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Running title: Navigational efficiency in a BCRW o

Navigational efficiency in a biased and correlated random walk model of individual animal
movement

Joseph D. Bailely Jamie Walli$? Edward A. Codling'
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Abstract: Understanding how an individual animal is abl@&vigate through its environment is
a key question in movement ecology that can gigeit into observed movement patterns and
the mechanisms behind them. Efficiency of navigat®important for behavioural processes at
a range of different spatio-temporal scales, incgdoraging and migration. Random walk
models provide a standard framework for modellinglividual animal movement and
navigation. Here we consider a vector-weighted ddasnd correlated random walk (BCRW)
model for directed movement (taxis), where extenaaligation cues are balanced with forward
persistence. We derive a mathematical approximatigdhe expected navigational efficiency for
any BCRW of this form and confirm the model predics using simulations. We demonstrate
how the navigational efficiency is related to theighting given to forward persistence and
external navigation cues, and highlight the coumteritive result that for low (but realistic)
levels of error on forward persistence, a higherigaional efficiency is achieved by giving
more weighting to this indirect navigation cue mtkhan direct navigational cues. We discuss
and interpret the relevance of these results faertstanding animal movement and navigation
strategies.

Keywords: Animal movement; biased and correlated random walk (BCRW); movement ecology;

navigation; persistence.
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1 Introduction
Understanding how and why animals navigate thrdbgir environment is one of the key open
guestions in movement ecology (Nathan, 2008). Ahinavigation can occur across various
spatio-temporal scales corresponding to a wideetyanf behavioural processes, ranging from
short-term foraging and home-range exploration (8zh& Crone, 2001; Fortin et al., 2005;
McClintock et al., 2012) to large-scale migratiovelts (Gardiner et al., 2015). Common
navigation orientation mechanisms include taxisgesghan animal directly orientates in response
to external directional cues, and differential &kimesis (DKK), where the level of turning in the
movement path (sinuosity) depends on variatiorthénmagnitude of an external stimulus; both
taxis and DKK lead to a long-term directional drfiias) towards the target (Benhamou &
Bovet, 1992). Conversely, the short-term localiseals in movement directions due to the
tendency of animals to continue moving in the samection is known as forward persistence
(Benhamou & Bovet, 1992). Empirical studies havestbered how a variety of different
animals may balance taxis and persistence mechanismrder to navigate within their local
environment, including butterflies (Schultz & Crer#001), elk (Fortin et al., 2005), and grey
seals (McClintock et al., 2012). Hence it is impattto consider a theoretical basis for animal
navigation and the underlying mechanisms that reagl to improved navigational efficiency
Random walk theory has a long history of being usednodel individual animal
movement and navigation, and as a tool to classify interpret observed movement data using
various path analysis techniques (Jonsen et d@5;200dling et al., 2008; Langrock et al., 2012;
McClintock et al., 2012). Models of movement bapackly on localised forward persistence are
known as correlated random walks (CRW) (Kareiva 8hijesada, 1983; Bovet & Benhamou,

1988; Codling et al., 2008). Biased random walkBR\® are movement models where there is a
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long term directional bias in the direction of mment (Marsh and Jones, 1988; Benhamou,
2006; Codling et al., 2008; Codling et al., 20Mndels that combine both long-term directional
bias and forward persistence are known as biased camrelated random walks (BCRW)
(Codling et al., 2008).

Benhamou & Bovet (1992) combined taxis and forwpedsistence to form a vector-
weighted BCRW model of movement, and found in aOi®@p random walk that the best
navigational strategy was to give approximately 10@8ighting to external navigation cues
(taxis) and approximately 90% weighting to forwaetsistence. Such a navigation strategy gave
higher navigational efficiency than a movement pescbased on taxis alone (a pure BRW),
although it should be stressed that Benhamou & B@¥892) only included error in their
external navigation term and not in their forwarergistence term. The fact that the most
efficient navigation strategy involved giving a higveighting to persistence rather than taxis
may seem to be a counter-intuitive result, sinceenment based purely on persistence is known
to be an inefficient navigation strategy when coragdao pure taxis (Cheung et al., 2007). A
similar result to Bovet & Benhamou (1992) was ofai by Codling & Bode (2014) who found
that, in the context of a collective movement mofiel navigating animal groups, the most
efficient navigational strategy was to give a higleighting to indirect navigational cues
(copying the movement of other group members) atwva(but non-zero) weighting to direct
individual navigational cues (taxis). In a folloy-study, Codling & Bode (2016) included
individual forward persistence in the collective vament model and showed that giving a high
weighting to indirect cues (copying neighbours sing forward persistence) rather than relying

