
IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. XX, NO. X, DECEMBER 2016 1

Inter-cluster Thread-to-core Mapping and DVFS
on Heterogeneous Multi-cores

Basireddy Karunakar Reddy, Amit Kumar Singh, Member, IEEE, Dwaipayan Biswas,
Geoff V. Merrett, Member, IEEE, and Bashir M. Al-Hashimi, Fellow, IEEE

Abstract—Heterogeneous multi-core platforms that contain different types of cores, organized as clusters, are emerging, e.g. ARM’s
big.LITTLE architecture. These platforms often need to deal with multiple applications, having different performance requirements,
executing concurrently. This leads to generation of varying and mixed workloads (e.g. compute and memory intensive) due to resource
sharing. Run-time management is required for adapting to such performance requirements and workload variabilities and to achieve
energy efficiency. Moreover, the management becomes challenging when the applications are multi-threaded and the heterogeneity
needs to be exploited. The existing run-time management approaches do not efficiently exploit cores situated in different clusters
simultaneously (referred to as inter-cluster exploitation) and DVFS potential of cores, which is the aim of this paper. Such exploitation
might help to satisfy the performance requirement while achieving energy savings at the same time. Therefore, in this paper, we
propose a run-time management approach that first selects thread-to-core mapping based on the performance requirements and
resource availability. Then, it applies online adaptation by adjusting the voltage-frequency (V-f) levels to achieve energy optimization,
without trading-off application performance. For thread-to-core mapping, offline profiled results are used, which contain performance
and energy characteristics of applications when executed on the heterogeneous platform by using different types of cores in various
possible combinations. For an application, thread-to-core mapping process defines the number of used cores and their type, which are
situated in different clusters. The online adaptation process classifies the inherent workload characteristics of concurrently executing
applications, incurring a lower overhead than existing learning-based approaches as demonstrated in this paper. The classification of
workload is performed using the metric Memory Reads Per Instruction (MRPI). The adaptation process pro-actively selects an
appropriate V-f pair for a predicted workload. Subsequently, it monitors the workload prediction error and performance loss, quantified
by instructions per second (IPS), and adjusts the chosen V-f to compensate. We validate the proposed run-time management
approach on a hardware platform, the Odroid-XU3, with various combinations of multi-threaded applications from PARSEC and
SPLASH benchmarks. Results show an average improvement in energy efficiency up to 33% compared to existing approaches while
meeting the performance requirements.

Index Terms—Heterogeneous multi-cores, Multi-threaded applications, Run-time management, Performance, Energy consumption.

F

1 INTRODUCTION AND MOTIVATION

H ETEROGENEOUS multi-core architectures are comput-
ing alternatives for several application domains such

as embedded [1] and cloud [2]. These architectures integrate
several types of processing cores within a single chip. For
example, ARM’s big.LITTLE architecture contains two types
of cores; big and LITTLE, where big cores are grouped into
one cluster and LITTLE cores into another [3]. The big clus-
ter has both higher cache capacity and computational power
than the LITTLE one. In such architectures, distinct features
of different types of cores can be exploited to meet end user
requirements. These architectures are also equipped with
dynamic voltage and frequency scaling (DVFS) capabilities
that enable on-the-fly linear reduction of frequency (f) and
voltage (V), yielding a cubic reduction in dynamic power
consumption (∝ V 2f). This facilitates to save energy if
the power consumption is reduced enough to cover the
extra time it takes to run the workload at a lower voltage-
frequency (V-f).

• B. K. Reddy, D. Biswas, G. V. Merrett, and B. M. Al-Hashimi are with
the Department of Electronics and Computer Science, University of
Southampton, U.K.; A. K. Singh is with School of Computer Science and
Electronic Engineering, University of Essex, UK.
E-mail: krb1g15@ecs.soton.ac.uk; a.k.singh@essex.ac.uk;
db9g10@ecs.soton.ac.uk; gvm@ecs.soton.ac.uk; bmah@ecs.soton.ac.uk

Manuscript received December X, 2016; revised March X, 2017.

Modern systems equipped with heterogeneous multi-
core chips need to deal with multiple applications running
concurrently (at the same time) while achieving the desired
levels of performance for each of them. Moreover, modern
applications are multi-threaded (to exploit multi-core chips),
which can be mapped onto different cores for parallel exe-
cution, and thus reducing the overall completion time.

Efficient run-time management of multi-threaded ap-
plications on heterogeneous multi-cores is of paramount
importance to achieve energy efficiency and high perfor-
mance requirements, that have been a key research focus for
mobile and embedded systems [4]–[6]. In general, for each
application, the management process first finds a thread-to-
core mapping defining the number of used cores and their
type, and then operating voltage-frequency levels of cores
by looking the workload while satisfying the performance
requirement. As part of these, the following experimental
observations have been made, which form the motivation
behind the proposed approach.
Observation 1: Fig. 1 shows the motivation to map an
application on a heterogeneous multi-core architecture con-
taining two types of cores, big (B) and LITTLE (L), where
4B and 4L cores are present. The horizontal axis shows
various possible resource combinations. The vertical pri-
mary (left-hand side) and secondary (right-hand side) axes

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. XX, NO. X, DECEMBER 2016 2

0

500

1000

1500

2000

2500

0
200
400
600
800
1000
1200
1400

1
L

1
B 2
L

1
L+
1
B

2
B 3
L

2
L+
1
B

1
L+
2
B

3
B 4
L

3
L+
1
B

2
L+
2
B

1
L+
3
B

4
B

4
L+
1
B

3
L+
2
B

2
L+
3
B

1
L+
4
B

4
L+
2
B

3
L+
3
B

2
L+
4
B

4
L+
3
B

3
L+
4
B

4
L+
4
B

1 2 3 4 5 6 7 8

E
n
e
rg
y
C
o
n
su
m
p
ti
o
n

E
x
e
cu
ti
o
n
T
im

e

Resource combinations at different number of cores

Execution Time Energy Consumption

Fig. 1. Execution time (seconds) and energy consumption (J) values
by executing the Blackscholes application (from PARSEC benchmark
[9]) with various core combinations, including inter-cluster, on ARM’s
big.LITTLE architecture containing 4 big (B) and 4 LITTLE (L) cores.

0.00

0.01

0.02

0.03

0.04

1 6 11 16 21 26 31

M
R

P
I

Time Intervals

fm rd ra

0

0.01

0.02

0.03

1 6 11 16 21 26 31

M
R

P
I

Time Intervals

fm-rd fm-ra rd-ra fm-wa-rd

Fig. 2. Variation in MRPI for individual (left) and concurrent (right)
execution of multiple applications.

show execution time and energy consumption, respectively,
when executing at the various resource combinations. The
application execution time scales well with number of cores
and further it benefits from mapping onto big and LITTLE
clusters at the same time (referred to as inter-cluster thread-
to-core mapping). It can be seen that executing on 4L and
4B cores is beneficial in terms of execution time and energy
consumption, and thus thread-to-core mapping should uti-
lize the 4B and 4L cores.
Observation 2: Fig. 2 demonstrates the variations in work-
load when multiple applications are run in two different
configurations: individually (left) and concurrently (right)
on the A15 cluster of Odroid-XU3 platform [7]. Here, we
consider three applications having different workloads from
SPLASH: fmm (fm), radix (rd) and raytrace (ra), and their
respective combinations fm-rd, fm-ra, rd-ra and fm-rd-ra.
The metric considered to classify the workload is Memory
Reads Per Instruction (MRPI= L2 cache read refills

instructions retired) as opposed
to the more commonly used CPU cycles [8] for classifying
the application workloads. Selection of MRPI is influenced
by its relatively low overhead (two performance counters
only) and high correlation with the memory intensiveness of
an application. Furthermore, we experimentally verified its
frequency agnostic behaviour as compared to other metrics,
such as Memory Reads Per Cycle (MRPC), having maximal
variations with respect to frequency. MRPI classifies the
workload based on the degree of memory intensiveness.
It can be observed from Fig. 2 that the different workload
classes of the applications fm, rd and ra can clearly be clas-
sified as compute intensive, memory intensive, and mixed
(compute and memory intensive), respectively, when run
individually. However, it is completely different in the case
of concurrent execution having greater workload variability
due to applications’ interference. Such classification can help
to apply appropriate voltage-frequency levels to optimize
energy while satisfying performance constraint.

There are existing approaches for run-time management
of concurrently executing applications [6], [10]–[14]. How-
ever, the approaches of [10], [11] consider homogeneous

·

·

(i) Thread-to-core Mapping

and Execution
(ii) Workload

Classification

Workload class 1

e.g. compute (C)

Workload class 2

e.g. memory (M)

Workload class 3

e.g. mixed (X)

Application 1

V-f1

V-fk

·

·

(iii) V-f

selection

Thread1

Threadm

...

Workload1d1
...

Application N

. WorkloadnThread1 Corei

Threadm Corek Workload1d11 Workloadn

...

...

...

...

Mapping Execution Time

Workload1d1
..... WorkloadnCore1

Core1 Workload1

·

d1
.... Workloadn

...

...

...

Fig. 3. Key steps in runtime management of concurrent execution of
multi-threaded applications on a heterogeneous multi-core architecture.

multi-core architectures and thus cannot be applied to het-
erogeneous ones. Approaches proposed in [6], [13] do not
exploit the inter-cluster thread-to-core mapping (observation
1) and run-time workload classification (observation 2) for
performance-constrained applications, missing the oppor-
tunity for energy savings. In [12], application threads are
mapped to more than one type of cores, but the approach
heavily depends on off-line regression analysis of perfor-
mance and energy for all possible thread-to-core mappings
and V-f levels, which is non-scalable. Moreover, the V-f
level is not adjusted during execution, i.e. observation 2 is
not exploited, which is beneficial for adapting to workload
variations. In contrast, our approach exploits observation 1
for thread-to-core mapping and observation 2 for DVFS to
achieve energy savings.

