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Heterogeneous Multi-Processor Systems-on-Chips (MPSoCs) containing CPU and GPU cores are typically
required to execute applications concurrently. However, as will be shown in this paper, existing approaches
are not well suited for concurrent applications as they are developed either by considering only a single
application or they do not exploit both CPU and GPU cores at the same time. In this paper, we propose
an energy-e�cient run-time mapping and thread partitioning approach for executing concurrent OpenCL
applications on both GPU and GPU cores while satisfying performance requirements. Depending upon
the performance requirements, for each concurrently executing application, the mapping process �nds the
appropriate number of CPU cores and operating frequencies of CPU and GPU cores, and the partitioning
process identi�es an e�cient partitioning of the applications’ threads between CPU and GPU cores. We
validate the proposed approach experimentally on the Odroid-XU3 hardware platform with various mixes of
applications from the Polybench benchmark suite. Additionally, a case-study is performed with a real-world
application SLAMBench. Results show an average energy saving of 32% compared to existing approaches
while still satisfying the performance requirements.
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1 INTRODUCTION
Modern embedded systems, e.g. mobile phones, rely on heterogeneous Multi-Processor Systems-
on-Chips (MPSoCs) containing di�erent types of cores. An example of a commercial heterogeneous
MPSoC is the Samsung Exynos 5422 SoC [5], which powers the popular Samsung Galaxy series of
mobile phones. This SoC contains 4 ARM Cortex-A15 (big) CPU, 4 ARM Cortex-A7 (LITTLE) CPU
and 6 ARM Mali-T628 GPU cores. Such an architecture provides opportunities to exploit distinct
features of di�erent types of cores in order to meet end-user demands in terms of performance
and energy consumption. Additionally, the cores in such MPSoCs support dynamic voltage and
frequency scaling (DVFS) that can be exploited to reduce dynamic power consumption (P ∝ V 2f ).
By employing DVFS, the energy consumption can be minimized if the power consumption is
reduced su�ciently to account for the extra time taken to run the workload at a lower voltage
and frequency. In some situations, dynamic power management (DPM) can lead to lower energy
consumption than DVFS [20, 23].

For a given application, simultaneous exploitation of heterogeneous cores having di�erent
instruction set architectures (ISAs) such as CPU and GPU is challenging, as they handle instructions
in di�erent ways. Additionally, CPU cores typically handle task and thread level parallelisms,
whereas GPU cores handle data level parallelism. OpenCL [7] provides an opportunity to write
programs that can execute across heterogeneous cores including CPUs and GPUs [18, 19, 24, 30].
However, depending upon the kind of parallelism dominant in the application, the performance
and energy consumption will vary when it is allocated onto only CPU, only GPU, or both CPU and
GPU cores.

Figure 1 shows execution time (bars) and energy consumption (lines) when executing individual
OpenCL applications (SYR2K, SYRK, CORRELATION (CORR), and COVARIANCE (COVR)) from the
Polybench benchmark [16] on the Exynos 5422 heterogeneous MPSoC while varying the fraction of
application workload (threads) executed on CPU cores and remaining threads on GPU cores. All the
cores are set to operate at maximum possible voltage-frequency. A fraction value of zero indicates
that no threads are executed on CPU cores, i.e. all of them are executed only on the GPU cores.
Similarly, when this value is 1, all the threads are executed only on CPU cores and none on GPU
cores. It can be observed that some applications (specially having substantial sequential fraction)
execute faster on CPU cores than GPU cores (e.g., CORR), whereas others (having extensive data
parallelism) �nish early on GPU cores (e.g., COVR). Further, all applications show a signi�cant
reduction in execution time and energy consumption when run on both the CPU and GPU cores,
with an appropriate fraction value (between 0 and 1), de�ning the best partitioning of threads
between CPU and GPU cores. These observations clearly indicate the advantages of simultaneously
exploiting both CPU and GPU cores for each application.

It is well known that multiple applications executing concurrently in a modern embedded system
need to satisfy their performance requirements, and the overall energy consumption should be
optimized [33]. For example, a mobile phone might need to execute JPEG and MP3 decoding
concurrently, while satisfying the respective frames per second (fps) requirements when a user is
viewing images and listening to music at the same time. However, existing run-time management
works for concurrent applications consider only single-ISA heterogeneous MPSoCs, where cores
have the same instruction set architecture [9, 10, 12, 13, 25, 34]. They usually consider Pthreads
programming model and cannot be used to simultaneously exploit cores of di�erent ISAs such
as CPU and GPU. For a single application, simultaneous exploitation of CPU and GPU cores has
been performed by employing OpenCL programming model [30], but it leads to poor results when
applied to concurrent applications (shown in the next section). Additionally, some works exploit
either CPU or GPU for an application [37], which is not e�cient in terms of execution time and
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Fig. 1. Execution time (ET) and energy consumption (EC) at varying fraction of application workload (threads)
to be executed on CPU cores.

energy consumption as shown in Figure 1. These observations indicate that existing run-time
management approaches lack the ability to e�ciently exploit both CPU and GPU cores of a MPSoC
at the same time for concurrent applications. This necessitates designers to address the challenge
of identifying appropriate mapping of application threads to cores and the partitioning of threads
between CPU and/or GPU cores to satisfy the performance requirements and optimize overall
energy consumption. Since mapping and partitioning determine the execution time and energy
consumption, it is important to �nd them appropriately. The mapping is determined by the number
of used CPU cores and operating frequencies of CPU and GPU cores, and partitioning needs to
be determined by taking applications’ stretching (extended execution time) due to co-scheduling
and CPU/GPU cores processing capability into account. Since several factors control mapping and
partitioning, it is challenging to identify the best mapping and partitioning for each application.

This paper addresses the aforementioned mapping and partitioning challenges by making the
following concrete contributions.

(1) For executing multiple performance constrained OpenCL applications concurrently, a run-
time management approach that performs energy e�cient mapping and repartitioning
of threads of each application between CPU and GPU cores of a MPSoC while taking the
applications’ stretching (extended execution time) due to co-scheduling into account.

(2) To enable e�cient run-time mapping and repartitioning, a design-time strategy to identify
best mapping and threads partitioning options for each application. These options are
stored as design points that are used to identify mapping and repartitioning of concurrent
applications by taking applications’ stretching into account.