on direct navigational cues gave the highest nawigal efficiency.
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The findings of Benhamou & Bovet (1992) and Codli&gBode (2014, 2016) were
based on simulations only and the authors did na g mathematical explanation for these
results. Here we consider a generalised form of Bemhamou & Bovet (1992) BCRW
navigation model, that includes error on the pe&eie term, and derive a mathematical
approximation for the expected navigational efficye. The model predicts that for a reasonably
large (and realistic) range of navigation and ptesice errors, the highest navigational
efficiency is achieved by giving a low weighting direct navigational cues. We discuss the

relevance and implications of these findings inliger movement ecology context.

2. Mathematical model

The BCRW model of Benhamou & Bovet (1992) assumsimge random walker starts
at the origin, (0,0), and moves through an empmdgenous two-dimensional environment. For
simplicity, the target is assumed to be a ‘poininénity’ located along the positive-axis (this
effectively means we are only considering the lesgale part of the navigation process when the
animal is far from the targetPrientation angles are measured counter-clockwise the x-
axis, and hence the target direction is givemby= 0. We assume the walker initially starts with
no information about the target direction; an alitnovement directiorg,, is randomly drawn
from a uniform circular distribution (this assungetidoes not affect our results as we will show
that the long-term navigational efficiency is indedent off,). At each random walk step the
components of movement in each direction are ghyea weighted vector sum of a navigation
term and a persistence term (Benhamou & Bovet, 1992

Axpi1 = Tpya(Wcos(r + ¢y) + (1 —w) cos(6y, +6,)), (1)

Ayn+1 = rn+1(W Sin('QT + ¢n) + (1 - W) Sin(en + 6n)) ) (2)
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wherer, ., is the step length (distance moved) in the cursésy,2; = 0O is the target direction
(which is fixed as the-axis for all steps)d,, is the direction of movement in the previous step
(which varies at each stepj, is a persistence error termg, is a navigation error term, and
w € [0,1] is the weighting given to navigation (and hence-(%) is the weighting given to
persistence). In contrast to Benhamou & Bovet (J9®%ho only included an error in the
navigation term), we include errors on both theigaton and persistence terms. In principle it
would be possible to have an even more general BGRMIel that includes an additional
‘output noise/error’ term in addition to the nawiga and persistence error terms. This output
noise could represent either additional movemerdr drecause of environmental factors (e.qg.
turbulence) or could represent a form of ‘voluntayor that the animal may use to modulate its
behaviour between behavioural states. Howeverethese complex model features are beyond
the scope of the current work.

The additive navigation and persistence randonr ¢erms,¢,, andé,,, are drawn from
separate zero-centred symmetric circular distrdmgiwith respective mean cosine values given
by cs € [0,1] andcs € [0,1]. The level of navigation and/or persistence eisatetermined by
the mean cosine valuas, andc;: a value close to O corresponds to very high genod a value
close to 1 corresponds to very low error. We asstinatcy, andcs are fixed for all steps of the
random walk, which implies that direction and pstiesice errors are independent (no correlation
of errors between successive steps) and are radedelo spatial location or any other external
factor. Hence we do not consider possible changesavigation cue strength as the animal
approaches the target, interactions with other alsinor changes in behaviour and interactions
with the environment such as foraging or restingrduthe navigation process. Note that, as

long ascy andcs are defined, the choice of which circular disttibo to use is not important



115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

since the results only depend on the first trigoaim moment (the mean cosine value); the
same results are obtained using common circulénlgitons such as the wrapped normal, von
Mises and wrapped Cauchy (Mardia & Jupp, 1999).

