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"There is nothing either good or bad,

but thinking makes it so."

William Shakespeare
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Abstract

In this thesis we derive exact discrete time representation models that

correspond to cointegrated systems in continuous time. At the same time,

for the parameters of those models, estimation procedures are outlined.

The representations are applicable for data observed as both stock or flow

variables and with the use of some simulated data, the performance of

the estimation procedure is assessed. More importantly, with the aim

of analysing the costs, if there are any, of ignoring aggregation in the

specification, the results of our estimation procedure are also compared with

the ones we would have obtained by applying instead Johansen’s estimation

methodology. In the first part (Chapter 2), we detail the analysis for a first-

order stochastic differential equation system, as a result, baseline finding are

outlined. In the second part (Chapter 3) the analysis is generalized and not

only includes higher order specifications in the system but also incorporates

deterministic components on it. Finally, in the last part (Chapter 4) of this

thesis, three applications of that estimation procedure are presented.

In the results, when the system is entirely comprised by stock

variables and the specification follows a first order system, both Johansen’s

methodology and ours perform very well, with virtually identical estimates

and, for the simulated data, improvements as the sample size increases.

However, when the variables of interest are flows or the specification follows

a higher order system, given that our exact discrete time representation

includes moving average components in the error term, Johansen’s estimates

show a persistent bias in estimation, consequently, they reflected the cost

of ignoring aggregation in the specification.
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Chapter 1

Introduction

As it is well known, some decades ago, continuous time modelling, was not as

popular in empirical economic studies as estimation in discrete time. In order to

estimate the parameters of a model written in a continuous fashion, undoubtedly,

it is needed to relate those parameters to the observed data. However, as the data

are available at discrete intervals of time rather than on a continuous basis, such

an estimation becomes challenging.

In attempting to solving such a complication Bergstrom [1966] following

Phillips [1959], utilized an approximate discrete time model to estimate the

parameters of the system. At the end, it was found that the accuracy

in estimation of the approximation increased as the time interval between

observations decreased. As a result, additional work was needed. In subsequent

publications, many important improvements to the challenge were added. Phillips

[1972], for example, considered a simple three-equation trade cycle model with

five parameters and utilized the minimum distance (MD) procedure to provide

consistent estimates of the structural parameters of the system. In his document,

by the use of Monte Carlo simulations, he studied the small sample distributions

of the estimates. Also, he compared those estimates with the ones obtained

by applying instead the three stage least squares procedure to a discrete time

approximation of the system. At the end, he found that the MD method gave

superior estimates. Therefore, the author showed that there were considerable

gains in efficiency from taking account of the exact restrictions on the distribution

of the discrete data implied by the continuous time model. However, although

1



Chapter 1. Introduction 2

the author said that the results may remain valid for more involved systems, they

were only tested in that simple model.

Similarly, P.M. Robinson (see Robinson [1976a], Robinson [1976b]), by using

the spectral representation of the continuous time model in terms of the Fourier

transforms of the data, derived, for estimation, an approximate discrete time

model (ADTM). In his document, the author considered a very general open

continuous time dynamic model (a system of higher-order stochastic differential

equations) and by applying the nonlinear least square method to that ADTM,

he showed that the estimates of the structural parameters of the system were

efficient, nevertheless, that conclusion remained valid only for the case when the

exogenous variables of the system were generated by a stationary random process

and satisfied certain aliasing conditions. As a result, the procedure could not be

easily utilized in applied work.

It was not until Bergstrom’s seminal paper in 1983 (Bergstrom, 1983) that

continuous time modelling truly took off. As it is known, in his seminal paper, the

author derived the first higher order exact discrete time model that held exactly

for the data generated by the continuous time system regardless of the frequency

with which that data was observed (the invariance property). Therefore, he gave

econometricians the possibility to avoid the temporal aggregation problems that

models naively specified in terms of the observation interval have.

Additionally to that, in the same document, the author specified the solution

to the system considering that both stock and flow variables were included into the

specification. In the solution, while stock variables were considered as observations

taken at specific points of time, flows were measured as the accumulation of the

underlying rate over a time interval. As a result, the serial correlation in the

disturbances induced by the use of flow variables in the specification of the system

was finally controlled, correctly analysed and accurately incorporated into the

estimation of the parameters of the model.

In more recent years, at the same time, following that passion, important

contributions and extensions of the original model have been added to the existent

literature (see for example, Bergstrom, 1986, 1990, 1996, Wymer, 1993, Gandolfo,

1993 and Phillips, 1991) and the advantages of such procedures over its discrete

time counterpart have been broadly underlined (see for example, Bergstrom, 1996
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and Bergstrom and Nowman, 2007). Applications of such models, similarly,

started with contributions in finance with the modelling of interest rates using

linear and non-linear models as well as in macroeconomics with macro-systems of

differential equations based on extensive economic theory that tried to derive the

steady state solution of the economy (see, for example, Nowman [1997], Yu and

Phillips [2001] and Bergstrom and Nowman [2007]).

For the non-stationary cointegrated case, the focus of this document, for ex-

ample, Phillips [1991] introduced a triangular cointegrated system representation

and derived an exact discrete time model in the form of a first-order triangular

error correction model (ECM) format that could be regarded as the continuous

time counterpart of the discrete time vector ECM popularized by Johansen [1991].

Chambers [1999], at the same time, derived the formula for the exact discrete time

model corresponding to a continuous time higher-order system and presented the

basis for its estimation and inference and Chambers and McCrorie [2007], using

Phillips’ triangular representation, introduced an error correction model using a

frequency domain technique that approximates the likelihood function and out-

lined the asymptotic properties of the resulting estimators.

Among others, these papers have outlined the non stationary cointegrated

case for models in continuous time, they have also underlined the characteristics

of the disturbances and moreover, they have provided general conditions through

which the estimates of the structural parameter of the system can be obtained.

However, even after these important contributions, empirical applications of those

systems have not appeared in the literature yet. Moreover, the few documents

that outline the theory do not completely control dynamics. That is to say, when

the triangular cointegrated representation is formulated, it is considered that the

long run equilibrium relationships between the variables are embodied only in one

part of the system, therefore, general dynamic adjustments are immediately ruled

out (see, particularly, Phillips [1991] and Chambers [1999] equations (2) and (3)).

Therefore, in this thesis, we exploit that opportunity, try to expand in

that line and focusing on the non-stationary cointegrated case, we develop and

apply an estimation procedure for cointegrated systems in continuous time that

incorporates full dynamics into the system. Also, with the aim of analysing

the effects of temporal aggregation over the model specification, we assess the
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performance in estimation of such models by comparing and contrasting its

estimated parameters with the ones we would have obtained by applying, instead,

Johansen’s general VECM to the same data.

Particularly, this thesis explores the topic in the following manner: Chapter

2, Estimation of First Order Cointegrated Systems, derives an exact discrete

time error correction model, very much like in the Bergstrom tradition, that

corresponds to a cointegrated continuous time system that is entirely comprised

of stock or flow variables. For each specification, the chapter also outlines

an estimation procedure that leads to the Gaussian estimates of our model’s

parameters. In an application, through the use of some simulated data, at the

same time, it assesses the performance of such an estimation procedure and, with

the aim of analysing the costs, if there are any, of ignoring aggregation in the

model’s specification, it compares and contrasts our continuous time estimates

with the ones we would have obtained by applying instead Johansen’s discrete

time methodology to the same simulated data.

In the results, for stocks, on the one hand, it is found that both Johansen’s

methodology and ours perform very well, with reasonably small bias in estimation

and improvements as the sample size increases. For flows, on the other hand, as

the exact discrete time model includes a moving average component in the error

term, when it comes to the dynamics of the system, Johansen’s estimates show

a persistent bias in estimation with almost no improvement as the sample size

increases. Consequently, we can say that this persistent bias reflects the cost of

ignoring aggregation in the specification.

Chapter 3, Estimation of Higher Order Cointegrated Systems, as an

extension of the analysis provided in Chapter 2, presents an estimation procedure

for cointegrated systems in continuous time that not only allows for higher order

specifications in the system but also incorporates deterministic components on it.

As before, the system in this chapter is also allowed to be entirely comprised of

stock or flow variables.

The application follows a similar methodology of that specified in Chapter

2 and in the results, in almost all that cases, our continuous time estimation

procedure shows superiority in estimation against Johansen’s with smaller bias in

the estimates and improvements as the sample size increases, as a result, it can
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be concluded that estimation bias in cointegrated systems does not only depend

on whether the variables in the model suffer some sort of temporal aggregation,

but also, on whether the system requires a higher order specification.

Chapter 4, Empirical Applications, finally, presents three multivariate

applications of that estimation methodology. The analysis is carried out by

comparing the estimates of the model’s parameters considering two different time

specification; Johansen’s general VECM for discrete time and our exact discrete

time VECM for continuous time. The applications evaluate, for the United States,

the market efficiency hypothesis on the foreign exchange rate, the term structure

of interest rates and the main implication of the rational-expectation permanent

income hypothesis. In the results, it is shown that estimation bias in cointegrated

systems does not only depend on whether the variables in the model suffer some

sort of temporal aggregation, but also, on whether the system requires a higher

order specification.



Chapter 2

Estimation of First Order

Cointegrated Systems

This chapter derives an exact discrete time error correction model, very much

like in the Bergstrom tradition, that corresponds to a cointegrated continuous

time system that is entirely comprised of stock or flow variables. At the same

time, for each specification, an estimation procedure that leads to the estimates

of our model’s parameters is outlined. In an application, through the use of some

simulated data, the performance of such an estimation procedure is assessed. More

importantly, with the aim of analysing the costs, if there are any, of ignoring

aggregation in the model’s specification, we compare and contrast our results

with the ones we would have obtained by applying instead Johansen’s discrete

time methodology to the same simulated data.

In the results, for stocks, on the one hand, we find that both Johansen’s

methodology and ours perform very well, with reasonably small bias in estimation

and improvements as the simple size increases. For flows, on the other hand,

as our exact discrete time model includes a moving average component in the

error term, when it comes to the dynamics of the system, Johansen’s estimates

show a persistent bias in estimation with almost no improvement as the sample

size increases, consequently, we can say that this persistent bias reflects the cost

of ignoring aggregation in the specification. Our methodology, instead, shows

superiority in estimation with smaller bias and improvements as the sample size

increases.

6
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2.1 Introduction

Our economies and major financial markets are continuously operating

through the year. They also involve millions of agents making decisions

continuously and despite the fact of being observed and recorded in variables

at particular points of time, these economic activities undoubtedly vary in a

continuous fashion. It is intuitively obvious, then, that if we try to model and

predict the behaviour of an economy with an econometric model, we should use

a continuous time model rather than a discrete one.

In practice, however, due to the lack of accuracy in estimation inherited by

the use of discrete time approximations of the systems1 and also the inclusion

of more sophisticated mathematical techniques in the method, continuous time

modelling, some decades ago, was not as popular in empirical economic studies as

estimation in discrete time. Nevertheless, even with those difficulties, Albert Rex

Bergstrom, a distinguished New Zealand econometrician, continued working in the

field and in Bergstrom [1983], he derived, together with outlining an estimation

procedure, the first higher order exact discrete time model that held exactly for

the data generated by the continuous time system regardless of the frequency with

which that data was observed. As a result, he did not only bring econometricians

the possibility to avoid the temporal aggregation problems that models naively

specified in terms of the observation interval have, but also, built the basis over

which continuous time modelling would take off.

In more recent years, thanks to the development of more sophisticated

mathematical techniques and the improvement of computing power, that

contribution has been widely explored and established in econometrics2. New

extensions started with the inclusion of mixtures of stock and flow variables in

the systems (Bergstrom, 1986) as well as the possibility for non-stationarity in

the variables. Phillips [1991], for instance, introduced a triangular cointegrated

system representation and, using a frequency domain regression technique for the

estimation of the cointegrating vectors, derived an exact discrete time model in

the form of a first-order triangular error correction model (ECM) format that

could be regarded as the continuous time counterpart of the discrete time vector
1See Bergstrom [1976] for details.
2See Bergstrom [1990, 1996], Wymer [1993] and Gandolfo [1993] for extensive discussions.
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ECM popularized by Johansen [1991]. In a generalization of Bergstrom’s work

and continuing with the non-stationary case, Chambers [1999] derived the formula

for the exact discrete time model corresponding to a continuous time higher-order

system and presented the basis for its estimation and inference and Chambers

and McCrorie [2007], using Phillips’ triangular representation, introduced an

error correction model using a frequency domain technique that approximates

the likelihood function and outlined the asymptotic properties of the resulting

estimators.

Applications of such models, at the same time, started with many important

contributions in finance with the modelling of interest rates using linear and non-

linear models as well as in macroeconomics with macro-systems of differential

equations based on extensive economic theory that tried to derive the steady

state solution of the economy3, however, even after this explosive development,

empirical applications of cointegrated systems in continuous time have not

appeared in the literature yet.

Among others, these papers have outlined the non stationary cointegrated

case for models in continuous time, they have also underlined the characteristics

of the disturbances and moreover, they have provided general conditions through

which the estimates of the structural parameter of the system can be obtained.

However, even after these important contributions, empirical applications of those

systems have not appeared in the literature yet. Moreover, the few documents

that outline the theory do not completely control dynamics. That is to say, when

the triangular cointegrated representation is formulated, it is considered that the

long run equilibrium relationships between the variables are embodied only in one

part of the system, therefore, general dynamic adjustments are immediately ruled

out (see, particularly, Phillips [1991] and Chambers [1999] equations (2) and (3)).

Therefore, the aim of this chapter is not only to follow that line and develop

and apply an estimation procedure for cointegrated systems in continuous time

that incorporates full dynamics into the system, but also, to measure to what

extend using a continuous time specification yields more accurate estimates of the

unknown parameters of the model, i.e., we will measure the gains, if there are any,
3See, for example, Nowman [1997], Yu and Phillips [2001] and Nowman [2006] as well as Donaghy
[1993] and Bergstrom and Nowman [2007].
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of considering aggregation in the model’s specification.

There are three main contributions in this chapter. The first is the derivation

of an exact discrete time error correction model that corresponds to a cointegrated

continuous time system whose observations are allowed to be either stock variables,

observable at points in time, or flow variables, observable as the integral of the

underlying rate of flow over the observation interval. The second is the complete

characterization of the properties of the discrete time disturbance vector as well

as the derivation of an estimation procedure that provides the Gaussian estimates

of the unknown parameters in our model and the third contribution, through

the use of some simulated data in an application, is the possibility to compare

and contrast those estimates with the ones we would have obtained by applying

Johansen’s methodology to the same data.

In the results, when the system is entirely comprised by stock variables,

both our estimates and Johansen’s perform very well with reasonably small bias

in estimation and improvements as the sample size increases. However, in the

flow variables case, given that our exact discrete time model includes a moving

average component in the error term, when it comes to the dynamics of the system,

Johansen’s estimates show a persistent bias in estimation with no improvement

as the sample size increases. Consequently, we can say that this persistent bias

reflects the cost of ignoring aggregation in the specification.

The chapter is organized as follows. Section 2.2 defines the continuous

time system and specifies the exact discrete time representation for stock and

flow variables, deriving a VECM representation for non-stationary systems very

much in the Bergstrom tradition. Section 2.3 concentrates on the derivation

of the covariance properties of the discrete time disturbance vector for the two

representations and outlines the estimation procedure. Section 2.4 summarizes

the simulation results and compares both the estimates of our exact discrete

time representation and those obtained by applying Johansen’s methodology and

section 2.5 concludes. Supplementary results are given in Appendix A and all

proofs are in Appendix B.
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2.2 The model

To examine the issues raised above, we shall consider a continuous

time random n-vector y(t) that is partitioned into two subvectors y1(t), y2(t)

of dimensions n1×1 and n2×1, respectively, where n1 +n2 = n. We shall assume

that the elements of y(t) are I(1) processes but that there exist n1 stationary linear

cointegrating relationships of the form y1(t)−B1y2(t), where B1 is a n1×n2 matrix

of cointegrating parameters. In order to achieve identification in the system, we

normalize these relationships on the elements of y1(t). It is also assumed that y(t)

satisfies the following first-order stochastic differential equation system

dy(t) = AB′y(t)dt+ ζ(dt), t > 0, (2.1)

where y(t) is a n× 1 vector of continuous time random variables, B = (In1 ,−B1)′

and A = (A′1, A
′
2)′ are n× n1 reduced rank matrices with n1 linearly independent

vectors (A1 is a n1 × n1 matrix and A2 is a n2 × n1 matrix) and ζ(dt) is a vector

of random measures defined on all subsets of the line 0 < t < ∞ having finite

Lebesgue measure such that

• E[ζ(dt)] = 0,

• E[ζ(dt)ζ(dt)′] = Σdt and

• E[ζ(∆1)ζ(∆2)′] = 0 for disjoint intervals ∆1 and ∆2.

In terms of the vectors y1(t) and y2(t), the system (2.1) implies that

dy1(t) =A1 [ y1(t)−B1y2(t) ] dt+ ζ1(dt), t > 0,

dy2(t) =A2[ y1(t)−B1y2(t) ]dt+ ζ2(dt), t > 0,
(2.2)

where the vector ζ(dt) has been also partitioned conformably with y1 and y2.

The first equation relates the changes in y1 to the disequilibrium error B′y(t) =

y1(t) − B1y2(t) while the second equation relates the changes for y2. Notice

that the reactions of y1 and y2 to the disequilibrium errors are captured by the

adjustment coefficient matrices A1 and A2. Then, the system can be considered

as a generalization of Phillips’ triangular representation.
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Finally, in order to explore the effects of temporal aggregation, we consider

that the vector y(t) can be entirely comprised by stock or flow variables. If we

define stock variables in continuous time as ys(t), then its observed values at

specific points in time are given by yst = ys(t), also, if yf (t) is defined as flow

variables in continuous time, then its observed rate of flow is given by

yft =

∫ t

t−1

yf (r)dr,

where in each case t = 1, 2, · · · , T and T denotes sample size.

After the set up and before the derivation of an exact discrete time

representation of (2.1) that can be used for estimation, let’s define, first, the

unique mean square solution of the system, which initialized at t = 0 is given by

Bergstrom [1984] and can be written as

y(t) = etAB
′
y(0) +

∫ t

0

e(t−s)AB′ζ(ds), t > 0, (2.3)

where

etAB
′
=
∞∑
j=0

(tAB′)j

j!
.

As pointed out before by Bergstrom [1997], Chambers [1999] as well as

McCrorie [2000], given that our system in (2.1) specifies a cointegrated relationship

between the variables, it can be shown that the n × n exponential matrix etAB′

can be rewritten in a more simplified form that incorporates the reduced rank

specification of AB′ and as a result, simplifies the unique mean square solution to

the system; next Lemma summarise such result.

Lemma 2.2.1 (Exponential Representation).

Assuming that the n1×n1 matrix M = B′A is non singular, the exponential

matrix etAB′ can be re-written as

etAB
′
= In + AM−1(etM − In1)B

′, (2.4)

where all the vectors and matrices are specified as before.
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Proof. See Appendix B. �

Then, using (2.4) into (2.3), our unique mean square solution to (2.1), which

incorporates the reduced rank specification of AB′ and is used in the derivation

of the exact discrete time representation of our system, becomes

y(t) = (In +G(etM − In1)B
′)y(0) +

∫ t

0

(In +G(e(t−s)M − In1)B
′)ζ(ds), t > 0,

(2.5)

where G = AM−1.

2.2.1 The discrete time representation

For each type of data, the exact discrete time model representation of our

system is presented below in Lemma 2.2.2. For the derivation, considering (2.5),

it is important to mention that standard manipulations of the type utilized in the

proof of Theorem 2(c) of Bergstrom [1984] were applied to (2.1) (see Appendix B

for details).

Lemma 2.2.2 (Exact Discrete Time Representations).

Let y(t) satisfy the continuous time cointegrated system defined by (2.1),

then, the observed vector yst evolves according to the discrete time VECM

∆yst = GJB′yst−1 + ηt, t = 1, . . . , T, (2.6)

where J = eM − In1 and the disturbance vector ηt is defined as follows

ηt =

∫ t

t−1

(
In +G(e(t−s)M − In1)B

′
)
ζ(ds).

Also, the observed vector yft evolves according to the discrete time VECM

∆yft = GJB′yft−1 + vt, t = 2, . . . , T, (2.7)

where J is as before and

vt =

∫ t

t−1

∫ r

r−1

(
In +G(e(r−s)M − In1)B

′
)
ζ(ds)dr.
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For the relationship between y(0) and the observed vector yf1 , finally, we have

yf1 − y(0) = GEB′y(0) + v1, (2.8)

where E =
∫ 1

0
(erM − In1)dr and the disturbance vector v1 is defined as follows

v1 =

∫ 1

0

∫ r

0

(
In +G(e(r−s)M − In1)B

′
)
ζ(ds)dr.

Proof. See Appendix B. �

From the lemma, it is easy to see that regardless of the observations being

stocks or flows, the discrete time VECM representation is common. However,

the specification of the observable vector yt as well as the specification of the

unobservable disturbance vector differs in each scheme.

At the same time, looking at equation (2.6) and/or (2.7), we can notice that

our exact discrete time model does retain the original structure of the system as in

(2.2), however, it now relates the change in yt (∆yt) to the lagged disequilibrium

error B′yt−1 = y1,t−1−B1y2,t−1 and more importantly, it captures the reactions of

y1t and y2t to the disequilibrium errors with more complicated functions involving

all the parameters in the continuous time model. To see this, finding explicit

representations of G, J and M

M = B′A = (In1 −B1)

 A1

A2

 = A1 −B1A2,

G = AM−1 =

 A1

A2

 (A1 −B1A2)−1,

(2.9)

then

∆yt =

 A1

A2

 (A1 −B1A2)−1
(
eA1−B1A2 − In1

) (
In1 −B1

)
yt−1 + εt,

where εt is either ηt or vt from (2.6) or (2.7). Then, partitioning these matrices

and vectors conformably with y1t and y2t, the corresponding structures are given

by
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∆y1t =A1(A1 −B1A2)−1
(
eA1−B1A2 − In1

)︸ ︷︷ ︸
Reaction parameter

[
y1,t−1 −B1y2,t−1

]
+ ε1t,

∆y2t =A2(A1 −B1A2)−1
(
eA1−B1A2 − In1

)︸ ︷︷ ︸
Reaction parameter

[
y1,t−1 −B1y2,t−1

]
+ ε2t.

(2.10)

On top of that, we can see that the lemma also states that if we want to talk

about appropriate methods of estimating the unknown parameters of the model,

it is necessary to derive, firstly, the precise properties satisfied by the disturbance

vectors ηt and vt. The next section characterizes these properties, outlines the

derivation of the Gaussian likelihood function and at the same time, specifies the

estimation procedure for each type of data (stocks or flows).
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2.3 Estimation and the properties of the discrete

time disturbances

2.3.1 Stock representation

For stocks, equation (2.6) in the previous section, the problem of obtaining

exact maximum likelihood estimates of the structural parameters of the continuous

time model from a given sample, includes, as an important step, the derivation

of the autocovariance matrix of the disturbance vector. As shown in Bergstrom

[1984]4, this matrix can be calculated as follows

E[ηtη
′
t] =E

{[∫ t

t−1

(
In +G(e(t−s)M − In1)B

′
)
ζ(ds)

]
×[∫ t

t−1

(
In +G(e(t−s)M − In1)B

′
)
ζ(ds)

]′}
,

=

∫ t

t−1

(
In +G(e(t−s)M − In1)B

′
)

Σ

(
In +G(e(t−s)M − In1)B

′
)′
ds,

=

∫ 1

0

(
In +G(e(s)M − In1)B

′
)

Σ

(
In +G(e(s)M − In1)B

′
)′
ds,

=W,

(2.11)

where Σ is defined in the properties of the random vector and the last line follows

from a simple change of variable in the integration.

Also,

E[ηuη
′
t] =E

{[∫ u

u−1

(
In +G(e(u−s)M − In1)B

′
)
ζ(ds)

]
×[∫ t

t−1

(
In +G(e(t−s)M − In1)B

′
)
ζ(ds)

]′}
,

=0, u 6= t.

(2.12)

Then, assuming that ηt is normally distributed, the logarithm of the

likelihood function is

L(θ,Σ) = −nT
2

ln(2π)− nT

2
ln |W | − 1

2

T∑
t=1

η′tW
−1ηt, (2.13)

4See Doob [1953] for an extensive discussion of this result.
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where θ denotes the vector of unknown parameters to be estimated comprised in

A and B.

Finally, the Gaussian estimates in θ̂ are then the elements of the vector θ

that maximises L.

2.3.2 Flow representation

For flows, equation (2.7) in the previous section, maximum likelihood

estimates, as well as for stocks, involve the characterization of the autocovariance

properties of the discrete time disturbance vector vt, however, as vt involves

a double integral of the vector of random measures ζ(dt), its autocovariance

derivation requires some additional simplifications.

First, using Bergstrom [1997], McCrorie [2000] and Chambers [1999], the

double integral following (2.7) and (2.8) can be divided into two single integrals

using the following interchange of the orders of integration5

v1 =

∫ 1

0

∫ r

0

f(r − s)ζ(ds)dr,

=

∫ 1

0

(∫ 1

s

f(r − s)dr
)
ζ(ds),

vt =

∫ t

t−1

∫ r

r−1

f(r − s)ζ(ds)dr, t = 2, · · · , T,

=

∫ t

t−1

(∫ t

s

f(r − s)dr
)
ζ(ds) +

∫ t−1

t−2

(∫ s+1

t−1

f(r − s)dr
)
ζ(ds),

(2.14)

were f(r − s) = In +G(e(r−s)M − In1)B
′.

And second, solving the integrals in brackets (see Appendix B for details),

the final expression of vt is

v1 =

∫ 1

0

{
(1− s)(In −GB′) +GM−1

[
e(1−s)M − In1

]
B′
}
ζ(ds),

vt =

∫ t

t−1

{
(t− s)(In −GB′) +GM−1

[
e(t−s)M − In1

]
B′
}
ζ(ds),

+

∫ t−1

t−2

{
(s− t+ 2)(In −GB′) +GM−1

[
eM − e(t−s−1)M

]
B′
}
ζ(ds).

(2.15)

Then, once the discrete time disturbance vector vt is expressed in terms
5See Rozanov [1967] Theorem 2.4, p 12 for details.
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of single integrals, we can easily apply a generalization of (2.11) to (2.15) and

obtain the desired autocovariance matrix of the disturbance vector. Next Lemma

presents the exact representation.

Lemma 2.3.1 (Autocovariance representation of vt).

Following the assumptions of ζ(ds), the representation of vt in equation

(2.15) and defining the nT × 1 vector v = [v′1, . . . , v
′
T ]′, the autocovariance

representation of vt is

Ω = E [vv′] , (2.16)

where

Ω =



Ω00 Ω′01 0 0 · · · 0

Ω′01 Ω0 Ω′1 0 · · · 0

0 Ω1 Ω0 Ω′1 · · · 0

0 0 Ω1 Ω0 · · · 0
...

...
... . . . . . . ...