(3) Implementation of the o�ine and run-time steps on a real hardware platform, speci�cally
Odroid-XU3 platform [6], which contains state-of-the-art mobile MPSoC (Samsung Exynos
5422) prevalent in smartphone/tablet devices.

To the best of our knowledge, this is the �rst study on energy e�cient run-time mapping and
partitioning of threads of concurrent applications on CPU and GPU cores of a heterogeneous
MPSoC while satisfying the performance requirements.

The remainder of this paper is organized as follows. Section 2 provides a motivational case study
by considering some run-time concurrent application scenarios. Section 3 presents related works.
System and problem de�nition are introduced in Section 4. Section 5 describes various stages of the
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Fig. 2. Execution time (ET) and total energy consumption (EC) for executing (a) individual and (b) concurrent
applications (Mix) without (w/o) and with (w/) repartitioning.

proposed run-time management methodology. Section 6 presents the experimental results. Finally,
Section 7 concludes the paper.

2 MOTIVATIONAL CASE STUDY
We �rst present a case study to illustrate the shortcomings of current approaches and potential
of the proposed approach. Figure 2 (a) shows execution time (bar) and total energy consumption
(line) when applications are executed individually by using the best individual applications’ threads
partitioning leading to minimum energy consumption, which can be identi�ed from Figure 1. Here,
when using CPU cores, applications CORR and SYR2K are mapped on 4 big cores each, and SYRK
and COVR on 4 LITTLE cores each. This is possible as Samsung Exynos 5422 MPSoC tool chains
allow application threads to be allocated to a subset of CPU cores. By not using all the CPU cores
for an application, spatially isolated allocation of cores to various applications can be performed.
Such spatially isolated execution of applications on the CPU cores results in high predictability and
helps to decide appropriate number of CPU cores and their types to be allocated for satisfying the
performance requirements. However, GPU driver doesn’t support the spatially isolated and time
multiplexed execution of multiple applications. Even the latest GPUs [1, 3, 4] in mobile processors
do not support such execution due unavailability of appropriate drivers. Therefore, each application
uses all GPU cores till its completion. This implies that in case of multiple applications to be
executed concurrently, spatially isolated or time multiplexed execution is not possible on the GPU
side and it will lead to stretched overall execution.

Figure 2 (b) shows execution time of individual applications and total energy consumption when
applications are executed in various combinations (Mix-1, Mix-2 and Mix-3) by using the best
individual applications’ threads partitioning referred to as without (w/o) repartitioning and by using
the partitioning obtained by our repartitioning approach referred to as with (w/) repartitioning. For
w/o repartitioning, the partition is the same as in Figure 2 (a), which does not consider applications’
stretching (extended execution time) due to co-scheduling on GPU cores, e.g. in [30]. In contrast,
applications’ stretched executions are considered in w/ repartitioning. In w/o repartitioning, for
each combination of applications (Mix), it can be observed that execution time of one application is
stretched (e.g., COVR in Mix-2) as compared to individual execution (e.g., COVR in Figure 2 (a))
because sequential en-queuing of threads takes place on the GPU side. The stretched execution leads
to increased energy consumption as well. In w/ repartitioning, applications’ stretching (specially
on the GPU side as execution cannot be spatially isolated or time multiplexed) has been taken
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into account to repartition individual applications’ threads between CPU and GPU cores such
that balanced execution can be performed. For each application, a balanced execution implies that
completion on chosen CPU cores and GPU cores takes place almost at the same time, which also
avoids waiting of threads completion on one type of core. This has led to reduced execution time
that is determined as the maximum of the time taken on CPU and GPU cores. To achieve balanced
execution, the repartitioning approach moves higher fraction of threads to CPU side as GPU side is
performing sequential en-queuing and execution of applications’ threads, i.e. one application after
another. It can be observed that repartitioning has also led to reduced energy consumption due to
reduction in execution time .

3 RELATED WORKS
Run-time mapping of multi-threaded applications on single-ISA heterogeneous MPSoCs has been
a hot topic [9, 10, 12, 13, 25, 34]. Most of these approaches consider Samsung Exynos 5422 SoC
and utilize 4 big and/or 4 LITTLE cores that have the same ISA [9, 12, 13]. Further, for a given
application, most of these approaches do not concurrently exploit more than one types of cores
[12, 13, 25, 34]. Although there has been some e�ort to concurrently exploit both big and LITTLE
cores [9], it cannot be applied to exploit cores having di�erent ISAs such as CPU and GPU because
they handle instructions in di�erent ways.

There has been e�orts to simultaneously exploit CPU and GPU cores in desktop platforms, but
CPU and GPU cores are not situated within a single chip [18, 19, 24, 27, 37]. In these works, CPU
cores are used for general purpose tasks and GPU cores to accelerate data-parallel tasks. Such
allocation of tasks to cores leads to improved throughput and energy e�ciency. However, most of
these approaches perform static mapping for an application [18, 19] and thus they cannot be applied
to perform run-time mapping and partitioning of threads of multiple applications. Some approaches
consider multiple applications [24], but the applications are dispatched either to CPU cores or GPU
cores. Further, since CPU and GPU cores are situated in di�erent chips, these approaches cannot
be e�ciently applied to MPSoC due to di�erent communication infrastructure.

For desktop platforms, there has also been e�orts to exploit CPU and GPU cores present within
a single chip [28, 35, 36]. In these platforms, coordination of CPU and GPU cores needs more
consideration. In [35], a run-time algorithm is proposed to partition the workload and power
budget between CPU and GPU cores of an AMD Trinity single chip heterogeneous platform to
improve throughput. In [36], similar AMD platform is used to perform coordinated CPU-GPU
executions, but memory contention occurs due to access of the same bank in di�erent patterns
by the CPU and GPU. In [28], the problem of shared resources in AMD platforms is addressed.
However, these e�orts do not consider limited power budget that is available for embedded systems
operating from batteries.

For mobile platforms used in embedded systems and containing CPU and GPU cores within
a single chip, there has been some works to partition the application threads between CPU and
GPU cores. In [15], HPC workloads are executed on Mali GPU to achieve energy e�ciency, but the
possible collaboration with CPU is not considered. In [11], the threads are partitioned by considering
shared resources and synchronization. However, these works do not use GPU for OpenCL kernel
execution. OpenCL framework for ARM processors was introduced in [21]. In [30], a similar open
source framework, FreeOCL [8] is used for the ARM CPU that acts as both the host processor and
an OpenCL device. This enables concurrent use of CPU and GPU to execute an application threads,
but in [30], a static partitioning is performed by using all the CPU and GPU cores.

