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Abstract

Macroeconomists are increasingly working with large Vector Autoregressions (VARs)
where the number of parameters vastly exceeds the number of observations. Existing
approaches either involve prior shrinkage or the use of factor methods. In this paper, we
develop an alternative based on ideas from the compressed regression literature. It
involves randomly compressing the explanatory variables prior to analysis. A huge
dimensional problem is thus turned into a much smaller, more computationally tractable
one. Bayesian model averaging can be done over various compressions, attaching greater
weight to compressions which forecast well. In a macroeconomic application involving up
to 129 variables, we find compressed VAR methods to forecast as well or better than
either factor methods or large VAR methods involving prior shrinkage.
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1 Introduction

Vector autoregressions (VARs) have been an important tool in macroeconomics since the

seminal work of Sims (1980). Recently, many researchers in macroeconomics and finance

have been using large VARs involving dozens or hundreds of dependent variables (see, among

many others, Banbura, Giannone and Reichlin, 2010, Carriero, Kapetanios and Marcellino,

2009, Koop, 2013, Koop and Korobilis, 2013, Korobilis, 2013, and Gefang, 2014). Such models

often have many more parameters than observations, over-fit the data in-sample, and, as a

consequence, forecast poorly out-of-sample. Researchers working in the literature typically

use prior shrinkage on the parameters to overcome such over-parametrization concerns. The

Minnesota prior is particularly popular, but other approaches such as the LASSO (least

absolute shrinkage and selection operator, see Park and Casella, 2008 and Gefang, 2014) and

SSVS (stochastic search variable selection, see George, Sun and Ni, 2008) have also been used.

Most flexible Bayesian priors that result in shrinkage of high-dimensional parameter spaces

rely on computationally intensive Markov Chain Monte Carlo (MCMC) methods and their

use in recursive forecasting exercises can be computationally infeasible. The only exception

is a variant of the Minnesota prior that is based on the natural conjugate prior, an idea that

has recently been exploited by Banbura, Giannone and Reichlin (2010) and Giannone, Lenza

and Primiceri (2015), among others. While this prior allows for an analytical formula for the

posterior, it does have some restrictive features.

The themes of wishing to work with Big Data and needing empirically-sensible shrinkage

of some kind also arise in the compressed regression literature; see Donoho (2006). In this

literature, shrinkage is achieved by compressing the data instead of the parameters. These

methods are used in a variety of models and fields (e.g. neuroimaging, molecular

epidemiology, astronomy). A crucial aspect of these methods is that the projections used to

compress the data are drawn randomly in a data oblivious manner. That is, the projections

do not involve the data and are thus computationally trivial. Recently, Guhaniyogi and

Dunson (2015) introduced the idea of Bayesian Compressed regression, where a number of

different projections are randomly generated and the explanatory variables are compressed

accordingly. Bayesian model averaging (BMA) methods are used to attach different weights

to the projections based on the explanatory power the compressed variables have for the

dependent variable.

In economics, alternative methods for compressing the data exist. The most popular of
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these is principal components (PC) as used, for instance, in the Factor-Augmented VAR,

FAVAR, of Bernanke, Boivin and Eliasz (2005) or the dynamic factor model (DFM) of, e.g.,

Geweke (1977) and Stock and Watson (2002). PC methods compress the original data into a

set of lower-dimensional factors which can then be exploited in a parsimonious econometric

specification, for example, a univariate regression or a small VAR. The gains in computation

from such an approach are large. However, the data compression is done without reference to

the dependent variable(s). PC is thus referred to as an unsupervised data compression method.

In contrast, the approach of Guhaniyogi and Dunson (2015) to compressed regression, since

it involves the use of BMA, is supervised.

In this paper, we extend the Bayesian random compression methods of Guhaniyogi and

Dunson (2015), developed for the regression model, to the VAR case, leading to the Bayesian

Compressed VAR (BCVAR). In doing so, we introduce several novel features. First, we

generalize the compression schemes of Guhaniyogi and Dunson (2015) and apply them both

to the VAR coefficients and the elements of the error covariance matrix. In high dimensional

VARs, the error covariance matrix will contain a large number of unknown parameters and,

thus, compressing them may be important in avoiding over-parameterization. Second, we

allow the explanatory variables in the different equations of the VAR to be compressed in

potentially different ways and develop a computationally efficient algorithm that leads to

equation-by-equation estimation of the high dimensional compressed VAR.1 Third, we

generalize our compressed VAR methods to the case of large-dimensional VARs with

time-varying parameters and volatilities. This model extension is achieved by combining the

estimation approach developed in Koop and Korobilis (2013) with the compressed VAR,

that is, by relying on variance discounting methods to model, in a computationally efficient

way, the time variation in the VAR coefficients and error covariance matrix.

We carry out a substantial macroeconomic forecasting exercise involving VARs with up to

129 dependent variables and 13 lags. We compare the forecasting performance of seven key

macroeconomic variables using the BCVAR to various popular alternatives: univariate AR

models, the DFM, the FAVAR, and the Minnesota prior VAR. Our results are encouraging

for the BCVAR, showing forecast improvements in many cases, and comparable forecast

performance in the remainder.

1This work made use of the High Performance Computing Cluster (HPC64) at Brandeis University. Our
algorithm has very low requirements in terms of memory allocation and, since the VAR equations are assumed
to be independent, can be easily parallelized to fully exploit the power of modern high-performance computer
clusters (HPCC).
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2 The Theory and Practice of Random Compression

2.1 Compression in Regression

Random compression methods have been used in fields such as machine learning and image

recognition as a way of projecting the information in data sets with a huge number of variables

into a much lower dimensional set of variables. In this way, they are similar to PC methods,

which take as inputs many variables and produce factors as their output. With PC methods,

the first factor accounts for as much of the variability in the data as possible, the second

factor the second most, etc. Typically, a few factors are enough to explain most of the

variability in the data and, accordingly, parsimonious models involving only a few factors

can be constructed. Random compression does something similar, but is computationally

simpler, and capable of dealing with a massively huge number of variables. For instance,

in a regression context, Guhaniyogi and Dunson (2015) have an application involving 84,363

explanatory variables.

To fix the basic ideas of random compression, let X be a T × k data matrix involving T

observations on k variables where k � T . Xt is a 1 × k vector denoting the tth row of X.

Define the projection matrix, Φ, which is m × k with m � k and X̃ ′t = ΦX ′t. Then X̃t is

the 1 × m vector denoting the tth row of the compressed data matrix, X̃. Since X̃ has m

columns and X has k, the former is much smaller and is much easier to work with. To see

how this works in a regression context, let yt be a scalar dependent variable and consider the

relationship:

yt = Xtβ + εt. (1)

If k � T , then working directly with (1) is impossible with some statistical methods (e.g.

maximum likelihood estimation) and computationally demanding with others (e.g. Bayesian

approaches which require the use of MCMC methods). Some of the computational burden can

arise simply due to the need to store in memory huge data matrices. Manipulating such data

matrices even a single time can be very demanding. For instance, calculation of the Bayesian

posterior mean under a natural conjugate prior requires, among other manipulations, inversion

of a k × k matrix involving the data. This can be difficult if k is huge. In order to deal with

a large number of predictors, one can specify a compressed regression variant of (1)

yt =
(
ΦX ′t

)′
βc + εt. (2)

Once the explanatory variables have been compressed (i.e. conditional on Φ), standard
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Bayesian regression methods can be used for the regression of yt on X̃t. If a natural

conjugate prior is used, then analytical formulae exist for the posterior, marginal likelihood,

and predictive density, and computation is trivial. Note that the model in (2) has the same

structure as a reduced-rank regression, as the k explanatory variables in the original

regression model are squeezed into a small number of explanatory variables given by the

vector X̃ ′t = ΦX ′t. The crucial difference with previous approaches such as Geweke (1996),

Kleibergen and Van Dijk (1998) and Carriero, Kapetanios and Marcellino (2016) is that the

matrix Φ is not estimated. This is the main idea behind compressed regression methods,

where Φ is treated as a random matrix with its elements sampled using random number

generation schemes.2

The key question is: what information is lost by compressing the data in this fashion?

The answer is that, under certain conditions, the loss of information may be small. The

underlying motivation for random compression arises from the Johnson-Lindenstrauss lemma

(see Johnson and Lindenstrauss, 1984). This states that any k point subset of the Euclidean

space can be embedded in m = O
(
log (k) /ε2

)
dimensions without distorting the distances

between any pair of points by more than a factor of 1±ε, where 0 < ε < 1. In the econometrics

literature, Ng (2016, pages 10-13) provides a detailed explanation and the intuition behind

this rather remarkable result and shows how it can be used to tackle economic problems.

Further intuition on the potential usefulness of these methods in the linear regression setting

of (2) can be drawn from the literature on random subspace methods (see Boot and Nibbering,

2016), and complete subset regression (see Elliott, Gargano and Timmermann, 2013, 2015).

Both these approaches are similar to the compressed regression in (2). In particular, random

subspace methods involve randomly drawing subsets of the explanatory variables, while the

complete subset regression method of Elliott, Gargano and Timmermann (2013, 2015) uses

equal-weighted combinations of all available subsets of explanatory variables, and resorts to

randomly selecting the subsets when the number of regressors is larger than the total number of

available observations. Another important reference in this context is Guhaniyogi and Dunson

(2015), who provide proofs of the theoretical properties of compressed regression methods,

asymptotically in T and k. Under some weak assumptions, the most significant relating

to sparsity, Guhaniyogi and Dunson (2015) show that their Bayesian compressed regression

algorithm produces a predictive density which converges to the true predictive density. The

2Random projection methods are referred to as data oblivious, since Φ is drawn without reference to the
data. A key early paper in this literature is Achlioptas (2003), which provides theoretical justification for
various ways of drawing Φ in a computationally-trivial manner.
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convergence rate depends on how fast m and k grow with T . With some restrictions on this,

they obtain near parametric rates of convergence to the true predictive density. In a simulation

study and empirical work, they document excellent coverage properties of predictive intervals

and large computational savings relative to popular alternatives. We note that in the large

VAR there is likely to be a high degree of sparsity since most VAR coefficients are likely to

be zero, especially for more distant lag lengths. In such a case, the theoretical results of

Guhaniyogi and Dunson (2015) suggest fast convergence should occur and the computational

benefits will likely be large.

