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1    Introduction 24 

Understanding how and why animals navigate through their environment is one of the key open 25 

questions in movement ecology (Nathan, 2008). Animal navigation can occur across various 26 

spatio-temporal scales corresponding to a wide variety of behavioural processes, ranging from 27 

short-term foraging and home-range exploration (Schultz & Crone, 2001; Fortin et al., 2005; 28 

McClintock et al., 2012) to large-scale migration events (Gardiner et al., 2015). Common 29 

navigation orientation mechanisms include taxis, where an animal directly orientates in response 30 

to external directional cues, and differential klinokinesis (DKK), where the level of turning in the 31 

movement path (sinuosity) depends on variations in the magnitude of an external stimulus; both 32 

taxis and DKK lead to a long-term directional drift (bias) towards the target (Benhamou & 33 

Bovet, 1992). Conversely, the short-term localised bias in movement directions due to the 34 

tendency of animals to continue moving in the same direction is known as forward persistence 35 

(Benhamou & Bovet, 1992). Empirical studies have considered how a variety of different 36 

animals may balance taxis and persistence mechanisms in order to navigate within their local 37 

environment, including butterflies (Schultz & Crone, 2001), elk (Fortin et al., 2005), and grey 38 

seals (McClintock et al., 2012). Hence it is important to consider a theoretical basis for animal 39 

navigation and the underlying mechanisms that may lead to improved navigational efficiency.   40 

Random walk theory has a long history of being used to model individual animal 41 

movement and navigation, and as a tool to classify and interpret observed movement data using 42 

various path analysis techniques (Jonsen et al., 2005; Codling et al., 2008; Langrock et al., 2012; 43 

McClintock et al., 2012). Models of movement based purely on localised forward persistence are 44 

known as correlated random walks (CRW) (Kareiva and Shigesada, 1983; Bovet & Benhamou, 45 

1988; Codling et al., 2008). Biased random walks (BRW) are movement models where there is a 46 
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long term directional bias in the direction of movement (Marsh and Jones, 1988; Benhamou, 47 

2006; Codling et al., 2008; Codling et al., 2010). Models that combine both long-term directional 48 

bias and forward persistence are known as biased and correlated random walks (BCRW) 49 

(Codling et al., 2008).  50 

Benhamou & Bovet (1992) combined taxis and forward persistence to form a vector-51 

weighted BCRW model of movement, and found in a 1000-step random walk that the best 52 

navigational strategy was to give approximately 10% weighting to external navigation cues 53 

(taxis) and approximately 90% weighting to forward persistence. Such a navigation strategy gave 54 

higher navigational efficiency than a movement process based on taxis alone (a pure BRW), 55 

although it should be stressed that Benhamou & Bovet (1992) only included error in their 56 

external navigation term and not in their forward persistence term. The fact that the most 57 

efficient navigation strategy involved giving a high weighting to persistence rather than taxis 58 

may seem to be a counter-intuitive result, since movement based purely on persistence is known 59 

to be an inefficient navigation strategy when compared to pure taxis (Cheung et al., 2007). A 60 

similar result to Bovet & Benhamou (1992) was obtained by Codling & Bode (2014) who found 61 

that, in the context of a collective movement model for navigating animal groups, the most 62 

efficient navigational strategy was to give a high weighting to indirect navigational cues 63 

(copying the movement of other group members) and a low (but non-zero) weighting to direct 64 

individual navigational cues (taxis). In a follow-up study, Codling & Bode (2016) included 65 

individual forward persistence in the collective movement model and showed that giving a high 66 

weighting to indirect cues (copying neighbours or using forward persistence) rather than relying 67 

on direct navigational cues gave the highest navigational efficiency.  68 
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The findings of Benhamou & Bovet (1992) and Codling & Bode (2014, 2016) were 69 

based on simulations only and the authors did not give a mathematical explanation for these 70 

results. Here we consider a generalised form of the Benhamou & Bovet (1992) BCRW 71 

navigation model, that includes error on the persistence term, and derive a mathematical 72 

approximation for the expected navigational efficiency. The model predicts that for a reasonably 73 

large (and realistic) range of navigation and persistence errors, the highest navigational 74 

efficiency is achieved by giving a low weighting to direct navigational cues. We discuss the 75 

relevance and implications of these findings in the wider movement ecology context. 76 