A close observation of approaches to map and partition application threads between CPU
and GPU cores of a mobile MPSoC indicates that they cannot be e�ciently applied for run-time
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Fig. 3. Odroid-XU3 board containing Samsung Exynos 5422 heterogeneous MPSoC.

mapping and partitioning of the threads of concurrent applications. Further, while doing such
partitioning, existing approaches do not consider performance constrained applications. In contrast,
our proposed approach performs energy-e�cient mapping and partitioning of applications’ threads
while respecting the performance constraints of each application.

4 SYSTEM AND PROBLEM FORMULATION
This section presents hardware and software infrastructure to represent the system and the detailed
problem formulation.

4.1 Heterogeneous MPSoC
Modern heterogeneous MPSoCs contain di�erent types of cores having the same or di�erent ISAs
and the number of cores of each type can vary. Usually, the cores of the same type are situated
with a cluster. We consider a similar heterogeneous MPSoC in our work. In particular, we consider
Samsung Exynos 5422 MPSoC present on the Odroid XU3 board [6]. Figure 3 shows the Odroid-XU3
board and more insight of the Exynos 5422 MPSoC. This MPSoC is based on ARM’s big.LITTLE
technology [2] and contains a cluster of 4 ARM Cortex-A15 (big) CPU cores and another of 4 ARM
Cortex-A7 (LITTLE) CPU cores. These cores implement ARM v7A ISA. Each core has private L1
instruction and data cache and L2 is shared across all the cores within a cluster. Additionally, it
also contains 6 ARM Mali-T628 GPU shader cores based on “Midgard" architecture and 2GB DRAM
LPDDR3. The main component of a shader core is a programmable massively multi-threaded “tri
pipe" processing engine that contains one load-store pipeline, two arithmetic pipelines, and one
texture pipeline.

This MPSoC also provides DVFS feature per cluster. For Cortex-A15 cluster, the frequency can
be varied between 200 MHz to 2000MHz with a 100 MHz step, whereas for Cortex-A7 cluster, it can
be varied between 200 MHz to 1400 MHz with a step of 100 MHz. The frequency of GPU cluster
can be set at 177 MHz, 266 MHz, 350 MHz, 420 MHz, 480 MHz, 543 MHz and 600 MHz. It should
be noted that we vary only frequency, but �rmware automatically adjusts the voltage based on
pre-set pairs of voltage-frequency values.

4.2 So�ware Infrastructure
4.2.1 Operating System Support. The Odroid XU3 board supports di�erent �avours of Linux. In

particular, we use popular Ubuntu 14.04 LTS. This version supports Heterogeneous Multi-Processing
(HMP) that enables use of all the CPU cores (big and LITTLE) simultaneously. Additionally, it
supports DVFS of di�erent cluster cores by editing the appropriate virtual �les for the corresponding
devices in the Linux sysfs directory. It also supports core disabling of CPU cores that provides
opportunity to use selective big and/or LITTLE cores to execute an application.
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4.2.2 OpenCL. The Open Computing Language (OpenCL) [7] is an open standard for developing
parallel applications to exploit heterogeneous multi-core architectures [22, 38]. OpenCL vendors
provide runtime software and compilation tools to facilitate execution of OpenCL programs (appli-
cations) on supported devices, e.g. CPU and GPU. It also supports exploitation of multiple devices
by a single program.

In OpenCL computation model, a computing system consists of a number of devices attached to
a host processor that is usually a CPU. The host acts like a manager and controls compute devices
for performing computations referred to as kernels. A compute device could be a CPU, GPU, or DSP.
The host sets up devices, create kernels, build them and �nally send them to devices for execution
by using OpenCL APIs. It also sends/receives data to/from devices before and after the execution.
Each compute device (e.g., GPU) consists of compute units (e.g., shader cores) and each compute
unit consists of processing elements (e.g., arithmetic pipelines). A processing element executes a
kernel instance called as work-item that operates on a single data point. A group of work-items
form a work-group and these items execute concurrently on the processing elements of a single
compute unit. The data processed by OpenCL is in an index space of work-items that are organized
in an N-Dimensional Range (NDRange). The OpenCL memory model demands memory consistency
across work-items within a work-group but not among work-groups. Therefore, without worrying
about maintaining memory consistency among compute devices, di�erent work-groups can be
launched on di�erent devices (e.g., CPU and GPU).

4.2.3 FreeOCL. FreeOCL [8] is an open-source OpenCL runtime library that provides OpenCL
support for the ARM CPU cores. In [21], a similar OpenCL framework is described to support ARM
processors. Such support is typically not available in current mobile SoCs as OpenCL runtime
software is supplied only for the Mali GPU to promote its usage for general purpose computing or
acceleration. The compilation and installation of FreeOCL enabled ARM CPU to act as both host
processor and an OpenCL device. Thus, both CPU and GPU cores can be concurrently exploited for
executing an application. This provides opportunity to partition an application threads between
CPU and GPU cores towards fast completion of the application.

4.2.4 Applications. The data-parallel applications are potential candidates to concurrently ex-
ploit cores of a MPSoC as data can be processed in parallel on the cores. However, each application
should be written in OpenCL to exploit cores of two di�erent ISAs such as CPU and GPU. The
GPU version of the popular Polybench benchmark suite [16] contains such data-parallel applica-
tions written in OpenCL and we use them. The application codes are slightly modi�ed to launch
them only on CPU cores, only on GPU cores, or on both CPU and GPU cores. Additionally, an
appropriate work-group size for each application is selected as in [30]. For each application, the
user can specify a performance requirement in terms of completion time of the application. This
timing requirement can be translated to throughput requirement for frame based application like
audio/video processing, where throughput is expressed as a frame rate to guarantee a good user
experience.

4.3 Problem Definition
For performance constrained data-parallel applications to be executed on a GPU-GPU heterogeneous
MPSoC, several thread-to-core mapping options exist for each application as its threads can be
partitioned between CPU and GPU cores while using di�erent combinations of big/LITTLE CPU
cores and/or the GPU cores. For nb big and nL LITTLE CPU cores, the total number of mappings
(MCPU ) is:

MCPU = nb + nL + (nb × nL) (1)
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For GPU cores, there will be only one mapping as all the cores will be used.