0 0 0 0 Ω1 Ω0


,

and

E [v1v
′
1] =Ω00 =

∫ 1

0

Ξ1 (1− s) ΣΞ′1 (1− s) ds,

E [v1v
′
2] =Ω01 =

∫ 1

0

Ξ2 (1− s) ΣΞ′1 (1− s) ds,

E [vtv
′
t] =Ω0 =

∫ 1

0

Ξ1 (s) ΣΞ′1 (s) ds+

∫ 1

0

Ξ2 (s) ΣΞ′2 (s) ds,

E
[
vtv
′
t−1

]
=Ω1 =

∫ 1

0

Ξ2 (s) ΣΞ′1 (s) ds,

(2.17)

with

Ξ1 (s) = (s) (In −GB′) +GM−1
[
esM − In1

]
B′,

Ξ2 (s) = (1− s) (In −GB′) +GM−1
[
eM − esM

]
B′.

(2.18)

Proof. See Appendix B. �

As expected, the autocovariances of vt depend directly on the autocovariance

properties of ζ(ds), therefore all calculations are reduced to solve Ω00, Ω01, Ω0 and
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Ω1. Also, from (2.17), it is easy to notice that the discrete time disturbance vector

vt follows a moving average process of order one.

Finally, with Ω as in Lemma 2.3.1, the logarithm of the Gaussian likelihood

function can be written as

L(θ,Σ) = −nT
2

ln(2π)− 1

2
ln |Ω| − 1

2
v′Ω−1v, (2.19)

where θ and Σ are specified as before.

As with stocks, the computation of the likelihood function, for flows, requires

the determinant and inverse of the respective covariance matrix, however, as we

can see from (2.16), this matrix is now a nT × nT sparse matrix whose elements

are very complicated expressions involving Ω00, Ω01, Ω0 and Ω1, as a result,

for computational purposes, (2.19) may be not very convenient in our context.

For that reason, rather than attempting to optimize directly L, we will follow

Bergstrom [1985] and provide an alternative recursive algorithm that avoids these

calculations, exploits the sparse nature of Ω and more importantly, yields the

estimates of the parameter in our model; the algorithm proceeds as follows

Let P be the real lower triangular matrix, with positive elements along the

diagonal, such that

PP ′ = Ω, (2.20)

P =



P11 0 0 · · · 0

P21 P22 0 · · · 0

0 P32 P33 · · · 0
...

... . . . . . . ...
...

... PT−1,T−2 PT−1,T−1 0

0 0 0 PT,T−1 PTT


,

where the matrices P11, P21, P22, Pt,t−1, Ptt (t = 3, . . . , T ) can be computed

recursively using

P11P
′
11 = Ω00, (2.21)

P21 = Ω01(P ′11)−1, (2.22)

P22P
′
22 = Ω0 − P21P

′
21, (2.23)
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P32 = Ω1(P ′22)−1, (2.24)

P33P
′
33 = Ω0 − P32P

′
32, (2.25)

for t = 4, 5, · · · , T ,

Pt,t−1 = Ω1(P ′t−1,t−1)−1, (2.26)

PttP
′
tt = Ω0 − Pt,t−1P

′
t,t−1. (2.27)

Let the nT × 1 vector ε = [ε′1, . . . , ε
′
T ]′ be defined as

Pε = v, (2.28)

so that

• E[ε] = 0, E[εε′] = InT×nT ,

• E[εt] = 0, E[εtε
′
t] = In×n , (t = 1, . . . , T ),

• E[εtε
′
s] = 0 , (s 6= t; s, t = 1, . . . , T ).

Then, minus twice the logarithm of the likelihood function L (ignoring the

constant) is given by

L =
nT∑
i=1

(ε2
i + 2 log pii), (2.29)

where pii is the ith diagonal element of P and the nT elements of ε are computed

in T vectors of size n using recursively the following procedure

ε1 =
(
ε11, . . . , ε1n

)′
= P−1

11 v1,

εt =
(
εt1, . . . , εtn

)′
= P−1

tt (vt − Pt,t−1εt−1), t = 2, 3, · · · , T.
(2.30)

Indeed, by using equation (2.29), the computation of our Gaussian estimates

becomes simpler; it not only avoids the calculations of the inverse and determinant

of Ω, but also, as we can see from (2.20), uses a Cholesky factorization of Ω that

automatically takes into account its sparse nature, therefore, is computationally

more efficient than the standard Cholesky factorization. Also, all computations

are further simplified by the fact that the sequence of n × 2n matrices Pt =(
Ptt, Pt,t−1

)
t = 2, 3, . . . , T converges very rapidly to a constant limit matrix which
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is the solution to the nonlinear second-order difference equations system given in

(2.22) and (2.23). See Bergstrom [1990] chapter 7 for details.

Therefore, the Gaussian estimates θ̂ can be calculated following the next list

of steps.

1. Compute A,B and Σ using the specified forms of the functions defining their

elements.

2. Given the specific representations of the matrices G, B and Σ compute (see

Appendix A for details) eM together with Ω00, Ω01, Ω0 and Ω1 from their

specifications as given in Lemma 2.3.1.

3. Given the numerical representations of Ω00, Ω01, Ω0 and Ω1, compute the

Cholesky factorization of the matrix Ω (the matrix P ) following recursively

the steps on the set of equations from (2.21) to (2.27) as follows

(a) Calculate the Cholesky factorization of Ω00 as in (2.21).

(b) Calculate P21 as in (2.22) and the Cholesky factorization of (Ω0 −

P21P
′
21) as in (2.23).

(c) Calculate P32 as in (2.24) and the Cholesky factorization of (Ω0 −

P32P
′
32) as in (2.25).

(d) Setting a stop value sufficiently small, repeat x times step (c) for Pxx

and Px,x−1 until the differences between their values are equal or less

than the stop value.

(e) Generate the Cholesky factorization of Ω from (2.20) by using the

different matrices from steps (a), (b) ,(c) and (d) and complete the

(x + 4, x + 5, . . . , T ) remaining matrices in P as a copy of the limit

matrix obtained in step (d).

4. For the minimization of L, with the data and allowing the model’s

parameters to vary, obtain a new P as in step 3 and ε recursively as in

(2.30).

5. Set this new P and ε into (2.29) and calculate L.

6. Repeat steps 4 and 5 until a minimum is achieved and take those θ̂ and Σ̂

as the elements that minimize L.
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2.4 Simulation and comparison

Up until now, we have developed an exact discrete time model

that corresponds to a cointegrated continuous time system. Also, with the

characterization of the covariance properties of the discrete time disturbance

vectors, we have stated, for estimation, a computationally efficient likelihood

function for each of our model’s specifications. More importantly, we have outlined

a set of steps that leads to the Gaussian estimates of our model’s parameters.

Then, in this section, we evaluate its performance and accuracy against one of the

most commonly used methodologies among cointegration literature; Johansen’s

approach to cointegration modelling6.

The interest of such assessment, as pointed out before, rests mainly in the

two different specifications of the systems under consideration. While the primary

representations, given by VECM, are almost identical in both the exact discrete

time representation of our cointegrated continuous time system and Johansen’s

VECM procedure for cointegration, the latter is naively specified in terms of the

observation interval and the former is temporally aggregated. Therefore, given

that Johansen’s methodology ignores temporal aggregation, it is of interest to

measure how accurate its estimated parameters are in our continuous time system.

Of course, given the inherent nature of the systems, such comparison cannot

be directly measured, nevertheless, as we shall see below, we can accomplish

the task by deriving an exact link function between the two specifications that

translates the values of the estimated parameters in our cointegrated continuous

time system to those we would have obtained by using, instead, Johansen’s

methodology.

First of all, for this application, let’s define the model under consideration

as a simplification of (2.1) in which there is only one cointegrating relationship,

(1,−b1), contained in the matrix B′ and only two speed of adjustment parameters,

a1 and a2, contained in the matrix A, at the same time, we set n = 2 so that

n1 = n2 = 1 and y(0) = 0, then, using Lemma 2.2.2, our exact discrete time
6See Johansen [1988, 1991] for details.



Chapter 2. Estimation of First Order Cointegrated Systems 22

VECMs for estimation are given by ∆y1t

∆y2t

 =

 a1

a2

 (a1 − b1a2)−1(ea1−b1a2 − 1)(y1,t−1 − b1y2,t−1) + ηt,

t = 1, . . . , T,

for stocks, and,

y1 = v1, ∆y1t

∆y2t

 =

 a1

a2

 (a1 − b1a2)−1(ea1−b1a2 − 1)(y1,t−1 − b1y2,t−1) + vt,

t = 2, . . . , T.

(2.31)

for flows.

Also, for the comparison, let’s define the VECM representation in discrete

time as

∆yt = γλ′yt−1 + wt, (2.32)

where γ contains the two speed of adjustment parameters (γ1 and γ2) of the

system, λ′ the cointegrating relationship (1,−λ1) and wt is assumed to be iid.

Therefore, the exact link function, the function that relates the parameters

in our cointegrated continuous time system with those in its discrete time

counterpart, equating term by term (2.31) and (2.32), is given by

 γ1

γ2

 =

 a1

a2

 (a1 − b1a2)−1
(
ea1−b1a2 − 1

)
,

γ1 = a1

[
(a1 − b1a2)−1

(
ea1−b1a2 − 1

)]
,

γ2 = a2

[
(a1 − b1a2)−1

(
ea1−b1a2 − 1

)]
,

(2.33)

λ1 = b1. (2.34)

As a result, if we want to measure how accurate Johansen’s estimates are,

in terms of closeness with the ones we get by applying our methodology, all we

need to compute are the implied7 values through (2.33) and (2.34). Of course,
7Subsequently, these estimates will be referred as the discrete time counterpart of those we
would have obtained in (2.13) and/or (2.29).
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in the derivation of this link function, identification in the system is achieved by

considering the required normalization of the cointegrating relationship following

(2.1).

As we can see from (2.33) and (2.34), more than just indicating the

relationship between the two specifications, this link function provides many

interesting insights of them. For instance, if we look at (2.34), we see that the

cointegrating parameter appears exactly matched in the two specifications. As

a result, the long run parameter of our cointegrated continuous time model can

be estimated directly from its corresponding discrete time VECM representation

(2.32), i.e., at least for this parameter, there is no aliasing or identification problem

(see Phillips [1991] for details). Also, if we look at (2.33), aggregation becomes

evident in our specification and given that Johansen’s specification ignores it,

equation (2.33) plays a crucial role in our analysis.

For this application, we generate our own observations through a simulation

technique that specifies (2.31) as the data generating process (DGP) with three

different parametric designs. For simplicity, in all three designs, we normalize

the cointegrating parameter to be 1 so that the cointegrating relationship is

given by y1t − y2t and as a result, in this experiment, we stress mainly the

implications of dynamics over the performance of estimation in the system. The

exact representations are as follows

Design 1: θ0 = [a0
1, a

0
2, b

0
1] = [1, 2, 1],

Design 2: θ0 = [a0
1, a

0
2, b

0
1] = [−2,−1, 1],

Design 3: θ0 = [a0
1, a

0
2, b

0
1] = [−0.4, 0.6, 1].

(2.35)

As we can see from (2.35), each parametric design explores a particular

effect of dynamic adjustments over the system; while design 1 allows for a positive

feedback between y1 and y2, design 2 changes it to be negative and design 3 makes

it reciprocal. As a result, given the symmetry of the specification in our DGP,

with these 3 experimental designs, we cover all possible combinations and analyse

robustness in our estimation procedure.

Here, it is important to point out that the chosen values in these designs were

obtained as representative elements of the feasible set of values in the parameter
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space that, at the same time, fulfilled all the requirements8 for the system to be

as stated in the assumptions of (2.1), therefore, the results in this application are

generalizable.

In all three experimental designs, at the same time, the covariance matrix

is considered as follows

Σ =

 σ1 σ3

σ3 σ2

 =

 1 ρ

ρ 1

 , (2.36)

and results, then, are reported for ρ = −0.5 and ρ = 0.5 so that there is positive

and negative correlation in the system. Note that in estimation, Σ is ensured to

be positive definite by computing, instead, estimates of the the lower triangular

matrix R, such that, Σ = RR′; these matrices are related as follows:

r1 = 1, r2 = ρ, r3 =
√

1− ρ2.

Then, the estimates of the structural parameters of our system θ̂ and Σ̂

are obtained through the application of the methodologies as described before in

subsections 2.3.1 and 2.3.2.

For the comparison, the implied true parametric designs for (2.32), which

are calculated using (2.35) on (2.33) and (2.34), are given by:

Design 1: θ0
j = [γ0

1 , γ
0
2 , λ

0
1] = [0.632, 1.26, 1.0],

Design 2: θ0
j = [γ0

1 , γ
0
2 , λ

0
1] = [−1.26,−0.632, 1.0],

Design 3: θ0
j = [γ0

1 , γ
0
2 , λ

0
1] = [−0.253, 0.379, 1.0].

(2.37)

Then, the implied estimated values θ̂j are obtained by applying Johansen’s

methodology to the same simulated data as if it was generated by the VECM

representation of order 1 given in (2.32).

Finally, performance of the method is analysed by measuring accuracy in

estimation, which for our purposes, is defined as closeness between the estimated

parameters θ̂ as well as θ̂j and their true values in (2.35) and (2.37). The procedure
8These requirements are as follows: (1) The eigenvalues of M’ have non positive real parts, (2)
the VAR that follows the system is stable and (3) the orthogonal complement matrices of the
VAR are non-singular.
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is described below, and as we have two different types of data, the first subsection

focuses on the case when the variables of interest are stocks and the second when

they are flows.

2.4.1 VECM simulations with stocks

For stocks, given by (2.6) and (2.31), the data generating process, which is

used to generate ten thousand simulations of 50, 100 and 200 sample sizes, follows

a VECM representation of order 1 that can be written as ∆y1t

∆y2t

 =

 a1

a2

 (a1 − b1a2)−1(ea1−b1a2 − 1)(y1,t−1 − b1y2,t−1) + ηt,

(2.38)

where ηt is assumed to be N(0,W ) with W as in (2.11).

The true parameter values are specified as in (2.35) and estimation of

(2.38) follows the methodology described in subsection 2.3.1. For the discrete

time cointegrated counterpart, additionally, the model is assumed to follow the

VECM(1) specification given in (2.32) with true parameter values as in (2.37), as

a result, for estimation, Johansen’s methodology is applied to the same simulated

data. Comparison, then, is established by measuring closeness between the

estimated parameters of the two different methods with the true values in (2.35)

and (2.37).

Results have been grouped and appear in tables 2.1, 2.2 and 2.3. Table 2.1

shows the results for design 1, table 2.2 for design 2 and 2.3 for design 3. Each

table is divided into two sub tables for positive and negative correlation. Each sub

table, in turn, is showing the true value, the bias and the standard error of each

of the parameters for the 3 sample sizes in this exercise. Also, these sub tables

are divided according to the estimation methodology so that the upper part of

each sub table refers particularly to the results obtained through the application

of our methodology whereas, the lower part refers to the result when Johansen’s

methodology is applied.

As we can see from tables 2.1, 2.2 and 2.3, in all the cases and for all

the parameters, both Johansen’s methodology and ours perform very well, with
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reasonably small bias in estimation and improvements as the sample size increases.

However, Johansen’s methodology shows a small superiority in estimation, with

slightly lower bias in the parameters and less dispersion. If we look particularly

at the cointegrating parameter in the system, for all the three designs, a similar

but better pattern emerged with very small bias in estimation and improvements

as the sample size increases, which is expected due to the consistency of this

parameter (see equation 2.34). Also, in all three different parametric designs,

for both our methodology and Johansen’s and almost in all the cases, when the

correlation parameter changes from positive (ρ = 0.5) to negative (ρ = −0.5),

we see important reductions in the bias and the standard error of the estimates.

Then, we can say that our methodology is robust against changes in the parametric

specification of the system.

Indeed, these results are not surprising and they are as expected due to the

fact that the models under consideration are exactly specified; both are expressed

as VECMs of order 1, the disturbance structures are correct both being i.i.d,

and even though ours is temporally aggregated, it is absorbed by the exact link

function. As a result, the model in (2.32) together with (2.33) and (2.34), can be

referred as the discrete time counterpart of the exact discrete time representation

of our continuous time model in (2.1).
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Table 2.1 Design 1 estimates for stock variables
(positive and negative correlation)

Positive correlation

Sample size Sample size

Continuous time estimates 50 100 200 50 100 200

Bias Standard Error

Parameter True value

a1 1 0.02793 0.00818 0.00585 0.38077 0.24538 0.17494

a2 2 0.18196 0.09215 0.06470 0.56784 0.34062 0.23272

b1 1 -0.00022 -0.00014 -0.00002 0.01844 0.00839 0.00406

σ1 1 -0.03065 -0.01278 -0.00293 0.14638 0.09860 0.07124

ρ 0.5 -0.08600 -0.02819 -0.00819 0.27279 0.16786 0.11522

σ2 1 -0.13083 -0.03177 0.01264 0.09560 0.03666 0.01828

Johansen’s VECM(1) estimates

γ1 0.632 -0.04891 -0.01864 -0.00910 0.26869 0.18408 0.12623

γ2 1.264 0.00808 0.00956 0.00716 0.21034 0.14322 0.09903

λ1 1 -0.00048 -0.00010 0.00001 0.02672 0.01188 0.00565

Negative correlation

Sample size Sample size

Continuous time estimates 50 100 200 50 100 200

Bias Standard Error

Parameter True value

a1 1 -0.00101 0.00073 0.00104 0.20521 0.14131 0.09887

a2 2 0.04057 0.01490 0.00097 0.29733 0.20920 0.14642

b1 1 0.00003 0.00001 0.00003 0.01246 0.00569 0.00276

σ1 1 -0.02933 -0.01271 -0.00384 0.16895 0.11953 0.08460

ρ -0.5 -0.02038 0.01709 0.01382 0.33288 0.26346 0.19586

σ2 1 -0.29236 -0.19993 -0.1409 0.23056 0.13924 0.07100

Johansen’s VECM(1) estimates

γ1 0.632 -0.05100 -0.02256 -0.01078 0.19493 0.13695 0.09449

γ2 1.264 -0.00303 -0.00070 0.00018 0.11194 0.07667 0.05321

λ1 1 -0.00014 -0.00001 0.00002 0.01774 0.00796 0.00383
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Table 2.2 Design 2 estimates for stock variables
(positive and negative correlation)

Positive correlation

Sample size Sample size

Continuous time estimates 50 100 200 50 100 200

Bias Standard Error

Parameter True value

a1 -2 -0.13135 -0.02401 0.02329 0.53704 0.29661 0.18538

a2 -1 0.02491 0.02450 0.02440 0.37222 0.23130 0.15778

b1 1 -0.00022 -0.00010 -0.00009 0.01853 0.00834 0.00408

σ1 1 -0.03437 -0.01665 -0.00588 0.14314 0.09445 0.06618

ρ 0.5 -0.06975 -0.02176 0.00253 0.25794 0.15814 0.10214

σ2 1 -0.11745 -0.03784 -0.00508 0.08511 0.03301 0.01432

Johansen’s VECM(1) estimates

γ1 -1.264 -0.00859 -0.00151 -0.00279 0.21535 0.14256 0.09963

γ2 -0.632 0.04393 0.02479 0.01042 0.27269 0.18154 0.12715

λ1 1 -0.00020 -0.00007 0.00002 0.02603 0.01185 0.00568

Negative correlation

Sample size Sample size

Continuous time estimates 50 100 200 50 100 200

Bias Standard Error

Parameter True value

a1 -2 -0.03990 -0.01885 -0.00983 0.27842 0.18621 0.12893

a2 -1 0.00570 0.00663 0.00239 0.20891 0.13908 0.09655

b1 1 -0.00010 -0.00005 -0.00002 0.01262 0.00563 0.00276

σ1 1 -0.03071 -0.01630 -0.00721 0.16558 0.11722 0.08121

ρ -0.5 -0.02310 -0.02149 -0.01125 0.32103 0.24428 0.18066

σ2 1 -0.21880 -0.11457 -0.05758 0.19560 0.10791 0.05322

Johansen’s VECM(1) estimates

γ1 -1.264 0.00252 0.00252 -0.00002 0.11390 0.07606 0.05311

γ2 -0.632 0.04925 0.02659 0.01184 0.19793 0.13400 0.09480

λ1 1 -0.00015 -0.00003 0.00002 0.01748 0.00801 0.00383
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Table 2.3 Design 3 estimates for stock variables
(positive and negative correlation)

Positive correlation

Sample size Sample size

Continuous time estimates 50 100 200 50 100 200

Bias Standard Error

Parameter True value

a1 -0.4 -0.17154 -0.04965 -0.03150 0.84871 0.27097 0.17151

a2 0.6 0.18117 0.04915 0.01092 1.04096 0.37710 0.17149

b1 1 -0.00276 -0.00037 0.00029 0.06970 0.02943 0.01471

σ1 1 0.00436 -0.00385 -0.00147 0.15559 0.08653 0.05844

ρ 0.5 -0.06202 -0.02142 -0.01140 0.24066 0.12323 0.07934

σ2 1 -0.05931 -0.02604 -0.01788 0.08352 0.02432 0.01031

Johansen’s VECM(1) estimates

γ1 -0.25 -0.04377 -0.01763 -0.01063 0.22907 0.14628 0.09823

γ2 0.38 0.02306 0.01690 0.00818 0.21502 0.13990 0.09542

λ1 1 -0.00495 -0.00072 0.00003 0.13685 0.04336 0.02055

Negative correlation

Sample size Sample size

Continuous time estimates 50 100 200 50 100 200

Bias Standard Error

Parameter True value

a1 -0.4 -0.12986 -0.04561 -0.01936 0.50061 0.18279 0.10804

a2 0.6 0.15264 0.05325 0.02402 0.52942 0.19113 0.11320

b1 1 -0.01912 -0.00440 -0.00039 0.19997 0.08622 0.03927

σ1 1 0.02925 0.00908 0.00297 0.20371 0.11445 0.07429

ρ -0.5 -0.06503 -0.02272 -0.01006 0.26653 0.15176 0.09883

σ2 1 0.02567 0.00032 -0.00138 0.08249 0.02809 0.01231

Johansen’s VECM(1) estimates

γ1 -0.25 -0.03908 -0.01995 -0.01090 0.12158 0.07538 0.04965

γ2 0.38 0.02879 0.01497 0.00768 0.10121 0.06337 0.04327

λ1 1 -0.03981 -0.00812 -0.00090 0.73388 0.12263 0.05499
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2.4.2 VECM simulations with flows

For flows, the data generating process, which is used to generate ten thousand

simulations of 50, 100 and 200 observations, follows a VECM representation with

a moving average component in the error term of order 1 given by (2.7), (2.28)

and (2.31) that can be written as

y1 = P11ε1, ∆y1t

∆y2t

 =

 a1

a2

 (a1 − b1a2)−1(ea1−b1a2 − 1)(y1,t−1 − b1y2,t−1)+

+Pttεt + Pt,t−1εt−1,

t = 2, . . . , T,

(2.39)

where εt is coming from (2.28) and v in this same expression is assumed to be

N(0,Ω) with Ω as in Lemma 2.3.1.

The true parametric designs, as with stocks, are given in (2.35) as well as

(2.37) and for estimation, we apply our methodology as described in subsection

2.3.2 to the generated data as well as Johansen’s to it as if it was generated by

the VECM(1) specification given in (2.32).

Additionally, as there is a moving average component included in (2.39) that

is being ignored by Johansen’s VECM(1) specification, we take a step further in

the analysis and in looking for a more accurate discrete time estimation of (2.39),

we also apply Johansen’s methodology to our generated data as if it was specified

through a VECM representation of order 2 given by

∆yt = γλ′yt−1 + Γ∆yt−1 + st, (2.40)

where st is assumed to be iid, γ, as before, is the matrix that includes the two

speed of adjustment parameters (γ1 and γ2), λ′ contains the unique cointegrating

relationship (1,−γ1) and Γ is the matrix of coefficients that relates ∆yt with its

lagged value and can be written as

Γ =

 Γ1 Γ2

Γ3 Γ4
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Finally, for comparison, we consider the relevant parameter estimates of this

system (γ̂1, γ̂2 and λ̂1) and measure how close they are with the respective true

parameter values in (2.37).

Results have been grouped and appear in tables 2.4 to 2.9 so that each design

is explained in two tables with the first focusing in the results when the correlation

is positive and the second when it is negative. As with stocks, each table is

showing the true value, the bias and the standard error of each of the parameters

for the 3 sample sizes in the exercise, however, in this new scenario, each table

is divided in three sections; the upper part displays the results obtained through

the application of our methodology, the middle part displays them when instead

Johansen’s methodology is applied and a VECM(1) specification is considered and

finally, the lower part shows them when Johansen’s is applied and a VECM(2)

specification is considered. It is important to notice, for the lower part of these

tables, that the implied true values for the matrix of coefficients Γ are not known,

as a result, we cannot report the bias, instead, we are reporting only the mean

value and the standard error of the estimates of these particular parameters.

As we can see from the tables, in almost all the cases, our methodology

shows superiority in estimation against Johansen’s with smaller bias in the

estimates, however, they are concentrated about a mean with greater dispersion.

Additionally, as expected, the estimates of the long run equilibrium parameter

of the model in all three parametric designs show the smallest bias and standard

deviation. For the change in the correlation from positive to negative, in almost all

the cases and all three experimental designs, as with stocks, we see an important

reduction in the standard error of the estimates.

Considering Johansen’s VECM(1) specification (the middle part of the

tables) and focusing only on the dynamics of the system (γ1 and γ2), the tables

show a persistent bias in estimation with almost no improvement as the sample

size increases, consequently, even though these estimates are reasonably close to

the true parameter value, they clearly reflect the cost of ignoring aggregation in

the specification.

For Johansen’s VECM(2) specification (the lower part of the tables),

additionally, we see a mixture of effects; on the one hand, when the correlation

parameter is positive and the experimental designs are 1 and 2 (tables 2.4 and
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2.6), the estimates of such specification are better than those we get by applying

Johansen’s VECM(1) specification, however, in some of the cases they are showing

an increasing bias as the sample size increases. On the other hand, when the

correlation parameter is negative, for the same tables, results are exactly the

opposite and moreover, for design 3 (tables 2.8 and 2.9), regardless of the value of

the correlation parameter, Johansen’s VECM(2) estimates are always better even

though they are showing an increasing bias. As a result, we cannot claim that

the VECM(2) specification is capturing better the moving average component in

our continuous time model. However, it is important to notice that the true link

function between our system and the discrete time VECM(2) specification is not

exactly given by (2.33) and (2.34), then, our reported values in these table may

not be precisely measured, hence, the previous claim has to be taken with care.