The key steps in runtime management of concurrent ex-
ecution of multiple applications on a heterogeneous multi-
core system are summarized in Fig. 3. Considering the
above two observations made on inter-cluster exploitation
and workload classification, following four main challenges
are associated with the run-time management (described
subsequently):

(i) Efficient inter-cluster thread-to-core mapping for mul-
tiple applications (left-most part of Fig. 3).

(ii) Workload classification for concurrently executing ap-
plications based on the identified thread-to-core map-
ping (middle part of Fig. 3).

(iii) Identification of appropriate V-f level of cores for the
associated workloads (right most part of Fig. 3).

(iv) Analysing concurrent applications’ interference and
taking appropriate measures to meet performance re-
quirements.

(i) Inter-cluster thread-to-core mapping step needs to identify
the number of used cores and their type for each application
while meeting the performance requirement. In case of mul-
tiple applications, the mapping process has the challenge
of allocating the right number and type of cores to each
application from the available cores (4 LITTLE and 4 big
cores for ARM’s big.LITTLE architecture presented in the
Odroid-XU3 [7]), such that their performance requirements
are satisfied and energy consumption is minimized. The
left-most part of Fig. 3 shows an example thread-to-core
mapping for each application, where threads are allocated
onto different types of cores (highlighted in various grey-
scales).
(ii) Workload classification step needs to classify the workload
within each cluster for the concurrently executing appli-
cations (shown under Execution in the left-most part of

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. XX, NO. X, DECEMBER 2016 3

Fig. 3) by taking the workload of each core into account. The
classification could be into various classes such as compute
intensive, memory intensive and mixed [15], which results
from the varying ways in which they exercise the hardware.
From a performance perspective, it is desirable to run a
compute intensive application at a higher clock frequency
as compared to memory intensive one such that high per-
formance can be achieved. However, an appropriate metric
needs to be identified in order to classify the workloads,
using MRPI in our case. A high workload on the processing
core means a low MRPI and vice versa. Classification at a
given time interval plays a pivotal role for achieving the
desired energy-performance trade-off, which is discussed in
detail further in Section 4.
(iii) Appropriate V-f identification is required for the associated
workloads such that the desired energy-performance trade-
off can be achieved. Since multiple applications are executed
concurrently, the V-f level needs to be identified by taking
the performance requirements of all of them into account.
Further, as different set of V-f levels are available for the
cores situated into different clusters, e.g. big and LITTLE
clusters in ARM’s big.LITTLE architecture, it becomes chal-
lenging to identify the most suitable V-f levels for dif-
ferent clusters while respecting applications’ performance
constraints. The right most part of Fig. 3 shows an example
demonstration of V-f assignment.
(iv) Applications’ interference due to concurrent execution of
applications may degrade their performance. In order to
meet the performance requirements, the interference level
should be analysed and then it should be used to take
appropriate measures. The interference level can be mea-
sured as the joint performance degradation of applications
when executing concurrently in comparison to individual
executions. Clustered heterogeneous architectures such as
ARM’s big.LITTLE represent different amounts of interfer-
ence on big and LITTLE cluster for the same workload due
to different amounts of available memory for them and thus
they need to be analysed separately. Thereafter, they need to
be exploited to meet the performance requirements.

A close observation of the existing run-time management
approaches indicates that they cannot address all the afore-
mentioned challenges for executing multi-threaded applica-
tions on heterogeneous multi-core platforms (described in
the Section 2). In order to overcome the limitations of the ex-
isting approaches towards addressing the above mentioned
challenges, this paper makes the following contributions:

1) Offline analysis of individual applications for perfor-
mance and energy consumption when mapped to var-
ious possible resource combinations on a given hetero-
geneous multi-core platform to obtain profiled data.

2) For concurrently executing applications, an online map-
ping strategy facilitated by sorted profile data, to com-
pute the minimum energy consumption point, while
satisfying the performance and resource constraints.
For each application, the computed point defines
thread-to-core mapping, and the platform is configured
following the mapping to start the application execu-
tion.

3) For the chosen thread-to-core mappings of concurrently
executing applications, an online energy optimization

technique that first classifies their inherent workload
characteristics and then pro-actively selects an appro-
priate voltage-frequency (V-f) pair according to pre-
dicted workload in order to minimize the switching
transitions and energy.

4) Implementation and validation of both the offline and
online steps on a real hardware platform, specifically
Odroid-XU3 platform [7].

The offline analysis is performed by taking re-
source/core combinations from the 4 A15 (big) and 4 A7
(LITTLE) cores present on Odroid-XU3 platform [7]. The
online mapping strategy chooses thread-to-core mappings
such that total number of used cores does not exceed the
available cores (4 A15 cores and 4 A7 cores). For online
energy optimization, appropriate V-f for various workload
classes is determined by performing offline design space
exploration (DSE) that uses a custom program to generate
a varying number of memory accesses. Subsequently, it
monitors the workload prediction error and performance
loss, quantified by instructions per second (IPS) at run-
time and adjusts the chosen V-f to compensate. The pro-
posed approach shifts heavy computations to offline and
thus helps in reducing the runtime overheads compared to
learning-based approaches [8], [16]. The proposed approach
is validated on the Odroid-XU3 platform with the various
combinations of applications from PARSEC and SPLASH
benchmarks.

To the best of our knowledge, this is the first study
on run-time management of concurrent multi-threaded ap-
plications on heterogeneous multi-core architecture where
more types of cores are used by an application at the same
time and V-f is adjusted at various time intervals during
execution through workload selection, classification and
prediction.

The rest of the paper is organized as follows. Section
2 presents related works. Section 3 introduces the system
model describing the application, architecture and problem
definition in more details. Section 4 describes various stages
of the proposed methodology. Section 5 presents the exper-
imental results and their analysis with chosen benchmark
applications and hardware platform. Finally, Section 6 con-
cludes the paper.

2 RELATED WORK

There have been several works on offline optimization to
achieve performance-energy trade-off points for multi-core
systems by employing DVFS and/or task mapping [17]–
[21]. However, these works have several drawbacks, such as
they consider a single application at a time and thus cannot
handle concurrent applications [17]–[20], cannot be applied
for online optimization as they perform heavy time consum-
ing computations, and most of them are not evaluated on
real hardware platform [18], [20], [21]. Online optimization
has also been considered to cater for dynamic workload
scenarios in order to optimize energy consumption while
respecting the timing constraint. For online optimization,
either all the processing is performed at run-time or else the
optimization is supported by offline analysed results.

For performing all the processing at run-time, several
works have been reported [8], [15], [16], [22]–[24]. In [22], the
online algorithm utilizes hardware performance monitoring

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. XX, NO. X, DECEMBER 2016 4

counters (PMCs) to achieve energy savings without recom-
piling the applications. The authors of [23] present an accu-
rate run-time prediction of execution time and a correspond-
ing DVFS technique based on memory resource utilization.
A similar approach, which is a hardware-specific imple-
mentation of the stall-based model, is proposed in [15]. In
[24], an adaptive DVFS approach for FPGA-based video mo-
tion compensation engines using run-time measurements
of the underlying hardware is introduced. In [8], online
reinforcement learning based adaptive DVFS is performed
to achieve energy savings. These approaches perform well
for unknown applications to be executed at run-time, but
lead to inefficient results as optimization decisions need
to be taken quickly and offline analysis results are not
used. Further, they are agnostic of concurrent workload
variations and thus fail to adapt for concurrently executing
multiple applications. Recently, there has been focus on
online optimization facilitated by offline analysis results [6],
[10]–[13], [25], [26]. Such approaches lead to better perfor-
mance results than only online optimizations as they take
advantage from both offline and online computations. In
[10], thread-to-core mapping and DVFS is performed based
on power constraint. Similarly, in [11], first thread-to-core
mapping is obtained based on utilization and then DVFS
is applied depending upon the surplus power. However,
the approaches of [10], [11] target homogeneous multi-core
architectures and thus cannot be applied to heterogeneous
ones.

For heterogeneous multi-cores, recently some works
have been reported that consider multi-threaded applica-
tions [6], [12], [13], [25], [26]. However, most of these ap-
proaches map application threads completely on one type
of core situated within a cluster [25] [13] [26] [6]. This
reduces the thread-to-core mapping complexity, but misses
to benefit from the distribution of an application threads to
multiple types of cores at a given moment of time. In [25],
performance impact estimation (PIE) is used as a mecha-
nism to predict which thread-to-core mapping is likely to
provide the best performance in order to map the threads
on the most appropriate core type. In a similar direction,
some proposals have used workload memory intensity as
an indicator to guide applications’ thread-to-core mapping
[27]–[31]. For a given platform containing two types of cores
as big and LITTLE, such proposals map memory-intensive
workloads on a LITTLE core and compute-intensive work-
loads on a big core. Similarly, in [13], at a given moment of
time, all the threads of an application are mapped on one
type of cores. The threads are moved from one core type to
another when it beneficial by checking at a regular interval.
However, DVFS is not exploited in [25] and [13], which can
help to achieve further energy savings. In contrast, the ap-
proaches of [6], [12], [26] exploit DVFS, but they have several
drawbacks. For example, in [26], design space is explored
for a single application, which increases exponentially if
concurrent applications have to be considered. In [6], each
application is executed as single threaded and use only one
type of core for it at a time. In [12], application threads are
mapped to more than one type of cores, but the approach
heavily depends on off-line regression analysis of perfor-
mance and energy for all possible thread-to-core mappings
and V-f settings, which is non-scalable. Additionally, V-f

setting is not adjusted during execution, which is beneficial
for adapting to workload variations.