Similar to Benhamou & Bovet (1992), we define tiavigational efficiency of a single

step of the movement process as:

o . Net distance moved towards target in x direction
Navigational efficiency = :

(3)

Total distance moved

Hence, for the BCRW given by Egs. (1) and (2) theeeted navigational efficiency at a given
step is given b¥[cos 0,,,1] since the target direction is theaxis (2 = 0). In the extreme case
of a pure BRWW = 1), navigational efficiency is given exactly Bjcos ¢,] = c4, while for a
pure CRW { = 0), navigational efficiency is given exactly Bfcos(8,, + §,,)] = 0, since we
assume a uniform initial orientation and thereaserternal navigation cue. More generally for O
<w < 1, an expression fdi{cos 0 ,,,] is found by normalising Eq. (1) relative to théatestep

length (noting that;,,, cancels and tha, = 0) and then taking the expectation:

| |

| w cos ¢, + (1 —w) cos(6,, + &,,) |

E[cos0,,,] = E .
L/W2 + (1 —w)? 4+ 2w(1 — w) cos(¢, — (6, + 5n))J

4

The expression on the right-hand side of Eqg.g4)an-linear so we cannot directly calculate the
expectation. To make progress we use a similarnaegtito Wu et al. (2000), and assume we
can treat the right-hand side of Eq. (4) as if @&vlinear. We then further assume that ¢,,
andé,, are all independent, and based on a result frdin&Htader (1997), we assume that in
the long-term limit, the distribution of movemenitedtions is stable such th&fcos 8,,,,] =
E[cos 0,] = E[cos 8,] = cg, Which is equivalent to the long-term navigatioatficiency. This

leads to a cubic polynomial fop (see Appendix S1 for full details of the derivadio
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2W(1 - W)C¢C5C93 + (W2 + (1 - W)Z(l - ng))ng - 2W(1 - W)C¢C5C9 - W2C¢)2 = 0. (5)

It is possible to show that this polynomial hascgsely one root irf0,1] for all feasible values of

cp, cs andw (see Appendix S2). This root can then be calcdlasing Cardano’s method:

co=VA+VAZ+ B3+ VA-YAZ+B3-C, (6)

where A, B, and C are terms involving c4, andcs, and are given in Appendix S1.

3. Results
We first consider the specific case of zero ermrfarward persistence;s = 1, which was
considered originally by Benhamou & Bovet (1992)this case Eq. (5) can be simplified and a

limiting argument can be used to show that forcglt> 0 (i.e. as long as external navigation

cues are present) thap - 1 asw — 0 (see Appendix S3 and Figure la-c). It may seem
counter-intuitive that more efficient navigationnche obtained by giving a vanishingly small
(but strictly non-zero) weighting to direct navigetal cues but this is explained by the fact that
once a navigating animal is oriented towards thmgetadirection (which is always eventually
possible ifw is strictly non-zero), it can then maintain thisedtion of movement indefinitely
since there is no persistence error, and henceinlef external navigation cues are required.
Nevertheless, the higher the level of navigatiaorefi.e. the lower the value of;) the longer it
will take (on average) for the animal to orientateelf towards the target direction.
Consequently, the apparent navigational efficigsdyighly dependent on the number of steps in
the observed movement process when there is zesstemce error (Figure 1a-c). Benhamou &
Bovet (1992) only considered simulation results&dr000-step BCRW and hence didn’t report

this long-term limit result directly. Fow > 0, the predicted long-term navigational efficiency,
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cg, monotonically decreases as increases, indicating that lower long-term navaysil
efficiency is obtained when giving a higher weigbtexternal navigation cues. This result is
confirmed with the simulation results for the 1@03ep BCRW shown in Figure 1c. In Figure
la and 1b where the BCRW runs for only 100 or 1§1@@s respectively, the curves showing the
simulated navigational efficiency are non-monotottie navigational efficiency is dependent on
cg With a peak for 0 < w < 0.2 similar to the result reported by Benhamou & Bof#392).
This indicates that even with zero error on forwpegsistence, a BCRW with a small number of
steps requires external navigational cues foriefiicnavigation.