Finally, note that Guhaniyogi and Dunson (2015) show that the desirable properties of

random compression hold even for a single, data oblivious, random draw of Φ. In practice,

they recommend taking many random draws and then averaging them. They draw Φij , the

ijth element of Φ, (where i = 1, ..,m and j = 1, .., k) from the following distribution:

Pr
(

Φij = 1√
ϕ

)
= ϕ2

Pr (Φij = 0) = 2 (1− ϕ)ϕ

Pr
(

Φij = − 1√
ϕ

)
= (1− ϕ)2

, (3)

where ϕ and m are unknown parameters.3 Next, they rely on BMA to average across the

different random projections. Treating each Φ(r) (r = 1, .., R) as defining a new model, they

first calculate the marginal likelihood for each model, and then average across the various

models using weights proportional to their marginal likelihoods. Note also that m and ϕ can

be estimated as part of this BMA exercise. In fact, Guhaniyogi and Dunson (2015) recommend

simulating ϕ from the U [a, b] distribution, where a (b) is set to a number slightly above zero

(below one) to ensure numerical stability. As for m, they recommend simulating it from the

discrete U [2 log (k) ,min (T, k)] distribution.

Intuitively, the use of BMA will ensure that bad compressions (i.e. those that lead to loss

of information important for explaining yt) are avoided or down-weighted. To provide some

more context, note that if we were to interpret m and ϕ and, thus, Φ, as random parameters

(instead of specification choices defining a particular compressed regression), then BMA can

be interpreted as importance sampling. That is, the Uniform distributions that Guhaniyogi

and Dunson (2015) use for drawing ϕ and m can be interpreted as importance functions.

Importance sampling weights are proportional to the posterior for m and ϕ. But this, in

turn, is equivalent to the marginal likelihood which arises if Φ is interpreted as defining a

3The theory discussed above suggests that Φ should be a random matrix whose columns have unit lengths
and, hence, Gram-Schmidt orthonormalization is done on the rows of the matrix Φ.
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model. Thus, in this particular setting, importance sampling is equivalent to BMA. In a VAR

context, doing BMA across models should only improve empirical performance since this

will lead to more weight being attached to choices of Φ which result in superior explanatory

power of the compressed data. Such supervised dimension reduction techniques contrast with

unsupervised techniques such as PC. It is likely that supervised methods such as this will

forecast better than unsupervised methods, a point we investigate in our empirical work.

In summary, for a given compression matrix, Φ, the huge dimensional data matrix is

compressed into a much lower dimension. This compressed data matrix can then be used

in a statistical model such as a regression or a VAR. The theoretical statistical literature on

random compression has developed methods such as (3) for randomly drawing the compression

matrix and showed them to have desirable properties under weak conditions which are likely

to hold in large VARs. By averaging over different Φ (which can differ both in terms of m

and ϕ) BMA can be done. All this can be done in a computationally simple manner, working

only with models of low dimension.

2.2 Compression in VARs

To adapt these methods for use with VARs, consider the standard reduced form VAR model,4

Yt = BYt−1 + εt (4)

where Yt for t = 1, ..., T is an n× 1 vector containing observations on n time series variables,

εt is i.i.d. N (0,Ω) and B is an n × n matrix of coefficients. Note that, with n = 100, the

uncompressed VAR will have 10, 000 coefficients in B and 5, 050 in Ω. In a VAR(13), such

as the one used in this paper, the former number becomes 130, 000. It is easy to see why

computation can become daunting in large VARs and why there is a need for shrinkage.

To compress the explanatory variables in the VAR, we can use the matrix Φ given in (3)

but now it will be an m× n matrix where m� n, subject to the normalization Φ′Φ = I. In

a similar fashion to (2), we can define the compressed VAR:

Yt = Bc (ΦYt−1) + εt, (5)

where Bc is n×m. Thus, we can draw upon the motivations and theorems of, e.g., Guhaniyogi

and Dunson (2015) to offer theoretical backing for the compressed VAR. If a natural conjugate

4For notational simplicity, we explain our methods using a VAR(1) with no deterministic terms. These can
be added in a straightforward fashion. In our empirical work, we have monthly data and use 13 lags and an
intercept.
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prior is used, for a given draw of Φ the posterior, marginal likelihood, and predictive density

of the compressed VAR in (5) have familiar analytical forms (see, e.g., Koop and Korobilis,

2009). These, along with a method for drawing Φ, is all that are required to forecast with the

BCVAR. And, if m is small, the necessary computations of the natural conjugate BCVAR

are straightforward.5 We note however that the natural conjugate prior has some well-known

restrictive properties in VARs.6 In the context of the compressed VAR, working with a Φ

of dimension m× n as defined in (5), with only n columns instead of n2 would likely be too

restrictive as it implies that lags of all variables are shrunk in the same way in every equation.7

An additional issue with the natural conjugate BCVAR is that it allows the error covariance

matrix to be unrestricted. This issue does not arise in the regression model of Guhaniyogi

and Dunson (2015) but is potentially very important in large VARs. For example, in our

application the largest VAR we estimate has an error covariance matrix containing 8, 385

unknown parameters. These considerations motivate working with a re-parametrized version

of the BCVAR that allows for compression of the error covariance matrix. Following common

practice (see, e.g., Primiceri, 2005, Eisenstat, Chan and Strachan, 2015 and Carriero, Clark

and Marcellino, 2015) we use a triangular decomposition of Ω:

AΩA′ = ΣΣ, (6)

where Σ is a diagonal matrix with diagonal elements σi (i = 1, ..., n), and A is a lower

triangular matrix with ones on the main diagonal. Next, we rewrite A = In + Ã, where In

is the (n× n) identity matrix and Ã is a lower triangular matrix with zeros on the main

diagonal. Using this notation, we can rewrite the reduced-form VAR in (4) as follows

Yt = BYt−1 +A−1ΣEt

where Et ∼ N (0, In). Further rearranging, we have

Yt = ΓYt−1 + Ã (−Yt) + ΣEt (7)

= ΘZt + ΣEt
5In the literature on compression in multivariate regression, it is worth citing Hoff (2007). This paper uses

BMA to estimate the rank of a singular value decomposition for the right-hand side variables in a class of
models which includes the VAR. In contrast to our approach, he uses Gibbs sampling methods to estimate the
optimal decomposition.

6These are summarized on pages 279-280 of Koop and Koroblis (2009).
7An alternative compressed VAR approach would involve multiplying both sides of the equation by Φ, thus

compressing the dependent variables as well. In order to forecast, say, the first nf variables the upper left
hand nf × nf block of Φ could be set to the identity matrix. Such an approach would be similar in spirit to a
factor-augmented VAR but with the factors being replaced by random compressions.
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where Zt =
[
Y
′
t−1,−Y

′
t

]′
, Γ = AB and Θ =

[
Γ, Ã

]
. Because of the lower triangular structure

of Ã, the first equation of the VAR above includes only Yt−1 as explanatory variables, the

second equation includes
(
Y
′
t−1,−Y1,t

)′
, the third equation includes

(
Y
′
t−1,−Y1,t,−Y2,t

)′
, and

so on (here Yi,t denotes the i-th element of the vector Yt). Note that this lower triangular

structure, along with the diagonality of Σ, means that equation-by-equation estimation of the

VAR can be done, a fact we exploit in our algorithm. Furthermore, since the elements of

Ã control the error covariances, by compressing the model in (7) we can compress the error

covariances as well as the reduced form VAR coefficients.

Given that in the triangular specification of the VAR each equation has a different number

of explanatory variables, a natural way of applying compression in (7) is through the following

specification:

Yi,t = Θc
i

(
ΦiZ

i
t

)
+ σiEi,t i = 1, ..., n (8)

where now Zit denotes the subset of the vector Zt which applies to the i-th equation of the

VAR: Z1
t = (Yt−1), Z2

t =
(
Y
′
t−1,−Y1,t

)′
, Z3

t =
(
Y
′
t−1,−Y1,t,−Y2,t

)′
, and so on. Similarly, Φi

is a matrix with m rows and column dimension that conforms with Zit . Following (8), we

now have n compression matrices (each of potentially different dimension and with different

randomly drawn elements), and as a result the explanatory variables in the equations of the

original VAR can be compressed in different ways.8

For a given set of posterior draws of Θc
i and σi (i = 1, .., n), estimation and prediction

can be done in a computationally-fast fashion using a variety of methods since each model

will be of low dimension and, for the reasons discussed previously, all these can be done one

equation at a time. In the empirical work in this paper, we use standard Bayesian methods

suggested in Zellner (1971) for the seemingly unrelated regressions model. In particular, for

each equation we use the prior:

Θc
i |σ2

i ∼ N
(
Θc
i , σ

2
i V i

)
(9)

σ−2
i ∼ G

(
s−2
i , νi

)
,

8Note also that an alternative way to estimate a compressed VAR version of model (7) would be to write
the model in its SUR form; see Koop and Korobilis (2009). If we did so, the data matrix Zt would have to
be expanded by taking its Kronecker product with In. For large n such an approach would require huge
amounts of memory (many times more than a modern personal computer has available). Even if we were to
use sparse matrix calculations, having to define the non-zero elements of the matrices in the SUR form of a
large VAR would result in very slow computation. On the other hand, the equation-by-equation estimation we
propose in (8) is simpler and can be easily parallelizable, since the VAR equations are transformed so as to be
independent.
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where G
(
s−2
i , νi

)
denotes the Gamma distribution with mean s−2

i and degrees of freedom νi.

In our empirical work, we set set Θc
i = 0, V i = 0.5× I and, for σ−2

i use the non-informative

version of the prior (i.e. νi = 0). We then use familiar Bayesian results for the Normal

linear regression model (e.g. Koop, 2003, page 37) to obtain analytical posteriors for both

Θc
i and σ2

i . The one-step ahead predictive density is also available analytically. However,

h-step ahead predictive densities for h > 1 are not available analytically. To compute them,

we proceed by first converting the estimated compressed triangular VAR in equation (8) back

into the triangular VAR of equation (7), noting that

Θ =
[
(Θc

1Φ1, 0n)′, (Θc
2Φ2, 0n−1)′, ..., (Θc

n−1Φn−1, 02)′, (Θc
nΦn, 0)′

]′
(10)

where 0n is a (1× n) vector of zeros, 0n−1 is a (1× n− 1) vector of zeros, and so on.