Finally, as with stocks, given these results, we can say that our methodology

is robust against changes in the parametric specifications of the system.
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Table 2.4 Design 1 estimates for flow variables (positive correlation)

Positive correlation

Sample size Sample size

Continuous time estimates 50 100 200 50 100 200

Bias Standard Error

Parameter True value

a1 1 -0.07894 -0.00389 0.00383 3.09537 0.21924 0.15004

a2 2 0.08740 0.00389 -0.00182 1.59327 0.22278 0.16290

b1 1 0.00008 0.00005 -0.00006 0.01582 0.00737 0.00356

σ1 1 0.00478 -0.00432 0.00210 1.21466 0.09008 0.06361

ρ 0.5 -0.04918 0.01079 0.00587 0.66906 0.12899 0.10139

σ2 1 0.02407 0.02173 0.02065 0.46770 0.02557 0.01503

Johansen’s VECM(1) estimates

γ1 0.633 0.35797 0.35615 0.35182 0.23715 0.16250 0.11179

γ2 1.264 0.20694 0.19501 0.19229 0.19988 0.13786 0.09529

λ1 1 0.00088 0.00047 0.00018 0.01587 0.00736 0.00353

Johansen’s VECM(2) estimates

γ1 0.633 0.02929 0.02499 0.02217 0.46279 0.29801 0.20389

γ2 1.264 -0.11707 -0.14728 -0.16168 0.33035 0.21656 0.14898

λ1 1 -0.00022 -0.00004 -0.00006 0.01821 0.00776 0.00361

Parameter Mean of the estimated parameter

Γ1 0.43392 0.44544 0.45090 0.39311 0.26412 0.17982

Γ2 -0.32141 -0.32184 -0.32000 0.29069 0.20016 0.13405

Γ3 0.34440 0.36586 0.37739 0.29323 0.19825 0.13486

Γ4 -0.18554 -0.19311 -0.19632 0.22758 0.15544 0.10358
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Table 2.5 Design 1 estimates for flow variables (negative correlation)

Negative correlation

Sample size Sample size

Continuous time estimates 50 100 200 50 100 200

Bias Standard Error

Parameter True value

a1 1 -0.03964 -0.01711 -0.01105 0.21341 0.11510 0.07037

a2 2 0.03360 -0.01500 -0.00524 0.20825 0.12314 0.09757

b1 1 0.00015 0.00011 0.00005 0.00688 0.00323 0.00160

σ1 1 0.01062 -0.01019 -0.01061 0.15413 0.07978 0.03982

ρ -0.5 -0.03760 -0.01427 -0.00438 0.16877 0.07769 0.03575

σ2 1 0.03580 0.03537 0.03414 0.03910 0.00927 0.00225

Johansen’s VECM(1) estimates

γ1 0.633 0.35100 0.35606 0.36005 0.14464 0.10016 0.06803

γ2 1.264 0.19460 0.19035 0.18949 0.07215 0.04987 0.03423

λ1 1 -0.00066 -0.00030 -0.00016 0.00689 0.00319 0.00152

Johansen’s VECM(2) estimates

γ1 0.633 0.97165 0.96148 0.95883 0.63772 0.42227 0.29473

γ2 1.264 0.37377 0.34880 0.33810 0.29051 0.19751 0.13876

λ1 1 0.00028 0.00013 0.00004 0.00739 0.00328 0.00154

Parameter Mean of the estimated parameter

Γ1 -0.32657 -0.31503 -0.31159 0.53499 0.35721 0.25038

Γ2 -0.15450 -0.15223 -0.14839 0.23435 0.15874 0.10911

Γ3 -0.05739 -0.03930 -0.03063 0.24100 0.16464 0.11604

Γ4 -0.10174 -0.10460 -0.10575 0.10949 0.07369 0.05031
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Table 2.6 Design 2 estimates for flow variables (positive correlation)

Positive correlation

Sample size Sample size

Continuous time estimates 50 100 200 50 100 200

Bias Standard Error

Parameter True value

a1 -2 -0.05117 0.03825 0.03760 0.39590 0.20067 0.12588

a2 -1 0.04802 0.03007 0.02276 0.41006 0.20915 0.15303

b1 1 -0.00011 -0.00009 -0.00005 0.01589 0.00711 0.00351

σ1 1 -0.01263 -0.01136 -0.01142 0.14871 0.07928 0.05128

ρ 0.5 -0.03921 0.03121 0.02255 0.22600 0.11949 0.08264

σ2 1 -0.05680 -0.02179 -0.01370 0.07247 0.02364 0.01224

Johansen’s VECM(1) estimates

γ1 -1.26 -0.21074 -0.20055 -0.19622 0.20460 0.13811 0.09585

γ2 -0.63 -0.36416 -0.36512 -0.36449 0.23959 0.16286 0.11329

λ1 1 -0.00083 -0.00037 -0.00018 0.01593 0.00714 0.00350

Johansen’s VECM(2) estimates

γ1 -1.26 0.10622 0.13911 0.15784 0.33226 0.22023 0.14778

γ2 -0.63 -0.03466 -0.03353 -0.02495 0.45871 0.30220 0.20411

λ1 1 0.00006 0.00011 0.00005 0.01843 0.00755 0.00359

Parameter Mean of the estimated parameter

Γ1 -0.18468 -0.19241 -0.19618 0.22772 0.15182 0.10425

Γ2 0.34075 0.36406 0.37740 0.29134 0.19724 0.13466

Γ3 -0.32410 -0.32047 -0.32035 0.29043 0.19673 0.13659

Γ4 0.43802 0.44315 0.45102 0.38907 0.26274 0.18182
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Table 2.7 Design 2 estimates for flow variables (negative correlation)

Negative correlation

Sample size Sample size

Continuous time estimates 50 100 200 50 100 200

Bias Standard Error

Parameter True value

a1 -2 -0.02608 0.01861 0.01533 0.20047 0.12529 0.08739

a2 -1 0.02654 -0.02477 -0.02379 0.19672 0.11316 0.07265

b1 1 -0.00009 -0.00002 -0.00005 0.00689 0.00313 0.00160

σ1 1 -0.03113 -0.02132 -0.02035 0.14494 0.09080 0.05993

ρ -0.5 -0.03060 -0.00486 0.00167 0.17585 0.08646 0.04269

σ2 1 -0.07362 -0.06578 -0.06411 0.04216 0.01105 0.00292

Johansen’s VECM(1) estimates

γ1 -1.26 -0.19686 -0.19523 -0.19381 0.07394 0.04976 0.03444

γ2 -0.63 -0.37097 -0.36124 -0.36082 0.14330 0.09945 0.06955

λ1 1 0.00066 0.00035 0.00016 0.00690 0.00309 0.00152

Johansen’s VECM(2) estimates

γ1 -1.26 -0.37980 -0.35617 -0.34230 0.28752 0.20112 0.13801

γ2 -0.63 -0.97440 -0.97292 -0.96231 0.63017 0.42936 0.29417

λ1 1 -0.00026 -0.00009 -0.00004 0.00741 0.00321 0.00154

Parameter Mean of the estimated parameter

Γ1 -0.10059 -0.10403 -0.10544 0.10710 0.07307 0.05051

Γ2 -0.06165 -0.04164 -0.03102 0.23697 0.16757 0.11547

Γ3 -0.15811 -0.15007 -0.14856 0.22802 0.15822 0.11109

Γ4 -0.32635 -0.32078 -0.31216 0.52569 0.36225 0.25043
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Table 2.8 Design 3 estimates for flow variables (positive correlation)

Positive correlation

Sample size Sample size

Continuous time estimates 50 100 200 50 100 200

Bias Standard Error

Parameter True value

a1 -0.4 -0.10648 -0.05195 -0.04251 0.50057 0.24179 0.15348

a2 0.6 0.09732 0.01664 -0.01085 0.95310 0.24091 0.15681

b1 1 -0.00048 0.00028 -0.00005 0.06430 0.02855 0.01354

σ1 1 0.00537 0.00033 0.00032 0.17827 0.08957 0.05990

ρ 0.5 -0.05466 -0.02138 -0.01187 0.42222 0.12133 0.07892

σ2 1 -0.04768 -0.03189 -0.02970 0.21730 0.02387 0.01058

Johansen’s VECM(1) estimates

γ1 -0.25 0.08622 0.09455 0.09960 0.22392 0.14753 0.10032

γ2 0.38 -0.04686 -0.05985 -0.06413 0.21862 0.14524 0.09920

λ1 1 0.00093 0.00132 0.00048 0.07010 0.02898 0.01355

Johansen’s VECM(2) estimates

γ1 -0.25 0.01667 0.02382 0.03285 0.24905 0.15595 0.10205

γ2 0.38 -0.03964 -0.05649 -0.06352 0.23580 0.15047 0.09966

λ1 1 -0.00500 -0.00006 -0.00020 0.35901 0.03050 0.01375

Parameter Mean of the estimated parameter

Γ1 0.22229 0.22051 0.21948 0.24203 0.16458 0.11077

Γ2 0.00966 0.01810 0.02409 0.23695 0.16323 0.10979

Γ3 0.06270 0.07298 0.07914 0.24030 0.16398 0.11027

Γ4 0.17355 0.16872 0.16747 0.22980 0.15807 0.10709
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Table 2.9 Design 3 estimates for flow variables (negative correlation)

Negative correlation

Sample size Sample size

Continuous time estimates 50 100 200 50 100 200

Bias Standard Error

Parameter True value

a1 -0.4 -0.08184 -0.03460 -0.01510 0.43756 0.15319 0.09780

a2 0.6 0.09326 0.03624 0.01508 0.52194 0.15102 0.09765

b1 1 -0.01682 -0.00232 -0.00088 0.20442 0.07892 0.03767

σ1 1 0.02600 0.00870 0.00268 0.29671 0.11341 0.07491

ρ -0.5 -0.05568 -0.02069 -0.00883 0.39576 0.15084 0.10082

σ2 1 0.02458 0.00102 -0.00230 0.16792 0.02808 0.01279

Johansen’s VECM(1) estimates

γ1 -0.25 0.08851 0.09533 0.09969 0.09845 0.06480 0.04330

γ2 0.38 -0.04567 -0.05853 -0.06451 0.09018 0.05933 0.04025

λ1 1 -0.00893 0.00560 0.00324 0.52871 0.07940 0.03752

Johansen’s VECM(2) estimates

γ1 -0.25 0.01182 0.02668 0.03503 0.12654 0.07922 0.05163

γ2 0.38 -0.03985 -0.05665 -0.06535 0.10481 0.06763 0.04580

λ1 1 -0.02478 -0.00429 -0.00141 0.36611 0.08811 0.03826

Parameter Mean of the estimated parameter

Γ1 0.21527 0.21198 0.21014 0.16734 0.11175 0.07705

Γ2 0.00506 0.01167 0.01682 0.14844 0.10326 0.07015

Γ3 0.06605 0.07770 0.08481 0.14917 0.10244 0.07004

Γ4 0.17435 0.17284 0.17117 0.13104 0.08902 0.06170
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2.5 Concluding remarks

In this chapter, a comparison between the estimates of a cointegrated

continuous time model and those obtained in its discrete time cointegrated

counterpart has been outlined. For that end, an exact discrete time representation

that corresponded to a cointegrated continuous time model was derived. The

model allowed observations to be entirely comprised by stock or flow variables.

When the variables of interest were stocks, it was shown that the exact discrete

time specification followed a VECM(1) and a VECM(1) with a moving average

component in the error term when the variables were flows. For each specification,

an estimation procedure that involved the derivation of the autocovariance

properties of the discrete time disturbance vector was stated. In the application,

a model that contained only one cointegrating relationship and two speed

of adjustment parameters was stated and used to generate some simulated

data. For the simulation, three different parametric designs were considered

and comparison, was carried out over the estimates we obtained by applying

Johansen’s methodology and ours to the same simulated data. Of course, due to

the inherent nature of the methodologies, for comparison, we employed an exact

link function that specified the implied estimates we would have obtained by using

Johansen’s VAR specification into our data.

In the results, as expected, when the system was entirely comprised by

stock variables, both Johansen’s methodology and ours performed very well, with

reasonably small bias in estimation and improvements as the simple size increases.

However, when the variables of interest were flows, given that our exact discrete

time representation included a moving average component in the error term,

Johansen’s VECM(1) estimates showed a persistent bias in estimation with almost

no improvement as the sample size increased. Consequently, they reflect the cost

of ignoring aggregation in the specification. Our methodology, instead, showed

superiority in estimation with smaller bias and improvements as the sample size

increases, however, they were concentrated about a mean with greater dispersion.

Looking for a more accurate discrete time representation of our model when

the system was entirely comprised by flow variables, we also applied Johansen’s

methodology to our simulated data as if it was generated by a VECM(2) with
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only one cointegrating relationship and two speed of adjustment parameters.

At the end, comparing these estimates with the ones we got in the VECM(1)

representation and using the same link function, results showed mixed effects; on

one the hand, when the correlation parameter is positive and the experimental

designs are 1 and 2 (tables 2.4 and 2.6), the estimates of such specification are

better than those we get in Johansen’s VECM(1) specification. However, when

the correlation parameter is negative, for the same tables, results are exactly the

opposite. As a result, it was not possible to claim that this VECM(2) specification

was capturing better the moving average component in our continuous time model.

For all the parametric designs and regardless of the variables being stocks of

flows, we saw that our estimation results were broadly consistent with relatively

small bias and clear improvements as the sample size increased, as a result, we

could say that our estimation methodology was robust against changes in the true

parametric specification of the system.

Finally, given these outcomes, we can say that even though Johansen’s

VECM(1) estimates are showing reasonably small bias in estimation in all the

cases, when dynamics play an important role in the specification, they are

substantially coming from a misspecified model and are contaminated by temporal

aggregation bias.
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Supplementary Results

For the computations of the covariance matrixW , we first notice that many

elements of (2.11) can be simplified by grouping the constant matrices into single

terms and solving their constant integrals as follows

W =

∫ 1

0

(
In +G(e(s)M − In1)B

′
)

Σ

(
In +G(e(s)M − In1)B

′
)′
ds,

= Σ(In −BG′) +GB′Σ(BG′ − In)

+ GM−1(eM − In1)BΣ(In −BG′)

+ (In −BG′)ΣB(M ′)−1(eM
′ − In1)G

′

+ Ψ,

where Ψ =
∫ 1

0
GesMB′ΣBesM

′
G′ds.

As a result, we see that the computations of W are mainly reduced to

calculate Ψ and the exponential matrix eM , which, following Jewitt and McCrorie

[2005] and Van Loan [1978], can be further simplified by computing instead the

following exponential matrix

$ = exp

 −M B′ΣB

0 M ′

 =

 $11 $12

0 $22


where, Ψ = G

(
$′22$12

)
G′ and eM = $′22. Hence, our problem is reduced to

calculate either eM or e$, and a number of methods exist for this purpose.

In our particular case, two different procedures are considered; first, we use

41
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the truncation of the infinite series representation of the exponential matrix eM

to a some sufficiently large integer N such that the elements of the difference

(eM)N − (eM)N−1 are small enough to be neglected, therefore

eM ≈ eMN = In1 +
N∑
j=1

M j

j!
,

second, we use a numerical calculation that is based on the approximation

eA = (e2−sA)2s ≈ (rm(2−sA))2s ,

where rm(x) is the [m/s] Pade approximation to ex and the integers m and s are

to be chosen in a prescribed way that aims to achieve full machine accuracy at

minimal cost.9

At the end, the differences in the computations between the two procedures

were small enough to be neglected10, as a result, for computation efficiency, the

Pade approximation approach was applied in the analysis.

In here, it is important to notice that alternative methods for this calculation

do exist (see, for example, Moler and Van Loan [1978] and Ward [1977]), however,

due to its efficiency (which makes it the most popular method for computing

the matrix exponential), the Pade approximation method was considered. At the

same time, the infinite series truncation method was considered not only for being

the most straightforward, but also, as pointed out by Jewitt and McCrorie [2005],

for being sufficiently precise in the calculations when a system like ours is being

analysed, therefore, it serves for cross-validation and also as a threshold.

For Ω00, Ω01, Ω0 and Ω1 in (2.17), finally, a similar procedure was followed.

9See Al-Mohy and Higham [2009] for details.
10To be precise, the order of these differences was e−16.
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Proofs

Proof of Lemma 2.2.1.

Considering that

etAB
′
= In +

∞∑
j=1

tj
(AB′)j

j!
= In +

AB′

1!
t+

(AB′)(AB′)

2!
t2 + · · · .

We can write

(AB′)j = (AB′)× (AB′)× · · · × (AB′)︸ ︷︷ ︸
j times

,

= A× (B′A)× (B′A)× · · · × (B′A)︸ ︷︷ ︸
j−1 times

×B′.

Let B′A = M , then

(AB′)j = A×M j−1 ×B′.

Hence

etAB
′

= In + A

∞∑
j=1

tj

j!
M j−1B′ = In + AM−1

∞∑
j=1

(tM)j

j!
B′,

= In + AM−1(etM − In1)B
′.

which is used into (2.3) and the rest follows as in the Lemma. �

Proof of Lemma 2.2.2.

43
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First of all, following Bergstrom [1984], we can argue that (2.3) is the unique

mean square solution to (2.1) due to the fact that the integral
∫ t

0
e(t−s)AB′ζ(ds)

exist.

It exist because for any matrix A, the series defining eA is convergent, the

elements of the matrix etAB′ΣetBA′ are convergent power series in t and they are

integrable over any interval on the real line, as a result

∫ t

0

e(t−s)AB′ζe(t−s)BA′ds <∞,

were Σ is defined in the properties of the random vector ζ(dt). (See Bergstrom

[1984] for details and a more comprehensive treatment of the proof).

Now, rewriting (2.5) as

y(t) =

(
In +G(etM − In1)B

′
)
y(0) +

∫ t−1

0

(
In +G(e(t−s)M − In1)B

′
)
ζ(ds) +∫ t

t−1

(
In +G(e(t−s)M − In1)B

′
)
ζ(ds)),

y(t) =

(
In +G(etM − In1)B

′
)
y(t− 1) +

∫ t

t−1

(
In +G(e(t−s)M − In1)B

′
)
ζ(ds),

and then

y(t)− y(t− 1) = GJB′y(t− 1) +

∫ t

t−1

(
In +G(e(t−s)M − In1)B

′
)
ζ(ds),

∆y(t) = GJB′y(t− 1) + ηt, (B.1)

where all the matrices and ηt are defined in the Lemma. Finally, the exact discrete

model when the sample is comprised entirely of stocks variables is given by

∆yst = GJB′yst−1 + ηt,

Also, for the exact discrete model when the sample is comprised entirely of

flows variables, if we integrate (B.1) over (t− 1, t)
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∆yft =GJB′yft−1 +

∫ t

t−1

∫ r

r−1

(
In +G(e(r−s)M − In1)B

′
)
ζ(ds)dr, (B.2)

∆yft = GJB′yft−1 + vt.

Finally, for the relationship between y(0) and the observed vector yf1 ,

integrating (2.5) over the interval (0, 1)

∫ 1

0

y(r)dr =

∫ 1

0

(In+G(erM−In1)B
′)y(0)dr+

∫ 1

0

∫ r

0

(In+G(e(r−s)M−In1)B
′)ζ(ds)dr,

yf1 − y(0) = GEB′y(0) + v1,

�

Proof of (2.15).

The integral of the function f(r − s) in (2.15) can be obtained as follows:

∫ t

s

f(r − s)dr =

∫ t

s

(In +G(e(r−s)M − In1)B
′)dr,

since In, G and B are all constants and M−1 exist, the resulting expression is

∫ t

s

f(r − s)dr = (t− s)(In −GB′) +GM−1[e(t−s)M − In1 ]B
′,

and the reaming integral

∫ s+1

t−1

f(r − s)dr = (s− t+ 2)(In −GB′) +GM−1[eM − e(t−s−1)M ]B′.

Combining these results gives the expression in (2.15). �

Proof of Lemma 2.3.1.

Following the assumptions of ζ(ds) and the representation of vt in equation
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(2.15)

E (v1v
′
1) = Ω00

= E

[(∫ 0

1

Ξ1 (1− s) ζ (ds)

)(∫ 1

0

Ξ1 (1− s) ζ (ds)

)′]
,

=

∫ 1

0

Ξ1 (1− s) ΣΞ′1 (1− s) ds,

E (v2v
′
1) = Ω10

= E

[(∫ 2

1

Ξ1 (2− s) ζ (ds) +

∫ 1

0

Ξ2 (1− s) ζ (ds)

)(∫ 1

0

Ξ1 (1− s) ζ (ds)

)′]
,

=

∫ 1

0

Ξ2 (1− s) ΣΞ′1 (1− s) ds,

E (vtv
′
t) = Ω0

= E
[(∫ t

t−1

Ξ1 (t− s) ζ (ds) +

∫ t−1

t−2

Ξ2 (t− s− 1) ζ (ds)

)
(∫ t

t−1

Ξ1 (t− s) ζ (ds) +

∫ t−1

t−2

Ξ2 (t− s− 1) ζ (ds)

)′]
,

=

∫ t

t−1

Ξ1 (t− s) ΣΞ′1 (t− s) ds+

∫ t−1

t−2

Ξ2 (t− s− 1) ΣΞ′2 (t− s− 1) ds,

=

∫ 1

0

Ξ1 (s) ΣΞ′1 (s) ds+

∫ 1

0

Ξ2 (s) ΣΞ′2 (s) ds,

E
(
vtv
′
t−1

)
= Ω1

= E
[(∫ t

t−1

Ξ1 (t− s) ζ (ds) +

∫ t−1

t−2

Ξ2 (t− s− 1) ζ (ds)

)
(∫ t−1

t−2

Ξ1 (t− s− 1) ζ (ds) +

∫ t−2

t−3

Ξ2 (t− s− 2) ζ (ds)

)′]
,

=

∫ t−1

t−2

Ξ2 (t− s− 1) ΣΞ′1 (t− s− 1) ds,

=

∫ 1

0

Ξ2 (s) ΣΞ′1 (s) ds,

where Ξ1 and Ξ2 are given in the Lemma and the last line of Ω0 and Ω1 follows

from a simple change of variable in the integration. �



Chapter 3

Estimation of Higher Order

Cointegrated Systems

In this Chapter, as an extension of the analysis we provided in Chapter

2, we develop an estimation procedure for cointegrated systems in continuous

time that not only allows for higher order specifications in the system but also

incorporates deterministic components on it. At the same time, in order to provide

as much generality as possible, we allow the system to be entirely comprised

of stock or flow variables. For the analysis, we closely follow Bergstrom’s

tradition and, for each type of data, we derive an exact discrete time model

and characterize entirely the properties of the discrete time disturbance vector.

Also, with the use of an alternative exponential matrix factorization, we outline

the autocovariance representations of the discrete time disturbances and obtain

the Gaussian likelihood function.

As an application, we assess the performance of our estimation procedure

over some simulated data and with the aim of measuring the costs, if there are

any, of ignoring aggregation in the specification, we compare our results with the

ones we would have obtained by imposing instead a discrete time specification

(Johansen’s specification) into the system.

In the results, in all cases, our estimation procedure shows superiority in

estimation against Johansen’s with smaller bias in the estimates and improvements

as the sample size increases, however, they are concentrated about a mean with

greater dispersion.

47
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3.1 Introduction

In practice, econometricians have to work with time series that usually

are not restricted to a linear specification nor to a zero mean or a mean and a

trend either. The Gross Domestic Product (GDP) of United States, for example,

is always conceived as a series with positive trend and a mean different than zero.

Unemployment as well as inflation, at the same time, are perceived as series that

can be modelled as autoregressive moving average processes (ARMA) of order

higher than one.

In discrete time, as it is well known, all of those processes can be easily

analysed and estimated with the usual econometric techniques (for example,

Johansen’s estimation procedure for cointegrated systems), however, as pointed

out by Chambers and McCrorie [2007], if the model for estimation is naively

specified in terms of the observation interval, it can be misspecified and its

estimates can be contaminated by temporal aggregation bias. As a result, for

estimation, it is needed to develop a model that has the property of holding

exactly the process under consideration regardless of the frequency with which

the data are observed. Such model is referred to as an exact discrete time model

and is obtained by imposing, instead, a continuous time specification into the

system.

The purpose of this chapter, therefore, is to generalize the analysis we

provided in Chapter 2 and, following Bergstrom’s tradition, derive an exact

discrete time model, together with its estimation procedure, for higher order

systems in continuous time that estimates the parameters of processes such as

the ones mentioned above. In this chapter, particularly, we focus our attention

on the non stationary cointegrated variables case and consider a higher order

stochastic differential equation system that incorporates deterministic components

(a constant and a linear trend) and is entirely comprised of stock or flow variables.

In here, it is important to mention that for the estimation of cointegrated

systems in continuous time, alternative approaches exist. Harvey and Stock

[1985, 1988], for example, proposed Kalman filter methods and Phillips [1991]

proposed frequency domain regression techniques. In their analysis, considering

a higher order system, Harvey and Stock handled irregularly spaced observations
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and accommodated moving average disturbances, however, they did not provide

an exact discrete time model for the system under consideration. Phillips,

alternatively, did accommodate moving average disturbances in the system but

focused only on a simple first order system. Therefore, given our generalization,

these methods should be viewed as alternatives to those outlined here and

considered as references for future work.

Similarly than in Chapter 2, we assess the performance of our estimation

procedure over some simulated data and with the aim of measuring the costs,

if there are any, of ignoring aggregation in the specification, we compare our

results with the ones we would have obtained by imposing instead a discrete time

specification (Johansen’s specification) into the system.

In the results, as expected, in all cases, our methodology shows superiority in

estimation against Johansen’s with smaller bias in the estimates, however, they are

concentrated about a mean with greater dispersion. Additionally, the estimates

of the long run equilibrium parameter of the model in all three parametric designs

show the smallest bias and standard deviation.

Since we are considering two types of variables, we present our analysis

by duplicate. Thus, this chapter is organized as follows: Section 3.2 frames the

coitegrated continuous time system under consideration. Section 3.3 specifies

the exact discrete time representation for stock and flow variables. Section

3.4 concentrates on the derivation of the covariance properties of the discrete

time disturbance vector for the two representations and outlines the estimation

procedure. Section 3.5 summarizes the simulation results and compares both the

estimates of our exact discrete time representation and those obtained by applying

Johansen’s methodology and section 3.6 concludes. Supplementary results are

given in Appendix C and all proofs in Appendix D.
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3.2 The Model

The focus of this chapter is the continuous time random n-vector y(t) that

satisfies the stochastic differential equation system

d[Dk−1y(t)] =
[
Ak−1D

k−1y(t) + · · ·+ A1Dy(t) + A0y(t)

+a+ bt
]
dt+ ζ(dt), t > 0,

(3.1)

were k is a positive integer larger than or equal to 2, A0, . . . , Ak−1 are n×nmatrices

of unknown coefficients and a and b are n× 1 vectors of unknown constants. For

our purpose, we assume that y(t) is I(1) and is partitioned into two subvectors

y1(t), y2(t) of dimensions n1 × 1 and n2 × 1, respectively (n1 + n2 = n) with n1

stationary linear cointegrating relationships of the form y1(t)−B1y2(t), where B1

is a n1 × n2 matrix of cointegrating parameters. As a result, A0 is singular and

can be written as A0 = ĢB′ where B = (In1 ,−B1)′ and Ģ= (Ģ′1, Ģ
′
2)′ are reduced

rank matrices of dimensions n× n1 that contain n1 linearly independent vectors.

We also assume that the vector of random measures ζ(dt) is defined on all

subsets of the line 0 < t <∞ having finite Lebesgue measure such that

• E[ζ(dt)] = 0,

• E[ζ(dt)ζ(dt)′] = Σdt and

• E[ζ(∆1)ζ(∆2)′] = 0 for disjoint intervals ∆1 and ∆2,

Considering this set up and in order to pursue our goal, we shall next find a

solution to (3.1) and use its properties to derive an econometrically implementable

model (also known as the exact discrete time model) that relates the unknown

parameters of our system to the discrete time observations. For that, we first

follow Chambers [1999] and rewrite (3.1) in a state space form as

dx(t) = [Ax(t) + a∗ + b∗t]dt+ ζ∗(dt) (3.2)

were the nk×nk matrix A and the nk×1 vectors x(t), a∗, b∗ and ζ∗(dt) are given
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by

x(t) ≡


y(t)

Dy(t)
...