%% Figure 1 about here %%

In the case where there is error on both the @&y and persistence components of the
movement process (i.es5 cy < 1), the solution given in Eq. (6) predicts that las persistence
error increasesck decreases), the navigational efficiency also @mae for alty (solid lines in
Figure 1c-f). The predicted solution curves areg@neral) non-monotonic with a peak indicating
a maximum navigational efficiency for an intermédiaalue ofw. For low persistence errors
(cs = 0.99, 0.95,0.9 in Figure 1d-f) the maximum navigational efficignoccurs forw < 0.5,
and at lower values af whenc, is also small (higher navigation error). As thespeence error

increases ds = 0.7, 0.5, 0.1 in Figure 1g-i) the peak indicating the maximunvigational
efficiency shifts to the right corresponding tcaeger value of the weighting given to navigation,
w (Figure 1g-i; Appendix S4). In general, the siatidn results shown in Figure 1g-i show the
same qualitative behaviour as the predicted solutioves from Eg. (6). In contrast to the case
of zero persistence error, for the valuegpk 1 considered here, there is very little difference
in the model predictions and simulated resultsnfer100, 1000 and 10,000 steps (see Appendix

S5: Figure S1). The inclusion of even a small eooithe persistence term means the effective
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long-term limiting solutions for navigational efiemcy are reached much faster than the case
with zero persistence error.
%% Figure 2 about here %%

The location of the peak corresponding to the marmmavigational efficiency for each
of the curves in Figure 1d-i can be calculatedatiyefrom Eqgs. (5) and (6). More generally, it
can be shown that Eq. (6) has precisely one turpoigt forw € [0,1], and this turning point
corresponds to the maximum predicted navigatiofiaiency (see Appendix S4). The values of
w leading to the theoretical maximum navigationéicefncy, together with the predicted values
for this efficiency, are calculated from Egs. (6§id6) for a range of, andcs, and are shown in
Figure 2a and 2b respectively. Figure 2c and 2dvghe equivalent results from simulations of
the BCRW, and show a good qualitative match tothi@®retical predictions. Figure 2a and 2c
highlight the result (also seen in Figures 1d-gttwhen the persistence error is higg € 0.1),
the maximum navigational efficiency occurs whenirggva higher weighting to the navigation
term (v > 0.9), and wheu;s ~ 0 this efficiency is given exactly by, (Figure 2b and 2d) which
corresponds to pure taxis. However, when the gersis error is lowds > 0.9), the maximum
navigational efficiency typically occurs fav < 0.5 (more weighting on persistence than direct
navigation) even if the navigation error is alsavI@Figures 2a and 2c). Figure 2b and 2d
highlight that a high navigational efficiency cam imaintained even when the navigation error is

large €4 < 0.5) because of the weighting given to persistencectrgour corresponding to a

long-term navigational efficiency of 0.5 extenddeelow ¢4 < 0.5 (Figures 2b and 2d).

4. Discussion
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We have developed the model of Benhamou & Bove®Z) %o include persistence error
and derived a mathematical approximation for thmgytterm navigational efficiency of this form
of BCRW. We have demonstrated how navigationatiefficy depends on the weighting given
between navigation and persistence at each stépeahovement process and the level of error
in each term (Eq. 6; Figure 1d-i). In Figure 2a& #rea above the contour line corresponding to
w = 0.5 indicates the region of the parameter spavere giving a lower weighting to direct
navigation cues and a higher weighting to perstgteleads to the maximum long-term
navigational efficiency. Interestingly, the preédtcontour line corresponding W = 0.5
approachegy = 1 in Figure 2a, indicating that even with close &sazerror on the navigation
cue, there is little loss of navigational efficignby giving equal weight to persistence. This
potentially hints at some interesting evolutionagvantages for animals that balance forward
persistence and external navigation cues in this gi&ing a high weighting to persistence can
improve overall navigation efficiency if the erron navigation cues is high{ < 0.5), and has
little detrimental effect if the error on navigatioues is lowd, > 0.9).

The vector-weighted BCRW navigation model discudsg@enhamou & Bovet (1992)
did not include error on the persistence term dr&results given in their paper were for a
BCRW with only 1000 steps. We have shown mathemiyi¢Appendix S3 and Figure 1c) that
in this scenario the long-term maximum navigatidficiency is actually obtained when the
weighting on external navigation cues (taxis) tetwdsero, i.eco — 1 asw — 0. This may seem
like a counter-intuitive result, given that a mowathprocess based purely on persistence with
no taxis is known to be a poor navigation strat@@eung, 2007). However, this result holds
only for the long-term limiting navigation efficiey, where the fact that there is zero error on

persistence means an animal can achieve maximuigatiawnal efficiency simply by continuing

