for	finite	
sample	sizes	(AICc)	are	available	in	supplemental	material	(Fig.	S2).

Reported deviations in cardinal temperatures were calculated as 
the	difference	from	the	weighted	mean	across	all	equations	(weighted	
by	Akaike	weights).	 Reported	 deviations	 in	 growth	were	 calculated	
absolute deviation from the weighted mean across all equations 
(weighted	by	Akaike	weights).

Differences between the different equations in their prediction 
of	 cardinal	 temperatures	 were	 assessed	 using	 analysis	 of	 variance	
(ANOVA)	and	a	Tukey-	HSD.	An	ANOVA	and	a	Tukey-	HSD	were	also	
used to compare equations for the temperature range required to 
stay	within	the	designated	thresholds	for	deviation	from	the	fit	to	the	
full	data	(0.5°C	for	Topt	and	5%	for	growth	rate).	Differences	between	
equations	 for	 sample	 size	 required	 to	 stay	 within	 these	 thresholds	
were	assessed	using	a	generalized	 linear	equation	(GLM)	with	a	 log-	
link	for	the	Poisson	distribution	of	count	data	and	Tukey	contrasts.

To	assess	similarity	between	equation	predictions	across	the	tem-
perature	 range,	 the	 Euclidian	 distance	was	 calculated	 based	 on	 the	
rate	predicted	by	the	equation	at	each	experimental	temperature	and	
clustering was done using Ward’s	minimum	variance	method	(Fig.	S3).

2.4 | Data quality sensitivity analysis

To	ensure	that	the	high-	resolution	datasets	were	of	sufficient	qual-
ity	 to	 distinguish	 between	 equations,	we	 conducted	 a	 simulation	
based	on	equation	 fits	 to	each	dataset.	Normally	distributed	 ran-
dom noise was added to the predicted growth rate value from each 
equation at each temperature. The noise was centered on 0 and 
its standard deviation was the square root of the mean residuals 
squared arising from the fit of the equation. Each equation was 
then	fit	to	the	simulated	datasets	generated	by	each	equation	and	
ranked	based	on	BIC.	Each	simulation	was	replicated	five	times.

To	measure	sensitivity	of	the	estimate	for	Topt and the estimate of 
growth rate at each temperature to the temperature resolution of a 
dataset,	a	decreasing	proportion	of	the	measured	temperatures	were	
removed	based	on:	(1)	random	sampling	across	the	temperature	range	
to	establish	the	number	of	temperatures	required	and	(2)	limiting	the	
temperatures	 included	 in	 the	 analysis	 to	 those	where	 the	observed	
growth rates were above a predetermined proportion of the maximum 
growth	rate,	thus	capturing	a	proportion	of	the	temperature	range.	A	
range	of	100%	is	expected	to	extend	from	Tmin to Tmax,	while	a	range	
of	50%	includes	temperatures	allowing	at	least	50%	of	the	maximum	
growth	rate	to	be	achieved	(from	CT50	min to CT50	min).	Topt is expected 
to	always	be	within	the	temperature	range	of	the	data	sampled	using	a	
proportion of the maximum growth rate.

F IGURE  2 Equation	ranking	based	on	BIC	for	each	dataset.	
Equations	are	ordered	by	median	rank	(best	equations	at	left	
with	lower	rank).	Point	is	the	median	rank	and	error	bars	are	95%	
confidence interval across datasets
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Data	quality	requirements	for	precision	and	accuracy	of	Topt and the 
estimate	of	growth	rate	at	each	temperature	were	assessed	by	fitting	the	
equations	to	subsamples	of	the	phytoplankton	growth	datasets	and	com-
paring these values to values obtained from fits to the complete data. Error 
was measured as the absolute deviation compared to values obtained 
from the fits to the complete dataset of cardinal temperature measure-
ments	(Topt)	and	the	mean	deviation	in	predicted	rate	at	all	temperatures.	
The temperature response of each individual species was treated as a 

replicate	in	this	analysis,	and	confidence	intervals	were	calculated	across	
these	replicates.	An	error	of	0.5°C	in	Topt	or	an	average	error	of	5%	of	the	
maximum	growth	rates	was	set	as	the	minimum	quality	thresholds.	The	
critical number of temperatures was defined as the maximal number of 
temperatures at which the threshold was exceeded plus 1. The critical 
range was the maximum range at which the threshold was exceeded or 
met.	In	some	cases,	this	was	the	lowest	value	for	number	of	temperatures	
or range at which equations could be fit to the subsampled data.