Subsequently, we go from the triangular VAR in equation (7) to the original reduced-form

VAR in equation (4) by noting that B = A−1Γ, where Γ can be recovered from the first

n × n block of Θ in (10), and A is constructed from Ã using the remaining elements of Θ

(see equation (7)). Finally, the covariance matrix of the reduced form VAR is simply given

by equation (6), where both A and Σ are known. After these transformations are

implemented, standard results for Bayesian VARs can be used to obtain multi-step-ahead

density forecasts.

So far we have discussed specification and estimation of the compressed VAR conditional

on a single compression Φ (or Φi, i = 1, .., n). In practice, we generate R sets of such

compression matrices Φ
(r)
i (i = 1, .., n and r = 1, .., R), and estimate an equal number of

compressed VAR models, which we denote with M1, ...,MR. Then, for each model, we use

the predictive simulation methods described above to obtain the full predictive density

p
(
Yt+h|Mr,Dt

)
, where h = 1, ...,H. For each forecast horizon h, the final BMA forecast is a

mixture of the form

p
(
Yt+h|Dt

)
=

R∑
r=1

wrp
(
Yt+h|Mr,Dt

)
, (11)

where Dt is the information set available at time t, wr = exp (−.5Ψr) /
∑R

r=1 exp (−.5Ψr) is

model Mr weight, and Ψr = BICr − BICmin, with BICr being the value of the Bayesian

Information Criterion (BIC) of model Mr and BICmin the minimum value of the BIC among

all R models. We use BIC to approximate the marginal likelihood because it can be computed

easily for high-dimensional VARs and is insensitive to the choice of the priors.

In our empirical work, the Φ
(r)
i ’s are randomly drawn using the strategy described in (3).

This scheme means that for each of the R random compression matrices, we have to generate
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the parameter ϕ and decide on the number of rows m of each Φ
(r)
i (that is, the dimension

of the projected space). Both these parameters are drawn randomly: ϕ is drawn from the

uniform U [0.1, 0.8] distribution and m is drawn from the discrete U [1, 5 ln (ki)], where ki is

the number of explanatory variables included in Zit for VAR equation i.9

We note that papers such as Achlioptas (2003) have proposed alternative schemes to the

one we adopted in (3) to randomly draw the elements of Φi. While some of these may be

potentially more efficient and can provide a higher degree of sparsity (zeros in Φi), in our

macroeconomic application we found that a wide range of alternative random projection

schemes produced almost identical forecasts. Thus, in our empirical application we will

focus exclusively on the scheme proposed by Guhaniyogi and Dunson (2015), as described in

equation (3).

2.3 Compression in Time-Varying Parameter VARs

In macroeconomic forecasting applications, it is often empirically necessary to allow for

time-variation in the VAR coefficients and/or the error covariance matrix. There is an

increasing literature that shows that ignoring macroeconomic volatility and possible

structural changes in coefficients of a VAR can result in bad in-sample fit and poor

out-of-sample forecast performance; see for example Clark (2011). Both such extensions add

greatly to the computational burden since MCMC methods are usually required. In the

context of the constant coefficient VAR with conjugate prior for the VAR coefficients there

is a growing literature (e.g. Carriero, Clark and Marcellino, 2015, 2016a and Chan, 2015)

investigating various structures for time-varying error covariance matrices which do not lead

to excessively large computational demands. However, even these can be restrictive and

require the use of MCMC methods which will make them unsuitable for use in extremely

large models. Allowing for time-variation in the VAR coefficients (e.g. assuming that the

coefficients evolve according to a random walk or a Markov switching process) will also

greatly increase the burden.

In this section, we show how the compressed VAR methods can be generalized to the case

of a VAR with time-varying parameters and stochastic volatilities (TVP-SV-VAR). We will

9These choices are similar to those used in Guhaniyogi and Dunson (2015), but our choice to draw values of
m as low as one is lower than theirs. We do this just to see if extreme compressions, which basically remove all
the right-hand side variables, receive any support. Due to numerical stability reasons, for ϕ we do not consider
the full support [0, 1].
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denote our compressed version of the TVP-SV-VAR as BCVARtvp−sv and write it as:

Yi,t = Θc
i,t

(
ΦiZ

i
t

)
+ σi,tEi,t. (12)

Notice that all parameters including the error variances may vary over time and, thus, they

have t subscripts, t = 1, ..., T . We also remind the reader that the variables Zit contain lags

of the dependent variables and the terms which relate to the error covariances as defined

in (7). This TVP-SV-VAR model is different from the previous literature because it allows

for equation by equation estimation. Papers such as Primiceri (2005) would specify the

VAR in the familiar seemingly unrelated regression form, where all n VAR equations are

modeled jointly. Estimation using the latter form can become cumbersome as n increases,

since the posterior for both the time-varying regression coefficients and volatilities requires

many manipulations involving large data matrices. Using (12), estimation of the BCVARtvp−sv

is reduced to the estimation of n univariate time-varying parameter regressions which is

computationally more efficient for large n. Additionally, the possibly large matrix Zit is still

compressed using Φi as with the BCVAR.

In general, forecasting with TVP-SV-VARs is computationally demanding as it typically

relies on MCMC methods. In our case, even if we use Φi to compress the data, a full Bayesian

analysis could be computationally demanding with large n since MCMC methods are required

and must be run for each of the n equations. Accordingly, we turn to approximate methods to

deal with the TVP-SV aspect of our BCVAR. These are generalizations of those developed by

Koop and Korobilis (2013) in the context of a TVP-VAR with time varying error covariance

matrix. They use variance discounting methods to model the time-variation in the VAR

coefficients and error covariance matrix, and provide analytical formulae for updating them.

Thus, in (12), once we draw Φi randomly, Θc
i,t and σ2

i,t can be updated using simple recursive

formulae based on the Kalman filter, without relying on computationally intensive MCMC

methods.

Adapting Koop and Korobilis (2013), the compressed TVP-SV-VAR model involves

estimating Θc
i,t and σ2

i,t by assuming that they evolve according to:

Θc
i,t = Θc

i,t−1 +

√√√√(1− λi,t) var
(

Θc
i,t−1|t−1

)
λi,t

ui,t, (13)

σ2
i,t = κi,tσ

2
i,t−1 + (1− κi,t) Ê2

i,t. (14)

That is, Θc
i,t follows a random walk using a forgetting factor approximation to its error

covariance matrix. Kalman filtering methods can be used for this equation. For σ2
i,t we have
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an Exponentially Weighted Moving Average filter. Ê2
i,t is the time t squared prediction error

estimated from the i-th equation of the VAR, ui,t ∼ N (0, 1), and var
(

Θc
i,t−1|t−1

)
is the

variance of Θc
i,t−1 given information up to time t − 1 and is produced by the Kalman filter

(see Koop and Korobilis, 2013, for details). The crucial parameters in this specification are

the forgetting and decay factors λi,t and κi,t. These factors, which are typically in the range

of (0.9, 1), control how quickly discounting of past data occurs. For example, if λi,t = 0.90

then Θc
i,t depends very heavily on recent observations, and changes very rapidly over time.

On the other hand, if λi,t = 0.99 the discounting of the past is more gradual and Θc
i,t varies

more smoothly. Finally, when λi,t = 1 we go back to the constant parameter VAR. Similar

arguments can be made for σ2
i,t and its decay factor κi,t.

We extend the methods of Koop and Korobilis (2013) by allowing for the decay and

forgetting factors to vary over time using simple updating formulae:

λi,t = λ+ (1− λ)× exp

(
−0.5×

Ê2
i,t−1

σ̂2
i,t−1

)
, (15)

κi,t = κ+ (1− κ)× exp
(
−0.5× kurt

(
Êi,t−12:t−1

))
, (16)

where σ̂2
i,t−1 is the time t − 1 estimate of the variance and kurt

(
Êi,t−12:t−1

)
is the excess

kurtosis of the VAR prediction error, evaluated over the past year (i.e. with monthly data

this is based on a rolling sample of 12 observations). λ and κ put bounds on the minimum

values of the forgetting and decay factors. We set λ = 0.98 and κ = 0.94 which, in the context

of monthly data, allow for the possibility of a fairly large amount of time variation.10

Note that if the prediction error is close to zero then λi,t = 1, which is the value consistent

with the parameters in equation i being constant. In words, if the model forecast well last

month, we do not change its parameters this month. However, the larger the prediction error

is, the smaller λi,t becomes and, thus, a higher degree of parameter change is allowed for.

For the decay factor κi,t, we use a similar reasoning, except for the fact that we do so in

terms of the excess kurtosis of the prediction error. As is well known (e.g. from the GARCH

literature), under the assumption that errors are Normally distributed, in times of constant

volatility the excess kurtosis will be equal to zero, while in times of increased volatility the

excess kurtosis will be higher. Allowing for κi,t to depend on the kurtosis over the past

year is a simple way of allowing σ2
i,t to change more rapidly in unstable times. Using these

10The idea of allowing the value of the forgetting factor to depend on the most recent prediction error is
used, e.g., in Park, Jun, and Kim (1991).
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methods, it is straightforward to allow for time-variation in our compressed VAR approach

in a computationally simple manner.

3 Empirical Application: Macroeconomic Forecasting with
Large VARs

3.1 Data

We use the FRED-MD data-base of monthly US variables from January 1960 through

December 2014. The reader is referred to McCracken and Ng (2015) for a description of this

macroeconomic data set, which includes several variables from a broad range of categories

(e.g. output, capacity, employment and unemployment, prices, wages, housing, inventories

and orders, stock prices, interest rates, exchange rates and monetary aggregates). We use

the 129 variables for which complete data is available, after transforming all variables using

the transformation codes provided in the online appendix.11 We present forecasting results

for seven variables of interest: industrial production growth (INDPRO), the unemployment

rate (UNRATE), total nonfarm employment (PAYEMS), the change in the Fed funds rate

(FEDFUNDS), the change in the 10 year T-bill rate (GS10), the finished good producer

price inflation (PPIFGS) and consumer price inflation (CPIAUCSL).12 In particular, we

estimate VARs of different dimensions, with these seven variables included in all of our

specifications. We have a Medium VAR with 19 variables and a Large VAR with all 129

variables.13 A listing of all variables, including exact details of which variables appear in

which VAR, is given in the online appendix. Note that most of our variables have

substantial persistence in them and, as a result, the first own lag in each equation almost

always has important explanatory power. Accordingly, we do not compress the first own lag.