10



223 in the same direction as previously once it is mgvin the target direction. At shorter time-
224  scales navigation will not be as efficient (Figut@sc), and the observed navigational efficiency
225 is dependent on the number of steps of the BCRWogsible further extension of this work
226 would be to derive an expression for the navigaii@fficiency that is valid for a small number
227  of steps and not just the long-term limit. Howewgppendix S5: Figure S1 demonstrates how
228 the sensitivity of the navigational efficiency toetnumber of steps in the BCRW is less when
229  persistence error is non-zero. When referring ® résults in Figures la-c we are implicitly
230 assuming that a random walk with 1000 steps isr@s longer than a walk with 100 steps and
231  soon. Instead, an alternative interpretation efrttodel and results is that the overall path length
232 is fixed and it is the reorientation frequency tbladnges (so that a single step in a 1000-step path
233 is 10 times shorter than that in a 100-step pd&tfgm Figure la-c, this then implies that in a
234  noisy environment an animal may improve its navayet! efficiency by increasing its rate of
235 reorientation (effectively giving a larger sampieesin the navigational averaging process).

236 The BCRW model considered here is deliberately Erbpt could easily be extended to
237 consider more complex scenarios, although this mawme at the expense of analytical
238  tractability, and generalised predictions aboutigetion efficiency informed by mathematical
239 theory may not subsequently be possible. For exanqur model assumes individuals do not
240 interact with conspecifics but the overall conalus are similar to results observed by Codling
241 & Bode (2014, 2016) who used simulations to denratestthat in social group navigation, the
242 most efficient navigational strategy was to givligh weighting to indirect cues (copying the
243  movement of other group members or using forwamdigence), rather than relying on direct
244  navigational cues (taxis). Our BCRW model assumbermogeneous environment with a fixed

245  target direction where navigation cues and errarsndt vary in space or time. Additionally,
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individual walkers do not change their movementawsbur over time or when in different
spatial locations. Many migrating animals will undée other behaviours during the large-scale
navigation process (such as resting, foraging etcinay change their behaviour in response to
their local environment. Peleg and Mahadevan (2@Eyeloped a random walk model which
includes periods of purely persistent behavioulofeéd by a pause to reorient according to
external navigational cues. By repeating this beha, a walk which appears to be purely
persistent (a CRW) in the short term can then Iserideed as a BCRW in the long term. This is
in contrast to our model where we assume the ansrmadntinuously balancing persistence and
navigation (taxis) at every step of the movemerth.palevertheless, the relative weighting
between navigation and persistence in our mogglcan be directly compared to the relative
navigation reorientation frequency in the modelRefleg and Mahadevan (2015) since both
effectively give a way to balance persistence adgation. In the context of group navigation,
Bode et al. (2010) used a similar approach andideresi a model where the behaviour of an
individual at each step was probabilistic and chdsebe either purely persistent or purely local
navigation. The probability of choosing persistelacminst navigation in this model could be
directly compared to the relative navigation weiight(w) in our model.

Predictions from our model about how animals sh@uldheory) balance persistence and
external navigation cues (taxis) to give the highmeigational efficiency should be tested and
compared to observations from empirical data. Cirted most interesting model predictions is
shown in Figure 2a, where in the parameter regomve thew = 0.5 contour line (corresponding

to values of approximatelys > 0.8 for low navigation errorcg < 0.5, and cs > 0.9 for
medium levels of navigation errofl.5 < ¢4 < 0.9), it is more efficient to give a higher

weighting to persistence than direct navigationscuirectly comparing empirically reported
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values ofcs across the literature is known to be difficult narocessing and sampling of the
data can change the estimated forward persistehea observed path (Bovet & Benhamou,
1988; Codling & Hill, 2005). Nevertheless, high wa$ forcs have been reported for a wide
range of species including insects and nematodé2{0rs < 0.94 in Byers, 2001), ellc{=0.68