F I G U R E  3  (a)	Equation	fit	to	an	example	dataset	of	phytoplankton	growth	rate	as	a	function	of	temperature	(Phaeodactylum	tricornutum).	
The	points	are	the	measured	growth	rate	(same	values	across	panels),	and	the	lines	are	the	equation	predicted	growth	rates.	(b)	Equation	
residuals	as	function	of	temperature.	(c)	Value	of	the	first	derivative	(gradient)	at	each	measured	temperature.	Numbers	within	the	figure	indicate	
the	equation	number.	Equations	are	grouped	as	a	function	of	their	number	of	parameters	(3–6).	Equations	with	four	parameters	are	further	
divided	between	empirical	and	mechanistic	equations	to	minimize	clutter	within	the	plots.	Lines	for	individual	equations	are	labeled	with	color	
and the equation number. Similar patterns can be observed for other species
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2.5 | Predicting changes in biogeography with 
global warming

Given	the	centrality	of	these	equations	(Table	1)	to	the	prediction	of	
the	biotic	response	to	global	warming,	tour	aim	was	to	assess	whether	
differences among the equations used to account for the tempera-
ture dependence of growth rate can affect predictions of the effect 
of	global	warming	on	the	biogeography	of	phytoplankton.	To	do	this,	
we	make	the	simplifying	assumption	that	the	geographical	range	of	a	
species depends on the response of its growth rate to temperature. 
Sea	surface	temperature	(SST)	data	were	used	to	model	the	distribu-
tion of a species based on the response of its growth to temperature. 
Each equation was parameterized using the experimental data for the 
species,	and	the	parameterized	equation	was	applied	to	prediction	of	
growth from SST.

Contemporary	SST	for	the	month	of	August	for	the	years	2006	to	
2016	was	 obtained	 from	MODIS	 data	 accessed	 using	 the	Giovanni	

online	data	system,	developed	and	maintained	by	the	NASA	GES	DISC	
(Acker	&	 Leptoukh,	 2007).	 Predicted	 SST	 for	August	 2100	was	 ob-
tained	from	NCDC-	NOMADS.	This	predicted	SST	was	based	on	IPCC	
SRESA1B	 emission	 scenario	 for	 CO2 emissions and modeled using 
the	Geophysical	Fluid	Dynamics	Laboratory	(GFDL)	Coupled	Climate	
Model	 (CCM	2.1)	 (Delworth	et	al.,	2006).	Values	 from	the	month	of	
August	 are	 used	 as	 an	 example,	 and	 similar	 observations	would	 be	
made	if	another	month	of	the	year	was	selected	or	if	calculations	were	
based	on	mean	annual	temperature,	although	the	latter	would	not	ac-
count	for	seasonality.

We	 recognize	 that	 any	 inferences	 based	 on	 such	 an	 analy-
sis	 are	 subject	 to	 the	 caveats	 that	 (1)	 phytoplankton	 abundance	
may	 not	 correlate	with	 growth	 rate,	 (2)	 biogeography	 is	 affected	
by	 many	 other	 factors	 that	 may	 change	 in	 concert	with	 or	 inde-
pendent	of	global	warming,	and	(3)	given	their	rapid	growth	rates,	
	phytoplankton	can	be	expected	to	evolve	in	response	to	sustained	
warming.

F I G U R E  4 Equation	rank	based	on	BIC	across	(a)	trait	type	[data	compiled	in	(Dell	et	al.,	2013)]	and	for	(b)	growth	rate	across	algal	classes	
or	phyla	[data	compilation	of	(Thomas	et	al.,	2012)]	for	each	equation.	Only	traits	or	classes/phyla	with	more	than	two	taxonomic	units	are	
included	in	the	figure.	Points	indicate	the	median	and	the	error	bars	indicate	the	95%	confidence	interval	calculated	across	experiments	(a	single	
taxonomic	unit	can	be	in	multiple	experiments).	Equation	order	is	based	on	median	equation	rank	for	the	phytoplankton	growth	dataset	(as	
in	Figure	2).	Numbers	in	parentheses	indicate	the	number	of	taxonomic	units	(up	to	species	when	identified)	within	each	trait	or	class.	Not	all	
equations converged on a solution for all individual published datasets
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3  | RESULTS

3.1 | Differences between equations

All	equations	could	be	fit	to	each	phytoplankton	growth	dataset,	but	
no	 single	equation	consistently	provided	 the	best	 fit	 (i.e.,	 could	not	
account	for	the	majority	of	variance)	across	all	phytoplankton	growth	
datasets	(Figure	2).	Most	equations	could	not	be	distinguished	across	
datasets	based	on	rank,	although	Equations	6,	14,	and	15	had	better	
ranks	than	4,	and	Equation	15	also	significantly	outranked	12	(p	<	.05,	
Figure	2).