MGPU = 1 (2)

Since the considered MPSoC supports cluster-wide DVFS, the cores within each cluster can be
set to a voltage-frequency level from a prede�ned set of voltage-frequency pairs [17]. Let, Fb , FL
and Fд be the number of voltage-frequency levels for big, LITTLE and GPU cluster, respectively,
the mapping design space considering voltage-frequency levels for the CPU (MCPUV F ) and GPU
(MGPUV F ) cores will be as follows.

MCPUV F = (nb × Fb ) + (nL × FL) + (nb × Fb × nL × FL) (3)

MGPUV F = 1 × Fд (4)
The total number of combined design points (CDP ) considering both the CPU and GPU cores are:

CDP = MCPUV F ×MGPUV F

= {(nb × Fb ) + (nL × FL) + (nb × Fb × nL × FL)} × (1 × Fд)
(5)

For a given application, the fraction of work-items (threads) to be executed on the CPU and GPU
cores can be identi�ed by utilizing the above design space. Let us consider a total of T work-items
and N fraction of work-items to run on CPU cores and rest on GPU cores at a particular voltage-
frequency setting. The execution time (ET ) of the application after splitting between CPU and GPU
cores can be estimated as follows.

ET =max{N × ETCPU , (T − N ) × ETGPU } (6)
Where, ETCPU and ETGPU are estimated execution time for CPU-only and GPU-only executions.

This equation indicates that execution time will be determined by the device taking more time to
execute its assigned work-items.

The energy consumption (EC) can be estimated as:

EC = ECCPU + ECGPU + ECMEM (7)

Where, ECCPU , ECGPU and ECMEM are the energy consumptions of CPU cores, GPU cores and
memory, respectively, which can be computed at the product of respective power consumption and
execution time.

Since we have several mapping options (design points) on both CPU (Equation 3) and GPU
(Equation 4) side, we will have di�erent values of ETCPU and ETGPU for those points. Similarly,
Equation 7 will lead to di�erent values of energy consumption. This indicates that an appropriate
partition needs to be identi�ed for each combination of design points from the CPU and GPU side.
However, as such number of combinations are going to be large, the partitioning considering each
combination is time consuming and thus cannot be done at run-time. Therefore, it can be shifted to
design-time and the partitioning results can be used to facilitate energy e�cient run-time mapping
and partitioning of work-items of multiple OpenCL applications while satisfying the performance
requirements. This de�nes the problem as follows.

Given an application or a set of concurrent applications with performance constraints and a
heterogeneous CPU-GPU MPSoC supporting DVFS

Find energy e�cient partitioning of work-items of each application between CPU and GPU
cores along with thread-to-core mapping

subject to meeting performance requirement of each application and not exceeding available
MPSoC resources
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At run-time, for each application, a new partitioning needs to be identi�ed to optimize energy
consumption as the design-time partitioning will not lead to e�cient results due to applications
stretched execution time (shown earlier in Figure 2). The energy e�cient partitioning refers to
identify the partitions such that overall energy consumption will be optimized and it needs to be
identi�ed by considering the design points of concurrent applications.

5 PROPOSED RUN-TIME THREAD MAPPING AND PARTITIONING
An overview of the proposed run-time thread mapping and partitioning approach is illustrated
in Figure 4. The approach has some o�ine and online steps (falling into the category of hybrid
approach [31]) where o�ine computed results for various applications are used to identify energy
e�cient run-time mapping and partitioning of threads of concurrent applications to be executed
on the heterogeneous MPSoC. The main steps of the approach are as follows:

(1) O�ine pro�ling on CPU and GPU cores (Section 5.1).
(2) O�ine mapping and partitioning of threads on CPU and GPU cores (Section 5.2).
(3) Online (run-time) mapping and repartitioning for concurrent execution of applications

(Section 5.3).
The novel aspects of our run-time mapping and repartitioning approach are as follows.
• Run-time identi�cation of applications’ stretching (extended execution time) due to their

concurrent execution.
• Consideration of CPU and GPU cores processing capability and applications’ stretched

execution to identify the repartitioned work-groups.
• Accurate energy consumption estimation to evaluate the mapping and repartitioning

options in order to select the best one.
• Execution time estimation of applications for di�erent mapping and repartitioning options

to verify against timing requirement.
The following sections provide more details of each step.

5.1 O�line Profiling on CPU and GPU cores
For each available application (App1 to Appm), the pro�ling step for CPU cores computes all the
possible mappings and their execution time when using various combinations of big and LITTLE
CPU cores operating at di�erent frequencies. On CPU cores, the total number of mappings for
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Fig. 5. Profiling results on CPU and GPU cores.

each application can be computed by following Equation 3. For the considered MPSoC, the total
number of CPU mappings (design points) for each application is 4080 (MCPUV F = 4×19 + 4×13 +
4×19×4×13) based on the fact that there are 4 big and 4 LITTLE CPU cores that can operate at 19
and 13 frequency levels, respectively. To illustrate some of the design points, Figure 5 (a) shows
part of the pro�ling results in terms of execution time for SYR2K application from the Polybench
benchmark when the big and LITTLE CPU cores operate at the respective maximum frequency
and are used in various combinations (on the horizontal axis), i.e. only 24 (4×1 + 4×1 + 4×1×4×1)
points.

For GPU cores, the pro�ling step computes all the possible design points and their performance
when the GPU cores operate at di�erent frequencies. The total number of GPU design points for
each application is 7 (MGPUV F = 1×7, from Equation 4) based on the fact the application threads
are mapped on all GPU cores and 7 frequency levels are available for the GPU cluster. Figure 5 (b)
shows the GPU pro�ling results for the SYR2K application.

5.2 O�line Mapping and Partitioning of Threads Between CPU and GPU Cores
For each application, this step determines the fraction of work-items to be executed on CPU and
GPU cores by considering the design points obtained in the previous step. For all the possible
combination of design points between CPU and GPU, one appropriate partitioning of work-items
between CPU and GPU leading to optimized execution time is possible. Such a partitioning should
lead to the completion of work-items on the CPU and GPU side at the same time. For facilitating
application execution as OpenCL kernels, the workload on both CPU and GPU should be multiples of
work-group size. Therefore, the partitioning point can be calculated as the number of work-groups
that is nearest to the desired fraction of the CPU workload.