Dk−1y(t)

 , A =



0 In 0 · · · 0

0 0 In · · · 0
...

...
...

...

0 0 0 · · · In

A0 A1 A2 · · · Ak−1


, a∗ =


0

0
...

a

 ,

b∗ =


0

0
...

b

 , ζ∗(dt) =


0

0
...

ζ(dt)

 .

Then, given by Bergstrom [1984], the unique mean square solution to (3.2),

initialized at t = 0, is presented as

x(t) = etAx(0) +

∫ t

0

e(t−s)A(a∗ + b∗s)ds+

∫ t

0

e(t−s)Aζ∗(ds), t > 0, (3.3)

where

x(0) ≡ [y(0)′, Dy(0)′, . . . , Dk−1y(0)′]′ and etA =
∞∑
j=0

(tA)j

j!
.

In here, it is important to notice that this solution can be considered as a

generalization of that given by Bergstrom. It not only allows stochastic trends to

interact with the system as a whole, but also specifies the particular treatment

of I(1) and cointegrated variables in the system by dealing explicitly with the

singularity of A.11 As a result, the use of such solution to the derivation of

the exact discrete time model will require additional and slightly more complex

mathematical derivations than the ones proposed by the author. Next section

outlines such derivations more precisely.

In order to explore the effects of temporal aggregation in our specification

and attempting to provide as much generality as possible in the applicability

of our results, the vector y(t) is allowed to be entirely comprised by stock or
11To see this, from the set up of the model, we know that A0 is singular, as a result, |A0| = 0
and hence A is singular.
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flow variables. If we define stock and flow variables in continuous time as ys(t)

and yf (t), respectively, then, the observed values at specific points in time, for

stock variables, are yst = ys(t) and the observed rate of flows, for flow variables,

yft =
∫ t
t−1

yf (r)dr, where, in each case t = 1, 2, . . . , T and T denotes sample size.

For the derivation of the exact discrete time model, at the same time,

our strategy will consists in solving out the unobservable components of both

xst = xs(t) and xft =
∫ t
t−1

xf (r)dr from (3.3) by compacting that system into a

single equation depending only on observable components as well as their lagged

values. As a result, for easier exposure, we define, in advance, selection matrices

that specify such separation and also, rewrite (3.3) in a vector autoregressive form

(VAR) that automatically incorporates the lagged values into the system.

For the selection matrices, then, let’s define S1 and S2 as the matrices that

divide xst (x
f
t ) into two subvectors yst (y

f
t ) and wst (wft ) that contain, respectively,

its observable and unobservable components. These matrices and vectors are given

by

S1 =[In 0n×nr ], S2 =[0nr×n Inr ],

yst = S1x
s
t =
[
ys(t)

]
, yft = S1x

f
t =

[ ∫ t
t−1

yf (r)dr
]
,

wst = S2x
s
t =


Dys(t)

...

Dk−1ys(t)

 , wft = S2x
f
t =


∫ t
t−1

Dyf (r)dr
...∫ t

t−1
Dk−1yf (r)dr

 ,

xst = xs(t) =


ys(t)

Dys(t)
...

Dk−1ys(t)

 , xft =

∫ t

t−1

xf (r)dr =



∫ t
t−1

yf (r)dr∫ t
t−1

Dyf (r)dr
...∫ t

t−1
Dk−1yf (r)dr

 ,
(3.4)

where nr = n(k − 1), 0a×b is a null matrix of dimensions a × b and yst (yft ) and

wst (w
f
t ) are, respectively, the observable and unobervable components of xt when

the variables of interest are stocks (xst) or flows (x
f
t ).
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For the VAR form, also, let’s rewrite (3.3) as

x(t) = etAx(0) +

∫ t−1

0

e(t−s)A(a∗ + b∗s)ds+

∫ t

t−1

e(t−s)A(a∗ + b∗s)ds,

+

∫ t−1

0

e(t−s)Aζ∗(ds) +

∫ t

t−1

e(t−s)Aζ∗(ds),

(3.5)

and let’s lag (3.3) one period and get

x(t− 1) = e(t−1)Ax(0) +

∫ t−1

0

e(t−1−s)A(a∗ + b∗s)ds+

∫ t−1

0

e(t−1−s)Aζ∗(ds). (3.6)

Therefore, the VAR, by substituting (3.6) into (3.5) and rearranging terms,

is given by

x(t) = eAx(t− 1)+

∫ t

t−1

e(t−s)A(a∗ + b∗s)ds+

∫ t

t−1

e(t−s)Aζ∗(ds),

x(t) = eAx(t− 1) +mt + εt,

(3.7)

were mt =
∫ t
t−1

e(t−s)A(a∗ + b∗s)ds and εt =
∫ t
t−1

e(t−s)Aζ∗(ds).

3.3 The Discrete Time Representation

Once the VAR representation of the solutions to the system has been

obtained and the observable and unobservable components of both xst and xft

have been accurately divided, the derivation of the exact discrete time model can

be finally outlined. Such derivation is described below and for simplicity, as two

types of data are considered, two subsections are utilized.

3.3.1 Stock Variables

For stock variables, using the fact that xst = xs(t), yst = S1x
s
t as well as

wst = S2x
s
t , the observable part of the system, by premultiplying (3.7) by S1 and

noting that S ′1S1 + S ′2S2 = I, is given by

yst = S1e
A(S ′1S1 + S ′2S2)

(
xst−1

)
+ S1mt + S1εt
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which can be written as

yst = C11y
s
t−1 + C12w

s
t−1 +ms

1t + εs1t (3.8)

where C11 = S1e
AS ′1, C12 = S1e

AS ′2, ms
1t = S1mt and εs1t = S1εt.

The unobservable part, by premultiplying now (3.7) by S2 and following the

same procedure, is given by

wst = C21y
s
t−1 + C22w

s
t−1 +ms

2t + εs2t (3.9)

where C21 = S2e
AS ′1, C22 = S2e

AS ′2, ms
2t = S2mt and εs2t = S2εt.

Then, the desired exact discrete time model, as pointed out before, is the

equation that solves the system of relationships summarized in (3.8) and (3.9) by

eliminating out the unobservable components wt−1 of the system so that we finish

with a single expression depending only on yst and its lagged values. The precise

form is given below in Lemma 3.3.1 and our strategy in the derivation follows

closely the steps outlined in Chambers [1999] with some important differences

related mainly to the inclusion of stochastic trends in the system as well as the

particular characteristics of the exponential matrix etA.

It is important to notice, at the same time, that for such derivation,

regardless of the observations being stocks or flows, a particular set of assumptions

has to be considered; first we need to ensure invertibility in the system which

is achieved by assuming that the coefficient matrix C22 of the unobservable

elements of the system (wt−1), and its lagged respective matrices, are non singular

(Assumption 1 and 3 below) and secondly, we need to ensure that there are no

linear dependencies between yt and wt which is achieved by assuming full row rank

in the coefficient matrix, C12, that is relating these two sub vectors (Assumption

2 below).

Assumption 1 : The n(k − 1)× n(k − 1) matrix C22 is nonsingular.

Assumption 2 : The n× n(k − 1) matrix C12 is has full row rank n.

Assumption 3 : The n(k − 1)× n(k − 1)2 matrix [C−1
22 , . . . , C

−(k−1)
22 ] has full

row rank n(k − 1).



Chapter 3. Estimation of Higher Order Cointegrated Systems 55

All together, these assumptions are usually considered when deriving exact

discrete time representations of the observed variables in a system, they are closely

related to the concepts of reconstructibility and detectability employed in optimal

control theory for linear systems and overall, they set the minimal requirements

for mathematically deriving our discrete time representation (see Chambers [1999]

for an extensive discussion).

Lemma 3.3.1 (Exact Discrete Time Representation for Stock Variables).

Let x(t) satisfy the continuous time cointegrated system defined in (3.2),

then, under assumptions (1) - (3), the exact discrete time model under our

observed vector yst evolves according to the discrete time vector error correction

model representation

∆yst = Πk(θ)y
s
t−1 + Γ1(θ)∆yst−1 + · · ·+ Γk−1(θ)∆yst−(k−1) + gst (θ) + ηst ,

t = k + 1, · · · , T,
(3.10)

where

Πk = F1 + · · ·+ Fk − I, Γh = −
k∑

j=h+1

Fj, h = 1, · · · , k − 1,

F1 = C11 + C12MN1, Fj = C12MNj, j = 2, · · · , k

gst = ms
1t + C12Mm̄s

t , ηst = εs1t + C12Mε̄st ,

M = M̂−1[−In(k−1) M∗], M̂ =


C12C

−1
22

C12C
−2
22

...

C12C
−(k−1)
22

 ,

m̄s
t =

[
(ms

1,t−1)′, · · · , (ms
1,t−(k−1))

′, (ms
2,t−1)′, · · · , (ms

2,t−(k−1))
′
]′
,

ε̄st =
[

(εs1,t−1)′, · · · , (εs1,t−(k−1))
′, (εs2,t−1)′, · · · , (εs2,t−(k−1))

′
]′
.

M∗ =



C12C
−1
22 0 · · · 0 0

C12C
−2
22 C12C

−1
22 · · · 0 0

...
... . . . ...

...

C12C
−(k−2)
22 C12C

−(k−3)
22 · · · C12C

−1
22 0

C12C
−(k−1)
22 C12C

−(k−2)
22 · · · C12C

−2
22 C12C

−1
22


,
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N =



−In C11 0 . . . 0 0

0 −In C11 . . . 0 0
...

...
...

...
...

0 0 0 0 . . .− In C11

0 C21 0 . . . 0 0

0 0 C21 . . . 0 0
...

...
...

...
...

0 0 0 . . . 0 C21



≡
[
N1 N2 · · · Nk

]
,

Proof. See Appendix D. �

3.3.2 Flow Variables

Following a similar procedure than before, for flows, the system of equations

under consideration is given by

yft = C11y
f
t−1 + C12w

f
t−1 + uf1t + vf1t,

wft = C21y
f
t−1 + C22w

f
t−1 + uf2t + vf2t,

(3.11)

where C11, C12, C21 and C22 are as in (3.8) and (3.9) and equation (3.7) was

integrated from t− 1 to t so that

yft = S1x
f
t = S1

∫ t

t−1

xf (r)dr, wft = S2x
f
t =

∫ t

t−1

xf (r)dr,

uf1t = S1u
f
t = S1

∫ t

t−1

∫ r

r−1

e(r−s)A(a∗ + b∗s)dsdr, vf1t = S1v
f
t = S1

∫ t

t−1

∫ r

r−1

e(r−s)Aζ∗(ds)dr,

uf2t = S2u
f
t = S2

∫ t

t−1

∫ r

r−1

e(r−s)A(a∗ + b∗s)dsdr, vf2t = S2v
f
t = S2

∫ t

t−1

∫ r

r−1

e(r−s)Aζ∗(ds)dr,

Then, the exact discrete time model, as with stocks, is the equation that

solves (3.11) and its precise form is given below in Lemma 3.3.2 (Note that as this

derivation follows almost immediately from the previous Lemma, we also follow

closely the steps outlined by Chambers [1999] as well as Assumptions 1-3 above).

Lemma 3.3.2 (Exact Discrete Time Representation for Flow Variables).

Let x(t) satisfy the continuous time cointegrated system defined in (3.2),

then, under assumptions (1) - (3), the exact discrete time model under our
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observed vector yft evolves according to the discrete time vector error correction

model representation

∆yft = Πk(θ)y
f
t−1 + Γ1(θ)∆yft−1 + · · ·+ Γk−1(θ)∆yft−(k−1) + gft (θ) + ηft ,

t = k + 1, · · · , T,
(3.12)

where Πk,Γh, F1, Fj,M,N and M̂ are specified as in Lemma 3.3.1 and

gft = uf1t + C12Mūft , ηft = vf1t + C12Mv̄ft ,

ūft =
[

(uf1,t−1)′, · · · , (uf1,t−(k−1))
′, (uf2,t−1)′, · · · , (uf2,t−(k−1))

′
]′
,

v̄ft =
[

(vf1,t−1)′, · · · , (vf1,t−(k−1))
′, (vf2,t−1)′, · · · , (vf2,t−(k−1))

′
]′
.

Proof. See Appendix D. �

As we can see from these lemmas, our exact discrete time models, regardless

of the observations being stocks or flows, follow a common VECM representation,

however, the specific forms of the disturbance vector as well as the stochastic

trend component, differ in each scheme, as a result, in estimation, two different

specifications are required.

At the same time, it is important to notice that these lemmas specify a

solution to the system that holds only for t = k+1, · · · , T and if want to talk about

appropriate methods of estimation, before deriving the specific properties of the

discrete time disturbances, we need to derive an appropriate set of supplementary

equations that relates y1, · · · , yk to the initial state vector x(0). Again, as two

different types of data are considered, two different specification are required and

as before the proofs are heavily relying on the results of Chambers [1999].

For stocks, then, given that the initial observed value of the variables is

directly specified in the system (xs1 = xs(1)), the set of supplementary equations

is fixed to x(0) and its representation, therefore, comes directly from (3.3). Next

Lemma shows this result.

Lemma 3.3.3 (Supplementary Model for Stock Variables).

Under assumptions (1) - (3), the exact discrete time model under our

observed vector yst , that holds for t = 1, · · · , k, evolves according to the discrete
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time vector error correction model representation

ys1 = G1x
s(0) + qs1 + ηs1,

∆yst = Λt(θ)y
s
t−1 + Υ1(θ)∆yst−1 + Υ2(θ)∆yst−2+

· · ·+ Υt−2(θ)∆ys2 +Gtx
s(0) + qst (θ) + ηst ,

t = 2, · · · , k,

(3.13)

where

Λt = J1 + · · ·+ Jt−1 − I, Υh =−
t−1∑

j=h+1

Jj,
h = 1, · · · , t− 2,

t = 3, · · · , k,

ηs1 = S1

∫ 1

0

e(1−s)Aζ∗(ds), qs1 =S1

∫ 1

0

e(1−s)A(a∗ + b∗s)ds,

ηs2 = εs12 + C12S2

∫ 1

0

e(1−s)Aζ∗(ds), qs2 =ms
12 + C12S2

∫ 1

0

e(1−s)A(a∗ + b∗s)ds,

J1 = C11, Jt =C12

t−1∑
j=1

Cj−1
22 C21, t = 2, · · · , k − 1,

G1 = S1e
A, Gt =C12C

t−2
22 S2e

A t = 2, · · · , k,

qst = ms
1t + C12

t−3∑
j=0

Cj
22m

s
2,t−1−j + C12C

t−2
22 S2

∫ 1

0

e(1−s)A(a∗ + b∗s)ds, t = 3, · · · , k,

ηst = εs1t + C12

t−3∑
j=0

Cj
22ε

s
2,t−1−j + C12C

t−2
22 S2

∫ 1

0

e(1−s)Aζ∗(ds), t = 3, · · · , k,

Proof. See Appendix D. �

For flows, on the contrary, the initial observed value of the variables is driven

by
∫ 1

0
xf (r)dr, as a result, the representation of the supplementary equations

comes now from the integration of (3.3) from 0 to 1. Next Lemma shows this

result.

Lemma 3.3.4 (Supplementary Model for Flow Variables).

Under assumptions (1) - (3), the exact discrete time model under our

observed vector yft , that holds for t = 1, · · · , k, evolves according to the discrete

time vector error correction model representation
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yf1 = Q1x
f (0) + qf1 + ηf1 ,

∆yft = Λt(θ)y
f
t−1 + Υh,1(θ)∆yft−1 + Υh,2(θ)∆yft−2+

· · ·+ Υh,t−2(θ)∆yf2 +Qtx
f (0) + qft (θ) + ηft ,

t = 2, · · · , k,

(3.14)

where Λt,Υh,t, J1 and Jt are as in Lemma 3.3.3 and

ηf1 = S1

∫ 1

0

∫ r

0

e(r−s)Aζ∗(ds)dr, qf1 =S1

∫ 1

0

∫ r

0

e(r−s)A(a∗ + b∗s)dsdr,

ηf2 = vf12 + C12S2

∫ 1

0

∫ r

0

e(r−s)Aζ∗(ds)dr, qf2 =uf12 + C12S2

∫ 1

0

∫ r

0

e(r−s)A(a∗ + b∗s)dsdr,

Q1 = S1

∫ 1

0

erAdr, Qt =C12C
t−2
22 S2

∫ 1

0

erAdr t = 2, · · · , k,

qft = uf1t + C12

t−3∑
j=0

Cj
22u

f
2,t−1−j + C12C

t−2
22 S2

∫ 1

0

∫ r

0

e(r−s)A(a∗ + b∗s)dsdr, t = 3, · · · , k,

ηft = vf1t + C12

t−3∑
j=0

Cj
22v

f
2,t−1−j + C12C

t−2
22 S2

∫ 1

0

∫ r

0

e(r−s)Aζ∗(ds)dr, t = 3, · · · , k,

Proof. See Appendix D. �

Once the required set of supplementary equations have been derived and

incorporated into the exact discrete time models, the next step in the derivation of

the Gaussian likelihood function is the complete characterization of the properties

of the discrete time disturbance vector which, in our particular case, includes

a specific treatment of the exponential matrix eA as given in (C.2). The next

section frames precisely these properties, outlines the derivation of the Gaussian

Likelihood function and at the same time, specifies the estimation procedure.
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3.4 The Properties of the Discrete Time Distur-

bances and the Estimation Procedure

Considering that we are working with two different types of data and for easier

and more fluent presentation, we also divide this section into two subsections; the

first focuses on stocks and the second on flows.

3.4.1 Discrete Time Disturbances for Stock Variables

For stock variables, as the general form of the discrete time disturbance vector

ηst , given in Lemmas 3.3.1 and 3.3.3, is a function of the vectors εst and involves

single integrals of the vector of random measures ζ∗(dt), its moving average

representation as well as its autocovariance properties can be easily derived and

depend only on those of ζ∗(dt).

The precise form of the autocovariances and their derivations are given below

in Lemma 3.4.1 and as before, these results rely on those of Chambers [1999] but

incorporate, at the same time, important differences in the computations caused

mainly by the use of our alternative representation of eAt as given in (C.2).

Lemma 3.4.1 (Moving average representation of ηst ).

Following the assumptions of ζ(dt), the moving average representation of the

discrete time disturbance vectors ηs1, ηs2, · · · , ηsT are given by

ηst =
t−1∑
i=0

P s
i εt−i, t = 1, · · · , k,

ηst =
k−1∑
i=0

Rs
iεt−i, t = k + 1, · · · , T,

(3.15)
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where

P s
0 = S1, P s

i = C12C
i−1
22 S2, i = 1, · · · , t− 1,

Rs
0 = S1, Rs

i = C12(M1iS1 +Mi+1S2), i = 1, · · · , k − 1,

M = [M1 M2 · · · Mk],

M1 = [M11 M12 · · · M1,k−1],

εt =

∫ t

t−1

e(t−s)Aζ∗(ds) =

∫ t

t−1

[
Ink + UH−1(eH(t−s) − Ink−n2)V

′
]
ζ∗(ds),

A = UV ′ and H = V ′U (See Appendix D for details).

Also, if we define the nT × 1 vector ηs = [(ηs1)′, (ηs2)′, · · · , (ηsT )′]′, then, its

autocovariance representation is given by

Ωs = E[ηs(ηs)′], (3.16)

where

E[ηst (η
s
t−j)

′] = Ωt,t−j =
t−1∑
i=j

P s
i Ωε(P

s
i−j)

′, t = 1, · · · , k, j = 0, · · · , t− 1,

E[ηst (η
s
t−j)

′] = Ωt,t−j =
k−1∑
i=j

Rs
iΩε(P

s
i−j)

′, t = k + 1, · · · , 2k − 1, j = t− k, · · · , k − 1,

E[ηst (η
s
t−j)

′] = Ωj =
k−1∑
i=j

Rs
iΩε(R

s
i−j), t = k + 1 + j, · · · , T, j = 0, · · · , k − 1,

E[ηst (η
s
t−j)

′] = 0, t = k + 2, · · · , T, j > k − 1,

and

Ωε = E[εtε
′
t] =

∫ 1

0

(
eAs
)
Σ∗
(
eAs
)′
ds,

=

∫ 1

0

[
Ink + UH−1(eHs − Ink−n2)V

′]Σ∗[Ink + UH−1(eHs − Ink−n2)V
′]′ds.

with

E[ζ∗(dt)] = 0,

E[ζ∗(dt)ζ∗(dt)′] = Σ∗dt, and

E[ζ∗(∆1)ζ∗(∆2)′] = 0 for disjoint intervals ∆1 and ∆2
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also

Σ∗ =


0 · · · 0
... . . . ...

0 · · · Σ

 .
Proof. See Appendix D. �

As expected, Lemma 3.4.1 shows that the discrete time disturbances ηst
follow a moving average process of order k − 1 and, more importantly, it also

shows that the autocovariances of ηst depend on the covariances Ωε.

The logarithm of the Gaussian likelihood function, then, with Ωs as in the

Lemma and assuming that ηst is normally distributed, can be written as

L(θ,Σ) = −nT
2

ln(2π)− 1

2
ln |Ωs| − 1

2
(ηs)′(Ωs)−1ηs (3.17)

where θ as well as Σ denote the unknown parameters of the system and our

estimated parameters θ̂ and Σ̂ are the values that maximize L.

As mentioned in Chapter 2, however, due to the sparse nature and size of

Ωs, obtaining those estimates by optimizing directly L is not very convenient in

our context, as a result, we similarly follow Bergstrom [1985] and obtain, instead,

the Gaussian estimates throughout an alternative recursive algorithm that not

only avoids the computations of both the determinant and inverse of Ωs, but also,

exploits its sparse nature and reduces dramatically the number the computations

and their complexity; the algorithm proceeds as follows

Let P be a real lower triangular matrix, with positive elements along the

diagonal, such that

PP ′ = Ωs (3.18)

P =



Chapter 3. Estimation of Higher Order Cointegrated Systems 63



P11 0 · · · · · · 0 0 · · · · · · 0 0 0 0 · · · 0 0

P21 P22 · · ·
. . .

.

.

. 0 0
. . .

. . . 0

.

.

.
.
.
.

. . .
.
.
. 0.

.

.
. . .

. . .
. . .

.

.

.
.
.
.

. . .
. . .

. . .
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

Pk−1,1 · · · · · · Pk−1,k−1

.

.

.
.
.
.

. . .
. . .

. . .
.
.
. 0

.

.

.
.
.
.

.

.

. 0

Pk1 Pk2 · · · · · · Pkk 0 · · · · · · 0 0 0 0 · · · 0 0

0 Pk+1,2 · · · · · · Pk+1,k Pk+1,k+1 0 · · · 0 0 0 0 · · · 0 0.
.
. 0

. . .
. . .

.

.

. Pk+2,k+1 Pk+2,k+2 0 · · · · · · 0 0
. . .

. . . 0.
.
.

.

.

.
. . .

. . .
.
.
.

.

.

.
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
.
.
..

.

.
.
.
.

.

.

.
. . . P2k−1,k

.

.

.
. . .

. . .
. . . 0

. . .
. . .

. . . 0

.

.

.

0 · · · · · · · · · 0 P2k,k+1

. . .
. . . · · · P2k,2k 0

. . .
. . . 0 0

0 0 · · · 0 0 0 P2k+1,k+2

. . .
. . . P2k+1,2k

. . . 0
. . . 0 0.

.

.
.
.
.

. . .
.
.
. 0 0 0

. . .
. . .

. . .
. . . 0

.

.

. 0.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

. · · ·
. . .

. . .
. . .

. . .
. . .

. . .
. . .

.

.

..
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

. · · · · · · 0 PT−k+1,2k · · · PT−k+1,T−k+1

. . . 0 0

0

.

.

.
.
.
.

.

.

. 0

.

.

. · · · · · · 0
. . .

. . .
. . .

. . . PT−1,T−1 0

0 0 · · · 0 0 0 · · · · · · 0 0 0 PT,T−k+1 · · · PT,T−1 PTT



where the matrices Pij (i = 1, 2 · · · , 2k − 1, j = 1, 2, · · · , k) are calculated,

respectively, from the multiplication of the ith row and jth column of the matrices

P and P ′ as follows

P11P
′
11 = Ω11, Pk+1,2 = Ωk+1,2(P ′22)−1,

P21 = Ω21(P ′11)−1, Pk+1,3 = (Ωk+1,3 − Pk+1,2P
′
32)(P ′33)−1,

...
...

Pk1 = Ωk1(P ′11)−1, Pk+1,k = (Ωk+1,k − Pk+1,2P
′
k2 − · · ·

− Pk+1,k−1P
′
k−1,k)(P

′
kk)
−1,

...
...

PkkP
′
kk = (Ωk,k − Pk,1P ′k,1 − · · · , P2k−1,k = Ω2k−1,k(P

′
kk)
−1

− Pk,k−1P
′
k,k−1)

(3.19)

and the rest of the matrices Pij (i, j = k+1, k+2, · · · , T ) are computed recursively

from

Ω0 =Ωi,i = Pi,i−k+1P
′
i,i−k+1 + Pi,i−k+2P

′
i,i−k+2 + · · ·+ Pi,iP

′
i,i,

(i = k + 1, k + 2, · · · , T ),

Ω1 =Ωi+1,i = Pi+1,i−k+2P
′
i+1,i−k+2 + Pi+1,i−k+3P

′
i+1,i−k+3 + · · ·+ Pi+1,iP

′
i,i,

(i = k + 1, k + 2, · · · , T − 1),

...
...

...
...

Ωk−1 = Ωi+k−1,i = Pi+k−1,iP
′
i,i,

(i = k + 1, k + 2, · · · , T − k + 1),

(3.20)
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Also, let the nT × 1 vector ε = [ε′1, · · · , ε′T ] be defined as

Pε = ηs, (3.21)

so that

• E[ε] = 0, E[εε′] = InT×nT ,

• E[εt] = 0, E[εtε
′
t] = In×n , (t = 1, . . . , T ),

• E[εtε
′
s] = 0 , (s 6= t; s, t = 1, . . . , T ).

Then, minus twice the logarithm of the likelihood function L (ignoring the

constant) is given by

Ls =
nT∑
i=1

(ε2
i + 2 log pii), (3.22)

where pii is the ith diagonal element of P and the nT elements εi are computed

in T vectors of size n using recursively the following procedure

ε1 =
(
ε11, . . . , ε1n

)′
= P−1

11 η
s
1,

ε2 =
(
ε21, . . . , ε2n

)′
= P−1

22 (ηs2 − P21ε1),

...
...

...

εk =
(
εk1, . . . , εkn

)′
= P−1

k,k (ηsk − Pk,k−1εk−1 − · · · − Pk,1ε1),

εk+1 =
(
εk+1,1, . . . , εk+1,n

)′
= P−1

k+1,k+1(ηsk+1 − Pk+1,kεk − · · · − Pk+1,2ε2),

...
...