This is included in every equation, with compression being done on the remaining

variables.14 Following Banbura et al. (2010), we choose a relatively large value for the lag

length (p = 13) for all the methods we compare, trusting in the compression or shrinkage of

11In addition to dropping a few series with missing observations, we also remove the series non-borrowed
reserves, as it became extremely volatile during the Great Recession.

12We also standardize our variables prior to estimation and forecasting. The forecasts of the original variables
are then computed by inverting the transformation. This standardization is computed recursively, i.e., using
only the data that would have been available at each point in time to estimate the various models.

13In our online appendix, we also present results for an Intermediate VAR with 46 variables.
14To be precise, we are always allowing the diagonal elements of Γ in (7) to be non-zero. We experimented

with the alternative triangularization of Carriero, Clark and Marcellino (2016b) which allows for the diagonal
elements of B in (4) to always be non-zero. These two approaches yield very similar results, both in terms of
treatment of first own lags and in forecast performance.
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the various methods to remove unnecessary lags.

3.2 Alternative Methods for Large VARs

We use the Bayesian compressed VAR methods introduced in subsection 2.2 in two ways: the

first one, which we label as BCVARc, compresses both the VAR coefficients and the error

covariances as in (8). The second one, which we label BCVAR, is the same, except for the

fact that it does not compress the error covariances.

To better assess the forecasting accuracy of these compressed VAR methods, we compare

their performances against a number of popular alternatives. Reasoning that previous work

with large numbers of dependent variables have typically used factor methods or large

Bayesian VARs, we focus on these. In addition, we compare the forecasts using all of these

methods to a benchmark approach which uses OLS forecasts from univariate AR(1) models.

Dynamic Factor Model

The dynamic factor model (DFM) can be written as:

Yt = λ0 + λ1Ft + εt

Ft = Φ1Ft−1 + ...+ ΦpFt−p + εFt (17)

where Ft is a q×1 vector of factors (with q � n) which contains information extracted from all

n variables, λ0 and λ1 are n×1 and n×q matrices, and εt ∼ N
(
0,ΣY

)
where ΣY is a diagonal

matrix. The vector of factors is assumed to follow a VAR(p) process with εFt ∼ N
(
0,ΣF

)
,

with εt independent of εFs at all t and s. We use principal component methods to estimate

the factors.15

We specify the maximum number of factors and lag lengths to be qmax =
√
n and pmax =

13, respectively. Next, at each point in time we use BIC to choose the optimal lag length

and number of factors. We use Bayesian methods with non-informative priors to estimate

and forecast with this model (note that the law of motion for the common factors in equation

(17) is needed to iterate forward the forecasts when h > 1).

Factor-Augmented VAR

We use the Factor-Augmented VAR (FAVAR) of Bernanke, Boivin, Eliasz (2005) dividing

Yt into a set of primary variables of interest, Y ∗t (these are the same key seven variables listed

15Alternative estimators such as the quasi-maximum likelihood estimator of Doz, Giannone and Reichlin
(2012) are possible. These authors note that principal components, quasi maximum likelihood, and a two-step
estimator based on Kalman smoother all give basically the same results for n > 25 and T > 50. We use
principal components for simplicity.
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above), and the remainder Ỹt, and work with the model:

Ỹt = ΛFt + εỸt (18)[
Ft
Y ∗t

]
= B0 +B1

[
Ft−1

Y ∗t−1

]
+ ...+Bp

[
Ft−p
Y ∗t−p

]
+ ε∗t .

The vector (F ′t , Y
∗′
t )′ is assumed to follow a VAR(p) process with εỸt ∼ N

(
0,ΣỸ

)
, ε∗t ∼

N (0,Σ∗), E
(
εỸt ε
∗′
s

)
= 0 for all t and s and E (ε∗t ε

∗′
s ) = E

(
εỸt ε

Ỹ ′
s

)
= 0 for all s 6= t. As with

the DFM model, we rely on principal component methods to extract the factors Ft, and select

the optimal number of factors q and the lag length p using BIC. We use Bayesian methods

with non-informative priors to forecast with this model.

Bayesian VAR using the Minnesota Prior

We follow closely Banbura et al (2010)’s implementation of the Minnesota prior VAR which

involves a single prior shrinkage parameter, ω. However, we select ω in a different manner

than Banbura et al (2010), and estimate it in a data-based fashion similar to Giannone, Lenza

and Primiceri (2015). We choose a grid of values for the inverse of the shrinkage factor ω−1

ranging from 0.5×√np to 10×√np, in increments of 0.1×√np. At each point in time, we use

BIC to choose the optimal degree of shrinkage. All remaining specification and forecasting

choices are exactly the same as in Banbura et al (2010) and, hence, are not reported here. In

our empirical results, we use the acronym BVAR to refer to this approach.

We stress that we are only comparing our methods to alternatives that are

computationally feasible with large VARs. This restriction rules out many popular

VAR-based approaches and explains why we are only considering the Minnesota prior VAR.

But we note that even the Minnesota prior VAR will not handle the truly enormous VARs

that may arise for the researcher working with multi-country data sets or combining

macroeconomic and financial data. In contrast, random compression methods should scale

up to handle VARs with thousands of variables (as will principal components methods).

Carriero, Clark and Marcellino (2016a) explore in detail the computational challenges of

working with large VARs and note that the posterior covariance matrix for the VAR is an

(np+ 1)n matrix whose manipulation can cause a chief computational bottleneck. With

general approaches (which do not involve a natural conjugate or Minnesota prior)

manipulating such a matrix involves O
(
n6p3

)
operations, but with priors adopting a

particular Kronecker structure (e.g. the Minnesota prior) this can be reduced to O
(
n3p3

)
.

When n = 100 or larger this results in a huge computational reduction, which is why so

many large VAR applications rely on priors which have this Kronecker structure (despite
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well known criticisms of it). But when n = 1, 000 or n = 10, 000 even if the Kronecker

structure is maintained there will come a point where computation will break down.

Furthermore, when forecasting with large VARs the Minnesota prior is mainly used for point

forecasting since obtaining the predictive density typically involves Monte Carlo predictive

simulation, that is, simulation of VAR coefficients followed by simulation of future values of

the dependent variables. The need for simulation procedures raises additional computational

bottlenecks which limit the use of the Minnesota prior VAR in very high dimensions.

3.3 Measures of Predictive Accuracy

We use the first half of the sample, January 1960–June 1987, to obtain initial parameter

estimates for all models, which are then used to predict outcomes from July 1987 (h = 1)

to June 1988 (h = 12). The next period, we include data for July 1987 in the estimation

sample, and use the resulting estimates to predict the outcomes from August 1987 to July

1988. We proceed recursively in this fashion until December 2014, thus generating a time

series of forecasts for each forecast horizon h, with h = 1, ..., 12. Note that when h > 1, point

forecasts are iterated and predictive simulation is used to produce the predictive densities.

Next, for each of the seven key variables listed above we summarize the precision of the

h-step-ahead point forecasts for model i, relative to that from the univariate AR(1), by means

of the ratio of MSFEs:

MSFEijh =

∑t−h
τ=t e

2
i,j,τ+h∑t−h

τ=t e
2
bcmk,j,τ+h

, (19)

where t and t denote the start and end of the out-of-sample period, and where e2
i,j,τ+h and

e2
bcmk,j,τ+h are the squared forecast errors of variable j at time τ and forecast horizon h

associated with model i (i ∈ {DFM,FAV AR,BV AR,BCV AR,BCV ARc}) and the AR(1)

model, respectively. The point forecasts used to compute the forecast errors are obtained by

averaging over the draws from the various models’ h-step-ahead predictive densities. Values

of MSFEijh below one suggest that model i produces more accurate point forecasts than the

AR(1) benchmark for variable j and forecast horizon h.

We also assess the accuracy of the point forecasts of the various methods using the

multivariate loss function of Christoffersen and Diebold (1998). Specifically, we compute the

ratio between the multivariate weighted mean squared forecast error (WMSFE) of model i
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and the WMSFE of the benchmark AR(1) model as follows:

WMSFEih =

∑t−h
τ=t wei,τ+h∑t−h

τ=t webcmk,τ+h

, (20)

where wei,τ+h =
(
e′i,τ+h ×W × ei,τ+h

)
and webcmk,τ+h =

(
e′bcmk,τ+h ×W × ebcmk,τ+h

)
are

time τ +h weighted forecast errors of model i and the benchmark model, ei,τ+h and ebcmk,τ+h

are the (7× 1) vector of forecast errors for the key series we focus on, and W is a (7× 7)

matrix of weights. We set the matrix W to be a diagonal matrix featuring on the diagonal

the inverse of the variances of the series to be forecast.

As for the quality of the density forecasts, we follow Geweke and Amisano (2010) and

compute the average log predictive likelihood differential between model i and the AR(1)

benchmark,

ALPLijh =
1

t− t− h+ 1

t−h∑
τ=t

(LPLi,j,τ+h − LPLbcmk,j,τ+h) , (21)

where LPLi,j,τ+h (LPLbcmk,j,τ+h) denotes model i’s (benchmark’s) log predictive score of

variable j, computed at time τ+h, i.e., the log of the h-step-ahead predictive density evaluated

at the outcome. Positive values of ALPLijh indicate that for variable j and forecast horizon

h, model i produces on average more accurate density forecasts than the benchmark model.

Finally, we consider the multivariate average log predictive likelihood differentials between

model i and the benchmark AR(1),

MVALPLih =
1

t− t− h+ 1

t−h∑
τ=t

(MV LPLi,τ+h −MV LPLbcmk,τ+h) , (22)

where MV LPLi,τ+h and MV LPLbcmk,τ+h denote the multivariate log predictive likelihoods

of model i and the benchmark model at time τ + h, computed under the assumption of joint

normality.

In order to test the statistical significance of differences in point and density forecasts, we

consider pairwise tests of equal predictive accuracy (henceforth, EPA; Diebold and Mariano,

1995; West, 1996) in terms of MSFE, WMSFE, ALPL, and MVALPL. All EPA tests we

conduct are based on a two sided test with the null hypothesis being the AR(1) benchmark,

and standard normal critical values. Based on simulation evidence in Clark and McCracken

(2013), when computing the variance estimator which enters the test statistic we rely on serial

correlation robust standard errors, and incorporate a finite sample correction (Harvey et al.,
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1997). In the tables, we use ***, ** and * to denote results which are significant at the 1%,

5% and 10% levels, respectively, in favor of the model listed at the top of each column.