 77 

2. Mathematical model 78 

The BCRW model of Benhamou & Bovet (1992) assumes a single random walker starts 79 

at the origin, (0,0), and moves through an empty homogenous two-dimensional environment. For 80 

simplicity, the target is assumed to be a ‘point at infinity’ located along the positive x-axis (this 81 

effectively means we are only considering the large-scale part of the navigation process when the 82 

animal is far from the target). Orientation angles are measured counter-clockwise from the x-83 

axis, and hence the target direction is given by �� = 0. We assume the walker initially starts with 84 

no information about the target direction; an initial movement direction, ��, is randomly drawn 85 

from a uniform circular distribution (this assumption does not affect our results as we will show 86 

that the long-term navigational efficiency is independent of ��). At each random walk step the 87 

components of movement in each direction are given by a weighted vector sum of a navigation 88 

term and a persistence term (Benhamou & Bovet, 1992):  89 

∆���	 =	���	(� cos(�� +��)+	(1 − �) cos(�� + ��)),			(1) 90 

∆���	 = ���	(� sin(�� + ��) + (1 − �) sin(�� + ��)) ,     (2) 91 
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where ���	 is the step length (distance moved) in the current step, �� = 0 is the target direction 92 

(which is fixed as the x-axis for all steps), �� is the direction of movement in the previous step 93 

(which varies at each step), �� is a persistence error term, �� is a navigation error term, and 94 

� ∈ [0,1] is the weighting given to navigation (and hence (1 – w) is the weighting given to 95 

persistence). In contrast to Benhamou & Bovet (1992) (who only included an error in the 96 

navigation term), we include errors on both the navigation and persistence terms. In principle it 97 

would be possible to have an even more general BCRW model that includes an additional 98 

‘output noise/error’ term in addition to the navigation and persistence error terms. This output 99 

noise could represent either additional movement error because of environmental factors (e.g. 100 

turbulence) or could represent a form of ‘voluntary’ error that the animal may use to modulate its 101 

behaviour between behavioural states. However, these more complex model features are beyond 102 

the scope of the current work. 103 

The additive navigation and persistence random error terms, �� and ��, are drawn from 104 

separate zero-centred symmetric circular distributions with respective mean cosine values given 105 

by  ! ∈ [0,1] and  " ∈ [0,1].  The level of navigation and/or persistence error is determined by 106 

the mean cosine values,  ! and  ": a value close to 0 corresponds to very high error, and a value 107 

close to 1 corresponds to very low error. We assume that  ! and  " are fixed for all steps of the 108 

random walk, which implies that direction and persistence errors are independent (no correlation 109 

of errors between successive steps) and are not related to spatial location or any other external 110 

factor. Hence we do not consider possible changes in navigation cue strength as the animal 111 

approaches the target, interactions with other animals, or changes in behaviour and interactions 112 

with the environment such as foraging or resting during the navigation process. Note that, as 113 

long as  ! and  " are defined, the choice of which circular distribution to use is not important 114 
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since the results only depend on the first trigonometric moment (the mean cosine value); the 115 

same results are obtained using common circular distributions such as the wrapped normal, von 116 

Mises and wrapped Cauchy (Mardia & Jupp, 1999).  117 

 Similar to Benhamou & Bovet (1992), we define the navigational efficiency of a single 118 

step of the movement process as: 119 

	Navigational	efficiency = 	Net	distance	moved	towards	target	in	�	direction
Total	distance	moved .				(3) 

Hence, for the BCRW given by Eqs. (1) and (2) the expected navigational efficiency at a given 120 

step is given by E[cos θ5�	] since the target direction is the x-axis (�� = 0). In the extreme case 121 

of a pure BRW (w = 1), navigational efficiency is given exactly by E[cos ��] =	 !, while for a 122 

pure CRW (w = 0), navigational efficiency is given exactly by	E[cos(�� + ��)] = 0, since we 123 

assume a uniform initial orientation and there is no external navigation cue. More generally for 0 124 

< w < 1, an expression for E[cosθ5�	] is found by normalising Eq. (1) relative to the total step 125 

length (noting that ���	 cancels and that �� = 0) and then taking the expectation: 126 

6[cos ���	] = 6
78
8
9 � cos �� + (1 − �) cos(�� + ��)
:�; + (1 − �); + 2�(1 − �) cos=�� − (�� + ��)>?@

@
A
.				(4)	