The individual capacities of CPU and GPU design points can be considered to accomplish the
desired partitioning [30]. The individual capacity can be measured in terms of execution time of
the design point. Let W be the total number of work-groups in an application and ETCPUp and
ETGPUp are the execution time on CPU and GPU for the chosen combination of design point (p)
from CPU and GPU, then the fraction Np of the work-groups that should be executed on the CPU
can be computed by assuming Np work-groups on CPU and (W − Np ) work-groups on GPU will
complete the execution at the same time, i.e.:

Np × ETCPUp = (W − Np ) × ETGPUp (8)
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Equation 8 can be derived as:

Np =
W

1 +
ETCPUp
ETGPUp

(9)

Such partitioning leads to load balancing of work-items between CPU and GPU cores. For each
combination of design points from CPU and GPU, we can obtain the best partitioning by utilizing
Equation 9 while considering execution times on the CPU and GPU cores. For the considered
MPSoC, the number of combination (design) points for each application is 28560 (=4080 × 7)
considering 4080 and 7 design points on the CPU and GPU cores, respectively, and can be computed
by Equation 5.

Each of the combination point give a new design point (Dp ) that can be represented in terms of
partition (Np ), number of used big cores (nb ) and their frequency (fb ∈ Fb ), number of used LITTLE
cores (nL) and their frequency (fL ∈ FL) and frequency of GPU cores (fд).

For each design point Dp , the application is again executed to simultaneously exploit CPU and
GPU cores by following partition Np . The application execution time and energy consumption are
computed by following Equation 6 and 7, respectively. Thus, we obtain performance (1/Execution-
time) and energy consumption at each design point Dp . Similar computations are performed for all
the applications.

Considering all the terms, each design point can be represented by a 10-tuple as:
Dp = (Np ,nb , fb ,nL, fL, fд , Pr f ,ECCPU ,ECGPU ,ECMEM ).

Figure 6 shows example design points (168 = 24×7) for the SYR2K application corresponding to the
individual pro�ling on CPU and GPU cores shown in Figure 5. However, there are a total of 28560
points as mentioned earlier. In order to store only e�cient points in terms of performance, energy
consumption and resource usage, we distil the points as follows. First, out of all the design points
(28560), we consider performance and energy e�cient points at various possible CPU and GPU
cores combinations. Then, if performance of a point using higher number of cores is the same or
smaller than the performance of a point using lower number of cores, energy consumption in latter
point is the same or lower than the former point and cores in the latter point are a subset of cores
in the former point, then the former point is discarded. This results in Pareto-optimal points, where
each such point is better than another in terms of performance, energy consumption or resource
usage. The design points can be distilled by using other techniques as well [29]. These distilled
points (combination points) for each application are stored after sorting them in descending order
based on the performance Pr f . Such storing helps to easily identify the points meeting a certain
level of performance and leads to a low complexity for searching. In Figure 4, these stored results for
each application (App1 to Appm) are represented as Pr f , ECCPU , ECGPU , ECMEM ,Np at various
nb , fb ,nL, fL, fд . In case the architecture is large, the number of design points and their storage
overhead might become huge. In such cases, regression model can be derived by using some of the
design points and rest can be achieved by using the model [9, 25]. The storage overhead to store
the model will be low, but results will not be as accurate as that of storing the design points.

5.3 Run-time Mapping and Repartitioning for Concurrent Execution of Applications
For a set of concurrent applications to be executed at run-time, this step identi�es energy e�cient
mapping of applications’ threads to cores and repartitioning of threads of each application by taking
the design points of individual application and applications extended execution time due to co-
scheduling into account. The repartitioning process needs to ensure that performance requirement
of each application is satis�ed and the total number of used MPSoC cores should not exceed than
that of available ones.
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Fig. 6. Design points representing performance and energy consumption for SYR2K application.

Algorithm 1 Run-time thread-to-core mapping and repartitioning of threads
Input: CNTApps , AppsPr f r , and DPS
Output: TCM and Np′ for each application

1: for each application Am do
2: Choose points DPAm (∈ DPS) such that Pr f > AmPr f r ;
3: end for
4: for each combination pointCP (fromCNTApps ) such that total used cores is less than available

cores and individual frequencies of big, LITTLE and GPU cores are the same do
5: for each application in the CP do
6: Find stretched execution on GPU core by Equation 10;
7: Find repartitioned work-groups Np′ by Equation 15;
8: Find energy consumption ECNp′ by Equation 16;
9: Find execution time ET Np′ by Equation 19;

10: end for
11: Compute energy consumption of CP EC_CP (Equation 20);
12: Add CP with its EC_CP and individual applications Np′ and ET Np′ in set CPS ;
13: end for
14: Select the combination point having minimum energy consumption (minEC_CP ) and satisfying

AppsPr f r ;
15: For theminEC_CP , return individual applications repartition Np′ and number of used cores,

their types and frequencies as TCM ;

Algorithm 1 describes the run-time algorithm to perform thread-to-core mapping and reparti-
tioning of threads for each application. The algorithm takes concurrent applications (CNTApps ),
their performance requirements (appsPr f r ) and design points (generated in the previous step as set
of design points DPS = {D1, ...,Dp , ...,Dmax }) as input and provides the following output for each
application: i) thread-to-core mapping (TCM) in terms of number of used cores, their types and
operating frequencies, and ii) repartitioned threads (Np′) representing the fraction of work-groups
to be executed on CPU.

For each application, the algorithm �rst chooses performance requirement satisfying points from
its storage design space, e.g. Figure 6. Then, for each combination pointCP (formed by considering
one point from each application), if the total number of used CPU cores is less than or equal to the
number of available CPU cores and individual frequencies of used big, LITLLE and GPU cores are
the same, each application’s (Appm ) stretched execution time due to co-scheduling, repartitioned
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workload (work-groups) Np′ that de�nes fraction of work-groups to run on CPU cores, total energy
consumption (ECNp′ ) and execution time (ET Np′ ) based on the new partition Np′ are computed.
Since all the cores within each cluster (big, LITTLE, or GPU) operate at the same frequency, only
relevant combination points are evaluated to reduce the run-time overhead. It should be noted
that applications’ execution is not stretched on CPU cores as spatially isolated cores are chosen
for each application and thus execution time on the CPU side remains almost the same as earlier.
However, each application accesses the GPU cores one after another as sequential en-queuing
of threads takes place. Therefore, on GPU cores, the execution of an application is stretched by
the time taken to complete earlier enqueued threads. Considering applications App1 to Appm are
enqueued sequentially, the stretched (new) execution time of Appm on the GPU cores (ETGPUAppm )
is computed as follows.