3.4 Forecasting Results for VAR and Factor Model Approaches

We begin by considering all our models with constant coefficients. Tables 1, 3, and the left

side of Table 5 present evidence on the quality of our point forecasts for the seven main

variables of interest, relative to the AR(1) benchmark. We are finding that in the majority of

cases BCVAR methods beat the benchmark. Additionally, they often tend to forecast better

than the other approaches. Table 5, which presents the WMSFEs over the seven variables

of interest, provides the best overall summary of our results as they relate to point forecasts.

With six forecast horizons and two VAR sizes, this table contains 12 dimensions in which

point forecasts can be compared. In 11 of these, either BCVAR or BCVARc is the model with

the lowest WMSFE. In six of these cases, compressed VAR approaches beat the benchmark in

a statistically significant manner. The FAVAR is the next best approach, although it is worth

noting that in some cases (e.g. with short term forecasting and particularly with the Medium

VAR) it does poorly, failing to beat the AR(1) benchmark. Overall, our results indicate that

random compression works quite well, often producing the best forecasts. In addition, in those

instances when that is not the case it appears that random compression still works quite well.

This result suggests that a risk averse user might feel confident using random compression

methods. In summary, random compression of the VAR coefficients is at least competitive

with other multivariate forecasting methods with the data set under consideration. Evidence

relating to compression of the error covariance is more mixed. That is, in some instances

the BCVARc forecasts better than the BCVAR, but there are many cases where the forecasts

from the BCVAR model are more accurate.

With regards to forecast horizon, no clear pattern emerges. There is a slight tendency

for compressed VAR approaches to do particularly well at shorter horizons, but there are no

strong differences across horizons. In terms of the individual variables, one notable pattern in

these tables is that BCVAR and BCVARc are (with some exceptions) forecasting particularly

well for the most important macroeconomic aggregates such as prices, unemployment and

industrial production. In contrast, for the long-term interest rate (GS10), our Large VAR is

almost never beating the benchmark. But even in this case, where small models are forecasting

well, it is reassuring to see that the MSFEs obtained using random compression methods are

only slightly worse than the benchmark ones. This result indicates that random compression
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methods are finding that the GS10 equation in the Large VAR is hugely over-parametrized,

and are successfully compressing the explanatory variables in a way to obtain results that are

nearly as good as those from the more parsimonious univariate models.

Figures 1 and 2 present evidence on when the forecasting gains of BCVARs, relative

to the other approaches, are achieved. These figures plot the cumulative sum of weighted

forecasting errors (jointly for the seven variables of interest) for the benchmark AR(1) model

minus those from a competing approach, CSWFEDiht =
∑t−h

τ=t (webcmk,τ+h − wei,τ+h), for

different VAR sizes and different forecasting horizons. Positive values of this metric imply

that an approach is beating the benchmark. For short horizons, BCVAR is the only approach

that consistently beats the benchmark model, throughout the whole forecast period. All other

approaches accumulate more forecast errors over time compared to the simple AR(1). It is

also interesting to note that during the 2007-2009 crisis all multivariate methods seem to, at

least temporarily, improve over the univariate AR(1). However, towards the end of the crisis,

for all methods but the BCVAR, relative forecast performance deteriorates abruptly. As for

the longer forecast horizons, some of the alternative multivariate models seem to perform

fairly well. This is especially true for the FAVAR model, which for the Medium VAR and

h = 12 ends up being the best model.16

Tables 2, 4, and the right hand side of Table 5 shed light on the quality of our density

forecasts, by presenting averages of log predictive likelihoods for the VARs of different

dimensions. Results for the ALPLs appear qualitatively similar to those for the MSFEs, so

we will not discuss them in detail. But they do differ in their strength in two ways. First,

the evidence that compressed VAR approaches can beat univariate benchmarks becomes

stronger. See in particular the right hand side of Table 5, which shows strong rejections of

the hypothesis of EPA at every horizon and for every VAR dimension. Second, the evidence

that compressed VARs can forecast better than BVAR or FAVAR approaches becomes

somewhat weaker. In particular, for the Medium VAR standard Bayesian VAR methods

based on the Minnesota prior tend to forecast slightly better than the compressed VAR

approaches. Nevertheless, our BCVAR does particularly well in the Large VAR case,

improving over the standard large Bayesian VAR and FAVAR methods at all forecast

horizons.

Figures 3 and 4 plot the cumulative sums of the multivariate log predictive likelihood

16Additional results, including plots of cumulative sum of squared forecast errors for the individual variables,
are available in the online appendix.
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differentials, CSMV LPLDiht =
∑t−h

τ=t (MV LPLi,τ+h −MV LPLbcmk,τ+h), for VARs of

different dimensions and across a number of forecast horizons. It is interesting to note that,

unlike the conclusions drawn from Figures 1 and 2, there is no strong evidence of a large

deterioration in forecasting performance at the time of the financial crisis relative to the

univariate benchmark.

The preceding results compared the forecasting performance of various approaches to the

AR(1) benchmark. Tables such as Table 5 typically showed strong evidence of statistically

significant improvements of all multivariate forecasting methods relative to this benchmark.

The online appendix provides additional tables using the BVAR as the benchmark. When

using the log predictive likelihoods as the measure of forecast performance, we find that

although the compressed VAR approaches do better than the BVAR, this difference is not

statistically significant. In fact, we see no significant differences between any of our

multivariate forecasting methods. On the other hand, when using MSFEs to evaluate

forecast performance we find than in some cases, especially at short horizons, the

compressed VARs forecast significantly better than the Minnesota prior BVAR.

We also investigated the robustness of our results to the way we implemented compression

in the VARs. While for our main results we focused on two specific approaches, several other

ways of performing random compression can be devised, and we experimented with many of

those in order to test the reliability and robustness of our findings. As noted previously, a

simple way of doing random compression in VARs would be to use the natural conjugate VAR

specification in (5), instead of our equation by equation approach in (8). When experimenting

with this approach, we found it to forecast very poorly. Other alternative approaches arise

from different ways of drawing ϕ. We considered several alternatives, including the various

schemes suggested by Achlioptas (2003), and found that overall these led to very similar

results. Next, we tested the robustness of our results to changes in the way the model

averaging is done and to the way the variables are ordered in the VAR. Results from both

sensitivities are available in the online appendix. As for the first point, we remind the reader

that our main results rely on BIC-based weights to perform BMA, with the BICs calculated

using the likelihood of the entire (n× 1) vector of dependent variables Yt. An alternative

approach would be to compute the BMA weights by calculating the BICs only relying on

the seven variables of interest. In a few cases, altering the BIC weights in this way leads to

some improvements, but overall their impact is negligible. As for the second point, in our

main results we ordered the variables in Yt with our seven variables of interest coming first.
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Since our equation-by-equation approach to random compression implies that the different

equations will have different right-hand side variables (see (8) and subsequent discussion), it

is in principle possible that the way the variables are ordered will matter, especially when

we are compressing the error covariance matrix as in BCVARc. We tested the impact of

reorganizing the variables in Yt so that the seven variables of interest are ordered last, and

found results very similar to those presented here.

Finally, it is worth stressing that this section simply compares the forecast performance

of different plausible methods for a particular data set. However, the decision whether to

use compression methods should not be based solely on this forecasting comparison. In larger

applications, plausible alternatives to random compression such as the Minnesota prior BVAR

or any VAR approach that requires the use of MCMC methods may simply be computationally

infeasible. In those instances, it may very well be that random compression is the only

approach that is computationally feasible.

3.5 Forecasting with Time-Variation in Parameters

Before discussing the forecasting results of our compressed TVP-SV-VAR model, it is

worthwhile to present some evidence relating to time variation in parameters. For the sake

of brevity, we show this for the Medium VAR model only. Figure 5 plots the time series of

the predictive density volatilities for the Medium BCVARtvp−sv against the time series of

volatilities obtained from the alternative methods described in section 3, and confirms that

heteroskedasticity plays a very important role in our data. While the alternative methods

allow for some time variation in the volatilities (they are estimated on an expanding window

of data), BCVARtvp−sv is finding a lot more variation. This is particularly true around the

time of the financial crisis.

Table 6, Figure 6, and Figure 7 present results on the forecast performance of our

BCVARtvp−sv approach. The story that jumps out is a strong one: adding time variation in

the parameters and volatilities leads to substantial improvements in forecast performance.

Conventional wisdom has it that allowing for time-variation (particularly in the error

covariance matrix) is particularly important for predictive density estimation. In a time of

fluctuating volatility, working with a homoskedastic model may not seriously affect point

forecasts, but may lead to poor estimates of higher predictive moments. This wisdom is

strongly reinforced by our results. The right panels of Table 6 show that in terms of

predictive likelihoods, the BCVARtvp−sv performs much better than our other compressed
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VAR approaches, and better (with some exceptions) than standard large VAR and factor

methods. This observation is particularly stronger when focusing on the multivariate

predictive performance and short to medium forecast horizons. In addition, improvements

relative to the univariate benchmark (as indicated by the stars in the table) are almost

always strongly statistically significant. In terms of MSFEs, allowing for time variation in

parameters leads to some improvements, but these improvements are not as large as those

we find when looking at predictive likelihoods. Again, the multivariate results are

particularly strong, for all VAR sizes and forecast horizons. In summary, the message

conveyed by Table 6 is a particularly strong one: BCVARtvp−sv is forecasting better than

any other approach considered in this paper. Figure 6 indicates that, with some exceptions,

the reported success in terms of overall point forecast accuracy of the BCVARtvp−sv relative

to the alternative methods we considered (namely, DFM, FAVAR, and BVAR) is not the

result of any specific and short-lived episode but is instead built gradually throughout the

forecast evaluation period, as indicated by the increasing lines depicted in the figure.

Interestingly, both at h = 1 and h = 12, the improvements in forecast performance relative

to the various alternatives are particularly notable around the time of the financial crisis,

but are not confined to it. Figure 7 provides a similar analysis in terms of the overall density

forecast accuracy of the BCVARtvp−sv model. The left panels of the figure show that at

h = 1 the previously reported forecast success of the BCVARtvp−sv is once again built

steadily throughout the forecast evaluation period. In contrast, the right panels of the figure

show that for h = 12, the 2007-2009 period has a strong negative impact on the density

forecast performance of the BCVARtvp−sv.