Simulations	indicate	that	the	quality	of	the	phytoplankton	growth	
datasets	 is	 sufficient	 to	 for	 the	 selection	of	 a	best	model.	All	 equa-
tions	had	better	rankings	on	the	simulated	data	that	they	had	gener-
ated	 than	on	data	 generated	by	 any	other	 equation	 (Kruskal–Wallis	
p < 10−3,	Fig.	S4).

For	a	given	dataset,	 the	12	equations	 (Table	1)	did	not	converge	
on	the	same	optimal	temperature	or	maximum	growth	rate	(Figure	3).	
Predicted	optimal	temperatures	were	on	average	−1.18°C	[range	from	
−2.28	to	−0.18°C]	from	the	weighted	mean	(Akaike	weights)	predicted	
optimal	temperature	across	equations	(S4),	and	the	mean	absolute	de-
viation	 in	 growth	 rate	 at	 each	 temperature	was	 0.018	 day−1 [range 
0.015	day−1	 to	0.022	day−1]	when	compared	 to	 the	weighted	mean	
across	 equations.	 Equations	 4	 and	 6	 consistently	 predicted	 higher	
optimal temperatures compared to other equations. Equations with a 
high	number	of	parameters	(5–6)	led	to	similar	predictions,	but	equa-
tions	based	on	similar	mechanisms,	similar	functional	forms,	or	similar	
rank	in	terms	of	BIC	did	not	lead	to	more	similar	predictions	(Fig.	S3).

Equations	 differed	 in	 their	 skew	 (deviation	 from	 median	 skew	
across	equations,	F11,81	=	2.87,	p	<	0.01),	with	the	average	skew	being	
−0.017	[−0.030,	−0.005]	across	all	equations	and	datasets.	As	a	con-
sequence,	T50	min and T50max	were	highly	variable	between	equations	
and datasets. The median distance between equations for each data-
set	was	1.0°C	for	CT50min	and	2.9°C	for	CT50max.	However,	for	some	of	
the	species	in	our	dataset,	some	equations	(Equations	6,	7,	12,	and	14)	
produced	estimates	greater	than	10°C	from	the	weighted	mean	value	
across equations for these cardinal temperatures.

There was no individual equation that outperformed all other 
equations	consistently	across	or	within	traits,	nor	within	an	algal	class	
(for	growth	rate)	where	there	was	taxonomic	replication	(Figure	4).	All	
equations represent the best equation for at least one of the responses 
(for	 a	 trait	 of	 a	 given	 taxa),	 except	 for	Equation	4	which	 	performed	
poorly	in	general.

3.2 | Data quality requirements

For	all	equations	(Table	1),	there	was	an	approximately	linear	increase	
in the error of cardinal temperatures estimates with a decrease in 
temperature	 resolution	 (i.e.,	 number	of	 experimental	 temperatures).	
Similarly,	the	error	increased	linearly	with	a	decrease	in	the	measured	
range	of	growth	rates	 (difference	between	the	minimum	rate	 in	the	
subsample	 and	 maximum	 rate).	 Only	 the	 most	 extreme	 equations	
differed	 significantly	 in	 terms	of	 their	data	quality	 requirements	 for	