...

εT =
(
εT,1, . . . , εT,n

)′
= P−1

T,T (ηsT − PT,T−1εT−1 − · · · − PT,1εT−k+1),

(3.23)

Therefore, the Gaussian estimates (θ̂ and Σ̂) are obtained by optimizing

(3.22) which, as mentioned in Chapter 2, due to fact of taking into account

the sparse nature of Ωs and also the convergence of the sequence of matrices

P̄t = (Ptt, Pt,t−1, · · · , Pt,t−k+1) (t = k + 1, k + 2, · · · , T ), is computationally more

efficient.

The optimization procedure follows closely the set of steps outlined in

Chapter 2 and in our context they can be summarized as follows
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(i) Compute A and Σ using the specified forms of the functions defining their

elements.

(ii) Given the specific representations of the matrices U , H, V and Σ compute

(see Appendix C for details) eH together with Ωtj (t = 1, · · · , 2k − 1, j =

0, · · · , k− 1) and Ωj (j = 0, · · · , k− 1), from their specifications as given in

Lemma 3.4.1.

(iii) Given these numerical representations, compute the Cholesky factorization

of the matrix Ωs (the matrix P ) following recursively the steps on the set of

equations following (3.18).

(iv) For the minimization of Ls, with the data and allowing the model’s

parameters to vary, obtain a ε recursively as in (3.23).

(v) Set P and this new ε into (3.22) and calculate Ls.

(vi) Repeat steps (iv) and (v) until a minimum is achieved and take those θ̂ and

Σ̂ as the elements that minimize Ls.

3.4.2 Discrete Time Disturbances for Flow Variables

For flow variables, contrary than with stocks, as the general form of the

discrete time disturbance vector ηft , given in Lemmas 3.3.2 and 3.3.4, is a function

of vft and involves now double integrals of ζ∗t , its autocovariance properties not

only depend on those of ζ∗t , but also on those of vft , as a result, before the actual

derivations, additional simplifications, which involve reductions of the double

integrals, are needed. Of course, similarly than with stocks, for the computations,

we also take into account our particular representation of eAt.

The expressions of vft , given by the equations following Lemmas 3.3.2 and

3.3.4, can be written as

vf1 =

∫ 1

0

∫ r

0

e(r−s)Aζ∗(ds)dr,

vft =

∫ t

t−1

∫ r

r−1

e(r−s)Aζ∗(ds)dr.

(3.24)

Then, using Bergstrom [1997], McCrorie [2000] and Chambers [1999], the
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double integral in (3.24) can be divided into two single integrals using the following

interchange of the orders of integration.

vf1 =

∫ 1

0

[ ∫ 1

s

e(r−s)Adr
]
ζ∗(ds),

vft =

∫ t

t−1

[ ∫ t

s

e(r−s)Adr
]
ζ∗(ds) +

∫ t−1

t−2

[ ∫ s+1

t−1

e(r−s)Adr
]
ζ∗(ds).

(3.25)

Finally, using our particular representation of eAt as given in (C.2), it is

possible to analytically compute (see Appendix D for details) the integrals in

square brackets of (3.25) and reduced them to single integrals as follows

vf1 =

∫ 1

0

{
(1− s)(Ink − UH−1V ′) + UH−2

[
e(1−s)H − Ink−n2

]
V ′
}
ζ∗(ds),

=

∫ 1

0

φ(1− s)ζ∗(ds),

vft =

∫ t

t−1

{
(t− s)(Ink − UH−1V ′) + UH−2

[
e(t−s)H − Ink−n2

]
V ′
}
ζ∗(ds)

+

∫ t−1

t−2

{
(s− t+ 2)(Ink − UH−1V ′) + UH−2

[
eH − e(t−s−1)H

]
V ′
}
ζ∗(ds),

=

∫ t

t−1

φ(t− s)ζ∗(ds) +

∫ t−1

t−2

[
φ(1)− φ(t− s− 1)

]
ζ∗(ds),

(3.26)

where φ(s) = (s)(Ink − UH−1V ′) + UH−2
[
esH − Ink−n2

]
V ′.

Thus, as vft involves now only single integrals, the autocovariances of ηft can

be derived by using a generalization of the procedure outlined before in the stock

variables case and depend only on those of ζ∗(dt). The precise form and their

derivation are given below in Lemma 3.4.1.

Lemma 3.4.2 (Moving average representation of ηft ).

Following the assumptions of ζ(dt), the moving average representation of the

discrete time disturbance vectors ηf1 , η
f
2 , · · · , η

f
T are given by

ηft =
t−1∑
i=0

P f
i ξt−i, t = 1, · · · , k,

ηft =
k∑
i=0

Rf
i ξt−i, t = k + 1, · · · , T,

(3.27)
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where

P f
0 =

[
S1 0

]
, P f

1 =
[
C12S2 S1

]
,

P f
i =

[
C12C

i−1
22 S2 C12C

i−2
22 S2

]
, i = 2, · · · , t− 1,

Rf
0 =

[
S1 0

]
, Rf

1 =
[
C12(M11S1 +M2S2) S1

]
,

Rf
i =

[
C12(M1iS1 +Mi+1S2) C12(M1,i−1S1 +MiS2)

]
, i = 2, · · · , k − 1,

Rf
k =

[
0 C12(M1,k−1S1 +MkS2)

]
,

M = [M1 M2 · · · Mk],

M1 = [M11 M12 · · · M1,k−1],

ξt =
[
(vfa,t)

′ (vfb,t)
′
]′
, t = 1, · · · , T,

vfa,t =

∫ t

t−1

Ξ1(t− s)ζ∗(ds), t = 1, · · · , T, Ξ1(s) = φ(s),

vfb,t =

∫ t

t−1

Ξ2(t− s)ζ∗(ds), t = 1, · · · , T, Ξ2(s) = φ(1)− φ(s).

Also, if we define the nT × 1 vector ηf = [(ηf1 )′, (ηf2 )′, · · · , (ηfT )′]′, then, its

autocovariance representation is given by

Ωf = E[ηf (ηf )′], (3.28)

where

E[ηft (ηft−j)
′] = Ωt,t−j =

t−1∑
i=j

P f
i Ωξ(P

f
i−j)

′, t = 1, · · · , k, j = 0, · · · , t− 1,

E[ηft (ηft−j)
′] = Ωt,t−j =

k∑
i=j

Rf
i Ωξ(P

f
i−j)

′, t = k + 1, · · · , 2k, j = t− k, · · · , k,

E[ηft (ηft−j)
′] = Ωj =

k∑
i=j

Rf
i Ωξ(R

f
i−j)

′, t = k + 1 + j, · · · , T, j = 0, · · · , k,

E[ηft (ηft−j)
′] = 0, t = k + 2, · · · , T, j > k,

and

Ωξ = E[ξtξ
′
t] =


∫ 1

0

Ξ1(s)Σ∗Ξ1(s)′ds

∫ 1

0

Ξ1(s)Σ∗Ξ2(s)′ds∫ 1

0

Ξ2(s)Σ∗Ξ1(s)′ds

∫ 1

0

Ξ2(s)Σ∗Ξ2(s)′ds

 .
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Proof. See Appendix D. �

Differently than with stocks, Lemma 3.4.2 shows that the discrete time

disturbances ηft follow now a moving average process of order k and, more

importantly, it also shows that the autocovariances of ηft depend on the covariance

matrix Ωξ of ξt.

For estimation, with Ωf as in the Lemma and assuming that ηft is normally

distributed, the logarithm of the Gaussian likelihood function can be written as

L(θ,Σ) = −nT
2

ln(2π)− 1

2
ln(Ωf )− 1

2
(ηf )′(Ωf )−1ηf (3.29)

where θ as well as Σ are specified as before.

In here, as mentioned before, getting our Gaussian estimates through the

direct optimization of L is not convenient and similarly, an alternative procedure

is required. This procedure is a mirror image of the one outlined above with the

difference of considering instead a moving average representation of order k in

the discrete time disturbances, as a result, the computationally efficient Cholesky

factorization, matrix P , of Ωf is given by

P =



P11 0 · · · · · · 0 0 · · · · · · 0 0 0 0 · · · 0 0

P21 P22 · · ·
. . .

.

.

. 0 0
. . .

. . . 0

.

.

.
.
.
.

. . .
.
.
. 0.

.

.
. . .

. . .
. . .

.

.

.
.
.
.

. . .
. . .

. . .
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

Pk−1,1 · · · · · · Pk−1,k−1

.

.

.
.
.
.

. . .
. . .

. . .
.
.
. 0

.

.

.
.
.
.

.

.

. 0

Pk1 Pk2 · · · · · · Pkk 0 · · · · · · 0 0 0 0 · · · 0 0

Pk+1,1 Pk+1,2 · · · · · · Pk+1,k Pk+1,k+1 0 · · · 0 0 0 0 · · · 0 0

0 Pk+2,2

. . .
. . .

.

.

. Pk+2,k+1 Pk+2,k+2 0 · · · · · · 0 0
. . .

. . . 0.
.
.

.

.

.
. . .

. . .
.
.
.

.

.

.
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
.
.
..

.

.
.
.
.

.

.

.
. . . P2k−1,k

.

.

.
. . .

. . .
. . . 0

. . .
. . .

. . . 0

.

.

.

0 · · · · · · 0 P2k,k P2k,k+1

. . .
. . . · · · P2k,2k 0

. . .
. . . 0 0

0 0 · · · 0 0 P2k+1,k+1 P2k+1,k+2

. . .
. . . P2k+1,2k

. . . 0
. . . 0 0.

.

.
.
.
.

. . .
.
.
. 0 0 P2k+2,k+2

. . .
. . .

. . .
. . .

. . . 0

.

.

. 0.
.
.

.

.

.
. . .

.

.

. 0 0 0
. . .

. . .
. . .

. . . 0

.

.

. 0.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

. · · ·
. . . PT−k,2k PT−k,T−k

. . .
. . .

.

.

.

0

.

.

.
.
.
.

.

.

. 0

.

.

. · · · · · · 0
. . .

. . .
. . .

. . . PT−1,T−1 0

0 0 · · · 0 0 0 · · · · · · 0 0 0 PT,T−k · · · PT,T−1 PTT



where the matrices Pij (i, j = 1, 2, · · · , T ) are calculated recursively using similar

systems as outlined in (3.19) and (3.20).

At the end, the Gaussian estimates (θ̂ and Σ̂) are obtained by optimizing

Lf =
nT∑
i=1

(ε2
i + 2 log pii), (3.30)
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where pii as well as the nT elements of εi are computed similarly than those in

equation (3.22).

This likelihood function, for the reasons outlined above, is also computa-

tionally more efficient and its optimization procedure, as expected, is similarly

summarized in the set of steps described in the optimization of (3.22).



Chapter 3. Estimation of Higher Order Cointegrated Systems 70

3.5 Simulation Evidence

In this section, as an application of all the results outlined before, through the

use of some simulations, we evaluate the performance of our estimation procedure

for cointegrated systems in continuous time. On top of that, with the aim of

measuring the costs, if there are any, of ignoring aggregation in the specification,

we compare our estimates with the ones we would have obtained if Johansen’s

estimation procedure had been applied instead.

For this exercise, we define the system under consideration as a simplification

of (3.1) in which there is only one cointegrating relationship, (1,−b1), contained in

the matrix B and only two speed of adjustment parameters, ģ1 and ģ2, contained

in the matrix Ģ. Also, we set n = 2 so that n1 = n2 = 1 and we fix k = 2, y(0) = 0,

a = b = 0, the elementes of the matrix A1 as A1,12 = A1,21 = 0, A1,11 = x and

A1,22 = w, therefore, using lemmas 3.3.1 and 3.3.2, the exact discrete time VECMs

for estimation are given by

∆yst = Πyst−1 + Γ1∆yst−1 + ηst , t = 3, · · · , T,

∆yft = Πyft−1 + Γ1∆yft−1 + ηft , t = 3, · · · , T,
(3.31)

where Π = F1 + F2 − I = KB′ and Γ1 = −F2, with

F1 = S1e
AS ′1 + (S1e

AS ′2)(S2e
AS ′2)(S1e

AS ′2)−1, S1 =
(
I2 02

)
,

F2 = −(S1e
AS ′2)(S2e

AS ′2)(S1e
AS ′2)−1(S1e

AS ′1) + (S1e
AS ′2)(S2e

AS ′1), S2 =
(

02 I2

)
,

eA =
(
I4 + UH−1(eH − I3)V ′

)
,

K = (k1, k2)′, B′ =(1,−b1),

,

A = UV ′ =


0 0 1 0

0 0 0 1

ģ1 −ģ1b1 x 0

ģ2 −ģ2b1 0 w

 H = V ′U =


0 1 −b1

ģ1 x 0

ģ2 0 w
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V ′ =


1 −b1 0 0

0 0 1 0

0 0 0 1

 U =


0 1 0

0 0 1

ģ1 x 0

ģ2 0 w


As y(0) = 0, the respective supplementary equations, at the same time, are

completely driven by the discrete time disturbance vectors ηst and ηft (t = 1, 2),

respectively, hence, using lemmas 3.3.3 and 3.3.4 they are summarized as follows

ys1 = ηs1,

∆ys2 = Λ2(θ)ys1 + ηs2,

yf1 = ηf1 ,

∆yf2 = Λ2(θ)yf1 + ηf2 ,

(3.32)

where Λ2 = J1 − I and J1 = C11.

For the discrete time specification, we also define the system under

consideration as the following VECM

∆yt = γλ′yt−1 + Γd1∆yt−1 + ηt (3.33)

where γ contains the two speed of adjustment parameters (γ1 and γ2) of the

system, λ′ the cointegrating relationship (1,−λ1) and ηt is assumed to be iid.

At the end, for the comparison, if we want to measure how accurate the

discrete time estimates are, in terms of our continuous time specification, all we

need to compute are the implied estimated parameters, which, equating (3.31)

and (3.33), are given by

γ1 = k1, γ2 = k2,

λ1 = b1, Γd1 = Γ1.
(3.34)

In our simulated data, we specify (3.31) and (3.32) as the data generating

process (DGP) and consider two different parametric designs. For simplicity

and due to its superconsistency (see equation 2.34), in all designs, we normalize

the cointegrating parameter to be 1 so that the cointegrating relationship is
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given by y1t − y2t and as a result, in this application, we stress mainly the

implications of dynamics over the performance of estimation in the system. The

exact representations are as follows

Design 1: θ0 = [ģ1, ģ2, b1,Γ11,Γ12,Γ21,Γ22]

= [1, 2, 1,−3, 0, 0,−3],

Design 2: θ0 = [ģ1, ģ2, b1,Γ11,Γ12,Γ21,Γ22]

= [−1,−2, 1,−2, 0, 0,−8],

(3.35)

Γ1 =

 Γ1,11 Γ1,12

Γ1,21 Γ1,22


Note that in order to provide as much generality as possible in the description

of the results, the chosen values in the parametric designs were obtained as

representative elements of the feasible set of values in the parameter space, then,

the systems that are generated by them are stable and feasible, as a result, both

Johansen’s estimation procedures and ours can be applied. Also, for efficiency

in optimization, we are assuming that Γ11 = cΓ21 (c constant) so that only one

parameter of this matrix is needed.

At the same time, the covariance matrix Σ is taken as follows

Σ =

 σ1 σ3

σ3 σ2

 =

 1 ρ

ρ 1

 ,
and results are reported for ρ = −0.5 and ρ = 0.5 so that there is positive

and negative correlation in the system. Note that in estimation, Σ is ensured to

be positive definite by computing, instead, estimates of the the lower triangular

matrix R, such that, Σ = RR′; these matrices are related as follows

r1 = 1, r2 = ρ, r3 =
√

1− ρ2.

Considering all those specifications, the estimates of our cointegrated

continuous time system (θ̂ and Σ̂), then, are obtained through the application

of the methodologies described in subsections 3.4.1 and 3.4.2 to the simulated

data.
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For the comparison, the implied true parametric designs, which are

calculated using (3.35) on (3.34), are given by

Design 1: θ0
j = [γ1, γ2, λ1,Γ

d
11,Γ

d
12,Γ

d
21,Γ

d
22]

= [0.294, 0.588, 1.0, 0.05, 0, 0, 0.05],

Design 2: θ0
j = [γ1, γ2, λ1,Γ

d
11,Γ

d
12,Γ

d
21,Γ

d
22]

= [−0.436,−0.251, 1.0, 0.141,−0.103,−0.068,−0.002],

(3.36)

Γd1 =

 Γd1,11 Γd1,12

Γd1,21 Γd1,22


and the implied estimated parameter vector θ̂j is obtained by applying Johansen’s

methodology to the same simulated data as if it was generated by the VECM

representation of order 1 given in (3.33).

Finally, performance of the method is analysed by measuring accuracy in

estimation, which for our purposes, is defined as closeness between the estimated

parameters θ̂ as well as the θ̂j and the true values in (3.35) and (3.36). The

procedure is described below, and as we have two different types of data, the first

subsection focuses on the case when the variables of interest are stocks and the

second when they are flows.

3.5.1 VECM Simulations With Stocks

For stocks, the data generating process, which is used to generate ten thousand

simulations of 50, 100 and 200 sample sizes, follows a VECM representation that

can be written as

ys1 = ηs1,

∆ys2 = Λ2(θ)ys1 + ηs2, ∆ys1t

∆ys2t

 =

 k1

k2

 (ys1,t−1 − b1y
s
2,t−1) + Γ1∆yst−1 + ηst ,

(3.37)

where ηst follows a moving average representation or order 1 as given in Lemma

3.4.1 and ηs, in that same Lemma, is assumed to be N(0,Ωs).
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The true parametric designs, are given as before and for estimation, we

apply our methodology as described in subsection 3.4.1 to the generated data

as well as Johansen’s to it as if it was generated by the VECM(1) specification

given in (3.33). At the same time, as there is a moving average component in

our specification that is being ignored by Johansen’s, we also apply Johansen’s

methodology to our generated data as if it was specified through a VECM

representation of order 2 given by

∆yt = γλ′yt−1 + Γd1∆yt−1 + Γd2∆yt−2 + st (3.38)

where st is assumer to be iid, γ, as before, is the matrix that includes the two

speed of adjustment parameters (γ1 and γ2), λ′ contains the unique cointegrating

relationship (1, −λ1), Γd1 is the matrix of coefficients that relates ∆yt with its

lagged value and Γd2 does it with the second order lagged value.

For comparison, finally, we consider the relevant parameter estimates of this

system and measure how close they are with the respective true parameter values

in (3.36).

Results have been grouped and appear in tables 3.1, 3.2, 3.3 and 3.4 so

that each design is explained in two tables with the first focusing in the results

when the correlation is positive and the second when it is negative. Each table is

showing the true value, the bias and the standard error of each of the parameters

for the 3 sample sizes in the exercise. Also, for better understanding, each table is

divided in three sections; the upper part displays the results obtained through the

application of our methodology to the simulated data, the middle part displays

them when instead Johansen’s methodology is applied to the same simulated

data considering a VECM(1) specification and finally, the lower part presents the

results when Johansen’s is applied to the same simulated data but now considering

a VECM(2) specification. It is important to notice, for the lower part of these

tables, that the implied true values for the matrix of coefficients Γd2 are not known,

as a result, we cannot report the bias, instead, we are reporting only the mean

value and the standard error of the estimates of these particular parameters.

As we can see from the tables, in almost all the cases and for the two

parametric designs, our methodology shows superiority in estimation against
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Johansen’s with smaller bias in the estimates and improvements as the sample size

increases, however, they are concentrated about a mean with greater dispersion.

Additionally, as expected, the estimates of the long run equilibrium parameter

of the model in all the parametric designs show the smallest bias and standard

deviation. For the change in the correlation from positive to negative and

paying attention to the estimates we obtained by applying Johansen’s VECM(1)

methodology and ours, we see an important reduction in their standard errors.

Considering Johansen’s VECM(1) specification (the middle part of the

tables) and focusing only on the dynamics of the system (γ1 and γ2), we see

a persistent bias in estimation with almost no improvement as the sample size

increases, consequently, they clearly reflect the cost of ignoring aggregation in the

specification.

For Johansen’s VECM(2) specification (the lower part of the tables),

additionally, we see that the inclusion of an additional lag into the specification not

only does not improves the estimates, but in some cases, it makes them worse.

As a result, we cannot claim that the inclusion of an additional lag captures

better the moving average component in our continuous time model, however,

it is important to notice that the true reported values in the tables may not be

precisely measured, hence, the previous claim has to be taken with care.
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Table 3.1 Design 1 estimates for stock variables (positive correlation)

Sample size Sample size

Continuous time estimates 50 100 200 50 100 200

Bias Standard Error

Parameter True value

ģ1 1 0.00990 0.00913 0.00667 0.55593 0.35968 0.24651

ģ2 2 -0.03531 -0.02164 -0.01428 0.58699 0.36453 0.24513

b1 1 0.00134 0.00045 0.00013 0.05568 0.02072 0.00953

Γ1,11 -3 0.05091 0.03589 0.02802 0.49238 0.32557 0.22336

ρ 0.5 -0.00697 -0.00269 -0.00046 0.14711 0.09981 0.06710

σ2 1 -0.04719 -0.02360 -0.01516 0.04644 0.02113 0.00976

Johansen’s VECM(1) estimates

γ1 0.294 -0.09554 -0.07525 -0.07249 0.25376 0.16725 0.11475

γ2 0.588 0.29791 0.28615 0.27731 0.19432 0.12748 0.08728

λ1 1 -0.01106 -0.00502 -0.00228 0.05469 0.02107 0.00975

Γd
1,12 0.05 -0.34742 -0.36342 -0.36600 0.23105 0.15459 0.10743

Γd
1,12 0 0.02294 0.03182 0.03249 0.20247 0.13430 0.09515

Γd
1,21 0.05 -0.33385 -0.32114 -0.31404 0.19305 0.13131 0.09038

Γd
1,22 0 -0.04375 -0.05873 -0.06758 0.17043 0.11217 0.07769

Johansen’s VECM(2) estimates

γ1 0.294 0.02468 0.03437 0.03110 0.33084 0.21305 0.14441

γ2 0.588 0.42133 0.40015 0.38485 0.25757 0.16640 0.11391

λ1 1 -0.00566 -0.00262 -0.00113 0.09056 0.02133 0.00968

Γd
1,11 0.05 -0.47263 -0.48005 -0.47686 0.32398 0.21243 0.14548

Γd
1,12 0 0.10858 0.11195 0.10854 0.26861 0.17394 0.12202

Γd
1,21 0.05 -0.46222 -0.44059 -0.42651 0.25881 0.17227 0.11863

Γd
1,22 0 0.03158 0.01031 -0.00335 0.22352 0.14592 0.10059

Parameter Mean of the estimated parameter

Γd
2,11 -0.14247 -0.13329 -0.12726 0.24839 0.16552 0.11254

Γd
2,12 0.01772 0.02014 0.02085 0.20847 0.13785 0.09418

Γd
2,21 -0.14282 -0.12954 -0.12007 0.20637 0.13733 0.09490

Γd
2,22 -0.02278 -0.02757 -0.03014 0.17583 0.11422 0.07839
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Table 3.2 Design 1 estimates for stock variables (negative correlation)

Sample size Sample size

Continuous time estimates 50 100 200 50 100 200

Bias Standard Error

Parameter True value

ģ1 1 -0.01583 -0.01207 -0.00781 0.39518 0.27218 0.19660

ģ2 2 -0.05923 -0.04106 -0.02956 0.41201 0.26678 0.18195

b1 1 0.00142 0.00042 0.00016 0.02105 0.00904 0.00416

Γ1,11 -3 0.08201 0.05448 0.03917 0.56018 0.37631 0.26120

ρ -0.5 -0.01769 -0.00704 0.00126 0.15234 0.10473 0.07411

σ2 1 -0.05435 -0.03242 -0.02517 0.05620 0.02645 0.01311

Johansen’s VECM(1) estimates

γ1 0.294 -0.24455 -0.22836 -0.22221 0.22493 0.15273 0.10566

γ2 0.588 0.31927 0.31252 0.30991 0.10956 0.07183 0.05039

λ1 1 -0.00501 -0.00228 -0.00109 0.02212 0.00966 0.00438

Γd
1,11 0.05 -0.11417 -0.13214 -0.13729 0.29016 0.19668 0.13663

Γd
1,12 0 0.08863 0.09585 0.09947 0.14749 0.10017 0.07117

Γd
1,21 0.05 -0.38350 -0.37345 -0.37025 0.14498 0.09688 0.06852

Γd
1,22 0 -0.07698 -0.08368 -0.08655 0.07556 0.05094 0.03464

Johansen’s VECM(2) estimates

γ1 0.294 -0.30662 -0.29581 -0.29829 0.36073 0.23803 0.16195

γ2 0.588 0.47925 0.46642 0.45921 0.17355 0.11441 0.07908

λ1 1 -0.00269 -0.00125 -0.00064 0.02288 0.00954 0.00428

Γd
1,11 0.05 -0.05387 -0.06636 -0.06300 0.41839 0.27811 0.18873

Γd
1,12 0 0.05692 0.06222 0.06071 0.22978 0.15416 0.10892

Γd
1,21 0.05 -0.54799 -0.53271 -0.52484 0.20275 0.13526 0.09400

Γd
1,22 0 0.02159 0.01134 0.00536 0.12151 0.08195 0.05568

Parameter Mean of the estimated parameter

Γd
2,11 0.06502 0.06959 0.07838 0.31212 0.21138 0.14460

Γd
2,12 0.06253 0.06427 0.06749 0.15195 0.10146 0.07002

Γd
2,21 -0.18261 -0.17487 -0.16844 0.15581 0.10535 0.07260

Γd
2,22 -0.04874 -0.04487 -0.04399 0.07919 0.05242 0.03636
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Table 3.3 Design 2 estimates for stock variables (positive correlation)

Sample size Sample size

Continuous time estimates 50 100 200 50 100 200

Bias Standard Error

Parameter True value

ģ1 -1 -0.03205 -0.01116 -0.00513 0.23602 0.14776 0.09864

ģ2 -2 0.04407 0.03276 0.02806 0.45600 0.28684 0.18938

b1 1 0.00274 0.00006 -0.00001 0.06866 0.02758 0.01266

Γ1,11 -2 0.07511 0.04392 0.03032 0.32241 0.21507 0.14652

ρ 0.5 -0.00578 -0.00325 -0.00205 0.14827 0.10205 0.06947

σ2 1 -0.08505 -0.04356 -0.02674 0.04382 0.02084 0.00987

Johansen’s VECM(1) estimates

γ1 -0.437 -0.32491 -0.29901 -0.29062 0.16718 0.10921 0.07645

γ2 -0.251 -0.07503 -0.07219 -0.07134 0.06100 0.03862 0.02650

λ1 1 0.02093 0.00986 0.00441 0.07309 0.02970 0.01351

Γd
1,11 0.141 -0.08824 -0.10770 -0.11464 0.16829 0.11233 0.07955

Γd
1,12 -0.103 -0.43379 -0.42063 -0.41685 0.44903 0.30089 0.21372

Γd
1,21 -0.068 0.09285 0.09270 0.09222 0.06667 0.04495 0.03112

Γd
1,22 -0.002 -0.42835 -0.42861 -0.42894 0.15574 0.10702 0.07485

Johansen’s VECM(2) estimates

γ1 -0.437 -0.43902 -0.40865 -0.39636 0.22926 0.14996 0.10191

γ2 -0.251 -0.14058 -0.13334 -0.13032 0.08966 0.05699 0.03930

λ1 1 0.00926 0.00462 0.00207 0.07574 0.02910 0.01302

Γd
1,11 0.141 0.01160 -0.01404 -0.02498 0.22118 0.14628 0.10092

Γd
1,12 -0.103 -0.69037 -0.66320 -0.65087 0.54082 0.35788 0.24753

Γd
1,21 -0.068 0.14984 0.14489 0.14229 0.08697 0.05617 0.03905

Γd
1,22 -0.002 -0.56827 -0.56069 -0.55713 0.20479 0.13651 0.09543

Parameter Mean of the estimated parameter

Γd
1,11 0.02926 0.02117 0.01635 0.17140 0.11371 0.07799

Γd
2,12 -0.37970 -0.35394 -0.33524 0.48865 0.32767 0.22270

Γd
2,21 0.01968 0.01362 0.01142 0.06841 0.04507 0.03105

Γd
2,22 -0.21319 -0.19535 -0.18593 0.18158 0.12206 0.08538
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Table 3.4 Design 2 estimates for stock variables (negative correlation)