The preceding results use univariate AR(1) forecasting models as the benchmark for

comparison. In the online appendix, we present results using the Minnesota prior BVAR as

the benchmark and find that many of the forecast improvements of BCVARtvp−sv over the

BVAR are statistically significant. Next, along the lines of our examination of constant

coefficient compression models, we investigate the robustness of the BCVARtvp−sv results to

changes in the way the model averaging is done and to the way the variables are ordered in

the VAR. Results for both sensitivities are reported in the online appendix, where we show

that in both cases the forecasting performance of BCVARtvp−sv is hardly affected. There

appears to be a slight forecast deterioration when the seven variables of interest are ordered

last, but overall our results are quite robust.

We conclude this section with a closer look at the mechanisms through which the
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BCVARtvp−sv delivers its superior forecast performance. We start by investigating the

relative importance of time-variation in the VAR coefficients versus time-variation in the

error covariance matrix. Table 7 compares the forecasting results of the BCVARtvp−sv

model to those of a model with only variation in the error covariance matrix (BCVARsv),

and shows that allowing for time variation in both leads to better forecasts. We also wish to

compare the performance of the BCVARtvp−sv and BCVARsv models to other fully Bayesian

VAR approaches that allow for time-variation in the parameters. The main difficulty of this

exercise is computational. Many of the existing approaches require the use of MCMC

methods, which makes them infeasible in large VARs. For instance, the popular TVP-VAR

with multivariate stochastic volatility cannot reasonably be scaled up to large VARs due to

the computational burden.17 One recent approach that shows promise for larger VARs with

stochastic volatility is that of Carriero, Clark and Marcellino (2016b). Their method

improves substantially over the existing algorithms, but still cannot handle the

computational demands that come with the very large VARs.18 Table 7 presents a

comparison of their approach (labelled BVARccm in the table) to ours for the Medium VAR,

as well as a Small VAR involving only the seven variables of interest.19 Results from the

three approaches are roughly similar. For the Small VAR, the BVARccm tends to forecast

slightly better at short horizons than the BCVARsv. But in the Medium VAR compressed

approaches tend to forecast better (particularly when forecast performance is evaluated

using WMSFE). Accordingly, we are finding that the BCVARsv and BCVARtvp−sv models

forecast as well or better than a sophisticated fully Bayesian VAR with stochastic volatility

where such a comparison is possible. But methods such as Carriero, Clark and Marcellino

(2016b), which require the use of MCMC methods, are still not at the stage of being

suitable for forecasting with hundreds of variables, much less than thousands of variables

that would be possible with random compression.

17D’Agostino, Gambetti and Giannone (2013) carry out a forecast evaluation exercise using this model with
three variables, and even this is very computationally demanding.

18Carriero, Clark and Marcellino (2016b) do impulse response analysis in a VAR with 125 variables, but in
their forecast evaluation never work with more than 20 variables. Using their model, we produced forecasting
results for our Medium VAR. This took 25 hours to run on a PC using a modern Core i7 and 32Gb of RAM.

19For the autoregressive coefficients we use the asymmetric Minnesota prior with shrinkage hyperparameter
λ = 0.01, and prior mean for own lags δ = 0.95. For all other parameters our priors are fairly non-informative
and are exactly the same as in Carriero, Clark and Marcellino (2016b).
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4 Conclusions

In this paper, we draw on ideas from the random projection literature to develop methods

suitable for use with large VARs. For such methods to be suitable, they must be

computationally simple, theoretically justifiable and empirically successful. We argue that

the BCVAR methods developed in this paper meet all these goals. In a substantial

macroeconomic application, involving VARs with up to 129 variables, we find BCVAR

methods to be fast and yield results which are as good and sometimes better than

competing approaches. And, in contrast to the Minnesota prior, random compression

methods can easily be scaled up to much higher dimensional VAR models as well as allow

for time-variation in the parameters.
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Table 1. Out-of-sample point forecast performance, Medium VAR

Variable DFM FAVAR BVAR BCVAR BCVARc DFM FAVAR BVAR BCVAR BCVARc

h = 1 h = 2
PAYEMS 1.082 1.138 0.865 0.830*** 0.838*** 0.921 1.000 0.554*** 0.728*** 0.732***
CPIAUCSL 1.142 1.017 0.949 0.958 0.967 1.086 1.037 0.999 0.940 0.936*
FEDFUNDS 2.278 1.848 2.760 1.023 0.962 1.441 1.424 2.448 0.974 0.945
INDPRO 0.863*** 0.879** 0.810** 0.828*** 0.889*** 0.909 0.952 0.825* 0.931 0.929*
UNRATE 0.878 0.840** 0.783*** 0.803*** 0.848*** 0.894 0.908 0.805** 0.844*** 0.869**
PPIFGS 1.000 1.002 0.980 0.970 0.993 1.052 1.037 1.083 1.029 1.012
GS10 1.141 0.988 1.092 0.996 1.013 1.038 1.023 1.082 1.003 1.003

h = 3 h = 6
PAYEMS 0.846 0.915 0.522*** 0.683*** 0.687*** 0.951 0.903 0.686* 0.747** 0.738**
CPIAUCSL 1.096 1.031 1.042 0.982 0.978 1.042 0.979 1.057 1.003 0.995
FEDFUNDS 1.289 1.272 1.858 1.017 1.001 1.198 1.017 1.195 0.991 0.986
INDPRO 0.928 0.991 0.931 0.939 0.949 0.959 1.024 1.024 0.970 0.957
UNRATE 0.942 0.959 0.850* 0.871** 0.866*** 0.993 0.995 0.947 0.939* 0.946*
PPIFGS 1.032 1.016 1.102 1.050 1.042 1.047 1.026 1.135 1.059 1.043
GS10 1.038 1.036 1.140 1.046 1.032 1.006 1.015 1.115 1.036 1.038

h = 9 h = 12
PAYEMS 1.005 0.936 0.824 0.838 0.843 1.015 0.963 0.931 0.934 0.935
CPIAUCSL 1.001 0.960 1.036 0.979 0.961 1.007 0.969 1.069 1.016 1.012
FEDFUNDS 1.133 0.945 0.991 0.921 0.950 1.137 0.975 1.077 0.991 0.996
INDPRO 0.958 1.009 1.024 0.967 0.978 0.981 1.011 1.004 0.974 0.975
UNRATE 1.009 1.001 0.972 0.954 0.951 1.007 1.010 1.008 0.968 0.968
PPIFGS 1.017 1.004 1.116 1.055 1.042 1.018 1.000 1.140 1.070 1.053
GS10 0.997 0.997 1.025 1.005 1.016 1.012 1.000 1.052 1.029 1.023

This table reports the ratio between the MSFE of model i and the MSFE of the benchmark AR(1) for the Medium

VAR, computed as MSFEijh =
∑t−h
τ=t e

2
i,j,τ+h/

∑t−h
τ=t e

2
bcmk,j,τ+h, where e2i,j,τ+h and e2bcmk,j,τ+h are the squared

forecast errors of variable j at time τ and forecast horizon h generated by model i and the AR(1) model, respectively

while t and t denote the start and end of the out-of-sample period. All forecasts are generated out-of-sample using

recursive estimates of the models, with the out of sample period starting in 1987:07 and ending in 2014:12. Bold

numbers indicate the lowest MSFE across all models for a given variable-forecast horizon pair. ∗ significance at the

10% level; ∗∗ significance at the 5% level; ∗∗∗ significance at the 1% level.

Table 2. Out-of-sample density forecast performance, Medium VAR

Variable DFM FAVAR BVAR BCVAR BCVARc DFM FAVAR BVAR BCVAR BCVARc

h = 1 h = 2
PAYEMS 0.066*** 0.030 0.218*** 0.086*** 0.083*** 0.117*** 0.061* 0.366*** 0.158*** 0.163***
CPIAUCSL -0.115 -0.055 -0.674 0.003 0.156 -0.266 -0.280 -1.669 -0.263 -0.247
FEDFUNDS -0.012 0.043*** 0.131*** 0.006 0.005 0.028 0.042*** 0.115** 0.022*** 0.022***
INDPRO -0.105 0.046 -0.098 -0.063 0.028 0.008 0.028 -0.049 0.084** 0.109**
UNRATE 0.083** 0.121*** 0.167*** 0.105*** 0.081*** 0.072** 0.060** 0.131*** 0.077*** 0.062***
PPIFGS 0.025 -0.033 -0.448 -0.071 0.020 -0.043 -0.135 -0.725 0.019 -0.063
GS10 -0.029 0.007 0.015 -0.001 -0.007 -0.011 -0.017 -0.009 -0.008 -0.016

h = 3 h = 6
PAYEMS 0.124*** 0.085** 0.364*** 0.172*** 0.185*** 0.050 0.071 0.245*** 0.144*** 0.168***
CPIAUCSL 0.034 0.043 -0.984 -0.095 -0.017 -0.007 0.004 -0.860 -0.220 -0.249
FEDFUNDS 0.021 0.023* 0.115*** 0.014 0.014* 0.013 0.015** 0.119*** 0.017** 0.011
INDPRO 0.144 0.090 -0.001 0.125 0.073*** -0.005 0.052 -0.227 -0.014 0.038***
UNRATE 0.041 0.024 0.109*** 0.065*** 0.062*** 0.022 0.007 0.058*** 0.042*** 0.040***
PPIFGS -0.081 0.044 -0.483 0.049 -0.098 -0.063 0.003 -0.807 -0.172 -0.100
GS10 0.012 0.014 0.010 0.013 0.003 0.003 0.001 0.002 -0.003 -0.013

h = 9 h = 12
PAYEMS 0.005 0.038 0.092 0.096*** 0.084*** 0.023 0.038 0.040 0.074*** 0.089***
CPIAUCSL -0.022 0.220 -0.746 -0.083 -0.184 -0.091 -0.037 -0.905 -0.254 -0.312
FEDFUNDS 0.007 0.008 0.119*** 0.008 0.005 -0.014 -0.002 0.109*** -0.006 -0.008
INDPRO -0.038 -0.067 -0.152 -0.012 -0.077 0.098 -0.007 -0.018 0.128 0.149
UNRATE 0.015 0.010 0.040 0.048*** 0.036*** -0.002 0.000 0.033 0.024** 0.020**
PPIFGS -0.006 0.106 -0.413 -0.070 0.060 -0.001 0.120 -0.391 -0.144 -0.108
GS10 0.009 0.009** 0.041** 0.011 0.001 -0.016 -0.001 0.010 -0.003 -0.014