ETGPUAppm =

Appm∑
a=App1

ETGPUa (10)

Where, ETGPUa will be the same as execution time of the application a on the CPU side (ETCPUa )
as balanced execution takes place between CPU and GPU based on the partitioning identi�ed in the
previous step. Therefore, considering the design point aDp of application a, ETGPUa is computed as
follows.

ETGPUa = ETCPUa =
1

Pr faDp
(11)

Based on the above stretched timing on the GPU side, repartitioned work-groups Np′ to balance
the execution between CPU and GPU cores is computed by assuming Np′ work-groups on CPU
and (W − Np′) work-groups on GPU will complete the execution at the same time, i.e.:

Np′ × ETCPUowд = (W − Np′) × ETGPUowд (12)
Where, ETCPUowд and ETGPUowд are the time required to process one work group (owд) on the

CPU and GPU cores, respectively, which are computed as follows.

ETCPUowд =
ETCPUAppm

Np
(13)

ETGPUowд =
ETGPUAppm
W − Np

(14)

Where, ETCPUAppm is the execution time of the application on CPU side and will remain the same
as isolated execution is performed. Therefore, it can be computed by using Equation 11. ETGPUAppm
can be employed from Equation 10. Np is earlier partition obtained from the design point.

In order to �nd the repartition Np′ , Equation 12 can be derived as:

Np′ =
W

1 +
ETCPUowд
ETGPUowд

(15)

Similarly, repartition is obtained for each application so that balanced execution can be performed
for each of them.

The energy consumption for each application (ECNp′ ) based on the repartition Np′ is computed
as follows.

ECNp′ = Np′ × ECCPUowд + (W − Np′) × ECGPUowд + ECMEM (16)
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Where, ECCPUowд and ECGPUowд are the energy consumption to process one work group (owд) on
the CPU and GPU cores, respectively, which are computed as follows.

ECCPUowд =
ECCPU

Np
(17)

ECGPUowд =
ECGPU

W − Np
(18)

ECCPU and ECGPU are the energy consumptions on CPU and GPU cores, respectively, which can be
obtained from the design point Dp of the application. The earlier partition Np can also be obtained
from Dp . In Equation 16, it is assumed that ECMEM will be constant as the same amount of data
needs to reside in the memory whether they are processed on CPU, GPU or both of them.

The new execution time (ET Np′ ) for each application based on the repartition Np′ is computed
as follows.

ET Np′ = max{Np′ × ETCPUowд , (W − Np′) × ETGPUowд } + δ (19)
Where, δ is memory contention overhead (data transfer delays) due to concurrent execution. The
contention overhead is generated due to memory interference among the applications and evaluated
in Section 6.2.2.

The total energy consumption for all the concurrent applications within a combination point is
found by adding energy consumption of individual applications.

EC_CP =
∑

∀CNTApps

ECNp′ (20)

After above computations for di�erent combination points, each combination point CP with
its energy consumption EC_CP and individual applications repartition Np′ and execution time
ET Np′ are added to a set CPS . Then, the combination point having minimum energy consumption
minEC_CP and satisfying the performance requirement of each application (1/ET Np′ < AppPer f r )
is chosen. For this chosen point, the number of used cores, their types and operating frequencies for
each application are returned as the thread-to-core mapping TCM and Np′ as the repartition. Our
approach is generic, but one time pro�ling is required when the application or platform changes. In
case a new application needs to be executed and its pro�ling results are not available, the best e�ort
[33] or online learning heuristics [32] can be employed to obtain the mapping and repartition, but
achieved results might not be e�cient.

Each application is executed on the heterogeneous MPSoC by following the TCM and Np′ .
The TCM is controlled by sched_seta f f inity interface in the Linux scheduler. The partitioned
application is subsequently executed by enqueuing kernels on the CPU and GPU devices by
following the repartition Np′ .

In case all the applications are not released at the same time, i.e. some are running and other
occur, it can be repartitioned based on the available resources and current status of the existing
applications, computed as the remaining time to complete them. If existing applications are going
to complete soon, the freed resources by them can be considered to decide the repartition of the
occurred application, otherwise it should be decided based on the current available resources. This
also avoids the overhead of data transfer for existing applications as their mapping and partitioning
is not disturbed.

6 EXPERIMENTAL RESULTS
The proposed run-time mapping and threads partitioning approach for energy optimization is
extensively evaluated on an Odroid-XU3 platform that runs a modi�ed Ubuntu Linux Kernel 3.10.96.
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Table 1. Selected applications from Polybench [16] and SLAMBench [26] benchmark, their number of work-
groups and performance requirement (Perf_req (1/seconds))

Benchmark App Name Abbreviation # work-groups Perf_req

Polybench

CORRELATION CR 2048 0.010
SYR2K S2 512 0.010
SYRK SR 512 0.015

COVARIANCE CV 2048 0.011
2MM 2M 128 0.300

2DCONV 2D 2048 0.200
GEMM GE 512 0.090
MVT MV 4096 0.050

SLAMBench SLAMBench SB 65536 0.005

The platform contains Samsung Exynos 5422 heterogeneous MPSoC [5]. The details of the platform
are provided in Section 4.1. The proposed approach runs on one of the big (A15) CPU cores. To
measure power consumption, the MPSoC also contains four real time current/voltage sensors
for four separate power domains: big (A15) CPU cores, LITTLE (A7) CPU cores, GPU cores and
DRAM. A power measurement circuit estimates the power as the product of voltage and current,
i.e. power = voltage × current. The energy consumption is measured as the product of average
power consumption and execution time. Since power is considered for all the domains, the energy
consumption of all the software components (e.g., proposed algorithm (Algorithm 1), pro�led data,
OS, drivers, applications, etc.) running within the chip are included.