 The expression on the right-hand side of Eq. (4) is non-linear so we cannot directly calculate the 127 

expectation. To make progress we use a similar argument to Wu et al. (2000), and assume we 128 

can treat the right-hand side of Eq. (4) as if it were linear. We then further assume that ��, �� 129 

and �� are all independent, and based on a result from Hill & Häder (1997), we assume that in 130 

the long-term limit, the distribution of movement directions is stable such that 6[cos ���	] =131 

	6[cos ��] = 6[cos �C] ≡  E, which is equivalent to the long-term navigational efficiency. This 132 

leads to a cubic polynomial for  E (see Appendix S1 for full details of the derivation): 133 
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2�(1 − �) ! " EF + (�; + (1 − �);(1 −  ";)) E; 	− 2�(1 − �) ! " E −�; !; = 0.		(5)				

It is possible to show that this polynomial has precisely one root in [0,1] for all feasible values of 134 

 !,  " and � (see Appendix S2). This root can then be calculated using Cardano’s method: 135 

 E = HI + √I; + KFL + HI − √I; + KFML − N,				(6)  136 

where A, B, and C are terms involving �,  !, and  ", and are given in Appendix S1.  137 

 138 

3. Results 139 

We first consider the specific case of zero error on forward persistence,  " = 1, which was 140 

considered originally by Benhamou & Bovet (1992). In this case Eq. (5) can be simplified and a 141 

limiting argument can be used to show that for all  ! > 0 (i.e. as long as external navigation 142 

cues are present) then  E → 1 as � → 0 (see Appendix S3 and Figure 1a-c). It may seem 143 

counter-intuitive that more efficient navigation can be obtained by giving a vanishingly small 144 

(but strictly non-zero) weighting to direct navigational cues but this is explained by the fact that 145 

once a navigating animal is oriented towards the target direction (which is always eventually 146 

possible if w is strictly non-zero), it can then maintain this direction of movement indefinitely 147 

since there is no persistence error, and hence no further external navigation cues are required. 148 

Nevertheless, the higher the level of navigation error (i.e. the lower the value of  !) the longer it 149 

will take (on average) for the animal to orientate itself towards the target direction. 150 

Consequently, the apparent navigational efficiency is highly dependent on the number of steps in 151 

the observed movement process when there is zero persistence error (Figure 1a-c). Benhamou & 152 

Bovet (1992) only considered simulation results for a 1000-step BCRW and hence didn’t report 153 

this long-term limit result directly. For � > 0, the predicted long-term navigational efficiency, 154 
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 E, monotonically decreases as w increases, indicating that lower long-term navigational 155 

efficiency is obtained when giving a higher weight to external navigation cues. This result is 156 

confirmed with the simulation results for the 10,000 step BCRW shown in Figure 1c. In Figure 157 

1a and 1b where the BCRW runs for only 100 or 1000 steps respectively, the curves showing the 158 

simulated navigational efficiency are non-monotonic: the navigational efficiency is dependent on 159 

 ! with a peak for  0 < � < 0.2 similar to the result reported by Benhamou & Bovet (1992). 160 

This indicates that even with zero error on forward persistence, a BCRW with a small number of 161 

steps requires external navigational cues for efficient navigation.  162 

%% Figure 1 about here %% 163 

 In the case where there is error on both the navigation and persistence components of the 164 

movement process (i.e.  ", ! < 1), the solution given in Eq. (6) predicts that as the persistence 165 

error increases ( " decreases), the navigational efficiency also decreases for all  ! (solid lines in 166 

Figure 1c-f). The predicted solution curves are (in general) non-monotonic with a peak indicating 167 

a maximum navigational efficiency for an intermediate value of w. For low persistence errors 168 

( " = 0.99, 0.95, 0.9 in Figure 1d-f) the maximum navigational efficiency occurs for w < 0.5, 169 

and at lower values of w when  ! is also small (higher navigation error). As the persistence error 170 

increases ( " = 0.7, 0.5, 0.1 in Figure 1g-i) the peak indicating the maximum navigational 171 

efficiency shifts to the right corresponding to a larger value of the weighting given to navigation, 172 

w (Figure 1g-i;  Appendix S4). In general, the simulation results shown in Figure 1g-i show the 173 

same qualitative behaviour as the predicted solution curves from Eq. (6). In contrast to the case 174 

of zero persistence error, for the values of  " < 1	considered here, there is very little difference 175 

in the model predictions and simulated results for n = 100, 1000 and 10,000 steps (see Appendix 176 