Sample size Sample size

Continuous time estimates 50 100 200 50 100 200

Bias Standard Error

Parameter True value

ģ1 -1 0.00584 0.00570 0.00531 0.17369 0.11219 0.07584

ģ2 -2 0.03748 0.02895 0.02142 0.40393 0.26895 0.19021

b1 1 -0.00138 -0.00059 -0.00015 0.02943 0.01208 0.00566

Γ1,11 -2 0.04703 0.03161 0.02141 0.27756 0.18476 0.12857

ρ -0.5 -0.00191 -0.00164 0.00161 0.14287 0.09846 0.06869

σ2 1 -0.07890 -0.04155 -0.02434 0.03843 0.01822 0.00890

Johansen’s VECM(1) estimates

γ1 -0.437 -0.33063 -0.31778 -0.31414 0.16054 0.10668 0.07523

γ2 -0.251 0.01812 0.01295 0.01122 0.10084 0.06707 0.04678

λ1 1 0.00417 0.00214 0.00095 0.03086 0.01259 0.00585

Γd
1,11 0.141 -0.16853 -0.17980 -0.18385 0.10333 0.07021 0.04915

Γd
1,12 -0.103 -0.48063 -0.47301 -0.47141 0.44391 0.29705 0.20960

Γd
1,21 -0.068 0.06972 0.07622 0.07820 0.06375 0.04301 0.03010

Γd
1,22 -0.002 -0.26308 -0.26625 -0.26705 0.26219 0.17582 0.12407

Johansen’s VECM(2) estimates

γ1 -0.437 -0.50976 -0.49318 -0.48542 0.26788 0.17778 0.12069

γ2 -0.251 -0.00923 -0.00663 -0.00568 0.16854 0.11166 0.07668

λ1 1 0.00204 0.00118 0.00052 0.03168 0.01253 0.00576

Γd
1,11 0.141 -0.05227 -0.06709 -0.07430 0.18061 0.12080 0.08291

Γd
1,12 -0.103 -0.75989 -0.74527 -0.73745 0.55758 0.36866 0.25347

Γd
1,21 -0.068 0.08895 0.09003 0.09014 0.10857 0.07233 0.05005

Γd
1,22 -0.002 -0.30286 -0.29519 -0.29222 0.34276 0.22659 0.15708

Parameter Mean of the estimated parameter

Γd
2,11 -0.02264 -0.02340 -0.02339 0.10588 0.07122 0.04920

Γd
2,12 -0.41608 -0.40323 -0.39098 0.48917 0.32821 0.22188

Γd
2,21 0.00730 0.00648 0.00679 0.06394 0.04391 0.03043

Γd
2,22 -0.06160 -0.04400 -0.03788 0.29537 0.19975 0.13698
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3.5.2 VECM Simulations With Flows

For flows, similarly than with stocks, the data generating process, which is

used to generate ten thousand simulations of 50, 100 and 200 sample sizes, follows

a VECM representation that can be written as

yf1 = ηf1 ,

∆yf2 = Λ2(θ)yf1 + ηf2 , ∆yf1t

∆yf2t

 =

 k1

k2

 (yf1,t−1 − b1y
f
2,t−1) + Γ1∆yft−1 + ηft ,

(3.39)

where ηft follows a moving average representation or order 2 as given in Lemma

3.4.2 and ηf , in that same Lemma, is assumed to be N(0,Ωf ).

The true parametric designs are given as before and for estimation, we apply

our methodology as described in subsection 3.4.2 to the generated data as well

as Johansen’s to it as if it was generated by the VECM(1) specification given

in (3.33). At the same time, for the reasons outlined before, we also apply

Johansen’s methodology to our generated data as if it was specified through a

VECM representation of order 3 given by

∆yt = γλ′yt−1 + Γd1∆yt−1 + Γd2∆yt−2 + Γd3∆yt−3 + st (3.40)

where all matrices and components are similarly described as above.

For comparison, finally, we consider the relevant parameter estimates of this

system and measure how close they are with the respective true parameter values

in (3.36).

Similarly than in the stock variable case, results have been grouped and

appear in tables 3.5, 3.6, 3.7 and 3.8 so that all the designs and all the correlations

are explained. As before, each table shows the true value, the bias and the

standard error. For better understanding of the results, each table is analogously

divided in three sections with a lower part that reports only the mean value and

the standard error of the estimates of Γd2 and Γd3.

Looking at the tables, in general, a similar picture of the results outlined in

the previous section emerges; for all the parameters and in all the designs, our
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methodology shows superiority in estimation against Johansen’s, with smaller

bias and improvements as the sample size increases. Similarly, Johansen’s

VECM(1) estimates show a persistent bias with no improvements as the sample

size increases.

Also, looking at Johansen’s VECM(3) parameters, we see that the inclusion

of two additional lags into the specification does not improves the estimates.
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Table 3.5 Design 1 estimates for flow variables (positive correlation)

Sample size Sample size

Continuous time estimates 50 100 200 50 100 200

Bias Standard Error

Parameter True value

ģ1 1 -0.00815 -0.00803 -0.00081 0.46657 0.29346 0.20024

ģ2 2 0.16410 0.06564 0.00881 0.48858 0.30117 0.20368

b1 1 0.00407 0.00075 0.00003 0.05716 0.02370 0.01159

Γ1,11 -3 -0.12608 -0.04951 -0.00219 0.46667 0.30418 0.20983

ρ 0.5 -0.01146 -0.00532 -0.00166 0.13321 0.09244 0.06379

σ2 1 -0.02970 -0.01765 -0.01582 0.03405 0.01604 0.00765

Johansen’s VECM(1) estimates

γ1 0.294 -0.19534 -0.19328 -0.19598 0.12378 0.07460 0.04845

γ2 0.588 -0.24790 -0.27190 -0.28561 0.10619 0.06545 0.04313

λ1 1 -0.01137 -0.00512 -0.00210 0.09245 0.02796 0.01223

Γd
1,11 0.05 0.72401 0.74631 0.75772 0.18951 0.12286 0.08280

Γd
1,12 0 -0.23331 -0.23769 -0.23970 0.16057 0.10525 0.07277

Γd
1,21 0.05 0.19793 0.22581 0.24056 0.19922 0.13214 0.09098

Γd
1,22 0 0.28409 0.27781 0.27506 0.15040 0.09881 0.06776

Johansen’s VECM(3) estimates

γ1 0.294 -0.12260 -0.13103 -0.13887 0.17485 0.09843 0.06204

γ2 0.588 -0.20662 -0.24466 -0.26436 0.15582 0.08688 0.05576

λ1 1 -0.00853 -0.00115 -0.00042 0.07688 0.04785 0.01258

Γd
1,11 0.05 0.78813 0.83513 0.85745 0.25104 0.15785 0.10468

Γd
1,12 0 -0.13756 -0.14970 -0.15600 0.20791 0.13314 0.09090

Γd
1,21 0.05 0.17424 0.21623 0.23645 0.23097 0.14325 0.09696

Γd
1,22 0 0.47049 0.47004 0.46836 0.18825 0.12119 0.08285

Parameter Mean of the estimated parameter

Γd
2,11 -0.41316 -0.42336 -0.42889 0.24184 0.15945 0.11009

Γd
2,12 0.07776 0.07737 0.07831 0.21974 0.14269 0.09995

Γd
2,21 -0.16739 -0.16232 -0.15845 0.22367 0.14979 0.10366

Γd
2,22 -0.16975 -0.19008 -0.19914 0.19211 0.12726 0.08798

Γd
3,11 0.11220 0.12408 0.13323 0.24791 0.16302 0.11171

Γd
3,12 -0.03621 -0.03579 -0.03880 0.18371 0.11884 0.08114

Γd
3,21 0.00236 0.02981 0.04448 0.23027 0.14996 0.10182

Γd
3,22 0.06264 0.05681 0.05143 0.17232 0.10913 0.07416
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Table 3.6 Design 1 estimates for flow variables (negative correlation)

Sample size Sample size

Continuous time estimates 50 100 200 50 100 200

Bias Standard Error

Parameter True value

ģ1 1 -0.01974 -0.01767 -0.01595 0.322717 0.211658 0.149154

ģ2 2 0.120239 0.040049 -0.00435 0.350868 0.225176 0.157702

b1 1 0.000432 0.000136 2.85E-06 0.024264 0.010464 0.004884

Γ1,11 -3 -0.09527 -0.02392 0.022929 0.466546 0.305166 0.212509

ρ -0.5 -0.0096 0.001111 0.010321 0.134515 0.094515 0.073658

σ2 1 -0.02262 -0.01734 -0.0167 0.035504 0.016857 0.009399

Johansen’s VECM(1) estimates

γ1 0.294 -0.19564 -0.19303 -0.19552 0.165902 0.104053 0.068729

γ2 0.588 -0.2509 -0.27616 -0.28673 0.120085 0.076759 0.051074

λ1 1 -0.00425 -0.00156 -0.00062 0.037351 0.011827 0.005069

Γd
1,11 0.05 0.727211 0.744228 0.756423 0.280306 0.17729 0.116838

Γd
1,12 0 -0.24005 -0.23997 -0.2402 0.090226 0.059502 0.041292

Γd
1,21 0.05 0.195626 0.226388 0.239487 0.220618 0.144509 0.097024

Γd
1,22 0 0.271093 0.272527 0.273356 0.066212 0.043149 0.029412

Johansen’s VECM(3) estimates

γ1 0.294 -0.11677 -0.12616 -0.13405 0.243996 0.140089 0.089845

γ2 0.588 -0.21224 -0.25295 -0.26934 0.177095 0.103692 0.066322

λ1 1 0.003236 -0.00024 -0.00013 0.042674 0.019973 0.005182

Γd
1,11 0.05 0.77188 0.817266 0.840393 0.359667 0.215289 0.139773

Γd
1,12 0 -0.15067 -0.16033 -0.16622 0.226636 0.145045 0.099403

Γd
1,21 0.05 0.180908 0.226529 0.245348 0.262437 0.159497 0.105271

Γd
1,22 0 0.472515 0.474915 0.476194 0.167358 0.107834 0.074083

Parameter Mean of the estimated parameter

Γd
2,11 -0.39624 -0.40569 -0.40798 0.320506 0.212405 0.147212

Γd
2,12 0.086175 0.0857 0.086925 0.240912 0.15501 0.107252

Γd
2,21 -0.18255 -0.17355 -0.17002 0.247671 0.16166 0.112372

Γd
2,22 -0.17772 -0.19855 -0.2083 0.169023 0.112392 0.07681

Γd
3,11 0.101788 0.114524 0.12079 0.343592 0.222291 0.153595

Γd
3,12 -0.04369 -0.04074 -0.04094 0.114576 0.074117 0.051292

Γd
3,21 0.013289 0.040803 0.052853 0.257374 0.166765 0.113462

Γd
3,22 0.051173 0.051489 0.051315 0.08668 0.055806 0.038389
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Table 3.7 Design 2 estimates for flow variables (positive correlation)

Sample size Sample size

Continuous time estimates 50 100 200 50 100 200

Bias Standard Error

Parameter True value

ģ1 -1 -0.10616 -0.03733 -0.00173 0.28608 0.17456 0.11633

ģ2 -2 -0.10765 -0.01890 0.00667 0.40225 0.25446 0.17687

b1 1 0.00060 -0.00011 0.00005 0.07384 0.03189 0.01527

Γ1,11 -2 -0.08448 -0.01864 0.01324 0.30043 0.20079 0.14114

ρ 0.5 -0.02145 -0.01149 -0.00690 0.13102 0.09086 0.06533

σ2 1 -0.02117 -0.02057 -0.02022 0.03641 0.01750 0.00882

Johansen’s VECM(1) estimates

Parameter True value

γ1 -0.437 0.24452 0.26518 0.27490 0.13159 0.08169 0.05464

γ2 -0.251 0.08682 0.09487 0.09906 0.04125 0.02558 0.01710

λ1 1 0.00037 0.00008 -0.00046 0.07393 0.06662 0.01573

Γd
1,11 0.141 0.23816 0.23075 0.22743 0.15501 0.10186 0.07038

Γd
1,12 -0.103 0.60925 0.64488 0.66244 0.53093 0.34466 0.23552

Γd
1,21 -0.068 -0.08106 -0.08659 -0.08983 0.05782 0.03688 0.02502

Γd
1,22 -0.002 0.44105 0.47737 0.49563 0.16629 0.10821 0.07378

Johansen’s VECM(3) estimates

Parameter True value

γ1 -0.437 0.18701 0.21442 0.22776 0.17949 0.10182 0.06517

γ2 -0.251 0.05872 0.07596 0.08428 0.06692 0.03838 0.02524

λ1 1 0.00204 0.00098 0.00022 0.09299 0.03824 0.01636

Γd
1,11 0.141 0.55330 0.55920 0.55990 0.22971 0.14258 0.09633

Γd
1,12 -0.103 0.27203 0.31165 0.33108 0.56116 0.34895 0.23421

Γd
1,21 -0.068 -0.06848 -0.08562 -0.09433 0.09156 0.05682 0.03894

Γd
1,22 -0.002 0.48415 0.54339 0.57021 0.21575 0.13595 0.09191

Parameter Mean of the estimated parameter

Γd
2,11 -0.32726 -0.34923 -0.36038 0.24471 0.16276 0.11173

Γd
2,12 -0.20423 -0.19095 -0.18450 0.54595 0.36199 0.24710

Γd
2,21 0.07709 0.07284 0.07068 0.09761 0.06398 0.04531

Γd
2,22 -0.22054 -0.20764 -0.20155 0.20323 0.13762 0.09612

Γd
3,11 0.10559 0.10188 0.09893 0.18374 0.11887 0.08102

Γd
3,12 0.07197 0.09198 0.10784 0.52417 0.33593 0.22636

Γd
3,21 -0.01142 -0.01482 -0.01657 0.07719 0.04921 0.03348

Γd
3,22 0.01054 0.02693 0.03678 0.19663 0.12897 0.08931
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Table 3.8 Design 2 estimates for flow variables (negative correlation)

Sample size Sample size

Continuous time estimates 50 100 200 50 100 200

Bias Standard Error

Parameter True value

ģ1 -1 -0.08000 -0.03129 -0.00790 0.22456 0.14499 0.10000

ģ2 -2 -0.02919 0.04446 0.00769 0.36065 0.24342 0.17615

b1 1 -0.00063 -0.00030 -0.00012 0.03371 0.01423 0.00661

Γ1,11 -2 -0.03802 0.01758 0.04784 0.29204 0.19863 0.14390

ρ -0.5 0.00616 0.00644 0.00144 0.13160 0.09104 0.06701

σ2 1 -0.04779 -0.04538 -0.03398 0.03631 0.01738 0.00917

Johansen’s VECM(1) estimates

γ1 -0.437 0.14133 0.16213 0.17437 0.17523 0.11262 0.07645

γ2 -0.251 0.10834 0.11483 0.11766 0.07152 0.04594 0.03105

λ1 1 0.00713 0.00302 0.00129 0.04069 0.01507 0.00683

Γd
1,11 0.141 0.32888 0.32443 0.32178 0.07918 0.05182 0.03588

Γd
1,12 -0.103 0.07459 0.10810 0.13255 0.59987 0.39069 0.26723

Γd
1,21 -0.068 -0.08473 -0.08694 -0.08836 0.03984 0.02621 0.01816

Γd
1,22 -0.002 0.49320 0.52712 0.54240 0.24387 0.15759 0.10649

Johansen’s VECM(3) estimates

γ1 -0.437 0.17146 0.19651 0.20999 0.24731 0.14373 0.09233

γ2 -0.251 0.06372 0.08020 0.08698 0.11626 0.06830 0.04443

λ1 1 0.00230 0.00117 0.00050 0.05659 0.01640 0.00700

Γd
1,11 0.141 0.56700 0.57603 0.57793 0.22157 0.14059 0.09427

Γd
1,12 -0.103 0.14397 0.17715 0.19457 0.60090 0.36943 0.24622

Γd
1,21 -0.068 -0.06776 -0.08024 -0.08618 0.10760 0.06858 0.04570

Γd
1,22 -0.002 0.48912 0.54599 0.56976 0.28491 0.17664 0.11820

Parameter Mean of the estimated parameter

Γd
2,11 -0.35158 -0.37033 -0.38100 0.20719 0.13497 0.09177

Γd
2,12 -0.06005 -0.04671 -0.03765 0.56702 0.37257 0.25515

Γd
2,21 0.06101 0.05798 0.05780 0.10099 0.06685 0.04566

Γd
2,22 -0.20449 -0.19765 -0.19374 0.26421 0.17635 0.12156

Γd
3,11 0.13016 0.12772 0.12673 0.11769 0.07800 0.05279

Γd
3,12 -0.03523 -0.01984 -0.00676 0.58203 0.37388 0.25164

Γd
3,21 -0.01104 -0.01171 -0.01177 0.05972 0.03943 0.02644

Γd
3,22 0.00855 0.02831 0.03462 0.26734 0.17599 0.12136
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3.6 Concluding remarks

In this chapter, as an extension of the analysis we provided before, we

have developed an estimation procedure for cointegrated systems in continuous

time that not only allows for higher order specifications in the system but also

incorporates deterministic components on it.

With this new specification the structure of the chapter is maintained; we

allow the system to be entirely comprised of stock or flow variables, derive, for

each type of data, an exact discrete time model and, with the use of an alternative

exponential matrix factorization, outline the autocovariance representations of the

discrete time disturbances.

At the end, with a simple version of the original cointegrated system and

using some simulated data as well as two different parametric designs, we evaluate

the performance of our estimation procedure by measuring closeness between our

estimated parameters and the true parametric designs. Also, with the aim of

measuring the costs, if there are any, of ignoring aggregation in the specification,

we compare our results with the ones we would have obtained by imposing instead

a discrete time specification (Johansen’s specification) into the system.

In the results, we strengthened the observations we outlined in the previous

Chapter and showed that regardless of the variables being stocks of flows, when

dynamics play an important role in the specification, our estimation procedure is

always superior to Johansen’s with more accurate parameters and improvements

as the sample size increases. In other words, when dynamics play an important

role in the specification, Johansen’s estimates suffer from temporal aggregation

bias.

Also, when Johansen’s methodology was considered, we saw that the

inclusion of additional lags into the specification did not improve the estimates

and in some cases, it even made them worse.
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Supplementary Results

Reduced rank factorization and exponential representation

Given the reduced rank assumptions of our system following (3.1), it can be

shown (see Appendix D for details) that the matrix A can rewritten in terms of

two reduced rank matrices U and V such that

A = UV ′ (C.1)

where V ′ is a (nk − n2) × nk matrix whose rows are the non zero rows of the

reduced row echelon form of A and U is a nk × (nk − n2) matrix whose elements

are known functions of the given parameters in the system.

Then, it can also be shown (see Appendix D for details) that our exponential

matrix etA can be rewritten as

etA = etUV
′
=
∞∑
j=0

(tUV ′)j

j!
= Ink +

UV ′

1!
t+

(UV ′)(UV ′)

2!
t2 + · · · ,

= Ink + UH−1(eHt − Ink−n2)V
′.

(C.2)

where H = V ′U (See Appendix D for details).

Covariance matrix computation.

For the computations of the covariance matrices Ωs and Ωf , we follow the

procedure as outlined in Chapter 1 and reduce the computations to calculate either

the exponential matrix eH or the integral Ψ =
∫ 1

0
UH−1esHV ′Σ∗V esH

′
(H−1)′U ′ds,

87
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which was shown to be further reduced to compute only the following exponential

matrix

$ = exp

 −H V ′ΣV

0 H ′

 =

 $11 $12

0 $22


where, Ψ = UH−1

(
$′22$12

)
(H−1)′U ′ and eH = $′22.

For validation, two different procedures were considered; the truncation

of the infinite series representation of the exponential matrix and the Pade

approximation method.

At the end, as mentioned in Chapter 1, the differences were small enough to

be neglected and, as a result, for computation efficiency, the Pade approximation

approach was applied in the analysis.



Appendix D

Proofs

Proof of (C.1).

Considering the assumptions of our system following (3.1)

A =



0 In 0 · · · 0

0 0 In · · · 0
...

...
...

...

0 0 0 · · · In

A0 A1 A2 · · · Ak−1



=



0n1×n1 0n1×n2 In1×n1 0n1×n2 · · · 0n1×n1 0n1×n2

0n2×n1 0n2×n2 0n2×n1 In2×n2 · · · 0n2×n1 0n2×n2

...
...

...
... . . . ...

...

0n1×n1 0n1×n2 0n1×n1 0n1×n2 · · · In1×n1 0n1×n2

0n2×n1 0n2×n2 0n2×n1 0n2×n2 · · · 0n2×n1 In2×n2

Ģ1 −Ģ1B1 A1,11 A1,12 · · · Ak−1,11 Ak−1,12

Ģ2 −Ģ2B1 A1,21 A1,22 · · · Ak−1,21 Ak−1,22


where the matrix A0 has been rewritten in terms of ĢB′ and the matrices

A1, . . . , Ak−1 have been partitioned according to n1 and n2 so that Ai,11

corresponds to the first n1 rows and n1 columns of the matrix Ai (i = 1, · · · , k−1),

Ai,12 corresponds also to the first n1 rows and the last n2 columns of the matrix

Ai and Ai,21 and Ai,22, respectively, correspond to the last n2 rows of the same

matrix Ai.

As the matrix A0 is reduced rank, it is easy to see that A is also reduced
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rank and can be rewritten in terms of two reduced rank matrices U and V such

that A = UV ′. The (nk− n2)× nk matrix V ′ will always consists of the non zero

rows of the reduced row echelon form of A and is given by

V ′ =



In1×n1 −B1 0n1×n1 0n1×n2 · · · 0n1×n1 0n1×n2

0n1×n1 0n1×n2 In1×n1 0n1×n2 · · · 0n1×n1 0n1×n2

0n2×n1 0n2×n2 0n2×n1 In2×n2 · · · 0n2×n1 0n2×n2

...
...

...
... . . . ...

...

0n1×n1 0n1×n2 0n1×n1 0n1×n2 · · · In1×n1 0n1×n2

0n2×n1 0n2×n2 0n2×n1 0n2×n2 · · · 0n2×n1 In2×n2


. (D.1)

The nk× (nk−n2) matrix U , then, is obtained by removing from A all non

pivot columns of V ′ and can be written as

U =



0n1×n1 In1×n1 0n1×n2 · · · 0n1×n1 0n1×n2

0n2×n1 0n2×n1 In2×n2 · · · 0n2×n1 0n2×n2

...
...

... . . . ...
...

0n1×n1 0n1×n1 0n1×n2 · · · In1×n1 0n1×n2

0n2×n1 0n2×n1 0n2×n2 · · · 0n2×n1 In2×n2

Ģ1 A1,11 A1,12 · · · Ak−1,11 Ak−1,12

Ģ2 A1,21 A1,22 · · · Ak−1,21 Ak−1,22


. (D.2)

Note that for existence of these matrices, not additional assumptions are

required, therefore, Ģ, particularly, can be singular or not as long as it follows the

definitions of our system as in (3.1). Also, note that V ′, given the assumptions of

the reduced row echelon form, is always unique.

�

Proof of (C.2).

Considering that

etUV
′
= Ink +

∞∑
j=1

tj
(UV ′)j

j!
= Ink +

UV ′

1!
t+

(UV ′)(UV ′)

2!
t2 + · · · .



Appendix D. Proofs 91

We can write

(UV ′)j = (UV ′)× (UV ′)× · · · × (UV ′)︸ ︷︷ ︸
j times

,

= U × (V ′U)× (V ′U)× · · · × (V ′U)︸ ︷︷ ︸
j−1 times

× V ′.

Let V ′U = H, then

(UV ′)j = U ×Hj−1 × V ′.

Hence

etUV
′

= Ink + U
∞∑
j=1

tj

j!
Hj−1V ′ = Ink + UH−1

∞∑
j=1

(tH)j

j!
V ′,

= Ink + UH−1(etH − Ink−n2)V
′.

Note that, without loss of generality and considering the expression of U

and V ′ in (D.2) and (D.1), the (nk− n2)× (nk− n2) matrix H can be written as

H = V ′U =



0n1×n1 In1×n1 −B1 · · · 0n1×n1 0n1×n2

...
...

... . . . ...
...

0n1×n1 0n1×n1 0n1×n2 · · · In1×n1 0n1×n2

0n2×n1 0n2×n1 0n2×n2 · · · 0n2×n1 In2×n2

Ģ1 A1,11 A1,12 · · · Ak−1,11 Ak−1,12

Ģ2 A1,21 A1,22 · · · Ak−1,21 Ak−1,22


. (D.3)

�

Proof of Lemma 3.3.1.

Given by Chambers [1999], the solution to the system of equations expressed
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in (3.8) and (3.9), can be written in a VAR format as

yst = C11y
s
t−1 + C12

[
MNȳst +Mm̄s

t +Mε̄st
]

+ms
1t + εs1t,

= C11y
s
t−1 + C12MN1y

s
t−1 + C12MN2y

s
t−2 + · · ·

+ C12MNky
s
t−k + C12Mm̄s

t +ms
1t + C12Mε̄st + εs1t,

= F1y
s
t−1 + F2y

s
t−2 + · · ·+ Fky

s
t−k + gst (θ) + ηst ,

where all the matrices are defined in the Lemma.

Finally, the VECM form is obtained by rewriting the last line of the previous

expression as follows

yst − yst−1 = F1y
s
t−1 − yst−1 + F2y

s
t−1 − F2y

s
t−1 + F2y

s
t−2+

F3y
s
t−1 − F3y

s
t−1 + F3y

s
t−2 − F3y

s
t−2 + F3y

s
t−3+

· · ·+ Fky
s
t−k + gst (θ) + ηst ,

∆yst = Πk(θ)y
s
t−1 + Γ1(θ)∆yst−1 + · · ·+ Γk−1(θ)∆yst−(k−1) + gst (θ) + ηst . (D.4)

�

Proof of Lemma 3.3.2.