number	of	temperatures.	On	average	across	all	equations,	a	minimum	
of	16	[range	of	15–17]	temperature	points	are	required	to	maintain	
the predicted Topt	within	0.5°C	of	the	value	predicted	on	the	full	data-
set	including	all	temperatures	measured	(Equation	6	differed	from	5,	
8,	10,	and	14,	p	<	.05,	Figure	5a).	A	minimum	of	8	[7–9]	temperature	
points was required to maintain predictions of growth rate to within 
5%	of	the	value	predicted	from	the	full	dataset	(Equation	4	differed	
from Equation 8 p	<	.05).	For	the	range	in	rates	measured,	56%	[50%–
60%]	of	the	full	range	(0	to	maximum	rate)	is	required	to	maintain	the	
predicted Topt	within	0.5°C	of	the	value	predicted	on	the	full	dataset	
and	29%	 [24%–34%]	maintain	 predictions	of	 growth	 rate	 to	within	
5%	of	the	value	predicted	from	the	full	dataset	(Figure	5b).	Based	on	
BIC,	some	of	the	“best”	fitting	equations	require	data	of	the	highest	
resolution	and	range	in	order	to	maintain	the	quality	of	their	fit	(e.g.,	
Equation 6 had the highest number of temperatures for the accurate 
prediction of Topt),	while	some	of	the	weakest	fitting	equations	are	the	
most	robust	to	 loss	 in	data	quality	 (e.g.,	Equation	5),	although	these	
differences	are	only	marginal.

3.3 | Implications for predictions of the response to 
global warming

We	found	that	differences	among	equations	in	the	predicted	growth	
rates	for	our	studied	phytoplankton	species	translate	into	large	dif-
ferences	 in	 expected	 contemporary	 biogeography	 even	when	 the	
two	best	fitting	equations	are	compared.	Equations	6	and	15	have	
similar	quality	scores	 (Figure	2)	and	 lead	to	similar	predications	of	
rate	 (Fig.	S3);	however,	Equation	6	predicts	a	global	mean	growth	
of	1.9%	less	than	Equation	15	(Figure	6a–c).	This	difference	is	com-
parable to the change predicted from a decade of global warming. 

F IGURE  5  (a)	Number	of	temperature	points	and	(b)	the	range	
in growth rate required to maintain the predicted Topt	within	0.5°C	
of	the	value	predicted	on	the	full	dataset	(blue	triangles),	and	to	
maintain	rate	predictions	on	average	within	5%	of	the	value	predicted	
from	the	full	dataset	(red	circles)	for	each	equation.	Equations	are	
ordered	based	on	median	rank	in	the	full	datasets	(matching	Figure	2)

5

10

15

20

25

Equation

M
in

im
um

 n
um

be
r

 o
f t

em
pe

ra
tu

re
s

error Mean absolute residuals 
<5% of max rate

20%

40%

60%

80%

15 06 14 10 13 09 07 08 05 12 11 04

Equation

M
in

im
um

 r
an

ge
 o

f r
at

e

Error Mean absolute residuals 
<5% of max rate

(a)

(b)



10476  |     LOW- DÉCARIE Et AL.

Based	on	a	projection	of	 future	SST,	 all	 equations	 lead	 to	predic-
tions	 of	 large-	scale	 changes	 in	 biogeography	 for	 the	 studied	 spe-
cies;	however,	the	magnitude	of	change	differs	between	equations.	
For	example,	the	global	mean	decline	in	growth	for	P. tricornutum of 
20.75%	over	the	modeled	period	or	2.3%	per	decade	with	Equation	
6	and	25.5%	over	the	period	or	2.9%	per	decade	for	Equation	15,	
Figure	6g–h).

4  | DISCUSSION

4.1 | Scale of difference in predicted biogeography 
and response to global warming

The	difference	between	equations	 for	predicted	 rates	 (mean	differ-
ence	of	0.018	day−1 across the temperature range for growth of our 
phytoplankton)	and	cardinal	temperature	(mean	difference	in	Topt of 
0.44°C	for	growth	of	our	phytoplankton)	may	be	perceived	as	small	
but	are	ecologically	significant.	When	scaled	to	predictions	of	changes	
in	global	processes,	 such	as	biogeography,	differences	between	 the	
best models can be larger than changes predicted over decades 
(Figure	6).	 The	 importance	 of	 data	 quality	 and	 modeling	 approach	
is recognized across disciplines which attempt to predict responses 

to	global	change.	Differences	 in	datasets	and	methodology	can	lead	
to	 opposing	 predictions	 of	 the	 change	 in	 biogeography	with	 global	
warming	 (Brown	et	al.,	2016).	Changes	 in	 the	scale	of	 the	observed	
difference between equations can alter predictions of species extinc-
tion	or	changes	in	the	epidemiology	of	major	diseases	(Mordecai	et	al.,	
2013).