In contrast to existing approaches, our approach con-
siders concurrent execution of multiple applications, dis-
tributes threads on more types of cores at the same time
(performs inter-cluster thread-to-core mapping), applies
adaptive DVFS to save energy consumption and has been
implemented in hardware.

3 SYSTEM AND PROBLEM FORMULATION

This section describes the system architecture and applica-
tions considered in this work along with a detailed problem
definition.

3.1 System Architecture
The modern heterogeneous architectures contain different
types of cores in varying number. Further, cores of the same
type are grouped into clusters. One such architecture is
considered for our work. We have taken a 28 nm Samsung
Exynos 5422 chip hosted on the Odroid XU3 board [7],
which is based on the ARM’s big.LITTLE heterogeneous
architecture and contains two clusters named big and LIT-
TLE [32]. In addition, the chip contains a Mali-T628 GPU
and 2GB DRAM LPDDR3. The big and LITTLE clusters
contain high performance Cortex-A15 quad core processor
and low power Cortex-A7 quad core processor, respectively.
The board also contains four real time current/voltage
sensors that facilitate measurement of power consumption
(static and dynamic) on the four separate power domains:
big (A15) cores, LITTLE (A7) cores, GPU and DRAM. The
Odroid-XU3 board can run different flavors of Linux. It also
supports core disabling and DVFS, helping in optimizing
system operation in terms of performance and energy con-
sumption. DVFS can be used to change V-f levels at a per-
cluster granularity. For each power domain available for
a cluster, the supply voltage and clock frequency can be
adjusted to pre-set pairs of values. The Cortex-A15 quad
core cluster has a range of frequencies between 200 MHz
and 2000 MHz with a 100 MHz step, whereas the Cortex-
A7 quad core cluster can adjust its frequencies between
200 MHz and 1400 MHz with a step of 100 MHz. The
device firmware automatically adjusts the voltage for a
selected frequency, therefore, adjusting V-f and frequency
has interchangeably been used throughout the paper.

3.2 Applications
For multi-core systems, multi-threaded applications repre-
sent current and emerging workloads as they can used to
evaluate concurrency and parallel processing. Examples of
such applications are available in several benchmarks such
as PARSEC [9] and SPLASH [33]. Applications from PAR-
SEC and SPLASH benchmarks exhibit different memory
behavior, data partitions and data sharing patterns from
other benchmarks in common use. The memory behavior
of some applications is presented in Fig. 2, which shows
whether they are compute intensive, memory intensive or
both compute and memory intensive while executing in
various time intervals. Such a classification helps to take
appropriate actions to perform required optimizations.

We have used applications from PARSEC and SPLASH
benchmarks on the multi-core architecture of the Odroid-
XU3 platform. For each considered application, the user can

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. XX, NO. X, DECEMBER 2016 5

specify a performance requirement in terms of completion
time of the application. Such performance requirements
can be translated to throughput requirements for frame
based applications like audio/video applications, where
throughput is expressed as a frame rate to guarantee a good
user experience. In a similar manner, the completion time
requirement can also be translated to an instructions per
second (IPS) requirement, as the total number of instructions
in an application is known.

3.3 Problem Definition
For an application with R threads to be mapped onto a
heterogeneous multi-core architecture with N clusters, i.e. N
core types (C1, C2, C3, ..., CN), where each cluster contains
li (i = 1, ..., N) cores, the possible number of thread-to-core
mappings (TCmap) can be represented as,

TCmap =

N∑
i=1

li +

N∏
i=1

li R ≥
N∑
i=1

li & R ≥ li

R ∗N +RN R <

N∑
i=1

li & R < li

(1)

For run-time power management, the modern cluster-based
architectures support cluster-wide DVFS, where cores of the
same type organized as a cluster are set to the same V-f
level from a predefined set of V-f pairs [3]. For example,
Odroid-XU3 [7], and Mediatek X20 [34] platforms employ
such architecture. Let li be the number of cores of type Ci in
a cluster Ei and nFi be the number of available V-f levels.
Then, to incorporate the V-f levels (nFi) into thread-to-core
mapping decisions, equation 1 will be modified as follows,

TCmap V F =

N∑
i=1

li ∗ nFi +

N∏
i=1

li ∗ nFi R ≥
N∑
i=1

li & R ≥ li

N∑
i=1

R ∗ nFi +

N∏
i=1

R ∗ nFi R <

N∑
i=1

li & R < li

(2)
As it can be seen from equation 2, the initial design space is
prohibitively large to explore during the application execu-
tion at different time intervals, and thus cannot be applied at
runtime. In order to overcome this issue, the exploration of
mapping can be fixed to the initial design space, and DVFS
exploration can be carried at run-time during different time
intervals by fixing the mapping from the initial design
space. This helps to solve the thread-to-core mapping and
DVFS problems orthogonally. We tackle the problem in the
same manner, as defined below:

Given an active application or a set of active applications
with performance constraints and a clustered heterogeneous
multi-core architecture supporting DVFS

Find an efficient static thread-to-core mapping for each
application at runtime and then apply DVFS during the
application execution to minimize the energy consumption

subject to meeting performance requirement of each ap-
plication without violating the resource constraints (number
of available cores in a platform)

For a total of n applications, there are 2n possible use-
cases, where each use-case represent a set of active applica-
tions. Finding all the possible mappings for each use-case

`

...

…

Performance

Loss?

Energy/Perf.

Statistics

Application layer

Scheduler Governor

Operating System (OS)

Performance

Monitors

Performance requirements

Thread-to-core

mapping

V-f control

T11 T1k

A1 Am

Tm1 .. Tmk

Am

Tm1TTm1 TmkTT

Heterogeneous

Multi-core CPU

Hardware

A1

T11 T1k..

(b) Workload Selection and

Prediction

(c) Workload Classification

and Frequency Selection

(d.1) Performance Observation

(IPS)

No

Change

(d.2)

Compensate

Design Space Exploration

YesNo

f-tab

(a) Thread-to-Core Mapping

Perf

constraints

(A1,…,Am)

Mapper

Design Space Exploration

Online Offline

Am

Tm1 Tmk..

 tj-1
 tj

tj+
1

Fig. 4. Overview of a three-layer run-time management (left) and our
contributions (right).

might not be possible within a limited time in case the
number of applications and/or cores in each heterogeneous
cluster increases. Therefore, the mappings can be explored
for an individual application and used in conjunction for
various use-cases at run-time, which also reduces the over-
head to store the mappings. We employ the same measures.

4 PROPOSED RUN-TIME MANAGEMENT

A three-layer view of a typical run-time management is
presented in Fig. 4 (left), where each layer interacts with the
others to execute an application, as indicated by arrows. The
top most layer is the application layer, which is composed of
multiple applications having various workload classes. The
middle layer is the operating system layer (e.g. iOS, Linux,
etc.), which coordinates an application’s execution on the
hardware (bottom), consisting of multi-core processors. An
overview of the proposed run-time management approach
employed by the OS has been illustrated in Fig. 4 (right),
which has the following stages:
(a) Thread-to-core mapping
(b) Workload selection and prediction
(c) Workload classification and frequency selection
(d) Performance observation and compensation
The novel aspects of proposed run-time management of
concurrent execution of multiple applications are as follows:

• Run-time identification of energy efficient inter-
cluster thread-to-core mapping that satisfies perfor-
mance and resource constraints.

• Online selection and classification of concurrent
workloads.

• A pro-active online DVFS technique using workload
prediction, which takes performance degradation
into account and adjusts the chosen V-f setting to
compensate.

A detailed discussion of each stage is presented in the
following sections.

4.1 Thread-to-Core Mapping
In order to meet the performance requirements of the
applications to be run concurrently, and to minimize the
energy consumption, an effective thread-to-core mapping is

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. XX, NO. X, DECEMBER 2016 6

0

500

1000

1500

2000

2500

0 0.001 0.002 0.003 0.004 0.005E
n
e
rg
y
C
o
n
su
m
p
ti
o
n
(J
)

Performance (1/seconds)

Fig. 5. Design points representing performance and energy trade-off
points for Blackscholes application.

important. This involves choosing an appropriate number
of cores and their type for each application. Since there are
several thread-to-core mapping options for each application,
exploring the whole mapping space is time consuming.
Therefore, at run-time, thread-to-core mapping is facilitated
through an extensive offline analysis to guide application
execution towards an energy efficient point. The offline
analysis evaluates performance, and energy consumption
for all the possible thread-to-core mappings at the maximum
available frequency that helps to meet high performance re-
quirements. At run-time, one of these mappings that leads to
energy-efficiency while meeting performance and resource
constraints is selected for each application. The following
sections present a detailed discussion on offline analysis and
run-time mapping selection.

4.1.1 Offline Analysis
For each available application, the offline analysis com-
putes all the possible thread-to-core mappings and their
performance and energy consumption on a given cluster-
based heterogeneous architecture. For the considered ap-
plications, the number of threads is greater than the num-
ber of cores available on the chosen hardware platform
(Odroid-XU3). Therefore, following equation 1, the total
number of thread-to-core mappings for each application is
24 (TCmap =4+4+4*4). Fig. 1 presents an example analysis
for the Blackscholes application that shows 24 mappings
and their respective performance (1/execution time) and
energy consumption.