This proof is exactly a mirror image of the proof in Lemma 3.3.1 with the

interchange of stock variables for flow variables following the definitions in (3.11).

�

Proof of Lemma 3.3.3.

Considering the definition of the observed vector for stock variables, the

solution to the system in (3.3) can be rewritten as

xs1 = eAx(0) +

∫ 1

0

e(1−s)A(a∗ + b∗s)ds+

∫ 1

0

e(1−s)Aζ∗(ds), (D.5)

which premultiplied by S1 gives the expression for ys1.

At the same time, following Chambers [1999], the VAR expression for yst
(t = 2, . . . , k) is given by

yst = J1y
s
t−1 + · · ·+ Jt−1y

s
1 + C12C

t−2
22 S2e

Axs(0) + qst + ηst , t ≥ 2. (D.6)
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Finally, the VECM representation in the lemma is achieved by applying to

(D.6) a similar procedure to that in the derivation of equation (D.4).

�

Proof of Lemma 3.3.4.

This proof is exactly a mirror image of the proof in Lemma 3.3.3 with the

interchange of stock variables for flow variables following the definitions in (3.11)

and the fact that xf1 =
∫ 1

0
xf (r)dr.

�

Proof of Lemma 3.4.1.

Following their definitions as mentioned in Lemma 3.3.1, the expression for

ηsk+1, · · · , ηsT can be rewritten as

ηst =S1εt + C12

k−1∑
i=1

M1iS1εt−i + C12

k−1∑
i=1

Mi+1S2εt−i,

=
k−1∑
i=0

Rs
iεt−i, t = k + 1, · · · , T,

(D.7)

where the matrices Mi, Mij and Rs
i are defined in the Lemma.

The expression for ηs1, · · · , ηsk, at the same time, with their definitions as in

Lemma 3.3.3 are given by

ηst =S1εt + C12

t−3∑
j=0

Cj
22S2εt−1−j + C12C

t−2
22 S2ε1,

=
t−1∑
i=0

P s
i εt−i, t = 1, · · · , k,

(D.8)

where the matrices P s
i are defined in the Lemma.

For the autocovariances of ηst , finally, we consider the autocovariances of εt
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so that Ωε is obtained as

E[εtε
′
t] =E

[ ∫ t

t−1

eA(t−s)ζ∗(ds)
][ ∫ t

t−1

eA(t−s)ζ∗(ds)
]′
,

=

∫ t

t−1

(
eA(t−s)

)
Σ∗
(
eA(t−s)

)′
ds,

=

∫ 1

0

(
eAs
)

Σ∗
(
eAs
)′
ds,

=

∫ 1

0

[
Ink + UH−1(eHs − Ink−n2)V

′]Σ∗[Ink + UH−1(eHs − Ink−n2)V
′]′ds,
(D.9)

where E[ζ∗(ds)ζ∗(ds)′] = Σ∗ds.

�

Proof of (3.26).

Considering the alternative representation of our exponential matrix etA as

in (C.2), the integrals inside the square brackets of (3.25) are calculated as follows

∫ b

a

e(r−s)Adr =

∫ b

a

{
Ink + UH−1(eH(r−s) − Ink−n2)V

′
}
dr,

= (b− a)(Ink − UH−1V ′) + UH−2
[
e(b−s)H − e(a−s)H ]V ′,

(D.10)

where the constants a and b are changed as needed.

�

Proof of Lemma 3.4.2.

This proof is exactly a mirror image of the proof of Lemma 3.4.1 with the

interchange of ηst for ηft and the fact that vft = vfa,t + vfb,t−1, where v
f
a,t and v

f
b,t−1

are defined in the Lemma and are calculated from equation (3.26).

�



Chapter 4

Empirical Applications

This chapter presents three multivariate applications of the estimation

methodology for cointegrated systems in continuous time developed in the

previous chapters. The analysis is carried out by comparing the estimates of

the model’s parameters considering two different time specification; Johansen’s

general VECM for discrete time and our exact discrete time VECM for continuous

time. The applications evaluate, for the United States, the market efficiency

hypothesis on the foreign exchange rate, the term structure of interest rates and

the main implication of the rational-expectation permanent income hypothesis.

In the results, it is shown that estimation bias in cointegrated systems does not

only depend on whether the variables in the model suffer some sort of temporal

aggregation, but also, on whether the system requires a higher order specification.

95



Chapter 4. Empirical Applications 96

4.1 Introduction

With the aim of analysing the effects of temporal aggregation over the

estimates of a model’s parameters, focusing on the non stationary cointegrated

case, this chapter presents three multivariate applications of the estimation

methodology for systems in continuous time developed in the previous chapters.

In the analysis, for each application, the estimated parameters of the model

are compared through the use of two different time specifications; Johansen’s

general VECM for discrete time and our exact discrete time VECM for continuous

time. Given that the representation of the estimates differs dramatically with the

time specification, a one-to-one comparison cannot be directly considered, as a

result, in here, such comparison is carried out by utilizing the estimates of one

specification and the translated values (the implied values) of the estimates of the

other.

For the United States, the applications evaluate the market efficiency

hypothesis on the foreign exchange rate, the term structure of interest rates and

the main implication of the rational expectation-permanent income hypothesis.

Since it is not obvious that these relationships exist, we also provide statistical

justifications for the analysis. In all the cases, standard theoretical models are

utilized to present the cointegrating relationships and, if required, likelihood ratio

(LR) tests are applied to identify the specification of the model that fits the

data the best. In each application, the sampling frequency of the variables as

well as the aggregation method (if any) is considered, therefore, when applying

our continuous time methodology, the most suited specification (flows or stock

variables) is used.

In the results, the first application considers a first order system and a stock

variables specification. As a result, both our continuous time methodology as

well as Johansen’s produce virtually identical estimates and base line conclusion

are drawn. The second application presents a first order system but considers

a flow variables specification instead. As a result, when applying Johansen’s

methodology, the estimates of the adjustment parameters show the cost of ignoring

aggregation in the specification and leads to inappropriate conclusions. Finally,
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the third application considers also a flow variables specification but presents a

second order system. As a result, it generalizes the analysis and further support

for the use of our continuous time methodology is found.

It is important to notice, at the same time, that this document is not the

first in contrasting models in continuous time with their discrete time counterpart;

McCrorie and Chambers [2006], for example, in an application that analyses

the money-income causality, state that formulating the model in continuous

time offers a basis for correcting the effects of temporal aggregation in observed

discrete data through a discrete time analogue. In a more general framework,

Chambers and Thornton [2011], use a continuous-time autoregressive moving-

average model (CARMA) to analyse sun-spot data and short-term interest rate.

In the document, the authors develop an exact discrete time representation of the

system under consideration and find out that the presence of a moving average

component of order 1 (MA(1)) in the continuous time system has a dramatic

impact on eradicating unaccounted-for serial correlation that is present in the

discrete time model. In the non-stationary case, additionally, they only look at

the situation where one of the roots of the characteristic equation of the system

is identically equal to zero, but do not consider any cointegrated variables case.

This chapter, therefore, aims to extend the range of continuous time models

that can be estimated using an exact discrete time representation by incorporating

the non stationary cointegrated variables case into the existent literature.

The chapter is structured as follows: section 4.2 introduces the theoretical

framework for the analysis as well as the comparison strategy. Then, section 4.3

presents the applications of our estimation methodology and section 4.4 concludes.



Chapter 4. Empirical Applications 98

4.2 The Modelling Framework

In this section we specify the framework under which estimation and

comparison is carried out. For that end, both the discrete and the continuous

time systems are presented. For the continuous time analysis, we follow Bergstrom

[1984] and rely on the results obtained in the previous chapters of this thesis, as a

result, we consider a stochastic differential equation system and estimate an exact

discrete time vector error correction model. For the discrete time analysis, at the

same time, we consider Johansen’s general VAR specification and also estimate a

VECM.

4.2.1 Continuous time

The system under consideration is the continuous time random n-vector

y(t) that satisfies the stochastic differential equation system

d[Dk−1y(t)] =
[
Ak−1D

k−1y(t) + · · ·+ A1Dy(t) + A0y(t)

+a+ bt
]
dt+ ζ(dt), t > 0,

(4.1)

where k is a positive integer larger or equal to 2 (for k = 1 the simplest version

of the system is considered, see Chapter 2), A0, . . . , Ak−1 are n × n matrices of

unknown coefficients and a and b are n × 1 vectors of unknown constants. For

our purpose, it is assumed that y(t) is integrated of order one (I(1)) and that it

is partitioned into two subvectors y1(t) and y2(t) of dimensions n1× 1 and n2× 1

respectively (n1 + n2 = n). It is also assumed that y(t) contains n1 stationary

linear cointegrating relationships of the form y1(t)−B1y2(t), where B1 is a n1×n2

matrix of cointegrating parameters. ζ(dt), at the same time, is assumed to be a

vector of random measures that is defined on all subsets of the line 0 < t < ∞,

has finite Lebesgue measure and satisfies

• E[ζ(dt)] = 0,

• E[ζ(dt)ζ(dt)′] = Σdt and

• E[ζ(∆1)ζ(∆2)′] = 0 for disjoint intervals ∆1 and ∆2.
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In order to provide as much generality as possible in the applicability of

our results, the vector y(t) is allowed to be entirely comprised by stock or flow

variables. If we define stock and flow variables in continuous time as ys(t)

and yf (t), respectively, then, the observed values at specific points in time, for

stock variables, are yst = ys(t) and the observed rate of flows, for flow variables,

yft =
∫ t
t−1

yf (r)dr, where, in each case t = 1, 2, . . . , T and T denotes sample size.

As shown in the previous chapters, the econometrically implementable

models (the models that relate the unknown parameters of our system to the

discrete time observations and are known as exact discrete time models) are

written in a vector error correction form and, for stocks, are given by

∆yst = Πk(θ)y
s
t−1 + Γ1(θ)∆yst−1 + · · ·+ Γk−1(θ)∆yst−(k−1) + gst (θ) + ηst ,

t = k + 1, · · · , T,
(4.2)

and
ys1 = G1x

s(0) + qs1 + ηs1,

∆yst = Λt(θ)y
s
t−1 + Υ1(θ)∆yst−1 + Υ2(θ)∆yst−2+

· · ·+ Υt−2(θ)∆ys2 +Gtx
s(0) + qst (θ) + ηst ,

t = 2, · · · , k,

(4.3)

where all the matrices and proofs are presented in lemmas 3.3.1 and 3.3.3 of

Chapter 3 and θ is the vector that contains all the unknown parameter of the

system (for k = 1, the simplest version of the system is considered, see Chapter 2

for details).

For flows, at the same time, the models are given by

∆yft = Πk(θ)y
f
t−1 + Γ1(θ)∆yft−1 + · · ·+ Γk−1(θ)∆yft−(k−1) + gft (θ) + ηft ,

t = k + 1, · · · , T,
(4.4)

and
yf1 = Q1x

f (0) + qf1 + ηf1 ,

∆yft = Λt(θ)y
f
t−1 + Υh,1(θ)∆yft−1 + Υh,2(θ)∆yft−2+

· · ·+ Υh,t−2(θ)∆yf2 +Qtx
f (0) + qft (θ) + ηft ,

t = 2, · · · , k,

(4.5)
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where, similarly than before, all the matrices and proofs are developed in lemmas

3.3.2 and 3.3.4 of Chapter 4.

For the discrete time disturbances of these models, at the same time, we also

follow the results of the previous chapters of this dissertation and, for the analysis,

we utilize their moving average forms as well as their covariance properties as in

Lemma 3.4.1 for ηst and Lemma 3.4.2 for ηft .

For estimation, finally, we use the methodologies as described in subsections

3.4.1 and 3.4.2 of Chapter 3 and optimize the alternative form of the likelihood

function (equations (3.22) and (3.30)) to get the Gaussian estimates of our model’s

parameters

4.2.2 Discrete time

For the discrete time counterpart, we follow Johansen [1988, 1991, 1995]

and consider a VAR with k lags

yt = v + δt+ ω1yt−1 + ω2yt−2 + · · ·+ ωkyt−k + εt, (4.6)

where yt is a n × 1 vector of variables, v and δ are n × 1 vectors of parameters,

ω1 · · ·ωk are n×n matrices of parameters, and εt is a n×1 vector of disturbances.

εt has mean 0, has covariance matrix Σ, and is i.i.d. normal over time.

The discrete time VECM form of (4.6) can be written as

∆yt = v + Φyt−1 +
k−1∑
i=1

Ψi∆yt−i + δt+ εt, (4.7)

where Φ =
∑j=k

j=1 ωj − In and Ψi = −
∑j=k

j=i+1 ωi.

Similar to our continuous time specification, it is assumed that yt is I(1).

Φ, therefore, has a reduced rank n1 < n (n1 + n2 = n) and can be expressed

as Φ = αβ′, where α and β are n × n1 matrices of parameters with rank(α) =

rank(β) = n1. The rows of β′ = [I,−β1]12 form a basis for the n1 cointegrating

vectors and the elements of α distribute the impact of those cointegrating vectors
12In accordance with the notation used in (4.1) and given the specification of the systems, it is
important to notice that β1 = B1.
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to the evolution of ∆yt.

For an even more generalized form of the system, it is possible to exploit the

properties of the matrix α and rewrite (4.7) as

∆yt = α(β′yt−1 + µ0 + ρt) +
k−1∑
i=1

Ψi∆yt−i + γ + τt+ εt,

v = αµ0 + γ,

δt = αρt+ τt,

(4.8)

where µ0 and ρ are n1×1 vectors of parameters and τ as well as γ are n×1 vectors

of parameters with γ being orthogonal to αµ0 (γ′αµ0 = 0) and τ orthogonal to

αρ (τ ′αρ = 0).

Therefore, by applying restriction into the parameters, five different

econometrically implementable models can be considered

Model I unrestricted trend

If no restrictions are placed on the trend parameters, our VECM implies

that there are quadratic trends in the levels of the variables and that

the cointegrating equations are stationary around time trends (trend

stationary).

Model II restricted trend, τ = 0

If τ = 0 we assume that the trends in the levels of the data are linear but

not quadratic. This specification allows the cointegrating equations to be

trend stationary.

Model III unrestricted constant, τ = 0 and ρ = 0

If τ = 0 and ρ = 0 we exclude the possibility that the levels of the data

have quadratic trends, and we restrict the cointegrating equations to be

stationary around constant means. Because γ is not restricted to zero, this

specification still puts a linear time trend in the levels of the data.

Model IV restricted constant, τ = 0, ρ = 0 and γ = 0

If τ = 0, ρ = 0 and γ = 0, we assume there are no linear time trends in

the levels of the data. This specification allows the cointegrating equations

to be stationary around a constant mean, but it allows no other trends or
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constant terms.

Model V no trend, τ = 0, ρ = 0, γ = 0 and µ0 = 0

This specification assumes that there are no nonzero means or trends. It

also assumes that the cointegrating equations are stationary with means of

zero and that the differences and the levels of the data have means of zero.

Finally, for estimation, Likelihood Ratio (LR) tests are applied to the models

so that the one that fits the data the best is considered. At the end, Johansen’s

maximum likelihood methodology is applied and the estimates of the model’s

parameters are obtained.

4.2.3 Comparison strategy

As mentioned in the previous chapters, comparison between the estimates

of the two methodologies is not an easy task. If we look at equations (4.2),

(4.4) and (4.8), we see that the models under consideration are more or less

similar; they share a common VECM form and the cointegrating parameters can

always be factored out, however, the estimates of the adjustment coefficients in

our exact discrete time specification involve much more complicated expressions

of the original parameters in the system than those of Johansen’s and also, the

representation of the discrete time disturbance processes changes dramatically

with the specification from a MA process for the former to an i.i.d process for the

latter. As a result, a direct comparison of the estimates cannot be utilized and

the implied values are required.

Considering that, for the comparison, firstly, we use discrete time tests

to identify the specification of the model that fits the data the best; secondly,

assuming that such model is correctly specified, we use both our continuous time

methodology and Johansen’s to estimate the model’s parameters; and, finally, by

equating term by term the elements of the econometrically implementable systems,

we derive the implied values and compare them with one another.

Of course, if we suspect that the data under consideration presents some

sort of temporal aggregation, Johansen’s estimates will be biased and the implied

values, as a result, are not going to be similar to our continuous time estimates.
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Therefore, the cost of ignoring aggregation in the specification will be evident.
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4.3 Empirical Applications

In this section we present the main results of this chapter. The first

application considers stock variables and specifies the system in its simplest form,

then, given the conclusions of Chapter 1, baseline findings are drawn. The second

application, at the same time, considers flow variables and also specifies the

system in its simplest form, as a result, direct implications of the cost of ignoring

aggregation in the specification are expected. The third application, finally, deals

with a higher order specification in the system and considers flow variables as

well, therefore, given the conclusions of Chapter 2, further support for the use of

our continuous time framework is anticipated.

4.3.1 Market efficiency and Cointegration

For this application, we extend the seminal work of Fama [1970], and follow

Kühl [2007] to analyse the Efficiency Market Hypothesis (EMH) on the foreign

exchange rate.

Our analysis focuses on a three-country model and we argue that the foreign

exchange market is efficient if no cross-sectional arbitrage opportunities exist. In

other words, if transaction costs are neglected, such a market is efficient if a specific

amount of money in currency 1 retains its value, even if it is converted across the

two other currencies.13 Using the variables in logarithms, then, market efficiency

means

s32
t = s12

t − s13
t , (4.9)

where sijt are the exchange rates expressed in the same currency and i is the

domestic currency in terms of the foreign currency j.

Equation (4.9) describes the so-called no arbitrage condition without

transactions costs and states that a foreign exchange market is efficient provided

that cointegration cannot be rejected if the cointegrating vector is β′ = (1,−1).

Therefore, we can see that the EMH requires both cointegration and proportional

cross-rate adjustments.

In this application, as mentioned earlier, in order to assess such a hypothesis,
13See Frenkel and Levich [1975] and Levich [1985] for details.
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Johansen’s estimation procedure as well as likelihood ratio tests are applied to the

data. At the same time, with the aim of analysing the effects, if there are any,

of ignoring aggregation in the specification, our continuous time methodology is

also applied to the same data. Next part describes precisely the analysis.

Empirical Results

The period under consideration runs from 4 January 1999 to 29 December

2006 and covers the daily exchange rates of the US-Dollar expressed in foreign

currencies. We use the Australian Dollar (AUD), the Canadian Dollar (CAD),

the Swiss Franc (CHF), the British Pound Sterling (GBP), the EURO (EUR), the

Japanese Yen (JPY) and the Swedish Krona (SEK). 14 The exchange rates are

taken from the database of the Federal Reserve Bank of St. Louis and are noon

buying rates in New York City. Figure 4.1 depicts them.

Figure 4.1 Logarithm of Daily Exchange Rates (US-Dollar in Foreign
Currencies)

standardised on 4 January 1999
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Source: Federal Reserve Bank of St. Louis (2016)

As we can see from the figure, it seems to be a more or less parallel movement

between some of the exchange rates. CHF, GBP and EUR, for instance, seem to

co-move over time, therefore, they may support the EMH.
14The abbreviations refer to the USD expressed in units of foreign currency.
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As it is well known, two or more time series are said to be cointegrated if

each of them is I(1) (nonstationary with a unit root) and there exist a linear

combination that makes them stationary. As a result, before presenting the

cointegrating analysis, we need to test the unit root properties of the series. To

this end, two tests are applied to all exchange rates in natural logarithms: the

Phillips-Perron (PP) test and the DF-GLS test by Elliott et al. [1996]. Results

are described in Table 4.1.

As can be seen, both the PP and the DF-GLS test are not able to reject

the null hypothesis of a unit root in levels in any of the exchange rates, as a

result, they can be considered as nonstationary or I(1) processes. Considering

that, cointegration analysis can be applied.

Table 4.1 Unit Root Tests for the USD exchange rates

PP test DF-GLS testa

Statisticb Lagsc Statisticd

EUR/USD -0.571 4 -0.726

GBP/USD -0.515 4 -0.598

JPY/USD -2.137 1 -1.94

CHF/USD -0.803 4 -0.907

AUD/USD -0.56 4 -0.338

CAD/USD -0.366 4 0.691

SEK/USD -0.586 1 -0.740

a Stationarity around a mean is assumed.
b Critical values are 5 % -2.8, 1% -3.4.
c Number of lag is chosen by the modified AIC

(MAIC).
d Critical values are 5 % -1.95, 1% -2.58.

For the cointegration test, Johansen’s trace statistic is used. For our three-

country model, we present the analysis for the USD-GBP-all-other-exchange-rates

interactions. For the specification of the model, given the actual movement of the

exchange rates over time (see Figure 4.1), we assume that a quadratic time trend

in levels is negligible, as a result, only three possible specifications of the VECM

(equation (4.8)) are considered. Table 4.2 presents the results.
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Table 4.2 Cointegration Test using Johansen’s approach

USD Lagsa Ho : r ≤ 0, 1
Model III Model IV Model V

Unrestricted Constant Restricted Constant No Trend

GBP-EUR 1
0 24.83 ** 25.38 ** 2.815

1 1.299 1.307 1.161

GBP-JPY 1
0 5.37 6.137 4.695

1 0.086 0.837 0.089

GBP-CHF 1
0 19.04 * 19.597 * 10.6031

1 3.03 3.0349 3.012

GBP-AUD 1
0 16.023 * 16.842 * 7.7246

1 0.115 0.912 0.100

GBP-CAD 1
0 8.369 10.316 3.5108

1 0.054 1.998 0.0006

GBP-SEK 1
0 16.481 * 17.021 * 7.2993

1 0.442 0.705 0.5248

a Determination of lag length based on Schwarz bayesian information criterion (SBIC)

and Lagrange Multiplier tests for autocorrelation in the residuals.

∗ Rejection of the null hypothesis at 5 % .

∗∗ Rejection of the null hypothesis at 1 % .

From Table 4.2, we can see that the null hypotheses of no cointegrating

relationship can be rejected for model III as well as model IV for the exchange

rate pairs GBP-EUR at 5 % percent level and GBP-CHF, GBP-AUD and GBP-

SEK at 1 % percent level. For model V, on the contrary, for all exchange rate

combinations, at least at a 5 % significance level, the null hypothesis cannot be

rejected.

Considering that, there are two possible specifications of the model and,

following Johansen and Juselius [1990] and Johansen [1994], a likelihood ratio

test is utilized to choose the specification that fits the data the best. Results are

reported in Table 4.3.

In the second column of Table 4.3, we test the absence of a linear trend in

levels in the specification of the model and as we can see, in all currency pairs,

the null hypothesis cannot be rejected. In the third column, at the same time,

we test for the absence of a constant term in the cointegrating relationship and,

for all pairs of currencies, we can see that a non-zero mean cannot be neglected.
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Therefore, model IV represents the data better.

Table 4.3 Likelihood Ratio test on model specification of the VECM

Absence of a linear trend in levels Absence of a constant

Model IV in Model III Model V in Model IV

GBP -EUR 0.01 22.42 **

GBP-CHF 0.01 8.97 **

GBP-AUD 0.8 8.31 **

GBP-SEK 0.26 9.54 **

Critical values 3.84 for 5 % and 6.63 for 1%.

* Rejection of the null hypothesis at the 5 %.

** Rejection of the null hypothesis at the 1 %.

Table 4.4, lastly, presents the results of the evaluation of the market efficiency

hypothesis as well as full estimates of the VECM. In the table, the first column

presents the estimates of the constant term within the cointegrating relationship,

the second presents them for the speed of adjustment parameters, the thrird for

the cointegrating parameter and the forth, at the end, shows the likelihood ratio

test for the restriction of the cointegrating vector.

As can be seen, all constant terms are statistically different from zero. All

cointegrating parameters are also different from zero and more importantly, they

present the correct sign for the no arbitrage condition. For the market efficiency

hypothesis, finally, column IV validates it only for the pairs of currency GBP-CHF.



Chapter 4. Empirical Applications 109

Table 4.4 Estimation of the VECM
Model IV: Restricted Constant

µ0 α β LR test (1,-1) a

GBP -EUR 0.059 **
-0.022 ** 1 13.5 **

-0.012 * -0.712 ** (0.001)

GBP-CHF 0.032 **
-0.012 ** 1 3.297

-0.007 -0.794 ** (0.069)

GBP-AUD -0.033 **
-0.011 ** 1 9.312 **

0.006 -0.674 ** (0.002)

GBP-SEK 0.029 **
-0.013 ** 1 6.812 **

-0.001 -0.759 ** (0.009)

a Test statistic for the hypothesis of a restricted cointegrated vector. P

values in brackets.

* Rejection of the null hypothesis at 5 %.

** Rejection of the null hypothesis at 1 %.

For the continuous time framework, considering the results of Table 4.2

and Table 4.3, we define y1(t) = s12(t) and y2(t) = s13(t) as the exchange rates

expressed in the same currency, where sij(t) (i = 1, j = 2, 3) is the domestic

currency i in terms of the foreign currency j (note that t is being treated as

a continuous time parameter), therefore, the continuous time system for this

application can be written as

dy(t) = [c+ A0y(t)]dt+ ζ(dt), t > 0, (4.10)

where y(t) = [y1(t), y2(t)]′, c = [c1, c2]′ is a 2 × 1 vector of intercepts, A0 = ab′,

a = [a1, a2]′ is a 2 × 1 vector of adjustment parameters, b = [1,−b1]′ is a 2 × 1

vector of cointegrating parameters and ζ(dt) is the vector of random measures

that follows its definitions as in (4.1).

The exact discrete time system for stock variables, as a result, following

(4.2) as well as the results from chapter 2, is defined as

∆yst = c

 c1

c2

+

 a1

a2

 e(a1−b1a2) − 1

a1 − b1a2

(1,−b1)yst−1 + ηst , t = 1, . . . , T, (4.11)
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where c as well as the disturbance vector ηst are

c =

∫ 1

0

(
I2 +

 a1

a2

 er(a1−b1a2) − 1

a1 − b1a2

(1,−b1)

)
dr,

ηst =

∫ t

t−1

(
I2 +

 a1

a2

 e(t−s)(a1−b1a2) − 1

a1 − b1a2

(1,−b1)

)
ζ(ds).

Considering equation (4.11), then, the estimates of our model’s parameters

are the elements of the vector θ that maximizes (see Chapter 2 for details) the

following function

L(θ,Σ) = −nT
2

ln(2π)− nT

2
ln |W | − 1

2

T∑
t=1

η′tW
−1ηt, (4.12)

where n = 2 and E[ηtη
′
t] = W .

For the comparison, at the same time, with the estimates already defined,

we calculate the implied values by equating term by term (4.11) and model IV of

equation (4.8) and get

µ0

 α1

α2

 = c

 c1

c2

 ,

α1 = a1
e(a1−b1a2) − 1

a1 − b1a2

,

α2 = a2
e(a1−b1a2) − 1

a1 − b1a2

,

(4.13)

β1 = b1.