The difference between equations in global average predicted 
rates	and	our	threshold	for	data	quality	are	both	on	the	order	of	re-
sponses	to	global	climate	change,	including	observed	changes	in	ter-
restrial	primary	production	of	3.3%	per	decade	from	1982	to	1999	
(Nemani,	2003)	and	predicted	increases	in	abundances	(and	associ-
ated	change	in	distribution)	of	2.9%	per	decade	for	Prochlorococcus 
and	 1.4%	 per	 decade	 for	 Synechococcus	 (Flombaum	 et	al.,	 2013).	
They	are	also	of	similar	scale	to	the	difference	between	equations	
proposed	to	account	for	the	colimitation	of	phytoplankton	growth	
by	temperature	and	nutrients	(Thomas	et	al.,	2017).	Differences	be-
tween	equations	 are	 smaller	 than	 the	estimated	decline	 in	phyto-
plankton	biomass	globally	of	10%	per	decade	over	the	last	century	
(Boyce,	 Lewis,	&	Worm,	 2010).	However,	 these	 trends	 have	 been	
disputed	 (McQuatters-	Gollop	 et	al.,	 2011),	 and	 growth	 rate	 and	
standing	phytoplankton	biomass	are	not	expected	to	be	correlated	
(Behrenfeld,	2014).

F IGURE  6 Biogeographic	distribution	Phaeodactylum	tricornutum	based	on	two	best-	fitting	equations	(Equation	6	a,d,g	and	Equation	15	
b,e,h)	applied	to	sea	surface	temperature	for	August,	in	present	day	(average	from	2006	to	2016,	a–b)	and	modeled	for	the	future	(averages	for	
2095–2105,	d–e);	the	average	change	in	growth	per	decade	(additive,	not	compounded)	for	the	period	2006–2016	to	2095–2105	(g–h);	and	
the	difference	between	the	predictions	from	these	two	equations	for	growth	(c–f)	and	for	change	(i).	Blue	contour	lines	for	growth	are	for	CTmin/
max and T50min/max.	This	is	not	intended	to	be	an	accurate	representation	of	the	biogeography	of	P.	tricornutum.	Rather,	it	is	provided	to	illustrate	
the	scale	of	differences	between	equations,	and	we	note	that	similar	differences	between	equations	arise	independent	of	species
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4.2 | Constraints on cardinal temperatures

The	relatively	small	difference	between	equations	in	the	estimates	of	
Topt	for	a	given	dataset	may	in	part	be	attributed	to	the	fact	that	the	
fitting of these equations has a bias to solutions that return values 
for the optimal temperature that fall within the temperature range 
measured	 or	 even	 at	 the	mean	 temperature.	 In	 published	 datasets	
(Thomas	et	al.,	2012),	the	estimates	of	optimal	temperature	were	cor-
related	with	 the	mean	 temperature	 of	measurements	 (R2 =	0.8,	 Fig.	
S6).	This	may	reflect	a	bias	of	 the	underlying	equation	to	 force	Topt 
to approach the mean of the temperatures at which measurements 
were	made.	Alternatively,	experimentalists	may	use	prior	knowledge	
of temperatures where their species can grow to select experimental 
temperatures that are centered around Topt.	Finally,	negative	growth	
rates	may	not	be	reported.	However,	when	fitting	all	equations	to	ran-
domly	generated	data,	strong	correlations	between	the	midpoint	(or	
mean)	of	the	range	in	measurement	temperatures	and	calculated	Topt 
remain	for	most	equations	(Fig.	S7).	The	fact	that	equations	can	bias	
Topt toward mean values of the dataset can have important implica-
tions for the studies attempting to find a mechanistic explanation for 
differences	 in	 optimal	 temperatures	 [e.g.,	 (Sal,	 Alonso-	Saez,	 Bueno,	
Garcıa,	&	Lopez-	Urrutia,	2015)].

The constraints on Topt estimates from equation fits pose a major 
challenge for the estimation of confidence around estimates of Topt. 
Bootstrapping	methods	 (modeling	on	samples	arising	 from	random	
sampling from the original complete dataset with replacement re-
sulting	 in	equation	 fits	on	even	smaller	 subsets	of	data)	commonly	
used	 to	 estimate	will	 greatly	 underestimate	 parameter	variance.	 In	
contrast,	Monte	Carlo	simulations	can	greatly	overestimate	the	size	
of the confidence interval around fits because the parameters do 
not	follow	an	established	multivariate	distribution	that	can	easily	be	
simulated	from	the	variance/covariance	matrices	and	thus	impossibly	
large or small rates can be predicted from simulations that ignore 
this issue.