S5: Figure S1). The inclusion of even a small error on the persistence term means the effective 177 
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long-term limiting solutions for navigational efficiency are reached much faster than the case 178 

with zero persistence error. 179 

%% Figure 2 about here %% 180 

 The location of the peak corresponding to the maximum navigational efficiency for each 181 

of the curves in Figure 1d-i can be calculated directly from Eqs. (5) and (6). More generally, it 182 

can be shown that Eq. (6) has precisely one turning point for � ∈ [0,1],  and this turning point 183 

corresponds to the maximum predicted navigational efficiency (see Appendix S4). The values of 184 

w leading to the theoretical maximum navigational efficiency, together with the predicted values 185 

for this efficiency, are calculated from Eqs. (5) and (6) for a range of  ! and  ", and are shown in 186 

Figure 2a and 2b respectively. Figure 2c and 2d show the equivalent results from simulations of 187 

the BCRW, and show a good qualitative match to the theoretical predictions. Figure 2a and 2c 188 

highlight the result (also seen in Figures 1d-i) that when the persistence error is high ( " < 0.1), 189 

the maximum navigational efficiency occurs when giving a higher weighting to the navigation 190 

term (w > 0.9), and when  " ≈ 0 this efficiency is given exactly by  ! (Figure 2b and 2d) which 191 

corresponds to pure taxis. However, when the persistence error is low ( " > 0.9), the maximum 192 

navigational efficiency typically occurs for w < 0.5 (more weighting on persistence than direct 193 

navigation) even if the navigation error is also low (Figures 2a and 2c). Figure 2b and 2d 194 

highlight that a high navigational efficiency can be maintained even when the navigation error is 195 

large ( ! < 0.5) because of the weighting given to persistence: the contour corresponding to a 196 

long-term navigational efficiency of 0.5 extends well below  ! < 0.5 (Figures 2b and 2d).  197 

 198 

4. Discussion 199 
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We have developed the model of Benhamou & Bovet (1992) to include persistence error 200 

and derived a mathematical approximation for the long-term navigational efficiency of this form 201 

of BCRW. We have demonstrated how navigational efficiency depends on the weighting given 202 

between navigation and persistence at each step of the movement process and the level of error 203 

in each term (Eq. 6; Figure 1d-i). In Figure 2a, the area above the contour line corresponding to 204 

w = 0.5 indicates the region of the parameter space where giving a lower weighting to direct 205 

navigation cues and a higher weighting to persistence leads to the maximum long-term 206 

navigational efficiency. Interestingly, the predicted contour line corresponding to w = 0.5 207 

approaches  ! = 1 in Figure 2a, indicating that even with close to zero error on the navigation 208 

cue, there is little loss of navigational efficiency by giving equal weight to persistence. This 209 

potentially hints at some interesting evolutionary advantages for animals that balance forward 210 

persistence and external navigation cues in this way: giving a high weighting to persistence can 211 

improve overall navigation efficiency if the error on navigation cues is high ( ! < 0.5), and has 212 

little detrimental effect if the error on navigation cues is low ( ! > 0.9).  213 

The vector-weighted BCRW navigation model discussed by Benhamou & Bovet (1992) 214 

did not include error on the persistence term and the results given in their paper were for a 215 

BCRW with only 1000 steps. We have shown mathematically (Appendix S3 and Figure 1c) that 216 

in this scenario the long-term maximum navigation efficiency is actually obtained when the 217 

weighting on external navigation cues (taxis) tends to zero, i.e.  E → 1 as w → 0. This may seem 218 

like a counter-intuitive result, given that a movement process based purely on persistence with 219 

no taxis is known to be a poor navigation strategy (Cheung, 2007). However, this result holds 220 

only for the long-term limiting navigation efficiency, where the fact that there is zero error on 221 

persistence means an animal can achieve maximum navigational efficiency simply by continuing 222 
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in the same direction as previously once it is moving in the target direction. At shorter time-223 

scales navigation will not be as efficient (Figures 1a-c), and the observed navigational efficiency 224 

is dependent on the number of steps of the BCRW. A possible further extension of this work 225 

would be to derive an expression for the navigational efficiency that is valid for a small number 226 

of steps and not just the long-term limit. However, Appendix S5: Figure S1 demonstrates how 227 

the sensitivity of the navigational efficiency to the number of steps in the BCRW is less when 228 

persistence error is non-zero. When referring to the results in Figures 1a-c we are implicitly 229 

assuming that a random walk with 1000 steps is 10 times longer than a walk with 100 steps and 230 

so on. Instead, an alternative interpretation of the model and results is that the overall path length 231 

is fixed and it is the reorientation frequency that changes (so that a single step in a 1000-step path 232 

is 10 times shorter than that in a 100-step path). From Figure 1a-c, this then implies that in a 233 

noisy environment an animal may improve its navigational efficiency by increasing its rate of 234 

reorientation (effectively giving a larger sample size in the navigational averaging process).  235 