Table 4.5 contains the results and for easier exposure, it is divided into three

parts. The upper part presents the implied values15, which, as mentioned above,

are the continuous time equivalent to the discrete time values in our exchange

rate models as summarized in Table 4.4. The middle part, additionally, shows the

estimates we get by applying our continuous time methodology to those models

and the lower part, more importantly, reports the likelihood ratio test statistics

(and their associated p-value) and evaluates the efficiency market hypotheses in

our application.
15It is important to stress that these values are for comparison purposes only and are obtained
by solving the system of equations (4.13).
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To gain further insights into these results, the table also contains estimates

of the elements of the Cholesky matrix, M , corresponding to Σ so that

M =

 m11 0

m21 m22

 , Σ = MM ′, Σ =

 σ1 σ2

σ2 σ3

 ,
σ1 = m2

11, σ2 = m11m21, σ3 = m2
21 +m2

22.

As we can see from the table, our estimates are virtually identical to the

implied discrete time ones. All signs remain stable and the standard errors

are reasonable small relative to their values. Also, all cointegrating parameters

present the correct sign for the no arbitrage condition. Moreover, if we look at the

lower part of the table, the efficiency market hypothesis in this continuous time

specification is also validated only for the pair of currencies GBP-CHF.
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Table 4.5 Implied Discrete Time Values and Continuous Time Model Estimates

GBP-EUR GBP-CHF GBP-AUD GBP-SEK

Implied

values

c1 -0.0013 -0.0003 0.0003 -0.0003

c2 -0.0006 -0.0002 -0.0001 -0.00002

a1 -0.02 -0.01 -0.01 -0.01

a2 -0.01 -0.007 0.006 -0.001

1 1 1 1

b1 -0.712 -0.794 -0.674 -0.759

CTM

VECM

Estimates

c1 -0.0013 (0.00029) -0.00038 (0.00014) 0.00030 (0.00017) -0.00037 (0.00015)

c2 -0.0007 (0.00036) -0.00022 (0.00019) -0.00012 (0.00023) -0.000017 (0.00020)

a1 -0.0217 (0.00502) -0.01241 (0.00372) -0.01149 (0.00402) -0.01443 (0.00434)

a2 -0.0117 (0.00610) -0.00759 (0.00508) 0.00586 (0.00526) -0.00133 (0.00544)

1 - 1 - 1 - 1 -

b1 -0.713 (0.03742) -0.79097 (0.07931) -0.66580 (0.05073) -0.75642 (0.05236)

m11 0.0051 (0.00006) 0.00510 (0.00006) 0.00513 (0.00006) 0.00512 (0.00006)

m21 0.0043 (0.00011) 0.00461 (0.00012) 0.00294 (0.00014) 0.00410 (0.00012)

m22 0.0043 (0.00005) 0.00476 (0.00006) 0.00611 (0.00008) 0.00512 (0.00006)

LR test 16.41 ** 3.26 6.82 ** 6.15 *

p-value 0.0001 0.070 0.001 0.013

* Rejection of the null hypothesis at 5 %.

** Rejection of the null hypothesis at 1 %.

Numbers in parentheses denote standard errors.

As mentioned earlier, these results are not surprising and as expected,

when the variables of interest are stocks and the systems under consider follow a

VECM of order one, both our continuous time methodology as well as Johansen’s

perform similarly and yield virtually identical estimates of the model’s parameters.

Therefore, this particular application serves as the basis for our analysis and

provides a benchmark reference.
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4.3.2 The Term Structure of Interest Rates

Theoretical studies16 of the modern term structure of interest rates

suggest that there is an equilibrium relationship between interest rates at different

maturities.

The segmented-market hypothesis, for example, states that investors have a

preference for debt securities of a given term but that they are willing to substitute

away from their preferred terms if they expect to be compensated for doing so

through earning a risk or term premium. However, it does not specify whether

the risk premium will be positive or negative and therefore, does not provide a

closed form of the long-run relationship.

The expectation hypothesis, on the contrary, does not require risk premium

to motivate an investor to mismatch his debt holding and planning horizon.

Instead, it assumes that investors are rational and risk neutral, so that payment

of the premium would not occur. Additionally, it assumes that transactions costs

are zero, which means that the cost for investing in or buying an n-periods bond

and holding it until maturity is the same as that of buying a series of one-period

bonds. It follows, therefore, that long term rate can easily be represented as the

present value of the expected future short rate.

Considering that, in this application, we utilize the expectation hypothesis

to assess the long-run relationship between long and short term interest rates. For

our purposes and given the present value model, we argue that such a relationship

can be written as

Lt − β1st = εt, (4.14)

where Lt represents the long term interest rate, st represents the short term interest

rate, β1 is the cointegrating parameter and εt is a random disturbance term.

If the expectation hypothesis holds, at the same time, the system is not

only going to be structurally stable and show cointegration between the variables,

but more importantly, it will embrace the proportional restriction β′ = (1,−1).

In here, similarly than before, in order to assess such a hypothesis, a LR test is

applied to the data.
16See for example Vasicek [1977] and Hall et al. [1992].
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In applied work, especially in the one that involves macro time series, it

is almost inevitable to face some sort of temporal aggregation (period averages,

for example) in the data. If that is the case, as mentioned earlier, utilizing a

model that is specified in terms of the observation interval can lead to estimates

being contaminated by temporal aggregation bias and, as a consequence, it can

arise owing to researchers making inappropriate economic interpretations of those

parameter estimates. As a result, in order to avoid such complications, as pointed

out by Bergstrom [1984], it is needed to formulate the econometric model for

estimation in a continuous time fashion.

In this application, in order to illustrate such a scenario, rather than using

interest rates as stock variables whose realisations are obtained daily on a fixed

schedule, we aggregate them to quarterly average observations so that a flow

variable is mimicked. Considering that, the long-run relationship (equation (4.14))

between long and short term interest rates as well as the expectations hypothesis

are assessed utilizing both our continuous time methodology as well as Johansen’s

estimation procedure. At the end, comparison is presented and the costs, if there

are any, of ignoring aggregation in the specification are measured. As in the

previous application, before the actual comparison, discrete time analysis of the

series are carried out. Next part describes precisely the procedure.

Empirical Results

The time series we use are the long-term government bond yield (10 years)

and the treasury bill rate (government securities 4 weeks coupon equivalent) from

1970:Q1 to 2010:Q4. They are taken from the Federal Reserve Bank of St. Louis

and the Department of the Treasury for the United States and, as mentioned

earlier, they are aggregated to quarterly average from daily observations.17 Figure

4.2 displays the series.
17The daily treasury bill rate is the daily secondary market quotation on the most recently
auctioned treasury bill for the 4 weeks maturity tranche. The quotation is obtained at a
closing hour each business day by the Federal Reserve Bank of New York. The daily long-
term government bond is the unweighted average of bid yields obtained at a closing hour each
business day on all outstanding fixed-coupon bonds neither due nor callable in less than 10
years.
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Figure 4.2 Long-term and Short-term interest rates
Quarterly average from daily observations, U.S.
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Source: Federal Reserve Bank of St. Louis (2016).

The statistical properties of the series as well as the specification tests are

presented in Table 4.6. As can be seen, both the PP and the DF-GLS test are not

able to reject the null hypothesis of a unit root in levels in either of the interest

rates, as a result, they can be considered as nonstationary or I(1) processes.
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Table 4.6 Statistical tests and Specification analysis for the Interest Rates

Unit Root Tests

Levels
PP test DF-GLS testa

Statisticb Lagsc Statisticd

Short Term -1.663 7 -0.960

Long Term -1.099 7 -0.555

a Stationarity around a mean is assumed.

b Critical values are 5 % -2.86, 1% -3.43.

c Number of lag is chosen by the modified AIC (MAIC).

d Critical values are 5 % -1.95, 1% -2.58.

Cointegration Test using Johansen’s approach

Lagsa Ho : r ≤ 0, 1
Model III Model IV Model V

Unrestricted Constant Restricted Constant No Trend

1
0 17.1154 * 17.6613 13.8356 *

1 1.1412 1.6679 1.1

a Determination of lag length based on Schwarz bayesian information criterion (SBIC) and

Lagrange Multiplier tests for autocorrelation in the residuals.

∗ Rejection of the null hypothesis at 5 % .

∗∗ Rejection of the null hypothesis at 1 % .

Likelihood Ratio test on model specification of the VECM

Absence of a constant and a linear trend in levels

Model V in Model III

3.78

Critical values 3.84 for 5 % and 6.63 for 1%.

For the cointegration test, we use Johansen’s trace statistic and assume

that a quadratic time trend in levels is negligible, therefore, only three possible

specifications of the VECM are considered. From the table, it can be seen that

a first order specification is confirmed and the null hypothesis of no cointegrating
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relationship can be rejected for model III as well as model V at 5 % significance

level. Using a likelihood ratio test to choose the specification of the model that

fits the data the best, it can also be seen that the absence of constant term in the

cointegrating relationship as well as a linear trend in levels in the system cannot

be rejected. As a result, model V represents the data better.

With the confirmation of a cointegrating relationship in the model, we turn

the analysis to fully estimate the VECM and assess the effects of short term rates

on long term rates. Table 4.7 presents the results.

As can be seen, the cointegrating parameter is statistically different from zero

and displays the correct sign, as a result, it can be said that the central bank can

influence long-term rates by operating at the short end of the market. Looking

at the LR test statistics, at the same time, we confirm that the expectations

hypothesis is not consistent with the United States. For the speed of adjustment

parameters, finally, it can also be seen that only one of them is statistically

different from zero, however, the signs alternate, as a result, if one of the variables

deviates from the long run relationship, an adjustment will always occur and the

convergence rate is actually specified by the coefficients themselves.

Table 4.7 Estimation of the VECM
Model V: No Trend

α β LR test (1,-1)a

-0.042 * 1 6.16 **

0.036 -1.241 ** (0.013)

a Test statistic for the hypothesis of a restricted

cointegrated vector. P values in brackets.

* Rejection of the null hypothesis at 5 %.

** Rejection of the null hypothesis at 1 %.

For the continuous time framework, considering the results of Table 4.6,

we define y1(t) = L(t) and y2(t) = s(t) as the long and short term interest

rates, respectively (note that t is being treated as a continuous time parameter).

Therefore, the continuous time system for this application can be written as

dy(t) = A0y(t)dt+ ζ(dt), t > 0, (4.15)
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where y(t) = [y1(t), y2(t)]′, A0 = ab′, a = [a1, a2]′ is a 2 × 1 vector of adjustment

parameters, b = [1,−b1]′ is a 2 × 1 vector of cointegrating parameters and ζ(dt)

is the vector of random measures that follows its definitions as in (4.1).

The exact discrete time model for flow variables, as a result, following (4.4)

as well as the results of chapter 2, is defined as

∆yft =

 a1

a2

 e(a1−b1a2) − 1

a1 − b1a2

(1,−b1)yft−1 + ηft , t = 2, . . . , T, (4.16)

ηft =

∫ t

t−1

∫ r

r−1

(
I2 +

 a1

a2

 e(r−s)(a1−b1a2) − 1

a1 − b1a2

(1,−b1)

)
ζ(ds)dr.

For the observed vector yf1 , at the same time, we have

yf1 =

 a1

a2

 1

a1 − b1a2

(∫ 1

0

(er(a1−b1a2) − 1)dr

)
(1,−b1)y(0) + ηf1 , (4.17)

where y(0) is the boundary condition of the data and

ηf1 =

∫ 1

0

∫ r

0

(
I2 +

 a1

a2

 e(r−s)(a1−b1a2) − 1

a1 − b1a2

(1,−b1)

)
ζ(ds)dr.

Then, the estimates of our model’s parameters are the elements of θ that

optimize

L(θ,Σ) =
nT∑
i=1

(ε2
i + 2 log pii), (4.18)

where n = 2, θ denotes de vector of unknown parameters to be estimated,

pii is the ith diagonal element of P , P is a real lower triangular matrix, with

positive elements along the diagonal. PP ′ = Ωf , E[ηf (ηf )′] = Ωf , ηf =

[(ηf1 )′, (ηf2 )′, · · · , (ηfT )′]′, ηft follows a moving average process of order one and the

nT elements of ε are computed in T vectors of size n using recursively the following

procedure

ε1 =
(
ε11, ε12

)′
= P−1

11 η
f
1 ,

εt =
(
εt1, εt2

)′
= P−1

tt (ηft − Pt,t−1εt−1), t = 2, 3, · · · , T.
(4.19)
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For the comparison, finally, we follow (4.13) and similarly calculate the

implied values. Results are presented in Table 4.8 and the exposure follows that

of Table 4.5.

As can be seen, the continuous time cointegrating parameter is almost

identical to its discrete time counterpart. Looking at the LR test, at the same,

our continuous time specification also rejects the expectations hypothesis for the

United States. For the adjustment parameters, finally, although the signs remain,

we see that bias is evident.

Considering that, some conclusions can be drawn. First, no matter what

the time specification is, the long run relationship between the variables will

always be identically measured by the cointegrating parameter and second, if it is

suspected that the data contains some sort of temporal aggregation and Johansen’s

methodology is used, the estimates of the adjustment parameters will suffer from

temporal aggregation bias and will lead to inaccurate conclusions. Therefore,

in these particular cases, in order to make appropriate economic decisions, our

continuous time methodology has to be used.
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Table 4.8 Implied Discrete Time Values and Continuous Time Model Estimates

Implied

values

a1 -0.0429

a2 0.0367

b1 -1.241

CTM

VECM

Estimates

a1 -0.030 (0.0304)

a2 0.081 (0.0456)

1

b1 -1.242 (0.0836)

m11 0.645 (0.0357)

m21 0.637 (0.0732)

m22 0.784 (0.0464)

LR test 6.82 **

p-value 0.009

* Rejection of the null hypothesis at 5 %.

** Rejection of the null hypothesis at 1 %.

Numbers in parentheses denote standard

errors.

4.3.3 Permanent Income Hypothesis

For this application, we extend the seminal propositions of Friedman

[1957], Hall [1978], and Flavin [1981], and follow Campbell [1987] to evaluate, for

the United States, the main implication of the rational expectations-permanent

income hypothesis (PIH), that is to say, in this application, we evaluate the long

run relationship between consumption and total disposable income.

In the analysis, as in Campbell [1987], we consider that such a relationship

is given by the optimal path of consumption of the infinitely lived representative
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consumer of the economy, as a result, we write it as

Ct − β1Y
p
t = εt, (4.20)

where β1 ≤ 1 is the propensity to consume, Ct is consumption, εt is the random

disturbance term at time t and Y p
t , at the same time, is known as the permanent

income and is defined as

Y p
t ≡ r

[
Wt +

(
1

1 + r

) ∞∑
i=0

(
1

1 + r

)i
EtYt+i

]
,

where Et is the expectations operator, Wt is non-human wealth, r is the constant

rate of return of this non-human wealth and Yt is the income at time t.

Looking at equation (4.20), if cointegration exists, we see that consumption

will never deviate more than a certain fraction (given by the propensity to

consume) of the expected present value of the future income. Moreover, if the

rational expectations hypothesis holds, the cointegrating vector must be β′ =

(1,−1), therefore, white noise deviations aside, consumption must proportionally

adjust to permanent income. In here, as before, in order to test such hypothesis,

Johansen’s cointegration procedure as well as LR tests are applied to the data.

As in the previous applications, with the aim of analysing the effects, if there

are any, of ignoring aggregation in the specification, we also apply our continuous

time methodology to the data and assess the long run relationship between

consumption and total disposable income. Of course, given that consumption

as well as income are better conceived as flow variables, in our model, the

flow variables specification is considered. Next part describes precisely the

methodology.

Empirical Results

Our data comes from the Federal Reserve Bank of St. Louis and consists

of Real Gross Domestic Product and Real Household Consumption Expenditure

at 2009 prices for the United States. The observations are quarterly measures of

the variables and the period runs from 1950:Q1 to 2015:Q4. Figure 4.3 depicts

the series.
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Figure 4.3 Gross Domestic Product and Consumption Expenditure at 2009
prices
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Source: Federal Reserve Bank of St. Louis (2016).

As we can see, the co-movement between the series seems to exist, therefore,

the long run relationship may occur. For the cointegration analysis, Table 4.9

presents the statistical properties of the series as well as the tests for cointegration.

As can be seen, the unit root tests are not able to reject the null hypothesis of a

unit root in levels for any of the series, therefore, they are non stationary processes.
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Table 4.9 Statistical tests and Specification analysis
Permanent Income Hypothesis

Unit Root Tests

Levels
PP test DF-GLS testa

Statisticb Lagsc Statisticd

GDP 2.656 2 -0.464

Consumption 4.199 3 -0.376

a Stationarity around a linear time trend is assumed.

b Critical values are 5 % -2.86, 1% -3.43.

c Number of lag is chosen by the modified AIC (MAIC).

d Critical values are 5 % -2.86, 1% -3.43.

Cointegration Test using Johansen’s approach

Lagsa Ho : r ≤ 0, 1
Model III Model IV Model V

Unrestricted Constant Restricted Constant No Trend

2
0 35.515*** 75.928** 67.528**

1 0.316 5.581 0.4403

a Determination of lag length based on Schwarz bayesian information criterion (SBIC) and

Lagrange Multiplier tests for autocorrelation in the residuals.

∗ Rejection of the null hypothesis at 5 % .

∗∗ Rejection of the null hypothesis at 1 % .

Likelihood Ratio test on model specification of the VECM

Absence of a constant and a linear trend in levels

Model V in Model III

8.52**

Critical values 3.84 for 5 % and 6.63 for 1%.

* Rejection of the null hypothesis at the 5%.

** Rejection of the null hypothesis at the 1 %.

Turning over to cointegration, it can also be seen that a second order VECM

specification is confirmed and the null hypothesis of no cointegrating relationship
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can be rejected for model IV as well as model V at 1 % significance level. From

the LR test, it can be seen that a constant term in the cointegrating relationship

as well as a linear trend in levels cannot be neglected. As a result, model III fits

the data better.

Full estimates of the VECM as well as the implications of the PIH for the

United States are presented in Table 4.10. As can be seen, the cointegrating

parameter is statistically different from zero and displays the correct sign. For

the speed of adjustment coefficients and the intercepts, on the contrary, we see

that not all of them are statistically significant and on top of that, some are also

showing the wrong sign. Looking at the LR test statistic, at the same time, we

see that the standard rational expectations hypothesis is not consistent with the

United States.

Table 4.10 Estimation of the VECM
Model III: Unrestricted Constant

µ0 α β γ Ψ1 LR test (1,-1)a

0.2591 **

0.1838
-0.0399 ** 1 -0.0006 0.0921 * 7.082 *

-0.001 -0.7442 ** 0.0163* 0.9221 ** (0.007)

0.0433

a Test statistic for the hypothesis of a restricted cointegrated vector. P vales im brackets.

* Rejection of the null hypothesis at 5 %.

** Rejection of the null hypothesis at 1 %.

For the continuous time specification, considering the results of Table 4.9,

we define, respectively, y1(t) = C(t) and y2(t) = Y p(t) as consumption and total

income, therefore, the continuous time system for this application can be written

as

d[Dy(t)] = [A1Dy(t) + A0y(t) + c]dt+ ζ(dt), t > 0, (4.21)

where y(t) = [y1(t), y2(t)]′, A1 is a 2×2 matrix of parameters, A0 = ab′, a = [a1, a2]′

is a 2 × 1 vector of adjustment parameters, b = [1,−b1]′ is a 2 × 1 vector of

cointegrating parameters, c = [c1, c2]′ is the vector of intercepts and ζ(dt) is the

vector of random measures that follows its definitions as in (4.1). In here, it is

important to notice that a second order specification of the system is considered
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because Johansen’s test confirmed a second order VECM.

The exact discrete time system for flow variables, as a result, following (4.4),

is defined as

∆yft = Π(θ)yft−1 + Γ1(θ)∆yft−1 + gft (θ) + ηft , t = 3, · · · , T, (4.22)

where θ is the vector of unknown parameters of the system comprised in A1, A0 and

c. Also, ηft is the discrete time disturbance vector that follows a moving average

process of order 2 (see Chapter 3 Lemma 3.3.2 for details), Π(θ) = F1 + F2− I =

k(θ)b′ and Γ1(θ) = −F2, with

F1 = S1e
AS ′1 + (S1e

AS ′2)(S2e
AS ′2)(S1e

AS ′2)−1,

F2 = −(S1e
AS ′2)(S2e

AS ′2)(S1e
AS ′2)−1(S1e

AS ′1) + (S1e
AS ′2)(S2e

AS ′1),

S1 =
(
I2 02

)
, S2 =

(
02 I2

)
,

eA =
(
I4 + UH−1(eH − I3)V ′

)
, Cij = Sie

AS ′j i, j = 1, 2,

k(θ) = (k1, k2)′, b′ = (1,−b1),

gft (θ) = S1

(∫ 1

0

eArds
)
c∗ −

(
C12C22C

−1
12 S1 − C12S2

)
S1

(∫ 1

0

eArds
)
c∗

A = UV ′ =


0 0 1 0

0 0 0 1

a1 −a1b1 x z

a2 −a2b1 r w

 , H = V ′U =


0 1 −b1

a1 x z

a2 r w

 ,

V ′ =


1 −b1 0 0

0 0 1 0

0 0 0 1

 , U =


0 1 0

0 0 1

a1 x z

a2 r w

 , c∗ =


0

0

c1

c2

 .

The complementary equations for t = 1, 2, at the same time, are given by

yf1 = Q1x
f (0) + gf1 (θ) + ηf1 ,

∆yf2 = Λ1(θ)yf1 +Q2x
f (0) + gf2 (θ) + ηf2 ,

(4.23)
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where xf (0) is the vector of boundary conditions and

Λ1 = (S1e
AS ′1)− I2 Q1 = S1

∫ 1

0

erAdr, Q2 =(S1e
AS ′2)S2

∫ 1

0

erAdr,

gf1 (θ) = S1

(∫ 1

0

∫ r

0

e(r−s)Adsdr
)
c∗,

gf2 (θ) = S1

(∫ 1

0

eArds
)
c∗ + C12S2

(∫ 1

0

∫ r

0

e(r−s)Adsdr
)
c∗.

Then, the estimates of our model’s parameters are the elements of θ that

optimize

Lf (θ,Σ) =
nT∑
i=1

(ε2
i + 2 log pii), (4.24)

where n = 2, pii is the ith diagonal element of P , P is a real lower triangular

matrix, with positive elements along the diagonal, such that PP ′ = Ωf ,

E[(ηf )(ηf )′] = Ωf , ηf = [(ηf1 )′, (ηf2 )′, · · · , (ηfT )′] and the nT elements ε are

computed in T vectors of size n using recursively the following procedure

ε1 =
(
ε11, ε12

)′
= P−1

11 η
f
1 ,

ε2 =
(
ε21, ε22

)′
= P−1

22 (ηf2 − P2,1ε1),

εt =
(
εt1, εt2

)′
= P−1

tt (ηft − Pt,t−1εt−1 − Pt,t−2εt−2), t = 3, · · · , T.

(4.25)

For the comparison, finally, we follow (4.13) and similarly calculate the

implied values of our system’s parameters by equating term by term (4.22), (4.23)

and model III of equation (4.8), therefore

αµ0 + γ = g(θ), β1 = b1,

α1 = k1(θ), Ψ1 = Γ1(θ),

α2 = k2(θ).

(4.26)

Results are presented in Table 4.11 and, as before, exposure follows that of

Table 4.5. As can be seen, both the adjustment coefficients and the cointegrating

parameter maintain the sign, however, the magnitude of the former changes with

the specification. In here, it is important to notice that the parameter that differs

the most from its implied value (a2) is also the one that represents the estimate
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that is not statistically significant in the discrete time analysis (see α2 in Table

4.10).

At the same time, if we look at the estimates of the intercepts (c1 and c2),

a similar picture emerges; the magnitude changes with the specification and the

parameter that switches the sign is also the one that represents the estimate that

is not statistically significant in the discrete time analysis (see γ1 in Table 4.10).

Finally, looking at the LR test, we see that our continuous time specification

also rejects the rational expectations hypothesis for the United States.

As a result, it can be pointed out that estimation bias in cointegrated systems

does not only depend on whether the variables in the model suffer some sort of

temporal aggregation, but also, on whether the system requires a higher order

specification. Therefore, as mentioned earlier, in any of those cases and in order

to make appropriate conclusions of the model, our continuous time methodology

is recommended.



Chapter 4. Empirical Applications 128

Table 4.11 Implied Discrete Time Values and Continuous Time Model
Estimates

Implied

values

c1 -0.0678

c2 0.0712 Γ1 -3.9222

a1 0.1412 Γ2 6.8484

a2 0.3173 Γ3 9.1451

Γ4 -5.0536

b1 -0.74

CTM

VECM

Estimates

c1 0.0457 (0.0209)

c2 0.3805 (0.0578) Γ1 3.5187 (0.0167)

a1 0.1559 (0.0187) Γ2 9.4991 (0.0212)

a2 0.1306 (0.0113) Γ3 -5.4225 (0.0099)

1 Γ4 -4.6069 (0.0223)

b1 -0.759 (0.0082)

m11 0.7513 (0.0173)

m12 0.0304 (0.0133)

m22 0.1778 (0.0081)

LR test 12.005 **

p-value 0.0005

* Rejection of the null hypothesis at 5 %.

** Rejection of the null hypothesis at 1 %.

Numbers in parentheses denote standard errors.
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4.4 Concluding remarks

With the aim of analysing the effects of temporal aggregation over the

estimates of a model’s parameters, focusing on the non stationary cointegrated

case, this document has presented three multivariate applications of the estimation

methodology for systems in continuous time developed in the previous chapters.

For the analysis, Johansen’s general VECM as well as our exact discrete time

VECM have been used. For the comparison, given that the representation of the

estimates differs dramatically with the specification, the estimated parameters of

the two specifications have been contrasted with one another through the use of the

implied values. In there, discrete time test were used to identify the specification

of the model that fits the data the best and such model was assumed to be correct.

The first application (market efficiency and cointegration) considered a

first order system and a stock variables specification. In the results, as expected,

given the simple specification and the fact that there was no temporal aggregation

in the data, both our continuous time methodology as well as Johansen’s produced

virtually identical estimates.

The second application (the term structure of the interest rate), at

the same time, presented a first order system but considered a flow variables

specification instead, as a result, when applying Johansen’s methodology, the

estimates of the adjustment parameters showed the cost of ignoring aggregation

in the specification and led to inappropriate conclusions.

The third application (the permanent income hypothesis), finally,

considered also a flow variables specification but presented a second order system,

as a result, it generalized the analysis. In the results, further support for the use

of our continuous time methodology was found. In there, not only the adjustment

parameters and the intercepts showed bias, but more importantly those who

differed the most from their implied values were also the ones that represented

the estimates that were not statistically significant in the discrete time analysis

(see Table 4.11 together with Table 4.10).

Considering that, it has been concluded that estimation bias in cointegrated

systems does not only depend on whether the variables in the model suffer some
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sort of temporal aggregation, but also, on whether the system requires a higher

order specification. Therefore, as it was shown, in any of those cases and in order

to make appropriate conclusions of the model, our continuous time methodology

is recommended.

For further research, considering the results reported here, there are a

number of directions that emerge. Perhaps the most obvious extension is to

consider an exact discrete time representation for mixed sample. For that

area, some progress has already being done, Chambers [2009], for example, has

presented mixed sample first order cointegrated systems’ analysis and although his

specification varies from the one analysed here, he has settled the basis. Therefore,

a generalization of that result is a natural extension and will be explored in future

work.
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