This table reports the average log predictive likelihood (ALPL) differential between model i and the benchmark

AR(1) for the Medium VAR, computed as ALPLijh =
∑t−h
τ=t

(
LPLi,j,τ+h − LPLbcmk,j,τ+h

)
/
(
t− t− h+ 1

)
,

where LPLi,j,τ+h and LPLbcmk,j,τ+h are the log predictive likelihoods of variable j at time τ and forecast horizon

h generated by model i and the AR(1) model, respectively while t and t denote the start and end of the out-of-

sample period. All density forecasts are generated out-of-sample using recursive estimates of the models, with the

out of sample period starting in 1987:07 and ending in 2014:12. Bold numbers indicate the highest ALPL across all

models for a given variable-forecast horizon pair. ∗ significance at the 10% level; ∗∗ significance at the 5% level; ∗∗∗

significance at the 1% level.
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Table 3. Out-of-sample point forecast performance, Large VAR

Variable DFM FAVAR BVAR BCVAR BCVARc DFM FAVAR BVAR BCVAR BCVARc

h = 1 h = 2
PAYEMS 0.789** 1.068 0.748*** 0.777*** 0.796*** 0.710* 0.801 0.481*** 0.640*** 0.671***
CPIAUCSL 0.930 0.925 0.860** 0.928** 0.935* 1.003 0.996 0.932 0.887** 0.892**
FEDFUNDS 2.120 1.669 2.061 0.965 1.013 1.766 1.338 2.178 0.962 0.892
INDPRO 0.830** 0.858** 0.778*** 0.844*** 0.902*** 0.860 0.884 0.801* 0.945 0.920**
UNRATE 0.807** 0.740*** 0.796** 0.810*** 0.860*** 0.811** 0.829** 0.769** 0.852*** 0.852***
PPIFGS 0.940 0.984 0.938 0.974 1.012 1.065 1.047 1.063 1.013 1.019
GS10 1.111 1.037 1.103 1.009 1.015 1.036 1.057 1.136 1.005 1.044

h = 3 h = 6
PAYEMS 0.715 0.726 0.474*** 0.611*** 0.622*** 0.923 0.828 0.620 0.668** 0.706**
CPIAUCSL 0.979 0.988 0.979 0.912 0.904* 0.961 0.922 1.044 0.931 0.916
FEDFUNDS 1.526 1.104 1.819 0.967 0.987 1.395 0.959 1.325 0.991 0.988
INDPRO 0.943 0.950 0.893 0.950 0.938 1.035 0.977 1.022 0.967 0.983
UNRATE 0.888 0.868* 0.836* 0.876** 0.882*** 0.981 0.931* 0.886* 0.924** 0.943*
PPIFGS 1.086 1.040 1.089 1.034 1.048 1.112 1.057 1.151 1.063 1.041
GS10 1.067 1.094 1.215 1.049 1.064 1.073 1.038 1.179 1.022 1.042

h = 9 h = 12
PAYEMS 1.001 0.916 0.743 0.766 0.760* 1.065 0.996 0.870 0.848 0.866
CPIAUCSL 0.944 0.887** 1.022 0.895 0.885 0.947 0.915*** 1.036 0.901 0.872**
FEDFUNDS 1.279 0.995 1.115 0.969 0.995 1.225 0.976 1.151 1.023 1.035
INDPRO 1.043 1.004 1.068 0.975 0.990 0.993 0.997 1.074 0.989 1.012
UNRATE 1.019 0.967* 0.938 0.951 0.957 1.014 0.981 0.982 0.979 0.989
PPIFGS 1.060 1.011 1.149 1.047 1.035 1.100 1.032 1.182 1.073 1.042
GS10 1.023 1.000 1.074 1.006 1.024 1.034 1.003 1.081 1.013 1.006

This table reports the ratio between the MSFE of model i and the MSFE of the benchmark AR(1) for the Large

VAR, across a number of different forecast horizons h. See notes under Table 1 for additional details.

Table 4. Out-of-sample density forecast performance, Large VAR

Variable DFM FAVAR BVAR BCVAR BCVARc DFM FAVAR BVAR BCVAR BCVARc

h = 1 h = 2
PAYEMS 0.189*** 0.061*** 0.302*** 0.104*** 0.102*** 0.224*** 0.155*** 0.471*** 0.196*** 0.196***
CPIAUCSL -0.005 0.041 -0.362 0.025 0.052 -0.419 -0.210 -2.118 0.098*** 0.095**
FEDFUNDS 0.030 0.052*** 0.291*** 0.014** 0.010** 0.019 0.036* 0.247*** 0.013* 0.014**
INDPRO -0.051 -0.029 -0.311 0.092*** 0.026 0.238* 0.170** -0.057 0.041 0.179
UNRATE 0.130*** 0.157*** 0.125** 0.095*** 0.079*** 0.102*** 0.092*** 0.163*** 0.076*** 0.079***
PPIFGS -0.111 0.002 -1.029 0.059* -0.087 -0.241 -0.157 -1.813 -0.064 -0.015
GS10 -0.008 -0.007 0.006 -0.001 0.000 0.006 -0.010 -0.009 0.012 -0.001

h = 3 h = 6
PAYEMS 0.197*** 0.168*** 0.447*** 0.229*** 0.225*** 0.090* 0.097** 0.296*** 0.199*** 0.191***
CPIAUCSL -0.190 -0.070 -2.294 0.000 0.121*** -0.119 0.087 -2.185 0.227 0.042
FEDFUNDS 0.016 0.032* 0.228*** 0.022** 0.016** 0.003 0.013* 0.186*** 0.007 0.013
INDPRO -0.025 0.029 0.065 0.052*** 0.043*** 0.082 -0.028 -0.151 0.056* -0.088
UNRATE 0.059** 0.061*** 0.106** 0.067*** 0.048*** 0.017 0.028** 0.084*** 0.036** 0.030***
PPIFGS -0.283 -0.002 -1.315 0.086 -0.062 -0.124 -0.100 -1.594 0.003 -0.173
GS10 0.018 0.012 -0.027 0.032 0.009 -0.014 0.000 -0.024 0.012 -0.005

h = 9 h = 12
PAYEMS 0.005 0.037 0.128 0.129*** 0.123*** 0.019 0.019 0.077 0.100*** 0.110***
CPIAUCSL 0.212 0.002 -0.995 -0.032 0.059 0.060 -0.239 -1.661 0.016 -0.171
FEDFUNDS 0.004 0.011*** 0.275*** 0.014* 0.010 0.002 0.007 0.211*** -0.002 -0.001
INDPRO 0.110 0.011 -0.183 0.081 0.050** 0.062 -0.038 -0.174 0.021* -0.057
UNRATE -0.002 0.007 0.045 0.026* 0.028** 0.008 0.019** 0.034 0.029** 0.021**
PPIFGS 0.022 0.064 -1.227 0.099 0.039 -0.189 -0.130 -0.724 -0.144 -0.274
GS10 -0.003 0.017 0.039 0.008 -0.011 -0.002 0.007 0.034 -0.005 -0.021

This table reports the average log predictive likelihood (ALPL) differential between model i and the benchmark

AR(1) for the Large VAR, across a number of different forecast horizons h. See notes under Table 2 for additional

details.

29



Table 5. Out-of-sample forecast performance: Multivariate results

Fcst h. Medium VAR

WMSFE MVALPL
DFM FAVAR BVAR BCVAR BCVARc DFM FAVAR BVAR BCVAR BCVARc

h= 1 1.158 1.066 1.132 0.916*** 0.935*** 0.551*** 0.770*** 0.979*** 0.925*** 0.285***
h= 2 1.051 1.052 1.115 0.929** 0.926*** 0.832*** 0.818*** 1.068*** 1.021*** 0.401***
h= 3 1.027 1.031 1.064 0.944* 0.940* 0.890*** 0.874*** 1.097*** 1.046*** 0.356***
h= 6 1.027 0.992 1.017 0.961 0.954 0.868*** 0.837*** 1.030*** 1.009*** 0.296***
h= 9 1.017 0.977 0.995 0.957 0.960 0.850*** 0.858*** 1.021*** 1.017*** 0.254***
h=12 1.025 0.988 1.039 0.996 0.994 0.877*** 0.867*** 0.927*** 0.886*** 0.176***

Large VAR

DFM FAVAR BVAR BCVAR BCVARc DFM FAVAR BVAR BCVAR BCVARc

h= 1 1.049 1.009 1.017 0.907*** 0.940*** 0.950*** 0.935*** 0.905*** 0.996*** 0.303***
h= 2 1.037 0.996 1.053 0.909*** 0.908*** 1.053*** 0.971*** 0.944*** 1.139*** 0.406***
h= 3 1.030 0.970 1.045 0.916** 0.922** 1.049*** 0.999*** 0.974*** 1.179*** 0.368***
h= 6 1.063 0.955 1.026 0.933 0.940 0.957*** 0.995*** 0.830*** 1.131*** 0.269***
h= 9 1.049 0.965 1.009 0.938 0.943 0.972*** 0.954*** 0.879*** 1.076*** 0.243***
h=12 1.052 0.984 1.049 0.969 0.968 0.934*** 0.910*** 0.709** 1.009*** 0.145

The left half of this table reports the ratio between the multivariate weighted mean squared forecast error (WMSFE)
of model i and the WMSFE of the benchmark AR(1) model, computed as

WMSFEih =

∑t−h
τ=t wei,τ+h∑t−h

τ=t webcmk,τ+h
,

where wei,τ+h =
(
e′i,τ+h ×W × ei,τ+h

)
and webcmk,τ+h =

(
e′bcmk,τ+h ×W × ebcmk,τ+h

)
denote the weighted

forecast errors of model i and the benchmark model at time τ + h, ei,τ+h and ebcmk,τ+h are the (N × 1) vector of
forecast errors, and W is an (N ×N) matrix of weights. We set N = 7, to focus on the following key seven series,
{PAY EMS,CPIAUCSL, FEDFUNDS, INDPRO,UNRATE,PPIFGS,GS10}. In addition, we set the matrix
W to be a diagonal matrix featuring on the diagonal the inverse of the variances of the series to be forecast. t
and t denote the start and end of the out-of-sample period, i ∈ {DFM,FAV AR,BV AR,BCV AR,BCV ARc}, and
h ∈ {1, 2, 3, 6, 9, 12}. The right half of the table shows the multivariate average log predictive likelihood differentials
between model i and the benchmark AR(1), computed as