The evaluation considers a number of applications from the Polybench benchmark suite [16] and
SLAMBench [26]. More details about the benchmark suite are provided in Section 4. To evaluate
the applicability of our approach to real-world application, we have considered SLAMBench, which
is a computer vision algorithm for 3D scene understanding and solves computationally intensive
problem of simultaneous localisation and mapping (SLAM) [26]. Table 1 lists the considered
applications and their abbreviations used throughout the paper. Some applications, e.g., 2MM and
MVT, have more than one kernel without any dependency between them. In case of dependencies,
data�ow between kernels needs to be considered. Further, some applications are memory-bound and
some are compute-bound (2MM, GEMM and MVT) [14]. These applications exhibit data parallelism
and are written in OpenCL. Since these applications do not have any performance constraint
(requirement) in the original benchmark suite, we specify an individual performance requirement
for each of them. The constraints are determined such that they are not very tight or loose. This
has helped us to map/execute more than one application on the considered MPSoC while satisfying
their performance constraints. It should be noted that the performance constraints can be relaxed
(made loose) if more applications need to be mapped while satisfying their constraints. They can be
made tight as well, but it will lead to performance satisfying mapping/execution of lower number
of applications. The applications are considered in various mixes (combinations) randomly to
represent a broad spectrum of run-time scenarios.

The proposed approach has been compared against the approaches of [37] and [30], to show
energy savings while satisfying performance requirements of concurrent applications. The approach
in [37] maps the applications either on CPU or GPU based on the speed-up, which is de�ned as the
time taken on only CPU over only GPU. This approach is referred to as speed-up aware mapping
SAM and a comparison of our approach with it shows the potential of mapping and partitioning
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application workloads on both CPU and GPU. In SAM, if time taken on the GPU is smaller than
that of CPU, the application is allocated onto the GPU, otherwise onto the CPU. Therefore, no
partitioning is required between CPU and GPU. However, this might end up mapping all the
concurrent applications on the GPU or CPU. Therefore, to make a fair comparison, the approach
has been modi�ed to map an application on CPU or GPU such that it leads to low overall execution
time by distributing applications between CPU and GPU. The approach of [30], follows the same
mapping and partitioning that is achieved by considering individual applications and has been
referred to as individual application analysis based mapping and partitioning IAAMP. Further, these
approaches do not consider performance constraints for applications, and thus the constraints are
imposed to them in order to make a fair comparison.

Our approach performs energy e�cient mapping and partitioning (EEMP) of applications’
threads and has been referred to as EEMP. Our approach also �nds appropriate voltage/frequency
of used cores by employing DVFS. Dynamic power management (DPM) for our approach implies
running at the highest voltage/frequency and then shutting down the used cores. Since we perform
exploration for all the voltage/frequency points (highest to lowest) and energy consumption is
computed only for the active duration of the applications, the approach will suggest using highest
voltage/frequency in case DPM is going to lead to lower energy consumption. However, for the
considered applications and mixes, our approach identi�es some intermediate (between highest
and lowest) voltage/frequency points that provide minimum energy consumption while satisfying
the performance requirements.

In order to show the e�ectiveness of proposed approach for various run-time scenarios, the
applications are considered in various combinations and individually as well. The �rst column of
Table 2 shows considered run-time scenarios. Based on evaluations (in Section 6.2.2), the contention
overhead δ in Equation 19 due to concurrent execution is considered for the worst-case contention,
which 3.80% of the performance. Additionally, the performance achieved, run-time overhead and
estimation errors for energy consumption and execution time is also evaluated.

6.1 Energy savings
At a given moment of time, the number of concurrent applications contending for the MPSoC
resources may vary. Such scenarios can be observed in a mobile phone where user tries to run
more applications at the same time, e.g., internet browser and mp3 player.

For two concurrent applications, a set of two applications from Table 1 are considered to evaluate
various approaches for minimizing the energy consumption while meeting performance require-
ment of each application. This considered set is shown in the �rst row and �rst column of Table 2.
Moreover, Table 2 also shows the mapping (in the second column) and repartition (in the third
column) for each application when our approach is employed. Figure 7 (a) provides the energy
consumption results when various approaches are applied. On an average, our approach EEMP
achieves 24% energy savings while meeting performance requirements compared to SAM.

To further evaluate the ability of the proposed approach to adapt to execution of concurrent
applications, three application scenario, i.e. three concurrent applications are considered. The
considered three application scenarios are shown in the second row and �rst column of Table 2
along with the mapping and repartition of each application obtained by our approach. Figure 7
(b) presents total energy consumption values when various approaches are employed. Increase
in number of concurrent applications leads to reduced solution space for choosing an energy
e�cient thread-to-core mapping. This is caused by the resource constraints (see Table 2 for resource
combination) and increased contention due to concurrent workloads and demand for meeting their
requirements. It has also been observed that IAAMP does not satisfy performance requirements in
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Table 2. Mapping (used CPU and GPU cores and their operating frequencies) and repartition by our approach
when applied to di�erent application scenarios (single, double and triple concurrent applications). All the
GPU cores are used for each application. Operating frequencies are not shown due to space limitation

App scenario Used CPU cores Repartition Np′

S2-CR 2L+1B : 2L+3B 335: 1634
2D-GE 0L+3B : 0L+1B 140 : 61

SR-S2-CR 1L+1B : 1L+1B : 2L+2B 188: 275: 1740
SR-S2-CV 1L+1B : 1L+1B : 2L+2B 188 : 369 : 1786
GE-2M-2D 1L+1B : 2L+1B : 1L+2B 41: 122 : 681
2M-MV-2D 1L+1B : 1L+1B : 2L+2B 79 : 2380 : 266
GE-MV-2D 0L+1B : 0L+1B : 0L+2B 41 : 3559 : 1337

CR 3L+4B 1695
S2 4L+0B 324
CV 4L+0B 1310
2M 4L+4B 118
2D 2L+4B 316
GE 0L+4B 42
MV 0L+4B 1262
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Fig. 7. Energy consumption by employing various approaches for di�erent application scenarios representing
(a) 2 concurrent applications, (b) 3 concurrent applications and (c) single application.

some scenarios, e.g. 2M-MV-2D. On an average, proposed technique EEMP achieves 28% energy
savings while meeting performance requirements compared to SAM.

We also have evaluated single application scenarios. Figure 7 (c) shows energy consumption when
various approaches are employed. The experimental observation shows that, for most applications
our approach provides an e�cient repartition. The used CPU cores and obtained repartition for
each application can be seen in single application scenario (third row) of Table 2. From Figure 7 (c),
it can be observed that IAAMP and EEMP outperform SAM. It can be seen the IAAMP and EEMP
lead to the same results for single application scenario as the mapping and partitioning of single
application’s threads is found. On an average, EEMP achieves 46% energy savings while meeting
performance requirements compared to SAM.