The BCRW model considered here is deliberately simple but could easily be extended to 236 

consider more complex scenarios, although this may come at the expense of analytical 237 

tractability, and generalised predictions about navigation efficiency informed by mathematical 238 

theory may not subsequently be possible. For example, our model assumes individuals do not 239 

interact with conspecifics but the overall conclusions are similar to results observed by Codling 240 

& Bode (2014, 2016) who used simulations to demonstrate that in social group navigation, the 241 

most efficient navigational strategy was to give a high weighting to indirect cues (copying the 242 

movement of other group members or using forward persistence), rather than relying on direct 243 

navigational cues (taxis). Our BCRW model assumes a homogeneous environment with a fixed 244 

target direction where navigation cues and errors do not vary in space or time. Additionally, 245 
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individual walkers do not change their movement behaviour over time or when in different 246 

spatial locations. Many migrating animals will undertake other behaviours during the large-scale 247 

navigation process (such as resting, foraging etc), or may change their behaviour in response to 248 

their local environment. Peleg and Mahadevan (2015) developed a random walk model which 249 

includes periods of purely persistent behaviour followed by a pause to reorient according to 250 

external navigational cues.  By repeating this behaviour, a walk which appears to be purely 251 

persistent (a CRW) in the short term can then be described as a BCRW in the long term. This is 252 

in contrast to our model where we assume the animal is continuously balancing persistence and 253 

navigation (taxis) at every step of the movement path. Nevertheless, the relative weighting 254 

between navigation and persistence in our model (w) can be directly compared to the relative 255 

navigation reorientation frequency in the model of Peleg and Mahadevan (2015) since both 256 

effectively give a way to balance persistence and navigation. In the context of group navigation, 257 

Bode et al. (2010) used a similar approach and considered a model where the behaviour of an 258 

individual at each step was probabilistic and chosen to be either purely persistent or purely local 259 

navigation. The probability of choosing persistence against navigation in this model could be 260 

directly compared to the relative navigation weighting (w) in our model.  261 

Predictions from our model about how animals should (in theory) balance persistence and 262 

external navigation cues (taxis) to give the highest navigational efficiency should be tested and 263 

compared to observations from empirical data. One of the most interesting model predictions is 264 

shown in Figure 2a, where in the parameter region above the w = 0.5 contour line (corresponding 265 

to values of approximately  " > 0.8 for low navigation error,  ! < 0.5, and  " > 0.9 for 266 

medium levels of navigation error, 0.5 < 	 ! < 0.9), it is more efficient to give a higher 267 

weighting to persistence than direct navigation cues. Directly comparing empirically reported 268 
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values of  " 	across the literature is known to be difficult since processing and sampling of the 269 

data can change the estimated forward persistence of an observed path (Bovet & Benhamou, 270 

1988; Codling & Hill, 2005). Nevertheless, high values for  " 	 have been reported for a wide 271 

range of species including insects and nematodes (0.62 ≤  " ≤ 0.94 in Byers, 2001), elk ( "=0.68 272 

in Fortin et al. 2005), dolphins ( "= 0.8 in Bailey & Thompson, 2006), foraging seabirds ( " = 273 

0.885 for movement mode 3 in Boyd et al. 2014), and reindeer ( " = 0.84 for exploratory 274 

movement state 2 in Langrock et al. 2014). Hence, it seems clear that many animal species are 275 

capable of moving in a highly persistent manner if they choose to do so. The relative weighting 276 

between navigation and persistence in the movement behaviour of a prairie butterfly was 277 

considered by Schultz and Crone (2001). They found that when returning to within 10-22m of 278 

their home habitat they were observed to use a BCRW movement that balanced persistence with 279 

navigation with a weighting of w = 0.38 (female) and w = 0.29 (male). However, the authors did 280 

not explore the levels of navigation and persistence error within the observed butterfly 281 

movement paths. Fortin et al. (2005) considered the balance between forward persistence and 282 

directed movements up-slope in the winter foraging of elk. Using a log-likelihood test, they 283 

showed that a BCRW model fitted the data better than the alternative of a pure BRW or a pure 284 