MVALPLih =
1

t− t− h+ 1

t−h∑
τ=t

(
MV LPLi,τ+h −MV LPLbcmk,τ+h

)
,

where MV LPLi,τ+h and MV LPLbcmk,τ+h denote the multivariate log predictive likelihoods of model i and the

benchmark model at time τ + h, and are computed under the assumption of joint normality. All forecasts are

generated out-of-sample using recursive estimates of the models, with the out of sample period starting in 1987:07

and ending in 2014:12. Bold numbers indicate the lowest WMSFE and highest MVALPL across all models for any

given VAR size - forecast horizon pair. ∗ significance at the 10% level; ∗∗ significance at the 5% level; ∗∗∗ significance

at the 1% level.
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Table 6. Out-of-sample forecast performance: Compressed TVP-SV VAR

Variable Medium VAR

MSFE ALPL
h = 1 h = 2 h = 3 h = 6 h = 9 h = 12 h = 1 h = 2 h = 3 h = 6 h = 9 h = 12

PAYEMS 0.700*** 0.565*** 0.565*** 0.651** 0.769* 0.872 0.338*** 0.391*** 0.352*** 0.078 -0.422 -0.533
CPIAUCSL 0.924** 0.872*** 0.884*** 0.869** 0.841*** 0.845*** 0.284* 0.211*** 0.461 0.191 0.280 0.292
FEDFUNDS 0.879* 0.892 0.924 0.995 0.967 1.061 0.760*** 0.594** 0.423 0.382 0.303 0.365
INDPRO 0.899*** 0.925* 0.940 0.978 0.980 0.989 -0.030 -0.224 -0.128 -0.509 -0.414 -0.255
UNRATE 0.846*** 0.847** 0.876* 0.939 0.971 1.011 0.123*** 0.104*** 0.095*** 0.059*** 0.036 -0.009
PPIFGS 0.968 0.991 1.001 0.998 0.992 1.010 0.270* 0.349 0.401 0.283 0.407 0.354
GS10 1.018 1.017 1.039 1.030 0.995 1.030 0.025 -0.016 -0.053 -0.057 -0.004 0.030
Multivariate 0.905*** 0.884*** 0.892*** 0.916* 0.924* 0.967 1.653*** 1.701*** 1.573*** 1.224*** 1.049*** 0.851***

Large VAR

h = 1 h = 2 h = 3 h = 6 h = 9 h = 12 h = 1 h = 2 h = 3 h = 6 h = 9 h = 12
PAYEMS 0.685*** 0.566*** 0.548*** 0.656* 0.762 0.879 0.338*** 0.405*** 0.374*** 0.083 -0.447 -0.530
CPIAUCSL 0.904** 0.846*** 0.844*** 0.848** 0.800*** 0.796*** 0.241 0.364* 0.361 0.354 0.539 0.074
FEDFUNDS 0.885 0.911 0.920 1.022 1.034 1.075 0.715*** 0.577* 0.489 0.445 0.100 0.269
INDPRO 0.896*** 0.928 0.957 0.996 1.002 1.020 0.116** 0.036 -0.184 -0.320 -0.205 -0.210
UNRATE 0.836*** 0.851** 0.880* 0.949 0.981 1.026 0.122*** 0.102*** 0.078*** 0.050** 0.034 0.010
PPIFGS 0.983 0.985 1.005 1.008 0.995 1.012 0.254* 0.363 0.371 0.346 0.385 0.213
GS10 1.021 1.021 1.034 1.024 1.013 1.021 0.008 0.037** 0.017 0.008 0.029 -0.033
Multivariate 0.902*** 0.883*** 0.885** 0.922 0.932 0.967 1.667*** 1.666*** 1.593*** 1.216*** 1.002*** 0.713*

The left half of this table reports the ratio between the univariate or multivariate weighted mean squared forecast

error of the BCVARtvp−sv model and the univariate or multivariate weighted mean squared forecast error of the

benchmark AR(1) model. The right half of the table shows the univariate or multivariate average log predictive

likelihood differentials between the BCVARtvp−sv model and the benchmark AR(1) model. h denotes the forecast

horizons, with h ∈ {1, 2, 3, 6, 9, 12}. All forecasts are generated out-of-sample using recursive estimates of the

models, with the out of sample period starting in 1987:07 and ending in 2014:12. Bold numbers indicate all instances

where the BCVARtvp−sv model outperforms all alternative models for any given VAR size/variable/forecast horizon

combination. ∗ significance at the 10% level; ∗∗ significance at the 5% level; ∗∗∗ significance at the 1% level.

Table 7. Out-of-sample forecast performance: Multivariate results, alternative SV models

Fcst h. Small VAR

WMSFE MVALPL
BVARccm BCVARsv BCVARtvp-sv BVARccm BCVARsv BCVARtvp-sv

h= 1 0.917*** 0.942*** 0.918*** 2.047*** 1.696*** 1.719***
h= 2 0.930*** 0.944*** 0.895*** 1.907*** 1.654*** 1.745***
h= 3 0.936*** 0.951** 0.901*** 1.845*** 1.563*** 1.645***
h= 6 0.946*** 0.971 0.912*** 1.608*** 1.228*** 1.386***
h= 9 0.968*** 0.981 0.936*** 1.385*** 0.978*** 1.143***
h=12 0.992 0.999 0.960* 0.931* 0.811* 0.930***

Medium VAR

BVARccm BCVARsv BCVARtvp-sv BVARccm BCVARsv BCVARtvp-sv

h= 1 1.070 0.935*** 0.905*** 1.599*** 1.522*** 1.653***
h= 2 1.089 0.922*** 0.884*** 1.521*** 1.558*** 1.701***
h= 3 1.123 0.931** 0.892*** 1.236*** 1.399*** 1.573***
h= 6 1.125 0.937* 0.916* 1.041*** 1.129*** 1.224***
h= 9 1.031 0.947* 0.924* 1.078*** 0.938*** 1.049***
h=12 1.007 0.981 0.967 1.039*** 0.760** 0.851***

Large VAR

BVARccm BCVARsv BCVARtvp-sv BVARccm BCVARsv BCVARtvp-sv

h= 1 0.942*** 0.902*** 1.488*** 1.667***
h= 2 0.924** 0.883*** 1.543*** 1.666***
h= 3 0.919** 0.885** 1.394*** 1.593***
h= 6 0.939 0.922 1.118*** 1.216***
h= 9 0.938 0.932 0.894*** 1.002***
h=12 0.950 0.967 0.722* 0.713*

The left half of this table reports the ratio between the multivariate weighted mean squared forecast error (WMSFE)

of model i and the WMSFE of the benchmark AR(1) model for different forecast horizons h and VAR size, where

i ∈ {BV ARccm, BCV ARsv , BCV ARtvp−sv}, and h ∈ {1, 2, 3, 6, 9, 12}. The right half of the table shows the

multivariate average log predictive likelihood differentials between model i and the benchmark AR(1). See notes to

Table 5 for additional details.
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Figure 1. Cumulative sum of weighted forecast error differentials, Medium VAR
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This figure plots the cumulative sum of weighted forecast errors generated by the AR(1) model minus the

cumulative sum of weighted forecast errors generated by model i for a Medium VAR and forecast horizon h, where

i ∈ {DFM,FAV AR,BV AR,BCV AR,BCV ARc}, and h ∈ {1, 2, 3, 6, 9, 12}. All forecasts are generated out-of-

sample using recursive estimates of the models, with the out of sample period starting in 1987:07 and ending in

2014:12. Each panel displays results for a different forecast horizon.

Figure 2. Cumulative sum of weighted forecast error differentials, Large VAR
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This figure plots the cumulative sum of weighted forecast errors generated by the AR(1) model

minus the cumulative sum of weighted forecast errors generated by model i for a Large VAR. i ∈
{DFM,FAV AR,BV AR,BCV AR,BCV ARc}. See notes to Figure 1 for additional details.
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Figure 3. Cumulative sum of multivariate log predictive likelihood differentials, Medium
VAR
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This figure plots the cumulative sum of the multivariate log predictive likelihoods generated by model i minus the

cumulative sum of the multivariate log predictive likelihoods computed from an AR(1) model for a Medium VAR,

where i ∈ {DFM,FAV AR,BV AR,BCV AR,BCV ARc}, and h ∈ {1, 2, 3, 6, 9, 12}. All forecasts are generated out-

of-sample using recursive estimates of the models, with the out of sample period starting in 1987:07 and ending in

2014:12. Each panel displays results for a different forecast horizon.

Figure 4. Cumulative sum of multivariate log predictive likelihood differentials, Large VAR
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This figure plots the cumulative sum of the multivariate log predictive likelihoods generated by model i minus the

cumulative sum of the multivariate log predictive likelihoods computed from an AR(1) model for a Large VAR.

i ∈ {DFM,FAV AR,BV AR,BCV AR,BCV ARc}. See notes to Figure 3 for additional details.
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Figure 5. Predictive density volatilities, Medium VAR
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This figure plots the time series of the predicted volatilities over the entire out-of-sample period, for h = 1 and the

different models entertained, {DFM,FAV AR,BV AR,BCV AR,BCV ARc, BCV ARtvp−sv}. The out of sample

period starts in 1987:07 and ends in 2014:12. Each panel displays results for a different variable j, where j ∈
{PAY EMS,CPIAUCSL, FEDFUNDS, INDPRO,UNRATE,PPIFGS,GS10}.

Figure 6. Cumulative sum of weighted forecast error differentials, Compressed TVP-SV
VAR
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This figure plots the cumulative sum of weighted forecast errors generated by either the DFM, FAVAR, or BVAR

models minus the cumulative sum of weighted forecast errors generated by the BCVARtvp−sv model for different

VAR sizes and forecast horizons. See notes to Table 5 for additional details. All forecasts are generated out-of-sample

using recursive estimates of the models, with the out of sample period starting in 1987:07 and ending in 2014:12.
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Figure 7. Cumulative sum of multivariate log predictive likelihood differentials,
Compressed TVP-SV VAR
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This figure plots the cumulative sum of the multivariate log predictive likelihoods generated by the BCVARtvp−sv

model minus the cumulative sum of the multivariate log predictive likelihoods computed from either the DFM,

FAVAR, or BVAR model for different VAR sizes and forecast horizons. All forecasts are generated out-of-sample

using recursive estimates of the models, with the out of sample period starting in 1987:07 and ending in 2014:12.
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