The	 other	 cardinal	 temperatures	 (CTmin,	 CTmax,	 T50	min,	 T50max)	
are	 less	 constrained	 by	 the	 temperatures	 at	 which	 measurements	
were	 obtained	 (S7).	 To	 ensure	 accurate	 estimates	 of	 the	 extreme	
cardinal	temperatures	(CTmin,	CTmax),	extremely	 low	growth	rates	(μ/
μmax	<	0.05)	 must	 be	 included	within	 the	 data.	 This	 is	 because	 the	
lower	and	upper	thermal	tolerance	limits	(i.e.,	CTmin	and	Tmax)	are	less	
constrained	by	the	mean	experimental	temperatures	than	Topt and are 
more	dependent	on	the	“shape”	implicit	in	the	equations	(e.g.,	sine	vs.	
Gaussian).	These	 limitations	may	combine	to	yield	a	 large	difference	
between equations in the estimation of these cardinal temperatures. 
This	 may	 partially	 explain	 why	 correlations	 between	 maximal	 (and	
minimal	temperatures)	and	ambient	temperature	or	latitude	are	often	
absent or weaker than those found for Topt	 in	meta-	analyses	 based	
on	reported	cardinal	temperatures	(Araújo	et	al.,	2013;	Sunday	et	al.,	
2014),	although	correlation	with	 latitude	of	equal	strength	has	been	
found for Topt,	Tmin, and Tmax when the same equation is applied across 
all	datasets	(Thomas	et	al.,	2016).

The larger differences between equations at the upper and 
lower	 temperature	 regions	of	 the	curves	 (Tmin,	T50	min,	T50max,	Tmax)	

are	 particularly	 problematic	 for	 the	 prediction	 of	 the	 response	 of	
organisms	to	global	change.	 In	addition	to	 implications	of	shifts	 in	
range	limits,	these	values	will	 influence	how	an	organism	can	cope	
with	fluctuating	temperatures.	Increased	temperature	variation,	and	
thus	the	capacity	to	deal	with	these	more	extreme	temperatures,	is	
expected to pose a greater threat to species survival than warming 
(Vasseur	 et	al.,	 2014).	Thermal	 variability	 can	 also	 alter	 the	 shape	
and	the	scale	of	the	thermal	response	of	organisms	(Paaijmans	et	al.,	
2013).	In	a	variable	environment,	based	on	Jensen’s	inequality,	the	
optimal mean temperature is expected to be lower than in a constant 
environment	 [reviewed	 in	Dowd	et	al.,	 2015)]	 leading	 to	observa-
tions of optimal temperature higher than the mean temperature of 
the environment in more variable temperate habitats compared to 
less	variable	tropical	habitats	(Amarasekare	&	Johnson,	2017).	The	
temperature response is also dependent on prior exposure to the 
measurement	temperature,	allowing	for	acclimation,	and	the	dura-
tion	of	the	exposure	(Schulte,	Healy,	&	Fangue,	2011).	As	a	result,	
temperature fluctuations and acclimation need to be accounted for 
both	in	strategies	for	measurement	and	potentially	in	the	design	of	
equations.

4.3 | Implications for evolution under global change

In	 addition	 to	 the	 difference	 in	 estimates	 of	 cardinal	 temperatures,	
the	 shape	 of	 the	 temperature	 response	 curve	 will	 influence	 many	
predicted	responses	(Dowd	et	al.,	2015),	 including	the	probability	of	
an	evolutionary	response	to	global	warming.	If	the	absolute	value	of	
the	 first	derivative	of	 the	 curve	 (Figure	3)	 is	high	 (i.e.,	 a	 steep	 tem-
perature	response,	high-	temperature	sensitivity,	a	high	Q10),	a	small	
change in temperature would be expected to lead to a large change in 
biological	process,	which	in	turn	would	be	expected	to	translate	into	
a	 large	change	in	selection.	The	evolutionary	outcome	of	this	selec-
tion pressure will depend on numerous factors including the standing 
genetic	diversity	of	the	population,	the	population	size,	the	tempera-
ture	history	of	the	population	(Bell,	2013;	Bell	&	Collins,	2008),	and	
the	direction	of	the	change	(Low-	Décarie	et	al.,	2014).	For	example,	
Equation	15	will	predict	a	steeper	temperature	response	at	extreme	
temperatures	than	Equation	9	and	thus	lead	to	a	prediction	of	greater	
thermal	sensitivity	and	a	higher	selection	pressure.	In	fluctuating	en-
vironments,	evolution	should	lead	to	a	reduction	in	temperature	sen-
sitivity	(i.e.,	an	increase	in	plasticity	and	a	flattening	of	the	response	
curve;	(Clarke	&	Fraser,	2004).