The analysis results for each application are stored as
design points that represent performance and energy trade-
off points for all possible thread-to-core mappings at the
maximum frequency. Each design point is represented as
4-tuple: (Prf,EC, nL, nb), where Prf , EC, nL, and nb de-
note performance, energy consumption, number of LITTLE
cores, and number of big cores, respectively. These design
points are sorted in descending order to quickly identify the
points meeting a certain level of performance. This helps in
minimizing the run-time overhead while choosing the mini-
mum energy point for each performance-constrained appli-
cation. Fig. 5 shows the design points for the Blackscholes
application corresponding to Fig. 1. Similarly, design points
are stored for other applications as an outcome of the offline
analysis.

4.1.2 Run-time Mapping Selection
For a set of active applications, the runtime mapping has to
identify appropriate design points for each application such
that the overall energy consumption is minimized without
violating the performance and resource constraints (number

Algorithm 1 Run-time thread-to-core mapping selection

Input: CAApps, AppsPrfr , DP
Output: Map for each application

1: for each application Am do
2: Choose points DAm (∈ DP) such that Prf > AmPrfr ;
3: end for
4: for each combination point CP (from CAApps) do
5: Compute energy consumption of CP as Energy[CP]

(Equation 3);
6: Compute total number of used cores of different types

(Equation 4);
7: Add CP with its Energy[CP] and Ci UsedCores[CP] in

set CPS;
8: end for
9: From CPS, select the point having minimum energy con-

sumption (minEnergy[CP]) and satisfying resource con-
straint (i.e., Ci UsedCores[CP] < available Ci Cores);

10: For the minEnergy[CP], return number of used cores and
their types for each application as Map;

of cores available in the platform). For example, in case of
the Odroid-XU3 platform, the total number of used big and
LITTLE cores should not exceed four of each.

Algorithm 1 describes the run-time mapping selection
algorithm. The algorithm takes concurrently active applica-
tions (CAApps), their performance requirements (AppsPrfr)
and design points (generated in the previous step, DP =
D1, ..., Dm) as input and provides a static thread-to-core
mapping Map in terms of number of used cores and their
types as output for each application. It has been observed
in [10] that allocating more number of threads than cores
does not actually give any performance benefits. Moreover,
by varying number of threads per core (1, 2, .., t) where
the value of t can vary depending on the application and
resource allocation), the design space becomes prohibitively
large. Therefore, to reduce the mapping complexity, the
number of threads are chosen the same as the number
of cores. For each application, the algorithm first chooses
performance requirement satisfying points from its design
points. Since the points are stored in decreasing order of
performance, the points are chosen as the first entry in the
storage to the last entry meeting the performance require-
ment. Thus, a quick selection of points take place. Then,
for each combination point CP (formed by considering one
point from each application), energy consumption and used
cores of type Ci are computed as follows.

Energy[CP] =

NrCApps∑
m=1

Energym (3)

Ci UsedCores[CP] =

NrCApps∑
m=1

Ci coresm (4)

where, Energym and Ci coresm are the energy consump-
tion and used Ci type cores of application m, respectively.
For NrCApps active applications, a combination point con-
tains one point from each application.

After above computations for different combination
points, the point having minimum energy consumption
(based on minimum value selection algorithm) and satis-
fying the resource constraint is chosen (line 9, Algorithm
1). Then, for this chosen point, the number of used cores

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. XX, NO. X, DECEMBER 2016 7

and their types (nL and nb) for each application are re-
turned as the thread-to-core mapping Map, which is fur-
ther controlled by sched_setaffinity interface in the
Linux scheduler. Our approach is generic, but one-time
offline analysis is required when the application or platform
changes. In case a new application needs to be executed and
its offline analysis is not done, the best effort or online learn-
ing heuristics [12] can be employed to obtain the mapping,
but achieved results might not be efficient.

Simultaneous execution of multiple applications may
affect each other due to interference in the shared memory.
Thus, their execution time might increase in comparison to
the scenario when executed individually. The stretching in
the execution time depends upon the compute and memory
intensiveness of the applications, e.g. higher stretching is
expected for memory intensive applications due to heavy
memory accesses in the shared memory. The degraded per-
formances of the applications are compensated by proper V-
f selections during various time intervals during execution,
which is described in the following sub sections.

4.2 Workload Selection and Prediction
V-f setting is a function of workload, at time tj it can be
represented as:

V -f =

{
f (wj) Individual workload
f (w1j ,w2j , ..., wRj) Concurrent workloads

(5)

where, 1 to R represent threads of the application(s). More-
over, in a cluster based architecture, the V-f of an individual
cluster will be set by considering the workloads of all the
cores within a cluster which can be represented as:

V -fEi
= f(WEi

) (6)

It is important to note that, for concurrent execution of
multi-threaded applications, the V-f setting of each cluster
should be chosen in such a way that all the applications
meet their performance requirements. Furthermore, these
applications generate varying and mixed workloads due to
resource sharing (e.g. L2 cache and memory) showing intra
and inter workload variations during their execution (see
Fig. 2). Therefore, we need to select a representative V-f pair
to guide the further stages in achieving energy efficiency
without performance loss. Pseudo code of the proposed
online DVFS is given in Algorithm 2.

Assume that there are R concurrently executing threads
of application(s) on cluster Ei, and wrj is the workload
of a thread r for time interval tj−1 → tj . There will be
R different workloads at every time interval of execution.
The workload is quantified by the MRPI, where a low value
represents a high load on the core and vice versa. If there are
multiple workloads running within a cluster, choosing a V-f
setting based on an average or single workload may lead
to violation of performance requirements for some of the
applications. For example, setting the V-f according to the
high MRPI (memory-intensive) workload may hurt the per-
formance of the compute-intensive workload, as memory-
intensive workload can be run at lower frequencies than
compute-intensive workload. Therefore, in a cluster-based
DVFS supporting architectures, V-f level of the cores within

Algorithm 2 Proposed online DVFS approach

Input: Application scenario, Ts, f-tab and len
Output: V-f pair for each cluster

1: Initialisation: predicted workload (Pw)=0, cl=cb=0;
2: PMUINITIALIZE()
3: fcur = cpufreq_get_frequency (core#)
4: while (1) do
5: compute new IPS value (IPSn) for each application
6: wait for Ts /*DVFS interval*/
7: /*Set V-f level of A15-cluster*/
8: if (∗cb 6= len) then
9: actual workload(Aw) = Pmc data A15()

10: prediction error (Pe) = Aw − Pw

11: q = 0
12: FIND SET VF(Aw, Pw, Pe, cb, core#)
13: q = 1
14: else
15: wait for Ts ∗ len /*Adaptive sampling*/
16: ∗cb = 0
17: end if
18: /*Set V-f level of A7-cluster*/
19: if (∗cl 6= len) then
20: actual workload (Aw) = Pmc data A7()
21: prediction error (Pe) = Aw − Pw

22: FIND SET VF(Aw, Pw, Pe, cl, core#)
23: else
24: wait for Ts ∗ len /*Adaptive sampling*/
25: ∗cl = 0
26: end if
27: end while
28: function FIND SET VF(Aw, Pw, Pe, c, core#)
29: Pw = EWMA(Pw, Aw, Pe,&c)
30: classify Pw, compute δ and get fn from f − tab
31: if q == 0 then
32: for each cluster do
33: Perf loss = ((IPSreq − IPSn)/IPSreq)
34: end for
35: λ = Perf loss ∗ 100
36: end if
37: if (λ > x%) then
38: fn = fn + λ ∗ fmax

39: end if
40: if (fnew 6= fcur) then
41: cpufreq_set_frequency (core#,fn)
42: fcur=fnew

43: *c−−
44: else
45: *c++
46: end if
47: end function
48: PMUTERMINATE()

a cluster should be set based on the most compute-intensive
(minimum MRPI) workload running on those cores. To meet
each application’s performance requirement, the V-f setting
for cluster Ei for the time interval tj−1 → tj (considering
single V-f domain for whole cluster) is set by the following
workload (line 9 and 20 in Algorithm 2):

WEji = min (w1ji, w2ji, w3ji, w4ji, ..., wRji) (7)

Concurrent execution of multiple applications create con-
tention/interference for shared resource, which impacts
the performance of an individual application. Furthermore,
the memory access latency experienced by each applica-
tion, calculated at run-time based on the average memory-
intensiveness of the running applications, is used to mini-

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. XX, NO. X, DECEMBER 2016 8

TABLE 1
Design time analysis of workload classes (MRPI range) and corresponding frequencies

A15 A7
MRPI Range Frequency (MHz) MRPI Range Frequency (MHz) MRPI Range Frequency (MHz)

>0.036 1000 (0.018,0.021] 1600 >0.055 900
(0.033,0.036] 1100 (0.015,0.018] 1700 (0.05,0.055] 1000
(0.03,0.033] 1200 (0.012,0.015] 1800 (0.044,0.05] 1100
(0.027,0.03] 1300 (0.009,0.012] 1900 (0.04,0.044] 1200
(0.024,0.027] 1400 <0.009 2000 (0.032,0.04] 1300
(0.021,0.024] 1500 <0.032 1400

mize the wasted cycles/switching activity by scaling down
the frequency. We represent this latency as δ amount of
increase in WEji

. Therefore, equation 7 can be modified as:

WEji
= min (w1ji, w2ji, w3ji, w4ji, ..., wRji) + δji (8)

The value of δ is computed from average MRPI of the cores
within a cluster. If all the running applications are memory-
intensive, then the value of δ will be high due to increased
memory traffic. We experimentally verified that, δ increases
the application execution time from 1.08% to 3.80%, when
multiple applications are executed concurrently. Based on
the above observation, the δ value is set to 4.5% of average
MRPI.