in Fortin et al. 2005), dolphing4= 0.8 in Bailey & Thompson, 2006), foraging seabifcs =
0.885 for movement mode 3 in Boyd et al. 2014), asiddeer {5 = 0.84 for exploratory
movement state 2 in Langrock et al. 2014). Hericeeems clear that many animal species are
capable of moving in a highly persistent mannehdy choose to do so. The relative weighting
between navigation and persistence in the moverbehtviour of a prairie butterfly was
considered by Schultz and Crone (2001). They faimatl when returning to within 10-22m of
their home habitat they were observed to use a B@RWement that balanced persistence with
navigation with a weighting o = 0.38 (female) ana/ = 0.29 (male). However, the authors did
not explore the levels of navigation and persistemeror within the observed butterfly
movement paths. Fortin et al. (2005) consideredbiddance between forward persistence and
directed movements up-slope in the winter foragiicelk. Using a log-likelihood test, they
showed that a BCRW model fitted the data betten tha alternative of a pure BRW or a pure
CRW, and that the weighting on directional bias was 0.17, implying that almost five times
more weighting was given to persistence than lIeedliup-slope directed movements. The
results of Schultz and Crone (2001) and Fortin.€R805) provide empirical evidence that some
animals do give a high weighting to persistencéeaiathan directed movement, although the
contexts are slightly different to our abstractagiigation problem. In contrast, McClintock et al.
(2012) used a multi-state generalised BCRW framkwmianalyse and describe the movements

of grey seals near to localised centres of atwactioraging areas or haul-out sites), and found
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that when close to the centres of attraction, m@rémwvas almost entirely directed & 0.99).
However, the ecological context of their study fstterm foraging within a familiar territory) is
different to our problem (large-scale navigatioma @&n external directional cue). In addition,
McClintock et al. (2012) didn’t directly considehat localised forward persistence and
directional bias are often misclassified, espegiall a short movement path, a fundamental
problem highlighted by Benhamou (2006).

A number of studies have considered strategiesnftimising movement efficiency in
the context of foraging, although these are usula#iged on minimising energy expenditure
rather than optimising navigation efficiency. Forét al. (2003) demonstrated how theories from
optimal foraging related to energy maximisation dit seem to hold across varying temporal
scales, with other factors influencing movementavaur becoming more important at larger
time-scales. Bartoet al. (2009) used simulations to explore the isahof animals exploring a
patchy landscape using a BCRW movement model thddnbed persistence with biased
movement towards patches of suitable habitat. Theyd that “...when an organism's ability to
detect patches decreases with distance from tlol pdispersal mortality is high if the organism
engages in a walk with a low degree of correlatibmus, even if long distance detection of a
patch is poor, an individual can still have a gobdnce of surviving dispersal if it moves using a
more economical, highly correlated walk.” Hencehaligh the model of Banioet al. (2009)
was based on short-scale localised navigation wbeaging, their conclusions seem to be
consistent with the findings from our model, whishbased on large-scale navigation. Further
work is now needed to test our model predictiond tndetermine in more detail how real
animals may balance persistence and taxis (and ptissible mechanisms) when navigating

efficiently over a range of spatio-temporal scales.
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Figure 1. Navigational efficiency of the vector-gieied BCRW model¢y, against weighting
factor on navigationw, for a range of navigation error levetg, = 0.1 (black)cys = 0.3 (cyan),

¢y = 0.6 (gold) &cg = 0.9 (blue). In all plots the solid lines repmséhe theoretical model
predictions and the dashed lines represent theag®eresults from simulations of 1000
individual random walkersy ranges from 0 to 1 at 0.01 intervals. Plots (akgw results with
zero persistence errarg(= 1) for walks with different total number of steps:180, b) 1000, c)
10,000. Plots (d-i) show results for 1000 steps \pirsistence errors d} = 0.99, exs = 0.95,

f) cs = 0.9, g)cs = 0.7, h)cs = 0.5, i)cs = 0.1. Navigation and persistence errors were draw

from zero-centred wrapped Normal distributions vggvameterss andcy, respectively.

Figure 2. Heat maps showing (a) tiweighting factor on navigationy, that leads to the
predicted maximum navigation efficiency, and (bg tborresponding maximum navigation
efficiency values. Plots (c) and (d) show the resipe average results from simulations of 1000
individual random walkers moving for 1000 stepseath plotcs andc, range from 0 to 1 at
0.01 intervals. Values of ranging from O to 1 at 0.01 intervals were usefirtd the maximum

navigation efficiency for each combination@fandcg. Navigation and persistence errors were

drawn from zero-centred wrapped Normal distribugianth parameterss andcy, respectively.
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