Across	our	datasets,	activation	has	a	lower	slope	than	inactiva-
tion	(negative	skew).	The	skew	is	found	to	correlate	positively	with	
optimal	 temperature	 (Pawar	 et	al.,	 2016),	 consistent	 with	 a	 fixed	
upper	 limit	 to	 biological	 activity.	This	 leads	 to	 the	 expectation	 of	
higher selection at the upper limits of thermal tolerance. This is 
compatible with the observation that the upper limits of heat tol-
erance	 in	 terrestrial	 ectotherms	 are	 highly	 conserved	 across	 tax-
onomic	 groups,	whereas	 there	 is	 large	 variation	 in	 cold	 tolerance	
(Araújo	 et	al.,	 2013)	 and	 that	 upper	 limits	 of	 heat	 tolerance	 cor-
relate	with	latitude,	whereas	lower	temperature	tolerance	may	not	
(Sunday	et	al.,	2014).
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4.4 | There is no “Best” equation

Despite	 the	 importance	 of	 these	 differences	 between	 equations,	
the	best	equation	for	the	response	to	temperature	of	phytoplankton	
growth	rate	or	other	biological	traits	cannot	be	reliably	established	
on a single criterion. Notwithstanding penalties in the metric of 
equation	quality,	many	equations	with	higher	numbers	of	parame-
ters	had	lower	BIC,	but	more	complex	equations	were	less	robust	to	
loss	in	data	quality.	Equation	15	for	the	response	of	phytoplankton	
growth to temperature performed well in terms of fit and robust-
ness to data resolution but not robustness to limitations in the range 
of relative growth rates captured within the experiment. The fact 
that	we	 could	 not	 identify	 the	 “best”	 equation	may	 be	 related	 to	
important	 biological	 phenomena,	 such	 as	 fundamental	 differences	
in the shape of the biological response among taxa or among the 
biological	processes	of	interest,	or	issues	with	the	data,	fitting,	and	
model selection.

The better performance in terms of likelihood of more complex 
equations	 suggests	 that	 most	 responses	 exhibit	 taxon-	specific	 pat-
terns,	such	as	skew	and	concave	or	convex	activation,	that	must	each	
be	captured	by	a	parameter.	 It	may	not	be	possible	to	have	a	single	
best equation. The mechanism of response to temperature of different 
major	taxonomic	groups	may	differ	and	even	the	response	of	different	
developmental	stages	for	a	given	taxonomic	group	may	exhibit	differ-
ences	in	the	shape	of	their	response	to	temperature	(Mordecai	et	al.,	
2013;	 Paaijmans	 et	al.,	 2013;	 Sinclair	 et	al.,	 2016).	 Even	 genotypes	
within	a	species	may	differ	in	the	shape	of	their	temperature	response	
(Boyd	et	al.,	2013).	For	example,	the	temperature	response	may	fun-
damentally	 differ	 between	major	 groups	 of	 phytoplankton	 (Chen	 &	
Laws,	2016;	Lürling,	Eshetu,	Faassen,	Kosten,	&	Huszar,	2013;	Thomas	
et	al.,	2016).	Each	major	taxonomic	group	would	require	an	equation	
that	 captures	 these	 differences	 in	 response.	Testing	 this	 hypothesis	
would require the measurement of the response to temperature of 
many	minor	taxonomic	groups	(e.g.,	species)	within	major	taxonomic	
groups	with	equally	high-	temperature	resolution	and	range	coverage	
for	each	tested	taxon.	Alternatively,	an	equation	may	yet	be	developed	
that	 outperforms	 all	 the	 equations	we	 have	 tested,	 independent	 of	
taxa,	at	least	for	a	given	trait.	This	equation	may	be	based	on	a	better	
integration of interactions between multiple mechanisms for activa-
tion	(e.g.,	accounting	for	different	activation	rates	of	multiple	enzymes)	
and	 inactivation	 (heat	 capacity,	 substrate	 availability,	 and	 ecological	
factors)	or	include	a	yet	to	be	established	mechanistic	explanation	for	
these processes.