Proactive control of V-f is of utmost importance for
online energy minimization [8]. Therefore, the future work-
load needs to be predicted at tj to set the V-f pair for
the interval tj → tj+1. An exponential weighted moving
average (EWMA) filter [35] is used to predict workload pj+1

during the interval tj → tj+1 (line 29, Algorithm 2):

pj+1 = γ ∗ aj + (1− γ) ∗ pj (9)

where γ, pj and aj are the smoothing factor, predicted
and actual workloads respectively during the interval tj−1

→ tj . It is to be noted that WEji
, computed from equa-

tion 8 represents the actual workload aj . To minimize miss-
predictions caused by dynamic variations in the workload,
the predicted workload of the interval tj−1 → tj is com-
pared against the actual workload measured from hard-
ware PMCs (line 10 and 21 in Algorithm 2). Subsequently,
computed prediction error Pe (the difference between actual
and predicted workloads) is used to improve the workload
prediction for tj → tj+1. The effectiveness of proactive V-
f control depends on the accuracy of workload prediction,
hence an evaluation is provided in Section 5.

4.3 Workload Classification and Frequency Selection
It is essential to classify the predicted workload for identi-
fying an appropriate V-f pair for meeting the performance
requirements and optimizing the energy. We use hardware
PMCs for periodically getting information regarding archi-
tectural parameters during application execution (line 9 and
29, Algorithm 2). The modified performance monitoring tool
perfmon [36] (enabled access to the A15- and A7-clusters)
is used for accessing the PMCs, initialized and terminated
through PMUINITIALIZE and PMUTERMINATE (line 2 and
48, Algorithm 2).

Classification of the workload as compute-intensive or
memory-intensive, depends on the instruction mix during

the time interval Ts. For example, if there is a large pro-
portion of load/store instructions causing frequent cache
misses, then the workload can be classified as memory-
intensive. Furthermore, when there are frequent branch
miss-predictions and lower-level cache misses (e.g. L1 in
Odroid-XU3), the number of instructions executed and
MRPI could be low. However, the penalty (measured in
cycles) will remain intact no matter what the frequency
is, because a branch miss-prediction involves only in-core
operations [37]. Therefore, the workload will be treated as
compute-intensive and the highest frequency is selected to
minimize performance loss. On the other hand, if the pro-
cessing core is idle or running only background processes,
the number of instructions and MRPI may be low. However,
this will not come under the compute-intensive case and
the operating frequency can be set to a minimum value to
minimize the power consumption. Here, the unused core
is said to be idle, i.e. no application thread is executing on
that core. The idle cores can be identified from the resource
combination achieved by the thread-to-core mapping, which
decides number of cores and their type allocated to each
application (see Table 4). For example, in an octa-core (c0, ...,
c7) platform, if thread-to-core mapping allocates four cores
(c0, .., c3) to an application, the remaining four cores (c4, ...,
c7) will be idle. The status of the core (used/idle) can be
maintained in a shared location.

Workload classes are predetermined by observing the
variation in execution time through a custom program,
which generates a varying number of L2-cache misses by
performing memory accesses on a large array. Subsequently,
the experiment is repeated ten times across all available
frequencies (200 MHz - 2000 MHz) on an Odroid-XU3
platform [7]. The A15-core is an out of order core which
takes advantage of memory level parallelism such that part
of an L2 cache miss latency overlaps with other indepen-
dent L2 cache misses. Furthermore, the A15-cluster has
greater L2-cache capacity compared to the A7-cluster. The
influence of these factors is seen during exploration, and
taken into account while choosing the MRPI range and
its corresponding frequency. The classified workloads and
corresponding optimal V-f settings obtained from f-tab are
given in Table 1, where various MRPI ranges are mapped
to frequency through DSE, and used at run-time to set the
operating frequency to a desired value through the util-
ity cpufreq-set, thereby minimizing run-time overheads
(lines 41, Algorithm 2).

The range of MRPI values having little (<1%) or no effect
on execution time for the same frequency are grouped into
a single class. Application execution intervals with a large

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. XX, NO. X, DECEMBER 2016 9

0

0.2

0.4

0.6

0.8

1

fm ra fm-ra fm-rd

%
 I
m

p
ro

v
e
m

e
n
t

Application scenario

Performance Energy

Fig. 6. Effect of adaptive sampling on energy and performance for
various application scenarios.

MRPI are actually memory-intensive workloads, so they
can be run at lower frequencies to save energy as higher
frequencies will simply result in stalls while waiting for data
from memory. This motivates us to assign a low frequency
to large MRPI workloads, and it is decided by the speed of
memory (∼933 MHz in our case).

4.4 Performance Observation and Compensation
It is important to evaluate performance during execution
to ensure all applications meet their performance require-
ments. Moreover, dynamic resource availability in a multi-
core platform may impact the run-time performance of the
applications. Therefore, we use instructions per second (IPS)
as a metric for quantifying the run-time performance of each
application for every elapsed time interval Ts. The perfor-
mance loss is calculated once (lines 31-35, Algorithm 2) by
comparing the achieved IPS (IPSn) on each cluster with
their required IPS (IPSreq) at every time interval. If the
maximum performance loss λ% of all the currently running
applications during the interval tj−1 → tj is significant,
the selected V-f (fn) is increased by λ*fmax (lines 32 - 39,
Algorithm 2) for subsequent time interval (tj → tj+1) to
compensate. Furthermore, the frequency is modified only
when the performance loss (λ) is significant to minimize the
overheads associated with DVFS [38]. We experimentally
verified and set the value of λ to 1% by taking the variations
in PMC data into account [39]. It is worth noting that setting
any core’s V-f to a new value within a cluster is sufficient
to change the V-f of remaining cores belonging to the same
cluster.

4.5 Adaptive Sampling
A smaller time interval (Ts, difference between tj−1 and
tj), for which a value of V-f is computed and set, increases
the run-time overhead and degrades overall performance.
Therefore, the value of Ts is experimentally chosen to be 200
ms so as to minimize the overhead on application perfor-
mance considering the overheads associated with the PMC
data collection, subsequent processing, system reliability
and DVFS [38]. Furthermore, it can be observed from Fig. 2
that not every combination of applications exhibits large
variation in workload during the execution, for example fm
and fm-ra. This negligible variations will have no influence
on the V-f setting. Therefore, to further reduce the run-
time overheads, time period is adjusted according to the
application workload variations.

To accomplish this we use counters cb and cl for tracking
the workload variations on A15- and A7-clusters, respec-
tively. These counters get incremented when the workload

TABLE 2
Selected applications from PARSEC [9] and SPLASH [33] benchmarks

Benchmark App Name Abbreviation

PARSEC

blackscholes bl
bodytrack bo
swaptions sw
freqmine fr

vips vi

SPLASH
water-spatial wa

raytrace ra
fmm fm

at tj is significantly different (MRPI range) than that of
the workload at tj−1 (lines 40-46, Algorithm 2). When cb
or cl is equal to a configurable parameter len, the run-time
adaptation on A15- or A7-cluster (PMC data collection and
subsequent processing) is paused for len*Ts period (lines 15
and 24, Algorithm 2). We evaluated the effect of adaptive
sampling for the application workload combinations fm, ra,
fm-ra and fm-rd (see Fig. 2), where an average improvement
of 0.9% and 0.6% in energy and performance are observed
respectively when adaptive sampling is enabled, as shown
in Fig. 6.

5 EXPERIMENTAL VALIDATION

5.1 Experimental Setup
The proposed run-time management approach for energy
optimization is extensively validated on an Odroid-XU3
platform running a modified Ubuntu Linux Kernel 3.10.96
with a number of combinations of applications from PAR-
SEC [9] and SPLASH [33] benchmarks. The details of the
Odroid-XU3 platform are already provided in Section 3.1.
We selected applications from PARSEC and SPLASH, based
on variations in MRPI values. Table 2 lists the considered
applications. The applications are taken in various combi-
nations to make sets of simultaneously active applications.
To have better predictability and to ensure that each appli-
cation meets its performance requirement, the system is not
overloaded, i.e. no two applications share the cores. This
allows scheduler not to delay the application execution.
If applications arrive at different times, the later arrived
ones can be mapped by taking the available resources and
current status of the existing applications, computed as the
remaining time to complete them. If existing applications
are going to complete soon, the freed resources by them can
be considered to decide the mapping of the current appli-
cation, otherwise it should be decided based on the current
available resources. This also avoids the overhead of data
transfer for existing applications as their mapping is not
disturbed. Energy consumption is calculated as a product
of average power consumption (dynamic and static) and
execution time. This includes both the core and memory en-
ergy consumption of all the software components (proposed
algorithms (Algorithm 1 and 2), profiled data, OS, applica-
tions, etc.). The proposed run-time management approach
is compared against various approaches, given in Table 5.1,
to show energy savings while satisfying the performance
constraints. As part of these, the state-of-the-art solution
for the run-time resource management of the big.LITTLE,
Heterogeneous Multi-Processing (HMP) scheduler [40] with
various DVFS governors (ondemand, performance, conser-
vative and interactive) is considered. HMP is a patch to the

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. XX, NO. X, DECEMBER 2016 10

TABLE 3
Approaches considered for comparison

Reference Approach Abbreviation
[12] Exhaustive Search-based ES

[25], [28]–[31] Workload Memory Intensity
based thread-to-core mapping WMI

[40], [41] HMP + Ondemand HMPO
[40], [41] HMP + Performance HMPP
[40], [41] HMP + Conservative HMPC
[40], [41] HMP + Interactive HMPI

proposed Inter-cluster Thread-to-core
Mapping and DVFS ITMD

standard scheduler in the Linux kernel which dynamically
dispatches threads to big and LITTLE cluster according to
their characteristics.