The four and more applications scenario seems to be not feasible because of high resource
contention, leading to not meeting given requirements. Further, even in two and three concurrent
application scenarios, the applications having huge memory requirement were not able to run
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Fig. 8. Performance deviation from the requirement.

concurrently due limited shared memory on the GPU. For example, ’GPU memory error’ has been
encountered when CR and CV were tried to run concurrently.

For all evaluated scenarios, on an average, the proposed approach achieves energy savings of
32% compared to existing technique.
6.2 Performance

6.2.1 Performance Deviation. In order to validate the adaptability of the proposed approach
to the performance requirements, the achieved performance is compared against the given per-
formance requirement. Fig. 8 shows performance deviation with respect to (w.r.t.) performance
requirement when various approaches are employed for di�erent application scenario. The perfor-
mance deviation is computed as di�erence between the achieved and required performance. It can
be observed that the performance achieved by our approach deviates less than that of SAM and
IAAMP. A less deviation by our approach indicates that execution is performed at lower frequencies,
which leads to energy savings. Additionally, it can be observed that the deviation by all approaches
decreases from single to triple application scenario as applications’ execution is stretched due to
resource contention caused by limited MPSoC resources.

6.2.2 E�ect of Memory contention. The achieved performance includes the memory interference
among the applications as it is computed from the execution time (ET) captured by the system
that is measured by considering several factors, e.g. contention and used CPU/GPU cores and their
respective frequencies. We also evaluated contention e�ect as the di�erence between applications
performance when run individually and concurrently. It has been observed that memory contention
a�ects the performance from 1.08% to 3.80% for the considered run-time scenarios.

6.3 Memory Overhead
The pro�led data (design points) for each application is stored after applying the storage optimiza-
tion described in Section 5.2, where each design point is represented by a 10-tuple:
Dp = (Np ,nb , fb ,nL, fL, fд , Pr f ,ECCPU ,ECGPU ,ECMEM ). The storage overhead for each applica-
tion before and after the optimization is 23.5 kB and 10.5 kB, respectively. This represents a very
low overhead.

6.4 Run-time Overhead
The run-time overhead of our proposed approach (Algorithm 1) depends on the number of com-
bination points considered for the concurrent applications and time taken to perform various
computations (e.g., stretched execution, repartitioned work-groups, energy consumption and exe-
cution time) for each application in a combination point. Since computations are done fairly quickly
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Fig. 9. Run-time overhead of the proposed approach.

(in the order of µs), the overhead is dominated by the number of combination points. However,
since the approach performs computations only for the combination points using less number of
cores than available ones and having individual frequencies of big, LITTLE and GPU cores the
same, a lot of combination points become redundant. Thus, computations are performed for a small
number of combination points, which leads to light weight run-time management. By taking the
average over various application scenarios, our run-time approach (Algorithm 1) shows an average
overhead of approximately 20 ms.

We also have computed the overhead with respect to the total execution time. Figure 9 illustrates
the total run-time overhead, computed as percentage of total execution time, for six application
scenarios. The run-time overhead for application scenario CR-S2-SR, having a long execution time
of 77 sec is ∼0.9%. The average run-time overhead is 0.29%, which is very minimal. This implies
that the proposed run-time approach can be e�ciently used to �nd mapping and partitioning of
concurrent applications’ threads.

6.5 Run-time Estimation Errors
The proposed run-time algorithm estimates energy consumption by Equation 20. This needs to be
estimated as the algorithm needs to know energy consumption of several mapping and partition
options quickly in order to identify the design point having minimum energy consumption. Since
this is used to decide the �nal design point, it needs to be estimated accurately. We have compared the
estimated energy consumption by Equation 20 with the one achieved after completing the execution
and computed by using available MPSoC power sensors. The compared energy consumption
results for all the application scenarios have shown that the di�erence in estimated and observed
energy consumption is less than 6%, which provides su�cient accuracy to �nd minimum energy
consumption point.

Similarly, execution time estimated by Equation 19 for each application is compared against the
execution time achieved after completing it. This estimation is required as we need to check it against
the timing requirements so that only performance satisfying design options are considered. The
compared results for various application scenarios have shown that the di�erence between estimated
and observed execution time varies from 3% to 8%, which has helped us to �nd performance
satisfying points with reasonable accuracy.
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Fig. 11. Energy consumption for real-world application mixes.

6.6 E�ect of Varying Performance Constraints
We also analyse the e�ect of varying performance constraints on energy consumption when employ-
ing our and existing approaches. Figure 10 shows energy consumption results when performance
constraints of concurrent applications CR, S2 and SR are varied from 0.001 to 0.0145. With tighter
(higher) performance constraints, e.g. 0.0145, all the approaches fail to satisfy them (x x x in Figure
10). It can be observed that our approach always provides energy savings over existing approaches.

6.7 Case-study with Real-world Application
Figure 11 shows energy consumption results when various approaches are applied to di�erent
application mixes from Ploybench and SLAMBench (SB) benchmark. The SB is run either on the
CPU or GPU. Two and three applications are mixed in Figure 11 (a) and (b), respectively. For
two application mixes, IAAMP and EEMP achieve the same results as SB is mapped on GPU and
other is partitioned between CPU and GPU in exactly the same manner by IAAMP and EEMP. For
higher number of application mixes, EEMP reduces energy consumption when compared to other
approaches.

7 CONCLUSIONS
We proposed a run-time management approach that performs energy e�cient mapping and threads
partitioning of concurrent applications on CPU-GPU cores of heterogeneous MPSoC. The approach
utilizes the knowledge from design-time pro�ling to identify the mapping in terms of number of
used cores, their type and operating frequencies. The pro�ling knowledge is also used to identify
workload distribution between CPU and/or GPU cores. Validation on Odroid-XU3 platform for
various application scenarios has shown that our approach can be employed to achieve higher
energy savings compared to existing approaches. Towards the development of future energy
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e�cient and feature rich embedded systems with heterogeneous MPSoCs containing CPU and
GPU cores, the advances reported in this paper are important contributions. In future, we plan to
consider distributed memory architectures requiring movement of data between di�erent devices,
e.g. CPU and GPU.
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