The limitations of current temperature response data for 
equation	 selection	 have	 been	 extensively	 recognized	 (Knies	 &	
Kingsolver,	2010;	Pawar	et	al.,	2016).	Our	results	show	that	even	
for	 a	 single	 selected	 equation,	 very	 few	 existing	 datasets	 meet	
data	quality	 requirements	 to	minimize	error	 in	predictions	of	 car-
dinal temperatures and rates across the full biokinetic temperature 
range.	For	recovering	estimates	from	existing	data	that	are	limited	
by	 resolution	 and	 range,	 a	 robust	 equation	with	 few	 parameters	
(e.g.,	Equation	8)	that	may	not	accurately	represent	the	underlying	
process	and	patterns	 (such	as	skew)	 is	preferable	to	better	 fitting	

equations for which changes in data range and resolution lead 
to	 important	 changes	 in	 estimates	 (e.g.,	 Equation	 6).	We	 did	 not	
vary	 the	precision	of	 the	measurement	of	 rate	or	of	 temperature.	
A	 proposed	 rule	 of	 thumb	 is	 that	 the	 precision	 of	 the	 measure-
ment of temperature is at least three times that of the precision 
of	the	measurement	of	the	response	variable	 (Pawar	et	al.,	2016).	
Another	 element	 not	 tested	 in	 our	 analysis	 is	 the	 location	 along	
the	 temperature	 scale,	 although	 measured	 activation	 can	 differ	
between	 organisms	with	 colder	 or	warmer	 growth	 ranges	 (Pawar	
et	al.,	 2016),	 potentially	 influencing	model	 choice,	 but	 this	 could	
not	be	tested	in	our	high-	resolution	datasets	because	of	tempera-
ture	ranges	for	growth	mostly	overlapped.	The	challenge	of	model	
selection	and	the	lack	of	quality	data	limit	our	ability	to	predict,	for	
example,	changes	in	the	distribution	of	species	with	global	climate	
change	[e.g.,	(Gobler	et	al.,	2017)].

Even	 in	 simple	 laboratory	 experiments	with	 only	 a	 single	 tro-
phic	 level,	 the	 response	 to	 temperature	 of	 growth	 rate	 does	 not	
consistently	 lead	 to	 predictable	 changes	 in	 competitive	 dynamics	
(Limberger,	Low-	Décarie,	&	Fussmann,	2014).	While	the	biogeogra-
phy	of	marine	ectotherms	matches	the	predictions	of	their	thermal	
performance	curves,	this	is	not	the	case	for	terrestrial	ectotherms	
(Sunday,	Bates,	&	Dulvy,	2012).	These	differences	between	the	re-
sponse	of	species	to	temperature,	competition,	and	their	distribu-
tion	may	be	attributed	to	the	complexities	of	ecological	interactions	
and	 the	 associated	 need	 to	 integrate	 many	 concomitant	 biologi-
cal responses with the potential for nonlinear interactions. These 
differences	 may	 also	 limit	 the	 credibility	 of	 biogeographic	 infer-
ences	such	as	that	presented	in	Figure	6,	which	would	completely	
change	 if,	 for	 example,	 nutrient	 limitation	was	 included	 (Thomas	
et	al.,	 2017).	 In	 models	 of	 natural	 ecosystems,	 the	 difference	 in	
response	 between	 trophic	 levels	 can	 cause	 trophic	 cascades,	 ex-
acerbating	 the	 predicted	 effect	 of	 warming	 (Chust	 et	al.,	 2014).	
However,	 these	 differences	 between	 single	 species	 physiological	
responses	and	ecological	observations	may	in	part	be	resolved	by	
a better measurement and understanding of the individual species 
responses	to	temperature.	Our	findings	highlight	the	need	to	focus	
our measurement and modeling efforts on simple but fundamental 
aspects	of	the	response	of	organisms	to	temperature,	with	the	aim	
to	make	more	robust	predictions	on	the	changes	in	the	ecology	of	
organisms and associated global biogeochemical processes based 
on future climate scenarios.
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