Furthermore, a mapping approach, which allocates the
application’s threads onto only one type of core(s) based on
memory intensiveness [25], [28]–[31] is considered for the
comparison. As concurrent execution of multi-threaded ap-
plications is not taken into account by the above approaches,
following changes are made for a fair comparison.

• In case of single-application scenario, a memory in-
tensive application’s threads are mapped onto LIT-
TLE cluster.

• In multiple-application scenario, applications are
sorted based on their memory intensiveness and then
one with the high memory intensity is mapped onto
little cores and remaining applications are allocated
onto big cluster with equal number of cores.

The proposed approach is also compared against a
recently published exhaustive search-based (ES) approach
[12]. As part of this, we used the thread-to-core mappings
produced by our approach and varied the frequencies (247
design points; 200 MHz - 1400 MHz on LITTLE-cluster and
200 MHz - 2000 MHz on big-cluster) for different application
scenarios. Then, selected the configuration (number of cores
and their frequencies), having the lowest energy consump-
tion while satisfying the performance requirements. Sta-
moulis and Marculescu [14] presented a process variation-
and workload-aware thread-to-core mapping approach on
heterogeneous multi-core systems. However, we could not
consider this approach for the direct comparison with the
proposed approach for the following reasons. It is proposed
for maximizing the throughput under both performance
and power constraints, while our approach minimizes the
energy consumption under performance constraints. More-
over, the system architecture is different than the one
(cluster-based architecture) used in this paper.

To show the effectiveness of the proposed methodology
compared to various existing approaches in terms of energy
savings and performance, single and multiple-application
scenarios are considered for the validation. Moreover, the
validation of the workload prediction is also presented.

5.2 Energy Savings and Performance Comparison
5.2.1 Energy Savings
Table 4 presents the resource combinations achieved by the
proposed mapping approach at run-time for various appli-
cation scenarios. The mapping approach takes the individ-
ual application performance requirements into account, and

TABLE 4
Resource combination achieved by our mapping approach at run-time

for different application scenarios.

App scenario App combination Resource combination

single

bl 4L+4B
bo 4L+4B
sw 4L+4B
fr 4L

wa 4L+4B
ra 3L+4B

double

bl-bo 2L+2B : 2L+2B
bl-sw 4B : 4L
fr-sw 4L : 4B
wa-bo 2L+2B : 2L+2B
wa-bo 4L+3B : 1B
wa-ra 4L+3B : 1B

triple

bl-bo-sw 3B : 1B : 4L
bl-bo-fr 3B : 1B : 4L
sw-bo-fr 4L : 1B : 3B
bl-sw-fr 3B : 1B : 4L

wa-ra-fm 3L+2B : 1B : 1L+1B
wa-ra-vi 2L+2B : 1B : 2L+1B

0

500

1000

1500

2000

2500

bl bo sw fr wa ra

E
n

e
rg

y
(J

)

Application scenario

HMPO HMPC HMPP HMPI WMI ES ITMD

Fig. 7. Comparison of proposed approach with reported approaches for
single active application.

chooses the points that minimize total energy consumption
from the sorted profiled data, without violating the resource
constraints. As discussed earlier, the selected thread-to-core
mapping is not altered during the application execution.

In single-application scenario, there is only one active
application. Fig. 7 shows the comparison of the adopted
approach with existing techniques in terms of energy con-
sumption. First, an energy efficient thread-to-core mapping
is determined to satisfy the given performance require-
ment and resource availability. The experimental observa-
tion shows that, for most applications our thread-to-core
mapping approach tends to choose all available cores, ex-
cept for fr and ra (see single-application scenario in Table 4),
as it is the energy efficient point. Afterwards, the proposed
online DVFS approach takes control of the frequency scaling
to minimize the wasted cycles in case of memory-intensive
workloads. It periodically samples the PMCs data and uses
a proactive V-f setting strategy using the workload pre-
diction. From Fig. 7, it can be observed that the proposed
method ITMD outperforms all existing approaches which
used HMP scheduler for thread-to-core mapping with var-
ious Linux governors for DVFS and WMI. Except for fr
and ra, energy savings are mostly due to DVFS as both
HMP and proposed approach have the similar thread-to-
core mapping. The higher energy savings in case of fr are
because of mapping threads to power efficient A7 (L) cores,
which is the same as that of WMI. It also has long execution
that benefits from periodic DVFS. On an average, proposed
approach achieves, 25%, 20%, 27%, 22%, and 33% energy

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. XX, NO. X, DECEMBER 2016 11

0

500

1000

1500

2000

2500

0

0.008

0.016

0.024

0.032

0.04

1 5 9 13 17 21 25 29

F
re

q
u
e
n
c
y
 (

M
H

z
)

W
o
rk

lo
a
d
 (

M
R

P
I)

Time Intervals

MRPI HMPO HMPC ITMD

Fig. 8. MRPI and frequency at different time intervals of the application
fr execution for various approaches.

0

500

1000

1500

2000

2500

3000

3500

bl-bo bl-sw fr-sw wa-bl wa-bo wa-ra

E
n

e
rg

y
 (

J
)

Application scenario

HMPO HMPC HMPP HMPI WMI ES ITMD

Fig. 9. Comparison of proposed approach with reported approaches for
two active applications.

savings while meeting performance requirements compared
to HMPO, HMPC, HMPP, HMPI and WMI, respectively.
Furthermore, as our approach (ITMD) applies online DVFS
at regular intervals, it provides better energy savings (17%)
than the exhaustive search-based approach (ES).

Moreover, Fig. 8 shows the adaptiveness of the proposed
online DVFS technique to workload variations for the appli-
cation fr. A high MRPI leads to scaling down the frequency,
thereby ITMD approach minimizes the power consumption,
whereas HMPO and HMPC runs at max frequency. This
is due to the fact that whilst the application is memory
intensive, it places a high load on the processor cores as far
as the load measured by the kernel is concerned. Therefore,
these select the highest frequency even if it does not offer
improvement in performance.

In case of multiple-application scenario, at a given mo-
ment two or more active applications will be contending
for resources to meet their requirements. Such scenarios
can be observed in a mobile phone where user tries to run
more applications at the same time, e.g., mp3-decoder to
listen to music and jpeg-decoder to view an image. A set
of two applications from Table 2 are considered to stress on
effectiveness of the adopted approach in choosing resources
and V-f pair for minimizing the energy consumption while
meeting each application performance requirement. Due
to limited resource availability and contention, the energy
savings are comparatively less than the single-application
scenario. Fig. 9 gives the energy consumption for various
approaches. On an average, proposed approach achieves
13%, 14%, 10%, 20%, 15%, and 23% energy savings while
meeting performance requirements compared to ES, HMPO,
HMPC, HMPP, HMPI and WMI, respectively. Moreover,
chosen resource combinations are presented in row two of
Table 4.

To further validate the ability of the proposed approach
to adapt to concurrent execution of multiple applications,
three-application scenario is also considered. Increase in
number of active applications will lead to reduced solution

0

1000

2000

3000

4000

5000

6000

bl-bo-sw bl-bo-fr sw-bo-fr bl-sw-fr wa-ra-fm wa-ra-vi

E
n
e
rg

y
(J

)

Application scenario

HMPO HMPC HMPP HMPI WMI ES ITMD

Fig. 10. Comparison of proposed approach with reported approaches
for three active applications.

0

10

20

30

40

50

60

bl fr ra bl-sw fr-sw wa-ra bl-bo-fr bl-sw-fr wa-ra-fm

%
 E

n
e
rg

y
 s

a
v
in

g
s

w
.r

.t
H
M
P
P

Application scenario

ITM ITMD

Fig. 11. Percentage of energy savings achieved by proposed ITM and
ITMD respectively.

space for choosing an energy efficient thread-to-core map-
ping. As mentioned before, it is caused by the resource con-
straints (see Table 4 for resource combination) and increased
contention due to concurrent workloads and demand for
meeting their requirements. Furthermore, the online DVFS
will have a little choice to scale down the frequency as
it has to satisfy the performance requirement of different
dynamic workloads (e.g. compute and memory). This re-
sults in decreased energy savings compared to single and
two-application scenarios. Fig. 10 presents the comparison
of adopted methodology with various previous techniques.
On an average, proposed technique achieves 11%, 12%,
9%, 16%, 14%, and 30% energy savings while meeting
performance requirements compared to EC, HMPO, HMPC,
HMPP, HMPI and WMI, respectively.

The four and more applications scenario seems to be
not feasible because of high resource contention, leading
to not meeting given requirements (some applications were
terminated by out of memory (OOM) killer daemon when
multiple memory intensive applications are run). It is ex-
plained further in the following section. On an average
the adopted approach achieves energy savings up to 33%
compared to existing techniques.

5.2.2 Breakdown of Energy Savings by Our Mapping and
DVFS Approaches
Individual contribution of the thread-to-core mapping (ITM)
and online DVFS in energy savings is computed by dis-
abling and enabling DVFS respectively. Further, percent-
age energy savings are calculated by comparing against
the HMPP, as shown in Fig. 11 for different application
scenarios. On an average ITM achieves energy savings of
9% w.r.t HMMP. Further, when proposed online DVFS is
applied on top of ITM (ITMD), an extra 11% of energy
savings is obtained. It can be observed from Fig. 8 that, the
workload varies over time, for example from low MRPI to
high MRPI (at 8th and 10th time intervals). As the online
DVFS is applied at regular intervals, the proposed approach

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. XX, NO. X, DECEMBER 2016 12

-10

-5

0

5

10

15

20

Single Double Triple

%
 I
m

p
ro

v
e
m

e
n

t
w

.r
.t

p
e

rf
o
rm

a
n

c
e
 r

e
q

u
ir

e
m

e
n

ts

Application scenario

ITMD HMPP

Fig. 12. Performance improvement/degradation of the adopted approach
and HMPP.

exploits these variations to achieve energy efficiency even
for a compute-intensive application.