CRW, and that the weighting on directional bias was w = 0.17, implying that almost five times 285 

more weighting was given to persistence than localised up-slope directed movements. The 286 

results of Schultz and Crone (2001) and Fortin et al. (2005) provide empirical evidence that some 287 

animals do give a high weighting to persistence rather than directed movement, although the 288 

contexts are slightly different to our abstracted navigation problem. In contrast, McClintock et al. 289 

(2012) used a multi-state generalised BCRW framework to analyse and describe the movements 290 

of grey seals near to localised centres of attraction (foraging areas or haul-out sites), and found 291 
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that when close to the centres of attraction, movement was almost entirely directed (w > 0.99). 292 

However, the ecological context of their study (short-term foraging within a familiar territory) is 293 

different to our problem (large-scale navigation via an external directional cue). In addition, 294 

McClintock et al. (2012) didn’t directly consider that localised forward persistence and 295 

directional bias are often misclassified, especially in a short movement path, a fundamental 296 

problem highlighted by Benhamou (2006).  297 

A number of studies have considered strategies for maximising movement efficiency in 298 

the context of foraging, although these are usually based on minimising energy expenditure 299 

rather than optimising navigation efficiency. Fortin et al. (2003) demonstrated how theories from 300 

optimal foraging related to energy maximisation did not seem to hold across varying temporal 301 

scales, with other factors influencing movement behaviour becoming more important at larger 302 

time-scales. Bartoń et al. (2009) used simulations to explore the survival of animals exploring a 303 

patchy landscape using a BCRW movement model that balanced persistence with biased 304 

movement towards patches of suitable habitat. They found that “…when an organism's ability to 305 

detect patches decreases with distance from the patch, dispersal mortality is high if the organism 306 

engages in a walk with a low degree of correlation. Thus, even if long distance detection of a 307 

patch is poor, an individual can still have a good chance of surviving dispersal if it moves using a 308 

more economical, highly correlated walk.” Hence, although the model of Bartoń et al. (2009) 309 

was based on short-scale localised navigation when foraging, their conclusions seem to be 310 

consistent with the findings from our model, which is based on large-scale navigation. Further 311 

work is now needed to test our model predictions and to determine in more detail how real 312 

animals may balance persistence and taxis (and other possible mechanisms) when navigating 313 

efficiently over a range of spatio-temporal scales. 314 

315 
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Figure legends 384 

Figure 1. Navigational efficiency of the vector-weighted BCRW model,  E, against weighting 385 

factor on navigation, w, for a range of navigation error levels,  ! =  0.1 (black),  ! =	0.3 (cyan), 386 

 ! = 0.6 (gold) &  ! = 0.9 (blue). In all plots the solid lines represent the theoretical model 387 

predictions and the dashed lines represent the average results from simulations of 1000 388 

individual random walkers; � ranges from 0 to 1 at 0.01 intervals. Plots (a-c) show results with 389 

zero persistence error ( " = 1) for walks with different total number of steps: a) 100, b) 1000, c) 390 

10,000. Plots (d-i) show results for 1000 steps with persistence errors d)  " = 0.99, e)  " =  0.95, 391 

f)  " = 0.9, g)  " = 0.7, h)  " = 0.5, i)  " = 0.1. Navigation and persistence errors were drawn 392 

from zero-centred wrapped Normal distributions with parameters  " and  ! respectively.  393 

 394 

Figure 2.  Heat maps showing (a) the weighting factor on navigation, w, that leads to the 395 

predicted maximum navigation efficiency, and (b) the corresponding maximum navigation 396 

efficiency values. Plots (c) and (d) show the respective average results from simulations of 1000 397 

individual random walkers moving for 1000 steps. In each plot,  " and  ! range from 0 to 1 at 398 

0.01 intervals. Values of � ranging from 0 to 1 at 0.01 intervals were used to find the maximum 399 

navigation efficiency for each combination of  " and  !. Navigation and persistence errors were 400 

drawn from zero-centred wrapped Normal distributions with parameters  " and  ! respectively.  401 
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