5.2.3 Performance

As discussed earlier, performance requirements are defined
for each application. The proposed approach always tries
to meet the performance requirement of each application,
i.e. finishing the execution within the stipulated time. To
validate the adaptability of the proposed approach to the
performance requirements, the achieved performance is
compared against the given performance requirement, com-
puted as percentage improvement, for all the application
scenarios. The average percentage improvement in each
scenario is presented in Fig. 12 in comparison with HMPP
(performance requirements-unaware), as it maximizes the
performance. The figure shows that ITMD always outper-
forms HMPP even when there is a high contention due
to more active applications (e.g. three-application scenario).
Moreover, in some cases, the adopted technique achieves up
to 15% improvement over given performance requirements,
whereas HMPP achieves 10% improvement. Additionally,
the following observation can be made from Fig. 12. As the
number of active applications increases, meeting high per-
formance requirements is not feasible (see three-application
scenario in Fig. 12) due to resource constraints and interfer-
ence. Therefore, choosing a low performance requirement
or a platform with more resources may guarantee meeting
the requirements while running higher number of active
applications.

To further substantiate the need for performance
requirements-aware approaches, we recorded the number
of violations by disabling the performance requirements-
aware property of the proposed approach, resembling the
technique presented in [12]. As a result, the mapping al-
gorithm produces thread-to-core mappings that minimize
the total energy consumption, which may not satisfy the
performance constraints. For single application scenario, the
average percentage of performance requirement-violating
mappings are nearly zero. This is because, using all the cores
(4L and 4B) leads to minimum energy and better perfor-
mance for all the applications (except for fr (4L)). In case of
multiple applications executing concurrently, performance
violations are significantly high. The average percentage of
performance requirement-violating mappings are 98.2% and
99.6% for two- and three-application scenarios, respectively.

5.3 Workload Prediction

The accuracy of the predicted workload as compared to
the actual workload of the prior time intervals depends
on the smoothing factor γ (9). The optimal value of γ
was experimentally obtained by sweeping it between 0.1
and 1, and observing the corresponding workload miss-
predictions (under/over) for various application workloads.
A value of 0.6 is used for all the experiments as it resulted
in relatively accurate workload prediction. Fig. 13 shows the
actual and predicted values for three different application
scenarios along with the percentage root mean square error
(that is up to 2.4%). The figure shows that the prediction
slightly goes up with the number of active applications,
which is due to increased dynamic workload variations. To
improve the accuracy in such cases, we will look into better
workload prediction techniques in the future.

5.4 Overheads of the Proposed Approach

5.4.1 Run-time Overhead
The run-time overhead of the adopted approach includes
time for finding thread-core-mapping (Tmap) and V-f pair
(TV -f), which can be represented as,

To = Tmap + TV -f (10)

TV -f =
Tex − r ∗ len ∗ Ts

Ts
∗ [V f So + PMCo + Proco]

(11)

where To, Tex, r, V f So, PMCo, and Proco, represent
total overhead, execution time, number of times the adap-
tation is paused, overheads associated with V-f switching,
PMC collection and remaining processing steps (involving
len and Ts, shown in Algorithm 2), respectively. Tmap

depends on the implementation of the Algorithm 1, in our
case it is up to 1.6 ms (averaged over various application
scenarios). Moreover, TV -f is about 300 µs, which is 0.15% of
Ts (200 ms). Fig. 14 illustrates the total run-time overhead,
computed as percentage of total execution time, for eight
application scenarios. The run-time overhead for application
scenario bl-bo-fr, having a long execution time of 1053 sec is
∼0.17%, which is very minimal. Whereas, commonly used
learning-based approaches have significant overheads (up
to 216 sec for learning and 1 sec for subsequent stages) for
a single-application scenario [16]), which gets further ag-
gravated by dynamic workload variations causing frequent
re-learning. Therefore, the scalability of such approaches in
comparison to the proposed technique is limited for multi-
core platforms executing multiple multi-threaded applica-
tions concurrently.

5.4.2 Offline Analysis Overhead
As discussed earlier, the profiled data of each application
contains performance (1/execution time), energy consump-
tion, number of big, and number of LITTLE cores for each
design point. The total number of design points for each
application is 24, which results in a small storage overhead
of 770 bytes. The energy overhead due to storing of profiled
data is already included in the energy consumption values
reported in the previous sections.

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. XX, NO. X, DECEMBER 2016 13

0.0145

0.015

0.0155

0.016

1 11 21 31 41 51 61 71 81

M
R

P
I

Time Intervals

Actual Predicted

0

0.0001

0.0002

0.0003

0.0004

1 11 21 31 41 51 61 71 81

M
R

P
I

Time Intervals

Actual Predicted

0.01

0.025

0.04

0.055

1 11 21 31 41 51 61 71 81

M
R

P
I

Time Intervals

Actual PredictedApp: bo

RMSE=1.3%

App: bl-bo

RMSE=1.9%

App: bl-bo-sw

RMSE=2.4%

Fig. 13. Workload prediction using EWMA for three different application scenarios - one, two and three active applications (left to right).

0.130

0.140

0.150

0.160

0.170

0.180

bo wa bl-bo wa-bo wa-bl bl-bo-sw wa-ra-vi bl-bo-fr

%
 O

v
e
rh

e
a
d

Application scenario

Fig. 14. Run-time overhead of the proposed approach.

6 CONCLUSIONS

We proposed a run-time management methodology for con-
currently executing multi-threaded applications on a het-
erogeneous multi-core system. It uses the knowledge from
design time analysis for efficient thread-to-core mapping
and workload classification through MRPI to make run-
time decisions. Furthermore, it also employs workload se-
lection and prediction techniques for pro-active V-f control
and online performance observation and compensation to
adapt to the dynamic variations. Validation on Odroid-XU3
platform for various application scenarios shows an average
improvement up to 33% in energy consumption compared
to the existing approaches while achieving up to 15% perfor-
mance improvement over given performance requirements.
The advances reported in this paper are important contri-
butions towards the development of future energy efficient,
feature rich embedded systems with heterogeneous many-
cores. In future, we will look into per-core DVFS techniques
which allow to control the V-f level of each core separately.

ACKNOWLEDGEMENT

This work was supported in parts by the
EPSRC Grant EP/L000563/1 and the PRiME
Programme Grant EP/K034448/1 (www.prime-
project.org). Experimental data used in this paper
can be found at DOI:10.5258/SOTON/D0249
(https://doi.org/10.5258/SOTON/D0249).

REFERENCES

[1] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping
on multi/many-core systems: survey of current and emerging
trends,” in Proceedings of the 50th Annual Design Automation Confer-
ence. ACM, 2013, p. 1.

[2] B. Khemka, R. Friese, S. Pasricha, A. A. Maciejewski, H. J.
Siegel, G. A. Koenig, S. Powers, M. Hilton, R. Rambharos, and
S. Poole, “Utility maximizing dynamic resource management in
an oversubscribed energy-constrained heterogeneous computing
system,” Sustainable Computing: Informatics and Systems, vol. 5, pp.
14–30, 2015.

[3] P. Greenhalgh, “big.LITTLE processing with ARM cortex-a15 &
cortex-a7,” ARM White paper, pp. 1–8, 2011.

[4] D. N. Truong, W. H. Cheng, T. Mohsenin, Z. Yu, A. T. Jacobson,
G. Landge, M. J. Meeuwsen, C. Watnik, A. T. Tran, Z. Xiao et al.,
“A 167-processor computational platform in 65 nm CMOS,” IEEE
Journal of Solid-State Circuits, vol. 44, no. 4, pp. 1130–1144, 2009.

[5] A. Prakash, H. Amrouch, M. Shafique, T. Mitra, and J. Henkel,
“Improving mobile gaming performance through cooperative
CPU-GPU thermal management,” in Design Automation Conference
(DAC), 2016 53nd ACM/EDAC/IEEE. IEEE, 2016, pp. 1–6.

[6] B. Donyanavard, T. Mück, S. Sarma, and N. Dutt, “SPARTA:
runtime task allocation for energy efficient heterogeneous many-
cores,” in Proceedings of the Eleventh IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis.
ACM, 2016, p. 27.

[7] “Odroid-XU3,” www.hardkernel.com/main/products.
[8] R. A. Shafik, S. Yang, A. Das, L. A. Maeda-Nunez, G. V. Mer-

rett, and B. M. Al-Hashimi, “Learning transfer-based adaptive
energy minimization in embedded systems,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 35,
no. 6, pp. 877–890, 2016.

[9] C. Bienia and K. Li, “Parsec 2.0: A new benchmark suite for
chip-multiprocessors,” in Proceedings of the 5th Annual Workshop
on Modeling, Benchmarking and Simulation, vol. 2011, 2009.

[10] R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda, “Pack &
cap: adaptive DVFS and thread packing under power caps,” in
Proceedings of the 44th annual IEEE/ACM international symposium on
microarchitecture. ACM, 2011, pp. 175–185.

[11] H. Sasaki, S. Imamura, and K. Inoue, “Coordinated power-
performance optimization in manycores,” in Parallel Architectures
and Compilation Techniques (PACT), 2013 22nd International Confer-
ence on. IEEE, 2013, pp. 51–61.

[12] A. Aalsaud, R. Shafik, A. Rafiev, F. Xia, S. Yang, and A. Yakovlev,
“Power-aware performance adaptation of concurrent applications
in heterogeneous many-core systems,” in Proceedings of the 2016 In-
ternational Symposium on Low Power Electronics and Design. ACM,
2016, pp. 368–373.

[13] J. Ma, G. Yan, Y. Han, and X. Li, “An analytical framework for
estimating scale-out and scale-up power efficiency of heteroge-
neous manycores,” IEEE Transactions on Computers, vol. 65, no. 2,
pp. 367–381, 2016.

[14] D. Stamoulis and D. Marculescu, “Can we guarantee performance
requirements under workload and process variations?” in Proceed-
ings of the 2016 International Symposium on Low Power Electronics
and Design. ACM, 2016, pp. 308–313.

[15] V. Spiliopoulos, G. Keramidas, S. Kaxiras, and K. Efstathiou,
“Power-performance adaptation in intel core i7,” 2011.

[16] A. K. Singh, C. Leech, K. R. Basireddy, B. M. Al-Hashimi, and
G. V. Merrett, “Learning-based run-time power and energy man-
agement of multi/many-core systems: Current and future trends,”
in Journal of Low Power Electronics (JOLPE), 2017.

[17] C.-H. Hsu and U. Kremer, “Compiler-directed dynamic voltage
scaling for memory-bound applications,” Technical Report DCS-TR-
498, Department of Computer Science, Rutgers University, 2002.

[18] J. Luo and N. K. Jha, “Power-efficient scheduling for heteroge-
neous distributed real-time embedded systems,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 26,
no. 6, pp. 1161–1170, 2007.

[19] M. Qiu and E. H.-M. Sha, “Cost minimization while satisfying
hard/soft timing constraints for heterogeneous embedded sys-
tems,” ACM Transactions on Design Automation of Electronic Systems,
vol. 14, no. 2, p. 25, 2009.

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. XX, NO. X, DECEMBER 2016 14

[20] L. K. Goh, B. Veeravalli, and S. Viswanathan, “Design of fast and
efficient energy-aware gradient-based scheduling algorithms het-
erogeneous embedded multiprocessor systems,” IEEE Transactions
on Parallel and Distributed Systems, vol. 20, no. 1, pp. 1–12, 2009.

[21] K. Ma, X. Li, M. Chen, and X. Wang, “Scalable power control for
many-core architectures running multi-threaded applications,” in
ACM SIGARCH Computer Architecture News, vol. 39, no. 3. ACM,
2011, pp. 449–460.

[22] A. Weissel and F. Bellosa, “Process cruise control: event-driven
clock scaling for dynamic power management,” in Proceedings
of the 2002 international conference on Compilers, architecture, and
synthesis for embedded systems. ACM, 2002, pp. 238–246.

[23] L. C. Singleton, C. Poellabauer, and K. Schwan, “Monitoring of
cache miss rates for accurate dynamic voltage and frequency
scaling,” in Electronic Imaging. International Society for Optics
and Photonics, 2005, pp. 121–125.

[24] A. Nabina and J. L. Nunez-Yanez, “Adaptive voltage scaling in a
dynamically reconfigurable FPGA-based platform,” ACM Transac-
tions on Reconfigurable Technology and Systems (TRETS), vol. 5, no. 4,
p. 20, 2012.

[25] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,
“Scheduling heterogeneous multi-cores through performance im-
pact estimation (PIE),” in ACM SIGARCH Computer Architecture
News, vol. 40, no. 3. IEEE Computer Society, 2012, pp. 213–224.

[26] E. Del Sozzo, G. C. Durelli, E. Trainiti, A. Miele, M. D. Santam-
brogio, and C. Bolchini, “Workload-aware power optimization
strategy for asymmetric multiprocessors,” in Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2016. IEEE, 2016,
pp. 531–534.

[27] S. Ghiasi, T. Keller, and F. Rawson, “Scheduling for heterogeneous
processors in server systems,” in Proceedings of the 2nd conference
on Computing frontiers. ACM, 2005, pp. 199–210.

[28] M. Becchi and P. Crowley, “Dynamic thread assignment on het-
erogeneous multiprocessor architectures,” in Proceedings of the 3rd
conference on Computing frontiers. ACM, 2006, pp. 29–40.

[29] J. Chen and L. K. John, “Efficient program scheduling for hetero-
geneous multi-core processors,” in Proceedings of the 46th Annual
Design Automation Conference. ACM, 2009, pp. 927–930.

[30] D. Koufaty, D. Reddy, and S. Hahn, “Bias scheduling in heteroge-
neous multi-core architectures,” in Proceedings of the 5th European
conference on Computer systems. ACM, 2010, pp. 125–138.

[31] D. Shelepov, J. C. Saez Alcaide, S. Jeffery, A. Fedorova, N. Perez,
Z. F. Huang, S. Blagodurov, and V. Kumar, “HASS: a scheduler
for heterogeneous multicore systems,” ACM SIGOPS Operating
Systems Review, vol. 43, no. 2, pp. 66–75, 2009.

[32] “ARM big.LITTLE Technology,” http://www.arm.com/.
[33] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta,

“The SPLASH-2 programs: Characterization and methodological
considerations,” in Computer Architecture, 1995. Proceedings., 22nd
Annual International Symposium on. IEEE, 1995, pp. 24–36.

[34] “Mediatek X20,” http://www.96boards.org/product/mediatek-
x20/.

[35] S. Sinha, J. Suh, B. Bakkaloglu, and Y. Cao, “Workload-aware
neuromorphic design of the power controller,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, vol. 1, no. 3,
pp. 381–390, 2011.

[36] S. Eranian, “Perfmon2: a flexible performance monitoring interface
for linux,” in Proc. of Ottawa Linux Symposium. Citeseer, 2006, pp.
269–288.

[37] G. Keramidas, V. Spiliopoulos, and S. Kaxiras, “Interval-based
models for run-time dvfs orchestration in superscalar processors,”
in Proceedings of the 7th ACM international conference on Computing
frontiers. ACM, 2010, pp. 287–296.

[38] S. Park, J. Park, D. Shin, Y. Wang, Q. Xie, M. Pedram, and
N. Chang, “Accurate modeling of the delay and energy overhead
of dynamic voltage and frequency scaling in modern micropro-
cessors,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 32, no. 5, pp. 695–708, 2013.

[39] A. Das, A. Kumar, B. Veeravalli, R. Shafik, G. Merrett, and B. Al-
Hashimi, “Workload uncertainty characterization and adaptive
frequency scaling for energy minimization of embedded systems,”
in Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2015. IEEE, 2015, pp. 43–48.

[40] K. Yu, D. Han, C. Youn, S. Hwang, and J. Lee, “Power-aware
task scheduling for big. little mobile processor,” in SoC Design
Conference (ISOCC), 2013 International. IEEE, 2013, pp. 208–212.

[41] “Linux-governors.” [Online]. Available: https://www.kernel.org/
doc/Documentation/cpu-freq/governors.txt

Basireddy Karunakar Reddy received his
M.Tech. degree in Microelectronics and VLSI
from Indian Institute of Technology (IIT), Hy-
derabad, India in 2015. He is a Ph.D. student
in Electronic and Electrical Engineering at the
University of Southampton, UK. His current re-
search interests include design-time and run-
time optimization of performance and energy in
multi-core heterogeneous systems.

Amit Kumar Singh (M09) received the B.Tech.
degree in Electronics Engineering from Indian
Institute of Technology (Indian School of Mines),
Dhanbad, India, in 2006, and the Ph.D. de-
gree from the School of Computer Engineering,
Nanyang Technological University (NTU), Singa-
pore, in 2013. He was with HCL Technologies,
India for year and half before starting his PhD at
NTU, Singapore, in 2008. He worked as a post-
doctoral researcher at National University of Sin-
gapore (NUS) from 2012 to 2014, at University

of York, UK from 2014 to 2016 and at University of Southampton, UK
from 2016 to 2017. He is currently working as a Lecturer at Univer-
sity of Essex, UK. His current research interests include system level
design-time and run-time optimizations of 2D and 3D multi-core systems
with focus on performance, energy, temperature, and reliability. He has
published over 50 papers in the above areas in leading international
journals/conferences. Dr. Singh was the receipt of ISORC 2016 Best
Paper Award, PDP 2015 Best Paper Award, HiPEAC Paper Award, and
GLSVLSI 2014 Best Paper Candidate. He has served on the TPC of
IEEE/ACM conferences like ISED, MES, NoCArc, ESTIMedia and DATE.

Dwaipayan Biswas Dwaipayan Biswas ob-
tained his MSc in System on Chip (SoC) and
PhD from the University of Southampton, UK in
2011 and 2015 respectively. He is presently a
Research fellow working on embedded systems
and biomedical signal processing at University of
Southampton.

Geoff Merrett (GSM06-M09) received the
B.Eng. degree (Hons.) in electronic engineer-
ing and the Ph.D. degree from the University of
Southampton, Southampton, U.K., in 2004 and
2009, respectively.

He is currently an Associate Professor in elec-
tronic systems with the University of Southamp-
ton. His current research interests include low-
power and energy harvesting aspects of embed-
ded & mobile systems. He has published over
100 articles in journals/conferences in the above

areas.
Dr. Merrett was the General Chair of the Energy Neutral Sensing

Systems Workshop from 2013 to 2015. He is a fellow of the The Higher
Education Academy.

Bashir M. Al-Hashimi (M99-SM01-F09) is an
ARM Professor of Computer Engineering, Dean
of the Faculty of Physical Sciences and Engi-
neering, and the Co-Director of the ARM-ECS
Research Centre, University of Southampton,
Southampton, U.K. He has published over 380
technical papers. His current research interests
include methods, algorithms, and design au-
tomation tools for low-power design and test of
embedded computing systems. He has authored
or co-authored five books and has graduated 35

Ph.D. students.

